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SUNG-JIN OH AND DANIEL TATARU

This is the second part in a four-paper sequence, which establishes the threshold conjecture and the soliton
bubbling vs. scattering dichotomy for the hyperbolic Yang—Mills equation in the (44 1)-dimensional
space-time. This paper provides the key gauge-dependent analysis of the hyperbolic Yang—Mills equation.

We consider topologically trivial solutions in the caloric gauge, which was defined in the first paper
of the sequence using the Yang—Mills heat flow. In this gauge, we establish a strong form of local
well-posedness, where the time of existence is bounded from below by the energy concentration scale.
Moreover, we show that regularity and dispersive properties of the solution persist as long as energy
dispersion is small. We also observe that fixed-time regularity (but not dispersive) properties in the caloric
gauge may be transferred to the temporal gauge without any loss, proving as a consequence small-data
global well-posedness in the temporal gauge.

We use the results in this paper in subsequent papers to prove the sharp threshold theorem in caloric
gauge in the trivial topological class, and the dichotomy theorem in arbitrary topological classes.
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1. Introduction

In this paper, along with the companion papers [Oh and Tataru 2017a; 2017b; 2019a], we consider the
hyperbolic Yang—Mills equation in the (44 1)-dimensional Minkowski space with a compact semisimple
structure group.
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In [Oh and Tataru 2017b], we defined the notion of caloric gauge with the help of the Yang—Mills heat
flow on R% and showed that every subthreshold connection admits a caloric gauge representative (see
Section 1B below for a review). The first main result of the present paper (Theorem 1.13) is a strong form of
local well-posedness of the hyperbolic Yang—Mills equation in the manifold of caloric gauge connections,
where the time of existence is estimated from below by the scale of energy concentration. The second main
result (Theorem 1.16) asserts that regularity and dispersive behaviors persist as long as a certain quantity
called energy dispersion, which measures a certain type of nondispersive concentration, remains small.

While the caloric gauge reveals the fine cancellation structure of the Yang—Mills equation, and is thus
suitable for dispersive analysis at low regularity, it has the drawback that causality is lost. As a remedy,
we also show that regularity (but not dispersive) properties in the caloric gauge may be transferred to
the temporal gauge. As a corollary, we also obtain small-data global well-posedness of the hyperbolic
Yang—Mills equation in the temporal gauge (Theorem 1.18).

In the subsequent papers in the sequence [Oh and Tataru 2017a; 2019a], we use the results proved in
this paper to establish the threshold theorem (i.e., global well-posedness and scattering for subthreshold
data) in the caloric gauge, as well as the soliton bubbling vs. scattering dichotomy theorem for general
finite-energy solutions, formulated in a more gauge-covariant fashion. An overview of the entire series is
provided in [Oh and Tataru 2019b].

1A. Hyperbolic Yang—-Mills equation on R114. Our set-up is as follows. Let G be a compact noncom-
mutative Lie group and g its associated Lie algebra. We denote by Ad(0O)X = OXO~! the adjoint (or
conjugation) action of G on g and by ad(X)Y = [X, Y] the Lie bracket on g. We use the notation (X, Y')
for a bi-invariant inner product on g,

([X’Y]’Z>:<X’[Y?Z]>$ XaY’Zeg,
or equivalently
(X,Y)=(Ad(0)X,Ad(0)Y), X, Yeg, O€gG.

If G is semisimple then one can take (X, Y) = —tr(ad(X) ad(Y)), i.e., the negative of the Killing form
on g, which is then positive definite, However, a bi-invariant inner product on g exists for any compact
Lie group G.

Let R'*4 be the (44 1)-dimensional Minkowski space equipped with the Minkowski metric, which

L ,x4). The coordinate x°

takes the form diag(—1, +1,..., 4+1) in the rectangular coordinates (xO, X
serves the role of time, and we will often write x® = ¢. Throughout this paper, we will use the standard
convention for raising or lowering indices using the Minkowski metric, and summing up repeated upper
and lower indices.

Our objects of study are connection 1-forms A on R!'*# taking values in the Lie algebra g. They define
covariant differentiation operators D, = D L(LA) = 0, + Ay (in coordinates) acting on sections of any
vector bundle with structure group G. The commutator D, D, — D, D, yields the curvature 2-form

Fuv = F[A]v, which is given in terms of A, by the formula

FI‘LV - aMAv - 8‘,AM + [AM, Av].
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Given a G -valued function O on R'*#, we introduce the notation
0., =9,007".
The pointwise action of O on the vector bundle induces a gauge transformation for A and F, namely
Ay 04,071 —3,007" = Ad(0)A,, — Oy,  Fup+> OF, 07! = Ad(O) Fy.

In view of this transformation property, F' may be viewed as a 2-form taking values in the G -vector
bundle with fiber g, where G acts on g by the adjoint action (geometrically, the adjoint vector bundle).
Thus the covariant derivative D, acts on F by

D, Fyp = (0, +ad(A,)) Fop = 0, Fap + [Ap, Fogl.

The hyperbolic Yang—Mills equation on R'T# is the Euler—Lagrange equation associated with the
formal Lagrangian action functional

L(A) = 1/ (Fop. FB) dx dt,
2 Jpi+a
which takes the form
D*F,p =0. (1-1)
Clearly, (1-1) is invariant under gauge transformations. This equation possesses a conserved energy,

given by
Eaps ()= [ Xl Fepl (12
}XR4

Furthermore, both the equation (1-1) and the energy (1-2) are invariant under the scaling
A(t, x) = AA(At, Ax) (A >0).

Hence, the hyperbolic Yang—Mills equation is energy critical in dimension (4 + 1), which is the reason
why we focus on this dimension in the present series of papers.

We are interested in the initial value problem for (1-1). For this purpose, we first formulate a gauge-
covariant notion of an initial data set. We say that a pair (a, e) of a connection 1-form @ and a g-valued
1-form e on R* is an initial data set for a solution A to (1-1) if

(4j, Foj) ti=0y= (aj, ej).

Here and throughout this paper, roman letter indices stand for the spatial coordinates x!, ..., x* Note
that (1-1) with 8 = 0 imposes the condition that
D/ej=d'¢j+[a’ ej]=0. (1-3)

This equation is the Gauss (or the constraint) equation for (1-1).
It turns out that (1-3) characterizes precisely those pairs (a, e) which can arise as an initial data set.
Thus we make the following definition:
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Definition 1.1. (1) A regular initial data set for the hyperbolic Yang—Mills equation is a pair (a, e) €
HN x HN=1 (N > 2) which has finite energy (i.e., F[a] € L?) and satisfies the constraint equation (1-3).

loc
(2) A finite-energy initial data set is a pair (a,e) € H,} x L? which has finite energy (i.e., Fla] € L?)
and satisfies the constraint equation (1-3).

In this paper, we make an additional assumption that a decays suitably at infinity:
acH'. (1-4)

This assumption turns out to be equivalent to the requirement that a is topologically trivial [Oh and Tataru
2019a]. As this property is conserved under any continuous evolution in time, this is the natural setting
for scattering and thus for the threshold conjecture for (1-1), which is one main subject of the final paper
[Oh and Tataru 2017a] of the series.

The hyperbolic Yang-Mills equation (1-1), when naively viewed as an evolution equation for A, fails
to be locally well-posed; to restore (at least formally) well-posedness, we need to fix the gauge invariance.

There are several classical interesting gauge choices which can be made here, for instance the Coulomb
gauge 3/ A ;i =0, the temporal gauge A¢9 = 0 and the Lorenz gauge 0“4y = 0. For a more detailed
discussion and comparison of these gauges we refer the reader to our first article [Oh and Tataru 2017b].

However, the main gauge choice we use in this paper is the so-called caloric gauge, which was defined
in the first paper of the series [Oh and Tataru 2017b] with the help of a parabolic analogue of (1-1),
namely the Yang—Mills heat flow. This is the subject of our next discussion.

1B. Yang-Mills heat flow and the caloric gauge. Let a be a connection 1-form on R* (in short, a spatial
connection). We say that a connection 4 = A(x, s) on R* x J (where J is a subinterval of [0, 00)) is a
(covariant) Yang—Mills heat flow development of a if it solves

This equation is invariant under gauge transformations on R* x J. Under the local caloric gauge condition
As =0, (1-6)

the forward-in-s initial value problem for (1-5) is locally well-posed [Oh and Tataru 2017b, Theorem 2.7]
in H'. We remark that the evolution (1-5) under the gauge (1-6) is precisely the gradient flow for the
(spatial) energy

el@) = 5 [ (Pula). FP¥aax = [ LNl dx.

The key controlling norm for the Yang—Mills heat flow in the local caloric gauge is || F'|| L3(J:L3)
which is both scale- and gauge-invariant.

Theorem 1.2 [Oh and Tataru 2017b]. Consider a Yang—Mills heat flow A € Cs(J; H') in the local
caloric gauge satisfying
||F||L§(J;L3) <Q<oo. (1-7)
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When J = [0, so) for so < 00, A can be extended past sg as a (well-posed) Yang—Mills heat flow. When
J = [0, 00), the solution has the property that the limit

i 4G) = e

exists in HY. The limiting connection is flat (F[aco] = 0) and the map a +— aso is locally Lipschitz
in H, HN (N > 1) and H* n HN (N > 2). Denoting by O(a) a gauge transformation satisfying
0719, 0 = ac, the map a +— O(a) is continuous from H' to H? up to constant conjugations.

In the case when the Yang—Mills heat flow with initial data @ admits a global solution with finite
L3 norm for the curvature as in (1-7), we define the caloric size Q(a) of a as

Q@) = I1F 73 q+.13: (1-8)
We note that this is a gauge-invariant quantity.

Remark 1.3. Here we need to clarify the topology on the (nonlinear) space of gauge transformations.
We will say that a sequence om converges to O if there exists a sequence 0™ of gauge transformations
so that 0™ (0™)~1 are constant and so that we have

* pointwise convergence,!

d(0™,0)—0 inL2,

e convergence of derivatives,
~(n o
0;(x)—>0;x in H'.

A simple but important case in which (1-7) holds with J = [0, o0) is when the initial energy &, (a) is
sufficiently small. The same conclusion holds as long as & (a) is below any nontrivial connection a € H'!
satisfying the harmonic Yang—Mills equation

D'Fy =0. (1-9)

The above assertion is closely related to the topological class of connections. Relaxing the requirement

acH'toae H!

loc allows also topologically nontrivial initial data sets, in which case the ground state

energy
Egs =inf{&.(a) :a € le)c is nontrivial and solves (1-9)} (1-10)

is nonzero, and the minimum is attained for a special class of solutions called instantons. However, within
the trivial topological class we have

2EGs < inf{&(a) :a € H' is nontrivial and solves (1-9)}. (1-11)

We further remark that in order for a connection a to have Q(a) finite, it must be topologically trivial.
Because of this, the present paper is limited to topologically trivial connections, which are simply defined

I The functions O™ are uniformly bounded in BMO so this property essentially provides the additional information that in
some sense the local averages converge as well.
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by the requirement that a € H' in a suitable gauge. For an extended discussion and further references we
refer the reader to our next article in the series [Oh and Tataru 2019a].
In view of this discussion, the following result is natural:

Theorem 1.4 (threshold theorem for the Yang—Mills heat flow on R* [Oh and Tataru 2017b]). Assume
that a is topologically trivial and that
Ee (a) < 2EG5.

Then the solution to (1-5) exists globally on [0, 00). Moreover, there exists a nondecreasing function
Q(+):[0,2Egs) — [0, 00) such that
Q(a) < Q(&e(a)).

We now return to the discussion of an arbitrary (not necessarily subthreshold) spatial connection a,
whose Yang—Mills heat flow development satisfies (1-7) with J = [0, 00). Since the limiting connection
aoo 18 flat, it must be gauge equivalent to the zero connection. This motivates the following definition of
the caloric gauge:

Definition 1.5 (caloric gauge). We say that a connection a; € H' is caloric if J = [0, 00) and aw in
Theorem 1.2 is equal to zero. We denote the set of all such connections by C. More quantitatively, we
denote by Cg the set of all caloric connections whose Yang—Mills heat flow development satisfies

Qa) < Q. (1-12)
Given a connection a € H! satisfying (1-7) with J = [0, 00), note that
Cal(a); = Ad(O(a))a; — O(a);;

is its caloric representative, which is unique up to constant conjugations.

To solve the Yang—Mills equation in the caloric gauge, we need to view the family C of the caloric
gauge connections as an infinite-dimensional manifold. Here the H! topology is no longer sufficient, so
we introduce the slightly stronger topology

H={acH":|la|g <oo}, where |lala:=lalz + )Y IP;(@ ap)le.
J
Here, { P;} refer to the standard Littlewood—Paley projections to dyadic frequency annuli on R*. It turns
out that every caloric connection belongs to H, which reflects the fact, to be discussed in Section 3 in
greater detail, that caloric connections satisfy a nonlinear form of the Coulomb gauge condition. Moreover,
the following theorem holds.

Theorem 1.6. (1) For a connection a € C with energy £ and caloric size Q we have

lalg <eol.

(2) Consider a connection a € H (not necessarily caloric) satisfying (1-12). Then O(a) in Theorem 1.2
may be uniquely fixed by imposing lim|y| .o O(a) = I. Such a map a — O(a) is locally C! from H to
H2NC° and also from HN to H>N HN+1 (N > 2).
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Essentially as a corollary, we have:
Theorem 1.7. The set C is an infinite-dimensional C' submanifold of H.

The spatial components of finite-energy Yang—Mills waves will be continuous functions of time which
take values into C. They are however not C! in time; instead their time derivative will merely belong to L2.
Because of this, we need to take the closure of its tangent space 7'C (which a priori is a closed subspace
of H) in L2 This is denoted by TaLZC . It is also convenient to have a direct way of characterizing this
space; that is naturally done via the linearization of (1-5):

Definition 1.8. For a caloric gauge connection a € C, we say that L2 5 b ¢ TaL2C if and only if the
solution to the linearized local caloric gauge Yang—Mills heat flow equation

dsBi = [B/. Fij]1+ D’ (D B; — D, By). By(s =0) =by, (1-13)
(where D = D @) gatisfies
lim B(s) =0.
§—>00
We say that (a, b) € TLZCQ ifaeCgandb e Tach, and we say that (a, b) € TLCifaeCandb e Tach.
A key property of the tangent space TaLZC is the following nonlinear div-curl-type decomposition:

Theorem 1.9. Let a € Cg with energy E. Then for each e € L? there exists a unique decomposition
e=b—DWay, beTlC ageH', (1-14)

with the corresponding bound
16122 + llaol g1 e, llellz2- (1-15)

A hyperbolic Yang—Mill connection consists not only of spatial components (the sole subject of
discussion so far), but also of a temporal component. As in the Coulomb gauge, we will consider the
spatial components of the connection as the dynamic variables, which satisfy a system of wave equations.
The temporal components, on the other hand, will be viewed as an auxiliary variable determined from the
spatial components. This point of view motivates the following definition.

Definition 1.10 (initial data in the caloric gauge). An initial data for the Yang—Mills equation in the
caloric gauge is a pair (a, b) where (a,b) € TL¢.
The notion of covariant Yang—Mills initial data (Definition 1.1) is connected to the preceding definition

by the following result proved in [Oh and Tataru 2017b] (which motivates the notation in Theorem 1.9):

Theorem 1.11. (1) Given any Yang—Mills initial data pair (a,e) € H' x L? such that the Yang—Mills
heat flow development of a satisfies (1-12), there exists a caloric gauge Yang—Mills data (a, b) € TL?¢
and ag € H?Y, so that the initial data pair (@, &) is gauge equivalent to (a, e), where

e = by — Dl(ca)a().
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In addition, (a,b) and ay are unique up to constant conjugations, and depend continuously on (a, e)
in the corresponding quotient topology. Further, the map (a,e) — (a, b) is locally C1 in the stronger
topology? H x L?> — H x L2, as well as in more regular spaces HY x HN=1 — HN x HN=1 (N >2).

(2) Given any caloric gauge data (a, b) € TL2C, there exists a unique ag € H, with Lipschitz dependence
on (a,b) € H! x L2 so that

er = by — D,(ca)ao
satisfies the constraint equation (1-3). Further, the map (a,b) — ayg is also Lipschitz from HN x HN~1
to HVN for N > 3.

Remark 1.12. The caloric gauge just described is a global version of a local caloric gauge previously
introduced by Oh [2014; 2015], and is based on an idea by Tao [2004] in his study of the energy-critical
wave maps into the hyperbolic space [Tao 2008a; 2008b; 2008c; 2009a; 2009b].

1C. The main results. The first main result is a strong gauge-dependent local well-posedness theorem
for the Yang—Mills equation as an evolution in the manifold of caloric connections. To state this result,
we define the energy concentration scale r. of a Yang—Mills initial data set (a, ¢) with threshold e, (or
the e.-energy concentration scale) to be

ré& =ré[a,e] = sup{r: €p, (a.e) < €2}

Theorem 1.13 (local well-posedness in caloric gauge). There exists a nonincreasing function e+(€, Q) >0
and a nondecreasing function My (E, Q) > 0 such that the Yang—Mills equation in the caloric gauge is
locally well-posed on the time interval of length r. = r&* (€, Q) for initial data (a, e) with energy < £
and a € Cg. More precisely, the following statements hold:

(1) (regular data) Let (a, e) be a smooth initial data set with energy < £, where a € Cg. Then there
exists a unique smooth solution Ay x to the Yang—Mills equation in caloric gauge on I = [—r¢,rc]
such that (Aj, Foj) [‘{,=O}: (aj,ej).

(2) (rough data) The data-to-solution map admits a continuous extension
CxL%3(a,e) > (Ay, 3, Ay) € C(1, TL?0)
in the class of initial data with energy < &, a € Cg and energy concentration scale > r.

(3) (a priori bound) The solution defined as above obeys the a priori bound
[Axllsipr < Mx(E, Q).

(4) (weak Lipschitz dependence) Let (a’, e') € C x L? be another initial data set with energy concentration
scale > rq. For o < 1 close to 1, we have the global bound

[4x — Al sotn SMae,0),0 1@, e) = (@' el goy go—1-

2Here we impose again the condition lim|y| o0 O(a) = I in order to fix the choice of O(a).
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The a priori bound (3) is highly gauge-dependent and has strong consequences. The S !-norm, which
is essentially the same as in [Krieger et al. 2015] and is recalled in Section 4A below, serves the role
of a controlling (or scattering) norm for the Yang—Mills equation in the caloric gauge. As we will see
in Section 5, finiteness of the S!-norm implies fine properties of the solution itself, such as frequency
envelope control, persistence of regularity, continuation and scattering towards endpoints of 7, and also
for those nearby, such as weak Lipschitz dependence and local-in-time continuous dependence.

Theorem 1.13 implies small energy global well-posedness in the caloric gauge, analogous to the similar
Coulomb gauge result in [Krieger and Tataru 2017]:

Corollary 1.14. If the energy of the initial data set is smaller than &2 := min{1, e2(1, Q(1))}, then the
corresponding solution Ay x in the caloric gauge exists globally and obeys

A4 lls17(—00,00)] = M (E)-

Moreover, if the initial data set (a, e) has subthreshold energy, then by Theorem 1.4 we have a € Cg
with @ < Q(€). Therefore, we immediately obtain:

Corollary 1.15. For initial data with subthreshold energy, the conclusions of Theorem 1.13 hold with &,
M. and r. depending only on the energy £.

The local well-posedness result (Theorem 1.13) provides a basic framework for considering dynamics
of the Yang—Mills equation in the manifold of caloric connections C. The second main result, which we
now state, is a continuation/scattering criterion for this equation in terms of smallness of a quantity called
energy dispersion (denoted by ED[/] below).

Theorem 1.16 (regularity and scattering of energy-dispersed YM solutions). There exists a nonincreasing
function (€, Q) > 0 and a nondecreasing function M(E, Q) such that if A; x is a solution (in the sense of
Theorem 1.13) to the Yang—Mills equation in caloric gauge on I with energy < £ and with initial caloric
size Q that obeys

IFllptr) = $up 27| P Fll o (r xixty < (€. Q).

then it satisfies the a priori bound
[Axllsi = M(E, Q).
as well as

sup Q(A(0)) <« 1.
tel

By finiteness of the S!'-norm, A,y may be continued as a solution to the Yang—Mills equation in the
caloric gauge past finite endpoints of /, and scatters in some sense towards the infinite endpoints; see
Remarks 5.2 and 5.3.

Remark 1.17. In contrast to Theorem 1.13, in Theorem 1.16 the dependence on Q is very mild. This
feature is due to the fact that small energy dispersion, combined with the energy bound, implies that Q
must be either very large or very small; see Lemma 5.10 below. In particular if £ is subthreshold then the
dependence on Q above can be omitted altogether.
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While powerful conclusions about the solution (represented by the S!-norm bound) can be made in
the caloric gauge, it has the disadvantage that the causality (or the finite speed of propagation) property is
lost. To remedy this, we also establish small-data well-posedness result in the temporal gauge A9 = 0:

Theorem 1.18. If the energy of the initial data set is smaller than €2 (as in Corollary 1.14), then the
corresponding solution (A; x, 0t A x) in the temporal gauge Ao = 0 exists globally in C;(R; H! x L?).
The solution is unique among the local-in-time limits of smooth solutions, and it depends continuously on
data (a,e) € H' x L2

In fact, Theorem 1.18 is a consequence of Corollary 1.14, after the observation that the gauge transfor-
mation from the caloric gauge to the temporal gauge obeys optimal regularity bounds; see Theorem 5.1
(10) below. We note that the strong dispersive S!'-norm bound for 4 is generally lost in the temporal
gauge, as some part of the solution is merely transported (instead of solving a wave equation).

Theorem 1.18 is used in the third paper [Oh and Tataru 2019a] of the sequence to establish the large-data
local theory for the (44 1)-dimensional Yang—Mills equation in arbitrary topological classes. Then in
the fourth paper [Oh and Tataru 2017a], this theory is put together with Theorems 1.13 and 1.16 to
establish global well-posedness and scattering in the caloric gauge for data with subthreshold energy
(often called the threshold theorem in the literature), as well as a bubbling vs. scattering dichotomy for
arbitrary finite-energy solutions, formulated in a gauge-covariant sense.

Remark 1.19. Within the setup of this paper, one could in effect easily relax the hypothesis of the above
theorem, and show that temporal gauge solutions exist for as long as caloric solutions exist. We do not
pursue this, as our primary interest in terms of the temporal gauge is to use it for solutions which are not
necessarily caloric. These matters are further discussed in our third and fourth papers [Oh and Tataru
2017a; 2019a].

The overall strategy for the proofs originated from the work of Sterbenz and the second author on
the energy-critical wave maps [Sterbenz and Tataru 2010a; 2010b] and was adapted to the case of the
energy-critical Maxwell-Klein—-Gordon (MKG) equation, which is a simpler model for Yang—Mills, in our
previous works [Oh and Tataru 2016a; 2016b; 2018]. We also note an alternative independent approach
for the energy-critical wave maps [Krieger and Schlag 2012] and MKG [Krieger and Lithrmann 2015]
based on the Kenig—Merle method [2008; 2006]. A more extensive historical perspective is provided in
the fourth paper [Oh and Tataru 2017a].

In [Oh and Tataru 2016b; 2018], the analogues of Theorems 1.13 and 1.16 (respectively) were proved
using distinct strategies. However, here we derive both main results (see Section 7 for details) from the
following single a priori estimate concerning regular solutions, whose proof is the central goal of this paper:

Theorem 1.20. There exist nonincreasing functions (€, Q), T(E, Q) > 0 as well as a nondecreasing
function M(E, Q) such that if A; x is a regular solution to the Yang—Mills equation in caloric gauge on [
with energy < & such that Ax € Cg forallt € I, and moreover

sup 272K || Py Fll poo (s xpty < €(6,Q) and |1] <27™T(E, Q)

k>m
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for some m € Z, then it satisfies the a priori bound
[Axllsiry = M(E, Q).

In words, for a regular solution with small energy dispersion only at certain frequency 2" and above,
an a priori S'-norm bound holds on time intervals of the corresponding scale O(27").

1D. Overview of the paper. Section 2: In this section, we collect some notation and conventions used
throughout this paper for the reader’s convenience. Some basic concepts, such as disposability, dyadic
function spaces, frequency envelopes, etc., are also described.

After Section 2, the paper is organized into two tiers. The first tier consists of Sections 3 to 7, and its
goal is to describe the large-scale proof of the main results, assuming the validity of certain linear and
multilinear estimates collected in Section 4.

Section 3: Here, we recall from [Oh and Tataru 2017b] further results concerning the Yang—Mills heat
flow and the caloric gauge. First, we state some quantitative bounds for the Yang—Mills heat flow and
its linearization in the caloric gauge, using the language of frequency envelopes (Section 3A). Next, we
derive the wave equation satisfied by Ax and Ax(s) (s > 0) in the caloric gauge (Section 3B). In this
process we use the dynamic Yang—Mills heat flow (3-5), which is the Yang—Mills heat flow augmented
with a heat evolution (in s) for the temporal component.

Section 4: We first describe the fine function space framework for analyzing the hyperbolic Yang-Mills
equation in the caloric gauge (Section 4A). The main function spaces are identical to those in [Krieger
et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017], which in turn have their roots in the works on
wave maps [Tataru 2001; Tao 2001]. We also explain the three main sources of smallness in our analysis:
divisibility, small energy dispersion and short time interval. Then we state the linear and multilinear
estimates needed for the proof of the main theorems (Sections 4B and 4C); it is the goal of the second
tier of the paper (described below) to prove them. The primary estimates here are the bilinear null form
estimates, which in the context of our function spaces have their origin in [Krieger et al. 2015; Oh and
Tataru 2018; Krieger and Tataru 2017]. The bilinear null structure of the Yang—Mills nonlinearities was
first described in [Klainerman and Machedon 1994]; a secondary trilinear null structure, which also plays
a role here, was discovered in [Machedon and Sterbenz 2004] in the (MKG) context.

Section 5: We prove a strong structure theorem for a solution to the hyperbolic Yang—Mills equation in
the caloric gauge with finite S '-norm (Section 5A). In particular, it reduces the tedious task of controlling
various parts of a solution A, x to proving a single S!-norm bound for the spatial components 4. We also
consider the effect of small inhomogeneous energy dispersion on a correspondingly short time interval
(Section 5B). The analysis is repeated for the dynamic Yang—Mills heat flow of a solution (Section 5C).

Section 6: We prove the central result, Theorem 1.20, by an induction-on-energy argument. The argument
is similar to [Oh and Tataru 2018], which in turn was based on the work [Sterbenz and Tataru 2010a],
with modifications to handle the low frequencies with possibly large energy dispersion with the short
length of the time interval (see, in particular, scenario (1) in Section 6B).
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Section 7: Here, we derive the main theorems stated in Section 1C from Theorem 1.20. The key point in
the derivation of Theorem 1.13 is the simple fact that energy dispersion is small for frequencies above
the inverse of the energy-concentration scale (Section 7B). Theorem 1.16 follows essentially by scaling
(Section 7C).

The second tier consists of Sections 8 to 11. Here, we provide proofs of the estimates stated in
Section 4.

Section 8: The goal of this section is to prove all multilinear estimates stated in Section 4. The proofs
proceed in two stages: In the first stage, we assume global-in-time dyadic (in spatial frequency) estimates
(Section 8B), and derive the interval-localized frequency envelope bounds stated in Section 4 (Section 8C).
A key technical issue in interval localization is to deal with modulation projections, which are nonlocal
in time. In the second stage, we establish the global-in-time dyadic estimates (Section 8D). Much is
borrowed from the previous works [Krieger et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017].

Section 9: We begin this section by reducing the proof of the key linear estimates in Section 4 to
construction of a parametrix for the paradifferential d’Alembertian O + 2 ) *; ad(P<g—, Py A)0% Py
(Section 9A). As in [Krieger and Tataru 2017], the parametrix is constructed via conjugation of the free-
wave propagator by a pseudodifferential renormalization operator. We define and state the key properties
of the renormalization operator (Section 9C), and establish the desired estimates for the parametrix
assuming these properties (Section 9D).

Section 10: Here, we prove the mapping properties of the renormalization operator claimed in Section 9.
The key difference from [Krieger and Tataru 2017] lies in the source of smallness: whereas smallness
of the S!-norm of A was used in that paper, in this paper we rely instead on largeness of the frequency
gap k in the paradifferential d’ Alembertian. The idea of exploiting a large frequency gap was used in
[Sterbenz and Tataru 2010a; Oh and Tataru 2018].

Section 11: Finally, we estimate the error for conjugation of the paradifferential d’ Alembertian by the
renormalization operator claimed in Section 9, thereby completing our parametrix construction. One
aspect of our proof that differs from the previous works [Sterbenz and Tataru 2010a; Oh and Tataru 2018]
is that, in addition to the large frequency gap «k, we need to use smallness of a divisible norm (weaker
than S1) of A, which requires a careful interval localization procedure (Sections 11C and 11D).

2. Notation, conventions and other preliminaries

2A. Notation and conventions. Here we collect some notation and conventions used in this paper.

e The symbols <, 2, < and >> are defined with their usual meanings, where the implicit constants in
these notations are allowed to vary from line to line.

e By A<g Band A <g B,wemeanthat A <Cg B and A <cg B, respectively, where Cg = Co(l—i—E)C1
and cg = Cy 1 1+ E )_C1 for some constants Cyp, C; > 0 that are again allowed to vary from line to line.

e Foru € g and O € G, define ad(u) = [u,-] and Ad(O) = O(-)O~1, both of which are in End(g).
Recall the minus Killing form, which is invariant under Ad(O) and ad(X). On g, define |- | on g by the
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minus Killing form. On End(g), use the induced metric |@|gna(g) = SUP|y, | <1 lau|y. By Ad-invariance,
|Ad(O)algnacg) = la Ad(O™Y)|gnacg) = lalEnd(g)-

e We use the notation B, (x) for the ball of radius r centered at x. We write |Z(&, )| for the angular
distance |§/1€| —n/|nl|, and | £(C.C")] for infeec, yec' | £(§. M)

e We use the notation V = 0; x, D, = i_lau. Also, for D and A we often suppress the subscript x and
write D = Dy and A = Ayx.

e We say that a multilinear operator O(u1, ..., Un) is disposable if its kernel is translation-invariant and
has mass < 1. In particular, we have

101, ....um)lly < lutllx, - lumllx,,
for any translation-invariant spaces X1, ..., X, Y provided that a product estimate
ler - umlly < lluilx, - lumllx,,
holds for any functions u; € X1,...,um € Xp.

¢ We often use the “duality” pairing

// uoOWy,...,um)dxdt

so as to have symmetry among uo and the inputs. Indeed, we have

// uoOWu1, ... um)dxdt = // OB, ..., E™iig(E®ia(EY) - i (E™)d E dt.
BO4 Bl g mBmM=0

e We define O* as

i-th entry

//u()(’)*i(ul,...,u,-,...,um)dtdxz//uf(’)(ul,..., Uy ,...,Um)dtdx.

e By a bilinear operator (of g-valued functions) with symbol m(&, n) = m®® (&, n) (which is a complex-
valued 4 x 4-matrix), we mean an expression of the form

d§dn

£(a,b) = f (m®® (€ lda(®). by (e €+ 250,

For a scalar-valued symbol m (&, 1), we implicitly associate the corresponding multiple of the identity
m®® (&, 1) = m(§, n)8°P.

If £ were symmetric, then the symbol m(&, n) would be antisymmetric in &, 7, in the sense that
m@ (g€, 1) = —m®@(n, £); this is due to the antisymmetry of the Lie bracket.

2B. Basic multipliers and function spaces. Here we provide the definitions of basic multipliers and
function spaces. For the more elaborate frequency projections and function spaces for the hyperbolic
Yang—Mills equation, see Section 4A.
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« Given a function space X (on either R? or R'*4), we define the space £ X by
ellfsy =D Il Pruly
k

(with the usual modification for p = 00), where Py (k € Z) are the usual Littlewood—Paley projections to
dyadic frequency annuli.

* For a spatial 1-form A, we define PA to be its Leray projection, i.e., the L2-projection to divergence-free
vector fields:
PiA=A4;+(—A)"19;8%4,.

We write Pi*A = A; — P; A.
e For a space-time 1-form A,, we introduce the notation Py A = (PA)q by defining

PiAy, a=jefl,... 4},

PyA=
« A(), oa=0.

We also define P-4 = (PtA)y = Ay — Py A.
e We denote by W2 the homogeneous L?-Sobolev space with regularity . In the case p = 2, we
simply write H® = W2,

e The mixed space-time norm L7 W of functions on R'*¢ is often abbreviated as LI W,

2C. Frequency envelopes. To provide more accurate versions of many of our estimates and results we
use the language of frequency envelopes.

Definition 2.1. Given a translation-invariant space of functions X, we say that a sequence c, is a frequency
envelope for a function u € X if

(i) the dyadic pieces of u satisfy
| Prullx < ck,

(i1) the sequence cj is slowly varying,

, C .
2780k < Ck < 280G—h) j>k.

Cj
Here § is a small positive universal constant. For some of the results we need to relax the slowly

varying property in a quantitative way. Fixing a universal small constant 0 < ¢ < 1, we set:
Definition 2.2. Let 01,0 > 0. A frequency envelope ¢y, is called (—o1, 02)-admissible if
2—01(1=a)(i=k) < Tk < p02(1=0)=k) 5 f.
Cj
When 01 = g3, we simply say that ¢ is o-admissible.

Another situation that will occur frequently is that where we have a reference frequency envelope cg,
and then a secondary envelope dj describing properties which apply on a background controlled by cy.



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 247

In this context the envelope dj often cannot be chosen arbitrarily but instead must be in a constrained
range depending on cg. To address such matters we set:

Definition 2.3. We say that the envelope dj, is o-compatible with cj, if we have
Ck Z 20(1_8)(j_k)dj < d.
Jj<k
We will often replace envelopes dj which do not satisfy the above compatibility condition by slightly
larger envelopes that do:

Lemma 2.4 [Oh and Tataru 2017b, Lemma 3.5]. Assume that ¢ and dj. are (—o1, S) envelopes, and
also that cy, is bounded. Then for ¢ < o (1 — ¢) the envelope

er =di +ck Z 25(j_k)dj
j<k
is o -compatible with cy. The implicit constant in Definition 2.3 is bounded above by 1+ Cq(1—g)—g ||C || goo-

Finally we need the following additional frequency envelope notation:

(c-dp=cpde.  ask=Y a5 T =sup2079°URe; (g5 0).

j=k i<k
2D. Global small constants. In this paper, we use a string of global small constants 81, ..., ¢, 67 with
the hierarchy
0 <8x =87 K6 K5 K g K3 K2 K81 Ko K 1. 2-1)

These are fixed from right to left, so that
Si+1 K 5,-100.
The role of each constant is roughly as follows:

e §o: for definition of functions spaces, such as Str! and by, by, po in Section 4.

e §7: for all bounds from other papers, such as [Oh and Tataru 2017b; 2018; Krieger and Tataru 2017];
also for all dyadic gains in explicit nonlinearities (Section 8) and for energy dispersion gains in the
Str! norm (4-21).

e §5: for energy dispersion, frequency gap and off-diagonal gains in Section 4.
e §3: for frequency envelope admissibility range in Section 4.

¢ §4: for energy dispersion and frequency gap gains in Section 5.

e §5: for frequency envelope admissibility range in Section 5.

e §g: for energy dispersion and frequency gap gains in Section 6.

¢ §.: for frequency envelope admissibility range in Section 6.

We use an additional set of small constants in our parametrix construction (Sections 9-11), which are
fixed after §; but before §,.
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3. Yang-Mills heat flow and the caloric gauge

In this section, which is a continuation of Section 1B, we recall the results from the first paper [Oh and
Tataru 2017b] that are needed in the present paper.

In Section 3A, we state quantitative bounds for the Yang—Mills heat flow (and its linearization) in
the caloric gauge, using the language of frequency envelopes. Section 3B is concerned with the task
of interpreting the hyperbolic Yang—Mills equation in the caloric gauge as a system of nonlinear wave
equations for Ay.

3A. Frequency envelope bounds in the caloric gauge. We begin with frequency envelope bounds for
the caloric gauge Yang—Mills heat flow and its linearization.

Proposition 3.1 [Oh and Tataru 2017b, Proposition 7.27]. Let (a,b) € TLZCQ with & = E.(a), and let
(A, B) be the solution to (1-5) and (1-13) with (a, b) as data. Let cj be a (=61, S)-frequency envelope in
H' x L2 for (a,b), and let cg’p be a (=81, S)-frequency envelope in WP x WO~LP for (a, b) which is
81-compatible with cj.. Define

A(s) = A(s) —e*2a, B(s) = B(s) —e*2b. (3-1)
Then the following properties hold.:
(1) We have
1PeA©) | g1+ | PeB )12 Seon (27257701 (2%s) "N g (3-2)
(2) For (o, p) and (01, p1) satisfying
4 -1 4 (4
cg]EUSE_CS]’ 2+081§p§C815 050150_6819 E_Ol_z(g_o—)’ (3_3)
we have
1PeA©)lypor+1.00 + I PEB©)ljjpor.on Seson 27252y ™N(ep?)? (34

A central object of the remainder of this section is the dynamic Yang—Mills heat flow for space-time
connections, which is an augmentation of (1-5) with an equation for the temporal component. More
precisely, we say that a pair (A4g, A) of a g-valued function Ao and a connection A4 on R* x J (where J
is a subinterval of [0, 00)) is the dynamic Yang-Mills heat flow development of (ag, a) if

Fsa = D Fyq, (Ao, A)(s = 0) = (ap, a). (3-5)

This flow is well-defined as long as the spatial and s-components of A are well-defined as a solution to
(1-5). In particular, if @ € C, then (Ag, A) exists on [0, 00), limg—oc Ag =0 in H'! and limg—_ oo Fo; =0
in L2. Moreover, the following proposition holds.

Proposition 3.2 [Oh and Tataru 2017b, Propositions 7.7 and 8.9]. Let a € Co and e € L? satisfy
(S e)||]2d2 < &. Consider also ag € H' and b € TaLZC which obeys e = b — Day (see Theorem 1.9), and
let (Ao, A) be a caloric gauge solution to (3-5) with data (ag, a). Then the following properties hold.
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(1) The spatial 1-form Bj(s) = Fo;(s) — D;jAo(s) obeys the linearized Yang—Mills heat flow in the
caloric gauge with Bj(0) = b;. Moreover,

[A g1 + 1Bz Seo (S0 L2 (3-6)
(2) Let dy, be a §1-frequency envelope for (f,e) in W2, Then
_ _ _ 1
27| P A(s) oo + 272X | Pe B(s)|[Loo Se.on (225) 7N (di)>. 3-7)
3) Let ci be a (=81, S)-frequency envelope for (a.b) in H! x L2 Then
(3) k (=61, S)-frequency pe for (a, b)
ok —1r— _ 1
IPeAO) | g1 + 1 PeB ()12 Seonv (272K 700 (2% 5) "N (dg) ek, (3-8)
; ; ok —1r— _ 1
1Ped” A ()l 2 + | Ped” By ()| o1 Seson (272571701 22K 5)™N (@) 2y, (3-9)
where A, B are as in (3-1).

3B. Wave equation for A in caloric gauge. Here, and in the rest of this paper, we shift the notation
and denote by A; y = A (t,x), instead of (@, a), the space-time connection on / x R* (viewed as
{s = 0}). For the spatial components, we omit the subscript x and write A, (t, x) = A(z, x). We write
As x,5(8) = At x ,5(t, x, 5) for the dynamic Yang—Mills heat flow of A; x (¢, x).

In this subsection, we recall from [Oh and Tataru 2017b] the interpretation of the hyperbolic Yang—Mills
equations for a space-time connection A x in the caloric gauge as a hyperbolic evolution for the spatial
components A augmented with nonlinear expressions of 8£Ag, Ao and dgAg in terms of (A, d;A); see
Theorem 3.5. An analogous hyperbolic equation holds for the dynamic Yang—Mills heat flow development
A; x(s) of A; x in the caloric gauge, which may be thought of as a gauge-covariant regularization of A;
see Theorem 3.6.

We present explicit expressions for the quadratic nonlinearities, for which we need to reveal the null
structure in order to handle them, and state stronger bounds for the remaining higher order nonlinearities.
For economy of notation in the latter task, we introduce the following definition:

Definition 3.3. Let X, Y be dyadic norms.

e Amap F : X — Y is said to be envelope-preserving of order > n (n € N with n > 2) if the following
property holds: Let ¢ be a (—§1, S)-frequency envelope for a in X. Then

”F(a)”Y(C[sl])n_lc Slallx 1-

e Amap F : X — Y is said to be Lipschitz envelope-preserving of order > n if, in addition to being
envelope-preserving of order > n, the following additional property holds: Let ¢ be a common §1-
frequency envelope for a; and a5 in X, and let d be a §;-frequency envelope for a; —a» in X that is
81-compatible with ¢. Then

| P (F (a1) — F (@)|ly, Sjarlly.laslly €5 €k

where e = dy +cx(c-d)<x.
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Remark 3.4. The modified envelope e appears since the maps F that arise below are defined on a
nonlinear manifold, namely, spatial connections @ on a time interval / such that (a, d;a)(t) € TL?C for
each fixed time. We remark moreover that if the frequency envelopes ¢ and d are £?-summable, which is
usually the case in practice, then F (a) and F (a;) — F (a3) belong to £1Y.

We also need to introduce the nonsharp Strichartz spaces Str and Str!, which scale like L>°L? and
L H, respectively. We define

+3=2,5< +2<2-5) G0
g~ 2

4
p

Q=

lalise = sup{lll  pyioa

as well as
lullger = Vullsi (3-11)
Conditions in (3-10) ensure that the (p, ¢, 0)’s are Strichartz exponents, but away from the sharp endpoints.

These norms have two key properties:

¢ They are divisible in time, i.e., can be made small by subdividing the time interval.

¢ Saturating the associated Strichartz inequalities requires strong pointwise concentration (i.e., small
energy dispersion).

In [Oh and Tataru 2017b], we have shown that the spatial components of the Yang—Mills equation
D*Fj, =0 (j €{1,2,3,4}) may be interpreted as a system of wave equation for the spatial components
A = Ay, where the temporal component Ay is determined in terms of (A, d; A), as follows:

Theorem 3.5 [Oh and Tataru 2017b, Theorem 9.1]. Let A; x = (Ao, A)€Cs(I; H! xCgo) with (0; Ag,0;:A) €
C:(I; LZXTAL;)CQ) be a solution to (1-1) with energy E. Then its spatial components A = Ay satisfy an

equation of the form
O4Ad; = Pj[A,0xA] +2A719; Q0% A, 04 A) + R; (A), (3-12)
together with a compatibility condition
9* Ay = DA(A) ;= Q(A, A) + DA3(A). (3-13)

Moreover, the temporal component Ay and its time derivative 0; Ag admit the expressions

Ap = Ao(A) := A"[A,0,A] +2A71Q(A, 0, A) + A3 (A), (3-14)
d;Ag = DAo(A) ;= —2A"1Q(0,; 4,3, A) + DA (A). (3-15)
Here P is the Leray projector, and Q is a symmetric> bilinear form with symbol
E17 = Inl?
0¢E N =55 (3-16)
2(1&1> +nl?)

30Observe here that the symbol of @ is odd, but this is combined with the antisymmetry of the Lie brackets appearing in the
bilinear form.
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Moreover, R;(t), DA3(), AS(Z) and DAg(t) are uniquely determined by (A, 9; A)(t) € TLZC, and are
Lipschitz envelope-preserving maps of order > 3 on the spaces

Ri(t): H' - H™!, (3-17)
DA3(t):H' - L?, (3-18)
A3(t): H' - H', (3-19)
DAX(t): H' — L2 (3-20)

Finally, on any interval I C R, R;, DA 3, Ag and DA(3) are Lipschitz envelope-preserving maps of
order > 3 (with bounds independent of I) on the spaces

R :St'[I]— L'L2n L2H ™[], (3-21)
DA3 :Su'[I]— L'H' nL2H 2[1], (3-22)
Ad:sul[I]— LYH> N L2H3[1), (3-23)
DA3:Sul[I]— LYH' N L2H2[1]. (3-24)

All implicit constants depend on Q and E.

Next, we consider the dynamic Yang—Mills heat flow A; x(s) of A; x in the caloric gauge. For s > 0, we
have D# Fap(s) = wgq # 0 in general. We expect the “heat-wave commutator” wy, (called the Yang-Mills
tension field) to be concentrated primarily at frequency comparable to s~1/2_ Indeed, the following
theorem holds.

