
PURE and APPLIED
ANALYSIS

msp

SUNG-JIN OH AND DANIEL TATARU

THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC
GAUGE:

LOCAL WELL-POSEDNESS AND CONTROL
OF ENERGY-DISPERSED SOLUTIONS

vol. 2 no. 2 2020



PURE and APPLIED
ANALYSIS
Vol. 2, No. 2, 2020
https://doi.org/10.2140/paa.2020.2.233

msp

THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC GAUGE:
LOCAL WELL-POSEDNESS AND CONTROL

OF ENERGY-DISPERSED SOLUTIONS
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This is the second part in a four-paper sequence, which establishes the threshold conjecture and the soliton
bubbling vs. scattering dichotomy for the hyperbolic Yang–Mills equation in the .4C1/-dimensional
space-time. This paper provides the key gauge-dependent analysis of the hyperbolic Yang–Mills equation.

We consider topologically trivial solutions in the caloric gauge, which was defined in the first paper
of the sequence using the Yang–Mills heat flow. In this gauge, we establish a strong form of local
well-posedness, where the time of existence is bounded from below by the energy concentration scale.
Moreover, we show that regularity and dispersive properties of the solution persist as long as energy
dispersion is small. We also observe that fixed-time regularity (but not dispersive) properties in the caloric
gauge may be transferred to the temporal gauge without any loss, proving as a consequence small-data
global well-posedness in the temporal gauge.

We use the results in this paper in subsequent papers to prove the sharp threshold theorem in caloric
gauge in the trivial topological class, and the dichotomy theorem in arbitrary topological classes.
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1. Introduction

In this paper, along with the companion papers [Oh and Tataru 2017a; 2017b; 2019a], we consider the
hyperbolic Yang–Mills equation in the .4C1/-dimensional Minkowski space with a compact semisimple
structure group.
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In [Oh and Tataru 2017b], we defined the notion of caloric gauge with the help of the Yang–Mills heat
flow on R4, and showed that every subthreshold connection admits a caloric gauge representative (see
Section 1B below for a review). The first main result of the present paper (Theorem 1.13) is a strong form of
local well-posedness of the hyperbolic Yang–Mills equation in the manifold of caloric gauge connections,
where the time of existence is estimated from below by the scale of energy concentration. The second main
result (Theorem 1.16) asserts that regularity and dispersive behaviors persist as long as a certain quantity
called energy dispersion, which measures a certain type of nondispersive concentration, remains small.

While the caloric gauge reveals the fine cancellation structure of the Yang–Mills equation, and is thus
suitable for dispersive analysis at low regularity, it has the drawback that causality is lost. As a remedy,
we also show that regularity (but not dispersive) properties in the caloric gauge may be transferred to
the temporal gauge. As a corollary, we also obtain small-data global well-posedness of the hyperbolic
Yang–Mills equation in the temporal gauge (Theorem 1.18).

In the subsequent papers in the sequence [Oh and Tataru 2017a; 2019a], we use the results proved in
this paper to establish the threshold theorem (i.e., global well-posedness and scattering for subthreshold
data) in the caloric gauge, as well as the soliton bubbling vs. scattering dichotomy theorem for general
finite-energy solutions, formulated in a more gauge-covariant fashion. An overview of the entire series is
provided in [Oh and Tataru 2019b].

1A. Hyperbolic Yang–Mills equation on R1C4. Our set-up is as follows. Let G be a compact noncom-
mutative Lie group and g its associated Lie algebra. We denote by Ad.O/X DOXO�1 the adjoint (or
conjugation) action of G on g and by ad.X/Y D ŒX; Y � the Lie bracket on g. We use the notation hX; Y i
for a bi-invariant inner product on g,

hŒX; Y �; Zi D hX; ŒY;Z�i; X; Y;Z 2 g;

or equivalently
hX; Y i D hAd.O/X;Ad.O/Y i; X; Y 2 g; O 2G :

If G is semisimple then one can take hX; Y i D � tr.ad.X/ ad.Y //, i.e., the negative of the Killing form
on g, which is then positive definite, However, a bi-invariant inner product on g exists for any compact
Lie group G.

Let R1C4 be the .4C1/-dimensional Minkowski space equipped with the Minkowski metric, which
takes the form diag.�1;C1; : : : ;C1/ in the rectangular coordinates .x0; x1; : : : ; x4/. The coordinate x0

serves the role of time, and we will often write x0 D t . Throughout this paper, we will use the standard
convention for raising or lowering indices using the Minkowski metric, and summing up repeated upper
and lower indices.

Our objects of study are connection 1-forms A on R1C4 taking values in the Lie algebra g. They define
covariant differentiation operators D� DD

.A/
� D @�CA� (in coordinates) acting on sections of any

vector bundle with structure group G. The commutator D�D� �D�D� yields the curvature 2-form
F�� D F ŒA��� , which is given in terms of A� by the formula

F�� D @�A� � @�A�C ŒA�; A� �:
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Given a G -valued function O on R1C4, we introduce the notation

OI� D @�OO
�1:

The pointwise action of O on the vector bundle induces a gauge transformation for A and F, namely

A� 7!OA�O
�1
� @�OO

�1
D Ad.O/A��OI�; F�� 7!OF��O

�1
D Ad.O/F�� :

In view of this transformation property, F may be viewed as a 2-form taking values in the G -vector
bundle with fiber g, where G acts on g by the adjoint action (geometrically, the adjoint vector bundle).
Thus the covariant derivative D� acts on F by

D�F˛ˇ D .@�C ad.A�//F˛ˇ D @�F˛ˇ C ŒA�; F˛ˇ �:

The hyperbolic Yang–Mills equation on R1C4 is the Euler–Lagrange equation associated with the
formal Lagrangian action functional

L.A/D 1

2

Z
R1C4
hF˛ˇ ; F

˛ˇ
i dx dt;

which takes the form
D˛F˛ˇ D 0: (1-1)

Clearly, (1-1) is invariant under gauge transformations. This equation possesses a conserved energy,
given by

Eftg�R4.A/D

Z
ftg�R4

X
˛<ˇ

jF˛ˇ j
2 dx: (1-2)

Furthermore, both the equation (1-1) and the energy (1-2) are invariant under the scaling

A.t; x/ 7! �A.�t; �x/ .� > 0/:

Hence, the hyperbolic Yang–Mills equation is energy critical in dimension .4C 1/, which is the reason
why we focus on this dimension in the present series of papers.

We are interested in the initial value problem for (1-1). For this purpose, we first formulate a gauge-
covariant notion of an initial data set. We say that a pair .a; e/ of a connection 1-form a and a g-valued
1-form e on R4 is an initial data set for a solution A to (1-1) if

.Aj ; F0j /�ftD0gD .aj ; ej /:

Here and throughout this paper, roman letter indices stand for the spatial coordinates x1; : : : ; x4. Note
that (1-1) with ˇ D 0 imposes the condition that

Dj ej D @
j ej C Œa

j ; ej �D 0: (1-3)

This equation is the Gauss (or the constraint) equation for (1-1).
It turns out that (1-3) characterizes precisely those pairs .a; e/ which can arise as an initial data set.

Thus we make the following definition:
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Definition 1.1. (1) A regular initial data set for the hyperbolic Yang–Mills equation is a pair .a; e/ 2
HN

loc�H
N�1 .N � 2/ which has finite energy (i.e., F Œa� 2L2) and satisfies the constraint equation (1-3).

(2) A finite-energy initial data set is a pair .a; e/ 2 PH 1
loc �L

2 which has finite energy (i.e., F Œa� 2 L2)
and satisfies the constraint equation (1-3).

In this paper, we make an additional assumption that a decays suitably at infinity:

a 2 PH 1: (1-4)

This assumption turns out to be equivalent to the requirement that a is topologically trivial [Oh and Tataru
2019a]. As this property is conserved under any continuous evolution in time, this is the natural setting
for scattering and thus for the threshold conjecture for (1-1), which is one main subject of the final paper
[Oh and Tataru 2017a] of the series.

The hyperbolic Yang–Mills equation (1-1), when naively viewed as an evolution equation for A, fails
to be locally well-posed; to restore (at least formally) well-posedness, we need to fix the gauge invariance.

There are several classical interesting gauge choices which can be made here, for instance the Coulomb
gauge @jAj D 0, the temporal gauge A0 D 0 and the Lorenz gauge @˛A˛ D 0. For a more detailed
discussion and comparison of these gauges we refer the reader to our first article [Oh and Tataru 2017b].

However, the main gauge choice we use in this paper is the so-called caloric gauge, which was defined
in the first paper of the series [Oh and Tataru 2017b] with the help of a parabolic analogue of (1-1),
namely the Yang–Mills heat flow. This is the subject of our next discussion.

1B. Yang–Mills heat flow and the caloric gauge. Let a be a connection 1-form on R4 (in short, a spatial
connection). We say that a connection AD A.x; s/ on R4 �J (where J is a subinterval of Œ0;1/) is a
(covariant) Yang–Mills heat flow development of a if it solves

Fsj DD`F j̀ ; A.s D 0/D a: (1-5)

This equation is invariant under gauge transformations on R4�J. Under the local caloric gauge condition

As D 0; (1-6)

the forward-in-s initial value problem for (1-5) is locally well-posed [Oh and Tataru 2017b, Theorem 2.7]
in PH 1. We remark that the evolution (1-5) under the gauge (1-6) is precisely the gradient flow for the
(spatial) energy

Ee.a/D
1

2

Z
R4
hFjkŒa�; F

jkŒa�i dx D

Z
R4

X
j<k

jFjkŒa�j
2 dx:

The key controlling norm for the Yang–Mills heat flow in the local caloric gauge is kF kL3s .J IL3/,
which is both scale- and gauge-invariant.

Theorem 1.2 [Oh and Tataru 2017b]. Consider a Yang–Mills heat flow A 2 Cs.J I PH
1/ in the local

caloric gauge satisfying
kF kL3s .J IL3/ �Q<1: (1-7)
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When J D Œ0; s0/ for s0 <1, A can be extended past s0 as a (well-posed) Yang–Mills heat flow. When
J D Œ0;1/, the solution has the property that the limit

lim
s!1

A.s/D a1

exists in PH 1. The limiting connection is flat .F Œa1� D 0/ and the map a 7! a1 is locally Lipschitz
in PH 1, HN .N � 1/ and PH 1 \ PHN .N � 2/. Denoting by O.a/ a gauge transformation satisfying
O�1@jO D a1, the map a 7!O.a/ is continuous from PH 1 to PH 2 up to constant conjugations.

In the case when the Yang–Mills heat flow with initial data a admits a global solution with finite
L3 norm for the curvature as in (1-7), we define the caloric size Q.a/ of a as

Q.a/D kF k3
L3s .RCIL3/

: (1-8)

We note that this is a gauge-invariant quantity.

Remark 1.3. Here we need to clarify the topology on the (nonlinear) space of gauge transformations.
We will say that a sequence O.n/ converges to O if there exists a sequence zO.n/ of gauge transformations
so that zO.n/.O.n//�1 are constant and so that we have

� pointwise convergence,1

d. zO.n/; O/! 0 in L2loc;

� convergence of derivatives,
zO
.n/
Ix !OIx in PH 1:

A simple but important case in which (1-7) holds with J D Œ0;1/ is when the initial energy Ee.a/ is
sufficiently small. The same conclusion holds as long as Ee.a/ is below any nontrivial connection a 2 PH 1

satisfying the harmonic Yang–Mills equation

D`F j̀ D 0: (1-9)

The above assertion is closely related to the topological class of connections. Relaxing the requirement
a 2 PH 1 to a 2H 1

loc allows also topologically nontrivial initial data sets, in which case the ground state
energy

EGS D inffEe.a/ W a 2H 1
loc is nontrivial and solves (1-9)g (1-10)

is nonzero, and the minimum is attained for a special class of solutions called instantons. However, within
the trivial topological class we have

2EGS � inffEe.a/ W a 2 PH 1 is nontrivial and solves (1-9)g: (1-11)

We further remark that in order for a connection a to have Q.a/ finite, it must be topologically trivial.
Because of this, the present paper is limited to topologically trivial connections, which are simply defined

1The functions O.n/ are uniformly bounded in BMO so this property essentially provides the additional information that in
some sense the local averages converge as well.
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by the requirement that a 2 PH 1 in a suitable gauge. For an extended discussion and further references we
refer the reader to our next article in the series [Oh and Tataru 2019a].

In view of this discussion, the following result is natural:

Theorem 1.4 (threshold theorem for the Yang–Mills heat flow on R4 [Oh and Tataru 2017b]). Assume
that a is topologically trivial and that

Ee.a/ < 2EGS:

Then the solution to (1-5) exists globally on Œ0;1/. Moreover, there exists a nondecreasing function
Q. � / W Œ0; 2EGS/! Œ0;1/ such that

Q.a/�Q.Ee.a//:

We now return to the discussion of an arbitrary (not necessarily subthreshold) spatial connection a,
whose Yang–Mills heat flow development satisfies (1-7) with J D Œ0;1/. Since the limiting connection
a1 is flat, it must be gauge equivalent to the zero connection. This motivates the following definition of
the caloric gauge:

Definition 1.5 (caloric gauge). We say that a connection aj 2 PH 1 is caloric if J D Œ0;1/ and a1 in
Theorem 1.2 is equal to zero. We denote the set of all such connections by C. More quantitatively, we
denote by CQ the set of all caloric connections whose Yang–Mills heat flow development satisfies

Q.a/�Q: (1-12)

Given a connection a 2 PH 1 satisfying (1-7) with J D Œ0;1/, note that

Cal.a/j D Ad.O.a//aj �O.a/Ij

is its caloric representative, which is unique up to constant conjugations.
To solve the Yang–Mills equation in the caloric gauge, we need to view the family C of the caloric

gauge connections as an infinite-dimensional manifold. Here the PH 1 topology is no longer sufficient, so
we introduce the slightly stronger topology

H D fa 2 PH 1
W kakH <1g; where kakH WD kak PH1 C

X
j

kPj .@
`a`/kL2 :

Here, fPj g refer to the standard Littlewood–Paley projections to dyadic frequency annuli on R4. It turns
out that every caloric connection belongs to H, which reflects the fact, to be discussed in Section 3 in
greater detail, that caloric connections satisfy a nonlinear form of the Coulomb gauge condition. Moreover,
the following theorem holds.

Theorem 1.6. (1) For a connection a 2 C with energy E and caloric size Q we have

kakH .E;Q 1:

(2) Consider a connection a 2H (not necessarily caloric) satisfying (1-12). Then O.a/ in Theorem 1.2
may be uniquely fixed by imposing limjxj!1O.a/D I. Such a map a 7!O.a/ is locally C 1 from H to
PH 2\C 0, and also from HN to PH 2\ PHNC1 .N � 2/.
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Essentially as a corollary, we have:

Theorem 1.7. The set C is an infinite-dimensional C 1 submanifold of H.

The spatial components of finite-energy Yang–Mills waves will be continuous functions of time which
take values into C. They are however not C 1 in time; instead their time derivative will merely belong to L2.
Because of this, we need to take the closure of its tangent space T C (which a priori is a closed subspace
of H ) in L2. This is denoted by T L

2

a C. It is also convenient to have a direct way of characterizing this
space; that is naturally done via the linearization of (1-5):

Definition 1.8. For a caloric gauge connection a 2 C, we say that L2 3 b 2 T L
2

a C if and only if the
solution to the linearized local caloric gauge Yang–Mills heat flow equation

@sBk D ŒB
j ; Fkj �CDj .DkBj �DjBk/; Bk.s D 0/D bk; (1-13)

(where D DD.a/) satisfies

lim
s!1

B.s/D 0:

We say that .a; b/2T L
2CQ if a2 CQ and b 2T L

2

a C, and we say that .a; b/2T L
2C if a2 C and b 2T L

2

a C.

A key property of the tangent space T L
2

a C is the following nonlinear div-curl-type decomposition:

Theorem 1.9. Let a 2 CQ with energy E . Then for each e 2 L2 there exists a unique decomposition

e D b�D.a/a0; b 2 T L
2

a C; a0 2 PH 1; (1-14)

with the corresponding bound

kbkL2 Cka0k PH1 . E;Q kekL2 : (1-15)

A hyperbolic Yang–Mill connection consists not only of spatial components (the sole subject of
discussion so far), but also of a temporal component. As in the Coulomb gauge, we will consider the
spatial components of the connection as the dynamic variables, which satisfy a system of wave equations.
The temporal components, on the other hand, will be viewed as an auxiliary variable determined from the
spatial components. This point of view motivates the following definition.

Definition 1.10 (initial data in the caloric gauge). An initial data for the Yang–Mills equation in the
caloric gauge is a pair .a; b/ where .a; b/ 2 T L

2C.

The notion of covariant Yang–Mills initial data (Definition 1.1) is connected to the preceding definition
by the following result proved in [Oh and Tataru 2017b] (which motivates the notation in Theorem 1.9):

Theorem 1.11. (1) Given any Yang–Mills initial data pair .a; e/ 2 PH 1 �L2 such that the Yang–Mills
heat flow development of a satisfies (1-12), there exists a caloric gauge Yang–Mills data . Qa; b/ 2 T L

2C
and a0 2 PH 1, so that the initial data pair . Qa; Qe/ is gauge equivalent to .a; e/, where

Qek D bk �D
.Qa/

k
a0:
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In addition, . Qa; b/ and a0 are unique up to constant conjugations, and depend continuously on .a; e/
in the corresponding quotient topology. Further, the map .a; e/ 7! . Qa; b/ is locally C 1 in the stronger
topology2 H �L2!H �L2, as well as in more regular spaces HN �HN�1!HN �HN�1 .N � 2/.

(2) Given any caloric gauge data .a; b/2T L
2C, there exists a unique a0 2 PH 1, with Lipschitz dependence

on .a; b/ 2 PH 1 �L2, so that

ek D bk �D
.a/

k
a0

satisfies the constraint equation (1-3). Further, the map .a; b/! a0 is also Lipschitz from HN �HN�1

to HN for N � 3.

Remark 1.12. The caloric gauge just described is a global version of a local caloric gauge previously
introduced by Oh [2014; 2015], and is based on an idea by Tao [2004] in his study of the energy-critical
wave maps into the hyperbolic space [Tao 2008a; 2008b; 2008c; 2009a; 2009b].

1C. The main results. The first main result is a strong gauge-dependent local well-posedness theorem
for the Yang–Mills equation as an evolution in the manifold of caloric connections. To state this result,
we define the energy concentration scale rc of a Yang–Mills initial data set .a; e/ with threshold "� (or
the "�-energy concentration scale) to be

r"�c D r
"�
c Œa; e�D supfr W EBr .a; e/� "

2
�g:

Theorem 1.13 (local well-posedness in caloric gauge). There exists a nonincreasing function "�.E ;Q/>0
and a nondecreasing function M�.E ;Q/ > 0 such that the Yang–Mills equation in the caloric gauge is
locally well-posed on the time interval of length rc D r

"�
c .E ;Q/ for initial data .a; e/ with energy � E

and a 2 CQ. More precisely, the following statements hold:

(1) (regular data) Let .a; e/ be a smooth initial data set with energy � E , where a 2 CQ. Then there
exists a unique smooth solution At;x to the Yang–Mills equation in caloric gauge on I D Œ�rc ; rc�
such that .Aj ; F0j /�ftD0gD .aj ; ej /.

(2) (rough data) The data-to-solution map admits a continuous extension

C �L2 3 .a; e/ 7! .Ax; @tAx/ 2 C.I; T
L2C/

in the class of initial data with energy � E , a 2 CQ and energy concentration scale � rc .

(3) (a priori bound) The solution defined as above obeys the a priori bound

kAxkS1ŒI � �M�.E ;Q/:

(4) (weak Lipschitz dependence) Let .a0; e0/2C�L2 be another initial data set with energy concentration
scale � rc . For � < 1 close to 1, we have the global bound

kAx �A
0
xkS� ŒI � .M�.E;Q/;� k.a; e/� .a

0; e0/k PH�� PH��1 :

2Here we impose again the condition limjxj!1O.a/D I in order to fix the choice of O.a/.
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The a priori bound (3) is highly gauge-dependent and has strong consequences. The S1-norm, which
is essentially the same as in [Krieger et al. 2015] and is recalled in Section 4A below, serves the role
of a controlling (or scattering) norm for the Yang–Mills equation in the caloric gauge. As we will see
in Section 5, finiteness of the S1-norm implies fine properties of the solution itself, such as frequency
envelope control, persistence of regularity, continuation and scattering towards endpoints of I, and also
for those nearby, such as weak Lipschitz dependence and local-in-time continuous dependence.

Theorem 1.13 implies small energy global well-posedness in the caloric gauge, analogous to the similar
Coulomb gauge result in [Krieger and Tataru 2017]:

Corollary 1.14. If the energy of the initial data set is smaller than "2� WD minf1; "2�.1;Q.1//g, then the
corresponding solution At;x in the caloric gauge exists globally and obeys

kAxkS1Œ.�1;1/� �M�.E/:

Moreover, if the initial data set .a; e/ has subthreshold energy, then by Theorem 1.4 we have a 2 CQ
with Q�Q.E/. Therefore, we immediately obtain:

Corollary 1.15. For initial data with subthreshold energy, the conclusions of Theorem 1.13 hold with "�,
M� and rc depending only on the energy E .

The local well-posedness result (Theorem 1.13) provides a basic framework for considering dynamics
of the Yang–Mills equation in the manifold of caloric connections C. The second main result, which we
now state, is a continuation/scattering criterion for this equation in terms of smallness of a quantity called
energy dispersion (denoted by EDŒI � below).