Theorem 3.6 [Oh and Tataru 2017b, Theorem 9.3]. Let A; x =(Ao,A)€C;(I; H! xCg) with (0; Ap,0;A) €
Ci(I; szT/{J(j)CQ) be a solution to (1-1) with energy €. Let A; x(s) = A x(t, x, s) be the dynamic Yang—
Mills heat flow development of A; x in the caloric gauge. Then the spatial components A(s) = Ax(s) of
A; x (s) satisfy an equation of the form

Oaes)Aj(s) = Pi[A(s), 0x A(s)] +2A719; Q (3% A(s), 0x A(5)) + R; (A(s))
+ Pjw2(0;4,0;A4,5) + Rj;s(4), (3-25)

together with the compatibility condition
3¢ A,(s) = DA(A(s)). (3-26)
Moreover, the temporal component Ao (s) and its time derivative d; Ao (s) admit the expansions

Ao(s) = Ao(A(s)) + Ao:s(4) 1= Ao(A(9)) + AT w((A. A.5) + Ags (). (3-27)
01 Ao(s) = DA(A(s)) + DA g;s(A). (3-28)
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Here P, Q, R;, DA, Ao and DA are as before, and the wé are defined as

w3(A, B,s) =—2W (3;4,AB,s), (3-29)
w7 (A, B.s) =—2W (3,A,0;0; B—20x9;B;.s). (3-30)
where W (-, -, 5) is a bilinear form with symbol
1
W . s) = ———e SIETN (1 _ 25CEm) (3-31)
25-m

Moreover, Rj (1), AS;S (t) and DA o.5(t) are uniquely determined by (A, 9; A)(t) € TLZCfor each s >0,
and satisfy the following properties:

* Rjs(t): H' — H™is a Lipschitz map with output concentrated at frequency s~Y2. More precisely,
(1—=sA)NRj(r) : HY — 2701k g=1=61, (3-32)

o AS;S () : H!' > H'isa Lipschitz map with output concentrated at frequency s~V2: e,
(1—sA)NAZ (1) : H' — 2701k 101, (3-33)

e DAys(2): H' — L2 is a Lipschitz map with output concentrated at frequency sTU2 e,
(1—sA)NDAg(t): H — 2701*k6) g=o1, (3-34)

Finally, on any time interval I C R (with bounds independent of I), R; s, A3~s and DA ;s satisfy the
following properties:

* Rjis :Str'[I]— LY L2NL2 H~Y/2[[]is a Lipschitz map with output concentrated at frequency s~/2; i.e.,

(1=sA)N Rj.s : St [1] — 27 8% (L =5 A L2 =281y, (3-35)
. AS;S :Strl[I]— L'H? NL2H?3/? [1] is a Lipschitz map with output concentrated at frequency sTU2 e,
(1 =sA)N A3, Sl [[] - 27k (L g2=8 n L2 F 370 1), (3-36)

e DAy : Strl[I] — L2H1/2[I] is a Lipschitz map with output concentrated at frequency s~V2 e,
(1—5sA)N DA g : Stel[I] — 2780k 2 3=, (3-37)

All implicit constants depend on Q and £.
Remark 3.7. Some notable features of Theorem 3.6 are as follows:

e Compared with the prior result, here we have additional contributions Ry.s, Ao;s and DAg;s as well
as the w terms. These have the downside that they depend on A and d; A at s = 0 rather than A(s) and
d; A(s). The redeeming feature is that these terms will not only be small due to the energy dispersion, but

also, critically, concentrated at frequency s71/2,

¢ The other change here is due to the inhomogeneous terms wé; these are matched in the A (s) and the
Ao(s) equations, and will interact in the trilinear analysis (see Proposition 4.29 below).

¢ For the new error terms here we do not need to worry about difference bounds; see Section 6 below.
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4. Summary of function spaces and estimates

In this section, we summarize the properties of the function spaces and the estimates needed to analyze
the hyperbolic Yang—Mills equation in the caloric gauge, as given by Theorems 3.5 and 3.6.

4A. Function spaces. The aim of this subsection is to give precise definitions of the fine functions spaces
used to analyze caloric Yang—Mills waves.

4A1. Frequency projections. We start with a brief discussion of various frequency projections. Let
mg : R — R be a smooth nonnegative even bump function supported on {x € R : |x| € (27!, 22)} such
that {my = mo(-/2%)}rez is a partition of unity on R. For k € Z, recall that P, was defined as the
multiplier on R* with symbol Py (£) = my (|€]). Given j € Z and a sign %, we introduce the modulation
projections Q;*L and Q;, which are multipliers on R!*4 with symbols

QF (&) =m;(x FIED, Q;(x.§) =m;(r|—[£].

We also define 0% it 05 j» @<j» Q= etc. in the obvious manner. To connect Q;.‘: with O, we introduce

the sharp time-frequency cutoffs QF, which are multipliers on R!T# with symbols

QF (1. 8) = X(0,00) (7).

Note that P Q*Q; = P Q5 for j <k.

For £ € —N, consider a collection of directions w € S € R* which are maximally separated with
distance ~ 2% To each such an w, we associate a smooth cutoff function m{ supported on a cap of
radius ~ 2¢ centered at w, with the property that ) mg, = 1. Let P’ be the multiplier on R* with

symbol :
)

Given k’ € Z and £’ € —N, consider rectangular boxes C(£') of dimensions 28" x (2¥'+')3 (where
the 2K -side lies along the radial direction), which cover R* \ {|x| < 2k/} and have finite overlap with
each other. Let m¢,,(¢) b a partition of unity adapted to {C¢/(¢')}, and we define the multiplier Pe,, ¢/
on R* with symbol

Pe, (&) =mg,, 01 (§).

For convenience, when k’ =k, we choose the covering and the partition of unity so that Py P> = Py Pc, (1)-

We now discuss the boundedness properties of the frequency projections. For any k € Z, let P/
jE/' <j denote one of the modulation
projections Q 7, Qf I Qj or Q<;. Let w be an angular sector of size >~ 2 (¢ € —=N)), and C a rectangular

box of the form C/(£') (k' € Z, ¢’ € —N). Then the following statements hold:

denote one of the dyadic frequency projections { Py, P.;}. Let Q

* The multipliers Py/<k, Pi/<k P;° and Pc are disposable.

e The multiplier P, x Q is disposable if j > k + O(1); see [Tao 2001, Lemma 3]. For general

; has a kernel with mass O (24*=/)+),

O
Jr<j
J.k € Z, it s straightforward to check that Py, Q}_—/' -
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* The multiplier Py/<x Q is bounded on L? L? for any 1 < p < oo; see [Tao 2001, Lemma 4].

O
JI<Jj
* The multiplier Pr/<x P} QjE/'<j is disposable if j > k +2{ + O(1); see [Tao 2001, Lemma 6].
4A2. Function spaces on the whole space-time. Here, we define the global-in-time function spaces used
in this work. Unless otherwise stated, all spaces below are defined for functions on R!™#. We remark
that all of them are translation-invariant.

We first define the space X, ’b, equipped with the norm

2
2 = 3220 (@ 10 ulara )
k J
when 1 <r < 0o. As usual, we replace the £”-sum by the supremum in j when r = oo. The spaces X il;
are defined similarly, with Q; replaced by jS.
We are now ready to introduce the function spaces in earnest, which are all defined in terms of
(semi-)norms.

Core nonlinearity norm N. We define

This norm scales like L L2 We also define No = L1L? + X;):,—11/2. Note that N = N+ N N_. Moreover,
we have the embeddings

The inclusions on the left are obvious, whereas the inclusions on the right follow from Bernstein in time.
We omit the proofs.

Core solution norm S. We define

2 2 Oal an Ky
helld = ulk,.  Sk=S{"NXee? NSNS,
k

where S qu is related to square function bounds,
— 3k
Iullsge =270 ull o 2
and S ,i“ and S z“g are essentially as in [Krieger et al. 2015, equations (6)—(8)]:
—(p—1_4
lullse = sup 2775 DR o,
(P-9):5+55<3

2 2
el game = sup Y [P Q <k 20t 30 )
k <0, k
2 2 —2k 2 -3k + 2
lullSp @ = Il +272 NulFop +273 Y1050l s
+

D (||Pck/(e/)u||§su 22 Pyl
k'<k, £/<0 o 70 o

kb2lsk skl + 272K Pe 72 o

493K+ Z” QiPck/(K’)””;Wf(f))'
+
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Here, the NE and P W, ({) are the null frame spaces [Tataru 2001; Tao 2001], defined by

’/
u F,, = Inf u® ;2 do’,
I ”PW“’ © u=[u®’ /Iw—w/lsze ” ”Liw/L(()iw/)J-

lullve = sgpll qu”L?UOLiJ_’

where the LZ norm is with respect to the variable tajf =t+w-x, the L:U | norm is defined on each
{taj)E = const}, and ¥}, denotes the tangential derivatives to {taj,E = const}.

In the last two lines of the definition of S’ ({), the restrictions K <k, <O0andk’+0 <k+¢
ensure that rectangular boxes of the form Cg/({’) fit in the frequency support of Pp. The restriction
k +2¢ <k’ + ' is imposed by the main parametrix estimate (see Section 10H or [Krieger et al. 2015,
Section 11]), to ensure square-summability in Ci/(£).

The null frame spaces in S;”({) allow one to exploit transversality in frequency space, and play

an important role in the proof of the trilinear null form estimate; see [Krieger et al. 2015, equations
(136)—(138)] and Proposition 8.18 below. On the other hand, the L2 L°°-norm for Pe,,yu allows us to
gain the dimensions of Cy/({’).
Remark 4.1. For the reader who is familiar with the function space framework in [Krieger et al. 2015],
we point out that our S(€) is slightly stronger than that in [loc. cit.]. More precisely, instead of
K=/ Dky=(/2) Pe,,ntllL2 00 as in our definition, it is 2K =172k Pe,,@null2 0 in [loc. cit.].
However, we note that the extra factor 2~(1/2)¢ jg actually present in the main parametrix estimate in
[loc. cit., Subsection 11.3].

Remark 4.2. The square function norm S,iq is new here in the structure of the S norm. It plays no
role in the study of the solutions for the hyperbolic Yang—Mills equation in the caloric gauge, i.e., in
Theorems 1.13 and 1.16. Instead, it is only needed in order to justify the transition to the temporal gauge
in Theorem 1.18.

This norm scales like L°° L2, Moreover, it obeys the embeddings
X2 s, s x2e.
For k, k' € 7 satisfying k" < k and ¢’ < —5, we define
Nl e, oy = 27 Kl 20 + 272K F278 )2,

L swp (||Q<,~u||iw+2—2k||Q<ju||%VE
Jilj—k’+2£)|<5 2—3(k’+€’) " )
+ U . .
C10Z 5150

The virtue of this norm is that it is square-summable in boxes of the form Cy/(¢'):

Lemma 4.3. For any k,k’, ¢’ such that k' <k and {' <0, we have

Do IPeully ey S I3, - (4-1)
CcefCrr (U}
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Proof. The desired square-summability estimates for the L*°L2, NE and P W,F components follow
immediately from the definition of S z“g D S. For the L2L°% and L? L components, we write
U= Q20U+ Ospr420U.

For the former we use S zng, and for the latter we simply note that, by Bernstein,

278K Quprae Py ytlizage + 275 7K273Y | Qnrap PeyntliLzses S 1 Pey yullyou
which is clearly square-summable. O
Sharp solution norm S* We define
lull gz =27 (I Vull o2 + |10 ).

”“”(Sft)k = |lullpoop2 + (Dr F [ DDull v,

both of which scale like L%° L2 These norms are used in the parametrix construction in Section 9.

Remark 4.4. Again for the reader familiar with [Krieger et al. 2015] we note that our definition of S/ f
differs from that in [loc. cit.] by a factor of 2k (in [loc. cit.], S scales like L H'! ).

Scattering (or controlling) norm S'. Given any o € R, we define S = £25°, i.e.,

lulfe =D I Peullse.  lullsg =27V Vulls +15ul 12 5-1/2). 4-2)
k

This norm scales like L® H°. The norm S! will be the main scattering (or controlling) norm, in the sense
that finiteness of this norm for a caloric Yang—Mills wave would imply finer properties of the solution
itself and those nearby (see Theorem 5.1 below).

X7 :b.p -type norms. To close the estimates for caloric Yang—Mills waves, we need norms which give
additional control* off the characteristic cone (i.e., “high” modulation regime). We use an L? LY
generalization of the usual L2112 based X -norm, defined as follows: for o, b € R, 1 < p,r < 00, let

1 1
2V \r
Iz, = 2% (2 (ZquQj ol ) ). @3)
J

where p’ pL is the dual Lebesgue exponent of p. The cases p = oo and r = oo are defined in

the obvious manner. We also define the dyadic norm (X o:b.p )k by replacing Q; by Qi in the above
definition.
When p = 2, by orthogonality we have

1
ful ez, = 2% (Z(zbf 1P Q,-uanLz)’) |
J

#In particular, with £!-summability in dyadic frequencies.
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Analogous identities hold for X i’é’z. To be consistent with the usual notation, we will often omit the

exponents p and r when they are equal to 2, i.e., X2 = X202 xob — Xg’b’z, Xi’l; = Xi’l;’z and
Xa,b _ XU,b,Z ’ ’

+ T 4L

Before we introduce the specific norms we use, for logical clarity, we first fix the parameters that will
be used. We introduce bg, by and pg, which are smaller than but close to %, % and oo, respectively. More
precisely, we fix

1 1 1
bO_Z—go, b1—§—1050, 1—%—580,
so that
1 1 1 11
0< 4 —bo < 7. 2(1—b0)<1—%<ﬁ, (4-4)
1 1 1
Z<b1<§—(1—%). (4-5)
We define

1£laz) =1Q<krc f ly—s-rosrssma,
Il 3 = 1Bl = 1Q <k cully—17s-so.1/0400.1

Note that the Z ]1 -norm scales like L% H'!. As in [Krieger et al. 2015; Krieger and Tataru 2017], this norm
is used as an auxiliary device to control the bulk of nonlinearities (i.e., the part where the secondary null
structure is not necessary) when reiterating the Yang—Mills equations; see the proofs of Propositions 4.23—
4.29 in Section 8.

Remark 4.5. The Z!-norm used in [Krieger et al. 2015] corresponds to the case by = 0. Therefore, our
Z'-norm is weaker than the Z-norm in [loc. cit.]. This modification is made to handle the contribution
of 071 P[A%, 0, A] in the reiteration procedure; see Proposition 4.22.

Next, we also define

||f||(|:|z}'70)k = ”Q<k+Cf||Xs<§2—3/17()+(1/4—b0)00.—1/2—(1/4—[70)90.pO,

where 6y = 2(% — %), as well as the intermediate norm

||f||(521170)k = ”Q<k+Cf”X;5/4—3/p0+(1/4—b0)00.—1/4—(1/4—b0)90.110.

These norms scale like L! L2 Clearly, (DZ;,O)k C (DZ},O)/{. Given any caloric Yang—Mills wave A
with a finite S!-norm, we will put JPA in ¢! Oz 11,0 and OPA € ('0Z 1170; see Proposition 5.4.
Note that the following embeddings hold:

PQ;L'L* c24U-POz) (4-6)
_1 ~
X 2 NOZE € OZp )k € (O @7

Estimate (4-6) follows from Bernstein, whereas the first embedding in (4-7) follows by a simple interpo-
lation argument. We omit the straightforward proofs.
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Finally, as in [Krieger and Tataru 2017], we also need to use the function space
EIX—%-i-bl ,—b1

which also scales like L1 2. Given any caloric Yang-Mills wave A with a finite S !-norm, we will be able
to place OPA in {1 X —1/2+b1,=b1_ This bound, in turn, is used crucially in the parametrix construction.

High-modulation norms X' and X! for 1-forms. In our analysis below, we need to use different high-
modulation norms for the Leray projection PA than for the general components of a caloric Yang—Mills
wave. Hence it is convenient to define norms for 1-forms with this distinction built in.

Let A and G be spatial 1-forms on R!*4, We define

”G”DX}C = ”G”LzH—l/z + ||G”L9/5H—4/9 + ”PG”(DZ},O)k'
For any o € R, we define
IGlloxg =2€" IGlggr.  l4llxg = 1B4]oxg.
Similarly, we define
||G|||:|)}'Ii = ||G||ng—1/2 + ”G”L9/5H—4/9 + ||PG||(|:|Z!170),(,

as well as (X ¢ and X % Given any caloric Yang-Mills wave A4 with a finite S L_norm, we will place (14
successively in ('OX! and OA4 € 010X see Proposition 5.4.
We have the embeddings

P (L'LANL2A™2) € (DX ) € @Ky
Since L!L2 C N, it follows that
1GlInnox: S NG 2np2 172 (4-8)
Strengthened solution norm S'. Putting together S and X!, for a 1-form A on R!*4, we define
[Allsg = lAllse + 10Alloxg-

Core elliptic norm Y. We return to functions u on R'*4. We define

lully, = ||u||L2;'11/2 + ||“||Lpowz—3/po,p6»
where po was fixed in (4-4) above. This norm scales like L>®L2

Main elliptic norm Y 1. For o € R, we define

2 2 k —k
lullyo = ZIIPkMIIY]g, lullye = 27" (ully, + 27100l 2 gr1/2)-
k

This norm scales like L% H°. We will put the elliptic components Ag and PLA = A™19,8¢4, of a
caloric Yang-Mills wave in Y 1,
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4A3. Interval localization and extension. So far, the function spaces have been defined over the whole
space-time R!*4. In our analysis, we also need to consider localization of these spaces on finite time
intervals. We use the same set-up as [Oh and Tataru 2018; Krieger and Tataru 2017].

For most of our function spaces (with the important exceptions of Z},O, 7 ;’o’ X land X 1. see below),

we take a simple route and define the interval-localized counterparts by restriction. In particular, given a
time interval / C R, we define

lulsorn=___inf _ Jillse, Julsgn=__ inf _ lils, |flny= . inf [ fln. (4-9
ueSomu=ut ueS:u=u fe

I M N:f=ftr

An important technical question then is that of finding a common extension procedure outside / which
preserves these norms. The following proposition provides an answer.

Proposition 4.6. Let I be a time interval.

(1) Let x1 be the characteristic function of 1. Then we have the bounds

lxrulls < llulls.  lxrflin <N fll~- (4-10)

For a fixed function f on RYT4, the norms || y1 f||n and || f | N[1] are also continuous as a function
of the endpoints of 1. We also have the linear estimates

IVullsir SIVu(O)|z2 + 10ul v (4-11)
lullsipry SUIVUOlp2 + 10ull yn 2 172 7- (4-12)

(2) Consider any partition I =\, Ix. Then the N and L2H~Y2 gre interval square divisible, i.e.,
DA g S W 21 gy S W2 oy (4-13)
k k
and the S and S are interval square summable, i.e.,
el Sy < D Iull3grygs elFagy < D MullFig,: (4-14)
k k

For a proof, we refer to [Oh and Tataru 2018, Proposition 3.3].

Remark 4.7. As a consequence of part (1), up to equivalent norms, we can replace the arbitrary extension
in (4-9) by the zero extension in the case of S and N, and by the homogeneous waves with (¢, d;¢) at
each endpoint as data outside 7 in the case of S

The elliptic norms Y and Y'! only involve spatial multipliers and norms of the form L? L4, so their
interval-localization Y [I] and Y 1[I] are obviously defined (either by restriction, or using the L? L4[[]-
norm; both are equivalent). In particular, in the case of Y, observe that

lully i = lxrully < llully.

so the zero extension can be used.
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On the other hand, given a function u on I, we directly define the ||u ||(Z1 Ye[1] (Tesp. ”“”(Z DL [y to
be ||u® t||(Zl yelr] (resp. [lu™ ||(Z Ol (77> Where u
waves. Equlvalently, for (OZ,, 1 ok and (DZ o)k» We define

Xt is the extension of u outs1de I by homogeneous

||f||(Dzl}J0)k[1] = ”XIf”(DZ;l)O)k’ ||f||(|:|2}70)k[1] = ||X1f||([12}90)k-
Accordingly, we define

||G|||:|)7(]1([1] = ||G||L21-'1—1/2[1] + ||G||L9/5H—4/9[1] + ”XI PG”(DZLO)/(’ ||A||)7(]1([1] = ”DA”DL(}([]]v

and similarly for OX![/] and X [/].

The advantage of this definition is clear: We may thus use a common extension procedure (namely,
by homogeneous waves) for S and X!. The price we pay is that in estimating the DZ})O— and the
DZ},O -norms, we need to carefully absorb the sharp time cutoff y;.

4A4. Sources of smallness: divisibility, energy dispersion and short time interval. In this work, we rely
on several sources of smallness for analysis of caloric Yang—Mills waves.

One important source of smallness is divisibility, which refers to the property of a norm on an
interval that it can be made arbitrarily small by splitting the interval into a controlled number of pieces.
Unfortunately, our main function space S![/] is far from satisfying such a property (see, however,
Theorem 5.1(6) below), which causes considerable difficulty. Our workaround, as in [Oh and Tataru
2018], is to utilize a weaker yet divisible norm

_s
lullpsiiny = MP178 Vullpzpspry + 1 Vullggory + 18wl 2 g—1/247- (4-15)
Another important source of smallness is energy dispersion:

Definition 4.8. Given any m € Z, we define the energy dispersion below scale 2~ (or above frequency 2™)
of u of orders 0 and 1 to be, respectively,

lullep..,, (1) = sup 27820m=R)+ 272K || Pyt oo oo 1], (4-16)
lellgpy g7y = sup 2™ 82m=K)+ 272K |V Prul| oo Lo - (4-17)
kez
The quantity || - ||p.,, (1] (resp. || - ”ED1> o 77) is used at the level of the curvature F (resp. the connec-

tion A). As we work mostly at the level of the connection, unless stated otherwise, by energy dispersion
we usually refer to the order-1 case.

Clearly, EDIZm [/] fails to be useful at frequencies below O(2™). In this regime, we exploit instead the
length |I| of the time interval as a source of smallness. Due to the scaling property of [, we must require
2™ |1 to be sufficiently small. To conveniently pack together the previous two concepts, we introduce the
notion of an (e, M)-energy-dispersed function on an interval.

Definition 4.9 ((¢, M )-energy-dispersed function on an interval). Let / be a time interval, and let
u € S[I]. We will say that the pair (u, 1) is (s, M )-energy-dispersed if there exists some m € Z and
M > 0 such that the following properties hold:
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e (S'-norm bound)

ullsipry < M. (4-18)

¢ (small energy dispersion)
lllep,, 1y < M- (4-19)

¢ (high-modulation bound)
||D”||L2H—1/2[1] <eM. (4-20)

e (short time interval) |/ | < 27
Observe (by interpolation) that if (u, 1) is (g, M )-energy-dispersed, then

sx;p||Pku||Str1[,] <C&hm. 4-21)

Finally, we state a proposition showing how the norms DS![/] and EDlzm[I ] behave under the
extension procedure described above. Given an interval I, we denote by )(11‘ a generalized cutoff function
adapted to the scale 27k

X&) = (1 42k diste, 1)V, (4-22)
where N is a sufficiently large number. Let us recall [Oh and Tataru 2018, Proposition 3.4]:°

Proposition 4.10. Let k € Z, k > 0 and I be a time interval such that || > 27%%_Consider a function

uy on I localized at frequency 2k, and denote by u;’“ its extension outside I as homogeneous waves. Then

we have
_ 1_1_4
2k VugLorr Sy 29K (lurllzonrin +2 70D 0us g2 op)- (4-23)
272K || Yk VU | oo Lo Sv 272K Vur | oo Loy, (4-24)
where (q, 1) is any pair of admissible Strichartz exponents on R T4,

Remark 4.11. Since 2% [X’I‘, V] =27kw X’I‘ ) is simply multiplication by another generalized cutoff
function adapted to the frequency scale 2%, the conclusions of Proposition 4.10 also hold with X]; 2k Vu
replaced by 27%V/( X’,‘u?’“) on the left-hand sides.

4B. Estimates for quadratic nonlinearities. Here we state estimates for the quadratic nonlinearities in
Theorems 3.5 and 3.6. All estimates stated here are proved in Section 8C.

Throughout this and the next subsections, we will denote by A a g-valued spatial 1-form A = A; dx’
on I x R* for some time interval /. To denote a g-valued space-time 1-form, we use the notation
At x = Aq dx* We will use B (resp. B; x) to denote® another g-valued spatial (resp. space-time) 1-form
on I x R* Unless otherwise stated, all frequency envelopes will be assumed to be §3-admissible.

3To be pedantic, [Oh and Tataru 2018, Proposition 3.4] only corresponds to the case k = 0. However, the required modification
of the proof is straightforward.

6Note that this convention is different from [Oh and Tataru 2017b] and Section 3, where B was reserved for caloric
gauge-linearized Yang—Mills heat flows.
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We begin with the quadratic nonlinearities in the equations for Ag, d; Ag and at4 ¢. We introduce the
notation

M3(A, B) = [A4.0,B"], (4-25)
DME(A, B) = —2Q(3:A,0;B). (4-26)

These are the main quadratic nonlinearities in the A Ag and Ad; Ao equations, respectively. The estimates
that we need for these nonlinearities are as follows.

Proposition 4.12. We have the fixed-time bounds

DI MG BYDl 2, S 1AW g2 119 BO) 72 (4-27)
IIDI2DME(A. BYD) 12, < 18: A0 2110 BOI 2 (4-28)

and the space-time bounds
11D MBA. By, g1 S WAl 1 Bllgyn (4229)

=14 42
DI MEA B2 12

+1IDI2DAGA, B2 12y S 1Al 1Bl (4-30)
Moreover, for any k > 0, the nonlinearity M%(A, B) admits the splitting

MG(A, B) = Mg (A, B) + MG (A, B),

,small

where the small part obeys the improved bound

DI MG (4 Byt £ 272N All sy Bl 11 (4-31)

0,small

and the large part is bounded by divisible norms of A and B:

|| IDI_IMﬁjﬁrge(A, B)”ch[l] < 2CK||A||DSL! [] ||B||DS;[1]- (4-32)

Finally, if either
”A”Scl =1 and (B, 1) is (e, M)-energy-dispersed, or
||B||ch =1 and (A, 1) is (e, M)-energy-dispersed,

then we have

1D MB(A, B)|ly, i1 S M, (4-33)
” |D|_2DM3(A’ B)lleH(!ﬂ[I] S 882M~ (4-34)

The remaining quadratic nonlinearities in the equations for Ay and 3¢ A4, involve Q, and they obey
simpler estimates.

Proposition 4.13. For o = 0 or 1, we have the fixed-time bound

IIDI7 Q(A, 87 BY(D) 2, S NA@ g2 107 B@) 1o (4-35)
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and the space-time bounds
1D17 Q4.8 B 2 12y < WAl 1Bl (436)
11D17 @A 3¢ By, 111 + 11D @A 3¢ B) L oo ) S WAl psaon | Bllpst g 437)

Finally, if either
”A”S} =1 and (B, 1) is (e, M)-energy-dispersed, or

”BHSCI =1 and (A, 1) is (e, M)-energy-dispersed,
then
I1D177Q(4.97 B)lly.111 < ¢ M. (4-38)

Also for the quadratic part Ag of Ap, given by
A2(A, A) = A7V (A, 8 A]) +20(4, 8, A),
we have the following additional property, which will be used in the proof of Theorem 1.18:
Proposition 4.14. For the quadratic form Ag we have
IIDPAZA, Bl 121 1y,010 S IV Als32 VB30 (4-39)
For the quadratic nonlinearity in the (04 A; equation, we introduce the notation

P;M?(A, B) = P;[Ay. 0, BY].
P M?(A, B) =2A7"0,Q (374, 35 A),
so that (3-12) becomes

OaAj = PiM(A, A) + P;-M(A, A) + R;(A.9; A).

Proposition 4.15. We have the fixed-time bounds

IPM (A BYD) | g1 < 1A g2 | BOI gy - (4-40)
1P MP(4, Bl g1 S IVAD L2 IVBO) 2 (4-41)
and space-time bounds
| PAMP(A. Bl v eatn S 1415211 BlLst - (4-42)
| PEAMRA B wroxetn S 14150 1B st - (4-43)

In particular, the L2H Y2 norms are bounded by the Str'-norms of A and B:

IPAMP(A, B o =12y S WAllsitin) 1Bl ) (4-44)
|PEMP A B 2 1720y S WAl )| B iy (4-45)
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Moreover, for any k > 0, the terms P; M?(A, B) and Pf—MZ(A, B) admit the splittings
P;M*(A. B) = P MG2 (A B) + P M (A, B),
P M (A, B) = P Mo (A, B) + PiEMG (A, B),
so that the N -norms of the small parts obey the improved bounds
| P MG (A BN 111 S 272 [ All g3 1Bl s 13-
I P MG (A B) e 111 S 27 [ All sy Bl 13-
and those of the large parts are bounded by divisible norms of A and B:
||PLMlarge(A B)lINeatn) < 20“||A||Dsl[,]||B||DS1[,]

Finally, if either
”A”S},[l] <1 and (B,I)is (e, M)-energy-dispersed, or
||B||S}[I] <1 and (A,I)is (e, M)-energy-dispersed,

then

||PM2(A, B)||(NﬂL2H—1/2)C[I] S SSZM,
|PEM(A, Bl w2 p-172, 17 S €2 M.

(4-46)
(4-47)

(4-48)
(4-49)

(4-50)
(4-51)

We end this subsection with bilinear estimates for w% and w)zc, which arise in the equation for a dynamic

Yang—Mills heat flow of a caloric Yang—Mills wave.

Proposition 4.16. For any s > 0, we have the fixed-time bound
[1D17! Prwg (4. B.)()llz2 < (2%5) 7102757 P2 eredic 19 A .2 BO) | g
and the space-time bounds

110171 Pewd (A, B2 g2y < 275) 0@ 7257 P2 il Al 1)1 B s 1
I1D17! Prwg (4. B.s) v < (2%5) 10272557 "2 epdie | All sy 1 Bll s -

Moreover, if (B, I) is (g, M )-energy-dispersed, then
11D Pewd (A, B.s)|ly(n < 6% (2%K5) 7100272k P20 | Al g1 g M.
Proposition 4.17. For any s > 0, we have the fixed-time bound

| P Pw3 (A, B.s)(0)] -1 < (2%5)710272Ks ™) ™R erdi [VAD I 2 IVBO) 2

(4-52)

(4-53)
(4-54)

(4-55)

(4-56)
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and the space-time bounds
1P Pw3 (A, B, )l 2 1723
< (@) 70T R di I(VAL Y PR y05 2 172y g 1Bl st 17 (4-5T)
| P Pw?(A, B, s)|lynox i
< (2K 7107 e di (A P sy Bl - (4-58)
Moreover, if (B, 1) is (¢, M )-energy-dispersed, then
||PkPw)25(A’ B’S)”NmLzH—l/z[[]

S (@) 70T R Al gy + IVPE Al gy M. (4-59)

4C. Estimates for the covariant wave operator. We now state estimates concerning the covariant wave
operator [l4. All estimates stated here without proofs are proved in Section 8C, with the exceptions of
Theorem 4.24 and Proposition 4.25, which are proved in Section 9.

We begin by expanding [14 B to

O4B = 0B +2[Ay, 0*B] + [0% A, B] + [A%, [Ag, B]].
We have the following simple fixed-time estimates for [J4 — .

Proposition 4.18. Forany «, B,y €{0,1,..., 4}, we have the fixed-time bounds

1lAa. 0 BIO) -1 < (A0 DO g2 IVBO 2. (4-60)
100 Aa. BIO| g1 < (ADI gg + 19 Aol I BO) 1. (4-61)
1A, (4D BN =1 S 1CAG7, A O gl AT, AP 1 1BO] gy (4-62)
and the space-time bounds
1A 0Bl 2 =172y S 1 All st 1B et 1) (4-63)
1[40, 80 Bl 2 =172y S 1V Aoll 2 1720y | Bl oy (4-64)
10 Aa. Bl 2 5-1720y S IV A0, VPEA | 2 1211 B et 1 (4-65)

1
NAL 14D BNOI 2 120y SNV AL VADY O 12 1250017
2
< (VAR VADY )] L2 g1 /250011 B sl ) (4-66)
In order to proceed, we recall the notation Py A = (PA), for a space-time 1-form A; y:

Pij, Ol:jE{l,...,4},

PyA=
* A(), a=0.

We also write POJ[A = (PJ-A)a = Ay — Py A.
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Given a parameter k € N, we furthermore decompose 2[4y, % B] so that

048 = OB + 2[4y, 0“B] + Rem3 B

(4-67)
= OB + Diff} , B + Diff , , B+ Rem'y”> B+ Rem} B,
where’

Diff, = > 2[Pj_ PuA. 0" P B]. (4-68)

k
Diff, . => 2[Pog_ Py A.0" P¢B], (4-69)

k
Remfy® = "2[ Py Au. 0* P Bl (4-70)
Rem) B = [g“Aa, B]+ [A%,[Ag. B]]. (4-71)

We now turn to the bounds for each part of the decomposition (4-67). For a fixed B € S![I], we
introduce the nonlinear maps

Rem®(4) B = —[DAo(A), B] + [DA(A), B] - [Ao(A). [Ao(A), Bl + [4% [4¢, B, (4-72)
Rem?(4)B = —[DAo;s(A), Bl - [Aos(A). [Aos (). B, (4-73)

defined for spatial connections A on I such that (4,0, A4)(¢) € TL?C for each fixed time ¢ € I. In view
of Theorems 3.5 and 3.6, for a caloric Yang—Mills wave A we have

Rem} B = Rem>(4)B,
Rem} ;) B = Rem®(A(5)) B + Rem3(A) B.
The nonlinear maps Rem?(4) B and Rem; (4) B are well-behaved:

Proposition 4.19. Suppose that A(t) € Cg for every t € I. Then the following properties hold with bounds
depending on Q, but otherwise independent of I :

e Let ¢ and d be (=82, S)-frequency envelopes for A and B in Str'[I], respectively. Then
1) 1) 1)
| PeRem® (A B) 1 1201217207 Sl €6 ) dk + crey 2 dg ™. (4-74)

o Fora fixed A € Str'[I], Rem3(A)B is linear in B. On the other hand, for a fixed B with || B [ =L
Rem?(-)B : Str'[I] — LYL2 N L2H~Y2[]] is Lipschitz envelope-preserving.

e Fora fixed A € Str'[I], Remg(A)B is linear in B. On the other hand, for a fixed B € S'[I] with
”B”Strl[l] <1, Rem?(A) B is a Lipschitz map

Rem3(A)B : Ste![I] - L' L2 N L2H ™ 2[[] (4-75)

7 Although the definition depends on the whole space-time connection At x, we deviate from our convention and simply write
Diff f, 4» Diff }‘, L4 Remfl’2 etc. to avoid cluttered notation.
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with output concentrated at frequency s~1/2,

(1—sA)NRem?(A)B : Str'[I] — 275K V=82 n 12 =382, (4-76)
Next, we consider the term

2[Aq. 8% B] = Diff} 4 B + Diff} | 4 B + Rem§”B.

We begin with Rem’> B, which obeys analogous bounds as PM2(4, B) and P-M?>(4, B) (see
Proposition 4.15).

Proposition 4.20. For any k > 0, the term Remfl’zB obeys the bound

IRem’s? Bllvrmx gt S 25 WAl gy + IPEA AD Iy Bl g (G-77)

-1/2

In particular, its L2H -norm is bounded by

”Remzlfing”LzHc_d‘/Z[l] < (||A||5trg[1] + ||(VPLA» VAO)”(LzHuz)C[[])”B||5tr‘11[1]- (4-78)

Furthermore, Remfl’zB admits the splitting

2

K2p K,
RemA B = RemA’Small

B+ Remfi’farg eB
so that the N -norm of the small part obeys the improved bound
IRemf 2 Bllnqir S 27 I All gy Bllsy 1y (4-79)
and that of the large part is bounded by a divisible norm of (Ao, A):
||RemffjargeB”ch[l] < 2CK(||A||DSg [7] =+ ||(VPJ'A, VAO)”(LzHl/z)C[[])”B||Sé[1]- (4-80)
Finally, if (B, 1) is (e, M )-energy-dispersed, then
IRemy Bl (v sz 172,10
S @7 42462 | A g M+ 29 [(VPA, VA | (2 1y M- (4-81)

It remains to consider the paradifferential terms. The term Diff’,

pL4B can be handled using the

following estimate, in combination with (3-22) and Proposition 4.12:
Proposition 4.21. For any k > 0, we have
||Diff';uAB||(X—1/2+b1.—b1mDXl)Cd[I] < ||PJ‘A||Y01 [1]||B||S;[1]- (4-82)

Moreover, we have
IDif, 4 Bl 21y S 1P Al LeernlBllsy . (4-83)

fk=( Z ak’)ek-

k’'<k—«k

where
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The only remaining term is the paradifferential term Diff} , B. We first state the high-modulation
bounds.

Proposition 4.22. For any k > 0, consider the splitting Diffp , = Diffy + Diffp _,, where

Difff B =—) 2[P_x_cAo.0;P¢B]. Diffy ,B = 2[Pj_, PyA 0" P;B].
k k

For Diff4, B, we have the bound

||Diff,i1{03 ||(X*1/2+h1=*h1 NOXYeqlI] < “AO“YJ [ ”B”S:z 74E (4-84)

On the other hand, for Diffp_4 B, we have the bounds

||Diff}c>xAB||(Di1)cd[1] S ||Ax||sg [I]“B”Sclz[l]’ (4-85)
IDifp 4 Bloxheatn S 145l s1020. il Bllsyin (4-86)
||Diff}c>xAB||(X—1/2+b1~—b1)cd[1] < ||Ax||(Slﬂ)7(1)(,[1]||B||S;[1]- (4-87)

Next, we consider the N N L2H /2 norm of Diffp4 B. The contribution of each Littlewood—Paley
projection Py, PA is perturbative, as the following proposition states:

Proposition 4.23. Let A; x be a caloric Yang—Mills wave on an interval I obeying

[Allsipr < M. (4-88)

Then for any k > 0 and ko € Z, we have

However, we cannot sum up in ko. The proper way to handle Diff  , is not to regard it as a perturbative
nonlinearity, but rather as a part of the underlying linear operator. Indeed, for the operator [ + Diff} ,
we have the following well-posedness result:

Theorem 4.24. Let A; x be a caloric Yang—Mills wave on an interval I obeying (4-88). Consider the

following initial value problem on I x R*:

OB + Diff§ B = G,

4-90
(B. 8 B)(t0) = (Bo. B). (4-50)

for some g-valued spatial 1-form G € N N L2H~Y2[I], (By, B1) € H x L? and 1 € I.

Then for k > k1 (M), where k1(M) > 1 is some function independent of A; x, there exists a unique
solution B € S'[I] to (4-90). Moreover, for any admissible frequency envelope c, the solution obeys the
bound

181511y <o 1Bo. Bl sy, + 1G w2172, 111 (-91)

As a quick corollary of Propositions 4.19—4.20 and Theorem 4.24, we obtain well-posedness of the
initial value problem associated to [4; see Theorem 5.1(1) below.
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Theorem 4.24 is proved in Sections 9, 10 and 11. The main ingredient for the proof is construction of
a parametrix for [0 4- Diffp ; by renormalization with a pseudodifferential gauge transformation; for a
more detailed discussion, see Section 9.

The paradifferential wave equation (4-90) leads to the following weak divisibility property of the S
norm, which will later play an important role in the energy induction argument.

Proposition 4.25. Let A; x be a caloric Yang—Mills wave on an interval I which obeys (4-88) for some
M > 0. Let B € S[I] be a solution to the paradifferential wave equation (4-90) with the source
G € N N L2H~Y2[]], which obeys the bound

sup[[(B.9: B)(t)l|l> < E (4-92)

tel

for some E > 0. Then there exists a partition I = ;¢ I; such that

IBllsigz,) SE 1 fori €L, (4-93)
where

<
#L SEM.IBlg1 131G ynr2 =172 |

The proof of this proposition also involves the parametrix construction (see Sections 9, 10 and 11), as
well as Proposition 4.23.

We now state additional estimates satisfied by Diffp 4, which are needed to analyze the difference
of two solutions (or even approximate solutions). For this purpose, it is necessary to exploit the so-
called secondary null structure of the Yang—Mills equation, which becomes available after reiterating the
equations for PA.

We begin with simple bilinear estimates, which allow us to peel off the nonessential parts (in particular,
the contribution of the cubic and higher-order nonlinearities) of A9 and PA.

Proposition 4.26. We have
”Diff,:l{OB”(NQL2H71/2)/,[1] < ||A0||(L1LoomL2H3/2)a[1] ||B||Sel 11’ (4-94)
||Difff>xAB||(NmL2H—1/2)f[1] . (||PA[ZO]||(Hle2)u + ||DPA||L1L5[1])||B”Sel[]], (4-95)

where

ka( > ak’)ek-

k’'<k—«k

The contribution of the quadratic nonlinearities M% and M? in the equations for 4¢ and A, respec-
tively, cannot be treated separately. This is precisely where we exploit the secondary null structure, which
only manifests itself after combining the contribution of these nonlinearities in Diff}, ,.

Proposition 4.27. Let
Ado=[BW 9,BP), (4-96)
OPA=P[BDL3,BP),  PAlr] =0, (4-97)
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where B, B® ¢ S1[[]. Then we have

IDiff} 4 Bll wr2-12), 111 S 1BV syl BP IsyinlBllsypny- (4-98)

where

Jr =( Z ck/dk’)ek-

k’'<k—«k

Next, we turn to the contribution of terms of the form [A, 0% A] in the equation for P, A. The frequency
envelope bound for this term is slightly involved, because it does not obey a good N -norm estimate.

Proposition 4.28. Let Ag = 0 and

N
2
OP4; =Y P[BID 3*BIP). PAl] =0, (4-99)
n=1
where
1
18" llgs, iy + 1By PEB D)y 1y <1 [1B"P g1 =1, (4-100)
Assume furthermore that
IPAlsip=1. |Blsi=1 (4-101)
Then we have
”Diff}c’xAB”(NnLZH—l/Z)f[I] <1, (4-102)

where
N
fk g ( Z (ak/ + Z C]’;/d]?/))ek.
k’'<k—k n=1

Next, we state a trilinear estimate for Diff 4 in the presence of wi which is analogous to Proposition 4.27.
This is needed for analyzing the dynamic Yang—Mills heat flow of a caloric Yang-Mills wave.

Proposition 4.29. Let
Adg=w3(BW, B ), (4-103)

OPA = Pw?(BW,BP 5),  PA[to] =0, (4-104)
where BM € S1[11, PLBM e Y1[I] and B® e S'[I]. Then we have

IDif5 4 Bll waz2r-172), 11 Sz IBDsipy + 1P Byl B st | Bllsyy. - (4-109)

where

fx :( Z (s22k/)_10(5_12_2k/)_520k/dk/)ek.

k'<k—k

Finally, we end this subsection with auxiliary estimates for Diffp ,, which are needed to justify
approximate linear energy conservation for the paradifferential wave equation.
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Proposition 4.30. Let « > 10. We have
D17 [V. Dift 41 Bll ., S 272 (IPALl sy + 1D Aol o) 1Bty (4-106)
Moreover, consider the L?-adjoint of Diffp 4, which is given by

(Diff§)*B =Y~ Pxd*[PoA—k_. BI.
k
Then we have

| (D) * B~ Diff§ 4 Bll v, 1) < 2721 PAxl 515y + 1DAoll 2 12| Bllsr gy (4-107)

5. Structure of caloric Yang—Mills waves

In this section, we use the results stated in Section 4 to study properties of subthreshold caloric Yang—Mills
waves satisfying an a priori S'-norm bound on an interval.

5A. Structure of a caloric Yang-Mills wave with finite S'-norm. The following theorem provides
detailed properties of a caloric Yang—Mills wave with finite S!-norm. It will be useful for the proof of
the key regularity result (Theorem 6.1), as well as the main results stated in Section 1C.

For a regular solution to the Yang—Mills equation in the caloric gauge, we have seen in Theorem 3.5 that
(3-12), (3-13), (3-14) and (3-15) are satisfied. More generally, we say that a one-parameter family A(¢)
(t € I) of connections in C (which is quite rough in general) solves the Yang—Mills equation in the caloric
gauge, or in short that A is a caloric Yang—Mills wave if (A, 9; A) € L*°(I; TLZC) and satisfies (3-12),
(3-13), (3-14) and (3-15).

Theorem 5.1. Let A be a caloric Yang—Mills wave on a time interval I with energy £ obeying
A(t)eCq forallt el, 5-1)
lAllsign =M (5-2)

for some 0 < Q, M < 0o. Let ¢ be a §5-frequency envelope for the initial data (A, 0; A)(to) (to € 1) in
H' x L2 Then the following properties hold:

(1) (linear well-posedness for U 4) The initial value problem for the linear equation

Ouu=f (5-3)
is well-posed. Moreover,
||“||S£11[1] <mo | (u, at“)(fo)”(glez)d + ”f”(NnLZH—l/Z)d[I] (5-4)
for any 85-frequency envelope d.
(2) (frequency envelope bound)
IAllg1y+ ||DAA||(NnL2H—1/2)62[1] Sm,e 1. (5-5)

(3) (elliptic component bounds)

I 4olly s+ 1P Ally iy Sme 1. (5-6)
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(4) (high modulation bounds)
”DA”DXZZ[I] + |||:|A||XC—21/2+b1.—b1[1] <mol. (5-7)
(5) (paradifferential formulation) For any k > 10,
: C
” DA + leff)AA ||(NﬂL2H_1/2)C2 [I] sM,Q 2 K, (5'8)
(6) (weak divisibility) There exists a partition I =\J;c7 I; so that #I Spr,0 1 and
[Alls1pz;) Se 1. (5-9)
(7) (persistence of regularity) If (A,9;A)(ty) € HY x HN=1 (N > 1), then A € SN N S'[I] and
Ao € YN N Y[I]. Moreover,
IAls~ st + 1 Aolly ¥y iy Smon (A 3: ) (o)l (v« gv-1yn (g1 xL2)- (5-10)

For the subsequent properties, let A be another caloric Yang—Mills wave on I obeying the same conditions

(5-1) and (5-2).
(8) (weak Lipschitz dependence on data) For o < 1 sufficiently close to 1, we have
14— Allsorry Sm.o (A= 4,00:(A= 0 D) (t0) | o fro—1- (5-11)
(9) (elliptic component bound for the transport equation)
||A0||(|D|_2L§L})Cz[1] 5M,Q L. (5-12)
Moreover, if dy, is a 85-frequency envelope for A— A in S'[I], then
140 = Aollp-21211).. 01 M. 1 (5-13)
where ey = ci +cx(c-d)<k.

Remark 5.2. The frequency envelope bound (5-5) implies a uniform-in-time positive lower bound on the
energy concentration scale r.; see Lemma 7.8 below. As a consequence, once Theorem 1.13 is proved,
finiteness of the S !-norm would imply that solution can be continued past finite endpoints of / (we note,
however, that Theorem 5.1 will be used in the proof of Theorem 1.13).

Remark 5.3. The combination of (1), (2) and the divisibility of the norm N N L2H~Y/2[I] (see
Proposition 4.6) show that a finite S!-norm Yang—Mills wave on / exhibits some modified scattering
behavior, i.e., that each A; tends to a homogeneous solution to the equation CJ4u = 0 towards infinite
endpoints of /.

We start by establishing some weaker derived bounds.

Proposition 5.4. Let A be a caloric Yang—Mills wave on a time interval I, which obeys A(t) € Co for all
t € I and || Al|g1 ;] < M. Let ¢ be a Cds-frequency envelope for A in S, ie., [Allgiy = 1-
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(1) The following derived bounds for A; x hold:
l4olly iy + 1P Ally s Sme 1, (5-14)
”DA”DXLIQ[I] + |||:|A||XC—21/2+b1,—b1[1] <m0l (5-15)

(2) Let A be another caloric Yang—Mills wave on I that also obeys ||/I||Sl[1] < M. Letd be a b5-
frequency envelope for the difference A— A in S'[I]; i.e., | A — /I||S; (1] < 1. Then we have

Ao —I‘IOHYel[]] + ||PJ_A - PJ_“I”Yel[[] Mol (5-16)
I0(A = Dllggiy + 104 —A)||Xe_1/2+b1._b1[l] <mol, (5-17)

where ey, = dj, + ¢ (c - d)fk-

As a quick consequence of Proposition 5.4, we see that any caloric Yang—-Mills wave A with A(¢) € Cg
forall 7 € I and ||A| g1;;; < M obeys

[Allsiir Sm.o 1.

Remark 5.5. The reason why we state these weaker bounds as a separate proposition is for logical
clarity. As will be evident, the proof of Proposition 5.4 depends only on Propositions 4.12—-4.22. In
fact, after these propositions are established in Section 8, Proposition 5.4 will be used in the proofs of
Proposition 4.23, Theorem 4.24 and Proposition 4.25 in Sections 8 and 9.

Proof of Proposition 5.4. Since A is a caloric Yang-Mills wave, Theorem 3.5 determines Ag, do Ao and
P jJ-A = A"19; 3¢ A, in terms of A. To derive the equation for 3, P+ A, we first compute

9,.9¢

3 PtA=0,—— Ay = A19,0%For + 9¢ Ao + [Ag. Ag))

= AT'9x (D" For + Ado + 0'[4¢, Ao] — [, Fou)).
By the constraint equation, we have DeFO ¢ = 0. Expanding Fy, in terms of A; x, we arrive at
0P A =03 Ao+ A", (3 [Ag, Ao — [A°, 9 Agl + [A°, 3pAo] - [A°, [4o, Acl)). (5-18)

The rest of the proof consists of combining Theorem 3.5 with Propositions 4.12, 4.13 and 4.22 in the
right order. We first sketch the proof of the nondifference bounds (5-14)—(5-15). We begin by verifying that

11D 4olly , 111 + 1 D1P+Ally 5111 Sm.o 1.
Indeed, by the mapping properties in Theorem 3.5 and the embeddings
L'H'nL2H? CY,

the contributions of Ag in Ag and DA in P A are handled easily. For the quadratic nonlinearities, we
apply (4-29) for Ao, (4-37) with o0 = 0 for P14 and o =1 for Ay.
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Next, we show that

”atAO”LZH:z/Z[[] + ”atPJ_A”L2[_'I32/2[I] SM,Q L.

For 0; Ao, we use Theorem 3.5 for DAS and (4-30) for the quadratic nonlinearity. For 9; PL A, we
estimate the right-hand side of (5-18), where we use the Y [/]-norm bound for A that was just established.
We now consider [JA. We first prove the weaker bound

||DA|||:|)7;2[1] Smeol. (5-19)
By the mapping properties in Theorem 3.5 and the embeddings
L'L2nL2H—2 cOxlnx—2tb—b c Oxt

the contribution of R; is acceptable in both cases. For the quadratic nonlinearities P M2+ PL M2 and
the contribution of CJA — Oy A, we apply (4-42), (4-43), (4-74), (4-77), (4-84) and (4-85); note that we
need to use (5-14) in both (4-77) and (4-84).

We are ready to prove (5-17). The desired estimate for the X ![/]-norm follows by repeating
the preceding argument with (4-85) replaced by (4-86), and using (5-19). On the other hand, for the
OX~1/2+b1=b1[ []-norm, we replace (4-85) by (4-87) instead, and use the [1X ' [/]-norm bound that we
have just proved.

Finally, the proof of the difference bounds (5-16)—(5-17) proceeds similarly, taking the difference of
each of the equations (3-12)—(3-15). We leave the details to the reader. O

We now prove Theorem 5.1, using the estimates stated in Section 4.

Proof of Theorem 5.1. Throughout this proof, we omit the dependence of constants on Q.

Proof of (1): We begin with a (04 decomposition which will be repeatedly used in the sequel. Given
k > 10, we write

04 = O+ Diffp , — RY,
where, using the decomposition in (4-67), the remainder RY is given by
R} =Diffp, , — Remjfl’2 — Remfl’3.
Lemma 5.6. Let J C I. Let d be a §s-frequency envelope for u in S'[J]. Then we have

I|R§M||(NOL21:I—1/2)d[J] <M (2_82K||A||51[J] + 2CKC(A» J))”””Sé[‘]]? (5-20)
with

C(A ) = 1P Allyigy + 1P Al pi poopsy + [ Allggr gy + IVPHA,V A 2 giagyy - (52D
Proof. We successively bound the three terms in R as follows. For the first of them we have

IDiftp 1 yullyrr2-12) 17 S P Allyrpgy + 1 PH Al papooppllul s gy,
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using the bounds (4-82) and (4-83), and noting that the second norm of A is estimated using (4-37) for
the quadratic part and (3-22) by
1P Allgi 1 poopsy S 1.

For the second term in R in (5-22) we have

IRemly®ull v p2 172y, 007 SM 272 1Al 5105y + 25 CA Il g357-
as a consequence of (4-78), (4-79) and (4-80).
Finally, for the third term in R we have
||Remf1’3uII(Nmng_l/z)d[J] Su Al livllsyin
due to (4-74). O
To prove (1) we rewrite (5-3) in the form
(O + Diffp u = f — Riu. (5-22)

The important fact is that all the A norms in C(4, J) except for S! are divisible norms, and also
controlled by M. On the other hand the S' norm of 4 has the redeeming 2782 factor. To proceed we
choose « large enough,

Kk <m0l

Then we can subdivide the interval = | J ies Ji so that #7 < 1, and so that in each interval J; we
have smallness,

”Rflu”(]meZH—l/Z)d[‘]j] <M ”u”S‘;[Jj]' (5-23)

A second consequence of our choice for « is that Theorem 4.24 applies. Then we can successively
apply Theorem 4.24 in each interval Ji, treating R perturbatively.

Proof of (2): The argument here is similar to the previous one. For any interval J C I and any (-5, N)-
frequency envelope d for A in S![J] we can use the bounds (4-44)—(4-49) and (3-21) to estimate

1044l i1y, 0y SM Q7 WAl + 2% [ Alps i plAlg (524

As before we use the divisibility of the DS! norm to partition the interval / into finitely many sub-
intervals Jg, whose number depends only on M, and so that in each subinterval we have

272 Al g1y + 25 N Al psiy <€ <mo 1.

We now specialize the choice of d, choosing it to be a minimal §5-frequency envelope for A4 in the
first interval Jq. Applying the result in part (1) in J; we conclude that

d <moc+ed,

which by the smallness of ¢ implies that d <ps,o c¢. Then we reiterate.

Proofs of (3) and (4): These follow from (5-5) and Proposition 5.4.
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Proof of (5): This is obtained by combining the bound (5-20) for J = I and u = A with the bound (5-24).
Proof of (6): In view of (5), this is a direct consequence of Proposition 4.25.

Proof of (7): We use frequency envelopes. It suffices to show that if ¢ is a (—8s, S)-frequency envelope
for the initial data in the energy space then C(M )cy is a frequency envelope for A in S and Ag in Y 1.
We begin with a version of Lemma 5.6:

Lemma 5.7. Let J C I. Let d = d(J) be a (85, S)-frequency envelope for A in S'[J]. Then we have
IREAll w2 fr-1/2y, 001 SM 22 [ Alls1107 +2KCA DAl 157- (5-25)

Proof. The same argument as in the proof of (5-8) applies for the first term in R, as there the output
frequency and the u input frequency are the same. On the other hand for the two remaining terms, the
frequency envelope d is inherited from the highest frequency input; see Propositions 4.19, 4.20. O

Combining the bound in the lemma with (5-24) we obtain the estimate
|04+ Diffp g All oy g2 172y, 1y S Q72 [ Als10) +2°°CA I Allg1 gy (5-26)

Now we can conclude as in the proof of (2). We first choose « large enough so that Theorem 4.24
applies, and also so that

2729 Al g1y < 1

Then we divide the interval I into finitely many subintervals (again, depending only on M and Q) so that
for each subinterval J we have

24| Allpsipy < 1.
Thus, for each subinterval J we have ensured that
104+ Difff’AAl|(NﬂL2H—l/2)d[J] <M “A”S(;[J]'

Let ¢, be a (—ds, S)-frequency envelope for the initial data in the energy space, Then applying
Theorem 4.24 in the first interval J; we conclude that

| PrAllsips Smock tede, &<Lm 1, (5-27)

for any (—§s, S)-frequency envelope dj for A in S'[J;]. In particular if dj is a minimal (—§s, S)-
frequency envelope for A in S![J;] then we obtain
di Sm ck + edk,
which leads to
di <m0 Ck,

i.e., the desired bound in J;. We now reiterate this bound in successive intervals J;. Finally, the Y bound
follows as in (3).
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Proof of (8): Assume 0 < 1 — 0 < §5. We write the equation for 64 = A — A in the form

ek — K
(O + Diff¥ )4 = F¥,
where
F* =Diffg A+ (R{A— RSA) + (044 - 044). (5-28)

We claim that we can estimate the terms in F* as follows:

IDIES Al ooz fro—io1/2psy < 27 (1 Allst + Al s0)118A] 5011, (5-29)
|RSA = RS Allyo 12 o120y Su 25K (C(AL D) + CCA, I II8A] 5011, (5-30)
[E44— DAA||N0710L2H07171/2[_]] Sm (C(A,J)+ C(4, J))||8A||S"[J]- (5-31)

We first show how to conclude the proof of (8) using (5-29), (5-30) and (5-31). As in the proofs of
(1), (2) and (7), we first choose « large enough, ¥ >>,s 1. Then we use divisibility for the expressions
C(A,J) and C(A, J) in order to divide the interval I into subintervals J '/ so that on each subinterval F*
is perturbative, i.e.,

”FK||N0—lmL2[.'1<7—l—1/2[_]j] <L M ”8"4”5"[]/]'

Finally, we apply Theorem 4.24 successively on the intervals J;; then (8) follows.

It remains to prove the bounds (5-29), (5-30) and (5-31). The bounds (5-30) and (5-31) are the
difference counterparts of (5-25) and (5-24), respectively, and are proved in a very similar fashion. Details
are omitted. We only remark that the requirement ¢ < 1 is not needed here, and that these bounds hold
for any 85-admissible frequency envelope ci for §4 in S,

We now turn our attention to the novel part of the argument, which is the bound for Diff ; A_p gA- It
is here that the condition o < 1 pays a critical role. This is done in the next lemma. For later use we
state the result in a more general fashion. This will be needed again in the proof of Proposition 6.4. A

variation of the same argument will also be needed in Proposition 6.3.

Lemma 5.8. Let J C I. Let ¢k, dy, by be frequency envelopes for A, A, respectively §A and B in S[J].

Then the expression Diff ; 4_p AB can be estimated as
||Diff;A_PgB ||(NmL2H—1/2)f[J] <M,Q 2760k ||5A||Sg[1] 1B ”Szl [J1 (5-32)
where fi is given by
= X ot dran) (533
k'<k—«

Before proving the lemma we show that it implies (5-29). To measure §4 in S° we can choose the
frequency envelope dy with the property that 20~k g, is a (=8, 1 — o + §)-admissible envelope with
§ < %(1 —0), 6 K 85, and so that

184130y~ DR a)%.
k
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Then we have
Lo—
fie Sm dk—ecr Sp 27207 4y,
and (5-29) follows. We return to the proof of the lemma:

Proof of Lemma 5.8. We first recall the equations for PA, and Ag. Following Theorem 3.5, these have

the form
OPAy = P[A%, 8, 4,) —2P[Ag, 3° Ax] + P(R(A) + [44, [A°, AL])),

¢ (5-34)
Adg=[A% 05 Ag] + Q(A,00A) + AA].
Based on these equations we consider the following decomposition of PA = (PA, Ao):
PA = (A" AG™) + (A2.0) + (A3, AD).
where the three components are determined by the following three sets of equations:
04T = P[4, 8, 4,], A™[0] =0,
AARI =A% 9, Ay,
A3 =0, and
042 = —2P[A;.0°4,],  A%[0] =0,
and finally
043 = P(R(A) + P[4, [AY Ax]D),  A2[0] = PA[0], 5.35)

AAZ = Q(A,004) + AAJ.

We also use the same set of equations and the same decomposition for P A, and take the differences
SA™an 5§42 and §43. We are now ready to estimate the three contributions.

The contribution of $A™". For this we use the estimates in Proposition 4.27, which yield

||Diff;Amain_PglnainB||(NﬁL2H—1/2[J])f SM 2_0K||8A||S611[_]]||B||Sli[J]v (5_36)
where
fr =( > ck’dk’)bka
k’'<k—«

which suffices. For later use, we also record the following consequence of Proposition 4.15, which
provides a bound for ||[J§4Man | vAL2E1/2:

18475 g1 (1S 184N g1 0y (N AlLg o + I Allga - (5-37)

The contribution of A3, This is more easily dealt with using instead Proposition 4.26. We start with
Ag — ffg, which is estimated using the bounds (4-36) and (4-37) in Proposition 4.13 for the first term, and
(3-23) for the second, by

148 = A3l (11 ooz 1372y g ) SM 18AN 517 (N AD 53 gy + 1A 5117)- (5-38)
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Similarly, for Af’c — fff’c we can apply the difference bound associated to (3-21) for R, and Strichartz
estimates for the remaining cubic term to obtain

I0CAZ = AD N 11 1202172y 17 S 18Ny (AT 520+ 1Al 5217 (5-39)
As a consequence this also gives
143 = A1 1y Sae 1841 sg (Al sp gy + 1Al sa)- (5-40)

Using (5-38) and (5-40) in Proposition 4.26 yields the desired bound

||DiffécA3B||(NmL2H—1/2)f[J] <M.0 ”8A||S;,[J]”B”S}I)[J](”A”Scl [J1 + ||1‘I||Scl [J])» (5-41)
with the same f} as in the previous case.

The contribution of A% Here we will use Proposition 4.28. For this we need to verify its hypotheses. We
begin with (4-101), for which we combine (5-37) and (5-40) to conclude that

||8A’2C”Sa]7[]] <M ||5A||s[}[1]- (5-42)
Next we consider (4-100). Using the second part of Proposition 5.4 we obtain

164153077 + 1640, Py Sar 1641531 (543)
with
e =di +cp(c-d) <.

The last two bounds allow us to use Proposition 4.28. This yields

||Diff§AzB ||(NQL2H—|/2)f[J]) SM,Q ||5A||S€II[J] ||B ”SC‘ [J](”A”Sg 7] + ||/I||SC1 []])7 (5-44)
where
fk = ( Z dk/ +€k/dk/)bk.
k'<k—«k
The proof of the lemma is now concluded. O
Proof of (9): This is a direct consequence of the bounds (4-39) and (3-23) for the quadratic part A(z) of Ay,
and its cubic and higher part AJ. O

5B. Caloric Yang-Mills waves with small energy dispersion on a short interval. Next, we consider the
effect of small inhomogeneous energy dispersion on a time interval with compatible scale.

Theorem 5.9. Let A be a caloric Yang—Mills wave on a time interval I with energy £, obeying (5-1),
(5-2), as well as the smallness relations

[ Fllepoorn <& || <e. (5-45)

Let ¢ be a 8s-frequency envelope for A in S[I]. Then for sufficiently small ¢ > 0 depending on M and Q,
the following properties hold:



280 SUNG-JIN OH AND DANIEL TATARU

(1) (small energy dispersion below scale 1 for A)

| Allgn: 11y Seco €™ (5-46)
(2) (elliptic component bounds)
||AO||YC1 ut ||PJ_A||YC1 (1] SM.Q &%, (5-47)
(3) (high modulation bounds)
10412 1727 Sm0 8% (5-48)
(4) (paradifferential formulation)
|04 +Diffp 4 All w2172y, 117 SM0 8742€%. (5-49)

(5) (approximate linear energy conservation) For any t1,t € 1,

VA2, — IVA@)2, | <m0 €. (5-50)

(6) (approximate conservation of Q) For any t1,t; € I,

|Q(A(1) — Q(A(2))] S0 6™ (5-51)

Proof. Again, we omit the dependence of constants on Q. The property that will be used here repeatedly
is (4-21), which asserts that all nonsharp Strichartz norms are small. We recall it here for convenience:

sup || P F ||sue Spr %1 < %2, (5-52)
k

Proof of (1): This is a consequence of the caloric bound (3-7) applied with dj, = «.

Proof of (2): We repeat the arguments in the proof of Proposition 5.4(1). The bounds for the cubic and
higher terms in Theorem 3.5 use only the Strichartz Str! norms, so the contributions of AS in Ag, DA3 in
PLAand DAS in d; Ag are easily estimated. For the quadratic terms we replace (4-29) with (4-33) in the
case of Ag, and then (4-37) with (4-38) in the case of PLAandd; Agp; again the smallness comes from Strl.

Proof of (3): We consider the terms in the Ay equation in Theorem 3.5. The cubic terms R, and
[Ag, [A%, A]] are estimated only in terms of | Allg,1 - For the quadratic terms we use instead the bounds
(4-30), (4-36), (4-63) and (4-65); all smallness comes from Strl.

Proof of (4): We first establish the similar bound for (04 A, which is given by (3-12). For the quadratic
terms we use (4-50) and (4-51). For the cubic term we use (3-21). Hence it remains to estimate the
difference

RS A =Diff, ,A—Rem’” 4 —Rem’y” A.

For the first term we use (4-83), where the ¢ smallness comes from the L' L% norm of P14 due to the
bounds (4-38) and (3-22) for the quadratic and cubic parts of AL respectively.

For the second term we use the bound (4-81). The second term on the right is small due to (5-47),
S0 we obtain

IRem'® All ynz2fr—12), Sa (2702 426465 | A 1.
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Now we observe that on the right we can replace « with any k' > x without any change in the proof.
Then it suffices to optimize with respect to k.
For the third term we use directly (4-74).

Proof of (5): This statement is a corollary of (5-49). For the proof, we introduce the linear energy
4
1 2
B =5 [ oAl dx,
n=0
Given any interval I’ = (t1,1,) C I, we consider
I:/ xr{(O+ Diffp ,)A, 9, A) dt dx.
RxR4

Integrating by parts, we may rewrite

T = Eun(A)(0) ~ Eun(A)02) + 5 [ (Ditf 44, 4) 1) e [ Diftp4. 4)(1)

By Proposition 4.30 and the straightforward bound

/(Diff;’AAv AY() S27N(A A Dl g IVADIF > Sae 275,
we see that
|Z — (Exin(A)(t1) — Eiin(A)(12))| <pr 27F. (5-53)

On the other hand, by duality, we may put y;-(0 4 Diff} )4 and x;/9;A in N and N*, respectively.
Then by Proposition 4.6, (5-2) and (5-49), we have

1T| <pr e342€%. (5-54)

Optimizing the choice of «, (5-50) follows.

Proof of (6): We will use the caloric flow in order to compare Q(A(¢1)) and Q(A(t2)). Denote by A(¢, s)
the caloric flow of A. We will split the difference in three as

Q(A(t1)) — Q(A(12)) = Q(A(11. 1)) — Q(A(12, 1) + Q(A(11)) — Q(A(11. 1)) — Q(A(12)) + Q(A(12. 1)).

For the first difference we estimate at parabolic time s = 1 as follows:
15 d 3
QU )= @tz I 5 [ [ EIFG0P axas
1 R4 t
123
< / / |F(1,2,%))?19, F(1,x,t)| dx dt
t JR4

2
5// |F(s,t,x)|2|3,F|dxdt55,Q|t1—tz|cf,
t JR4
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where at the last step we have simply used the fixed-time L2 bounds given by Proposition 3.1(1) and
Bernstein’s inequality. Now we gain smallness from the time interval.

For the remaining two differences we only need fixed-time estimates, which for reference we state
in the following.

Lemma 5.10. Ler a € C be a caloric connection with energy £ and Q(A) = Q, and A its caloric
Yang—Mills flow.

(a) Assume that a is energy-dispersed at high frequencies,

I/ lEDs ) <& (5-55)
Then for its caloric Yang—Mills heat flow A(s) we have
Qa) = Q(A(27>™)) Ze,0 . (5-56)
(b) If a is fully energy-dispersed,
If lep < &, (5-57)
then we have
Q(a) <e,0 & (5-58)

Proof. (a) By scaling we can set m = 0. Denote by c; a frequency envelope for f in L2 and by dj
a frequency envelope for f in W~2:°°. By the energy dispersion bound we have dj < ¢ for k > 0. By
Proposition 3.2 we have the L2 bound
| PeF 2 Se. cr2s)7V,
and the L°° bound .
| PiFllLoe Se.0 2°%d2 (2%F5) 7V,

‘We use these bounds to estimate the difference

1
Q(a) — Q(A(1)) = /O/W |F(s,t,x))? dx ds

1
< Z // | Pr, F(s,t,x)|| Pr, F(s,t, x)|| Pry F(s,t,x)|dx ds
0 JRr#

ki1<kz<k3

1 1
< 2k1 2
~E,Q Z 1+ 22k3 2 dkl Cka2Cks

where at the next to last step we have used both the low-frequency decay and the off-diagonal decay for
the summation in k1 and k5.

(b) This follows by letting m — —oo in part (a). The proof of the lemma is concluded. O
The proof of (5-51) is also concluded. O
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5C. The dynamic Yang-Mills heat flow of a caloric Yang—Mills wave. Here we investigate the structure
of the dynamic Yang—Mills heat flow of a caloric Yang-Mills wave A with finite S!-norm. As before,
we consider two cases: (1) when A only obeys a finite S1-norm bound; and (2) when A has small
inhomogeneous energy dispersion on a short time interval of compatible scale.

In the general case, we have the following structure theorem.

Theorem 5.11. Let A be a caloric Yang—Mills wave with energy £ on a time interval I, obeying (5-1) and
(5-2). Let At x(s) be the dynamic Yang—Mills heat flow of A; x at heat-time s > 0 in the caloric gauge.
Then the following properties hold:

1) (fixed-time bounds) For anyt € I, let cO@) bea 85-frequency envelope for V A(t) in L% Then
( y quency P

| PL(VA(s) — Ve 2 A) (1) 12 Se,0 (27 2Ks™1) 704 (22K 5) 710D ()2, (5-59)
1Pt Ag(r.9)ll12 Se.o (22Ks5) 10O (1)2, (5-60)
> k
IPeV Ao, 5) |12 Se.0 (2255) 7109 (1)2, (5-61)
L > k
I PLOA 5)| o1 Se.o (2%5)710%D ()2, (5-62)
H s k

(2) (frequency envelope bounds) Let ¢ be a §s-frequency envelope for A in S'[I]. Then

1P (A(s) — €52 A) || g1py Sam,o (272K s ™) 04 (22K 5) 7102, (5-63)
1P Ao()lly iy Smo (2%Ks) 7102, (5-64)
IPe PEAG)ly1 1y Smo (225s5) 7102, (5-65)

(3) (derived difference bounds) Let A be a caloric Yang—Mills wave on I obeying || A| 1 i = M, and
let d be a 8s-frequency envelope for the difference A(s) — A in S'[I]. Then

1P(Ao(s) = Aoy 11y + | Pi(PHAGs) = P Ay
Saiit.o 0k Fmin{l, (s72[ 1)} (272k ) B 02k ) 7102 (5.66)
I PeO(ACs) = Doy + 1Pk OCA(s) = A) g —1/2401.-61 11
Siit.o 0k Fmin{l, (57213272 ) B 02k ) 7102 (5.67)
where ey = di + ci(c - d) <.

Remark 5.12. Combining (5-63) with the obvious bound for ¢52 A, we get the simple bound
| PL A 51017 S0 (255) 0ck. (5-68)
Next, we consider the effect of small inhomogeneous energy dispersion on a time interval of compatible

scale.

Theorem 5.13. Let A be a caloric Yang—Mills wave with energy £ on a time interval I, obeying (5-1),
(5-2) and (5-45), and Ay x(s) be the dynamic Yang—Mills heat flow of A; x at heat-time s > 0 in the
caloric gauge. Let ¢ be a 85-frequency envelope for A in S'[I]. Then the following properties hold:
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(1) (fixed-time smallness bound)

IV P (A(s) — €2 A) (1) || 12 Se,q 25400+ g8 (272K =1y =84 92k ) =10, O) ), (5-69)
| PLo% Ag(t, 5)ll L2 Se,q 2540m 0+ B (22K ) =100 4, (5-70)

(2) (small energy dispersion below scale 1 for A(s))

1A gt Se.o €™ (5-71)
(3) (frequency envelope bounds)
1Pk (A(s) — 2 A) | g1pr7 Shr,0 e54 (272K s71) 704 (22K 5) 7100y (5-72)
1PeAo(s)lly 111y Sa,o €% (2%5s) 7 0cy, (5-73)
1P PEAS) |y 11y Sa,o e (2% 5) ™ 0. (5-74)

(4) (derived difference bounds) Let A be a caloric Yang—Mills wave on I with || A| g1 i =< M, and let d
be a §5-frequency envelope for the difference A(s) — Ain S! [1]. Then

| Pi(Ao(s) = Ao)lly1p + | P(PHA(s) = P Ay
Swdt.o €k + (27K Th (2K ) 7100 (5-75)
1PxO(A(s) = Dllgx 1y + | PeOCAGS) = D)l —1/2401-01 11
Sarfto € + &8 (27 2Ky 22Ky 100, (5-76)
where ey = di + ci(c - d) <.
We now turn to the proof of each theorem.

Proof of Theorem 5.11. In the proof, we omit the dependence of constants on M and Q. We introduce the
notation
A(1,5) = A(t, s) — "2 A(1).

Proof of (1): By (3-2) in Proposition 3.1 (note that d; A here corresponds to B in the proposition) we get
y P p prop g
IVPeA ) L2p S (27271 701 (2%5) 7102, (5-77)

Now the second bound follows from (3-18) for DA and Proposition 4.13 for Q (A, A).
Proof of (2): We proceed in several substeps.

Step 2.1: Our first (and main) goal is to prove
| PrA ()l g1y < (27571765 (2%05) 710, (5-78)

We begin by invoking (3-4) with (o, p) = (%, 4) and (01, p1) = (%, 2). Since S'[I] < Str![I]
L4W /441, we also obtain (after taking L2[1])

IV PA @) 2 172y S (2757170 (22K5) 7102, (5-79)
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0,1/2

In view of the embedding Py L2H/2[I] C Py XTI < 27% S, [1], we have

IV PLA()lse1r1 S (2725) 701 (226) 71067 (5-80)
To complete the proof of (5-78), it only remains to establish (recall (4-2))
IOPLAG) 2172y S (2725) 701 (22) 1062, (5-81)

We argue differently depending on whether 522k > 1 or 522k « 1. In the former case, we consider 52 4
and A(s) separately. In view of (5-7), note that

(22k> 10 .2

”DPke A||L2H 1/2[1] Ck,

so it suffices to prove
IO PLAG) 2 172y S (225) 0k,

For this, we need to use the wave equation for A(s) (see Theorem 3.6):
OA(s) = (0= Oa) A(s) + M2(A(s). As)) + Rj (A(s) + Pw(A, A,5) + Rjss(4).  (5-82)

As in the proof of Proposition 5.4, we note that 0 — () contains the terms Ag(s), 3¢ A(s) and dg Ao (s)
that are in turn determined by A, A(s) (see Theorem 3.6). By (5-80) and an obvious bound for e* Ay,
we see that (22K5)710¢; is a frequency envelope for A(s) in Str'[]. The desired estimate is proved by
applying the L2 L2-type estimates in Section 4 (observe that they only involve the Str!-norm of A!) and
Theorem 3.6.

In the case s22% <« 1, we begin by writing A (s) = (A(s) — A) + (1 —e*2) A. For the second term,
again by (5-7), we have

IOP(1 =) All 2 gg-1/2y S (272557 o0}
Thus, for §22k « 1, it suffices to establish
IO PR(AGS) = Al 2 gg-1/21y S (27257175l (5-83)
Here, we use the equation [J(A(s) — A) obtained by taking the difference of the equations in Theorems 3.5
and 3.6:
O(A(s) — A) = (O — Oa(s)) AGs) — (O — 04 A + M?(A(s), A(s)) — M?(4, A)
+ R (A(s)) — Rj (A) + P;jw2(A, A,5) + Rj:s(4). (5-84)

We note that (O — Oy 5)) A(s) — (O —O4) A contains the differences Ao(s) — Ao, BﬁA(s) — ¢4, and

dpAg(s) — dgAg, for which similar difference equations may be derived from Theorems 3.5 and 3.6.
As before, ¢ is a §s-frequency envelope for A and A(s) in Str'[I], whereas dj = (272ks=1)=¢83¢; is
a 83-frequency envelope for A(s) — A in Str![I] by (5-80) and an obvious bound for (1 —e’?)A. Hence

the difference envelope e; in Theorem 3.5 obeys the bound

e =di +cp(c-d)<k < (2_2k ) 053ck.
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The desired estimate (5-83) is proved by applying the L2 L2-type estimates in Section 4 (again, they only
involve the Str!-norms of VA, VA(s) and V(A(s) — A)) and Theorem 3.6.

Step 2.2: To complete the proof, it remains to show that (5-78) implies (5-63)—(5-65). This is proved in a
completely analogous way to Proposition 5.4(1), replacing Theorem 3.5 by Theorem 3.6 (where we use
Propositions 4.16 and 4.17 for wo and wy, respectively).

Proof of (3): This is analogous to the proof of Proposition 5.4(1). The only difference in the analysis
arises from the extra terms

(i) Pjw3(0:4,0,4,5) + Rj:s(A) in Oy A(s),
(i) Aois = A™'w§(A4, A, 5) + AG.(A) in Ag(s),
(iii) DAg.s(A) in 9; Ao (s).

For the first term in (5-75) we need to estimate

IIDI™ wg (A, A.9) |y + [I1DI1AG (Dl + [ DAos(A)]ly.

The last two terms are estimated directly using (3-36) and (3-37) and Bernstein’s inequality. The first
term is estimated via (4-54).

For the extra gain when s 172 5 || we rebalance by using Holder in time ¢ and Bernstein in x. Because
of this, in that range it suffices to use L L? bounds instead of Y, and thus rely instead on (3-33) and
(3-34), and (4-52).

For the second term in (5-75) we follow the computation for d; P A(s) in the proof of Proposition 5.4.
The extra contributions there are

ATV ([ Ag (), Aoss] + [A(s), dpAoss] + [45, [Ag, Aois])).

For these it suffices to use (4-53) and (3-36) for long intervals /, and (4-52) and (4-52) and (3-33) for
short intervals.
Finally, for the two terms in (5-76) we need to bound

| P; wi(a,A, A, ) |lgxiax—1/2+o+1.-0 + (| Rj;s (Al gx1nx—1/2+0+1.-1 -
For this it suffices to use the bounds (4-58) and (3-35) in the range |/| > s1/2 and (4-56) and (3-32) in
the range || < s1/2. O
Proof of Theorem 5.13. As before, we omit the dependence of constants on M and Q.

Proof of (1) and (2): The three bounds follow directly from Proposition 3.2, precisely in order from the
estimates (3-8), (3-9) and (3-7).

Proof of (3): We repeat the arguments in the proof of Theorem 5.11(2). The bound (5-79) for P A (s)
goes through the Str! norm, so by the same proof we also obtain for k > 0

IV PA@) 21720y S (272571765 (22K5) 71062, (5-85)

On the other hand for k < 0 we can use (5-69) and Holder’s inequality in time to gain smallness.
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Similarly, the bound (5-81) also uses only Str! norms so it can be replaced by
IOPLA®) 2172y S (27257705 (225) 710602y (5-86)

for k > 0. Again for k < 0 we can use a simpler L H~! bound and then Hélder’s inequality in time.
Together, the bounds (5-85) and (5-86) imply (5-72).

Finally, it remains to establish (5-73) and (5-74). Here the same considerations as in the proof of (5-47)
apply, but using Theorem 3.6 instead of Theorem 3.5, as well as Proposition 4.16.

Proof of (4): This repeats the proof of Theorem 5.11(3), but taking advantage of the Str! norm in
estimating AS; s and DAg;s and using (4-55) instead of (4-54). As before, the ¢ gain is due to energy
dispersion if k£ > 0 and to the interval size otherwise. O

6. Energy-dispersed caloric Yang-Mills waves

The goal of this section is to prove the following key theorem for energy-dispersed subthreshold caloric
Yang—Mills waves, which is essentially a restatement of Theorem 1.20 in terms of the linear energy:

Theorem 6.1. There exist nondecreasing positive functions M (E, Q) and nonincreasing positive functions
e(E, Q) and T(E, Q) so that the following holds. Let A be a regular caloric Yang—Mills wave on a time
interval I satisfying

in§||VA(t)||i2 <E, A(t)eCoforalltel. (6-1)
te
If A moreover obeys the smallness bounds
| Flleps,, [ < €(E,Q), || <27"T(E,Q), (6-2)
then we have
[Allsi = M(E, Q). (6-3)

We next show that Theorem 1.16 immediately follows. Indeed, for caloric waves we have (see
Theorem 1.6)
VA2 Ze.0 1,
as well as
E3|val, 1

Thus the linear and nonlinear energy are interchangeable in the statement of the theorem. The (minor)
difference is that the nonlinear energy is exactly conserved, whereas the linear energy is only approximately
conserved for energy-dispersed Yang—Mills waves; see Theorem 5.9(5).

For the remainder of this section, we fix Q. We omit any dependence of constants on Q and write
e(E)y=¢(E,Q), T(E)=T(E,Q), M = M(E, Q) etc.

Theorem 6.1 is proved by an induction-on-energy argument of similar structure to [Sterbenz and Tataru
2010a; Oh and Tataru 2018]. For the initial step, we show that it holds for small E (Proposition 6.2). For
the induction step, we assume that the result holds for all solutions with inf; Ej;,(A4) < E, and we seek to
show that it holds up to inf; Eyn(A4) < E + ¢(E) for some small ¢(E) > 0. Notably, in order to continue
the induction argument, we do not want c¢(E) to depend on F(E) or e(E).
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6A. Induction on energy argument. As remarked earlier, the initial step of the proof of Theorem 6.1 is
essentially small-energy global regularity for the Yang—Mills equation in the caloric gauge, which is a
quick consequence of Theorem 5.1.

Proposition 6.2. There exists a small universal constant Ey > 0 (in particular, independent of 1) such
that if a classical caloric Yang—Mills connection satisfies

;g§||VA(t)||iz < E., (6-4)
then we have

[Allsiir < v Ex- (6-5)

Proof. We will follow a standard continuity argument, similar to the one used in the Coulomb gauge
in [Krieger and Tataru 2017]. Start from a near minimum ¢y for |V A(t) ”22' Denote by ¢ a frequency
envelope for A[tg] in H' x L2 For a short time, there exists a classical solution, which satisfies

[Allsiir < Ex-

We now consider the maximal interval / containing 7o and where the solution A4 exists as a classical
solution and satisfies

lAllsi < 1. (6-6)
This in particular implies
0(4) < 1.
Hence by Theorem 5.1(2) it follows that
||A||SCI[1] <1
and in particular
[Allsir < Ex. (6-7)

Assume now by contradiction that / has a finite end 7. The S (6-6) bound implies that A is uniformly
bounded near ¢t = 7" and has a limit as a classical solution. Hence it can be extended further as a classical
solution (for a precise statement, see in particular Theorem 7.6). However, in view of (6-7), if Ey is
sufficiently small then by continuity we can find a larger interval I & J where (6-6) holds. This is a
contradiction. It follows that the solution A is global and satisfies (6-7). O

For the induction step, consider a regular caloric Yang—Mills wave A on [ such that
E <inf|VADI> < E+c¢(E), |Flep.ouy e HIST. (6-8)
Our goal is to establish a uniform bound
|Allsigp <=M (6-9)

for appropriately chosen ¢(E) > 0 (depending only on E), &, T and M (which may depend on E, e(FE),
T(E), M(E) and c(E)).

Once this goal is achieved, we may extend M(E), e(E) and T(E) to [0, E 4+ ¢(E)] so that
M(E+c(E)) =M, e(E +c(E)) =¢and T(E + c(E)) = T, while keeping validity of Theorem 6.1
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in this range of energy. Since c(FE) is a positive number depending only on E, this procedure can be
continued until Theorem 6.1 holds for all regular subthreshold caloric Yang—Mills waves.

We now turn to the proof of (6-9). By translating and reversing ¢, we may assume without any loss of
generality that / = [0, T) for some T4+ > 0 and

E <|[VA(0)|7. < E +2¢(E).

Since A is regular, it can be easily seen that || A 19,7 is a continuous function of 7" satisfying
: 1
limsup|[Asifo,r) S IVAD)llL2 < E>.
T—0+

Therefore, on a subinterval J = [0, 7)) C I, we may make the bootstrap assumption
[Allsip <2M. (6-10)

In order to improve (6-10) to (6-9), we compare A with a caloric Yang—Mills wave A with S! [/]-norm
< M(E) (eventually), which we construct as follows.

To begin with, we view the space-time connection A x on I x R* as a caloric initial data and solve
the dynamic Yang—Mills heat flow in the local caloric gauge, i.e.,

0sAu(t,x,s) = DkaM(t,x,s),
AM(Z, X,O) == AM(I,X).

From the results in Section 3, we obtain a global-in-heat-time solution A x (¢, x, s) on I xR*x[0, c0). Note
that d; A solves the linearized Yang—Mills heat flow in local caloric gauge, and we have (A4, 9; A)(¢, s) €
TL*C for every (¢,5) € I x [0, 00).

By the caloric gauge condition, the linear energy

14,0, A) @)%, = VA 5)]122
eventually tends to zero as s — oo. Thus there exists a heat-time s, > 0 such that
”(A’ alA)(O’S)”§_'11XL2 =E.

To eliminate ambiguity, we take s/, to be the minimum such heat-time. In order to choose the cut-off
heat-time s, we distinguish two scenarios:

(1) If s, > 1, then we define sy = 1.

(2) If s, < 1, then we define sy = 5.
With s, chosen as above, we define A to be the caloric Yang—Mills wave with initial data
(A,3,4)(0) = (A, 3;A)(0, s4).

In both scenarios, we aim to prove that A exists on J and is well-approximated by A(sx). Moreover,
by the induction hypothesis, A should obey a nice S!-norm bound.
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Proposition 6.3. Let A be defined as above. For sufficiently small e, T > 0 depending on M, M(E),
T(E), e(E) and c(E), the regular caloric Yang-Mills wave A exists on the interval J and obeys

I14lls117 < M(E) + CoVE, (6-11)

I AG) = Alls1, 1y Sar 6% (6-12)

| 40(s) = Aolly 1, 17 <ar €. (6-13)

| P Asa) = P Allya, ) Sua &%, (6-14)

where Cy is a universal constant and ¢* is a frequency envelope defined as
c,’: — Oxlk—k(s:)| (6-15)

On the other hand, viewing A as a “high frequency perturbation” of A, we show below that A stays
close to A in the space S.

Proposition 6.4. Let A be defined as above on the interval J. Provided that ¢ = ¢(E) > 0 is chosen small
enough compared to E (but independent of M(E), T(E) or e(E)) and T, ¢ > 0 are also sufficiently small
depending on M, M(E), T(E), e(E) and c(E), we have

IA—Allsip) Smce)e 1. (6-16)

Assuming the preceding two propositions, we may choose M sufficiently large compared to M (FE)
and E, then choose ¢ and T accordingly, so that the desired estimate (6-9) follows from (6-11) and (6-16).
It remains to prove Propositions 6.3 and 6.4, which are the subjects of Sections 6B and 6C, respectively.

6B. Control of A—A(s+): proof of Proposition 6.3. We introduce the notation
SAY = A — A(sx). (6-17)
We proceed differently depending on how s4 was chosen.

Scenario 1: s« = 1(< s}). This scenario is simpler to handle, and we do not need to invoke the induction
hypothesis.

Step 1.1: S -norm bound for A. We first prove the S'-norm bound (6-11). The idea is to exploit the
smoothing property of the Yang—Mills heat flow, which implies control of higher Sobolev norms of
(A,3,;A4)(0) = (A4,3;A)(0, 1) in terms of ~/E, and use subcritical local regularity of Yang—Mills in the
caloric gauge, which works in a time interval of length Og(1).

Fix a large integer N (say N = 10). We claim that A exists on J and

IAlsvasipn < VE. (6-18)

provided that T is sufficiently small depending only on E (so that |J| < g 1).
By the smoothing property for the Yang—Mills heat flow and its linearization in the caloric gauge (see
Section 3), we have

1A, 9 DO v wiv-1ynarx 2y S VE-
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For T sufficiently small (depending only on E), the following local-in-time a priori estimates at
subcritical regularity hold:

Supll(A. e D)D)l g0 eprv-1yncar 22y + 19 NOAN oo 11230 SVE.
te

Su‘l:;”(/IO, 81‘1{0)(1‘)”(HNXHN—I)Q(HIXLZ) iﬁ
te

The proof is via Theorem 3.5 and, as usual, the Sobolev embedding into L°°; we omit the details.
As a consequence of the preceding a priori bounds, we obtain (6-18) as desired. Moreover, by
Theorem 3.5 and the fixed-time bounds in Section 4, we have

104l o 115y SE 1. (6-19)
Step 1.2: S'-norm bound for A(s«) — A. As a preparation for the proof of (6-12), we claim that

I 4Gsa) = Alls1, 17 Sn €€ (6-20)

In the present case, 2Kk(s+) = 1. For frequencies higher than 1, we simply use (6-18) with smoothing
estimates for A(s4) in S'. For frequencies lower than 1, we control [I(4 — A(s«)) in L H ! and
integrate in time.