Theorem 1.16 (regularity and scattering of energy-dispersed YM solutions). There exists a nonincreasing
function ".E ;Q/ > 0 and a nondecreasing function M.E ;Q/ such that if At;x is a solution (in the sense of
Theorem 1.13) to the Yang–Mills equation in caloric gauge on I with energy � E and with initial caloric
size Q that obeys

kF kEDŒI � D sup
k2Z

2�2kkPkF kL1.I�R4/ � ".E ;Q/;

then it satisfies the a priori bound
kAxkS1ŒI � �M.E ;Q/;

as well as
sup
t2I

Q.A.0//� 1:

By finiteness of the S1-norm, At;x may be continued as a solution to the Yang–Mills equation in the
caloric gauge past finite endpoints of I, and scatters in some sense towards the infinite endpoints; see
Remarks 5.2 and 5.3.

Remark 1.17. In contrast to Theorem 1.13, in Theorem 1.16 the dependence on Q is very mild. This
feature is due to the fact that small energy dispersion, combined with the energy bound, implies that Q
must be either very large or very small; see Lemma 5.10 below. In particular if E is subthreshold then the
dependence on Q above can be omitted altogether.
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While powerful conclusions about the solution (represented by the S1-norm bound) can be made in
the caloric gauge, it has the disadvantage that the causality (or the finite speed of propagation) property is
lost. To remedy this, we also establish small-data well-posedness result in the temporal gauge A0 D 0:

Theorem 1.18. If the energy of the initial data set is smaller than "2� (as in Corollary 1.14), then the
corresponding solution .At;x; @tAt;x/ in the temporal gauge A0 D 0 exists globally in Ct .RI PH 1 �L2/.
The solution is unique among the local-in-time limits of smooth solutions, and it depends continuously on
data .a; e/ 2 PH 1 �L2.

In fact, Theorem 1.18 is a consequence of Corollary 1.14, after the observation that the gauge transfor-
mation from the caloric gauge to the temporal gauge obeys optimal regularity bounds; see Theorem 5.1
(10) below. We note that the strong dispersive S1-norm bound for A is generally lost in the temporal
gauge, as some part of the solution is merely transported (instead of solving a wave equation).

Theorem 1.18 is used in the third paper [Oh and Tataru 2019a] of the sequence to establish the large-data
local theory for the .4C1/-dimensional Yang–Mills equation in arbitrary topological classes. Then in
the fourth paper [Oh and Tataru 2017a], this theory is put together with Theorems 1.13 and 1.16 to
establish global well-posedness and scattering in the caloric gauge for data with subthreshold energy
(often called the threshold theorem in the literature), as well as a bubbling vs. scattering dichotomy for
arbitrary finite-energy solutions, formulated in a gauge-covariant sense.

Remark 1.19. Within the setup of this paper, one could in effect easily relax the hypothesis of the above
theorem, and show that temporal gauge solutions exist for as long as caloric solutions exist. We do not
pursue this, as our primary interest in terms of the temporal gauge is to use it for solutions which are not
necessarily caloric. These matters are further discussed in our third and fourth papers [Oh and Tataru
2017a; 2019a].

The overall strategy for the proofs originated from the work of Sterbenz and the second author on
the energy-critical wave maps [Sterbenz and Tataru 2010a; 2010b] and was adapted to the case of the
energy-critical Maxwell–Klein–Gordon (MKG) equation, which is a simpler model for Yang–Mills, in our
previous works [Oh and Tataru 2016a; 2016b; 2018]. We also note an alternative independent approach
for the energy-critical wave maps [Krieger and Schlag 2012] and MKG [Krieger and Lührmann 2015]
based on the Kenig–Merle method [2008; 2006]. A more extensive historical perspective is provided in
the fourth paper [Oh and Tataru 2017a].

In [Oh and Tataru 2016b; 2018], the analogues of Theorems 1.13 and 1.16 (respectively) were proved
using distinct strategies. However, here we derive both main results (see Section 7 for details) from the
following single a priori estimate concerning regular solutions, whose proof is the central goal of this paper:

Theorem 1.20. There exist nonincreasing functions ".E ;Q/; T .E ;Q/ > 0 as well as a nondecreasing
function M.E ;Q/ such that if At;x is a regular solution to the Yang–Mills equation in caloric gauge on I
with energy � E such that Ax 2 CQ for all t 2 I, and moreover

sup
k�m

2�2kkPkF kL1.I�R4/ � ".E ;Q/ and jI j � 2�mT .E ;Q/
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for some m 2 Z, then it satisfies the a priori bound

kAxkS1ŒI � �M.E ;Q/:

In words, for a regular solution with small energy dispersion only at certain frequency 2m and above,
an a priori S1-norm bound holds on time intervals of the corresponding scale O.2�m/.

1D. Overview of the paper. Section 2: In this section, we collect some notation and conventions used
throughout this paper for the reader’s convenience. Some basic concepts, such as disposability, dyadic
function spaces, frequency envelopes, etc., are also described.

After Section 2, the paper is organized into two tiers. The first tier consists of Sections 3 to 7, and its
goal is to describe the large-scale proof of the main results, assuming the validity of certain linear and
multilinear estimates collected in Section 4.

Section 3: Here, we recall from [Oh and Tataru 2017b] further results concerning the Yang–Mills heat
flow and the caloric gauge. First, we state some quantitative bounds for the Yang–Mills heat flow and
its linearization in the caloric gauge, using the language of frequency envelopes (Section 3A). Next, we
derive the wave equation satisfied by Ax and Ax.s/ .s > 0/ in the caloric gauge (Section 3B). In this
process we use the dynamic Yang–Mills heat flow (3-5), which is the Yang–Mills heat flow augmented
with a heat evolution (in s) for the temporal component.

Section 4: We first describe the fine function space framework for analyzing the hyperbolic Yang–Mills
equation in the caloric gauge (Section 4A). The main function spaces are identical to those in [Krieger
et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017], which in turn have their roots in the works on
wave maps [Tataru 2001; Tao 2001]. We also explain the three main sources of smallness in our analysis:
divisibility, small energy dispersion and short time interval. Then we state the linear and multilinear
estimates needed for the proof of the main theorems (Sections 4B and 4C); it is the goal of the second
tier of the paper (described below) to prove them. The primary estimates here are the bilinear null form
estimates, which in the context of our function spaces have their origin in [Krieger et al. 2015; Oh and
Tataru 2018; Krieger and Tataru 2017]. The bilinear null structure of the Yang–Mills nonlinearities was
first described in [Klainerman and Machedon 1994]; a secondary trilinear null structure, which also plays
a role here, was discovered in [Machedon and Sterbenz 2004] in the (MKG) context.

Section 5: We prove a strong structure theorem for a solution to the hyperbolic Yang–Mills equation in
the caloric gauge with finite S1-norm (Section 5A). In particular, it reduces the tedious task of controlling
various parts of a solution At;x to proving a single S1-norm bound for the spatial components Ax . We also
consider the effect of small inhomogeneous energy dispersion on a correspondingly short time interval
(Section 5B). The analysis is repeated for the dynamic Yang–Mills heat flow of a solution (Section 5C).

Section 6: We prove the central result, Theorem 1.20, by an induction-on-energy argument. The argument
is similar to [Oh and Tataru 2018], which in turn was based on the work [Sterbenz and Tataru 2010a],
with modifications to handle the low frequencies with possibly large energy dispersion with the short
length of the time interval (see, in particular, scenario (1) in Section 6B).
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Section 7: Here, we derive the main theorems stated in Section 1C from Theorem 1.20. The key point in
the derivation of Theorem 1.13 is the simple fact that energy dispersion is small for frequencies above
the inverse of the energy-concentration scale (Section 7B). Theorem 1.16 follows essentially by scaling
(Section 7C).

The second tier consists of Sections 8 to 11. Here, we provide proofs of the estimates stated in
Section 4.

Section 8: The goal of this section is to prove all multilinear estimates stated in Section 4. The proofs
proceed in two stages: In the first stage, we assume global-in-time dyadic (in spatial frequency) estimates
(Section 8B), and derive the interval-localized frequency envelope bounds stated in Section 4 (Section 8C).
A key technical issue in interval localization is to deal with modulation projections, which are nonlocal
in time. In the second stage, we establish the global-in-time dyadic estimates (Section 8D). Much is
borrowed from the previous works [Krieger et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017].

Section 9: We begin this section by reducing the proof of the key linear estimates in Section 4 to
construction of a parametrix for the paradifferential d’Alembertian �C 2

P
k ad.P<k��P˛A/@˛Pk

(Section 9A). As in [Krieger and Tataru 2017], the parametrix is constructed via conjugation of the free-
wave propagator by a pseudodifferential renormalization operator. We define and state the key properties
of the renormalization operator (Section 9C), and establish the desired estimates for the parametrix
assuming these properties (Section 9D).

Section 10: Here, we prove the mapping properties of the renormalization operator claimed in Section 9.
The key difference from [Krieger and Tataru 2017] lies in the source of smallness: whereas smallness
of the S1-norm of A was used in that paper, in this paper we rely instead on largeness of the frequency
gap � in the paradifferential d’Alembertian. The idea of exploiting a large frequency gap was used in
[Sterbenz and Tataru 2010a; Oh and Tataru 2018].

Section 11: Finally, we estimate the error for conjugation of the paradifferential d’Alembertian by the
renormalization operator claimed in Section 9, thereby completing our parametrix construction. One
aspect of our proof that differs from the previous works [Sterbenz and Tataru 2010a; Oh and Tataru 2018]
is that, in addition to the large frequency gap �, we need to use smallness of a divisible norm (weaker
than S1) of A, which requires a careful interval localization procedure (Sections 11C and 11D).

2. Notation, conventions and other preliminaries

2A. Notation and conventions. Here we collect some notation and conventions used in this paper.

� The symbols ., &, � and� are defined with their usual meanings, where the implicit constants in
these notations are allowed to vary from line to line.

� ByA.E B andA�E B , we mean thatA�CEB andA�cEB , respectively, whereCEDC0.1CE/C1

and cE DC�10 .1CE/�C1 for some constants C0; C1 > 0 that are again allowed to vary from line to line.

� For u 2 g and O 2 G, define ad.u/ D Œu; � � and Ad.O/ D O. � /O�1, both of which are in End.g/.
Recall the minus Killing form, which is invariant under Ad.O/ and ad.X/. On g, define j � jg on g by the
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minus Killing form. On End.g/, use the induced metric jajEnd.g/ D supjujg�1jaujg. By Ad-invariance,
jAd.O/ajEnd.g/ D jaAd.O�1/jEnd.g/ D jajEnd.g/.

� We use the notation Br.x/ for the ball of radius r centered at x. We write j†.�; �/j for the angular
distance j�=j�j � �=j�jj, and j†.C; C0/j for inf�2C; �2C0 j†.�; �/j.

� We use the notation r D @t;x , D� D i�1@�. Also, for D and A we often suppress the subscript x and
write D DDx and AD Ax .

� We say that a multilinear operator O.u1; : : : ; um/ is disposable if its kernel is translation-invariant and
has mass . 1. In particular, we have

kO.u1; : : : ; um/kY . ku1kX1 � � � kumkXm

for any translation-invariant spaces X1; : : : ; Xm; Y provided that a product estimate

ku1 � � �umkY . ku1kX1 � � � kumkXm

holds for any functions u1 2X1; : : : ; um 2Xm.