By Theorem 5.11, we have

1PeACsa) |l 51y Sm2 2%+, (6-21)
IPeOA(, 5) | 1 Sm272%+. (6-22)

Let k¢ > k(s4) be a parameter to be fixed below. By (6-20) and (6-21), we have
I Pe8A Y (| g1 < 1 PeAllsipr) + I PeA(s) |l s1ry S 270c for k = k. (6-23)
where 0 < ¢ < 1 is a universal constant. Since
PL(L®HYJ]) < [J[2XN N (71262 L2H 2,
for k < k¢ it follows from (6-19) and (6-22) that

”PkD8A10W||(NmL2H—1/2)[J] = ”PkDA”(NmLZ[-']—l/Z)[J] + ||PkDA(S*)”(NnLZH—I/Z)[J]
<m (12012 4 (1712°0) + ey

Since §A'°V[0] = 0, we arrive at
I PeSA [l 5157 Smr ((1T1250)3 + (17 [250) + ) for k < o, (6-24)

Step 1.3: completion of proof. Finally, the bounds (6-12)—(6-14) follow from (6-20) and Theorem 5.11(3)
with dj = ¢ provided that |J| < T is sufficiently small. Here, note that

ex =cp +cx(c-c) <k Sm -
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Scenario 2: s« = s, > 1. In the second scenario, we analyze the equation satisfied by the difference
§AY = A(s4)— A to prove (6-12), then make use of the induction hypothesis to derive (6-11). By another
continuous induction in time, we may make the following extra bootstrap assumptions:

1Al s1p7 < 2(M(E) + CoVE), (6-25)

as well as
||8A1°W||SC}* ] = g%, (6-26)

Here we use a smaller power of ¢, so this last bound will only serve to ensure some a priori smallness of
§AY in S ..
By Theorem 5.13, we have

1 PeA(s:)llsipry Sar e (2%%54) 710, (6-27)
”A(S*)”EDIZ()[J] <E 884’ (6-28)
”DA(S*)”LzH—l/Z[J] <M 884- (6-29)

Therefore, (A(sx), J) is (¢, My)-energy-dispersed for My <ps 1 and & < %,

Step 2.1: bounds for §A'°Y. Here we establish (6-12). We write an equation for §A'°" of the form
O 84 = F,  §A™V[0] =0.
We claim that in each subinterval J; of J and for each x > 10 we have the bound

IF w212,y S8 Q<N Allgagy +29°CATOISA™ 51, g+ (6-30)

where C(A, J}) contains only divisible norms of A; see (5-21).
We first verify that the bound (6-30) implies (6-12). Using the well-posedness for the [ ; equation,
given by Theorem 5.1, in the time interval J; = [t1, f2], we obtain the bound

184 151, 17,7 = CODIBA™ (1]l + @< All g1y + 29K CATIBA™ [ 51, 17,7 + %)

For this to be useful we need to ensure that the coefficient of [|§A'°Y|| s1, s, On the right is small. To
achieve that we first choose « large enough, k >>js 1, depending only on M , so that

C(M)2~ %) A|| 117 < 1.
Then we divide the interval J into subintervals J; so that
C(M)2°“C(4, J;) <« 1.
The number of such intervals depends only on M. On each subinterval J; = [t; 1, #;] we have the bound
1841, 1yyy + 184 5100 < CODUBA 1] +2%).

Reiterating this we obtain (6-12).
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If remains to prove the bound (6-30). We relabel J; by J for simplicity. As a preliminary step, we
observe that, by Theorem 5.13 and the bootstrap assumption (6-26), we have

||5A10W||§i*[1] + ||8A16’W||Y01* il ||PJ'5A10W||YCI* [J] SM ||5A10W||SC1* ] (6-31)

In particular, this proves the bounds (6-13) and (6-14) once (6-12) is known.
The expression for F' is obtained from Theorems 3.5 and 3.6,

F:=0764" =0 ;A — Oy(s.) Asx) + (O — O 1) Als),
where we further expand the two terms as
0 A — Do) Als) = MP(A, ) = M2(A(s2). As4)) + R(A) — R(A(s.))

+ Pw2(0;A,0¢A,5) + Rj:s(A),

and

(D) — O ) A(sx) = —Diff 5 40 A(ss) — DIffS | 5 110 A(5%) — Remf 2, A(s)

+ (Rem>(A(sx)) — Rem?(A)) A(sx) + Rem? (A)A(sx).
We successively estimate the terms above as in (6-30):
(a) For M?(A, A) — M2(A(sx), A(s+)) we use the estimate (4-50). We inherit the envelope cx from
8A!°Y but we also gain an additional power of & from the energy dispersion of A(sx).
(b) For R(A) — R(A(s«)) we use the difference version of the bound (3-21), with a similar gain.
(c) For Pw)zc (0:4,0: A, s) we use (4-59), taking advantage of the energy dispersion for A.
(d) For R;;s(A) we use (3-35), gaining a power of ¢ from the Str! norm.

(e) For Diff;‘, 1g AIOWA(S*) we use (4-82) combined with (6-31) for the high modulations, and (4-83)

combined with (4-37) and (3-22) for low modulations.

(f) For RemgjowA(s*) we use (4-81).

(g) For (Rem?3(A(s4)) — Rem?(A)) A(s«) we use (4-74).
(h) For Remg’* (A)A(s«) we use (4-76).

This leaves us with the most difficult term Diff f, P AIOWA(S*), for which we claim that
||Diff§>5AlowA(S*) | (NNL2H=1/2) .+ [J] <M pebuk ||8A10W st [J1 (6-32)
For P§A'Y we consider the same type of decomposition as in the proof of Lemma 5.8,

P8A10W — PSAlow,main + P8Alow,main,2 + PSAlow,rem,Z + PSAlow,rem,E}
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where
SAYMAN — A=V([A, 8, A] — [A(sx), 3: A(54)]).
8A16)W,mam,2 = A wo(4, 4, 5),
SANT™2 — ATV Q(A,0;A) — Q(A(s4). 0; A(s4))),
SAR™S — A3(A, 8, A) — AJ(A(s4), 3 Alsx)) + Agyy (A, 0, A),
and

sAlowmain — =1 p Af2(A, A) — PM?(A(s4), A(sx))),
gAlowmain2 — =1 py (A4, A, 5),
A2 = O P ([Ag, 0% A] — [Ag (5%). 0% A(54)]).
sAlowrem3 = O0~1 P(R(A) — R(A(sx)) — Rem®(A) A + Rem> (A(s)) A(s4))
+ 07 P(Rj.5(A) —Rem?>(A) A(s)),

where 07! is the wave parametrix with zero Cauchy data at t = 0.
As a preliminary observation we note that

”(SAIJ?W’mam”SJ* T HSAI;)W,main,Z”SJ* T ”(SAI)?W’rem’z”SJ* +||8A£?W,rem,3 ”SL‘* §M ||8A10W||S:* —|—882. (6-33)

This is a consequence of (4-42) for the first term, (4-59) and (5-47) for the second, and (3-21), (3-35),
(4-74) and (4-76) for the last term. The bound for the third term follows indirectly since they all add up
to §AOV.

Now we consider the contributions of each of these terms to Diff f, P Ak,wA(s*).

The contributions of SAX™™ ™ and SAI(;’W’mam. These are considered together, and estimated using

Proposition 4.27. This yields the frequency envelope

fk — ( Z C;:,Ck/<22k S*)_N)Ck<22k S*)_N HSA]OWHSC]*[J] <m 2_08*KCZ||8A10W”SCI*[J]’
k'<k—k

as needed.
The contributions of SAI)?W’main’z and SAI(;)W’main’z. These are also considered together, but now we want
to use Proposition 4.29. As they involve no §4'° differences, we need to estimate these contributions

by &, Unfortunately Proposition 4.29 provides no source for an energy dispersion gain, so we use a
trick, decomposing

DifféCAlow,main,Z A (S*) = Difféi;low.mainl A (S*) + Diff(gz/lll\f«:!main,Z A (S* ) ’

where k’ > K is a secondary parameter to be chosen shortly. For the first term we apply Proposition 4.29,
which yields

. ’ —c8uk’
||D1ffécAlow,main,2A(s*)||(N(‘|L2H—l/2)c* [7] SM 2 oxk .

For the second term, on the other hand, we use instead the bounds (4-55) and (4-59), which capture both
the ¢* decay and the energy dispersion. The price to pay is that this way we only have access to the
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S norm of §4!°%main2 5o we are only allowed to use (4-77). This yields

e 8:85~Ck’
”lef(gAlﬂw:!mainlA(s*)||(NﬂL2H—1/2)C*[J] SM 80 €82 * .

We now add the last two bounds and then optimize in «’ to obtain the desired estimate
. )
||D1ff§A10w,main,2A(S*) | (NNL2H=1/2) 4« [J] <m e

The contribution of §A°% ™2 The §A'™""™™2 part is estimated using Proposition 4.28, with (6-33)
serving to verify the hypothesis. For the output this yields the frequency envelope

2k’ —N —cbx
fk=( Z c]’:,)ck(2 sx) " S 27 ey
k'<k—k
A simpler analysis applies for the contribution of 4™ where we can use Proposition 4.13.

The contribution of §A'°%*™3_ For the contribution of SAg’W’rem’?’ we use (3-23) and (3-36), while for the
contribution of SAfW’rem’3 we use (3-21), (3-35), (4-74) and (4-76), all combined with Proposition 4.26.

Step 2.2: S'-norm bound for A via induction hypothesis. Taking ¢ sufficiently small and using the
bootstrap assumption (6-26), we may ensure that

| Fllep_or < €(E). (6-34)
By the induction hypothesis, we may thus assume that
|Allsips < M(E). (6-35)
6C. Control of A — A: proof of Proposition 6.4. Here, we seek to bound
§AMEN = 4 — 4.
We begin by observing that

||A||ED;6[J] + ”DA”LZH—I/Z[J] <M 886-

Therefore, both (A, J) and (A, J) are (¢, M)-dispersed, where & <ps &%.

Step 1: consequence of approximate linear energy conservation. We claim that

sup|| (§AMeh, atcmhigh)(z)||;11 o SC(BE)+ Cpre®e. (6-36)
ted

Note that
SAMEN = (1 — ™ M)A+ 2 A — A(s4) + A(sx) — A.

We begin with the inequality

IVA@)IZ, = V(1 =) A@)|Z, + 2 A@0)]|2,,
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which follows from Plancherel and nonnegativity of the symbol of (1 —e%*2)e%*A, By Theorem 5.13(1)
and (6-12), we have

Ve 2 A7 = IVADIF> + Cue®, (6-37)
IV =M A@®)|72 = IV(A— A (@) + Care®. (6-38)
Hence, by Theorem 5.9(5), we have
IV A=A 072 < IVAD2, — IVA@)I7 > + Care’
< [VA©O)Z, — IVA©O)|7, + Cre®
< c(E)+ Cpe%s.

Step 2: weak divisibility and reinitialization. By Theorem 5.1(7) there exists a partition J = U,Ile Jx
such that K <ps¢gy 1 and

IAllsi1sq SE L (6-39)

so that the number of such intervals is also controlled K <ps(g) 1. Using the uniform control of the
energy of §AMeM in Step 1, it suffices to estimate §AMe" in S separately in each of these intervals.
We will make a bootstrap assumption

||5Ahigh||s1[1k] <2. (6-40)
Then our goal is to improve (6-40) to
I8A™E | g1y <1 (6-41)

by takingc Kg 1, e <y land T <K pp ¢ 1.

In view of (6-39) and (6-40), in all the estimates below within a single interval Jg, all implicit constants
will depend on E rather than M (E). To simplify the notation we drop the subscript and replace Ji by J
in what follows.

Step 3: frequency envelope bounds. Let cx be a frequency envelope for A in S ![J]. Then by Proposition 3.1,
the initial data in Ji for A(s) has the frequency envelope 2~ k=Kt ¢ . By Theorem 5.1, we have a
similar envelope in S,

| PeA©) g1 S 2 D ep. (6-42)

On the other hand, by the estimate (6-12) we have, under the assumption ¢ < g 1, the bound
| Pe(A= A Is1007 S22 ey (6-43)
Hence for the high-frequency difference A% we have the bound
| P8 11y S 27 EF D=y (6-44)
Step 4: control of nonlinearity. By Theorem 5.9(4) applied separately to A and A we have

10+ Diffp ) SA™E" + Diff sy All y 2517257 SE 2€%6%%, (6-45)
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where the parameter ¥ > 10 is arbitrary for now, to be chosen later. We claim that the second term can be
estimated separately as

IDiff 5 e <p 2760k, (6-46)

hA||NﬂL2I-'I*1/2[J]

This is a consequence of Lemma 5.8. To see that we use the bounds (6-42) and (6-44) to compute the
frequency envelope fj in Lemma 5.8. We have

Je SE ( Y 2 EE g 2_("/_]‘*)*ck/(czc*)<k/)2_(k_k*)+ck <p 27Ok e,
k' <k—«k
and thus (6-46) follows. Combining (6-45) with (6-46) yields

10 + Diff ,)sAMen 2medek g pCH gdads, (6-47)

”NﬂLZI-'I*l/Z[J] SE
Hence by Theorem 5.1(1) we conclude that
||8Ahigh||51[Jk] SE c+ 2—63*K + 2CIC88486‘

Hence by takingk >Eg 1, c Kg 1, e Kgy land T < g ¢ 1, the desired conclusion (6-41) follows.

7. Proof of the main results
The purpose of this short section is to deduce Theorems 1.13, 1.20 and 1.18 from Theorem 6.1.

7A. Higher-regularity local well-posedness. In this subsection, we sketch the proof of higher-regularity
local well-posedness of the hyperbolic Yang—Mills equation. We first use the temporal gauge, which
works for general connections, and then turn to the caloric gauge, which works for data satisfying (1-12).

7A1. Temporal gauge. Here we write the Yang—Mills equations in the temporal gauge,

Ao =0. 7-1)
They take the form
044, = DkajAk, (7-2)
with the additional constraint equation
D’3pA; = 0. (7-3)

This can be viewed as a semilinear system of wave equations for the curl of A, coupled with a second-order
transport equation for the divergence of A.
We consider the Cauchy problem with initial data

A[0] = (4, (0). 9, A;(0)).

The initial data is uniquely determined by the Yang—Mills initial data and the gauge condition (7-1).
The system (7-2) together with the constraint equation (7-3) is well-posed in regular Sobolev spaces.
Precisely, we have:

Theorem 7.1. The system (7-2) is locally well-posed in HN x HN =1 for N > 2, with Lipschitz dependence
on the initial data.
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We further remark that the temporal gauge fully describes all classical solutions to the Yang—Mills
system:

Theorem 7.2. Let A be a solution to the Yang—Mills system which has local-in-time regularity (A, 3; A) €
C(0,T]; HN x HN=Y) for N > 3. Then A has a temporal gauge equivalent A with the same regularity
(4,3,A) € C([0,T]; HN x HN-1),

To see this, it suffices to solve an equation for the gauge transformation O, namely
071900 =4y, 0(0,x)=1,

which is an ODE on the Lie group G. If A € C(H") then this yields a unique solution O € C(H™).
This in turn yields a temporal gauge equivalent solution

(A4,9,A)e C([0,T]; HN "' x HN7?).

This argument loses one derivative. However, the initial data is in HY x H¥~1 which by the well-
posedness result yields a C ([0, T]; HN x HN~1) solution. But by the HV 1 x H¥~2 well-posedness
the two must agree, so we obtain a unique representation in the temporal gauge with the same data and
without loss of derivatives.

Remark 7.3. Analogues of Theorems 7.1 and 7.2 hold for the space Hlévc X Hlf)\é_l instead of HN x HN 1,
where HN is equipped with the norm sup cg4|| - |~ (B, (x))-

7A2. Caloric gauge. In view of Theorem 1.11 we can fully describe caloric Yang—Mills waves as
continuous functions

I35t (Ax(t), dAx(t)) e TLC.
For higher-regularity Yang—Mills waves we have the following:

Theorem 7.4. Let A be a solution to the Yang—Mills system which has local-in-time regularity (A, 3; A) €
C([0,T]; HN x HN7Y) for N > 2. Assume in addition that the bound (1-12) is uniformly satisfied by its
caloric extension, globally in parabolic time. Then A has a caloric gauge equivalent A with the same
regularity (A, 9; A) € C([0, T]; HN x HN 1)

This result is a direct consequence of Theorem 1.11, with one minor exception. Precisely, Theorem 1.11
does not directly yield the C; L)zc regularity for dgAg. For that we instead need to refer to the expression
(3-15) and the bounds (3-18) and (4-28) for the two terms in (3-15).

Remark 7.5. The same result will easily hold for (4,9, 4) € C([0, T]; H x L?). However, if we only
assume that (4, 3;A) € C([0, T]; H' x L?) then one would also need to resolve the remaining gauge
freedom. For that it suffices to observe that if two A’s have a small difference in L2, then the two O’s
can be chosen in tandem so that they agree at infinity.

In particular this says that a caloric gauge solution exists for as long as a regular solution exists and
the L3 bound in (1-12) remains finite. This will allow us to bootstrap the existence time for as long as we
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have good bounds in the caloric gauge. Precisely, for® N > 3 suppose that an H*V solution exists in the
caloric gauge up to time 7. If this solution has uniform H* bounds up to time T, then its temporal gauge
representation has uniform H” bounds up to time 7. Thus it can be extended further in the temporal
gauge, and hence also in the caloric gauge. This shows that a maximal caloric gauge solution must either
explode in H N at the (finite) end of its lifespan, or the L3 norm in (1-12) must explode. The latter cannot
happen for subthreshold solutions. Thus we have:

Theorem 7.6. The Yang—Mills system in the caloric gauge is locally well-posed in HN x HN=1 for
N > 2. Further, the solution extends for as long as the HN x HN ™1 norm remains bounded and the

L3 norm in (1-12) remains bounded.

For regular data, this result reduces the problem of global well-posedness to that of obtaining uniform
bounds for caloric solutions.

7B. Local well-posedness in the caloric manifold C: proof of Theorem 1.13. For ¢, > 0, recall that the
energy concentration scale r¢* was defined as

1
ré*la,e] = sup{r: &g, (a,e) < gi} = sup{r >0: sup 3 Z ”faﬂ”iZ(B,(x)) < 81 ,

4
x€R a<pB

where fj is the curvature form corresponding to a;, fo; = —fjo =e; and foo = 0. Since the definition
only involves fqg, we will slightly abuse the notation and simply write re*[ f] for ré*[a, e).

Lemma 7.7. Let A be a regular caloric Yang—Mills wave on I = (=Ty, Ty). For any ¢ > 0, if e« is
sufficiently small compared to € and
To <rg*la,e],
then we have
IFllgpe, i) <& with2™ = e(ré*[a,e])”".

Proof. By our notation, fog = Fag(0). After rescaling, we may set re* (F(0)) = 1. We begin with the
observation that

| Py F(1)|| oo S 26k—272 SUp [ F(0)lL2(3, (o) (7-4)
x€ER

which follows from the properties of the convolution kernel of Py ; in particular, it is rapidly decaying
on the scale 27% and its L2-norm is bounded by 272, Then, by the localized energy estimate for the
hyperbolic Yang—Mills equation, i.e.,

EiyxBr_yy (F) < Eoyxr (F) (0 <t| <R), (7-5)
the lemma follows. g

Proof of Theorem 1.13. We prove the theorem in several steps:

8The requirement N > 3 is so that there is no loss of regularity in the transition to the temporal gauge. Precisely, we want to
ensure that Ag € C(H! n HN 1),
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Step 1: regular solutions. Let A be a regular caloric Yang—Mills wave with energy £ and initial caloric
size Q. For &4 small enough, to be chosen later, let r. := r&* be the corresponding energy concentration
scale for the initial data.

Our goal is to prove that if €4 is small enough, depending only on £ and Q, then the solution A persists
as a regular caloric solution up to time r.. Precisely, we will apply Theorem 6.1 to the solution A in order
to show that the solution A exists in [—r¢, r.] and satisfies the bound

IAlls1[—r, r] < M(E,3Q). (7-6)

We use a continuity argument. Let Ty < r. be a maximal time with the property that the solution A
given by Theorem 7.4 exists as a classical caloric solution in (—7j, Tp), and further satisfies the bound

sup QA1) <30. (7-7)
1€[=To,To]
For 0 < T < Ty we seek to apply Theorem 6.1 to A in I = [T, T]. To verify the hypothesis of

Theorem 6.1 we need to ensure that for a suitable choice of m we have
| Flleps,, <€(£.3Q), [I|<27"T(£.3Q).
For this it suffices to apply Lemma 7.7 with
e =min{e(&,3Q9),T(£,39)},

which yields the appropriate choice of &x.
Now by Theorem 6.1 we obtain the uniform bound

lAllsi—7,71 < M(E,3Q), 0<T <Tp.

By the structure theorem, Theorem 5.1, it follows that higher-regularity bounds are also uniformly
propagated,
sup  |[(A4,9:4)(t)|| g~ < o0.
te(=To,To)

Thus by the local result for regular solutions in Theorem 7.6 we can continue the regular caloric Yang—Mills
connection A beyond the time interval [—Tg, Tp].

Finally, we consider the bounds for Q(A). These we can propagate using Theorem 5.9, which implies
that

sup QA1) — Q So.e 6™
IE[_T(),T()]

Readjusting ¢ if needed, it follows that

sup QA1) <20Q. (7-8)
te[—To,To]

This implies that the bound (7-7) also can be propagated beyond +T7j. This contradicts the maximality of
To unless Ty = r.. Hence the classical caloric Yang—Mills wave exists in [—r¢, r.] and (7-6) holds.
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Step 2: rough solutions. Given any caloric initial data (a, b) with finite energy £ and caloric size Q, we
consider the corresponding regularized data (a(s), b(s)) obtained using the Yang—Mills heat flow. We
have the uniform bounds

E(a(s).b(s)) =&(a,b), Qla(s),b(s)) = Qa,b).

In particular, we have ( f(s), e(s)) — ( f,e) in H! x L2 This implies that the energy concentration scales
for (a(s), e(s)) converge to those for (a, ). Thus, by the analysis in the smooth case above, for small
enough s the corresponding solutions A(s) exist as smooth caloric Yang—-Mills waves in [ = [—r¢, 7]
and satisfy the uniform S ! bound (7-6).

Now we use the structure theorem, Theorem 5.1, to consider the limit as s — 0. If ¢ is a frequency
envelope for (a, ¢), then by Proposition 3.1 it follows that:

(i) For (a(s), b(s)) we have the frequency envelope in H' x L2
cr(s) = cx (22K s) ¢35,
(ii) For the difference (a, b) — (a(s), b(s)) we have the envelope in H' x L2
Scp(s) = cx (27K g1y =85,
(iii) For the difference (a(s), b(s)) — (a(2s), b(2s)) we have the envelope in H!'x L?
cp(s) = ck(s)2_685|k_k(s)|.

By Theorem 5.1(2), it follows that ¢ (s) is a frequency envelope for A(s) in S;. Combining this with
Theorem 5.1(8), it follows that ¢; (s) is a frequency envelope for A(s) — A(2s). Summing up such
differences, we obtain the general difference bound

[A(s1) — A(s2)lls1 Se,0 Clr(si) k()] (7-9)
This implies that the limit
A = lim A(s)
s—0

exists in 5. We define A to be the caloric Yang—Mills wave associated to the (a, b) data. We remark that
by (7-9) we have the difference bound

[A—A(s)|ls1 Se,0 Ck(s)- (7-10)

Step 3: difference bound. The difference bound in part (4) of the theorem is a direct consequence of the
difference bound in Theorem 5.1(8).

Step 4: continuous dependence. We consider a convergent sequence of caloric initial data
@™, p™) > (a,b) in H' x L2 (7-11)

Let A®(s5) and A(s) be the corresponding solutions with regularized data.
Denote by ¢} a corresponding sequence of frequency envelopes for the initial data (@™, p™) in
H'x L2 By Theorem 5.1(2), these are also frequency envelopes for the solutions A (s).
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By Theorem 7.4 we know that for each s we have
AM™(s) > A(s) inS!
and in effect in stronger topologies. Then we estimate
limsup [A® — Al g1 < lim Tlimsup | A™(s) = AG) 51 + Lg) + C2kcs)
n—o00 n—00

< lim limsupc”? ;...
~ s—o0 n—>oop >k(s)

But the last limit is zero in view of the convergence in (7-11). The continuous dependence follows. [

We end this subsection with a lemma that bounds the energy concentration scale from below by an
L2-frequency envelope for F, which proves Remark 5.2.

Lemma 7.8. Let ¢ be a frequency envelope for Fyg in L? for all a, B € {0,1,...,4}. Suppose that
Il ||£2>m < C~ ey for some m € 7 and a sufficiently large universal constant C > 0. Then r&* (F) > 27

Proof. 1t suffices to establish the bound
I FllL2(Bx,2—*) < C2k-

To see this we use Bernstein’s inequality to estimate

IF 22—k S I Farllizz + Y 27K Fillree S esp+ ) 2% e ~ e O

j<k j<k
7C. Regularity of energy-dispersed solutions: proof of Theorem 1.20. Consider a time g where Q(A(¢))
is nearly minimal. From Lemma 5.10 we have the estimate
Q(A(to)) Se €.
If ¢ is small enough this allows us to conclude first that @ < 1, and then that
Q<E &

Now a straightforward continuity argument shows that

O(A) <1, tel,
which again by Lemma 5.10 yields

Q(A@)) Se &€, tel.

Then we can apply directly the result in Theorem 6.1 for any m € Z. This eliminates any restriction on
the size of the interval 1.

7D. Gauge transformation into temporal gauge: proof of Theorem 1.18. To produce a temporal gauge
solution to (1-1) from the caloric gauge solution we use a gauge transformation O defined as the solution
to the ODE

071'9,0 =4y, 0(0)=1. (7-12)

Here for Ap we have the regularity given by Theorem 5.1(9), namely

Ao € '|D|2L2L]. (7-13)
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We use this to compute the regularity of O:

Lemma 7.9. (a) Assume that Ag is as in (7-13). Then the solution O to the ODE has the following
properties:

() Oyx € C,(HY).
(i) O is continuous in both x and t.
(b) Consider two solutions O and 0 arising from Ag and /Io. Then we have:

(i) (H' bound)
107190 — 07 9x Ol g1 < 140 = Aollg1 p-2121.)-

(i1) (uniform bound)
1d(0, 0)||L < || A0 — I‘IO||51|D|*2L§L} .
Proof. (a) We first consider the ODE
07 '9,0=F, 00)=1I, (7-14)

and observe that for smooth F' this is easily solvable.
Next we consider a smooth one-parameter family of solutions O (/). For this we compute

%«rwﬂnsz—wxrwﬂm
which immediately leads to

t
|0_mh00ﬂfi/ |0, F(s)| ds.
0

Comparing two solutions O and 9] generated by F and F using the straight line between them, it follows
that

t
40,000 = [ 1)~ Fo)lds (7-15)
0
This yields a Lipschitz property for the map
LI>F— 0eC,

which is thus by density extended to all F € L}.
Next we turn our attention to Ag, which by Bernstein’s inequality satisfies

Ap € CxL!.

This implies the desired continuity of O.
Finally we consider the evolution of O~19, O,

%{0”a¢n:aymr4Am0—wxoy
Since dx Ag € LiL}, this immediately gives

07 '9,0eLic, cCL
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A second differentiation yields as well
0x(0719,0)e L2C, C CL>.

(b) The uniform bound for the difference follows directly from (7-15). For the difference of the derivatives
we compute

3:(0719,0—-0719;0)+[49.0718,0 - 079,01 = 3; Ag— 9; Ag — [Ag — Ao, 09, O).
As above, we can estimate this first in L* and then in H . ]

To conclude the proof of Theorem 1.18 it remains to verify (i) that gauge transformations O having
the properties in the above lemma yield temporal connections Altle C (H 1), and (ii) these connections
depend continuously on the initial data.

For the continuity in time we write

Al =04 -0"19,0)07".

The second term above is in C tH 1 due to the previous lemma. For the first term we differentiate, then
use again the lemma combined with the continuity of O and dominated convergence.

For the continuous dependence of the temporal solutions with caloric data the same argument as above
applies. However, we also need to consider general finite-energy initial data sets. Here the construction
of the temporal gauge solutions starting from a general initial data (a, e) goes as follows:

(1) Given the initial position a € H, we consider the gauge transformation O = O(a) which turns a
into (a, €), its caloric gauge counterpart.
(2) Given the caloric data (@, &) we have as above a unique temporal solution A.

(3) To return to the data (a,e) we apply to A the inverse gauge transformation O~! to obtain the
temporal solution A.

The regularity of the gauge transformation O is 013, O € H, which suffices in order for it to map
C (H 1) connections into C (H 1) connections. It remains to prove the continuous dependence. Consider a
convergent sequence of data (¢, e(™) — (a,e) in H' x L2 Without any restriction in generality we
can assume that (a, e) is caloric. Denote by O the corresponding gauge transformations, which, we
recall, are only unique up to constant gauge transformations. Then we need to show that for a well chosen
(sub-)sequence of representatives 0™ we have the following properties:

(1) (0™)=15, 0™ - 0in HL.
(2) 0™ (x) > I ae.in x.
But this is a consequence of Theorem 1.2; see also Remark 1.3 (recall also that 0. = Ad(0)(0~13, 0)).

8. Multilinear estimates

The purpose of this section is to prove most of the results stated without proof in Section 4. The exceptions
are Theorem 4.24 and Proposition 4.25, which involve construction of a parametrix for O + Diffp ,; their
proofs are given in the next section.
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8A. Disposable operators and null forms. In this subsection we collect preliminary materials that are
needed for analysis of the multilinear operators in the nonlinearity of the Yang—Mills equation in the
caloric gauge.

8A1. Disposable operators. Boundedness properties of the multilinear operators arising in caloric gauge
(see Section 3) can be conveniently phrased in terms of disposability (after multiplication with appropriate
weights) of these operators.

We begin by considering the multilinear operator Q with the symbol

EP = _ E+m-E—n
202+ > 206P+ )

which arose in the wave equation for A, (most notably through the expression for 3¢ Ay) in the caloric

Q.=

gauge.
Lemma 8.1. Forany k, k1, k, € Z, the bilinear operator
27K P @ (Py (4. Piy (+))

is disposable.
Proof. To begin with, note the symbol bound

|§ + 1
(812 +In?)>
which implies that the symbol of 2kmx—Fk PrQ(Py,(+). Pr,(-)) is uniformly bounded. In the case
ko < ki —5 so that |knax — k| < 3, it can also be checked that

amikignaka |pGn) (P (€ + ) @ (&, 1) Pry (€) Py ()] Sy 1.

which proves the desired disposability property. By symmetry, the case k1 < ko — 5 follows as well. In
the case |k1 —ka| < 5 (so that |knax — k1| < 10), making the change of variables (§,¢) = (§,§ + n), it
can be seen that

2k kg2 k g (PL() Q6. £ — ) Py (6) Pry (C = )] Smyma 1.

Q€. | <

which implies disposability of Ykma—k PO ( P (). Py (). .
Next, we consider the multilinear operator W (s) with the symbol
W (&, 1,5) = ———eSIEFIP (1 _ (258 ),
26-m

which arose in the wave equation for the Yang—Mills heat flow development A (s) of a caloric Yang—Mills
wave.

Lemma 8.2. Forany k,ky,ky € Z and s > 0, the bilinear operator

(s2%K)10 (7102w ) 2 2Keax Py W (Py, (), Ppy(+), 5) (8-1)

is disposable.
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Proof. Without loss of generality, we may assume that s = 1 by scaling. We distinguish two scenarios:
Case 1: high-low or low-high, k = max{ky,k>} + O(1). To prove disposability of (8-1), it suffices to
show that

e28m
(22K gk gnzke a(”"a<"2)(Pk($+n>e S —s — P, (5)Pk2(n>)

~Nni,nn 1

for any n1,n2 € N. Since the derivatives of P (§ + n) Py, (§) Px,(n) already obey desirable bounds, it
only remains to prove

(22kmax> 112n 1k1 2n2k2

1 — 26
82”‘)8,(7”2)(e_5+"|2L) <nins 1 (8-2)

£-n

for &, n in the support of the symbol (8-1).
Since k = max{ky,k2} + O(1), we have 22kmx ~ |£]2 + || ~ |€ + 7|% On the one hand, it is
straightforward to verify
2n1k12n2k2|a§”1)31(7n2)€—|§+n|2| < 2n1k12n2k2(1 + € + ’7|2) 2 &+

n +n2

2(n1+n2)kmax <22kmax> |E+77|2

5”1;”2

On the other hand, we also have

1 —e28m
omkignake ag’l)ag"z)(—e )'Nn, wa 2K12P2K2 (1 2 4 [?) ™2 (1 4 27)

E-n

2(”1 +n2)kmax <22kmax> 21 _5 2 28"7) .

Sn 1,12

The key point here is that when |£ - | < 1, the denominator £ - 7§ cancels with the first term in the Taylor
expansion of the numerator 1 — £ - ; we omit the details. Combining (8-3) and (8-3), it follows that

1 — 26
ynikionaks aé”l)agnz) (e—|‘§+f7|2 ¢ )' <y <22kmax>n1+nze—|§'+n|2(1 +ez§'").

€1
Since e 617 (1 4 ¢261) = o=E+n1? | o=(EP+II?) < p=C712%m (g oy follows.

Case 2: high-high, k < max{k,k>} — C. As usual, we make the change of variables (¢, ) = (£, & + 7).
It suffices to prove

| — 268
§-(0—-8)
Note that the derivatives of (225)10 P (¢ )e"g|2 Py, (§) P, (§ —{) already obey desirable bounds. Hence

we are only left to show

<22k> 10 (22kmax>2n 1k1 2n2k

o (e PP E=0) | Srie

(22kmax>2nlkl 2n2k

_ 285§
(1) o) (1€
%% ( E =9 )‘”1 &)

for £, ¢ in the support of (8-1).
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Note that k1 = kmax + O(1). In the case 2%kmx < 1, (8-3) follows from
9" 97" (28 - (6 =€) (1 =P EO))| Sy 1,
which follows by Taylor expansion at & - (¢ — £) = 0. In the case 22kmx > 1, we use
oniki 2n2k|8§nl)a§n2)(s (- 5))—1| < 2—2kmax’
2n1k12n2k|a§n1)a§n2)(1 _ 625-(5—5)” <1,
both of which follow from simple computation, whose details we omit. O

8A2. Null forms. We now discuss the null forms that arise in caloric gauge, which occur in conjunction
with various (disposable) translation-invariant operators. To treat these in a systematic fashion, it is useful
to define null forms in terms of an appropriate decomposition property of the symbol.

Definition 8.3 (null forms). Let 7 be a translation-invariant bilinear operator on R *# and let 4+ € {4+, —}
be a sign. Given k1,kp € Z, £,0' € =N, w, ' € S3, define

64 = max{|Z(», +')|,2¢,2Y}.
(1) We say that T is a null form of type N+, and write
T ) =Nx(-,0),
if for every k1,kp € Z, £,£' € =N and w, w’ € S3, T admits a decomposition of the form

T((1.). (0. ) (P, PO)E) (P, PY) () = 02251TR20((2.8). (0.m) D i, (§)biy (),
i1,i2€N

where the Fourier multipliers
A+ )", (A +1i2))' sy (8-4)
are disposable, and the translation-invariant bilinear operator with symbol

O((z.§). (0. 1)

is disposable as well.
(2) We say that T is a null form of type N if T(+,-) =N4(-,-)and T(-,-) =N_(-,).
(3) We say that 7 is a null form of type Ny, +, and write
T('a') :No,ﬂ:('a')’
if for every k1,ky, € Z, £,£' € =N and 0, w’ € S3, T admits a decomposition of the form

TE )Pk, PP)E) (P, PE(p) = 0225 TR20((2.6). (.0)) Y ai, )by (),
i1,i€eN

where the Fourier multipliers

(I + 11D, (1 +1i2) "%, (8-5)
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are disposable, and also the translation-invariant bilinear operator which has symbol O((z, §), (o, 1)) is
disposable as well.

In particular, O, a;, and b;, may depend on k1,k2,£, ¢, w,’, but the disposability bounds stated
above do not.

Remark 8.4 (null form gain). To exploit the null form, it is convenient to make the following observation:
as an immediate consequence of the definition, we may write

Ni(Py, Pu, Py, PY'v) = COL2 T2 O (P PEu, Py, PE v)
for a universal constant C > 0 and some disposable O. Analogous statements hold for A/ and Ny 4.

Remark 8.5 (behavior under symbol multiplication). The properties of 7 in Definition 8.3 seem compli-
cated at first, but its usefulness comes from the fact that it is well-behaved under symbol-multiplication
with a disposable multilinear operator. More precisely, if O(-,-) is a disposable translation-invariant
bilinear operator and 7 (-, -) is a null form in the sense of Definition 8.3, then the translation-invariant
bilinear operator with symbol O(&, n)T (€, n) is clearly also a null form of the same type.

We now verify that the standard null forms are indeed null forms according to Definition 8.3. We have
the following separation-of-variables result for the symbols of the standard null forms.

Lemma 8.6 (standard null forms). Consider the symbols

Nij(&.n)=§&nj—&ni, Nox(5.n) ==x|Eln|—&-n.

These symbols admit the decompositions

€17 07 Ny (6. (P, POYE) (Pry PG = min{b 6 Y aiy (9)biy(). (8-6)

i1,ineN
€17 17 No,= (6. ) (Pr, PEYE) (P, PEH) = 03 Y af (E)b], (). (8-7)
i1,in€N
where
(411D, (A + i)' %%, A+, (A +1i2) '], (8-8)

are disposable.

As a corollary, it follows that /V;; is a null form of type N, whereas Ny 4 are null forms of type Nx.

As before, a;,, a;I , bi, and blfz depend on k1, k,, ¢, ¢, w,w’, but the disposability bounds stated in
(8-8) do not.

This lemma can be proved by performing separation of variables using Fourier series on an appro-
priate rectangular box containing the support of P, P;°(§) P, Pf)/ (¢/). For the details in the case of
€171 n|~ 1Ny (€, 1), we refer to [Gavrus and Oh 2016, Proof of Proposition 7.8]. For Ng 1, observe that

No,+(£,1) := |&[7! ||~ No,+ (£, 1) obeys
INo« (£ <63, [9:Nox(E | S27%1604, |9,Nox (5, )] S27%20,,
|3§n1)3%n2)ﬁo,i(§s n)| S 27mkigmneke(yy 4 opy > 2)
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for &, 1 in the support of Py, P (§) Py, P(f;/(n). Using these symbol bounds, the case of Ny + can be
handled by essentially the same proof as in [Gavrus and Oh 2016, Proof of Proposition 7.8]. See also
[Gavrus 2019, Section 8].

We now present algebraic lemmas, which are used to identify null forms in the Yang—Mills equation in
the caloric gauge. The following lemma identifies all bilinear null forms.

Lemma 8.7. Let O be a disposable bilinear operator on R\, Let A be a spatial 1-form and let u, v be
functions in the Schwartz class on R'T4. Then we have

O(P* A, 00u) =Y " N(ID|™' 4;.u), (8-9)
J

PO, dxv) = |D|7N(u, v). (8-10)
Moreover, we also have
O(0%u, dqv) = No,+(QFu, 0 v)+No +(Q7u, 07 v)
+No,~(QFu, 07v) + No~(Q7u, Q) +Ro(u,v), (8-11)
where
Ro(u',v") = O((D: = D)0 "' + (D + D)) Q™ u, Drv')
+O0(DI(QT ' = Q07u). (Dy = IDNQ TV + (Dr +|DNQ V). (8-12)
Remark 8.8. As is evident from the proof below, Lemma 8.7 readily generalizes to a disposable multilinear
operator O that has one of the above structures with respect to two inputs. We omit the precise statement,

as the notation gets unnecessarily involved. However, we point out that this is all we need in order to
handle the trilinear secondary null structure.

Remark 8.9. An alternative way to make use of the null form O(d%u, dqv) is to rely on the simple
algebraic identity
20(0%u, dqv) = OO(u, v) — O(du, v) — O(u, Ov). (8-11)

We have elected to use the decomposition (8-11) to unify the treatment of null forms.

Proof. We begin with (8-9) and (8-10). By Remark 8.5, it suffices to consider the case when O(u, v) is
the product uv. Then it is a well-known fact (going back to [Klainerman and Machedon 1994; 1995])
that P¢A49,u and P;(udyv) are standard null forms, i.e.,

PEAdu = Ny (—A)19447 u), (8-13)
P (udyv) = (—A) "1 N (u, ). (8-14)

We omit the simple symbol computation. Hence (8-9) and (8-10) follow.
Next, we prove (8-11), which is essentially the well-known fact that 0%udqv = —D%*uDyv is a null
form. To verify (8-11), we first decompose u = Q Tu + Q@ u and v = Qv + Q~, then we substitute

D, 0*u=%|D|Q*u+ (D, F|D))0Fu, D;0*v=='|D|0F v+ (D, ¥ |D)0O*v.
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When O(u, v) = uv, the contribution of the first terms gives
> (& [D|0*u|D|0* v — D Q*uD0F v) = Y No++(QFu. 0Fv).
+,+/ +,+/

By Remark 8.5, the same contribution constitutes the first four terms in (8-11) in general. Note moreover
that the remainder makes up Ro(u, v), which proves (8-11). O

Next, we present an algebraic computation, which will be used to reveal the trilinear secondary null
form of the caloric Yang—Mills wave equation.

Lemma 8.10. Let O, O’ be disposable bilinear operators on R4, Then we have
o' (Ao D, 9ou®@), 3%u®) + o' @ P;OD, 8,u@), 8 u®)
=o' @ 'ow®, d,u®),3*u®) -0’ @ 1A19,0,0uV, 3%u@), 8,u®)
— 0@ TAT19,0,0u®W, 3 u?®), 92u®),
provided that A=10, 0710 and O~ A71O are well-defined in the sense that their kernels have finite
masses.

Of course, the requirement that the kernels of A~!©, O071© and O~'A~1O have finite masses is
excessively strong for the validity of the lemma, but it will be verified in the applications below.

Proof. The proof of this lemma is the same as in [Krieger et al. 2015, Appendix]. Using the identities
ATl O '=07'AT1(=8?), PiB=B;,—A1'9;0'B;, 3°=—dy=—0,
and adding and subtracting O"(O0"A719,3¢ 0™, 3,u@®), 3,u®), we may write
O'(AT oW, 90u?), 3%u®) + o' @' P;owD, 8,u?), 5 u®)
=0'@ oW, dou?),3%u®) + '@ oW, 9;u?), ¥ u®)
—o0'@'a719,0°0u®, 9gu@), 3,u®)—o'@ a0 0w, u@), ¥ u®)
~0'@ AT, 0™, 3u®@), 9,u®) — '@ T AT B0 0D, 3, u@), 3%u®)
=o' @ 'o®, d,u®), 9*u®) —0' @ 'AT19,0,0wV, 3%u@), 9,u®)
—0'(O ' AT 90,0, 3 u@), 3*u®).
In the last equality, we paired the first and the second, the third and the fifth, and the fourth and the sixth

terms, respectively, from the preceding lines. O

8B. Summary of global-in-time dyadic estimates. In what follows, we denote by O a disposable translation-
invariant bilinear operator on R!*#4, and by A a bilinear null form as in Definition 8.3(2). Let u and v
be test functions on R!™#. For convenience, we also introduce test functions 1’ and v/, which stand for
inputs of the form Vu and Vv, respectively, in the applications.

Given k, k1, ko € Z, we define kn,ox = max{k, k1, k»} and ki, = min{k, k1, k2}. We use the shorthand
Uk, = Pg,u, vk, = P,v and vl/€2 = Py, v
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8B1. Bilinear estimates for elliptic components. We start with simple bilinear bounds which do not
involve any null forms.

Proposition 8.11. We have

_8 kmax_kmin
PO, vf ) g2 fr1/2 S 2701 || Dug, llgyo 10, lsyo- (8-15)
_8 kmax_kmin
| PO, Ve o5 a0 < 270 Dk, llgpo 0%, 0 (8-16)
1PeO Gk, V) 12,00 S 275K K20 Dy g 1o, s (8-17)

Furthermore, we have the following simpler variants of (8-15), (8-16) and (8-17):

_8 kmax_kmin
PO, v ) p2 gre1/2 S 2701 Motk 2732110, s (8-18)

2_81 (kmax_k

||Pk0(uk1»U];2)||L9/51.‘1—4/9 < mi")”“kl ||L21£I3/2||U;¢2||S» (8-19)

| PLOGug, . v )| 120 < 2302~ 3K078k128K2 286K |y [12,6)(278R2 )|l 216).  (8-20)

8B2. Bilinear estimates concerning the N -norm. Next, we state the N-norm estimates which will be
used for the bilinear expressions arising from P M, P+ M and Rem*-2.

Proposition 8.12. We have

| PN (g, s o) | v S 2781 Cmac=knin) 2K Dy 15[ D, |5 (8-21)

| PrO8%ug, , dqvg,) || v < 2701 s =Kmin) pkmax || Doy |15 (| Do, || (8-22)
_ . 1

1 PeOG vl g2 < 270 Emakmnd of | 0 (2652 g, [l 2 6). (8-23)

Furthermore, for any k € N, we have the low-modulation gain

1Pk Q<N (Q <t ittty s O <t Vi) |V S 2701€25 | Duy, |5 | Dvgs, |l s (8-24)
1Pr O <t 0% O <ty iy 3 O <t —ic Vi) IV S 27812k | Dug |5 || D, |15 (8-25)

For the term Diff , B, we need to distinguish the case when the low-frequency input 4 has a dominant
modulation. For this purpose, we borrow the bilinear operator Hlt (and its “dual” Hy) from [Krieger et al.
2015].

Given a bilinear translation-invariant operator O, we introduce the expression H O (resp. H; O), which
essentially separates out the case when the modulation of the output (resp. the first input) is dominant.
More precisely, we define

HOw.v)= Y Q;0(Q<jcu.Q<j—cv),
jij<k+C

HrOw.v)= Y 0<j—cO(Qju.0<j—cv)

Jjij<k+C
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for some universal constant C such that C < Cyp, where Cj is the constant in Lemma 8.21. We also define

HO(u,v) = Z Py H O(Py,u, Pr,v),
k,kl,k2:k<k2—C
H*O(u,v) = > Hji PrO(Piyu, Pyyv).

k,k] ,kz:kl <k2—C

We are now ready to state our estimates for the N-norm of the term Diffpy4 B.

Proposition 8.13. For ki < k — 10, we have

1Pe(1=HE DN (D™ gy vl S [ D, sl Dok, s (8-26)
1P (1 —=Hg DOCugy, i )IN < ke, 2 gae v, s (8-27)

I PeHE N(D ™ gy o)l S Nk [l 21 [ Dog, |l s (8-28)

1P HE, Ouky, i ) IN < luk, la-1201221 [0, Il (8-29)

Furthermore, for k1 < k — 10 and any k € N, we have
1PHE N (DI Q <y ety Vi)V S 27 g, | 21 | D, . (8-30)
1PH O(Q <y —cttiey - Vi IV < 27 g, | a-1201/221 10, - (8-31)

8B3. Bilinear estimates concerning X, :b.p -type norms. We now state the Z!-, Z ;O— and Z ;0—n0rm
bounds. We begin with the ones for the bilinear expressions arising from P M?, Rernl'fl’2 and ./\/l(z).

Proposition 8.14. We have
| PN Gtk o)z, < 270 o2k | D 5| Dugy s (8-32)
IPEN (uiey o) Izt S 275 K =R210K | Duy s [ D v, s (8-33)
Furthermore, fork <ki—C, we have
1P (1 = Hi)N gy v oz S 270 €025 Dug [1g | Dog, s (8-34)
1P = Hi) O, v a2z zr S 27 €0 Dug s llog, s (8-35)

The following bounds are for the null form arising from Diff f,x 4 B; we remark that this is the only
place where we need to use the intermediate Z ;O—norm.

Proposition 8.15. We have

| AN (D1 gy vie) iz, < 270 Co ) g 151 Dy |5 (8-36)

| AN (D1 iy - vie) iz, < 270 ™ g 51,7 (1D, s (8-37)

| PAN (DI gy vk lmzn £ 27 Em o) g [ g1 ([ Dvgs s (8-38)

1PN (D™ gy, vy =1 /201y S 270 Eomn=omin) g Isinzy, 1D vk, lls- (8-39)

Finally, the following bounds are used to handle Diff B and Diffp, , B.
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Proposition 8.16. We have

| POy v ) lgzy, <2701 Em )| Dug 1y flug, s (8-40)
1PeOGui, v )llmz1 S 270 Ema o) | Dagge [y g, s (8-41)
1PiOuiey i)l -1/2401.-5y < 2701 Eme=Knid | Dagy 1y vyl (8-42)

8B4. Trilinear null form ¢stimate. Let u(l), u(z), u® be test function on R4, Given ki € Z, we
introduce the shorthand u,(cli) = Pkiu(i) (i=1,23).

Proposition 8.17. Let O and O’ be disposable bilinear operators on R4, Let j <k —C and k <
min{kg, k1, ...,k3} — C. Consider the expression

cub1C(u](€1)’u](€22) uk%)) — Q<j—CO/(A_1Pk QjO(Q<j—Cu](cll)’ 80Q<j—Cu(2)) 80Q<] Cu(3))
+Q<j—CO’(D_1Pk Qj PgO(Q<j_Cu](€11)’ axQ<j—Cu](€22)), 85 Q<j—Cu(3))

Then we have
i 1 2) (3 - —k)n—81(k—j 1 2 3
VRS G w2 ) 2 £ 27 E O EED DU 5 | DU s DU s, (8-43)
In fact, for later use (in Section 11), it is convenient to also state a more atomic form of (8-43). Given

k; € Z and a rectangular box C®), we use the shorthand u' y = P, Pc(i)u(i ) (i =1,2).

k c“
Proposition 8.18. Suppose O and O’ are translation-invariant bilinear operators on R'™* such that
oWy -, PKC?/ -) and O'(P -, Pe“,’/ -) are disposable for every £, ' € —N and w, ' € S3 Let j <k —C,
k <min{ko, k1, ..., k3}—C and CV,C? e {C(£)}, where £ = j_k . We have

| Pey Q<j—c O/ (O PLQ,;0(Q<j-cuy iy 0aQ<jmcy) 1)), 8 Qcjmctud) 1 12

PR J)llDukl Cm||sk1[ck(1z)]||Duk2 C(z)llskz[ck(e)]llDuk)Ils, (8-44)

| Pey Q< j—c O/ (O AT P Q0102 0(Q < j—ctty 1y 9 Q< jmctty? o), 94 Q< j—ctt ) I 12

< 281k =k)p=81 (k=) ”D“kl c ||Sk1 [Ck (D] ||Duk2 c@ ||Sk2[Ck(ﬂ)] ”D”k;) ls. (8-45)

1 A— 2
| Pey Q< jc O/ (O AT P Q000000 <j—cttf? 1y, 9 O<jmctt? 1)), 0 Q< jmcui) 1 12
—81(k1—k)~»—61(k—
<27 E0T DD s et 1D e i teconll Dug) s (8-46)

8C. Proof of the interval-localized estimates. In this subsection, we prove all estimates claimed in
Section 4 except Theorem 4.24 and Proposition 4.25, which are proved in the next section.

The key technical issue we address here is passage to interval-localized frequency envelope bounds (as
stated in Section 4) from the global-in-time dyadic estimates stated in Section 8B.

In what follows, we denote by © and O disposable multilinear operators on R!*# and R*, respectively,
which may vary from line to line. Similarly, )(]I‘ indicates a generalized time cutoff adapted to the scale 27k,
which may vary from line to line.
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8C1. Estimates that do not involve any null forms. Here we establish Propositions 4.12, 4.13, 4.14 and
4.18, whose proofs do not involve any null forms.

Proofs of Propositions 4.12 and 4.13. We introduce the shorthand A’ = 9, A and B’ = d; B. Using (4-25)
and Lemma 8.1 we write

D7 Py ME (P, A, P, B) = 27K PLO(Py, A, Py, B)), (8-47)
P Q(Py, A, P, B) = 2k27 ke PO (P, A, Py, B), (8-48)

|D| 7' Pr Q(Py, A, Pryd; B) = 27 *mx PO (P, A, P, B'), (8-49)
|D| "2 Py DME(Py, A, Pi, B) = 27 K27 Fmx pp O (P A, P, B). (8-50)

Step 1: fixed-time estimates. Applying Holder and Bernstein (to one of the inputs or the output, whichever
has the lowest frequency), we obtain

| PO (Picyit’. Piyv)z2 S 2250 [ 22 [0l 2. (8-51)
Recalling (8-47)—(8-50), the fixed-time estimates (4-27), (4-28) and (4-35) follow.

Step 2: space-time estimates. Here, we prove the remaining estimates in Propositions 4.12 and 4.13. In
this step, we simply extend A4, B, A’, B’ by zero outside I. Furthermore, we define

MG oa(A. By = > PMG(Pr, A, Py, B). (8-52)
|kmax_kmin|ZK
Mg BY=" Y PrMG(P, A, Pi, B). (8-53)

|k max—Kmin| <k
so that MG*(4, B) = M2 (A, B) + MgT (A, B).

Step 2.1: L2 H/2-norm estimates. We first verify (4-29)—(4-34), (4-36) and (4-38) with the L2 H '/2-norm
(instead of the Y -norm) on the left-hand side. All of these estimates follow from (8-15) and (8-47)—(8-50).
The small factor in (4-31) arises from the exponential gain in (8-15) and the frequency gap « in (8-52),
whereas the factor £22M in (4-33), (4-34) and (4-38) arises from (4-21).

Step 2.2: L' L°-norm estimates. By Holder’s inequality, we have

—0,
”Pku”LpOW2—3/IJ0.I)6 S ||Pku||;l21_'?1/2”Pku”L]W 1,00° (8'54)
where 6 = 2(— — 1) €(0. 1). Therefore, (4-29), (4-31) and (4-33) follow by combining (8-17) with the

L2 H'2_norm estimates from Step 2.1. On the other hand, for (4-32) we use (8-20) instead of (8-17),
which allows us to use the DS!-norm on the right-hand side at the expense of losing the exponential
off-diagonal gain. Finally, for (4-37) and (4-38), observe that by (8-20), (8-48) and (8-49) we have

1D Q(Px, A, Pry B)) |1 oo < 2731 Cnahnin) | o Al (|| D70 Pr, B || p

for o = 0, 1. Therefore, the L! L°-norm bound in (4-37) follows directly, whereas the Y -norm bounds
in (4-37) and (4-38) follow after interpolating with the L2 H'Y2 norm estimates from Step 2.1. O
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Proofs of Proposition 4.14. For this proof we use the square function L}CO/ 3L? component of the S; norm,
for which we have

_3
lullspa = 27105 ] L1or3 o
We recall that the symbol of AA% is

£1?
€12+ In>

Then we use Bernstein at the lowest frequency to estimate

AAZ(E.n) =

” PkAA(%(Akl , 8tAk2)||L2L1 5 2_2(k2_k1)+ 2_%k12%k22%kminckl Ckz 5 2_1%(kmax_kmin)cklck2‘
Now the bound (4-39) immediately follows due to the off-diagonal decay. O

Proof of Proposition 4.18. The bounds in this proposition are trivial consequences of Proposition 8.11,
along with the observation that ||| D |u||g,0 < [[Vull;2g1/2. We omit the details. O

8C2. Estimates for PM? P+M? and Rem?*. We now present the proofs of Propositions 4.15 and
4.20, which require the bilinear null form estimates in Proposition 8.12, as well as the X, b.p -type norm
estimates in Propositions 8.14, 8.15 and 8.16.

Proof of Proposition 4.15. Unless otherwise stated, we extend the inputs 4, B by homogeneous waves
outside /. For k,kq,k, € Z, by Lemma 8.1, note that

Py P/\/lz(P;Cl A, P, B) = Py PO(Py, A, 0x Py, B), (8-55)

Py PEM2(Py, A, Py, B) = 27%m P O34 Py, A, 8% Pr, B) (8-56)

for some disposable operator O on R* Note also that, by Lemma 8.7, the right-hand sides are null forms.

Step 0: proofs of (4-40), (4-41). In view of (8-55) and (8-56), both follow easily using the standard
Littlewood—Paley trichotomy and (8-51).

Step 1: proofs of (4-42), (4-43), (4-44) and (4-45). The N -norm bounds in (4-42) and (4-43) follow from
the null form estimates (8-21)—(8-22). On the other hand, the J.X !-norm bounds in (4-42) and (4-43)
follow from (8-15), (8-16) and (8-32); we remark that the (1Z ;O—norrn bound for P M is unnecessary,
since PP+ M = 0. Estimates (4-44) and (4-45) immediately follow from (8-15), where we may simply
extend A, d; A, B, d; B by zero outside / as in the proofs of Propositions 4.12 and 4.13 above.

Step 2: proofs of (4-46), (4-47), (4-48) and (4-49). Since the case of P M? (i.e., estimates (4-46) and
(4-48)) can be read off from [Oh and Tataru 2018, Proof of Proposition 4.1], we will only provide a
detailed proof in the case of P+ M2 (i.e., estimates (4-47), (4-49)).

Step 2.1: off-diagonal dyadic frequencies. If max{|k — k1|, |k —k2|} > «, then by (8-22) we have
| Pg PEMP (P, A, Pr, B) |y < 270t Ema™ond|| Py A 51| Py, Bl s
s 27303 Cna—kon) || Py 4|51 Py Bl 1.

K,2

Hence the contribution in the case max{|k — k1|, |k —k2|} > k can always be put in P~+M sl
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Step 2.2: balanced dyadic frequencies, short time interval. Next, we consider the case when |k —k;| < «,
|k —ks| <« and |I| <27%+C¥ Then by Holder and (8-56), we simply estimate

1
| Py PEMP(Piy A, Py B)lli 200y S 2| Pe PEMP (P, A, Py B) 21211
< [T327 0 | O(3% Py, A, g Pr, B) 1212
< CK ) -3
< 2CKIDI7 3V Ay, sl D173 VB ll o Lapsy.

Therefore, when |I| < 27¥+Ck the contribution in the case max{|k — k1|, |k —k2|} < k can be put in
P2

large*
Step 2.3: balanced dyadic frequencies, long time interval. Finally, we consider the case when |k —k;| <k,
|k —ks| < & and |I| > 27%+C¥ We define P2 by the relation

large

> P P M?(Py, A, Py, B)
max{|k—ki|,|k—k>|}<k
= Z Pk Q<kmin_KPLM2(Pkl Q<kmin_KA’ Pk2 Q<kmin_KB) + Pleﬂ}de(A’ B)

max{|k—k1|,|k—ko|}<k

By (8-25), the first term on the right-hand side gains a factor of 27¢61%_ and therefore can be put in
PLMS2 Now it only remains to establish (4-49) for PLM 2 defined as above.

small* large

By definition, P2 (A, B) is the sum over {(k, k1, k2) : max{|k — k1|, |k —k2|} <k} of

large
PePEMP (P, A, Pry B) = PiQ <ty P MP (Piy Q <ty ic Ay Py @ <kiyic B)-
Since we are allowed to lose an exponential factor in k in (4-49), it suffices to freeze k, k1, k» and estimate
the preceding expression. At this point, we divide into three subcases:

Step 2.3a: output has high modulation. When the output has modulation > 2kmin= e use the X ? =172,
component of the N-norm. Since the kernel of P Qs . _, decays rapidly in # on the scale ~ 2kpCx

2

we have

1
| P Qs tpiymic PEMP(Pry A Pty B) 0172y < 2927 2K 3} PEME(Pry A, Pry Al 212

for some generalized cutoff function X]; adapted to the scale 27k, Then, by Proposition 4.10,

_1 _3 _3
26k 272k ||k PEMP (P, A, Pry Al 2p2 2%\ 51DV Py Al pap sl x5 1D T3V Py Bl oy
_3 _3
S 269DV P, Al paan I D173V Piy Bllpa g
which is acceptable.

Step 2.3b: A has high modulation. Next, we consider the case when the output has modulation < 2Kmin—k
yet A has modulation > 2kmin—k The kernel of Py O <k,;,—« again decays rapidly in ¢ on the scale
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~ 27%2Ck For any 2 < ¢ < 00, we have

1P @ <teiy—rc P M (Q 2k Py A P B 12117
<21 2; PHMP(Qsky—e Pry A Py Bl 12
Ck -1 kinpR2—i
S27IDI e 0Pk Allpa 2 X7 1DI7 4V Py B Lareo
_1 _1
S29) DT 0Pk, All par L2y 11 P17 74V Pry Bl La oo
where we used Proposition 4.10 on the last line. Taking g = 2, we see that the last line is bounded by
< 2Ck IO Py, All 2 g -1/2(71 P> Bll ps 17 which is acceptable.

Step 2.3c: B has high modulation. Finally, the only remaining case is when the output and A have
modulation < 2Kmn=¥ but B has modulation > 2Kmin=¥, Proceeding as in Step 2.3b, and using the fact
that the kernel of Py, O - —koCx

decays rapidly in ¢ on the scale ~ 2 , we have

min—K
1Pk © <ty —sc P MP(Q <hiyic Phey As Qs Phea B I L1 L2111

S 2% xf PEMP(Qckey—c Py A, Qsey— Pry B) 11 12

< 2K ¥ D173V Qi Py All 210 1D 720 Py, Bll 22
< 2K|||D|72V Pe, All 2 oo 10 Pay Bll 2 12y

min —K

which is acceptable.

Step 3: proofs of (4-50) and (4-51). Since the L2 H ~!/2-norm bounds follow from (4-21), (4-44) and
(4-45), it remains to only consider the N-norm. The case of P M? can be read off from [Oh and Tataru
2018, Proof of Proposition 4.1]. Finally, for P M?2, we split into the small and large parts as in Step 2.
For the small part, we already have

I PEME2 (A, B Noin < 2_681K||A||S2 M-

small
For the large part, we proceed as in Step 2, except we choose g = % in Step 2.3b. Then by (4-20), (4-21)
and the embedding
sl [1] € LALA TN L7412,
it follows that
1P Mo (A, B) [N, 117 S 2% | All g1y M-

large
Therefore, choosing 27% = &¢ with ¢ > 0 sufficiently small, (4-51) follows. O

Remark 8.19. As a corollary of the preceding proof in the case of PM? we obtain the following
statement: let O be a disposable operator on R4 and let A, B be g-valued functions (or 1-forms) on /.
Then we have

| Px(O(0; Py, A,0; Py B) — O(0; P, A, 0; P, B))lInpr]
< 2CKmn—knin) 2K P Al syl Pes Bl psigry. (8-57)
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Moreover, if (B, I) is (¢, M )-energy-dispersed, then

| P (O (3; Pr, A, 8; Py B)— 09 Picy A, 0; iy B)) | vy S 2€Cmn ™ mm 2k €01 P A g1y M. (8-58)
Proof of Proposition 4.20. We decompose Remfl’zB into

RemA ’p = RemP AB+Rem B+RemA B

P i A
where

Rem’lngB= Z 2Pi[P Py, A, 3 Py, B, (8-59)
k1 k>
k1>ko—«

B= Y 2P[Py, P{A 0" P, B, (8-60)
k.ky.k>
klzkz—lc

Remy’B =~ > 2P[Py, Ao. Pr,:Bl. (8-61)

k.ky,k2
klzkz—lc

RemPLA

By Littlewood—Paley trichotomy, note that the summands on the right-hand sides of (8-59)—(8-61) vanish
unless k — k1 <k +C.

Unless otherwise stated, we extend B by homogeneous waves outside /. For (8-59), we extend A by
homogeneous waves outside I and for (8-60)—(8-61), we extend PeJ-A and Ag by zero outside /. (Of
course P~ of the extended A does not coincide with such an extension of P4 outside 7, but this will
not be an issue.)

Step 1: proofs of (4-77) and (4- 78) The N -norm bound in (4-77) follows from Lemma 8.7 and (8-21) for
Rem';,2 4B, and (8-23) for Rem’; pL AB Rem{'f1 2 B. On the other hand, for the X '-norm bound in (4- 77)
we apply (8-15), (8-16), (8-32) to Rem'j,zAB and (8-18), (8-19) and (8-40) to RemPLAB RemA ’B.
Finally, (4-78) follows from (8-15) and (8-18).

Step 2: proofs of (4-79), (4-80) and (4-81). The term Remfl’ozB can be put in Remfl’jargeB, since for each
triple (k, k1, k2) within the range k1 > ko — k, by (8-23) we have

| Pr[Pr, Ao, Pry 0t Blll L1 1211 = 1 PO (X1 Prey Ao, X1 Pyt B) || 112
< 2k27R )| PLO(x1 | D) Pr, Ao, 111D Pryde B) |12

5 2K2—81(kmax_kmin) ||Pk1 A0||L2H3/2[1] ”szB”DSl[I]

Similarly, the term Rem";” , B can be put in Rem’;’ " 1 are . B. Moreover, the contributions of these two terms

PJ-A
to (4-81) are clearly acceptable, since they need not gain any small factor.
It remains to handle the term Rem 4B. We proceed differently according to the length of 7. If

|I| <27%+Ck we define

Rel’nA smallB = Z 2Pk[P€Pk1A’a€szB]7

k.ki,kr:k1>ko—xk
max{|k1—kz|,lk1—k[}=Cok



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 319

and if | 1| > 27%k+Ck we define

Rem®? B — Z 2Py[Py P, A, 8" Py, B]

A,small
k,k1,k>:ky=ko—k,
max{|k|—k2|,|k1—k[}>Cok

+ > 2Py O <kin—Co Pt Piey @ <kn—Corc A 0 iy @ < —Cor B]-

k:kl 7k2
max{|k1—k2|,|k1—k|}<Cox

. K,2 K,2
In both cases, we put the remainder Rem P. 4B —Rem 4 small

Choosing C¢ > 0 large enough (depending on 41), it follows from Lemma 8.7, (8-21) and (8-24) that

Remfl’imanB obeys the desired bound (4-79); this bound is also acceptable for (4-81). On the other hand,
2

the contribution of Rem';,’f 4B — Remfl’ sma B 10 (4-80) and (4-81) can be handled by proceeding as in
Steps 2.2-2.3 and 3 in proof of Proposition 4.15; for the details, we refer to [Oh and Tataru 2018, Proof

. K,2
B in RemA’laIgeB.

of Proposition 4.6]. O
8C3. Estimates for Diff ;‘, 1 4B and high-modulation estimates for Diff p4B. Next, we prove Proposi-
tions 4.21 and 4.22, which mainly concern the X ~1/2+01.:=61 0 0 X 1-norms of Diff,, , B and Diff} , B.

Proof of Proposition 4.21. We extend B by homogeneous waves outside 7, and P+ A by zero outside .
Note that

IDPEAly SIPHAllyy. 1Bllst S 1Bllsip- (8-62)
To prove (4-82), we need to estimate the X~V/2tbi—bi OX '-norm of )(IDiff;‘,lAB. We may write
XIDIffS B = 2[Poj_ P A, x10 PeAl =Y 2XO(P_ P A, 31 P A).
k k
Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-62), we obtain (4-82). On the other hand, (4-83)
simply follows from Holder’s inequality L1 L>® x L®L? — L1L2, g

Proof of Proposition 4.22. We extend A, B by homogeneous waves outside /, and Ag by zero outside /.
In addition to [ Al g1 < [[A]l 177, observe that we have

IDAolly <l ollyriry. I1PAllzy S WPAlzy (1o 1PAllZy < IPAlzy (1) (8-63)
Moreover, by (4-10), we have
lxrVAlls < IVAls <l Allsiry, IxrVBls SIVBls S IBllsip- (8-64)

We first prove (4-84), for which we need to estimate the X ~1/2+b1:=b1 n O X !-norm of y;Diff %o B-
We may write

YIDftf, B == 3" 2[Poi—cAo. x19: Pk Bl = Y_ O(P<i— Ao, X1 Pid: B).
k k
Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-63)—(8-64), we obtain (4-84).
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For (4-85), (4-86) and (4-87), by Lemma 8.7, we may write
XrDiffy 4B =— 2[P_PA y;0"PyBl = N(D|™'Poj_ PA, x1 P B).
k k
By (8-36), (8-37) and (8-39), combined with (8-15), (8-16) and the extension relations (8-63)—(8-64), we

obtain the desired estimates. O

8C4. Estimates for Diffp , B. Here we prove Propositions 4.23, 4.26, 4.27, 4.28 and 4.30. Note that, by
the estimates proved so far in this subsection, we may now use Proposition 5.4 (see also Remark 5.5).

Before we embark on the proofs, we first establish some bilinear Z!-norm bounds that will be used
multiple times below.

Lemma 8.20. We have

| P PM?(x1 Pi, A, P, B)lmz1 < 278 =R2l P Al gipy |l Pry Bllsi - (8-65)
| P MG (X1 Prey A Pry B) |1 oo S 270 17R2 P A 1| Py Bl s 1 (8-66)
| Pi[Pe, PeA. x10° Pr, Bllligzy < 2751 Cno=knid Py || 5111911 P, Bllsipy- (8-67)
| P[Pk, G. x1V P, Blloz1 < 2751 mkein) | P Gy 1yl Pey Bl s 11)- (8-68)

Moreover, for k < ki — 10, we have
1(1 = Hye) Pi PMP (11 Pi, A, Picy B) oz S 270 Em=koind P A g1 71| Py Bllsiry (8-69)
1(1 = H) Pe M3 (x1 Piey A, Piy B) | a1r2pisnzn S 2701 k=Ko | Al 1111 Py Bllgi (- (8-70)

These bounds follow from Lemma 8.7, (8-17), (8-34), (8-35), (8-38) and (8-41), where we use (8-63)
and (8-64) to absorb y; and return to interval-localized norms. We omit the straightforward details.

Proof of Proposition 4.23. As in the proof of Proposition 4.22, we extend A, B by homogeneous waves
outside /, and Ag by zero outside /. Furthermore, we extend P+A by zero outside /, and denote the
extension by G (we emphasize that, in general, G does not coincide with P-4 outside 7). In addition to
(8-63) and (8-64), by Proposition 5.4 (see also Remark 5.5) we have

[Allst Sm 1. [IDAollpy Sm 1. IIDGllpy Sm 1. (8-71)

In the case of the L2 H ~1/2-norm on the left-hand side, (4-89) now follows easily from (8-15) and (8-18).
It remains to estimate the N -norm of Diff I’ﬁk paB.
By our extension procedure, note that P, A and Py, Px A obey the equations

APy Ao = Piy ([x1 A%, 9: Ag) +20(A, x19:4) + x1 AAJ(A)),
0Py PxA = Py P(PM>(x1 A, A) +2[Ao, x18: A1 —2[Gy, x13“A] = 2[P A, x13°A))
+ Py P(x1 R(A) — yyRem’(A)A).
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For the cubic and higher-order nonlinearities, by Theorem 3.5 and Proposition 4.19, we have

X1 Pro AAZ(A)llp1z2 Sm L, (8-72)
lxr Py R(A)||p1p2 <m 1, (8-73)
I 21 PrgRem? (A)All 172 <ar L. (8-74)

For the quadratic nonlinearities, we use (8-17) for [XIAe, 0;A¢] and Q(A, y79:A), Lemma 8.7 and
(8-33) for PM2[x1 A, A), Lemma 8.7 and (8-38) for —[Py A, x79* A, and (8-41) for [Ag, x719;A] and
[Gy, x13%A]. Combining these with the cubic and higher-order estimates and the embedding L' L2 C
ozin A_I/ZDI/ZZl, we arrive at

||PkOAO||L1Loo_,_Lsz/znA—l/le/zZl <M1, (8-75)
1Pro PxAllzr <m 1. (8-76)

By Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Holder’s inequality L1L®xL®L%2 - L1L2 it follows
that
||PkDifff>k0AOszB||N S W ProAoll 1 pootr2m3/20A-1/2001/221 | DBlls,

| PiDiffp, p aProBIN < || ProPxAllisinz I DBlls-

Thanks to the frequency gap k > 5, note furthermore that the left-hand sides vanish unless k =k, + O(1).
This completes the proof of Proposition 4.23. O

Proof of Proposition 4.26. Estimate (4-94) follows easily using Holder and Bernstein. To prove (4-95),
we extend PA, B by homogeneous waves outside /, so that || P, OPA| 172 < || Px, OPA| 127 and
[ Pr, Bllst < || Pk, Bllsi[r)- Moreover, by the embedding L'L? c NNOZ!, we have

| Pr, PAllsinzt < [ Pr, VPA(t0)l 2 + | P, BPA| L1217
Then (4-95) follows by Lemma 8.7, (8-26) and (8-28). O

Proof of Proposition 4.27. Here, in addition to the bilinear null forms (Lemma 8.7), we need to use the
secondary null structure (Lemma 8.10).

Without loss of generality, we set 7p = 0. We extend B, B M and B by homogeneous waves
outside /, and then define Ag and PA by solving (4-96) and (4-97), respectively.” In Ag and PA, we
separate out the (high x high — low) interaction terms by defining

— 2
At = 3" ATUPP BV P B,

k.k1,k>
k<ki—10

PAM = N O P[Py, BV 8 P, B,

k.k1,k>
k<ki—10

9We may put in y7 on the right-hand sides of (4-96) and (4-97), but it is not necessary.
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where [J~! f refers to the solution to the inhomogeneous wave equation Cu = f with (u, 3,u)(0) = 0.
We also introduce
HARR = 3" AT P[P, BVY, P, B

k.ky,k>
k<ki—10

k.k1,k>
k<ki—10

Accordingly, we split

Difff B =Y (2[P<j—i(Ao—HAG"). 00 Pt Bl + 2[Pog—(PLA—HP AM) 3° P BY)  (8-77)
k

+ ) ([P HAR" 3° P B] + 2[ P HP A 3" Py BY). (8-78)
k

By Propositions 4.12, 4.15 and Lemma 8.20, we have
I 4olly1 + 1140 — A" L1 2g + 146" ly1 + 14" —HAG | a-1 /2017221 S IBD 5111 Bl
|PAls) +[PAM —HPAM| 51 < BV)gilBP s,

Combining these bounds with Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Holder’s inequality L1 x
L® L2 — L'L2 it follows that

Z[P<k—K(A0 - HAgh)’ 8OPkB]'
k

> [Pek—i(PeA—HPA™), 0" P B]
k

c

<IBW 1B 51 1Bl sy
Ny

<IBW s 1B 51 1Bl sy
Ny

which handles the contribution of (8-77). On the other hand, unraveling the definitions, we may rewrite
(8-78) as

8-78) = (Q<jmcO'(AT PLQ;O(Pr, Q<j—c BV 00 Py, 0<j—c B®).9°0 ;¢ Pr, B)
+Q<jcO (@ PQj PLOPr, O<jc BV 0, P, 0<j ¢ BP).0° 0 ¢ Py, B))

for some disposable operators O and ', where the summation is taken over the range {(k, k1, k2, k3) :
k <ky—10, k <ks —« + 5}. By (8-43), it follows that

1878122 < 1BV 511 B 151 11Bll s

which is acceptable. Finally, for the L2H~2_porm of Diffp 4 B, note that (8-15) and the preceding
bounds imply

|| Py (Diff;AB)“LzH—l/z < Chk—ic Ak —Ck s

which is better than what we need. O
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Proof of Proposition 4.28. As in the preceding proof, we extend B, B and B?® by homogeneous
waves outside /. This time, however, we also extend PA by homogeneous waves outside /. We moreover
extend By and P B by zero outside /, where the latter is denoted by G (. Note that PA solves the
equation

OPA=P([PBY, 19 B@] +[BS", 118°B@] + GV, 119 B?)).
By Lemma 8.20 and the frequency envelope bounds (4-100)—(4-101), it follows that
1
1PAlZ1 < (BDllgary + 1BgY . GOy I BD g1y < 1. (8-79)

On the other hand, recall that || PA|| 1 = 1by (4-101). Therefore, by Lemma 8.7, (8-26) and (8-28), we
have

||Diff}‘,xAB||Nf <1
On the other hand, by (8-15), we also have
| Px(Diffp 4B 125-1/2 < Gk—cek;
which is better than what we need. The desired estimate (4-102) follows. O

Proof of Proposition 4.30. We move the problem to the entire real line using the free-wave extension for
PA, and B, and the zero extension for Ag.

The expression |D|~![V, Diff} ,]B is a translation-invariant bilinear expression in PA and B, whose
Littlewood—Paley pieces can be expressed in the form

|D|"'[V. Difff, , p gl Pk B =28 ¥ O(P PAq. 0° Pt B), k' <k —x, (8-80)
with O disposable. By (8-9) the spatial part is a null form, so we can rewrite the above expression as
27 KN (P PAx, Py B) + 25 % O(Py Ao, PL3; B).

We consider separately the spatial part and the temporal part. For the spatial part we use the bound (8-21)
to estimate

127K N (Pr PAy, P B) || n < 27511 Pl PA|s1 || B]|s1,

which suffices after summation in &/ < k —«.
For the temporal part we use instead the bound (8-23), which yields

12 O(Prr Ao, Pe B g2 <275 K PLD Aol 2 131,21 Bl st

which again suffices.
The expression Diff 1’§k, paB — (Diff I’ﬁk, p4)” B is easily seen to have the same form as in (8-80), so the
same estimate follows. O
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8CS5. Estimates involving W. Here we prove Propositions 4.16, 4.17 and 4.29, which involve w% and wfc.
Proof of Proposition 4.16. By definition (3-29), we have
Prwd(Py, A, Py, B,s) = —2P W (Py,0: A, P,AB,s).
Applying Lemma 8.2 to the expression on the right-hand side, we have
PuW (Py,3: A, P, AB,s) = —(s22K) 710y~ 10~ 2knay =1~ 2kun2k2 p O (Py 0, A, Pr, B)  (8-81)

for some disposable operator @ on R* The rest of the proof follows that of Proposition 4.12. First, by
(8-51), it follows that
I1DI™" Pewg(Py, A, Picy B.5)| .2

S (5226) 710 (5712 T2 Cnn o)oK Py, 01 All 2 | Py B g1

From this dyadic bound, the frequency envelope bound (4-52) follows. Indeed, for any 0 < §’ < 4§ and
any §’-admissible frequency envelopes ¢, d, we compute

<522k)_10(s_12_2kmax>_1Z_S(kmax_kmin)ckl dkz S (S22k)_10<S_12_2kmax)_12_%8(kmax_kmin)ckdk

< (s22K) 10 (s~ 2k) =40 0y (8-82)

which proves (4-52). The estimate (4-53) follows in a similar manner from (8-51).
Next, extending d; A and B by zero outside 7, then applying (8-15) and (8-17), it follows that

|||D|_1Pkw(2)(Pk1A, szB» S)||L2[-'1—1/2[1]

S <S22k>—10(S—12—2kmax)_12—81 (kmax_kmin)zz(kl_kmax) ”Pk] A”Strl [I] ||Pk2B ”Strl [1]’
1 D172 Pewd(Py, A, Py B.5) |11 poop

< (527K) 710 (g7 7 2may 12K —kned || P A|| g1l P, Bl g1

Using (4-21) and (8-54), these two bounds imply (4-54) and (4-55), as in the proof of Proposition 4.12,
Step 2. O

Proof of Proposition 4.17. We begin with algebraic observations. By (3-30), we have
P Pjw?(Py A, PiyB,s) = — 2P, P;W (Py, 8, A%, 85 Pr,d; By, )
+ 4P P;W (P, P, A, 3y Pry 0, B, s)
+ 4P P;W (P, P13, AY 8y Py, 0, B, 5), (8-83)
where, by Lemma 8.2, we may write

P P;W (Py, 3 A%, 35 Pr,d; By, s)
= (s22k) 7105127 2kmay =19 2kwas py P O (Py, 3, A, 35 Py, 9 By), (8-84)
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Py P;W (P, 3, PA", 3, P, 0, B,s)
= —2(522k) 710 (512~ 2knay =10~ 2knax py O (P Py, 3, A, 3° Py, 0, B), (8-85)
P P;W (P, 3, PLAY 8, P, 0, B,s)
= —2(s22k) 710 (s 1~ 2kmay ~1 =2k py O (P, 3, P} A, 9 Py, 3, B) (8-86)
for some disposable operator @ on R* Note that (8-84) and (8-85) are null forms according to Lemma 8.7,
and (8-86) is favorable since 9, P~ A is controlled in the L2 H/2-norm.
Given the above formulas for wy, the proof of the estimates (4-56) and (4-57) is almost identical to
the proof of (4-52) and (4-53), using the dyadic bounds (8-51), (8-51) and (8-82).
We now prove (4-58). We extend A, B by homogeneous waves outside /. By (8-15), (8-16), Lemma 8.7,
(8-21) and (8-32), it follows that
|| PkPj W(Pkl 8,A, 8ka23tB, S)HNHDXI
< (S22k)_10<S_12_2kmax>_12_81(kmax_kmin)2k1+k2_2kmax||Pk1A||S1 1
| P P; W (P, 0¢ PA, 0x Pr,0¢ B, 5) | nnox
5 (S22k>_10<s_12_2kmax>_12_81(kmax_kmin)2k+k2_2kmax ||Pk1A||S1 ||Pk2B ”Sl s
| Py P;W (Py, 8 P A, 05 Py,9:B.s)| ynox:
s (S22k>—10(S—12—2kmax>_12—81 (kmax_kmin)22k2_2kmax ” Pkl at PJ—A ||L2H1/2 || szB ”Sl .

Clearly, 2k1tk2=2kma ok +k2=2kmax gpd 22k2~2kmax gre bounded, so they may be safely discarded. By the
same frequency envelope computation (8-82) as before, we obtain (4-58).

In the energy-dispersed case (4-59), we proceed as in the proofs of Propositions 4.15 and 4.20. The
contribution of (8-86) is already acceptable, since we need not gain any smallness factor. Moreover, for
the contribution of (8-84) and (8-85), the case of L2 H ~1/2 on the left-hand side can be easily handled
using (8-15) and (4-21); we omit the details.

It remains to consider only the N-norm of (8-84) and (8-85). For a parameter x > 0 to be chosen
below, the preceding proof of (4-58) implies that in the case kmax — kmin > k, we have

_ —1A— —1A~A—1 _1 e
I8-84) |3 + 18-85 | S (522%) 710 (s~ 2 Kmen) 2= 01k 0 =301 Uoman—Kiin) | Py A g1 | Py, Bl 51

On the other hand, when kpax — kmin < k, we may apply Lemma 8.7 (in particular, (8-13) and (8-14))
and Remark 8.19, which implies

|8-84) [y + 18-85)| i < (s27) 710 (s~ 2 o) T12CK 01| Py A g1 M.

Choosing 2¥ = &€ for a sufficiently small ¢ > 0, and performing a similar frequency envelope computation
as in (8-82), we arrive at (4-59). O

Proof of Proposition 4.29. We first note that both wo and w, depend on d; By, for which we control
|9;B1|s. and || P9, B1||y,. We may assume that

18:BD 5.1, 1PH0: By, i1, 1BP g1 1Bl < 1.
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We can now extend 9, By by zero outside /, and B® and B by free waves. Then the problem is reduced
to the similar problem on the real line. We begin with the simpler L2H~1/2 bound. For that we use
(4-53) and (4-58) to obtain

I Pewoll 2 g—1/> + | Prwx |l ynpxt < (522K) 710 (s 127 2kmay =02y gy (8-87)

and then conclude with (8-15) and (8-18).
It remains to prove the N bound. We define
I(k' kv, k2, k,s)
= (~[A7 ' Ppwd(Py, BV, Py, BP 5),8, P B] + [0 P Pyw?(Py, BY, P, B@,5), 8" P, B)),
so that

Diff% B = > Ik ki ko k)
k'’ k1 ,k>,k:k'<k—«k

on /. Introducing the shorthand
kmax = max{k’ k1, k2}, kmin = min{k’, k1, ko}
and
O{(k/, ki, ko, S) — (S22k’)—10(S—12—2km.dx>—12—cb’1(kmax—kmm),
we claim that
IZ(K' k1 k2 ke, s)llv < ok’ ka ko, s)ek, diye (8-88)

This would conclude the proof of the proposition after summation with respect to ky and k5.

We start with a simple observation, namely that we can easily dispense with the high modulations of
d; B1 and B, using Lemma 8.2, combined with Holder and Bernstein inequalities and also (8-26) and
(8-30). Thus from here on we assume that

Pr, 0, BY = P, 04,9 BD, Pryd B = Pr, 0,9, B®.
In view of (8-83) and the identity

w3(A, B,s) = —2W (3;A,9?B,s) —2W (3, A,0B, ),
we may expand
(k' k1, k2, k,s) = 2[ P A™'W (P, 9, BV, 0P, B?5), 8, Py B]

+ 4]0 Py PyW (P, P, BD™ 8, P, 3, B® . 5), 8° P B]
+ 4O P PW (P, PR3, BO™ 9, P, 0, BP 5), 8° Py B
+2[AT P W (P, 3. BN, 3, Py, 3, B®, 5), 8, P B]
2[00 P PW (Py, 8, BV 8, P, 3, B, 5), 9 Py B]

=T + 1) +Ip)+Lu +1s)- (8-89)
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The first term is easily estimated in L' L? using Lemma 8.2 and Holder and Bernstein inequalities by
IZyllpiz2 < 1P AT W (P, 8B O Py B )l 1 oo 19 Prc Bl oo 2
< (22710 2o 7102 Gk 1, Py BO L2110 Pay B 2 o e

which suffices.
To continue, we use (8-23), (8-33) and the embedding L2 cOZ1, and we have

| Pir PeW (P, PO, BM 0, Py, B® 9)llyanzt S ek’ k. ka. s)ck, di,.
| P PeW (P, P8, BN 0, P, 3, B® ., 5) | yaozt Sk’ ki, ka, s)ck, di,.
This yields
IO Py PeW (P, P9 BV, 0y Pi,d, B® 5) | snz1 S a(k' k1, ko, 5)ck, i,
IO~ P PeW (Pye, P13, BN 05 P, 0 B@ . 5) | snz1 S a(k k1. ko, s)ek, d,.

We use this directly for the next two terms Z(,) and Z3), arguing in a bilinear fashion. The desired N
bound for both is obtained using both (8-26) and (8-30) with k = 0.
The final two terms are combined together in a trilinear null form,

Ty +Z5)= Diff;AB,

where _
Ao = A1 P W (P, 3, BN, 3, P, 3, B®,5),

Ay =07 P PoW (P, 8, BD™ 8, P, 3, B, 5).

At this point we have placed ourselves in the same setting as in the proof of Proposition 4.27. Then the
same argument applies, with the only difference that, due to Lemma 8.2, we obtain an additional factor of

<S22k/>—10 (s—12—2kmax>—12—2kmax 2k1 +k»>
as needed. Here the factors 2K1 and 2%2 come from one time derivative on B(!) and B®, respectively, at
low modulation. Thus the N bound for Z(4) + Z5) follows. O
8C6. Estimates for Rem>(A)B and Remg (A)B. Finally, we sketch the proof of Proposition 4.19.

Proof of Proposition 4.19. By Holder and Bernstein inequalities, it suffices to show that the following
nonlinear maps are Lipschitz and envelope-preserving:

Str! 54— (DA, DA) e L2 H2H n L2t A2,
Str! 5 A— Age L2H>.
The same applies for the maps
Str! 54— DAgye L H2T N L2V H2™,
Str! 54 — Ag;s € LZH%,

with the addition that now the output has to be also concentrated at frequency k(s).
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The A property is a consequence of (4-30) for the quadratic term, and (3-23) for the cubic part AS.
Similarly, the Ao,y property is a consequence of (4-53) for the quadratic term, and (3-36) for the cubic
part Ag; 5

The DA property follows from (a minor variation of) (4-36) for the quadratic part, and (3-18) for the
cubic part DA 3,

Finally, the DA property is a consequence of (a small variation of) (4-30) for the quadratic part and
of (3-24) for the cubic part. Similarly, for DA} we need (a small variation of) (4-53) and of (3-37). O

8D. Proof of the global-in-time dyadic estimates. In this subsection, we prove the global-in-time dyadic
estimates stated in Section 8B.

8D1. Preliminaries on orthogonality. Let O be a translation-invariant bilinear operator on R!*4. Consider
the expression

// u@ow® u@)drdx. (8-90)

Our general strategy for proving the dyadic estimates stated in Section 8B will be as follows: decompose
u® by frequency projection into various sets, estimate each such piece, and exploit vanishing (or
orthogonality) properties of (8-90), which depend on the relative configuration of the frequency supports
of u@’s, to sum up. Some simple examples of orthogonality properties of (8-90) that we will use are as
follows:

Littlewood—Paley trichotomy: If u® = Py, uD, then (8-90) vanishes unless the largest two numbers of

ko, k1, k» are part by at most (say) 5. This property has already been used freely.

Cube decomposition: If u @ = Py, Pei uD with ¢’ = Ck,;, (0) (i.e., is a cube of dimension 2kmin 3¢ . . .5 2Kmin )
situated in {|€| ~ 2%i}, then (8-90) vanishes unless C° +C! 42 5 0.

To obtain more useful statements, let C™2, ¢™ed and C™M" denote the reindexing of the cubes co ¢!
and C2, which are situated at the annuli {|§| o~ 2%mn}, {|&| ~ 2Kmea} and {|£| ~ 2kmin}, respectively. Then
for every fixed C™™ and C™® (resp. C™9), there are only O(1)-many cubes C™ (resp. C™*) satisfying
¢min 4 cmed 4 omax 5 () Moreover, we have

|£(C™, _Cmed)| < 2 Kmax—Kmin

Geometrically, such cubes C™* and C™¢ are “nearly antipodal”.

We will also exploit the relationship between modulation localization and angular restriction for (8-90).
In the proofs below, we will only need the following simple statement. For a more complete discussion,
see, e.g., [Tao 2001].

Lemma 8.21 (geometry of the cone). Consider integers ko,k1,k2, jo, j1, j2 €Z such that |kmed—kmax| <5.
Fori =0,1,2, let w; € S3 be an angular cap of radius r; < 27>, +; € {+, =}, and u?) € S(R'**) have
frequency support in the region {|€| ~ 2%i | £/|&| € w;, |t — £;|€|| =~ 271}. Suppose that jmax < kmin, and
define £ = % min{ jmax — Kkmin, O}.
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Then the expression (8-90) vanishes unless
|L(:|:,~a)i N ii’wi’)| < 2k‘“‘“_mi“{k"’k"/}2e + max{rl- s }"l'/}

for every pairi,i’ €{0,1,2} (i #1i’).

Finally, we collect some often-used estimates. For k’ < k and £’ < —5, note that

2ok p 2K =3ky=3t | p <|P
e, (eUkllL2ps + I Pe,,centillrzree < I Per ikl seic, @l

where, by (4-1), we have

2 2 2
Do Pkl o S Nuelly, = luxl3-
Ce{Cr (£}

Also note that, for any j <k + 2£, we have

2 2 2
NP O<jurll?cop2 < lurlF, = luel
w

by disposing of Q <; (using boundedness on L*®L?) and using S an O Sk.