� We often use the “duality” pairing “
u0O.u1; : : : ; um/ dx dt

so as to have symmetry among u0 and the inputs. Indeed, we have“
u0O.u1; : : : ; um/ dx dt D

“
„0C„1C���C„mD0

O.„1; : : : ; „m/ Qu0.„0/ Qu1.„1/ � � � Qum.„m/ d„dt:

� We define O�i as“
u0O�i .u1; : : : ; ui ; : : : ; um/ dt dx D

“
uiO.u1; : : : ;

i -th entry‚…„ƒ
u0 ; : : : ; um/ dt dx:

� By a bilinear operator .of g-valued functions/ with symbol m.�; �/Dmab.�; �/ (which is a complex-
valued 4� 4-matrix), we mean an expression of the form

L.a; b/D

“
.mab.�; �/Œ Oaa.�/; Obb.�/�/e

i.�C�/�x d� d�

.2�/8
:

For a scalar-valued symbol m.�; �/, we implicitly associate the corresponding multiple of the identity
mab.�; �/Dm.�; �/ıab.

If L were symmetric, then the symbol m.�; �/ would be antisymmetric in �; �, in the sense that
mab.�; �/D�mba.�; �/; this is due to the antisymmetry of the Lie bracket.

2B. Basic multipliers and function spaces. Here we provide the definitions of basic multipliers and
function spaces. For the more elaborate frequency projections and function spaces for the hyperbolic
Yang–Mills equation, see Section 4A.
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� Given a function space X (on either Rd or R1Cd ), we define the space `pX by

kuk
p

`pX
D

X
k

kPkuk
p
X

(with the usual modification for pD1), where Pk .k 2 Z/ are the usual Littlewood–Paley projections to
dyadic frequency annuli.

� For a spatial 1-formA, we define PA to be its Leray projection, i.e., theL2-projection to divergence-free
vector fields:

PjAD Aj C .��/
�1@j @

`A`:

We write P?j AD Aj �PjA.

� For a space-time 1-form A˛, we introduce the notation P˛AD .PA/˛ by defining

P˛AD

�
PjAx; ˛ D j 2 f1; : : : ; 4g;

A0; ˛ D 0:

We also define P?˛ AD .P
?A/˛ D A˛ �P˛A.

� We denote by PW �;p the homogeneous Lp-Sobolev space with regularity � . In the case p D 2, we
simply write PH� D PW �;2.

� The mixed space-time norm L
q
t
PW
�;r
x of functions on R1Cd is often abbreviated as Lq PW �;r.

2C. Frequency envelopes. To provide more accurate versions of many of our estimates and results we
use the language of frequency envelopes.

Definition 2.1. Given a translation-invariant space of functionsX , we say that a sequence ck is a frequency
envelope for a function u 2X if

(i) the dyadic pieces of u satisfy
kPkukX � ck;

(ii) the sequence ck is slowly varying,

2�ı.j�k/ .
ck

cj
. 2ı.j�k/; j > k:

Here ı is a small positive universal constant. For some of the results we need to relax the slowly
varying property in a quantitative way. Fixing a universal small constant 0 < "� 1, we set:

Definition 2.2. Let �1; �2 > 0. A frequency envelope ck is called .��1; �2/-admissible if

2��1.1�"/.j�k/ .
ck

cj
. 2�2.1�"/.j�k/; j > k:

When �1 D �2, we simply say that ck is � -admissible.
Another situation that will occur frequently is that where we have a reference frequency envelope ck ,

and then a secondary envelope dk describing properties which apply on a background controlled by ck .
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In this context the envelope dk often cannot be chosen arbitrarily but instead must be in a constrained
range depending on ck . To address such matters we set:

Definition 2.3. We say that the envelope dk is � -compatible with ck if we have

ck
X
j<k

2�.1�"/.j�k/dj . dk :

We will often replace envelopes dk which do not satisfy the above compatibility condition by slightly
larger envelopes that do:

Lemma 2.4 [Oh and Tataru 2017b, Lemma 3.5]. Assume that ck and dk are .��1; S/ envelopes, and
also that ck is bounded. Then for Q� < �.1� "/ the envelope

ek D dkC ck
X
j<k

2Q�.j�k/dj

is � -compatible with ck . The implicit constant in Definition 2.3 is bounded above by 1CC�.1�"/�Q�kck`1 .

Finally we need the following additional frequency envelope notation:

.c � d/k D ckdk; a�k D
X
j�k

aj ; c
Œ��

k
D sup
j<k

2.1�"/�.j�k/cj .� > 0/:

2D. Global small constants. In this paper, we use a string of global small constants ı1; : : : ; ı6; ı7 with
the hierarchy

0 < ı� D ı7� ı6� ı5� ı4� ı3� ı2� ı1� ı0� 1: (2-1)

These are fixed from right to left, so that

ıiC1� ı100i :

The role of each constant is roughly as follows:

� ı0: for definition of functions spaces, such as Str1 and b0; b1; p0 in Section 4.

� ı1: for all bounds from other papers, such as [Oh and Tataru 2017b; 2018; Krieger and Tataru 2017];
also for all dyadic gains in explicit nonlinearities (Section 8) and for energy dispersion gains in the
Str1 norm (4-21).

� ı2: for energy dispersion, frequency gap and off-diagonal gains in Section 4.

� ı3: for frequency envelope admissibility range in Section 4.

� ı4: for energy dispersion and frequency gap gains in Section 5.

� ı5: for frequency envelope admissibility range in Section 5.

� ı6: for energy dispersion and frequency gap gains in Section 6.

� ı�: for frequency envelope admissibility range in Section 6.

We use an additional set of small constants in our parametrix construction (Sections 9–11), which are
fixed after ı1 but before ı2.



248 SUNG-JIN OH AND DANIEL TATARU

3. Yang–Mills heat flow and the caloric gauge

In this section, which is a continuation of Section 1B, we recall the results from the first paper [Oh and
Tataru 2017b] that are needed in the present paper.

In Section 3A, we state quantitative bounds for the Yang–Mills heat flow (and its linearization) in
the caloric gauge, using the language of frequency envelopes. Section 3B is concerned with the task
of interpreting the hyperbolic Yang–Mills equation in the caloric gauge as a system of nonlinear wave
equations for Ax .

3A. Frequency envelope bounds in the caloric gauge. We begin with frequency envelope bounds for
the caloric gauge Yang–Mills heat flow and its linearization.

Proposition 3.1 [Oh and Tataru 2017b, Proposition 7.27]. Let .a; b/ 2 T L
2CQ with E D Ee.a/, and let

.A;B/ be the solution to (1-5) and (1-13) with .a; b/ as data. Let ck be a .�ı1; S/-frequency envelope in
PH 1�L2 for .a; b/, and let c�;p

k
be a .�ı1; S/-frequency envelope in PW �;p � PW ��1;p for .a; b/ which is

ı1-compatible with ck . Define

A.s/D A.s/� es�a; B.s/D B.s/� es�b: (3-1)

Then the following properties hold:

(1) We have
kPkA.s/k PH1 CkPkB.s/kL2 . E;Q;N h2

�2ks�1i�ı1h22ksi�N c2k : (3-2)

(2) For .�; p/ and .�1; p1/ satisfying

cı1 � � �
4

p
� cı1 ; 2C cı1 � p � c

�1
ı1
; 0� �1 � � � cı1 ;

4

p1
� �1 D 2

�
4

p
� �

�
; (3-3)

we have

kPkA.s/k PW �1C1;p1
CkPkB.s/k PW �1;p1

.E;Q;N h2
�2ks�1i�ı1h22ksi�N .c

�;p

k
/2: (3-4)

A central object of the remainder of this section is the dynamic Yang–Mills heat flow for space-time
connections, which is an augmentation of (1-5) with an equation for the temporal component. More
precisely, we say that a pair .A0; A/ of a g-valued function A0 and a connection A on R4 �J (where J
is a subinterval of Œ0;1/) is the dynamic Yang–Mills heat flow development of .a0; a/ if

Fs˛ DD`F`˛; .A0; A/.s D 0/D .a0; a/: (3-5)

This flow is well-defined as long as the spatial and s-components of A are well-defined as a solution to
(1-5). In particular, if a 2 C, then .A0; A/ exists on Œ0;1/, lims!1A0 D 0 in PH 1 and lims!1 F0j D 0
in L2. Moreover, the following proposition holds.

Proposition 3.2 [Oh and Tataru 2017b, Propositions 7.7 and 8.9]. Let a 2 CQ and e 2 L2 satisfy
k.f; e/k2

L2
� E . Consider also a0 2 PH 1 and b 2 T L

2

a C which obeys e D b�Da0 (see Theorem 1.9), and
let .A0; A/ be a caloric gauge solution to (3-5) with data .a0; a/. Then the following properties hold.
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(1) The spatial 1-form Bj .s/ D F0j .s/�DjA0.s/ obeys the linearized Yang–Mills heat flow in the
caloric gauge with Bj .0/D bj . Moreover,

kA.s/k PH1 CkB.s/kL2 .E;Q k.f; e/kL2 : (3-6)

(2) Let dk be a ı1-frequency envelope for .f; e/ in PW �2;1. Then

2�kkPkA.s/kL1 C 2
�2k
kPkB.s/kL1 .E;Q;N h2

2ksi�N .dk/
1
2 : (3-7)

(3) Let ck be a .�ı1; S/-frequency envelope for .a; b/ in PH 1 �L2. Then

kPkA.s/k PH1 CkPkB.s/kL2 .E;Q;N h2
�2ks�1i�ı1h22ksi�N .dk/

1
2 ck; (3-8)

kPk@
jAj .s/kL2 CkPk@

jBj .s/k PH�1 .E;Q;N h2
�2ks�1i�ı1h22ksi�N .dk/

1
2 ck; (3-9)

where A, B are as in (3-1).

3B. Wave equation for A in caloric gauge. Here, and in the rest of this paper, we shift the notation
and denote by At;x D At;x.t; x/, instead of .a0; a/, the space-time connection on I �R4 (viewed as
fs D 0g). For the spatial components, we omit the subscript x and write Ax.t; x/D A.t; x/. We write
At;x;s.s/D At;x;s.t; x; s/ for the dynamic Yang–Mills heat flow of At;x.t; x/.

In this subsection, we recall from [Oh and Tataru 2017b] the interpretation of the hyperbolic Yang–Mills
equations for a space-time connection At;x in the caloric gauge as a hyperbolic evolution for the spatial
components A augmented with nonlinear expressions of @`A`, A0 and @0A0 in terms of .A; @tA/; see
Theorem 3.5. An analogous hyperbolic equation holds for the dynamic Yang–Mills heat flow development
At;x.s/ of At;x in the caloric gauge, which may be thought of as a gauge-covariant regularization of A;
see Theorem 3.6.

We present explicit expressions for the quadratic nonlinearities, for which we need to reveal the null
structure in order to handle them, and state stronger bounds for the remaining higher order nonlinearities.
For economy of notation in the latter task, we introduce the following definition:

Definition 3.3. Let X; Y be dyadic norms.