8D2. Bilinear estimates that do not involve any null forms. We first prove Proposition 8.11, which does
not involve any null forms.

Proof of Proposition 8.11. In this proof, we adopt the convention of writing L? L4 for L? L9 with
~—1 1

G~ ' =g~ —§8y. In particular, if (p,q) is a sharp Strichartz exponent with §o < p~! < % — 8o, then
2(1/1’+4/q—2_480)k5tr2 c LPLIt,

To prove (8-15), we apply Holder and Bernstein (on the lowest-frequency factor), where we put
ug, in L24LG4 M+ and vy, in L8 L2713+, The proof of (8-16) is similar, except we put vy, in
L91(54/23)+ The proofs of (8-18) and (8-19) are similar; for (8-18), we apply Holder and Bernstein
with uy, in L?L> and Vg, in L>® L2, and for (8-19) we put Vg, In L181.27/13 jpgtead.

It only remains to establish (8-17) and (8-20). First, (8-20) follows simply by applying Holder and
Bernstein (on the lowest-frequency factor), where we put ug,, Vg, in L?L°. To prove (8-17), we divide
into two cases. When k > k1 — 10, the desired bound follows by Holder, where we put both uy, and vg,
in L2L®. On the other hand, when k < k1 — 10, we have k = ky;, and k; = ko + O(1) by Littlewood—
Paley trichotomy. We decompose the inputs and the output by frequency projections to cubes of the form
Ck (0), ie.,

PrO(ug,,vy,) = Z Py PcO(Perug,, Pe2vy,),
c,clc?
where C,C!, C? € {Cx(0)}. The summand on the right-hand side vanishes except when —C 4+ C! +C? 3 0.
For a pair C and C! (resp. C?), there are only O(1)-many C? (resp. C!) such that the preceding condition
holds. Moreover, there are only O(1)-many C in the annulus {|§| ~ 2%}. Therefore, by Holder and
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Cauchy—Schwarz (in ¢! and C?), we have

, .

—2k —2k 2 2

2| PeOGuk, V)1 1w S 2 (ZuPcluklanLoo) (Z||Pczv;2||Lsz)
cl c2

—_
D=

< | Dug, s lvj, s,

which completes the proof. O

8D3. Bilinear null form estimates for the N-norm. We now prove Proposition 8.12. We start with
a lemma quantifying the gain from the null form O(9%*(-), d¢(-)), which is a quick consequence of
Lemmas 8.7 and 8.21.

Lemma 8.22. Let k. ky,ka, j, j1, j2 satisfy kmax —Kmed < 5, J. j1. j2 < kmin + Co, j1 = j + O(1) and
jo = j + O(1). Define £ = min{(j — kmin)/2,0}, and let C,C',C? be rectangular boxes of the form
Ck,;.. (€). Then we have

Py Q<j PCO(B"‘ Q<j1 Po Uk s O Q<j2 Pczvkz) = sze Pcé(VPcl Uk, VPe2 Ukz) (8-91)
for some universal constant C and a disposable operator 0.

Proof. By disposability of Py Q<; Pc, Px, Q<j, Per and Py, O <, Pe2, we may harmlessly assume that
(say) j, j1, j2 < kmin — 5. Then we can take the decomposition

PrQ<jPcO@ Q)i Porug, 00 Q< Perviy)= Y PrOT PeO@* 0L} Porug,.0a 02 Pavy,).
+,4+q,+2

By Lemma 8.21, the summand on the right-hand side vanishes (and thus (8-91) holds trivially) unless

|£(£1C", £,C2)| < 2% In such a case, (8-91) follows from the decompositions (8-11) in Lemma 8.7 and

the schematic identities

+ + ki1+k2~2L A
NO,iliz(Q<Jl‘1 Pclukl, Q<;2P(32Uk2) =C2 1+ 22 O(Pcluk1 s Pczvkz),

'R()(Q:l:1 Pclukl , Q;tjzz Pczl)k2) = C2j2_mi“{k1’k2}6(VPclukl s VPczka),

<J1
which in turn follow from Definition 8.3 (see also Remark 8.4) and (8-12), respectively. U

Proof of Proposition 8.12. Estimates (8-21) and (8-24) were proved in [Oh and Tataru 2018, Proposi-
tion 7.1]. Estimate (8-23) is a simple consequence of Holder and Bernstein for u}(l , Uk, or the output,
depending on which has the lowest frequency. In the remainder of the proof, we prove (8-22) and (8-25)
simultaneously.

Step 1: high-modulation inputs/output. The goal of this step is to prove
| PeO0%ug, s 0aVk,) — P O <y O(0% Q <k Uiy 00 © <k Vi) IV

Kmin +Kmax

20 7 | Vug lslVuglls.  (8-92)

Note that this step is vacuous for (8-25). Here we do not need the null form, and simply view
O(0%ug,, 0%vg,) as 5(Vukl , Vug,) for some disposable 0.
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We begin by reducing (8-92) into an atomic form. For j, ji, jo > kmin, We claim that

l/ ijké(Q<j1u;<1, Q<j2U;€2) dt dx

_1; Al
< 2727 gkminp 2k ||wk||X2C',1/2“u;<1 ||S||v]/<2||L°°L2-

Once we prove (8-93), by duality (recall that N* = L*®L2N X, 251/ 2) we would have

Lkmin lk
D 1P Q00 Uk, . daviy) v S 22502250 |V 15| Vo, oo 1.2

jzkmin
lkmin lk
Y 1P 0k, 0% Qg davi) v < 2252252 [V, [l y0.1/2 [V, s,
jzkmin
lkmin lk
Y 1Pk Q <k OO Q< iy 3 Qv I S 225002251 [V ||| Vv, o172,

j kain

from which (8-92) would follow.

331

(8-93)

To prove (8-93), we decompose u’, v’, w by frequency projection to cubes of the form C_. (0), i.e.,

/ijké(Q<j1u;ﬂ’Q<jzv]/<2)dldx= Z /Qchowké(Q<j1Pclu;q,Q<jzpclv;<2)dth,

co,cl,c2

where C, C!,C? € {Ck_. (0)}.

Let C™Max ¢med gpnd ¢™in denote the reindexing of the boxes C 0 1, 2 which are situated at the frequency
annuli {|§| ~ 2kmax}, {|| ~ 2Kkmea} and {|&| ~ 2kmin}, respectively. The summand on the right-hand side
vanishes unless C™ + ¢™ed 4 ¢min 5 (. For a fixed pair C™" and C™® (resp. ™), this happens only
for O(1)-many C™¢ (resp. C™). Moreover, note that each C’ lies within an angular sector of size
O(2kmi"_ki); hence, Q<j; P,i is disposable (i = 1,2). Thus, by Holder, Cauchy—Schwarz (in C™**
and C™9) and the fact that there are only O(1)-many cubes C™" situated in {|&| ~ 2¥min} (so any £”-sums

over C™" are equivalent), we have

Z /Q]'Pcowké(Q<j1 Pclu;ﬂ, Q<j2Pczv;€2)dt dx

Coscl’cz
! ! :
2 2 2
< (ZanPcowk(t,-)an) (Z||Pclu;1(r,->||Loo) (ZnPczv;z(t,-)an)
co L% cl L% c2 L
1
2
2
slome) (SR s o) o s
L2L

Cl
Ll 1
<2 2]2kmm22k1||U)k||XC(>)él/2||M;cl||S||U;€2||L00L2,
as desired.

Step 2: proofs of (8-22) and (8-25). For j < kpin and £ = (j — kmin)/2, we claim that

L1 . 5 17z 1
1P QOB Q< iy, dq Q< jvp,) |y S 2720 Kni) 2380 3kmin g 3K || 73y || 5|V, |15,

t

(8-94)
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_ 11 . 5 1z 1

1Py Q<;O@%Qju, . da Q< jvp,) |y S 272U Rmin) 3603 kming k2 | 7y ||| Vp, s, (8-95)
_lei g . 5 17z 1

1P Q<;00% Q< jug,, 00 Q,viy) ||y S 2720 kmn 23605 kmin g2k 17y 16|V, lls. (8-96)

Assuming that these estimates hold, we first conclude the proofs of (8-22) and (8-25). We start with
(8-22). By Step 1, it suffices to estimate PrQ—  O0%Q0 k. Uk, Q <k, Vk,)- Decomposing the
inputs and the output using Q g = > <k
modulation (corresponding to j in the above estimates), (8-22) follows by summing (8-94)—(8-96) over ;.

To prove (8-25), observe simply that the modulation restrictions of the inputs and the output restricts the

0, and dividing cases according to which has dominant

Jj-summation to j < kyi, — k in the preceding argument.
It remains to establish (8-94)—(8-96).

Step 2.1: proof of (8-94). Here we provide a detailed proof of (8-94); similar arguments involving
orthogonality and the null form gain will be used repeatedly in the remainder of this subsection.
We expand

+ +
PijO(8“Q<jukl,8aQ<jvk2): Z Z PkQ;FOP_CoO(E)“Q<j‘.Pcluk1,aaQ<12.Pszk2),
+o0,%1,%2 ¢9¢l,c2
where C°,C!,C? € {Ct,.. (£)}. By duality, in order to estimate the summand on the right-hand side, it
suffices to bound

/ P Q70 Peow O3 Q! Peru, . 00 022 Peavy,) dt dx. (8-97)

Let ™3 ¢™med apd ¢™in denote the reindexing of the boxes —C, C1, C2, which are situated at the frequency
annuli {|€] ~ 2kma} {|g] ~ 2kmea} and {|g| ~ 2kmin} respectively.

Note that (8-97) vanishes unless C° 4+ C! + €2 5 0. Combined with the geometry of the cone
(Lemma 8.21) we see that for a fixed C™* (resp. C™9), (8-97) vanishes except for O(1)-many C™" and
C™ed (resp. ™). By Holder, Cauchy—Schwarz (in C™ and ¢™°) and Lemma 8.22, we obtain

3 PERCEIESD P (ZHPijFOPCow(t,-)Iliz)2
+0 co

+o0,%1,%£2 €01, 2
1
2
2
(§ :uwclukl(z«)nm)
cl

Ly

1
2
(ancwkz(t,-)niz)
C2

X

L? L

1
+ 2
S 22 PO 0wl g2 (anclukl ||22Loo) IVor, oo 2
o cl
_1:.5 AL
< 27272342522 w0112 | Vatg, s | Vv, ll oo L2
By duality, (8-94) follows.

Steps 1.2—1.3: proofs of (8-95)—(8-96). We now sketch the proofs of (8-95) and (8-96), which are very
similar to Step 2.1. As before, we expand each modulation projection to the +-parts, and decompose the
output, u, v by frequency projection to —C°,C!,C? € {Cx, . (£)}, respectively.



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 333

We proceed as in Step 1.1 but put the test function w in L>°L? and the input with the dominant
modulation in L2 L2 Then we obtain

+ + +
Z Z // Py QS?PCOO(BO‘ Qj chlukl s aaQ<J2~PCZUk2)
+o,%1,%2 €0l c2? 1: 5 1
<273/ 23 Lokminy 5 k2 lwllgeor2 ||Vuk1 ||X<(>)<.)1/2 ||Vvk2 s,

> // PrQZ0 PeoO(3 Q2! Perug,, 0005 Peavy,)

+o0,%1,%2 0,1, 2

< 9=3J 95 rkniny 3k1 lwllgoor2 | Vug, sV, ”Xgél/z'
By duality, (8-95) and (8-96) follow. d
8D4. Bilinear estimates for the X, b.p -type norms. Next, we prove Propositions 8.13, 8.14, 8.15 and 8.16.

Proof of Proposition 8.13. Estimates (8-26) and (8-27) were proved in [Krieger et al. 2015, equations (132)
and (133)]; note that the slightly stronger S!-norm is used on the right-hand side in [Krieger et al. 2015,
equations (132) and (133)], but the proofs in fact lead to (8-26) and (8-27). Estimates (8-28) and (8-29)
follow from slight modifications of the proofs of [Krieger et al. 2015, equations (134) and (140)] (the
Z-norm in that paper is stronger than ours), as we outline below.

For (8-28), we first recall the definition of #*. For each j < k; — C, we introduce £ = %( j —ki1)and
take the decomposition

PrQ<j_cN(DIT Qjug,. O<jocvr) = Y PuQej—cN(DI' P Qjuy, . PLO<j—cvr,).
w,w’
By the geometry of the cone (Lemma 8.21), the summand vanishes unless | Z(w, +o’)| < 2¢ for some
sign . In this case, the null form A gains 2¥11%22¢ (see Definition 8.3), and hence we have

Pt Q<j—cN(IDI7'Qjuk,, O<j—cvr,)lp112

koAl !
< Z 2928 PP Qjug, L1 ool PP Q<j—c iyl poor2
w,w":ming | £(w,+w’)|<$2¢
1

1

1_ 1 2 / 2

<220 ZW(Z(ﬂz“bo)‘||P;’Qk+2eukl||L1Loo>2) (ZHP;’ Q<,~_cvk2||,%w)
0] w’

1_ 1 2
< 2272k}t (Z<z<2+2”°”||Pg”Qk+zeuk, ||L1Loo)2) 1DV, |-
w

In the second inequality, we used Cauchy—Schwarz (or Schur’s test) with the fact that the w, ' is
essentially diagonal (i.e., for a fixed w, there are only O(1) many ’’s such that the sum is nonvanishing,
and vice versa). Summing up in j < k; — C, then using the definition of the Z!-norm, (8-28) follows.
Next, (8-29) is proved by essentially the same argument (with the same numerology) as above. Here
we do not gain 2¢ from the null form A/, but rather from the extra factor A~'/2[0'/2 in the norm
A~V2O1/2 71, Finally, (8-30) and (8-31) follow from the preceding proofs, once we observe that the
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modulation localization of uy, restricts the j-summation to j < k1 —«, which then leads to the small
factor 2~(1/2—2bo)x, O

Proof of Proposition 8.14. In view of the embedding N N[Z! C I:IZ},O, (8-32) would follow once (8-33)
is proved. Estimates (8-34) and (8-35) follow from (134) and (141) in [Krieger et al. 2015], respectively.
Moreover, when k > k1 —C, (8-33) follows from (134) and (135) in [loc. cit.]. In using the estimates from
[loc. cit.], we remind the reader that the Z-norm in [loc. cit.] (which is equal to ) ; || Px O <xu/|| xl/a1/a )
is stronger the Z-norm in this work. Moreover, although (134), (135) and (141) in [loc. cit.] are stated
with the S'-norm on the right-hand side, an inspection of the proof reveals that only the S-norm is used.

It remains to establish (8-33) in the case k < k1 — C. By Littlewood—Paley trichotomy, note that the
left-hand side vanishes unless k = ki, and k1 = ko + O(1). By (8-34), we are only left to show that the
0OZ!-norm of

PeHRN iy viy) = Y PQiN(Q<j—cuky. Q<j—C k) (8-98)
j<k+C

is bounded by < 2¥|| Duy, ||s||D v, |ls-

Consider the summand of (8-98). We decompose the inputs and the output by frequency projections
to rectangular boxes of the form Cy (£), where £ = min{(j —k)/2,0}. Then we need to consider the
expression

PrQjPe N(Q<j—cPerug,, Q<j—c Pe2vi,).

where C,C!,C? € {Cx(£)}. This expression is nonvanishing only when —C + C! + C? 5 0. In fact,
combined with the geometry of the cone (Lemma 8.21), we see that for each fixed cl (resp. C?), it is
nonvanishing only for O(1)-many C and C2 (resp. C'). The null form gains the factor 251 +%22¢ By
Holder and Cauchy—Schwarz (in C I'and C?), we have

[P Qi N(Q<j—cug,, Q<j—cVk,)lloz

3l
=272%0727 | 3" PO PeN(Q<j—c Poruk,. Q<j—c Peavr,)
c,cl,c2 LiLee
1 1
_3ga—Li 2 2
ct c2
L
<2720 702 Dug, |5 || Dviy |-
Summing up in j < k + C, the desired estimate follows. O

Proof of Proposition 8.15. For all the estimates, the most difficult case is when k1 < k — 10 (low-high
interaction) and when uy, has the dominant modulation, i.e., the expression Pk’;’-[,tlj\/ (|D|"tu k1> Vks)-

Step 1: proof of (8-36), (8-37) and (8-38). We divide into three cases: (1) k; >k —10, (2) k; <k —10
but either the output or vg, has the dominant modulation, or (3) k1 < k — 10 and ug, has the dominant
modulation.



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 335

Step 1.1: k1 > k — 10. In this case, all three bounds can be proved simultaneously. The idea is to
apply Propositions 8.12 and 8.14. Indeed, by (8-33) and the fact that the left-hand side vanishes unless
k1 = kmax + O(1) (Littlewood—Paley trichotomy), we see that
| PN (D™ iy vz £ 257 V| Pl DI (g vkl
< 27 OOl Duy 15[ Dy 5.

Combined with (8-21), it follows that
IPeN (D ey, vicy) vzt < 27 €81 Fm=nin) | Dy s || Do, |5

By the chain of embeddings N " OZ 1 c DZ;}0 - DZ},O, the desired bounds follow.

Step 1.2: k1 < k — 10, contribution of 1 — ’HZI. By Littlewood-Paley trichotomy, Px N (|D| tug,, vk,)
vanishes unless k1 = ki, and k = kpax + O(1). In Steps 1.2a—1.2¢ below, we estimate the [1Z!-norm of
Pr(1— ’Hzl YN (D |_1u]Cl , Vk,). Then in Step 1.2d, we conclude the proof by interpolating with (8-26).

Step 1.2a: High modulation inputs/output. The goal of this step is to prove

| PN (1D ey viey) = P Q <y N(ID 7O <y -ty » O <ky Vin) oz
_ 1l
<27 %KD D, |5 Dy lls. (8-99)

Here there is no need for null structure, so we simply write j\/(|D|_1uk1 Vk,) = O(ug,, Dug,). We
begin by proving

_ _ _1
| Pk Ok, Oug,, Duiy)llozr < 2700® %0 D" 2ug || 2 oo | Dugy s (8-100)

For j > ky, we take the decomposition

PeQ; P Ok, Dvg,) = ) P Q) Py Oluugy, DP i vg,).
w/
Since (j —k)/2 > ki — k, for each fixed w there are only O(1)-many ' such that the summand on
the right-hand side is (possibly) nonvanishing, and vice versa. Therefore, by Holder, Bernstein and
Cauchy—Schwarz, we have

2 )(] )2 (§ ||1kQ_/1 j—ko(uklaEI j—/kl‘kz)“llloo)
SR J=K
@

2

1

. , 2
< 23400 U =R =3 ki) (=3 gy ||L2Loo)(2<2ék2 | P2 vk, ||L2L6>2)

w’ 2

< 2(=3+00) Gk =bok =KD || D =S4y |21 00 | D, s

Summing up in j > k;, we obtain (8-100).
Next, we prove

_ _ _1
1Py Q <k, Ok, DOsk,vi) ozt < 2720 K0Y D17 2uy || 12100 | Dug, |5 (8-101)
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By (4-6) and (uniform-in-;j ) boundedness of Q; on L'L? we have

IPe Q< ozt S270® 50| £l (8-102)
Therefore,
| Pk Q <k, Oy, . DQjvi,) ozt < 270 ® %D P Ok, Ok, . DQjviy)llpi 2
< 2—%(j—k1)2—b0(k—k1)(2_%"1 ||uk1 ||L2Loo)||Dijk2||Xg<.)1/2

1/ 1
< 272Uk 2700 =k0 Y| D720y 12100 [ Dug, |5

Then summing up in j > kq, (8-101) follows.
To conclude the proof of (8-99), note that || |D|_1/2uk1 | 2100 < |[Dug, |ls. Moreover, observe that

P Q <, O(Qjuk,, DO <k, vk,)
vanishes unless j < kj + 10.
Step 1.2b: output has dominant modulation. Here we prove
S IPQNUDIT Q< jiuk, . Q< jpvic)lmzt S2720E KV Dy |5 Dy, s (8-103)
Jj<ki

where ji, jo = j + O(1).
Letf = %(j —k1). After taking the decompositions ug, =, Pé‘”u;cl and vg, = » P(“]’.Zk)/zvkz,
consider the expression

PeQ; PLAN(DI™ Qs Pty Qi Pk vty

Using the geometry of the cone (Lemma 8.21), observe that for every fixed @ (resp. »”), the preceding
expression vanishes except for O(1)-many o’ and w” (resp. w). Moreover, for such a triple w, o', ®”,
the null form N gains a factor of 2t By Holder, Bernstein (for P(“j’. —k) /kaz) and Cauchy—Schwarz (in
w, ), we have

| P Q;N (DI Q< jitik, . Q< jpvr)lloz

1
3 - _ _ 2
52( 4+b0)(] k)2 Zk(Z”PijP%kNODl 1Q<j1uk1’Q<j2vk2)||ilL°°)
1)

1

_1 i _Lp— _1 / 1 2
52( 2+b0)(/ k)2€2 5 (k kl)(sup2 zk1||Q<j1Pew U, ||L2Loo)(Z(26k2”Q<j2P592kvk2||L2L6)2)

o’ P
<27 1=D b0 KD | Dy |5 || Do, 5.
Summing up in j < kq, (8-103) follows.

Step 1.2c¢: v has dominant modulation. Next, we prove

Y P Q<joNUDI T Q< jyuny s Qiviy)llmzt S 270¢ D Dug |5 Dy, s (8-104)
Jj<ki
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where jo, j1 = j 4+ O(1). As before, let £ = (j —k1)/2. By (4-6) and (uniform-in- j ) boundedness of Q;
on L!L2 we have
1P0<j fllnzr 27PN £z,

Hence it suffices to estimate the L!L? norm of the output. This time, we take the decompositions
Uk, = D 0 PPug, and vy, = Yoo Pé"/ Vg, By the geometry of the cone, for a fixed w, the expression

PkQ<joN(|D|_1Q<j1Pgwukl, QjP;)/vkl)

vanishes except for O(1)-many o’ and vice versa. Moreover, the null form A gains a factor of 2¢, By
Holder and Cauchy—Schwarz (in @, ®’), we have

270 ® =D P Q< N(IDI Q< jy PPuky Q5 PP k)l L2

1

1
bk Y3 g L _lp 1 2 / 2
satbDil (e, P ) (10, P il )

w %
_1_ — Y m—bo(k—
s 2(abo)Ci=Do=bok=kD) | Dy |15 Dug, | 5.
Summing up in j < kq, (8-104) is proved.
Step 1.2d: interpolation with (8-26). Combining (8-99), (8-103) and (8-104), we obtain
1P (1= IN (D[ ury viy) oz S 270 0 Duy, [l || Do, s

On the other hand, (8-26) and the embedding N € X 25_1/ 2 yields a similar bound for the X 85‘1/ 2_norm

without the exponential gain. Nevertheless, since we have

[% 1-6,
1A lazy S NAINZZ 01 022
200 oz X
oo

where 6y = 2( l) >0,

1
70 2
| Pt =HE DN (D™ gy vz, 270 € 0 Dug s D, s
Then the desired estimate for DZ},O follows as well, thanks to the embedding (172 ;70 - DZ},O.
Step 1.3: k1 < k — 10, contribution of Hl’:l. This is the most difficult case. We consider
PeHE N(D T ug i) = D PrO<je N(IDI 7' Qjug, . O<jcvky).
j<ki+C

As before, by Littlewood—Paley trichotomy, this expression vanishes unless k1 = kmjn and k = kiax+ O(1).
Recall that all three norms [1Z })0, 0z })O and (0 Z! are of the type X f 2P To ensure the £2-summability
in w in the definition (4-3), we go through the L”L? norm. More precisely, by Bernstein and L2-
orthogonality of P(“J’._k) /o> ote that
1PCQ) fllysnr 52%23 G Dhbin3 Gm2)dy £, .
Since b + %(% — 2) > 0 in all of these cases by (4-4), we have

1P Q< fllygsnn <2523 G=Dkbin3 =3y 1)1, o, (8-105)
1
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Hereafter, the proofs of the three bounds differ.

Step 1.3a: proof of (8-36). We decompose the inputs and the output by frequency projections to rectangular
boxes of the form Cg, (£). Then we need to consider the expression

PrQ<j—c PeN(IDI7' Q) Porug,, Q<j—c Ppavg,).

where C,C!,C? € {Ck, (£)}. Note that the above expression is nonvanishing only when —C + cl+c?so.
Moreover, by the geometry of the cone (Lemma 8.21), for each fixed C (resp. C2), this expression is
nonvanishing only for O(1)-many C! and €2 (resp. C), and the null form gains the factor 2K1 t422¢,

For exponents pi, p2,491,q2 > 2 such that pl_l + pz_l = p~ ! and ‘11_1 + qz_l = 271, proceeding
carefully to exploit spatial orthogonality in L2, we have

| Pt Q<j—cN(ID|7' Qjuk,. Q<j—cor,)lprr>

Z Py Q<j—C PCN(|D|_1 Qj Po Uk, Q<j—C PCZUkz)

e,cl,c? LrL?
By 2\
3 (Z Y PeO<j—c PeN(DI7' Q) Perug,. Q<j—c Peavg,)(t. ) )
C "¢l c2 L2 L{I
1
>
220 [supl| Q) Peruugy (¢ | . (Z||Q<,~_cPczvk2<t,->||iqz) ‘
1 C2 t
1
2
< 252/(2“ qukl ||L1’l L41 (Z” Q<j—C Pczvk2 ||124p2Lq2) . (8-106)
C2
We now apply (8-105) and (8-106) with
(5 3 1 1 /1 2po
(s.b.p. p1.91. P2.92) = (4 0 + (4 bo)eo, A (4 bo)eo,]?o,2,2, 2_p0,00),
where 6y = 2(% — 1). We then obtain

| Pk Q<j—cN(ID|71 Qjug, . Q<j—cvk2)llgz;,0

< 27 (=5 )k plen (=5 =(§-00)00) G —k) =2 (1=55) T =k) 5 3 (k) ¢ 1
N0, 2z Z||PczQ<,~_cvk2||ip2Loo)

c2
< A0+ (00)0) 1)y (- (1 4+ (h=b0) ) k) 1

2
X101, 1 (ZHDPczvkzn?gkz[ckl(e)]) |
CZ
On the last line, we used

3_ _ _ _1
10 <j—c Peaviy |2 oo 5 203 00M @001k (2=200)k2 ) Py 1, 1,

which follows from interpolation. By (4-4), the factors in front of (k1 — j) and (k — k1) are both negative.
Summing up in j < k; + C, we obtain (8-36).
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Step 1.3b: proof of (8-37). As in the proof of (8-104) (Step 1.2c), we take the decompositions uy, =
>0 PPug, and vy, =3 Pe‘"/vkz, where £ = (j —k1)/2. By the geometry of the cone (Lemma 8.21),
the null form gain, Holder, Cauchy—Schwarz (in w, ") and Bernstein (for u, ), we have

1P Q< N(DI7'Q; PPuk,, O<j—c P{ vi) Lo 12
) )
_1 _1 ’
< 2(1+3(1 p))€24(1 p)k12k2 (Z”PZCOQ./'MICI ”%,PLP’) (Z”Pﬂw Q<j—CUk2||iooL2) . (8-107)
w Y

Applying (8-105) and (8-107) with (s, b, p) = (3 — % + (3 —b0)bo.—5 — (% — bo)bo. po), where 6 =
2(% — %), we obtain
1PeQ<;N (DI Q) Puie,. Q<j P viy) oz,

—(1—-L 1_(1_ . _3(1—L)(i= _ ’
<270t U=0y7305)0 R po  w(1DI71 Q) PPk, 0<; PE vk lLro 2

—4+(F=b0)b0+%(1—-L)) (k—k
§2( i+(3=bo)bo+5 ( 1’0))( 1)||qukl||X9/4—3/p0+(1/4—b0)90,3/4—(1/4—b0)90,p0||ka2||S.
1

By our choices of by and py, the overall factor in front of (kK —k1) is negative. Summing up in j <k +C,
we obtain the desired conclusion.

Step 1.3c: proof of (8-38). We again take the decompositions ux, =, PPuj, and vy, = Y w Pe“’/ Vkyo
where £ = (j —k1)/2. We use (8-105) with (s, b, p) = (=2 — bo, —3 + bo. 1). By the geometry of the
cone (Lemma 8.21), the null form gain, Holder and Cauchy—Schwarz (in w, @), we have

21)0(]'—k)||ka<j/\/'(|D|_1 QjPewuklv Q<j—CPgw vk2)||L1L2

1 1
3 2
P0G=R5t9k2 (30 PR, 12 —c P v, I
< 0
<2 2t ( ||QJ PZ Uk, ||LP0LP6) (Z||Q<J—CPZ Uk2||Lp(’)qu)
© ®

< 9 (bo+(3—b0)60) (k1 — ) 9 —bo(k—k1) 53(1= 55 ) (k—k1)
X |ug, ||X3(1—1/po)—1/2+(1/4—bo)90.1/2—(1/4—bo)90~ﬂo [Dv, s,
oo

where g T=2-1_¢ p())_1 and 6y = 2(% — %) By our choices of pg and by, the overall factors in front

of (k1 — j) and (k — k1) are both negative. Summing up in j < k1, the proof is complete.
Step 2: proof of (8-39). As in Step 1, we divide into three cases.

Step 2.1: k1 > k —10. In view of the embedding N N L2H~1/2 € X~1/2+b1:=b1 for any 0 < by < 1,
the desired bound follows from (8-15) and (8-21).

Step 2.2: k1 < k — 10, contribution of 1 — ’HZI. Consider the expression

Pk(l _HZI)N(|D|_1uk1 ’ vkz)'
Interpolating the N -norm bound (8-26) (recall that N C X 35‘1/ 2) with an L2 H ~/2_norm bound (which
is a minor modification of (8-15)), the desired estimate for this expression follows for 0 < b; < %
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Step 2.3: k1 < k — 10, contribution of 7-[;:1 . Finally, we estimate

PeHE N(D| g i) = Y PeQ<jcN(IDI7' Qjuk, . O<j—cvk,).
j<ki+C

By (8-107), we have

L _ 1k _
2G| PN (DI Qjug, . Ocj—cviy) o2

203070 k0 (=g d (151 =305kt (3 +Gb0)00) D gy | 41 || Dy o2
Po

_3(1—L)—(1_ —y —(1—-L -
52030750 =G =Dy =5 EKD 0 Do 5.

Summing up in j < k; 4+ C and using the embedding 2(=1/P0k p, 0 _, [ Po[2 C x~1/2+b1,=b1 which

holds by Bernstein since b; < % — %, the proof of (8-39) is complete. O

Proof of Proposition 8.16. As in Proposition 8.15, we divide the proof into two cases: k; > k — 10 and
k 1 < k —10.

Step 1: k1 > k —10. In this case, by (8-18), (8-23) and the embeddings L'L> € OZ, NOZ' and
L'L2NL2H~Y/2 ¢ x—1/2+b1:=b1 the three bounds follow simultaneously.

Step 2: k1 <k —10. We begin with (8-40) and (8-42). By Holder and Bernstein, we have

(L -1k / —(1—-L) (k—k1) ,
2%r0 [ PkOGge, . v )lprog2 £2 7 7o llu, IIL,,()Wz_,%,,,é v, llLee 12

By (8-105) with (s, b, p) = (3 — %, —1. po), (8-40) follows. Moreover, by the L2 H~'/2-norm estimate
(8-15) and the embedding Py Q <x LP0 L2 C X ~1/2+b1.=b1 (8.42) follows as well.

It remains to prove (8-41). Applying (8-100) (from Step 1.2a of the proof of Proposition 8.15) with
Duy, = v} and the embedding 2731/2 P ¥ € L2L*, we have

1Pk Ok, O, v )zt < 27 20%F 0 Dug [y [|vy, s
On the other hand, by (8-102) and Hélder, we have

1Pk Q <, Ouage, . vp ) ozt S 2720C T DY POGuy, ) )1 12

—bo(k—k1)~3(1— 5 ) (k—k 2 -3)k
£ 270k 02 D Dy 1y @6 g )

_ _ 3(1—-L ) (k—k
< 2botkn 30 =550 k=KD oy s,

where g5 ' =271 —(p()~L. By our choice of py, the overall factor in front of (k —k1) is negative; hence,
(8-41) follows. O

8DS. Trilinear null form estimates.

Proofs of Propositions 8.17 and 8.18. Estimate (8-43) would follow from Lemma 8.10 and the core
estimates (8-44), (8-45) and (8-46), combined with Lemma 8.21 and (4-1).
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Estimates (8-44), (8-45) and (8-46) can be established by repeating the proofs of (136), (137) and
(138) in [Krieger et al. 2015] with the following modifications:

¢ Thanks to the frequency localization of the inputs and the output to rectangular boxes of the type Ci (£),
the bilinear operators O and O’ can be safely disposed of.

* Moreover, for any disposable multilinear operator M and rectangular boxes C,C’ of the type Cx (£)
situated in the annuli {|&| ~ 251} and {|€| ~ 2¥2}, respectively, note that (by Lemma 8.7)

M@*QE,_ ¢ Pouy,.040%, ¢ Povg,....)
= C2k1+k2 max{| £(xC, £C")|?, 2/ Tmintk vk Gl (Pouy,, Pervg,s .- )

for some disposable M, which suffices for the proofs in [Krieger et al. 2015].

We also note that although (136)—(138) in [Krieger et al. 2015] are stated with the factor 26k —miniki})
on the right-hand side, an inspection of the proofs reveals that the actual gain is 28(k=k1) a5 claimed in
(8-44)—(8-46). We omit the straightforward details. O

9. The paradifferential wave equation

Sections 9, 10 and 11 are devoted to the proofs of Theorem 4.24 and Proposition 4.25. In this section, we
first reduce the task of proving these results to that of constructing an appropriate parametrix (Section 9A).
Parametrix construction, in turn, is reduced to constructing a renormalization operator that roughly
conjugates [J + Diff , to 0. Sections 10 and 11 are devoted proofs of the desired properties of the
renormalization operator.

9A. Reduction to parametrix construction. We start with a quick reduction of the problem (4-90). After
peeling off perturbative terms using commutator estimates (which will be sketched in more detail below),
we are led to consideration of the frequency-localized problem

Oug + 2[P<g—i P A, 0%ug] = fk.

9-1
(. r10)(0) = (o 21 ). ©-1

for each k € Z. By scaling, we may normalize k = 0.
Our goal is to construct a parametrix to (9-1). We summarize the main properties of the parametrix in
this case, as well as the precise hypotheses on A, that we need, in the following theorem.

Theorem 9.1 (parametrix construction). Let Ay be a g-valued 1-form on I x R* such that
[Allstpry + 10Al g1 x 17241 61 =< M 9-2)
for some M > 0 and by > i. Let ¢ > 0. Assume that k > x1(e, M) and

IAllpsipry + 10Al 12172 < 8p(e. M, k1) (9-3)
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for some functions k1(e, M) > 1, 0 <8,(e, M, k1) < 1 independent of Ay. Moreover, assume that there
exists /Ia such that
IAllgipr + I(D Ao, DPA) |y < M. (9-4)
IAllpsiir + I (Ao. PLI‘I)IIngs/z[I] <é8p(e, M, k1), (9-5)
and
1A Ao — O (A, D0 AD) |1 ap1 ooz -1y < Sp(E Mok1),  (9-6)
|OPA— PO(AY, 0, Ay)) — PO’ (A%, 0a )l g1 11 2nr2 @172 < 83(& M. K1), 9-7)
where O(-,-) and O'(-,-) are disposable bilinear operators on R* Then the following statements hold:
(1) Given any (ug,u1) € H'x L2 and f € NNL2>H Y2 such that wg, u1, f are all frequency-localized
in {C~! < |E| < C}, there exists a g-valued function u(t) on I which obeys
lullsipry Sm o udll gisepe + 1 lyar2 -2y 9-8)
10u + 2[P<—c Pa A, %ul = fllynr2 17277 S €U o uD)ll giser2 + 1 Iyar2g-12i7) (99
[[[0] — (o, ul)Hglez < &(|[(uo, Ml)”HleZ + “f”NﬂLZH—l/Z[I])' (9-10)
Moreover, u is frequency-localized in {(2C)~! < |§] < 2C}.

(2) Assume furthermore that
|Axllgsosig + 1ol o 2 rav2gzy < S0 (M) ©-11)

for some 8,(M) < 1 independent of Aq. Then the approximate solution u constructed above obeys (9-8)
with a universal constant, i.e.,

lullsi S G0 D)l grsezs + 1 Tz i-1v20 9-12)

In the remainder of this subsection, we sketch the proofs of Theorem 4.24 and Proposition 4.25
assuming Theorem 9.1. Then in the rest of this section, as well as in Sections 10 and 11, our goal will be
to establish Theorem 9.1.

Lemma 9.2. (a) Let A; x and /I;,x be g-valued 1-forms on I x R* which satisfy (9-2), (9-3), (9-4), (9-5),
(9-6) and (9-7). Then for ¢ > O sufficiently small (depending on M') and k sufficiently large (depending on
&, M), given any (ug,u1) € H' x L% and f € N N L2H ~Y/2[[], there exists a unique solution u € S'[I]

to the IVP

9-13
u[0] = (o, 1), O-19

which obeys
||”||S1[I] <M ||(UO,U1)||H1><L2 + ”f”NﬂLZH—l/Z[I]' (9-14)

(b) If, in addition, || Ao s1777 0beys (9-11), then the solution u constructed above obeys (9-14) with a
universal constant, i.e.,

hellsign < 100 un)l gz + 1 g2 -1vep- (9-15)
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Proof. Let uy be the function given by (the rescaled) Theorem 9.1 which is determined by the initial data
(Prug, Pruy, Py f). We set
Uapp = Z Uk
k/

We claim u is a good approximate solution to (9-13) in the sense that in any subinterval J C I we have
ltappll 5117 Saa 1o D)l g2 + 1 lynr2g-1r2p07: (9-16)
||“app[0] — (uo, ul)”Hlez < e(|[(uo, ul)”;';lez + ”f”Nr]LZH—l/Z[J])? 9-17)
and
”(D—i_Diff;A)uapp_f”NmL2[-'[*1/2[_]]
Su (64272 429 (| PAll oo psiin+l Aol oo 12 fr37217)
X(No.u) giyp2+ 1 lyar2g-1r2p)- (9-18)
Assume that we have these bounds. Then the solution u to (9-13) is obtained as follows:
(i) We choose k large enough so that 278 <« 1.

(i1) We divide the interval I into subintervals J; so that

2CK||PA||DSI[I] + 4ol 2 garagy,y < 1.

(iii) Within the interval J; we now have small errors for the approximate solution u,pp; hence we can
obtain an exact solution by reiterating.

(iv) We successively repeat the previous step on each of the subintervals /;.

It remains to prove the bounds (9-16), (9-17) and (9-18). The first two follow directly from (9-8) and
(9-9) for uy, after summation in k. We now consider (9-18), where we write

(O+Difff Ju— f =Y (Qug + 2[P<j— PAx. 0%ui] = Pif) + > _ gk
3 k
where

gk = 2[P<k—c PAa. 8%ug] = ) [P PAa. 0" Prrug]
k/
The first sum is estimated directly via (9-9), so it remains to estimate gz. We write

gk = & + &
where
gh= Y. Pu[P_jr_PAq. 8% Prour) — [P PAg. 0% Prrttg].
k'=k+0(1)
g = Z [Plk'—ic.k—ic) PAa, 0% Prrug].
k'=k+0(1)

Here g,i has a commutator structure, so we can estimate it as in Proposition 4.30, yielding a 2752% factor.
For the expression gi, on the other hand, we can apply Proposition 4.20 to split it into a small part and a
large part which uses only divisible norms. Thus (9-18) follows, and the proof of the lemma is concluded.
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(b) The same iterative construction applies, but no we no longer need to subdivide the interval as (9-11)
ensure that the divisible norms in (9-18) are actually small. O

Proof of Theorem 4.24 assuming Theorem 9.1. We prove the theorem by repeatedly applying the preceding
lemma in successive intervals. To achieve this, we begin by choosing ¢ and « depending only on M so
that Lemma 9.2 holds. It remains to ensure that we can divide the interval / into subintervals J; where
the conditions (9-2), (9-3), (9-4), (9-5), (9-6) and (9-7) hold.

We choose A = A. We carefully observe that we cannot use Theorem 5.1 here, as Theorem 4.24 is
used in the proof of Theorem 5.1. However, we can use the weaker result in Proposition 5.4, which
immediately gives (9-2) and (9-4) from Theorem 5.1.

The remaining bounds are for divisible norms, so it suffices to establish them with a large constant
depending on M ; then we gain smallness by subdividing. Indeed, for (9-3) and (9-5) this still follows
from Proposition 5.4.

For (9-6) we choose O (A, dgA) = [A, dgA]. Then we can use (3-23) and (4-37). Finally for (9-7) we
choose in addition O (Ay, 0% A) = —2[A, 0* A]. Then by Theorem 9.1 we have

OA—O(A,0,A)— O(Ag, 3%A) = R(A) + Rem3(4)4
and it suffices to use (3-21) and (4-74). O

Proof of Proposition 4.25 assuming Theorem 9.1. We write

__ gpert nonpert
Al,x - At,x + At,x ’

where

AV =D Prdix,
keK
with |K| = 050(M)71M(1) and
[ AP goo 1177 < 80(M).

By Proposition 4.23, it follows that the contribution of any finite number of dyadic pieces of A, x in
Diff 4 is perturbative. More precisely, for AP*", we have

IDitfp gpen Bll y v 12 fr—1/2177 S1k1,m 1 Bllsipr- (9-19)
Thus B solves also
(O + Diff} goonpen) B = G,
where
”G“NHLZH—UZ[I] <M ||G”Nr‘|L2H—1/2[I] + ”B”S‘ [11-

We now claim that Theorem 9.1 and thus Lemma 9.2 apply for A""P°™. If that were true, then the
conclusion of the proposition is achieved by subdividing the interval / into finitely many subintervals J;,
depending only on M, so that

(i) Lemma 9.2 applies in J;,

(i) the size of the inhomogeneous term ||(~;||NOL2H—1/2[I] is small in J;.
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Indeed, to verify the hypothesis of Theorem 9.1 with A replaced by A" it suffices to leave A = A,
unchanged, but instead replace the operators O and O’ by (1 — Y jcx Pr)O and (1 =Y jcx Pr)O’,
respectively, which are still disposable. O

9B. Extension and space-time Fourier projections. As in [Krieger and Tataru 2017], our parametrix
will be constructed by conjugating the usual Fourier representation formula for the £-half-wave equations
by a renormalization operator Op(Ad(O4)<o); see (9-50). The renormalization operator is designed so
that it cancels the most dangerous part of the paradifferential term 2[PAqy, <—, 0% Pou] (Theorem 9.9),
and furthermore enjoys nice mapping properties in functions spaces we use (Theorem 9.6).

9B1. Extension to a global-in-time wave. As in [Krieger and Tataru 2017], our parametrix construction
for (9-1) involves fine space-time Fourier localization of P A, which necessitates extension of PA outside /.
Here we specify the extension procedure, and collect some of its properties that will be used later.

We extend PA by homogeneous waves outside /. By (9-2), this extension (still denoted by PA) obeys
the global-in-time bound

|PA|g1 + ||DPA||£1X71/2+/91,7191 <M. (9-20)
By Proposition 4.10, for any p > 2 note that

Ix§ Pk PA|LrLoo S || Pe PAl Lo Loopr)- (9-21)
Moreover, by (9-3), we have

D NI POPAl 2172 = |OPAl g1 251217y < 8- (9-22)
k
Next, we specify the extension of Ag, and also of the relations (9-6) and (9-7) outside /. We first
extend A by homogeneous wave outside / and Ao by zero outside /. These extensions (still denoted by
A and Ay, respectively) satisfy the global-in-time bound

I Allg1 + 1D Aolly <M. (9-23)
In addition, we introduce the extension G of P+ A by zero outside /. It obeys
IDGlly < M. (9-24)

We emphasize that, in general, P+ A does not coincide with G outside /.
Define EO and PR as

Ro(t) = AAo(t) — O(A (1), 0: A, (1)) fort €1,
PR(r) = OPA(t) — PO(A%(1), 0 Ay (1)) + PO' (A, 0*A) fortel,
and O for ¢ ¢ I. By the hypotheses (9-6) and (9-7), we have
I Rollg1(apt Loenz2ii-1/2) < S5 (9-25)

||PE||€1(L1L2OL2H—1/2) <5§- (9-26)



346 SUNG-JIN OH AND DANIEL TATARU

We extend Ag outside I by solving the equation
Ado = O0(x1 A%, 8:A0) + y1 Ro. (9-27)
By (8-15), (8-17), (9-5), (9-23) and (9-25), it follows that
IDAollg1y < M2, (9-28)
1A Aollgi 2512 583 (9-29)
Moreover, observe that the extension PA obeys the equation

OPA = PO (31 A% 0. Ay) + PO’ (PyA, 10 A)
— PO’ (Ao, 110:4) + PO'(Gy. y10° A) + 1 PR.  (9-30)

9B2. Space-time Fourier projections. Here we introduce the space-time Fourier projections needed for
definition of the renormalization operator. We denote by (z, £) € R x R* the Fourier variables for the input,
and by (0, 7) € R x R* the Fourier variables for the symbol, which will be constructed from PA. We
remind the reader that our sign convention is such that the characteristic cone for a +-wave is {t +-|&| = 0}.