� A map F WX ! Y is said to be envelope-preserving of order � n (n 2 N with n� 2) if the following
property holds: Let c be a .�ı1; S/-frequency envelope for a in X . Then

kF .a/kY
.cŒı1�/n�1c

.kakX 1:

� A map F W X ! Y is said to be Lipschitz envelope-preserving of order � n if, in addition to being
envelope-preserving of order � n, the following additional property holds: Let c be a common ı1-
frequency envelope for a1 and a2 in X , and let d be a ı1-frequency envelope for a1 � a2 in X that is
ı1-compatible with c. Then

kPk.F .a1/�F .a2//kYk .ka1kX ;ka2kX c
n�2
k ek;

where ek D dkC ck.c � d/�k .
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Remark 3.4. The modified envelope e appears since the maps F that arise below are defined on a
nonlinear manifold, namely, spatial connections a on a time interval I such that .a; @ta/.t/ 2 T L

2C for
each fixed time. We remark moreover that if the frequency envelopes c and d are `2-summable, which is
usually the case in practice, then F .a/ and F .a1/�F .a2/ belong to `1Y .

We also need to introduce the nonsharp Strichartz spaces Str and Str1, which scale like L1L2 and
L1 PH 1, respectively. We define

kukStr D sup
n
kuk

Lp PW �;q W
1

q
C
4

p
D 2; ı0 �

1

p
�
1

2
� ı0;

2

p
C
3

q
�
3

2
� ı0

o
; (3-10)

as well as

kukStr1 D krukStr: (3-11)

Conditions in (3-10) ensure that the .p; q; �/’s are Strichartz exponents, but away from the sharp endpoints.
These norms have two key properties:

� They are divisible in time, i.e., can be made small by subdividing the time interval.

� Saturating the associated Strichartz inequalities requires strong pointwise concentration (i.e., small
energy dispersion).

In [Oh and Tataru 2017b], we have shown that the spatial components of the Yang–Mills equation
D˛Fj˛ D 0 .j 2 f1; 2; 3; 4g/ may be interpreted as a system of wave equation for the spatial components
AD Ax , where the temporal component A0 is determined in terms of .A; @tA/, as follows:

Theorem 3.5 [Oh and Tataru 2017b, Theorem 9.1]. LetAt;xD.A0;A/2Ct .II PH 1�CQ/with .@tA0;@tA/2
Ct .I IL

2�T L
2

A.t/
CQ/ be a solution to (1-1) with energy E . Then its spatial components AD Ax satisfy an

equation of the form

�AAj DPj ŒA; @xA�C 2�
�1@jQ.@˛A; @˛A/CRj .A/; (3-12)

together with a compatibility condition

@`A` DDA.A/ WDQ.A;A/CDA3.A/: (3-13)

Moreover, the temporal component A0 and its time derivative @tA0 admit the expressions

A0 DA0.A/ WD�
�1ŒA; @tA�C 2�

�1Q.A; @tA/CA3
0.A/; (3-14)

@tA0 DDA0.A/ WD �2�
�1Q.@tA; @tA/CDA3

0.A/: (3-15)

Here P is the Leray projector, and Q is a symmetric3 bilinear form with symbol

Q.�; �/D
j�j2� j�j2

2.j�j2Cj�j2/
: (3-16)

3Observe here that the symbol of Q is odd, but this is combined with the antisymmetry of the Lie brackets appearing in the
bilinear form.
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Moreover, Rj .t/, DA3.t/, A3
0.t/ and DA3

0.t/ are uniquely determined by .A; @tA/.t/ 2 T L
2C, and are

Lipschitz envelope-preserving maps of order � 3 on the spaces

Rj .t/ W PH
1
! PH�1; (3-17)

DA3.t/ W PH 1
! L2; (3-18)

A3
0.t/ W

PH 1
! PH 1; (3-19)

DA3
0.t/ W

PH 1
! L2: (3-20)

Finally, on any interval I � R, Rj , DA3, A3
0 and DA3

0 are Lipschitz envelope-preserving maps of
order � 3 (with bounds independent of I ) on the spaces

Rj W Str1ŒI �! L1L2\L2 PH�
1
2 ŒI �; (3-21)

DA3
W Str1ŒI �! L1 PH 1

\L2 PH
1
2 ŒI �; (3-22)

A3
0 W Str1ŒI �! L1 PH 2

\L2 PH
3
2 ŒI �; (3-23)

DA3
0 W Str1ŒI �! L1 PH 1

\L2 PH
1
2 ŒI �: (3-24)

All implicit constants depend on Q and E .

Next, we consider the dynamic Yang–Mills heat flow At;x.s/ of At;x in the caloric gauge. For s >0, we
have DˇF˛ˇ .s/Dw˛ ¤ 0 in general. We expect the “heat-wave commutator” w˛ (called the Yang–Mills
tension field) to be concentrated primarily at frequency comparable to s�1=2. Indeed, the following
theorem holds.

Theorem 3.6 [Oh and Tataru 2017b, Theorem 9.3]. LetAt;xD.A0;A/2Ct .II PH 1�CQ/with .@tA0;@tA/2
Ct .I IL

2�T L
2

A.t/
CQ/ be a solution to (1-1) with energy E . Let At;x.s/DAt;x.t; x; s/ be the dynamic Yang–

Mills heat flow development of At;x in the caloric gauge. Then the spatial components A.s/D Ax.s/ of
At;x.s/ satisfy an equation of the form

�A.s/Aj .s/DPj ŒA.s/; @xA.s/�C 2�
�1@jQ.@˛A.s/; @˛A.s//CRj .A.s//

CPjw2x.@tA; @tA; s/CRj Is.A/; (3-25)

together with the compatibility condition

@`A`.s/DDA.A.s//: (3-26)

Moreover, the temporal component A0.s/ and its time derivative @tA0.s/ admit the expansions

A0.s/DA0.A.s//CA0Is.A/ WDA0.A.s//C�
�1w20.A;A; s/CA3

0Is.A/; (3-27)

@tA0.s/DDA0.A.s//CDA0Is.A/: (3-28)
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Here P , Q, Rj , DA, A0 and DA0 are as before, and the w2˛ are defined as

w20.A;B; s/D� 2W .@tA;�B; s/; (3-29)

w2j .A;B; s/D� 2W .@tA; @j @tB � 2@x@tBj ; s/; (3-30)

where W . � ; � ; s/ is a bilinear form with symbol

W .�; �; s/D�
1

2� � �
e�sj�C�j

2

.1� e2s.���//: (3-31)

Moreover, Rj Is.t/, A3
0Is.t/ and DA0Is.t/ are uniquely determined by .A; @tA/.t/ 2 T L

2C for each s > 0,
and satisfy the following properties:

� Rj Is.t/ W PH
1! PH�1 is a Lipschitz map with output concentrated at frequency s�1=2. More precisely,

.1� s�/NRj Is.t/ W PH
1
! 2�ı1k.s/ PH�1�ı1 : (3-32)

� A3
0Is.t/ W

PH 1! PH 1 is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NA3
0Is.t/ W

PH 1
! 2�ı1k.s/ PH 1�ı1 : (3-33)

� DA0Is.t/ W PH
1! L2 is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NDA0Is.t/ W PH
1
! 2�ı1k.s/ PH�ı1 : (3-34)

Finally, on any time interval I � R (with bounds independent of I ), Rj Is , A3
0Is and DA0Is satisfy the

following properties:

� Rj Is WStr1ŒI �!L1L2\L2 PH�1=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NRj Is W Str1ŒI �! 2�ı1k.s/.L1 PH�ı1 \L2 PH�
1
2
�ı1/ŒI �: (3-35)

� A3
0Is WStr1ŒI �!L1 PH 2\L2 PH 3=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NA3
0Is W Str1ŒI �! 2�ı1k.s/.L1 PH 2�ı1 \L2 PH

3
2
�ı1/ŒI �: (3-36)

� DA0Is W Str1ŒI �! L2 PH 1=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NDA0Is W Str1ŒI �! 2�ı1k.s/L2 PH
1
2
�ı1 ŒI �: (3-37)

All implicit constants depend on Q and E .

Remark 3.7. Some notable features of Theorem 3.6 are as follows:

� Compared with the prior result, here we have additional contributions RkIs , A0Is and DA0Is as well
as the w terms. These have the downside that they depend on A and @tA at s D 0 rather than A.s/ and
@tA.s/. The redeeming feature is that these terms will not only be small due to the energy dispersion, but
also, critically, concentrated at frequency s�1=2.

� The other change here is due to the inhomogeneous terms w2˛; these are matched in the Ak.s/ and the
A0.s/ equations, and will interact in the trilinear analysis (see Proposition 4.29 below).

� For the new error terms here we do not need to worry about difference bounds; see Section 6 below.
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4. Summary of function spaces and estimates

In this section, we summarize the properties of the function spaces and the estimates needed to analyze
the hyperbolic Yang–Mills equation in the caloric gauge, as given by Theorems 3.5 and 3.6.

4A. Function spaces. The aim of this subsection is to give precise definitions of the fine functions spaces
used to analyze caloric Yang–Mills waves.

4A1. Frequency projections. We start with a brief discussion of various frequency projections. Let
m0 W R! R be a smooth nonnegative even bump function supported on fx 2 R W jxj 2 .2�1; 22/g such
that fmk D m0. � =2k/gk2Z is a partition of unity on R. For k 2 Z, recall that Pk was defined as the
multiplier on R4 with symbol Pk.�/Dmk.j�j/. Given j 2 Z and a sign ˙, we introduce the modulation
projections Q˙j and Qj , which are multipliers on R1C4 with symbols

Q˙j .�; �/Dmj .� �j�j/; Qj .�; �/Dmj .j� j � j�j/:

We also defineQ˙<j , Q˙
�j , Q<j , Q�j etc. in the obvious manner. To connectQ˙j withQj , we introduce

the sharp time-frequency cutoffs Q˙, which are multipliers on R1C4 with symbols

Q˙.�; �/D �.0;1/.˙�/:

Note that PkQ˙Qj D PkQ˙j for j < k.
For ` 2 �N, consider a collection of directions ! 2 S3 � R4, which are maximally separated with

distance ' 2`. To each such an !, we associate a smooth cutoff function m!
`

supported on a cap of
radius ' 2` centered at !, with the property that

P
! m! D 1. Let P !

`
be the multiplier on R4 with

symbol

P !` .�/Dm
!
`

�
�

j�j

�
:

Given k0 2 Z and `0 2 �N, consider rectangular boxes Ck0.`0/ of dimensions 2k
0

� .2k
0C`0/3 (where

the 2k
0

-side lies along the radial direction), which cover R4 n fjxj . 2k0g and have finite overlap with
each other. Let mCk0 .`0/ b a partition of unity adapted to fCk0.`0/g, and we define the multiplier PCk0 .`0/
on R4 with symbol

PCk0 .`0/.�/DmCk0 .`0/.�/:

For convenience, when k0Dk, we choose the covering and the partition of unity so that PkP !` DPkPCk.`/.
We now discuss the boundedness properties of the frequency projections. For any k 2 Z, let Pk=<k

denote one of the dyadic frequency projections fPk; P<kg. Let Q�
j=<j

denote one of the modulation
projections Q˙j , Q˙<j , Qj or Q<j . Let ! be an angular sector of size' 2` .`2�N/, and C a rectangular
box of the form Ck0.`0/ .k0 2 Z; `0 2 �N/. Then the following statements hold:

� The multipliers Pk=<k , Pk=<kP !` and PC are disposable.

� The multiplier Pk=<kQ�j=<j is disposable if j � kCO.1/; see [Tao 2001, Lemma 3]. For general
j; k 2 Z, it is straightforward to check that Pk=<kQ�j=<j has a kernel with mass O.24.k�j /C/.
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� The multiplier Pk=<kQ�j=<j is bounded on LpL2 for any 1� p �1; see [Tao 2001, Lemma 4].

� The multiplier Pk=<kP !` Q
�

j=<j
is disposable if j � kC 2`CO.1/; see [Tao 2001, Lemma 6].

4A2. Function spaces on the whole space-time. Here, we define the global-in-time function spaces used
in this work. Unless otherwise stated, all spaces below are defined for functions on R1C4. We remark
that all of them are translation-invariant.

We first define the space X�;br , equipped with the norm

kuk2
X
�;b
r

D

X
k

22�k
�X
j

.2bj kPkQjukL2L2/
r

�2
r

when 1� r <1. As usual, we replace the `r -sum by the supremum in j when r D1. The spaces X�;b
˙;r

are defined similarly, with Qj replaced by Q˙j .
We are now ready to introduce the function spaces in earnest, which are all defined in terms of

(semi-)norms.

Core nonlinearity norm N. We define

N D L1L2CX
0;� 1

2

1 :

This norm scales like L1L2. We also define N˙DL1L2CX
0;�1=2
˙;1 . Note that N DNC\N�. Moreover,

we have the embeddings

X
0;� 1

2

1 �N �X
0;� 1

2
1 ; X

0;� 1
2

˙;1 �N �X
0;� 1

2

˙;1 :

The inclusions on the left are obvious, whereas the inclusions on the right follow from Bernstein in time.
We omit the proofs.

Core solution norm S . We define

kuk2S D
X
k

kuk2Sk ; Sk D S
str
k \X

0; 1
2

1 \S
ang
k
\S

sq

k
;

where Ssq
k

is related to square function bounds,

kukSsq
k
D 2�

3
10
k
kuk

L
10=3
x L2t

and S str
k

and S ang
k

are essentially as in [Krieger et al. 2015, equations (6)–(8)]:

kukS str
k
D sup
.p;q/W 1

p
C 3
2q
� 3
4

2�.2�
1
p
� 4
q
/k
kukLpLq ;

kuk2
S

ang
k

D sup
`<0

X
!

kP !` Q<kC2`uk
2
S!
k
.`/;

kuk2S!
k
.`/ D kuk

2
S str
k

C 2�2kkuk2NE C 2
�3k

X
˙

kQ˙uk2
PW

�
! .`/

C sup
k0�k; `0�0

kC2`�k0C`0�kC`

X
Ck0 .`0/

�
kPCk0 .`0/uk

2
S str
k

C 2�2kkPCk0 .`0/uk
2
NE

C 2�2k
0�k2�`

0

kPCk0 .`0/uk
2
L2L1

C 2�3.k
0C`0/

X
˙

kQ˙PCk0 .`0/uk
2

PW
�
! .`/

�
:
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Here, the NE and PW �! .`/ are the null frame spaces [Tataru 2001; Tao 2001], defined by

kuk
PW

�
! .`/
D inf
uD

R
u!
0

Z
j!�!0j�2`

ku!
0

kL2
˙!0

L1
.˙!0/?

d!0;

kukNE D sup
!
k6r!ukL1! L2

!?
;

where the Lq! norm is with respect to the variable t˙! D t ˙ ! � x, the Lr
!?

norm is defined on each
ft˙! D constg, and 6r! denotes the tangential derivatives to ft˙! D constg.

In the last two lines of the definition of S!
k
.`/, the restrictions k0 � k, `0 � 0 and k0C `0 � kC `

ensure that rectangular boxes of the form Ck0.`0/ fit in the frequency support of P !
`

. The restriction
kC 2`� k0C `0 is imposed by the main parametrix estimate (see Section 10H or [Krieger et al. 2015,
Section 11]), to ensure square-summability in Ck0.`0/.

The null frame spaces in S!
k
.`/ allow one to exploit transversality in frequency space, and play

an important role in the proof of the trilinear null form estimate; see [Krieger et al. 2015, equations
(136)–(138)] and Proposition 8.18 below. On the other hand, the L2L1-norm for PCk0 .`0/u allows us to
gain the dimensions of Ck0.`0/.

Remark 4.1. For the reader who is familiar with the function space framework in [Krieger et al. 2015],
we point out that our S!

k
.`/ is slightly stronger than that in [loc. cit.]. More precisely, instead of

2�k
0�.1=2/k2�.1=2/`

0

kPCk0 .`0/ukL2L1 as in our definition, it is 2�k
0�.1=2/kkPCk0 .`0/ukL2L1 in [loc. cit.].

However, we note that the extra factor 2�.1=2/`
0

is actually present in the main parametrix estimate in
[loc. cit., Subsection 11.3].

Remark 4.2. The square function norm S
sq

k
is new here in the structure of the S norm. It plays no

role in the study of the solutions for the hyperbolic Yang–Mills equation in the caloric gauge, i.e., in
Theorems 1.13 and 1.16. Instead, it is only needed in order to justify the transition to the temporal gauge
in Theorem 1.18.

This norm scales like L1L2. Moreover, it obeys the embeddings

PkX
0; 1
2

1 � Sk; Sk �X
0; 1
2

1 :

For k; k0 2 Z satisfying k0 � k and `0 < �5, we define

kuk2SkŒCk0 .`0/�
D 2�

5
3
k
kuk2

L2L6
C 2�2k

0�k2�`
0

kuk2
L2L1

C sup
j W jj�.k0C2`0/j�5

�
kQ<juk

2
L1L2

C 2�2kkQ<juk
2
NE

C 2�3.k
0C`0/

X
˙

kQ˙<juk
2

PW
�
! .

j�k
2
/

�
:

The virtue of this norm is that it is square-summable in boxes of the form Ck0.`0/:

Lemma 4.3. For any k; k0; `0 such that k0 � k and `0 � 0, we haveX
C2fCk0 .`0/g

kPCuk
2
SkŒCk0 .`0/�

. kuk2Sk : (4-1)



256 SUNG-JIN OH AND DANIEL TATARU

Proof. The desired square-summability estimates for the L1L2, NE and PW �! components follow
immediately from the definition of S ang

k
� Sk . For the L2L6 and L2L1 components, we write

uDQ<k0C2`0uCQ�k0C2`0u:

For the former we use S ang
k

, and for the latter we simply note that, by Bernstein,

2�
5
6
k
kQ�k0C2`0PCk0 .`0/ukL2L6 C 2

�k0� 1
2
k2�

1
2
`0
kQ�k0C2`0PCk0 .`0/ukL2L1 . kPCk0 .`0/ukX0;1=21

;

which is clearly square-summable. �

Sharp solution norm S]. We define

kuk
S
]

k

D 2�k.krukL1L2 Ck�ukN /;

kuk
.S
]

˙
/k
D kukL1L2 Ck.Dt �jDj/ukN˙ ;

both of which scale like L1L2. These norms are used in the parametrix construction in Section 9.

Remark 4.4. Again for the reader familiar with [Krieger et al. 2015], we note that our definition of S]
k

differs from that in [loc. cit.] by a factor of 2k (in [loc. cit.], S]
k

scales like L1 PH 1).

Scattering .or controlling/ norm S1. Given any � 2 R, we define S� D `2S� , i.e.,

kuk2S� D
X
k

kPkuk
2
S�
k
; kukS�

k
D 2.��1/k.krukS Ck�ukL2 PH�1=2/: (4-2)

This norm scales like L1 PH� . The norm S1 will be the main scattering (or controlling) norm, in the sense
that finiteness of this norm for a caloric Yang–Mills wave would imply finer properties of the solution
itself and those nearby (see Theorem 5.1 below).

X
�;b;p
r -type norms. To close the estimates for caloric Yang–Mills waves, we need norms which give

additional control4 off the characteristic cone (i.e., “high” modulation regime). We use an LpLp
0

generalization of the usual L2L2-based X�;b-norm, defined as follows: for �; b 2 R, 1� p; r <1, let

kuk
.X
�;b;p
r /k

D 2�k
�X
j

�
2bj

�X
!

kPkQjP
!
j�k
2

uk2
LpLp

0

�1
2
�r �1

r

; (4-3)

where p0 D p
p�1

is the dual Lebesgue exponent of p. The cases p D 1 and r D 1 are defined in
the obvious manner. We also define the dyadic norm .X

�;b;p
˙;r /k by replacing Qj by Q˙j in the above

definition.
When p D 2, by orthogonality we have

kuk
.X
�;b;2
r /k

D 2�k
�X
j

.2bj kPkQjukL2L2/
r

�1
r

:

4In particular, with `1-summability in dyadic frequencies.
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Analogous identities hold for X�;b;2
˙;r . To be consistent with the usual notation, we will often omit the

exponents p and r when they are equal to 2, i.e., X�;br D X
�;b;2
r , X�;b D X�;b;22 , X�;b

˙;r D X
�;b;2
˙;r and

X
�;b
˙
DX

�;b;2
˙;2 .

Before we introduce the specific norms we use, for logical clarity, we first fix the parameters that will
be used. We introduce b0, b1 and p0, which are smaller than but close to 1

4
, 1
2

and1, respectively. More
precisely, we fix

b0 D
1

4
� ı0; b1 D

1

2
� 10ı0; 1�

1

p0
D 5ı0;

so that

0 <
1

4
� b0 <

1

48
; 2

�
1

4
� b0

�
< 1�

1

p0
<
1

24
; (4-4)

1

4
< b1 <

1

2
�

�
1�

1

p0

�
: (4-5)

We define
kf k
�Z1

k
D kQ<kCCf kX�5=4�b0;�3=4Cb0;11

;

kukZ1
k
D k�uk

�Z1
k
D kQ<kCCukX�1=4�b0;1=4Cb0;11

:

Note that the Z1
k

-norm scales like L1 PH 1. As in [Krieger et al. 2015; Krieger and Tataru 2017], this norm
is used as an auxiliary device to control the bulk of nonlinearities (i.e., the part where the secondary null
structure is not necessary) when reiterating the Yang–Mills equations; see the proofs of Propositions 4.23–
4.29 in Section 8.

Remark 4.5. The Z1-norm used in [Krieger et al. 2015] corresponds to the case b0 D 0. Therefore, our
Z1-norm is weaker than the Z1-norm in [loc. cit.]. This modification is made to handle the contribution
of ��1P ŒA˛; @˛A� in the reiteration procedure; see Proposition 4.22.