Consider the following (overlapping) decomposition of R!*#, which is symmetric and homogeneous
with respect to the origin:

D&E = lsen(0) (0 £ 1-w) > " H(nL? + o £ -0}
N {sgn(0) (o £1-w) < Eo| " (nL? + o £n-0*)},

,£ —
DEE ={lotn-ol <™ (0Ll + o £n-0),

a:t -
D = {sgn(0) (0 £1-0) < =15~ (Ll +lo £1-0]?)}
Uisgn(0)(o £1-) > Flo| 7 (1L +lo £ -0},

where ] = n— (- w)w. See Figure 1 for a plot of these domains.

w,t

We construct a smooth partition of unity adapted to the decomposition Dcope U Dfl’fl’ui ubD

o, _ 144
out - R

as follows. We begin with the preliminary definitions

ﬁa),:l:( ) (4 o(oc£n-w) )
i o,n)=m>q1\ - )
in 5P - (o)) +lo£9-0f?

sgn(a)[n|(o +n- o) )
(P> =(-w)?) +lo£n-wl? )

sgn(o)[nl(o +n- o) )
(P> =(m-w)?) +lo£n-wl? )
where m~1(z) : R — [0, 1] is a smooth cutoff to the region {z > 1} (i.e., equals 1 there), which vanishes
outside {z > 2}. Then we define the symbols

ﬁzgj(o, n) =m=1 (8

ﬁf)ol;t:t(o? N =msq (—8

~w,t ~w,+
n%E 6, n) = 1%E 0, ) — 2% (0. ). (9-31)

,£ Sw,+ ~w,+

Mo (o) = 1= TIp5 (0. n) — Oy (0. 1), (9-32)
,+ Sw,+ =w,+

Oou (o.n) = Mgy (o, n) + I~ (0, ). (9-33)
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n-w

Dw,:l: Da),:l:

out

Figure 1. Sketch of Dé%’nf, D®f and D2;* in the hyperplane {0 = 1} with £ = —.

med out

Note that the actual domains are defined to be slightly overlapping.

Observe that 1 = TT%;E + Hna’u’lf + 2% and supp T2 € D for * € {cone, null, out}. Moreover,
by symmetry, Hf‘k”i preserves the real-valued property.

We also make use of a dyadic angular decomposition with respect to w. Given 6 > 0, we define the
symbol

190, ) = m>1(|4(w, - Sgn(a)ln)).

0

Furthermore, we define
.+ £
HZ@ (o) =1- HC:Q (o, 1),
, , ,
H(g (07 77) = (Hig - H(;)g/z)(o—v 77)
Since these symbols are real-valued and odd, the corresponding multipliers (which we simply denote by

Hi’ei, Hibi and Hg’i, respectively) preserve the real-valued property.

The regularity of the symbols TI%E, T F and T12;F degenerates as 71| — 0; however, they

null
are well-behaved when composed with Hg”iPh. The following lemma will play a basic role for our

construction.

Lemma 9.3. For any fixed +, v € S3, n € N, h € 2% and % € {cone, null, out}, the multiplier'®
9”8én)(Hi)’iH‘;’iPh) is disposable.

Proof. In this proof, we take & = 0 by scaling, and fix £ = +. Let * € {cone, null}.

We begin with some elementary reductions. First, since 1 = neE+ I'Inwu’ﬁE + ngi;ti, and 9" 8;") H’é”i Py

is disposable, it suffices to prove the lemma for just Hé‘ﬁ,’nf and Hfuﬁ:- In this case, note that the symbol
Hf’ing’im #(n) (Where my, is the symbol of Py) is compactly supported. Furthermore, the lemma is
obvious if 6 > 1, since then the symbol is smooth in &, o, n on the unit scale. Therefore, we may assume

that 0 < 1.

10We quantize (o, n) — (D¢, Dx).



348 SUNG-JIN OH AND DANIEL TATARU

We now consider the case n = 0, when there is no £-differentiation. We fix w € S3. To ease our
computation, we introduce the null coordinate system (v, v, 77 ), where

v=0—Nn-w, V=0-+1n-o,

and 7, € R3 are the coordinates for the constant v, v-spaces. Observe that

o+n-w _ v -
L2 +lo+n-w* 7L +v2
f:ing)a:t

L [nil=1ful~6, |v|=6% |ul=I1 (9-34)

on the support of I1 mg. Moreover, 0 = o(v, v,71) and |n| = |n|(v, v, 1) are comparable
to 1, and are also smooth on the unit scale on the support of Hff’il'[g)’imo. Recalling the definition

of Hff’i, it can be computed from (9-34) that

920807 12| <0727 on supp T2+ 1S %,

On the other hand,

|833531~L (H(é)’imo)l <67 on supp Hf‘k”in‘é”imo,
so it follows that

020807 (Me-*11g-*)| 5 6721711, (9-35)
Furthermore, from (9-34) we have
[supp Hi”infg’imd <6°. (9-36)

From these bounds, we see that the multiplier Hf,?’i Hg”i Py has a kernel with a universal bound on the
mass, and thus is disposable.
Finally, we sketch the proof in the case n > 1. We first claim that

0" (Y118 *mo)| < 67", (9-37)

Clearly |3§1) H‘é)’i | <n 077", soitsuffices to verify that |8§n) ne-+ | <n 67" on the support of ne-* H‘é)’imo.
Note that
0, la|=1,

L el =2 on supp Hi”iﬂg”imo. (9-38)

|0 (- ©)] Sjaf

Then recalling the definition of Hff’i and using the chain rule, the claim (9-37) follows. We remark that

a differentiation in o + 1- w loses 72, but we gain back a factor of @ through the chain rule and (9-38).

Next, we fix w € S3 and start differentiating in (v, v, 771 ). Using the chain rule, (9-38) and (9-34), it
can be proved that

920807 o (meEmmg-*)| < p=2bl-lrig=n, (9-39)

We omit the details. Combined with (9-36), we see that 9"3§H)Hf’intg’iPo is disposable. O
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As a corollary of the proof of Lemma 9.3, we obtain the following disposability statement.

Corollary 9.4. For any fixed £, w € S3 hk e2®and x € {cone, null, out}, the translation-invariant
bilinear operator on R'** with symbol

& l?,-',:i: £ IE,:E )
II*| | ”l El Ph(O', n)PkPE (é)
is diSpOSdble.

Clearly, the same corollary holds with any of the continuous Littlewood—Paley projections Py, Py
replaced by the discrete analogue.
We also record a lemma which describes how the operator [ acts in the presence of Hf;%},fl'[‘é)’iPh.

Lemma 9.5. For any fixed +, w € S3,n € N and h € 2%, the multiplier

(@72hg=2m)0" 0" (MeE TG Py) (9-40)

cone

is disposable.

Proof. We set h = 0 by scaling. The symbol of (I is —o2 + |5|2. For a fixed w, we introduce the null
coordinate system (v, v, n ) as before. Then observe that

1030507 (=0 + n|»)] = 050507 (—vv +17L|?)| 5 67672171

on the support of Hé%’nfl'[g)’iPo. The lemma follows by combining this bound with the proof of
Lemma 9.3. [

9C. Pseudodifferential renormalization operator. In this subsection we define the pseudodifferential
renormalization operator, and describe its main properties.

9C1. Definition of the pseudodifferential renormalization operator. As mentioned before, the aim for
our renormalization operator is not to remove all of PA, but only the most harmful (nonperturbative) part
of it. This part is defined as

Amain,:l: — 1—[a),:i: Ha),:l: P<h(PA)j. (9_4])

J,<h >|p|8 * " cone

Precisely, given a direction w, it selects the region which is both near the cone in a parabolic fashion near
the direction w, but also away from w, on an angular scale that is slowly decreasing as the frequency 7
of A approaches 0. We emphasize that this decomposition depends on @, which is what will make our
renormalization operator a pseudodifferential operator.

To account for the fact that our gauge group is noncommutative, and also to better take advantage of
previous work in this area, we divide the construction of the renormalization operator in two steps. The
first step is microlocal but linear, and mirrors the renormalization construction in the (MKG) case; see
[Krieger et al. 2015; Oh and Tataru 2018]. Precisely, we define the intermediate symbol

—1 ymain,®£ j
Yy = —L%AwLAJKh w’ . (9-42)
Here the operator L% A;i is chosen as a good approximate inverse for L%, within the frequency-
main,
Js<h

localization region for A . In effect this frequency-localization region is chosen exactly so that this
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property holds within. This is based on the decomposition
—LiLC;"): + A, =0,
which gives
-1 -1
Given A;nil;li and W4 _j as above, we define their Littlewood-Paley pieces as

Amain,:l: _ iAmain,:l:

d
j’h - dh ],<h ’ \Ijﬂ:,h - d_h\pzl:,<h‘
Now we come to the second step in the construction of the renormalization operator. This step is

nonlinear but local, and is based on the construction of the renormalization operator in [Sterbenz and
Tataru 2010a] for the corresponding wave map problem. Precisely, we solve the ODE

d -
7 0<h 02, 4 =Y. (9-43)

lim [[0xO<p,+(t,x,8)|Le =0.
h—>—o00

Thus our renormalization is achieved via the paradifferential operator
Ad(O+)<o,

where the localization to small frequencies is so that this operator preserves the unit dyadic frequency shell.

The parameter § > 0 is a universal constant, which is chosen below so that the parametrix construction

go through. In particular, we take 0 < § < ﬁ. Logically, it is fixed at the end of Section 10.

9C2. Properties of the pseudodifferential renormalization operator. Now we state the key properties
satisfied by the renormalization operator Ad(O+)<o that we just defined; see Theorems 9.6 and 9.9.
Proofs of these results are the subjects of Sections 10 and 11, respectively.

Theorem 9.6 (mapping properties of the pseudodifferential renormalization operator). Let A be a Lie-
algebra-valued spatial 1-form on I x R* such that A = P—_, A and

IPAllsiir = Mo
for some ik, My > 0. Let Wy p, Wy j and Oy, + be defined on R+ as above from the homogeneous-
wave extension of PA. Let Z be any of the spaces L)zc, N or N*.
(1) For k > 20, the following bounds hold:
¢ (boundedness)

[0p(Ad(O+) <0)(t. x, D) Pollz—z Sm, 1. (9-44)
o (dispersive estimates)

10p(Ad(Ox) <0)(t. x, D) Pollgz_, 5 <mo 1. (9-45)
(2) For any ¢ > 0, there exist ko(g, My) > 1 (independent of Ax) such that if k > xko(e, My), then

¢ (derivative bounds)
{97, Op(Ad(O+)<0)(t, x, D)|Pollz—>z < e. (9-46)
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e (approximate unitarity)
1(Op(Ad(0+)<0)(t, x, D) Op(Ad(OL ) <0)(D, s, y) = 1) Poll z—z < &, (9-47)
where the implicit constants are universal.

(3) There exists 0 < 8,(My) <K 1 (independent of Ax) such that if, in addition to the above hypothesis,
[P Axllgoos1[r] < 80(Mo), (9-48)
then (9-44) and (9-45) hold with universal constants. That is, for k > 20 we have:
o (boundedness with a universal constant)
|Op(Ad(O+)<0)(t. x. D)Pollz—z S 1. (9-44)
e (dispersive estimates with a universal constant)
[Op(Ad(O+)<0)(7, x, D)P0||S§_>SO <L (9-45)
Here the frequency-localization operator Py can easily be replaced by a more general localization to
{161 =~ 15.
Remark 9.7. As we will see in the proof below, ko(e, Mo) >~ log Mg and §,(Mop) <, 1.
Remark 9.8. Note that the symbol of each of the above PDOs is independent of t = &g, and thus it

defines a PDO on R* for each fixed 7. By the mapping property Z — Z with Z = L)zc, we mean that the
PDO maps L2 — L2 for each fixed ¢, with a constant uniform in .

Theorem 9.9 (renormalization error). Let Ay be a g-valued 1-form on I x R* such that Ay = P<—c Ag
and || PAx| g1y < M for some k, M > 0. Let & > 0. Assume that k > k1(g, M) and (9-3)~(9-7) hold for
some functions k1(s, M) > 1 and 0 < 8,(e, M, k1) < 1 independent of Ay (to be specified below). Let
Wy op, Vi p and Oy 4 be defined as above from the homogeneous-wave extension of PAx. Then we
have

b4
(0.4 OP(AA(01) <0) ~ Op(AA(OL) 0D Pollgs 111y, L1y < (9-49)
Remark 9.10. As we will see later, k1(e, M) >~ log M and 8, (s, M, k1) <p i, €.

9D. Definition of the parametrix and proof of Theorem 9.1. Our parametrix is given by

u(®) = (5 OP(Ad(04) <o), x, D)e=I11PI Op(A(0L) <0)(D. 0, ¥)(atg 4| D|uy)
- +OP(AA(0) ) (1. . D) 15 K+ Op(AA(0F!) <0)(D.5.3) f ). (9-50)
where

t .
Kig(t) =/ ei’(t_s)u)‘g(s) ds.
0

With this definition, the proof of Theorem 9.1 starting from Theorems 9.6 and 9.9 is essentially identical
to the corresponding proof in [Oh and Tataru 2018] and is omitted.
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10. Mapping properties of the renormalization operator

10A. Fixed-time pointwise bounds for the symbols ¥ and O. Here we state fixed-time pointwise bounds
for W and O. We borrow these estimates from [Krieger and Tataru 2017], while carefully noting dependence
of constants on the frequency envelope of A = A, in S'. The bounds below are stated using continuous
Littlewood—Paley projections Py, but we note that the same bounds hold for discrete Littlewood—Paley
projections as well.

We begin with pointwise bounds for the g-valued symbol ¥}, 4 (7, x, §).

Lemma 10.1. The following bounds hold.:
(1) Form>0and 0 <n <871, we have
109DV (1,3, £)] S 2037 Al 51 (10-1)
When m = 0, we interpret the expression on the left-hand side as 82\11(9)
(2) Let {t —s,x —y)2 =1+ |t —s|> + |x — y|%> We have
W (02, ) = W (5. 3, )] S minf2" (1 —5.x — ). 1} An 1. (10-2)
(3) Finally, for 1 <n < §~1 we have
190 (W (1. x.6) = Wy (5. 9. §)) S minf2" (1 —s.x — ), 2= 4,160 (10-3)
For a proof, we refer to [Krieger and Tataru 2017, Section 7.3]. As a corollary of (10-1) we have
VU] < 2" | Anllgr. (10-4)
Next, we consider the G-valued symbol O, 4.
Lemma 10.2. Let cj, be an admissible frequency envelope for A in S1. Then the following bounds hold:
(1) For0<n <871, we have
1080t (0. %, ) Syapg, 207D ey, (10-5)
(2) We have
d(O<px(t.x.6)02) 1 (s.y.£).1d) Spay,, log(l +2"(t =5, x = y))cp. (10-6)
(3) Finally, for 1 <n <871, we have
10" (O<p 2t %, )02} (5, 7, 8)¢]
g ming2? (1 —s.x =), O @ 4 (1 s 0 -y e, 10-7)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.7].
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10B. Decomposability calculus. To handle symbol multiplications, we use the decomposability calculus
introduced in [Rodnianski and Tao 2004; Krieger and Sterbenz 2013], which allows us to roughly regard
these operations as multiplication by a function in L? L4. In the present work, we need an interval-localized
version in order to exploit small divisible norms.

Given 0 € 27N, consider a covering of the unit sphere S = {w € R*: |§| = 1} by solid angular caps
of the form {w € S3 : |¢ — w| < O} with uniformly finite overlaps. We index these caps by their centers
¢ € S3, and denote by {(mg)z(a))} the associated nonnegative smooth partition of unity on S3.

Let I be an interval. Consider a End(g)-valued symbol c(z, x, ) on I; x R x Rg, which is zero
homogeneous in £, i.e., depends only on the angular variable w = £/|&|. We say that c(¢, x, §) is
decomposable in LYL"[I]if c =) 4 ¢®, 9 e27Nand

Zl|c(0)||D9L‘1L’[I] < 00, (10-8)
0
where

40 1

2

lelpyzarriy = H (§ 2 :sup(m‘g’(wnw"ag”)c(”||L;)2) (10-9)
w

n=0 ¢

L[]

We define ||c||prarr[r] to be the infimum of (10-8) over all possible decompositions ¢ = g @ In
what follows, we will use the convention of omitting [/] when I = R,
In the following lemma, we collect some basic properties of the symbol class DL L"[I].

Lemma 10.3. (1) For any two intervals such that I C I, we have

lellprarrin < lellprerrir-

(2) For any symbols ¢ € DL L™ [I] and d € DL92 L"2[I], its product obeys the Holder-type bound

ledlipraprin < llelpra LrnldlipLerin.

1 1 1
< < — _ = = — _ = =
where 1 <q1,92,9,71,72,7 < 00, ata qana’r1 +5 =7

(3) Let a(t, x, &) be an End(g)-valued smooth symbol on I x R¥ x Rg whose left quantization Op(a)
satisfies the fixed-time bound

Su11?>||0p(a)(t, xX,D)||p2512 < Cq.
te

Then for any symbol ¢ € DLYL", we have the space-time bound

Op(ac)(t,x, D)llpa1 2111192172111 < Call¢lpLanr -

where 1 <q1,42,9,712, 7 < 00, qi] + é = qiz and % + % = % An analogous statement holds in the

case of right quantization.

The proof is essentially the same as the global-in-time versions in [Krieger and Sterbenz 2013,
Chapter 10] and [Krieger et al. 2015, Lemma 7.1]; we omit the details.
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10C. Decomposability bounds for A, ¥ and O. Here we collect some decomposability bounds for A,
W and O that we will use in our proof of Theorems 9.6 and 9.9. As before, we state the bounds using
continuous Littlewood—Paley projections Py, but note that the same bounds hold for discrete Littlewood—
Paley projections as well. For simplicity of notation, we will usually write |G ||prerr = ||ad(G)||preLr
for a g-valued symbol G and ||O|prarr = ||Ad(O)||prerr- for a G-valued symbol O.

For any 6 > 0, h € R and * € {cone, null, out}, recall the definition

0
AD) | = PyIEY T (PA),.
As before, we will often omit the subscript x for simplicity, and write A;lal L= Aiggl .4 Cte.
These symbols obey the following global-in-time decomposability bounds:
Lemma 10.4. For g > 2 and * € {cone, null, out}, we have
9 _1y, 5.2
145) , - ollprore <207DM9577 44151, (10-10)
) 1y, 52
148) s lprazee <207950373 | 4g 41 y1. (10-11)
Furthermore, for x = cone we have
9 _1y, 9.2
1049 4 -olprore $207970373 4451, (10-12)
1 5_2
1851040 . olproze 20799377 4451, (10-13)

Proof. The symbols (6 aw)"(ni”in‘;’i) are smooth, homogeneous and uniformly bounded, and the
corresponding multipliers are disposable for fixed 2. Then the bounds (10-10) and (10-11) follow by
Bernstein’s inequality using the Strichartz component of the S! norm, and, respectively, the L2H1/?
component of the VY ! norm.

For the bounds (10-12) and (10-13) we need in addition to consider the size of the symbol of [J, and,
respectively, A;i, within the support of Py, Hf;%}lf H‘;’i. This is 6222, respectively 6 —2p—2h, Precisely,
we have the representations

= , £ — ,E —2~— , £
OPISENS* =022% koo ing ™, AZl POoENG* =022 2o iy,

cone cone cone
with O disposable; see, e.g., Lemma 9.5. Then (10-12) and (10-13) immediately follow from (10-10). O
Next, we consider the phase W, which was defined in (9-42). Given 6 > 0 and / € R, let

@ _ w,*
\IJh’i =PIl "Wy

We have the following global-in-time decomposability bounds.

Lemma 10.5. Forq,r > 2 and % + % < %, we have
0) A— 9 —(li4), 1_2_3
N, 27w liprorr <27 @RI 4y 50 (10-14)

In addition, suppose that 0 < 2% for some a € —N. Then for q,r > 2, we also have

0) ~_ 0 (li4yy 2, 1_3
10420 (¥, 27H 90 ) prarr <27 GHH27T903 72 451 (10-15)
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Furthermore,
3 3
10U, I prae 5 0222" | Ayl (10-16)

Proof. Observing that within the support of Py, ngﬂ,ﬁg H(é)’i the symbol LJFA;i has the form 276720
with O disposable and depending smoothly on w on the 6 scale, the first bound (10-14) is again a direct
consequence of the Strichartz bounds in the S norm for A.

For (10-15) it suffices to prove the case p = g = 2 and then use Bernstein’s inequality. But in this case
it suffices to use the X L1/2 component of the S norm at fixed modulation.

For the last bound (10-16) it suffices to combine the L2L> case of (10-14) with Lemma 9.5. O

We now consider the G -valued symbol Oy, +, which was defined in (9-43). It obeys the following
global-in-time decomposability bounds.

Lemma 10.6. Let ¢, be an admissible frequency envelope for A in S'. Then for any q > 4, we have

_1
1(O<h,:x: O<h,50)IDLaL> Syl 2=, (10-17)
When q = 2, an analogous bound with a slight loss holds:
Leg—
1(O0<h,+:x: O<h ) DL2Lo S)al g 22U=8he, (10-18)

Proof. These bounds are a consequence of the lIJ(Q) bounds in the previous lemma. The proof is similar
to the proof of the similar result in [Krieger and Tataru 2017, Lemma 7.9] and is omitted. We note that
the constraint ¢ > 4 in the first bound is to prevent losses in the § summation in (10-14). O

Finally, we consider interval-localized decomposability bounds, which will be needed to exploit
divisibility (i.e., the hypothesis (9-3)) to gain smallness.

Lemma 10.7. Let |I| > 27" where h € R and k > 0. For ¢ > 2, we have

0 —C ne
192 | prazeopry < 2°07C 27" Apllpa poops). (10-19)
- 6
1AL 0+ A pLarsern S 207 | ApllLarom, (10-20)
oo+ A | pragoerny < 26407 | Apllazeein. (10-21)
0 _
oo+ A I pLareern S 207 | Ao nllLaroors. (10-22)

Proof. We will prove (10-19), and leave the similar cases of (10-20), (10-21), (10-22) to the reader.

By scaling, we set 7 = 0. By the definition of the class DL9L°°[I], we have
40

0 _ 2
19§ | pragoops) < 6 2(2 D supl|mf (@)6" 9V TG TIE, Po(e- PA)HLWU])
n=0 ¢

<6=€ Zne"a(”)mnggnepo(w-PA)||LqLoo[,].

Fix n € [1,40] and w € S3. From the proof of Lemma 9.3, we see that the projection 6” 8(" )H“’H“’ Po,

cone
when viewed as a Fourier multiplier in (o, 77), has a symbol which is supported in a space -time cube of
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radius < 1, and its derivatives (up to 40, say) are bounded by #~C for some large universal constant C.
Moreover, we have |9”//8§” )a)| <n» 1. Denoting by X(I) a generalized cutoff adapted at the unit scale as
in (4-22), we have

1670 TG T, Po(+ PA)|Laroopry S 07 12§ PoAllLaros.

cone

Recall that A4 is extended outside / by homogeneous waves. By Proposition 4.10, the last expression is
bounded by

<29%07C || PoA| Laroorns

which proves (10-19). O

10D. Collection of symbol bounds. Before we continue, we introduce the quantity M, which collects
various symbol bounds that we have so far.

We fix large enough N and a small universal constant §; > 0. Then we let My > 0 be the minimal
constant such that:

e The following pointwise bounds hold for all 0 <n <8 ' and 0 <m < N:
908DV | <2mhgany,,
Wt (%, 8) =Wt (5, y.6)] <min{2" (1—s, x—y), 1} Mo,
10 (W (1,6, 6) =W (5. 9.6))] < minf2 (1—s, x—y), 112~ (=2 g,
1057 (0 <), (1,3, 8)] <207 M
d(O<p,(t.x.§)02) 1 (s.9.6).1d) <log(14+2" (t—s.x—y)) M.
10002t %,6) OZ) 1 (59,0l <minf2 (1—s, x—y), 1 =072 (1 (1=, x—y)) (=D,

3 3.

¢ The following decomposability bounds hold for all % € {cone, null, out}, ¢,r > 2 and % +2 <3

1A | -wlprere <2(=0)hg3=0

_1 5_2
| AG) v llDLaLos <(=Dhg3-Zpr .
0 -1 9_2
”DA;l,Zone,:t 'a)”DLqL‘X’ 52(3 I))th aM,,
1 5_2
||A;i|:|A(9) L wlpreres 52(1_5)}197_2]\40’

h,cone,

Hw?

h,i,2_hV‘1’,(fi)||DLqu <2~ (G+Dhg3=i7

2] _ 2] (14 _2 1_3
10420, 27 VUD ) pragr <2~ Dhrie03 -7 M, (6527 <),
10w |20 <6323 M,
_1
1(0<h 6, O ) lpLaroe <2070, (g >4+5),

1=
1O ix: O<hi)Ipropoe <220~ My,
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By the preceding results, there exists an My such that
Ms <m |Allgeost + | Aollgooyt- (10-23)
In particular, note that all of the above symbol bounds are small if || A||ycog1 and ||Ag|| oy 1 are.

10E. Oscillatory integral bounds. Given a smooth function a, let

d§

K% (t,x;5,y) = [ Ad(Ocp 1) <o(t. x, £)a()eX U EIEC= Ad(OZ) ) <o(E. y.9) Gy

Lemma 10.8. For a sufficiently small universal constant § > 0, the following bounds hold for the kernel
K2,(t, x:5,):

(1) Assume that a is a smooth bump function on the unit scale. Then

NIw

|K2o(t, x5 8, )| Sm, (t —s)"2([t —s] =[x — y|) 1. (10-24)

(2) Let a = ac be a smooth bump function on a radially oriented rectangular box C of size 2% x (2k+4)3,
where k, 0 <0. Then

_3 _
|K%(t, x58, )| Sm, 24382 EF0 ¢ —5)) =2 2K ([t — s — |x — y])) 7190 (10-25)

(3) Let a = a¢ be a smooth bump function on a radially oriented rectangular box C of size 1 x (25)3,
where £ < 0. Let w € S be at angle ~ 2¢ from C. Then, fort —s = (x — y) - + O(1),

K&t xi5, )| Sap 24275 =) 71020 = »)) 71, (10-26)
where x’ = x — (x-w)wand y =y — (y - w)w.

This lemma is proved as in [Krieger and Tataru 2017, Section 8.1] by stationary phase, using the
symbol bounds in Lemmas 10.1 and 10.2.

10F. Fixed-time L? bounds. The goal of this subsection is to prove (9-44), (9-46), (9-47) and (9-44)
for Z = L% The common key ingredient is the following fixed-time L? estimate:

Proposition 10.9. For § > 0 sufficiently small, there exists §gy > 0 such that the following statement
holds. Let h + 10 < k < 0. Then for every fixed t, we have

| (OP(AA(O<p ) <k) (x, D) Op(AA(OZ, 1) <) (D, 3)=1) Po| 1_, 12 Sm, 250" 427 10K, (10-27)

Lemma 10.10. There exists §(gy > O such that the following statement holds. Let h < 0 and a(§) be a
smooth bump function adapted to {|&| < 1}. Then for every fixed t, we have

IOP(A(O<p,+))(x. D)a(D) Op(Ad(OZ; ))(D.y) —a(D)ll212 Sm, 27" (10-28)

Proof. For simplicity of notation, we omit & in O, 4, 0:}1 4 and Wy 5. Following the hypothesis, we
fixt e R.
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The idea is to derive a kernel estimate as in Lemma 10.8, but taking into account the frequency gap.
The kernel of the End(g)-valued operator in (10-28) is given by

d§
@m)*

Kop(x,y) = [ (Ad(O<p(x,£)OZp (3, £)) — Da(§)e =% (10-29)

We obtain two different estimates depending on whether |x — y| < 273@% or |x — y| > 2730k

Case 1: |[x —y| < 273", In this case, we use the fundamental theorem of calculus and simply bound

h
Kl 5 [[ 4402002 0.60)
h
<
<ol

O[u,v]0~' =[0u0~t, 0007, 0€G,u,vegy,

la(§)|dtd§

%(Ad(od(x, £)0Z (. S)))' dl.

By the algebraic property

we have
ad(u) Ad(0) = Ad(0) ad(Ad(0™ YY), Ad(0O~1)ad(u) = ad(Ad(O~Vu) Ad(0™Y).

Therefore,

4 (Ad(0<(x. )02} (. ))
— ad(Wg) Ad(0<()(x, £) Ad(OZ1)(v, &) — Ad(O() (x, §) Ad(OZ}) ad(We)(7, £)
= Ad(0<¢)(x, §) ad(Ad(OZ))We(x, §) — Ad(OZ)We(y, £)) Ad(0Z)) (1, §).
Then using the fact that the norm on End(g) is invariant under Ad(O) for any O € G, we have

‘%(Ad(odu,s)ozﬂy,s») = |Ad(OZ)We(x. §) — AOZHWe(y,§)].

By the symbol bounds (10-5) and (10-4), we have |0y (Ad(OZl})lI/g)| <M, 2¢. Thus, by the mean value
theorem,

%(Ad(od(% £)021(y.9))| Sm, 2027000,

Integrating in £, we arrive at
K <n(x, y)] Sm, 20700, (10-30)

Case 2: [x —y| = 278" Here, the idea is to repeatedly integrate by parts in £. Since

0 Ad(O<p(x,£) 02, (y,£)) = ad((O<n(x,£) 02, (9, 6)):6) Ad(O<p(x,§) 02, (1, §)),

the symbol bound (10-5) implies

— _1
190" Ad(O 4 (x.§) OZp (3. )] S, 27210,
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Therefore, integrating by parts in £ for N times in (10-29), we obtain

1
|x_y|(1—5)1v+%5

|K<p(x, )| <s,.N,M, for |x —y| 2 270" o< N <571

Finally, combining Cases 1 and 2, we obtain
sup [[1Kpx.3)ldy + sup [ 1K yx,3) | di S, 20750000 < 2ok
x y

provided that §q) is small enough. Bound (10-28) now follows. O
Corollary 10.11. For any k € R we have

[Op(Ad(O<p,+))(x. D)Poll 2512 Sm, 1. (10-31)

[0p(Ad(O<p,+)<k)(x. D) Poll 212 Sm, 1. (10-32)

Proof. The first bound follows by a 7' T *-argument from Lemma 10.10. Next, note that Ad(O <, 4 ) <k (x, §)
is simply a smooth average of translates of Ad(O.j +)(x,§) in x. Therefore, the second bound follows
from the first by translation invariance of L2 O

Next, we borrow a lemma from [Krieger and Tataru 2017], which handles Ad(O.j, 4+ )r when k is
large compared to /.

Lemma 10.12. Lett € R, h <0and k > h + 10. Then we have
|OP(Ad(O<p,+)i)(t. %, D) Poll 2 12 Sat, 2710 (10-33)
Furthermore, for 1 <gq < p <00, h <0and k > h + 10, we have
|OP(AA(Op 43t X, D) Poll 12 a2 Sna, 207727106, (10-34)
Same estimates hold for the right quantization Op(Ad(O<p 1)k (D, s, y).

Remark 10.13. The specific factor 10 in the gain 27 10k=h) jg not of any significance, but it is important
to note that this number is much bigger than 1; see the proof of Proposition 10.14 below.

For the proof, we refer to [Krieger and Tataru 2017, Proof of Lemma 8.4] or [Oh and Tataru 2018,
Proof of Lemma 9.11].

Proof of Proposition 10.9. Due to the frequency localization of the symbols in (10-27), we can harmlessly
insert a multiplier a(D) whose symbol is a smooth bump function a(§) adapted to {|&] < 1}, and then
discard Py to replace (10-27) by

I0p(Ad(O<p 1) <k) (x, D)a(D) Op(Ad(OZ, )<k )(D.y) —a(D)l 2oy 2 Sp, 25O% +2710G=0),
Now it suffices to combine the last two lemmas. O

Proof of (9-44), (9-46), (9-47) and (9-44)' in the case Z = L?. By a T T* argument, the bounds (9-44)
and (9-44)" are immediate consequences of (10-27). Also from (10-27) we obtain the estimate (9-47)
with a constant 2~3©¥, which is less than ¢ if  is chosen large enough depending only on M.
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Finally, for (9-46) we compute
9:(Ad(0)) <o = (ad(0y) Ad(0)) <o:

therefore it suffices to combine the decomposability bound (10-17) for O,; with ¢ = oo with (10-31).
The former bound yields a 27% factor which again yields & smallness if « is large enough. O

10G. Space-time L2L2 bounds. Next, we establish (9-44), (9-46), (9-47) and (9-44) when Z = N
or N*. As we will see below, (9-44), (9-46) and (9-44)’ follow from the arguments in [Krieger and Tataru
2017]. In the bulk of this subsection, we focus on the task of establishing (9-47).

To state the key estimates, it is convenient to set up some notation. We introduce the compound
G -valued symbol

0<h,:i:(tvx’sv y’é) = 0<h,:i:(t’x’é)0:}ll’:}:(s’ yvi:)

The quantization of Ad(O . 4 ), which is an End(g)-valued compound symbol, takes the form

Op(Ad(O<p,2))(t, x, D, ,5) = Op(Ad(O<,2))(1, x, D) Op(Ad(OZ;, 1))(D, . 5).

Given a compound End(g)-valued symbol a(t, x, s, v, £), we define the double space-time frequency
projection

(a)<<k(t’x’sv y!é) = Si’zSi’ga(t,x,s, y?é)

Therefore, according to our conventions,

Ad(O<p ) <k (1, %, 5,9, 8) = Ad(O<p4) <k (t, X, §) Ad(OZ, 1) <k (5,7, 6).

Proposition 10.14. For § > O sufficiently small, there exists 81y such that the following bound holds for
any h < =20:

| (OP(Ad(O < £)<0) (¢, %, D, 1, y) = 1) Po| ., you1/2 Sm, 2500 (10-35)

Before we begin the proof, we state a lemma for passing to a double space-time frequency localization
of Ad(O.p, 4 ), which is used several times in our argument below.

Lemma 10.15. For2 <qg <ocoand h+ 10 <k <0, we have

1_1 _
| (OP(AA(O - 1) <0) — OP(AA(O <) i) Po| o2 g2 St 207~ 012100=R)  (10.36)

This lemma is a straightforward consequence of Lemma 10.12; we omit the proof.

Proof of (10-35). We follow [Oh and Tataru 2018, Proof of Proposition 9.13]. For simplicity, we omit =+
in O<p 4, O<p 4 etc.

Step 1: high-modulation input. For any j € Z and j’ > j — 5, we claim that

T,
19, (Op(Ad(O<h)<0) =D PoQjrll y«_, x0.1/2 SM, 280hp3G=7"), (10-37)
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Step 2: low modulation input, 3/ < j. Here, we take care of the easy case %h < j. Under this assumption,
we claim that

10/ (Op(Ad(O<p)<0) = )P0 Q< =5l yu_, 012 Sha, 2*". (10-38)
Note that
Q;(Op(Ad(O<p)«j—s5)—1)PoQ<j—5=0.
Thus, using the L L? portion of N*, it suffices to prove
10 (OP(Ad(0<p) <0 — Ad(O<p) j—5) Po @ <=5l yu, 0172 St 2%
Since Q; and Q< ;s are disposable in L?L? and L® L2, respectively, this estimate follows from
Lemma 10.15.

Step 3: low modulation input, j < %h, main decomposition. The goal of Steps 3-6 is to establish
10, (OP(Ad(O<p) <o) = Ad(O_; 1) <0) PoQ<j—sll y_, yo.1/2 Sm, 250", (10-39)

provided that j + 8k < h.
At the level of End(g)-valued compound symbols, we expand
Ad(O-p) — Ad(0<j+gh) =L+ Q+C,
where

£=/ L, . .z dl,
j+gh§€§h L, <j+8h

Q= Q s dtde,
i tEh<t<t<p LY <iTh

CZ/ ~ C(’e/’g//’<g// dﬁ”dﬁ’dﬁ,
JHSh<t'<l/'<l<h

and the integrands £y <k, Q¢ ¢/, <k and Cy ¢/ ¢ <k are defined recursively as

Lo<ic(t.x,5,y.§) =ad(Wy)(t,x,§) Ad(O<) (1, x,5,y.§)—Ad(O <) (L, x,5,y.§) ad(V()(s. y,§),
Quu,<k(t,x,8,y,8) =ad(W)(1,x.8) Loy <k (1, x,8,y,6) =Ly <k (1, x,5,y,8) ad(We)(s, y, §),
Cov o<k (t,x.8,y,§) =ad(We)(1,x,8)Qp o7, <k (t.x,5,.6)=Qp 7, <k (1, x,5,y.§) ad (W) (s, y.§).
The three terms Ly k., Q¢ ¢/, <k and Cy ¢/ g7 <k are successively considered in the next three steps.

Step 4: low modulation input, j < %h, contribution of £. Our goal here is to prove
I Qj£<<0P0Q<j_5||N*—>X851/2 <M, IOLS (10-40)

We introduce

Lo, <k, = ad(We) (7, x,8) Ad(O <) <k (1, X, 5, ¥, §), = Ad(O<p) i (£, X, 5, ¥, §) ad (W) (5, ¥, §)
Lg,<—00 = ad(We) (7, x,§) —ad(We) (s, ¥, §)
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and take the decomposition

L dlt

£=/~ L, .. 5 — . ._)dﬁ—{—f _ L, ..z .
i +8h<t<h L, <j+8h l,<j+0h,<Kj—5 i —108h<t<h l,<j+8h,<Kj—5

—I-/ B B (ﬁ s . —ﬁg’<_oo)d£+[ . .
i tBh<t<j—105n O/ HORKj=5 i +8h<t<j—108h

=:Lay+ L)+ Lz)+ L)

££,<—oo dt

Step 4.1: low modulation input, j < %h, contribution of £(y). For this term we can add a double frequency
localization <« C on L, <j+8h and then harmlessly discard the double < 0 localization in (10-40). Then
it suffices to prove that for £ > j + §m we have

— L= +8m)]15(10+1)8R
195 OP(L, —;+5m«cc —Lowjrin;s)PoQ<i—slooros 2 Sh, 27 sl UFIM(10+3)5h,

and then integrate with respect to £. But this is a consequence of the decomposability bound (10-14) with
g = 6 and r = 00, together with the bound (10-34) with p = 6 and ¢ = 2.

Step 4.2: low modulation input, j < %h, contribution of £(3). Here as well as in the next two cases the

<« 0 localization in £ has no effect and is discarded. The two terms in £ are similar; we

0,<j+8h,<j—5
restrict our attention to the first one. Consider now the operator

Q; Op(ad(¥g) Ad(O_ , 5,)«j—5)Q<j—s = _ Q; Op(ad(¥(") Ad(O_,  5,)«~5) Q< j-s.
0
The important observation here is that, because of the geometry of the cone, the frequency localizations
for both Ad(O<;ysqn)«j—5) and \IJEQ) force a large angle 6 > 2U=0/2 or else the above operator
vanishes.
Given this bound for 6, we can now use the decomposability bound (10-14) with ¢ =2 and r = oo
combined with (10-34) with p = oo and g = oo to obtain

6 1 1 1
I Op(ad(lllé ))Ad(0<j+z§h)<<j—5)P0||L00L2—>L2 <m, 272722079972,
which after & summation in the range 6 > 2%(1 =0 yields

_1: 5%
1Q; Op(L2)) PoQ<j—slloor2 s> Sm, 272722%0,
which suffices.

Step 4.3: low modulation input, j < %h, contribution of £(3). Here we have the same angle constraint as
above but this levels off for £ < j, namely 6 > 2-(=D+/2 However, we can now replace (10-32) with
(10-27) to obtain

) Ll Ly, P15 §
I Op(ad(\Ilé ))(Ad(0<j+8h)<<j—5 — 1)) Polloor2—sr2 Sm, 27272 2= p—2 (28(0)(j+8h) +2108h)’
which after 6 and £ summation yields
1) OP(£s) PoQjsllpoe 212 Saa, 272/ PO 7wDN 4290,

This suffices provided that § is small enough § < 3(0)-
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Step 4.4: low modulation input, j < %h, contribution of L(4). Here we have the same range j — §h <
L<j+ 1084 for £. We also have the same constraint on the angle 6 > 2~ ¢=/)+/2 byt this is no longer
relevant in this case, as we will gain in frequency, and this can override any angular losses.

This time we are able to take advantage of the difference structure for W. Precisely, it suffices to show
that for a, a localized at frequency 1, we have

_1 _
| Op(ad(¥{™)) (¢, x, D)a(D) —a(D) Op(ad(W{)) (¢, x. D)llpoo 12 par2 Sm, 27 9°2¢07C. (10-41)

But this was already proved in [Oh and Tataru 2018, (9.40)].
Step 5: low modulation input, j < %h, contribution of Q. We proceed in the same manner as in the case
of L. Defining the symbols
Qv <k, <k = ad(We) (1, x,§) Loy <k, ke (1, %,8.¥.§) = Ly <k, < (1. x5, y,§) ad(We)(s, y. §).
Q<00 = Ad(We) (1, X, §) Lo <00 (t. X, 8, Y. 8) = Ly <—oo(t. X, 5.y, §) ad(W()(s, y. §).
we decompose Q as
_ - - /
Q= j+gh<€’<€<h(Qe’Z/’<j+8h QZ,K/,<j+8h,<<j—10) de dt

+ e’ de

i +8h<t/<t<h Qe,e’,<j+5h,<<j—1o
j—108h<t

+/ < Q) p—iisr wii10— Qutr<—00)dl dl
i+ 8h<t/<t<j—103h LA, <j+6h,<Kj—10

+/ _ ~ Qe,g/,<_ood€/d€
JHSh<t/<l<j—108h

= Q) + Q2 + <3 + 2w
Then we consider each term separately.

Step 5.1: low modulation input, j < %h, contribution of Q(1). Proceeding as in Step 4.1, we have

_ ~ _ ~ /
St = /j+3h<z,<e<h(Qé,e/,<j+5h,<<c Q< j+ih,«j-s)<odt dt

and we can again harmlessly discard the outer << 0. Applying the decomposability bound (10-14) with
q = 6 for Wy and with ¢ = oo for Wy, and r = oo, together with the bound (10-34) with p = oo and
q = 3, we obtain

1 3 1\%
_ _ _ — L= +8m)]H(10+1)8R
190 ¢ < j45n.«c — 2pr<j+in«j—sllLoor2>r2 Smy 270 202

Summing up with respect to £ and £’ we obtain
10p(Qq1)) Pollpoor2—12 SM, 21°8h,

which suffices.
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Step 5.2: low modulation input, j < %h, contribution of Q(z)- Here and also for Q(3) and Q(4) we can
remove the outer frequency localization < 0, which does nothing. The expression Q) contains four
terms depending on whether W, and Wy, act on the left or on the right. We consider one of them, for
which we need to bound the operator

Q; Op(ad(Wy) Ad(O_; , 5,)«j—5ad(Wy)) O <5 Po.
We decompose with respect to angles into
0 0’
> 0, 0pad(¥(”) Ad(O_, , 5,)«j—5 ad(¥(; ) Q< s Po
0,0’
and consider the nontrivial scenarios. This is as in Step 5.2 but now we have two angles, which must

satisfy nonexclusively
either 0 > 2500 or o' > 230—0),

We can now use the decomposability bound (10-14) with ¢ = 3 and r = oo for the large!! angle and
q = 6 and r = oo for the other angle combined with (10-34) with p = oo and g = oo to obtain either
0 0’ 1l Leioy 1 Leipony,, L1
| Op(ad(¥(”) Ad(O_, , 5,)<j—5 (W) ) Poll ee 2512 S, 2727230706260~

or the same bound with the pairs (, 6) and (I’, 6”) reversed. Summing with respect to £, £/, and also with
respect to 6, 6’ subject to the constraints above, we obtain

_1: 5¢
10 Op(Q(2)) PoQ<j—5llpeor25 12 Sm, 2727235%,
which suffices.

Step 5.3: low modulation input, j < %h, contribution of Q(3). We repeat the angle localization analysis
in the previous step, but as in Step 4.3, we again replace (10-32) with (10-27). The outcome is similar to
the one in Step 4.3; details are omitted.

Step 5.4: low modulation input, j < %h, contribution of Q(4). Again we apply the same angle localization
analysis as in the previous two steps. However, as in Step 4.4, we also need to exploit the difference
between one of the two W’s and its adjoint. Consider one such term, e.g.,

0 6’ 0’
ad(W{7) (1, x. £)[ad(¥( )(1. x. §) —ad(W) ) (€. y.5)].
For this it suffices to apply the disposability bound (10-14) for %" combined with (10-41). The choice
of the exponents is no longer important. We obtain
_ 1 —Ci
10p(Qay) Poll o212 Sm, 2727207CD.