Next, we also define

kf k.�Z1p0 /k
D kQ<kCCf kX3=2�3=p0C.1=4�b0/�0;�1=2�.1=4�b0/�0;p01

;

where �0 D 2
�
1
p0
�
1
2

�
, as well as the intermediate norm

kf k
.� zZ1p0 /k

D kQ<kCCf kX5=4�3=p0C.1=4�b0/�0;�1=4�.1=4�b0/�0;p01

:

These norms scale like L1L2. Clearly, .�Z1p0/k � .� zZ
1
p0
/k . Given any caloric Yang–Mills wave A

with a finite S1-norm, we will put �PA in `1� zZ1p0 and �PA 2 `1�Z1p0 ; see Proposition 5.4.
Note that the following embeddings hold:

PkQjL
1L2 � 2

1
4
.j�k/�Z1k ; (4-6)

X
0;� 1

2
1 \�Z1k � .�Z

1
p0
/k � .� zZ1p0/k : (4-7)

Estimate (4-6) follows from Bernstein, whereas the first embedding in (4-7) follows by a simple interpo-
lation argument. We omit the straightforward proofs.
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Finally, as in [Krieger and Tataru 2017], we also need to use the function space

`1X�
1
2
Cb1;�b1 ;

which also scales like L1L2. Given any caloric Yang–Mills wave A with a finite S1-norm, we will be able
to place �PA in `1X�1=2Cb1;�b1. This bound, in turn, is used crucially in the parametrix construction.

High-modulation norms X1 and zX1 for 1-forms. In our analysis below, we need to use different high-
modulation norms for the Leray projection PA than for the general components of a caloric Yang–Mills
wave. Hence it is convenient to define norms for 1-forms with this distinction built in.

Let A and G be spatial 1-forms on R1C4. We define

kGk
�X1

k
D kGk

L2 PH�1=2
CkGk

L9=5 PH�4=9
CkPGk.�Z1p0 /k

:

For any � 2 R, we define

kGk�X�
k
D 2.��1/kkGk

�X1
k
; kAkX�

k
D k�Ak�X�

k
:

Similarly, we define

kGk
� zX1

k

D kGk
L2 PH�1=2

CkGk
L9=5 PH�4=9

CkPGk
.� zZ1p0 /k

;

as well as � zX�
k

and zX�
k

. Given any caloric Yang–Mills wave A with a finite S1-norm, we will place �A
successively in `1� zX1 and �A 2 `1�X1; see Proposition 5.4.

We have the embeddings

Pk.L
1L2\L2 PH�

1
2 /� .�X1/k � .� zX1/k :

Since L1L2 �N, it follows that

kGkN\�X1 . kGkL1L2\L2 PH�1=2 : (4-8)

Strengthened solution norm S1. Putting together S1 and X1, for a 1-form A on R1C4, we define

kAkS�
k
D kAkS�

k
Ck�Ak�X�

k
:

Core elliptic norm Y . We return to functions u on R1C4. We define

kukYk D kukL2 PH1=2 Ckuk
Lp0 PW

2�3=p0;p
0
0
;

where p0 was fixed in (4-4) above. This norm scales like L1L2.

Main elliptic norm Y 1. For � 2 R, we define

kuk2Y � D
X
k

kPkuk
2
Y �
k
; kukY �

k
D 2�k.kukYk C 2

�k
k@tukL2 PH1=2/:

This norm scales like L1 PH� . We will put the elliptic components A0 and P?A D ��1@x@
`A` of a

caloric Yang–Mills wave in Y 1.
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4A3. Interval localization and extension. So far, the function spaces have been defined over the whole
space-time R1C4. In our analysis, we also need to consider localization of these spaces on finite time
intervals. We use the same set-up as [Oh and Tataru 2018; Krieger and Tataru 2017].

For most of our function spaces (with the important exceptions of Z1p0, zZ
1
p0

, X1 and zX1; see below),
we take a simple route and define the interval-localized counterparts by restriction. In particular, given a
time interval I � R, we define

kukS� ŒI �D inf
Qu2S� WuDQu�I

k QukS� ; kukSŒI �D inf
Qu2S WuDQu�I

k QukS ; kf kNŒI�D inf
Qf 2N WfD Qf �I

k Qf kN : (4-9)

An important technical question then is that of finding a common extension procedure outside I which
preserves these norms. The following proposition provides an answer.

Proposition 4.6. Let I be a time interval.

(1) Let �I be the characteristic function of I. Then we have the bounds

k�IukS . kukS ; k�If kN . kf kN : (4-10)

For a fixed function f on R1C4, the norms k�If kN and kf kNŒI� are also continuous as a function
of the endpoints of I. We also have the linear estimates

krukSŒI � .kru.0/kL2 Ck�ukNŒI�; (4-11)

kukS1ŒI � .kru.0/kL2 Ck�ukN\L2 PH�1=2ŒI �: (4-12)

(2) Consider any partition I D
S
k Ik . Then the N and L2 PH�1=2 are interval square divisible, i.e.,X

k

kf k2NŒIk� . kf k
2
NŒI �;

X
k

kf k2
L2 PH�1=2ŒIk�

. kf k2
L2 PH�1=2ŒI �

; (4-13)

and the S and S1 are interval square summable, i.e.,

kuk2SŒI � .
X
k

kuk2SŒIk�; kuk
2
S1ŒI �

.
X
k

kuk2
S1ŒIk�

: (4-14)

For a proof, we refer to [Oh and Tataru 2018, Proposition 3.3].

Remark 4.7. As a consequence of part (1), up to equivalent norms, we can replace the arbitrary extension
in (4-9) by the zero extension in the case of S and N, and by the homogeneous waves with .�; @t�/ at
each endpoint as data outside I in the case of S1.

The elliptic norms Y and Y 1 only involve spatial multipliers and norms of the form LpLq , so their
interval-localization Y ŒI � and Y 1ŒI � are obviously defined (either by restriction, or using the LpLqŒI �-
norm; both are equivalent). In particular, in the case of Y , observe that

kukY ŒI � D k�IukY � kukY ;

so the zero extension can be used.



260 SUNG-JIN OH AND DANIEL TATARU

On the other hand, given a function u on I, we directly define the kuk.Z1p0 /kŒI �
(resp. kuk

. zZp0 /
1
k
ŒI �

) to
be kuextk.Z1p0 /kŒI �

(resp. kuextk
. zZp0 /

1
k
ŒI �

), where uext is the extension of u outside I by homogeneous
waves. Equivalently, for .�Z1p0/k and .� zZ1p0/k , we define

kf k.�Z1p0 /kŒI �
D k�If k.�Z1p0 /k

; kf k
.� zZ1p0 /kŒI �

D k�If k.�Z1p0 /k
:

Accordingly, we define

kGk
�X1

k
ŒI � D kGkL2 PH�1=2ŒI �CkGkL9=5 PH�4=9ŒI �Ck�IPGk.�Z1p0 /k

; kAkX1
k
ŒI � D k�Ak�X1

k
ŒI �;

and similarly for � zX1ŒI � and zX1ŒI �.
The advantage of this definition is clear: We may thus use a common extension procedure (namely,

by homogeneous waves) for S1 and X1. The price we pay is that in estimating the �Z1p0- and the
� zZ1p0-norms, we need to carefully absorb the sharp time cutoff �I .

4A4. Sources of smallness: divisibility, energy dispersion and short time interval. In this work, we rely
on several sources of smallness for analysis of caloric Yang–Mills waves.

One important source of smallness is divisibility, which refers to the property of a norm on an
interval that it can be made arbitrarily small by splitting the interval into a controlled number of pieces.
Unfortunately, our main function space S1ŒI � is far from satisfying such a property (see, however,
Theorem 5.1(6) below), which causes considerable difficulty. Our workaround, as in [Oh and Tataru
2018], is to utilize a weaker yet divisible norm

kukDS1ŒI � D kjDj
� 5
6rukL2L6ŒI �CkrukStr0ŒI �Ck�ukL2 PH�1=2ŒI �: (4-15)

Another important source of smallness is energy dispersion:

Definition 4.8. Given anym2Z, we define the energy dispersion below scale 2�m (or above frequency 2m)
of u of orders 0 and 1 to be, respectively,

kukED�mŒI � WD sup
k2Z

2�ı2.m�k/C2�2kkPkukL1L1ŒI �; (4-16)

kukED1�mŒI �
WD sup

k2Z

2�ı2.m�k/C2�2kkrPkukL1L1ŒI �: (4-17)

The quantity k � kED�mŒI � (resp. k � kED1�mŒI �
) is used at the level of the curvature F (resp. the connec-

tion A). As we work mostly at the level of the connection, unless stated otherwise, by energy dispersion
we usually refer to the order-1 case.

Clearly, ED1�mŒI � fails to be useful at frequencies below O.2m/. In this regime, we exploit instead the
length jI j of the time interval as a source of smallness. Due to the scaling property of �, we must require
2mjI j to be sufficiently small. To conveniently pack together the previous two concepts, we introduce the
notion of an .";M/-energy-dispersed function on an interval.

Definition 4.9 (.";M/-energy-dispersed function on an interval). Let I be a time interval, and let
u 2 S1ŒI �. We will say that the pair .u; I / is .";M/-energy-dispersed if there exists some m 2 Z and
M > 0 such that the following properties hold:
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� (S1-norm bound)
kukS1ŒI � �M: (4-18)

� (small energy dispersion)
kukED1�mŒI �

� "M: (4-19)

� (high-modulation bound)
k�uk

L2 PH�1=2ŒI �
� "M: (4-20)

� (short time interval) jI j � "2�m.

Observe (by interpolation) that if .u; I / is .";M/-energy-dispersed, then

sup
k

kPkukStr1ŒI � � C"
ı1M: (4-21)

Finally, we state a proposition showing how the norms DS1ŒI � and ED1�mŒI � behave under the
extension procedure described above. Given an interval I, we denote by �kI a generalized cutoff function
adapted to the scale 2�k:

�kI .t/D .1C 2
k dist.t; I //�N; (4-22)

where N is a sufficiently large number. Let us recall [Oh and Tataru 2018, Proposition 3.4]:5

Proposition 4.10. Let k 2 Z, � � 0 and I be a time interval such that jI j � 2�k��. Consider a function
uI on I localized at frequency 2k, and denote by uext

I its extension outside I as homogeneous waves. Then
we have

2�kk�kIru
ext
I kLqLr .N 2

C�.kuIkLqLr ŒI �C 2
. 1
2
� 1
q
� 4
r
/
k�uIkL2L2ŒI �/; (4-23)

2�2kk�kIru
ext
I kL1L1 .N 2

�2k
kruIkL1L1ŒI �; (4-24)

where .q; r/ is any pair of admissible Strichartz exponents on R1C4.

Remark 4.11. Since 2�kŒ�kI ;r� D 2
�k.r�kI / is simply multiplication by another generalized cutoff

function adapted to the frequency scale 2k, the conclusions of Proposition 4.10 also hold with �kI 2
�kruext

I

replaced by 2�kr.�kIu
ext
I / on the left-hand sides.