Step 6: low modulation input, j < %h, contribution of C. This repeats the analysis for £ and Q, but we
no longer need to keep track of angular separation. Setting

Co o 07, <k, <k’ = ad(Wo) (2, x,8) Qpr o7 <k, <k (1, X, 8, ¥, 8)—Qur o < <k (L, X, 5, y,§) ad(Wy)(s, y, §),
Covr 47, <—0o = ad(We) (1, x,8)Qp 7 «—0o(t. X, 8, ¥, 8)=Qu 1 «—oo(t, X, 5, y,§) ad(Wy) (s, ¥, §),

U That is, which satisfies the bound on the previous line.
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we decompose C as

C= / i (Co0r 07,<t7 = Co o 07 <t <—5) dl" d " dt
JHSh<l/<l/<f<h

" gt
* ./j+gh<€”<€’<ﬁ<h Ce,ege//,<(//,<<_5 dt’dt dt
j—108h<t

of (Cotrer<trjos —Copnpr <o) dE" dU dE
JHSh<t’<l/<€<j—108h

+/ B B CZ,@’,Z”,<—OO dﬁ”d@lde
JH8h<t"<t'<{<j—108h

=:Ca) +Cp) +C3) +Cua
and consider each of the terms separately.
Step 6.1: low modulation input, j < %h, contribution of C(y). The same argument as in Steps 4.1 and 5.1
yields the bound

[ Op(ad(¥¢) ad(Wy/) ad(Wer)(Ad((O <) — Ad((O<pr) «—5))<ollLoo 2 12

<M, 2—%j2é(j+8h—£)2é(j+8h—£’)2é(j+8h—£’)210£”2%8h’
as well as for any of the other choices of left/right quantizations for the W’s. Integration over j + §h <
¢" <’ <€ <% is now harmless.

Step 6.2: low modulation input, j < %h, contribution of C(2). Applying the decomposability bound (10-14)
with g = 6 for each of the three W’s in the C integrand, as well as the L2 bound for Op(Ad((O<¢») «—5)
yields the bound

| Op(ad(We) ad (W) ad (W) Ad((O_ ) <c—s oo 1212 S, 27272600260 060=0),

which suffices after integration in £ > j — 105k and €', ¢ > j + 8h.

Step 6.3: low modulation input, j < %h, contribution of C(3). This is the same argument as in the previous
step, but using (10-27) instead of (10-32).

Step 6.4: low modulation input, j < %h, contribution of C(4y. Here we are concerned with symbols of
the form

ad(We)(t, x. §) ad(We ) (1, x. §)[ad(Wer (1, x. §) — ad(Wer (8, y, 5)].

where one or both of ad(\W,) and ad(¥,,) may be switched to the right and in the right quantization. Here
we use again the decomposability bound (10-14) with ¢ = 6 for Wy and ad(W), and (10-41) for the Wy~
difference.

Step 7: low modulation input, j < %h, low frequency 0. To complete the proof of the estimate (10-35)
it remains to show that

O/ Op(Ad(0<j+gh)<<0(t, x,D,y,s)— 1)P0Q<j_5||N*—>X851/2 <M, 28mh (10-42)
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Ifj+ Sh < h, this is combined with the bound (10-39), which is the main outcome of Steps 3-6. Else,
this is used by itself, simply observing that we can harmlessly replace j + 6k by h.
The above bound is identical to

10 OP(AA(O_; ,5,) <0 —Ad(O_,_ 5)<j=35)(t, %, D, ¥, ) PoQ< s yu_, yo.1/2 Sht, 2°7,

which in turn would follow from

_1l:
IOP(Ad(O_,, 5,)<0—Ad(O_; , 5,)<j—5)(t,X, Dy, $) Poll Lo 212 Sp, 27272700,
But this is a direct consequence of the bound (10-34). O
Proof of (9-47) in the case Z = N or N*. For the estimate (9-47) with Z = N* we combine the L>°L?

bound given by (10-27) with (10-35). If on the other hand Z = N, then the same bound follows by
duality. O

It remains to prove (9-44), (9-46) and (9-44) when Z = N or N*. For this purpose, we recall the
following result from [Krieger and Tataru 2017]:

Lemma 10.16. For { <k’ £+ O(1), we have
|0 Op(Ad(O<p,2)k) (¢, %, DY Q<0 Poll o, 0172 St 2717, (10-43)
| Q¢ OP(AA(OZ} L)) (D, ¥,9)Q<0Poll yu_, you1r2 Saa, 251K (10-44)
In particular, summing over all (£, k") with £ <k and k <k’ + O(1), we have
19 < (Op(Ad(O<p,+)<0) = Op(Ad(O<p ) <k~ (1, X, D) Q<0 Poll s, x0.172 Sag, 1, (10-45)
|Q <k (OP(AA(OZ} 1)<0) —OP(AA(OZ} 1) <k—))(D. ¥, 8) Q<0 Poll g, x0.12 Sh, 1. (10-46)

Proof. The proof of this lemma is similar to that of Proposition 10.14, but simpler in the sense the
frequency gap need not be exploited. It can be proved with exactly the same arguments as in [Krieger
and Tataru 2017, Proof of Proposition 8.5] (there, Ms < ¢). Because of this, we will merely indicate here
how to modify the preceding proof of (10-35) to obtain (10-43). We leave the details, as well as the entire
case of (10-44), to the reader.

As before, we omit + in the symbols. We replace Ad(O<j) « (¢, x,s,y,&)—1by Ad(O<p) < (t, x,§)

throughout the proof of (10-35). The main decomposition (Step 4) now takes the form
Ad(O<p)(1.x.§) = Ad(O_;  5,) = £+0 +C

= C/ ~d£+/ Q,/ ~d£/d£
/”ghfefh b<jtoh i+8n<tr<t<p G <j+bh
+/ c o ddlde,
i +8h<tr<t'<g<p LUA<j+8h
where

Ly (6, x,6) = ad(Wg) Ad(0)(1, x, ),
Q< (t,x,8) = ad(W) Ly, 4 (1, x,§) = ad(Wy) ad(Wyr) Ad(O<x)(t, X, £),
Cp < (t.x,8) = ad(¥) Qp (1, x,§) = ad(Wy) ad(Wyr) ad(Wyr) Ad(O<)(t, X, £).
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For the expansion of £, Q and C in Steps 5, 6 and 7, we replace Ly <k «k/> Lo, <—o00> 0/, <k, <k’>
Qp 4/, <—o00s Cor 07 <k, <k’ and Cy g7 g« by, respectively,

Ly g =2ad(¥g) Ad(O<p) <k (1. X. §),
Ly oo =ad(Wp)(t, x.§),
Qo <<k = 3d(W) LY (1, X, 8) = ad(¥y) ad(Wyr) Ad(O <) <p/ (2, X, £),
Q) 41 wroo = ad(WQ) LY __ (1, x.§) = ad(Wy) ad(¥p)(t, X, §),
Coopr <k <k = 3d(W) Qg g (8, X, &) = ad(Wy) ad (W) ad(Wpr) Ad(O<f) < (1, x, ),
Cop <o = 8d(We)Qy g oo (t, x,8) = ad(Wy) ad(Pyr) ad (W) (7, X, §).

Accordingly, we replace the use of (10-27) and (10-36) by (10-32) and (10-34), respectively, which results
in loss of the smallness factor 28(0% in (10-43) compared to (10-35). O

Proof of (9-44), (9-46) and (9-44)" in the case Z = N or N*. It suffices to consider the Z = N*; then
the case Z = N follows by duality. The L% L? bound follows from the Z = L? case, so for (9-44) and
(9-44)' it remains to establish that
L
10 Op(Ad(O<p,+)<0) Polly+—r2 Sm, 2727

By Lemma 10.16 this reduces to

1
10, Op(Ad(O<p.+)<j—5)Polln+—12 Sm, 2727

Now due to the frequency localization for Op(Ad(O.p 4 )<;—5 We can insert a (slight enlargement of)
Q; on the right, in which case we can simply use again the Z = L? case.
Similarly, in the case of (9-44)’ it suffices to show that

_ 1
1018z, Op(Ad(O<p +)<0)]1 Q< Polly+—r2 Sm, 2727 2",

We split into two cases. If j < %h then we write

¢ Ad(0<h,:l:) = ad(0<h,:|:;t) Ad(0<h,:l:)<0)v

and then we can easily combine the decomposability bound (10-18) with the L? boundedness of
Op(Ad(O<p,+)<o0)- Else we have

Q;[0:, Op(Ad(O<p,+)<0)]Q<; Po = Q;[0:, Op(Ad(O<p +)[j—5,0P] Q< Po.

Now we discard Q;, O <;—s and d; and use directly (10-34) with p = oo and ¢ = 2. O

10H. Dispersive estimates. Finally, we sketch the proofs of (9-45) and (9-45)". As in [Krieger and Tataru
2017], we exactly follow the argument in [Krieger et al. 2015, Section 11]. In the case of (9-45), we
replace the use of the oscillatory integral estimates (108), (110) and (111) in [loc. cit.] by (10-24), (10-25)
and (10-26), and the fixed-time L? bound (114) in [loc. cit.] by (10-32), (118) in [loc. cit.] by (10-45)
etc. In case of (9-45)', observe that all the constants in these bounds are universal under the smallness
assumption (9-48) for a suitable choice of §,(M), as we may take My < 1.

~
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There is one exception to the above strategy, namely the square function bound
| OP(Ad(O)<0(t. x. D)lge 1032wty 1 (10-47)

This is due to the fact that the square function norm was not part of the Sy norm in [Krieger et al. 2015;
Krieger and Tataru 2017], and was added only here. The same approach as in [Krieger and Tataru 2017]
allows us, via a T'T*-type argument, to reduce the problem to an estimate of the form

H/ x—1(t—5)S(t,5)B(s)ds
L10/3

) SM(T ”B”L}CONL%’
t
where

S(t.5) = Op(Ad(O+) <o(t, x, D)eT Pl Op(Ad(04)<0(D, s, y)

and the bump function y_; corresponds to the modulation scale 2l in Sg. It is easily seen that the bump
function is disposable and can be harmlessly discarded. Hence in order to prove (10-47) it remains to
show that

“/ S(t,s)B(s)ds

s Mo 1Bl 107 (10-48)
x I3

To prove this we use Stein’s analytic interpolation theorem. We consider the analytic family of operators
T,B(t) = e? /(t —5)?S8(t,s)B(s)ds

for z in the strip
-1 <Imz < %

Then it suffices to establish the uniform bounds
Tzl 212 <M, 1. Rez =-—1, (10-49)
T2 reor2 SM, 1 Rez =3, (10-50)
For (10-49) we can use the bound (10-31) to discard the L? bounded operators
Op(Ad(Ox)<o(r, x, D)e*1P1, e FIPlOp(Ad(01) <0(D. 5. ).

Then we are left with the time convolutions with the kernels e?”¢%. But these are easily seen to be
multipliers with uniformly bounded symbols.
For (10-50), on the other hand, we consider the kernel K (¢, x, s, y) of T,. This is given by

Kz (t,x.5.9) = €% (1 =5)* K% (1. x,5.7)
with @ a smooth bump function on the unit scale. Hence by (10-24) we have the kernel bound

)—100

|KZ(I7X’S’y)|§Mg <|I—S|—|X—y| ’ RCZ:%.

Fixing x and y we have the obvious bound

IKz(,x, s 212 SM, 1.
Then (10-50) easily follows.
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11. Renormalization error bounds

Without loss of generality, we fix the sign & = +. In this section, unless we specify otherwise, Op(-)
denotes the left quantization. For the sake of simplicity, we also adopt the convention of simply writing
Ay for Py A.

11A. Preliminaries. We collect here some technical tools for proving the renormalization error bound.

We begin with a tool that allows us to split Op(ab) into Op(a) Op(b). The idea of the proof is based
on the heuristic identity Op(ab) — Op(a) Op(b) ~ Op(—idga - dxb) for left-quantized pseudodifferential
operators; see [Krieger et al. 2015, Lemma 7.2] and [Krieger and Tataru 2017, Lemma 7.2].

Lemma 11.1 (composition via pseudodifferential calculus). Lera(t, x, &) and b(t, x, §) be End(g)-valued
symbols on I; x R% x Rz’ with bounded derivatives, such that a(t, x, ) is homogeneous of degree 0 in &

and b(t,x, &) = Pi‘he_lob(t,x, £) for some 0 < 0 < 1 and 2" = 0. Then we have

1(Op(a) Op(b)—Op(ab)) PollLa 2[11—Lr L2[1]

< 100gallp,rr2 Lot IOP(O ™ 9xb) Pollpa p2pry> o1 2y (11-1)
where r~! = p71 + ps L

Proof. For simplicity, in this proof we only present formal computation, which can be justified using the
qualitative assumptions on a and b.

Let us fix ¢ € 1. Thanks to the frequency-localization condition b(x, §) = P b(x, &), we may write

X
<hyp—10

(Op(a) Op(b) —Op(ab)) Po = »_ Op(al) Op(b3) — Op(alb}).
¢
where

ad (x,£) = a(x, ) (P2 EMZ(E),  bY(x, &) = b(x, )l (E)mo(£).

Here ¢ runs over caps of radius ~ 6 on S3 with uniformly finite overlaps, (m‘g)z(é) = (mz)z(é /€D
are the associated smooth partition of unity on S3 and mq(£) is the symbol for Py. The functions
nﬁ‘g & = nﬁ‘g (§/1€]) and m(&) are smooth cutoffs to the supports of m‘g and my, respectively, which can
be inserted thanks to the frequency-localization condition b(x,§) = P2 ho—1 ob(x.8).

For each ¢, we claim that

|0p(ag) Op(b9) — Op(afyb) L2 12
20
~ (Z supm‘g’(w)ne"ag")a(-,w)nLoo) 10p(O™ 0xb) L2 r2- (11-2)
n=1 ¢

Assuming the claim, the proof can be completed as follows. Let us restore the dependence of the symbols
on ¢. By the definition of Dy L9L", we have

20 2\1
(Z( swpmtnensfa.-.onu) )
¢ ‘n=1 7

- S 00¢allp,Lr2noorn-
t




370 SUNG-JIN OH AND DANIEL TATARU

On the other hand, by L2-almost orthogonality of nﬁz (&) and Holder in ¢, we have

1

2

H (ZMOp(e—laxb;?)niz%z)
¢

. S 10p(8~"0xb) Pollpar2— o1 L2011
t

where r~1 + p_1 = pl_1 Therefore, by Cauchy—Schwarz in ¢ and Holder in ¢, (11-1) follows.
We now turn to the proof of (11-2). For simplicity of notation, we use the shorthand a = a‘g and

b= b¢ for now. Then the kernel of Op(a) Op(b) — Op(ab) can be computed as follows:

d§ dny
(2m)* (2)*

K(x,y) = / e CmDEICETIN (g (x £) —a(x, n)b(z,n) dz

d
// =281 @)1 (& — ) - (dga) (x, sE 4+ (1 —s)n)b(z, 1) dz 2 5)4 (2;:)4
d§ dny

_ i(i—2) € i(z—) _
_ l/o/e HEIN D) (w58 + (L= Ob) 1) d2 5 S ds

Expanding
dea(x,-) = [ e VB (3ea)V(x, B)dE
and making the change of variables Z = z — (1 — s) E, we further compute
d¢ dn
@2m)* 2m)*

dE  dn
(2m)* (2m)*

1
K(x,y)=—i f / ! s E=2)E I E—(=9E=2) (5. 4)V (x, B)(dxb)(z, ) d E dz
0

1 . —_ o~ v~
_ _,-/0 /e’(x_‘"‘_z)'se’(Z_y)'”(aga)v(x, E)(9:b)G + (1 —5)8, ) dE d?

1
— Vix. B i(x=sE—y)n —sE
= 1/0/(3561) (x, )(/ (0xD)(x —sE,n) o )4)d ds.

On the last line, note that the n-integral inside the parentheses is precisely the kernel of Op(0xb)(x—s &, D).
By translation invariance, we have

6 (@xb)(x =58, D)l L2y 2 = (07 9xb)(x, D) Poll 2o 2

On the other hand, returning to the full notation a‘g = a and rotating the axes so that ¢ = (1,0, 0, 0), note
that a (x -) is supported on a rectangle of dimension >~ 1 x 6 x 6 x 8, and smooth on the correspondlng
scale. Integrating by parts in £ to obtain rapid decay in E (of the form (E1)™N(9E’)~N, where

B’ = (82 27 %)), we may estimate

d§

0 [10eat)" (. )l waaas@aw(-,s)(m PO o

20
n=1
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Passing to the polar coordinates £ = Aw (where A = |£]), integrating out A and using Hélder in @ (which
cancels the factor 673), we arrive at

20
0 [10:a) (. Dl 42 < Y- supmb (@) 670 a(- ) 1.
n=1 @

which proves (11-2). O
Remark 11.2. As is evident from the proof, we in fact have the simpler bound
(Op(@) Op(b) — Op(ab)) PollLa 12111 Lr 1211]
< llallpy ez LooprillOP(O " 0xb) Poll Lar 2ty or gy (11-1)

In other words, control of the Dg P2 [.°°-norm already encodes the fact that a is smooth in £ on the
scale 6.

In practice, Lemma 11.1 can be only be applied when we know that the symbol on the right (b in
Lemma 11.1) is smooth in x on the scale ~1. Fortunately, when b = Ad(0O), the remainder can be
controlled using decomposability bounds for W. We therefore have the following useful composition
lemma.

Lemma 11.3 (composition lemma). Let G = G(t, x, £) be a smooth g-valued symbol on I x R* x R*,
which is homogeneous of degree 0 in & and admits a decomposition of the form G =) gcp—n G where

16D pyr2r00pr) < 0% B
for some B > 0 and o > % + 8. Then for every £ <0 we have
[0p(ad(G) Ad(O<¢)) Po — Op(ad(G)) Op(Ad(O<¢)) Poll N+ [11>n11] SM B. (11-3)

Proof. Let us assume that £ > hg — 20, as the alternative case is easier.
We decompose the expression on the left-hand side of (11-3) into Y_gc,—n D®, where

D® = 0p(ad(G®) Ad(0y)) Po — Op(ad(G®)) Op(Ad(0()) Po.

In order to reduce to the case when Lemma 11.1 is applicable, we introduce #y = log, 6 and further
decompose D® a5

L L
D® = / Op(ad(G @) ad(¥;,) Ad(Oy,)) Po dh— / Op(ad(G®)) Op(ad(¥y,) Ad(Op)) Po dh
hg—20 hg—20

+0p(ad(G @) Ad(O 1, —20) 515 —10) Po—Op(ad(G @) Op(Ad(O <4, —20)ny—10) Po
+0p(ad(G®) Ad(Op,—20) <hy—10) Po—Op(ad(G?)) Op(Ad(O 1, —20) <hp—10) Po-

We claim that
1
1D oo 20111 L2017 < 0972 B. (11-4)
Assuming (11-4), the proof can be completed by simply summing up in # € 2=, which is possible since
1
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For the first term in the above splitting of D®, we have

¢
/h » |0p(ad(G @) ad(¥y,) Ad(Op)) Po lLoo L2111 L2111 4N
o

£
SM /h ZO”G(Q)HDQLZLOO[I]”\D;Z||DL2LOO[I] dh
o—
l
M 622k 5y 69720 B,
hg—20

The second term can be handled similarly. For the third term, we use the DL2 L bound for G® and
apply Lemma 10.12 to Ad(O<p,—20)>h,—10), Which leads to the acceptable bounds

10p(ad(G @) Ad(O<p,—20)5hy—10) Poll oo 211> L1 1217 Sm 0% B.
10p(ad(G®)) Op(Ad(O<py—20)5hg—10) Poll oo 12111 L1 £211] Sm 0% B.

Finally, for the last term we use Lemma 11.1 (in fact, (11-1)"). O

11B. Decomposition of the error. Let
E = 07" Op(Ad(0) <o) — Op(Ad(0) <) .
We may take the decomposition
E=FE;+---+Es,
where
Ey =2i Op((ad(w - Ax,<—« + Ao,<—c + LE V) Ad(0))<0)| D«
E> =2i Op((ad(w - O;x + Oy — LY W) Ad(0)) <o) | Dx |,
E3 =20p(ad(Ag,<—¢)(ad(0*¥) Ad(0)) <o) + Op((ad(0;¢) ad(0**) Ad(0)) <o),
E4 = Op((ad(3% 0:a) Ad(0))<0).
Es = —2i Op(ad(4o,<—«) Ad(0)<0)(D; + [Dx|) —2i Op((ad(O<—y;r) Ad(0))<0) (D + | Dxl),
Ee¢ = —2i Op([S<o0.ad(® - Ax,<—« + Ao,<—)] Ad(0))|Dx].

In the remainder of this section, we estimate each error term in order.

11C. Estimate for E1. Here, our goal is to prove
”EIPO”Sg[I]—)N[I] <eg, (11-5)
with « large enough and §, sufficiently small.

11C1. Preliminary reduction. For this term, we may simply work with / = R by extending the input by
homogeneous waves outside /. The desired smallness comes from « and bounds for JA, and A Ag on 1,
which controls the size of the symbol of £ through our extension of A4 as in Section 9B.



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 373

We first dispose of the symbol regularization (- )<¢ by translation invariance, and also throw away
| Dx| using Py. Using (9-42) and the identity

-1
L"_,’_L?Ac‘uL =—-A_0+1,
(11-5) reduces to showing

H /  Op(ad(Gy) Ad(0)) Po dh <

SO—>N
where
Gr=0-Agp—o0-AZ™) L A1 0w 4G )4 4y,

x,h,cone x,h,cone
¢ +
Note that each angular component G,(z ) = Hg’ Gy, obeys
0) 1p .3
1G I pr2ree <2202 (| Axllst + 1 Aoplly1)-

Therefore, by Lemma 11.3, we have

H [ (©0paa(G1) Ad(0) ~ Op(ad(G) Op(Ad(ON) P thN* swr

which is acceptable. By Lemma 10.12 applied to Op(Ad(O)>¢), we also have

H /_ ~ Op(ad(Gy)) Op(Ad(0)0) Py dh‘

—K
1
<M / 22"|0p(Ad(0)50) Poll oo 21212 dh
N*—>N —00
< 273,
Thus it suffices to show that

H/_K Op(ad(Gp,)) Op(Ad(O) <o) Po dh < e&.

S§—>N

By (9-45), we have Op(Ad(O)<o) Py : Sg — So. Thus, in order to prove (11-5), we are left to establish

<Le, (11-6)

H / " Op(ad(Gy)) Po d
—00 So—N

where we abuse the notation a bit and denote by Py a frequency projection to a slightly enlarged region
of the form {|&| >~ 1}.

At this point it is convenient to observe that the contribution of EO to Ag in (9-27) is easy to estimate
in L1 L° and can be harmlessly discarded. Thus from here on we assume that

Ry =0. (11-7)

In order to proceed, we write

Gh = Gh,cone + Gh,null + Gh,outa



374 SUNG-JIN OH AND DANIEL TATARU

where ]
Geone = - A+ AZLO(@- AG™) ) + Ag jcone-
Ghnut = @« Ax pnutt + Ao, hnulls
Gh,out =w- Ax,h,out + AO,h,out~

11C2. Estimate for Gp, ¢one. We claim that

—K
/ Op(ad(Gh,cone)) Podh H Le. (11-8)
—0o0 N*—>N

Let G Hw jEGh cone and consider the expression Op(ad(Ghegone))Po By the Fourier support

h,cone
property of G( ) 1 (more precisely, the mismatch between its modulation < 2762 and the angle 6), it is
impossible that both the input and the output have modulation < 2762 Using the L2L2 norm for the

input or the output (whichever that has modulation = 2"92), we may estimate
”Op(Gh,cone) Py ||N*—>N

~Lhg—1
S 22 0~ ”Gh cone“DLzL(><D
0<1

5 1 1 Lhgl
S22 M Acullst + D270 | Qcniatog, 04 cOAxllare + ) 272 02 | A Ao bl 2o
f<1 <1

We now treat each term separately.

Case 1: contribution of small angle interaction. The term 2/ 2)h||AxJ,|| g1 is acceptable since it is
integrable in —oo < h < —«, and we gain a small factor 2~ (/2 a5 a result.

Case 2: contribution of [1A,. For the second term, we split the 8-summation into 8 <27 and 6 > 27
In the former case, note that
2b
10 <h+210g, 0+cOAxlp2r2 S 077 O Ax plly—1/2+5 .8, -
Since by > %, we may estimate
1y -1 —(2b—1
> 2770720 chitog, 940 DAxllz2r2 S 2 @o1=3K | D Ay hlly—1/2401 1
f<2—«

The last line is acceptable, since it is integrable in —oo < h < —k, and it is small thanks to 2~ (2b=1/2)
In the case 6 > 27, we estimate

_lpa_1 1
> 2720720 hiarog, 940 DAl S 2250 Ax 1l 2 gr—1/2-
f>2—«
After integration in /, this is acceptable thanks to (9-22).
Case 3: contribution of Ag. In this case, we simply sum up in # < 1 and observe that

—1lp 1
> 27203 | Adgpllp2re S 1A Aol 2 1o
o<1

After integration in /, this term is then acceptable by (9-29).
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11C3. Estimate for G, o, We claim that

—K
H / Op(ad(Gp o)) Po dh H Le. (11-9)
—00 N*—>N

As in the case of Gy, cone, the idea is again to make use of the mismatch between modulation of Gy,
and the angle 6. Let G hout = e j:Gh out» and consider the expression Op(ad(G }(; o)ut))PO By definition,
G}(l 3 . has modulation 2 2hp2, Thus we take the decomposmon Gh out = unazg Qht2a }(l 3ut By the
Fourier support property of the symbol Q424 G h Out (more precisely, the mismatch between the angle 6
and the modulation 27129)_ it is impossible that both the input and the output have modulation < 2h+t2a
Using the L2 L? norm for the input or the output, we have

[0p(ad(Gp,ou)) PollN*—N
_1 9
s> Y 2720290, 5063 prere

a f<min{C24,1}

<Y @022 0y Al + 27202022003 40 410 2)
a f<min{C24,1}

<Z(2z“ 2734073110 20D Ax il 1212 +239727927 30| A dg 4 1212).

We split the a-summation into a < —k and a > —«. In the former case, the sum is bounded by
_(2b—1 _1
27 CO=DND Al o1z + 272N A Al 2 12,

which is integrable in 4 and small thanks to 2~ (2b1=1/2)¢ therefore it is acceptable. When a > —«, the
sum is bounded by

1
22| 0Ax mll 2512 + 1A Aonll 2 f-1/2-
After integrating in /, this term is therefore acceptable by (9-22) and (9-29).

11C4. Estimate for Gp, ;. We claim that

H / ) Op(ad(Gp nun)) Po dh Le. (11-10)

So—N

)
Let G | =

output have modulat1on >27

Hw iGh null- Note that G( ) ;; has modulation = 2792 Hence if either the input or the
C2hg2 the same argument as in the case of G, ¢one applies. Writing 6 = 2¢,
it remains to prove

2¢ 2¢
> / O <niat—c Oplad(w-AZ) |+ A3 DIVPoQ pyae—c di <e (111
{e—N SO—)N
14
Our next simplification is to observe that we can harmlessly replace the symbols Agcz,h),null and A(()zh)null

with the functions Qp42¢ Ay p and Qp 24 Ay . This is because the difference of the two is localized still
at modulation 2712, but also at distance 2#72¢ from the null plane {o + w - n = 0}. This would force
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either the input or the output modulation in (11-11) to be > 2~€27+2£ and again the same argument as
in the case of G, ¢one applies. Thus with j = h + 2£ we have reduced the problem to estimating

—K
Z/ Q<j—cad(Q;Aq,n)* PoQ<j—c dh <Le, (11-12)
j<h? T So—N
—K
> [ 0jcad(Q A Do+ D PO cdh| <o (LY
o S0—>N

j<h
The second bound is straightforward since (Do + | Dx|) PoQ<o : So — L2 and Ag € L2H3/2,
Thus it remains to consider (11-12). From here on, we assume that A is determined by the expressions

(9-27) and (9-30) in terms of A. By (11-7) we have already set ﬁo = 0. It is equally easy to see that we
can set ﬁx = 0. Indeed, by (4-6) and (8-30) we have

10<j—c ad(@ ™' PR PoQ<j—cllsomn S25V P07 PR 21 <250 PRy L1 12,

where R = y 1 PR. Now the summability in j < & and the smallness is assured due to (9-26).
Once we have dispensed with the error terms, we are left with A, x given by

Ag=A"10(x1 A% 8, A). (11-14)
A=0""P(O(x1 A% 9xAg) + O'(PrA, x19°A) = O'(Ao, y19:A) + O'(Gy, x19°A)).  (11-15)
We consider the contributions of each of these terms in (11-12).

Step 1: the contribution of Ag = A~10 (x7 A%, 9; Ay) and A, = O~ PO (1 A¢, 85 Ay). This is the main
component, which we have to treat in a trilinear fashion. In particular we have to ensure that we gain
smallness. For this we use a trilinear Littlewood—Paley decomposition to set

A= > Alkkik) = Y HA(k.ki.ko)+ Y (1=H"Ak k1. k2),
k.k1,k> k.,k1,k>
where _ _
HA(k, kv, kz) := HPy PA(Py, x1 A%, Pr,d: Ay),

(1—H)A(k, k1, k2) == (1 = H) Py PA(Py, 1 A, Py, Ay).

For the terms in the first sum we use the trilinear estimate (8-43), which gives
| Q<j—c ad(Q;HAa(k. k1.k2))0* PoQ<jc |l g 11 12 S 270 Vel 22 U= e A1 | P, Al 1.

For the A, terms in the second sum we first use (8-21) and (8-33), (8-34) to obtain

I(1=H) Ax (k.1 k)| 21 < 2701 ome ™ol Py A g1 || Py Al s

and then use (8-30) to conclude that
10<j-c ad(Q; (1=H) A¢(k. k1, k2))3" Po Q< j—c || sy <2~ "1 VoKl 28100 P A 1] Py, Al 1.
Similarly, for the Ag terms in the second sum we use (8-35) and then (8-31) to obtain

|0<j—c ad(Q; (1-H) Ao (k. k1, k2))3° Po Q<j—c || sg—sn <201 Kmin=kmax| 251G =R | Py 4 61| P, A 51
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Adding the last three bounds, we obtain
10 <j—c ad(Q; Aq (k. k1.k2))0* PoQ < j—cllsg—n < 270 K =knin 051G =R P A 61| Py, Al 1.

This gives both summability in k, k1, k> and smallness provided we exclude the range of indices j, k1, ko €
[k — k', k 4+ «'] with &’ > 1.

On the other hand, in the range excluded above, the operator Py Q; is disposable, while both [J and A
are elliptic, i.e., of size 22k Then we can estimate

1Q; Atk k1, k2)ll 1 poo <2 | Pey Al pst | Pey All psi

therefore we gain smallness from the divisible norm; see (9-5).

Step 2: the contribution of A, = O~ PO’ (P/A, XI 3¢ A). This is a milder contribution, which we can
deal with in a bilinear fashion. Taking again the decomposition

A=Y A(k.ki.kp).
k,k1,k2
we use (8-38) to obtain

1Ax(k, ko) 71 S 270t Hma kel | Py A g1 | P, A1
Then by (8-30) it follows that
0<j—cad(Q;HAx(k, k1,k2))0*PoQ<;—cllsy—>L112
< 27 K Kmin D3 U= . A1 || Py All g1 (11-16)
Again this is suitable outside the range j,k1,k» € [k —«’, k + k'] with ¥’ >> 1, whereas in this range we
can use divisible norms as in the previous step.

Step 3: the contribution of PO'(Ag, x19; A) + PO/(ég, x19¢A). These two terms are similar, as we
have the same bounds available for /Io and 51. We will discuss ffo. Setting

Ay =07'PO' (Ao, y19:4), Ag=0,
we decompose A as before,

Ax =) Ax(k.k1.k2).

We can estimate the terms in the sum using (8-41) to get

| Ax(k k1, ko) 71 < 2731 Wkma=kuinl | Py Ao |1y 1 || P, All g1

~

Then (11-16) follows again from (8-30), and we conclude as in Step 2.

11D. Estimate for E,. Our next goal is to estimate the error term E5, which arises from the multilinear
error between O,y and do V. For this purpose, we rely crucially on interval localization of decomposable
norms (Lemma 10.7).
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11D1. Expansion of O.,. We will prove that

|E2Poln+1—ni < € (11-17)

provided that 1 is large enough, and §, is sufficiently small.
As usual, we may dispose of the symbol regularization (- )<o by translation invariance. Also disposing
of | Dx| using Py, it suffices to prove

|Op(ad(w - (O;x — 8x W) + (0 — 8, %)) Ad(0)) Py ||N*[I]%N[I] Le. (11-18)
Recall that 0, O<p.q = Wp o + [Wh, O<pial. Therefore,
dp(ad(O<pye) Ad(O<p)) = ad(9a Wy) Ad(O<p) + ad(¥y) Ad(O<pie) Ad(O<p).

Repeatedly applying the fundamental theorem of calculus and this equation, we obtain the expansion

ad(0.y) Ad(O)
—K
=/ ad(dg¥p,,) Ad(Op,) dhy (11-19)
—00
—K hl
+/ / ad(Wp,,) ad(0qWp,) Ad(O<p,) dha dhy (11-20)
—00 J—0O0

—k prh hs
+/ / / ad(\IJhl)ad(\Ith)-~-ad(8a\Ph6)Ad(O<h6)dh6-~- dhydhy. (11-21)
—00 —0Q0 —0o0
On the other hand,
0p(ad(0g W<p) Ad(O<p)) = ad(0oWp,) Ad(O<p) + ad(0q W <p) ad(Wy) Ad(O<p),

so we have

ad(d4¥) Ad(0) = / N ad(d,Wy,) Ad(Op,) dhy (11-22)

—00

—k prhy
+ / / ad(3eWy,) ad(Wy,) Ad(Op,) dhy dhy. (11-23)
—o0 J—o0

Observe that (11-19) and (11-22) coincide. Thus, we only need to consider the contribution of (11-20)-
(11-21) and (11-23) in (11-18).

11D2. Estimate for quadratic expressions. We begin with the contribution of the quadratic terms in W,
namely (11-20) and (11-23), which are most delicate. We claim that

<e, (11-24)

—k prhy
H [ [ optadcwn,) a2, Ad(O) Po s <
S N*[I1>NII]

<e, (11-25)

—K h]
H / / Op(ad(L2 Wy,) ad(Wy,) Ad(O<p,)) Po dha dhy <
—00 J—00 N*[I]—>N|[I]
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provided that k1 is large enough and §, is sufficiently small. In what follows, we will focus on establishing
(11-24), as the proof for the other claim is analogous.
By (9-42) and the identity L‘j; L® AL) L= —A;i O+ 1, (11-24) would follow once we establish

—Kk  rhy )

/ / Op(ad(Wp, ) ad(w - AF*™) Ad(O<p,)) Po dha dhy <&, (11-26)

—00 J—00 N*[I]—>N|[I]

—K hl .

H/ / Op(ad(lllhl) ad(A:oi O(w - Azlzam)) Ad(O<p,)) Po dhy dhy <Le.  (11-27)

—00 J—00 N*[I]—>NII]

main,(0) ,__ ) -1 main, (0)

In Lemmas 10.4 and 10.7, note that w - 4 (o AL} hey) and AwlD(a) A, ) obey the

same bounds. Therefore, (11-26) and (11-27) are proved in exactly the same way. In what follows, we
only consider (11-26).
Our first task is to remove Ad(Oy,). For 6 € 27N define
0 in, (<6 <6 in,(0
G® = ad(W)”) ad(w - A7) + ad({=") ad(w - A7),

2
so that

G :=ad(¥;))ad(w-Ap"™) = Y GO,
fe2—N
Note that

16 prree Sy 221122027063,

by Lemma 10.4 and Lemma 10.5. Applying Lemma 11.3, then integrating —oo < hy < h; < —k, it
follows that

<732k

~ ’

—K h]
H / / (Op(ad(G) Ad(Op,)) — Op(ad(G)) Op(Ad(Op,))) Po dha dny
—o00 J—00 N*[I]—~N[I]

which is acceptable. On the other hand, using the DL?L* bound for G and Lemma 10.12, we have

e oh
H/_ /_ Op(ad(G)) Op(Ad(O<p,)>0) Po dha dhy

N*[I]->N[I]
T b Lo
Sw [ [ 2Am2A0 i 0p(Ad(0 o0 Pollo gy ooy dha
-0 J =0

w273,

so we may replace Op(Ad(O«p,)) by Op(Ad(O<p,))<o. Finally, by (9-44) we have
Op(Ad(O<p,)<0) Po : N*[I]— N*[I],

so we are left to prove

<Le. (11-28)

0 hi )
“/ / Op(ad(V¥y,) ad(w - AZ“;‘“)) dhy dhy
—00 J—00 N*[I1—N[I]
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In order to place ourselves in a context where we can apply Lemma 10.7, we begin by dispensing with

the case of short intervals
|I| 2—h2 CIC

For very short intervals | /| < 27717C¥ we have the bound

<m 2M1),

0 h )
H/ / Op(ad(¥p,) ad(w - Ap5™)) dha dhy
—00 J—00 L®L2—L1L2

which is a consequence of fixed-time decomposability bounds, namely (10-10) with ¢ = oo and (10-14)
with ¢ = oo and r = oo, combined with Holder’s inequality in time. This suffices for the integration with
respect to i; and /5 in this range.

For merely short intervals 2771 7C¥ < |J| <27727C¥ we are allowed to use space-time decomposabilty
bounds but only for Wy, . In this case we apply (10-10) with ¢ = oo and (10-14) with ¢ = 6 and r = oo,
combined with Holder’s inequality in time, to obtain

1 5
<y 276M2k 5.

0 h i
H/ / Op(ad(¥p,) ad(w - A‘;;;m)) dhy dhy
—00 J—00 L>oI251112

This again suffices for the integration with respect to /4 and /5 in this range.

For large intervals, on the other hand, we will use Lemma 10.7. We begin by decomposing Wy, =
> o, \Dl(ﬁl) and AP =", Azljm’(ez). First, we consider the case 2162 > 272€2h202. For fixed /1y, h»
and 65, we use interval localized decomposability calculus to estimate

6 m in, (0
> ||OP(ad(‘If( 1))ad( ain-( 2)))||L°°L2[I]—>L1L2[I]

0 22—K2(1/2)(h2_h])02

(
< Z 19 pr2pooppylleo- AR p 2 poory
01>2—K2(1/2)(h2*h1)02

0
< 224020, 4, 61 273265 2 o AT o).
Summing up in 6, < 272%, we see that

6 in, (6
3 3 |0p(ad(W) ad(w - A3 ™ ) Ad(O ) |ED N oo L2111 21 2211}
02<2—2K 0122—/(2(1/2)(}72—}11)92 .
<2723t 4y g1 (| Ap, D150

which is acceptable. On the other hand, in the large angle case 6, > 272, we use Lemma 10.7 to bound

- (0
27826, o AR iy S 28 A s

When 271602 < 272€2%202 we extend the input to R x R* by zero outside / and use modulation
localization. Here we do not apply Lemma 10.7, but rather gain smallness from —«. In this case, observe
that it is impossible for the input, the output and \11}5911) to all have modulation < 22 022 =: jp. Therefore,

we split into three cases:
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Case 1: high-modulation input. We estimate

[7] in, (0
Z Z ||Op(ad(\p}(lll)) ad(a).AI;lﬂ;ln( 2)))Q2j2_C||X(1)/2’°°—>L1L2
) 01<2_K/22(1/2)(h2—h1)02
—Lhyp—1 0 ain, (0
2 > 2220 WO ool AT 5 o
02 9y <2—K/22(1/Dha—h1)g,
Lha-h) gt g2
<2 S 280050 A s A, s

6> 0, <2—K/22(1/2)(h2*h1)02

1 1
S 276 214 s A st

which is acceptable.

Case 2: high-modulation output. When the output has modulation > 2/27C then we have exactly the
same bound for L*L? — X0—1/2,1 (we use boundedness of O~ ;,_¢c on L>®L?).

Case 3: high modulation for Wy, . By boundedness of Q<;, ¢ on L>®L? and L'L? it suffices to have
the estimate

o in, (6
2 2 ||Op(ad(sz2_Cq'§ul)) ad(“)'Al;:;m( )lpoor2orir2
0> 9, <2—K/22(1/2)(ha—h1)g,

0 in, (0
N Z Z ||szz—C‘I’;(111)||DL2Loo||co-A‘;:;m( 2| pr2Le
02 9 <2—/22(/2(ha=h1)g,
1 1
<2 > 6763 1 A s 11 Aol 1

0> 91 <2—K/22(1/2)(ha—h1)g,

£ 2722 A s A sl
Here, we have use (10-15) for } ;5 ¢ O, \1,}(1911).

11D3. Estimate for higher-order expressions. The contribution of the cubic, quartic and quintic terms in
W in the expansion of O.q are treated in a similar manner as in the quadratic case; therefore, we omit the
proof. The only remaining case is the contribution of (11-21). For this term, we claim that

<e&

- hy hs
H[ / / Op(ad(qjhl).“ad(lphs)ad(0<h6;(¥) Ad(0<h6)) th dhz dhl <
—00dJ —00 —0o0 N*[I]_)N[I]

for k1 large enough and §, in (9-3) adequately small.

As in the case of the quadratic part, we start with very short intervals and move up the line. If
|I| <27"1=CK then we only apply fixed-time decomposability estimates, namely (10-14) with g = oo
and r = oo and (10-17) also with g = oo, together with Holder in time, to obtain

|Op(ad(¥},) -+ ad(Whs) ad(O<pgza) Ad(O<g)) | poop 212 S 276111,

which suffices for the % integration.



382 SUNG-JIN OH AND DANIEL TATARU
If 27 =Ck < |J| < 2772=CK then we switch to (10-14) with ¢ = 6 and r = oo for Wy, , to obtain

1 5
Hop(ad(‘yhl) e ad(qjh5) ad(0<h6;a) Ad(0<h6)) ”LOOLZ_)L] L2 SM 2 6hl 2h6 |I | °,

which again suffices for the / integration.

Repeating this procedure for increasingly large I we eventually arrive at the last case |I| > 2776=Ck,

There by Lemma 10.3 and boundedness of Ad(Oj,) on L?, we have

Hop(ad(qjhl) tee ad(\phs) ad(0<h6;a) Ad(0<h2)) HLOOLZ[I]—>L1L2[I]
SW¥h Iprereorry - 1WhsllpreLoorrll O<ngsellDLO L[]

Using Lemma 10.5 for \I!}(IO) with 8 < 27 and Lemma 10.7 for the rest, we have

_1 _
1@l propeerr) < 276" Q7| Ax pllsipy + C2“N Ax pllpsip)-

This bound provides us with the desired smallness. By the previous estimate and (10-17), the h-integrals
converge as well, which proves our claim.

11E. Estimates for E3, ..., Eg. We finally handle the error terms Es, ..., Eg, for which we gain
smallness from the frequency gap «.

11E1. The estimate for E3. It suffices to show that
_1
|E3Pollpoor2—pir2 Sm 2 2.

But this is a consequence of the L? boundedness for Op(Ad(Q)), combined with the L?L> decompos-
ability estimates for A4 and O, in Lemmas 10.4 and 10.6.

11E2. The estimate for E4. We expand with respect to #,
—K
ad(0%*0,4) Ad(0) = / 0%(ad(O<p:q) ad(¥y)) Ad(O~p) ad(OWy) Ad(O<p) dh.
—00
For the first term we simply use two L2 L% decomposability estimates as in the case of E3. For the
second term, in view of the bound (10-16), we can apply Lemma 11.3 to discard the Ad(Oj) factor.
Then it suffices to show that

<M 2h,

H/_K Op(ad(CWy)) Py dh
—00 So—N

After expanding ¥, in 6, we note that, due to the frequency localization of \IJ}(lg), either the input or the
output has modulation = 2792, We assume the former, as the other case is similar. Then we only need to
prove the bound

3
<um 623",

—K
H / Op(ad(@W\?)) Py dh
—00 L2—>L'L2

which is an immediate consequence of the decomposability bound (10-16) for D‘Ifg)).
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11E3. The estimate for Es. It suffices to show that
_1
||E3PO||S§—>L1L2 Sm 2725

Since (D¢ + |Dx|) Py : Sg — L2, this follows from the L? boundedness for Op(Ad(0)), combined with
the L2 L decomposability estimates for A, in Lemma 10.4.

11E4. The estimate for E¢. In view of the L?L> decomposability estimates for A, in Lemmas 10.4
and 11.3, we can discard the Ad(O) factor. In addition, as in Proposition 4.30, we can express the
commutator [So, Az] in the form

[So. Anlf =2"O(Ap. f).

L¢,

S()-)N

Then we have reduced our problem to proving
—K

/ 2" Op(ad(w - VA, 1)) Po dh
—00

Le.

‘ S0—>N
But then these follow, with the 2791¥ gain, from (8-21) and (8-23), thanks to the extra derivative (i.e., the
2h factor).

—K
/ 2" Op(ad(Ag 1)) Po dh

—00
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