4B. Estimates for quadratic nonlinearities. Here we state estimates for the quadratic nonlinearities in
Theorems 3.5 and 3.6. All estimates stated here are proved in Section 8C.

Throughout this and the next subsections, we will denote by A a g-valued spatial 1-form AD Aj dx
j

on I � R4 for some time interval I. To denote a g-valued space-time 1-form, we use the notation
At;x DA˛ dx

˛. We will use B (resp. Bt;x) to denote6 another g-valued spatial (resp. space-time) 1-form
on I �R4. Unless otherwise stated, all frequency envelopes will be assumed to be ı3-admissible.

5To be pedantic, [Oh and Tataru 2018, Proposition 3.4] only corresponds to the case �D 0. However, the required modification
of the proof is straightforward.

6Note that this convention is different from [Oh and Tataru 2017b] and Section 3, where B was reserved for caloric
gauge-linearized Yang–Mills heat flows.
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We begin with the quadratic nonlinearities in the equations for A0, @tA0 and @`A`. We introduce the
notation

M2
0.A;B/D ŒA`; @tB

`�; (4-25)

DM2
0.A;B/D�2Q.@tA; @tB/: (4-26)

These are the main quadratic nonlinearities in the �A0 and �@tA0 equations, respectively. The estimates
that we need for these nonlinearities are as follows.

Proposition 4.12. We have the fixed-time bounds

kjDj�1M2
0.A;B/.t/kL2

cd
. kA.t/k PH1

c
k@tB.t/kL2

d
; (4-27)

kjDj�2DM2
0.A;B/.t/kL2

cd
. k@tA.t/kL2ck@tB.t/kL2d ; (4-28)

and the space-time bounds

kjDj�1M2
0.A;B/kYcd ŒI � . kAkS1c ŒI �kBkS1d ŒI �; (4-29)

kjDj�1M2
0.A;B/kL2 PH1=2

cd
ŒI �
CkjDj�2DM2

0.A;B/kL2 PH1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �: (4-30)

Moreover, for any � > 0, the nonlinearity M2
0.A;B/ admits the splitting

M2
0.A;B/DM�;2

0;small.A;B/CM�;2
0;large.A;B/;

where the small part obeys the improved bound

kjDj�1M�;2
0;small.A;B/kYcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-31)

and the large part is bounded by divisible norms of A and B:

kjDj�1M�;2
0;large.A;B/kYcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

: (4-32)

Finally, if either
kAkS1c ŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1c ŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then we have

kjDj�1M2
0.A;B/kYcŒI � . "

ı2M; (4-33)

kjDj�2DM2
0.A;B/kL2 PH1=2

c ŒI �
. "ı2M: (4-34)

The remaining quadratic nonlinearities in the equations for A0 and @`A` involve Q, and they obey
simpler estimates.

Proposition 4.13. For � D 0 or 1, we have the fixed-time bound

kjDj��Q.A; @�t B/.t/kL2
cd
. kA.t/k PH1

c
k@�t B.t/k PH1��

d

(4-35)
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and the space-time bounds

kjDj��Q.A; @�t B/kL2 PH1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-36)

kjDj��Q.A; @�t B/kYcd ŒI �CkjDj
���1Q.A; @�t B/kL1L1cd ŒI �

. kAkDS1c ŒI �kBkDS1d ŒI �: (4-37)

Finally, if either
kAkS1c ŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1c ŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then

kjDj��Q.A; @�t B/kYcŒI � . "
ı2M: (4-38)

Also for the quadratic part A2
0 of A0, given by

A2
0.A;A/D�

�1.ŒA; @tA�/C 2Q.A; @tA/;

we have the following additional property, which will be used in the proof of Theorem 1.18:

Proposition 4.14. For the quadratic form A2
0 we have

kjDj2A2
0.A;B/k.L2xL1t /cd ŒI �

. krAkSsqc krBkSsqd : (4-39)

For the quadratic nonlinearity in the �AAj equation, we introduce the notation

PjM2.A;B/DPj ŒA`; @xB
`�;

P?j M2.A;B/D 2��1@jQ.@˛A; @˛A/;

so that (3-12) becomes

�AAj DPjM.A;A/CP?j M.A;A/CRj .A; @tA/:

Proposition 4.15. We have the fixed-time bounds

kPM2.A;B/.t/k PH�1
cd

. kA.t/k PH1
c
kB.t/k PH1

d

; (4-40)

kP?M2.A;B/.t/k PH�1
cd

. krA.t/kL2ckrB.t/kL2d ; (4-41)

and space-time bounds

kPM2.A;B/k.N\�X1/cd ŒI � . kAkS1c ŒI �kBkS1d ŒI �; (4-42)

kP?M2.A;B/k.N\�X1/cd ŒI � . kAkS1c ŒI �kBkS1d ŒI �: (4-43)

In particular, the L2 PH�1=2-norms are bounded by the Str1-norms of A and B:

kPM2.A;B/k
L2 PH

�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-44)

kP?M2.A;B/k
L2 PH

�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �: (4-45)
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Moreover, for any � > 0, the terms PjM2.A;B/ and P?j M2.A;B/ admit the splittings

PjM2.A;B/DPjM�;2
small.A;B/CPjM�;2

large.A;B/;

P?j M2.A;B/DP?j M�;2
small.A;B/CP?j M�;2

large.A;B/;

so that the N -norms of the small parts obey the improved bounds

kPM�;2
small.A;B/kNcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-46)

kP?M�;2
small.A;B/kNcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-47)

and those of the large parts are bounded by divisible norms of A and B:

kPM�;2
large.A;B/kNcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

; (4-48)

kP?M�;2
large.A;B/kNcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

: (4-49)

Finally, if either
kAkS1cŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1cŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then

kPM2.A;B/k
.N\L2 PH�1=2/cŒI �

. "ı2M; (4-50)

kP?M2.A;B/k
.N\L2 PH�1=2/cŒI �

. "ı2M: (4-51)

We end this subsection with bilinear estimates for w20 and w2x , which arise in the equation for a dynamic
Yang–Mills heat flow of a caloric Yang–Mills wave.

Proposition 4.16. For any s > 0, we have the fixed-time bound

kjDj�1Pkw20.A;B; s/.t/kL2 . h2
2ksi�10h2�2ks�1i�ı2ckdkk@tA.t/kL2ckB.t/k PH1

d

(4-52)

and the space-time bounds

kjDj�1Pkw20.A;B; s/kL2 PH1=2ŒI �
. h22ksi�10h2�2ks�1i�ı2ckdkkAkStr1cŒI �

kBkStr1
d
ŒI �; (4-53)

kjDj�1Pkw20.A;B; s/kY ŒI � . h2
2ksi�10h2�2ks�1i�ı2ckdkkAkS1c ŒI �kBkS1d ŒI �

: (4-54)

Moreover, if .B; I / is .";M/-energy-dispersed, then

kjDj�1Pkw20.A;B; s/kY ŒI � . "
ı2h22ksi�10h2�2ks�1i�ı2ckkAkS1c ŒI �M: (4-55)

Proposition 4.17. For any s > 0, we have the fixed-time bound

kPkPw2x.A;B; s/.t/k PH�1 . h2
2ksi�10h2�2ks�1i�ı2ckdkkrA.t/kL2ckrB.t/kL2d

(4-56)
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and the space-time bounds

kPkPw2x.A;B; s/kL2 PH�1=2ŒI �

. h22ksi�10h2�2ks�1i�ı2ckdkk.rA;rP?A/k
.Str0�L2 PH1=2/cŒI �

kBkStr1
d
ŒI �; (4-57)

kPkPw2x.A;B; s/kN\�X1ŒI �

. h22ksi�10h2�2ks�1i�ı2ckdkk.A;P?A/k.S1�Y 1/cŒI �kBkS1d ŒI �: (4-58)

Moreover, if .B; I / is .";M/-energy-dispersed, then

kPkPw2x.A;B; s/kN\L2 PH�1=2ŒI �

. h22ksi�10h2�2ks�1i�ı2ck."ı2kAkS1cŒI �CkrP?Ak
L2 PH

1=2
c ŒI �

/M: (4-59)

4C. Estimates for the covariant wave operator. We now state estimates concerning the covariant wave
operator �A. All estimates stated here without proofs are proved in Section 8C, with the exceptions of
Theorem 4.24 and Proposition 4.25, which are proved in Section 9.

We begin by expanding �AB to

�AB D�BC 2ŒA˛; @˛B�C Œ@˛A˛; B�C ŒA˛; ŒA˛; B��:

We have the following simple fixed-time estimates for �A��.

Proposition 4.18. For any ˛; ˇ; 
 2 f0; 1; : : : ; 4g, we have the fixed-time bounds

kŒA˛; @
˛B�.t/k PH�1

cd

. k.A0; A/.t/k PH1
c
krB.t/kL2

d
; (4-60)

kŒ@˛A˛; B�.t/k PH�1
cd

. .kA.t/k PH1
c
Ck@tA0.t/kL2c /kB.t/k PH1

d

; (4-61)

kŒA.1/˛ ; ŒA.2/˛; B��.t/k PH�1
cde

. k.A.1/0 ; A.1//.t/k PH1
c
k.A

.2/
0 ; A.2//.t/k PH1

d

kB.t/k PH1
e

(4-62)

and the space-time bounds

kŒA`; @
`B�k

L2 PH
�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-63)

kŒA0; @0B�kL2 PH�1=2
cd

ŒI �
. krA0kL2 PH1=2

c ŒI �
kBkStr1

d
ŒI �; (4-64)

kŒ@˛A˛; B�kL2 PH�1=2
cd

ŒI �
. k.rA0;rP?A/k

L2 PH
1=2
c ŒI �

kBkStr1
d
ŒI �; (4-65)

kŒA.1/˛ ; ŒA.2/˛; B��.t/k
L2 PH

�1=2

cde
ŒI �
. k.rA.1/0 ;rA.1//.t/k

L2 PH1=2�Str0cŒI �

�k.rA
.2/
0 ;rA.2//.t/k

L2 PH1=2�Str0cŒI �
kBkStr1eŒI �

: (4-66)

In order to proceed, we recall the notation P˛AD .PA/˛ for a space-time 1-form At;x:

P˛AD

�
PjAx; ˛ D j 2 f1; : : : ; 4g;

A0; ˛ D 0:

We also write P?˛ AD .P
?A/˛ D A˛ �P˛A.



266 SUNG-JIN OH AND DANIEL TATARU

Given a parameter � 2 N, we furthermore decompose 2ŒA˛; @˛B� so that

�AB D�BC 2ŒA˛; @˛B�CRem3AB

D�BCDiff �PABCDiff �
P?A

BCRem�;2A BCRem3AB;
(4-67)

where7

Diff �PA D
X
k

2ŒP<k��P˛A; @
˛PkB�; (4-68)

Diff �
P?A

D

X
k

2ŒP<k��P
?
˛ A; @

˛PkB�; (4-69)

Rem�;2A D
X
k

2ŒP�k��A˛; @
˛PkB�; (4-70)

Rem3AB D Œ@
˛A˛; B�C ŒA

˛; ŒA˛; B��: (4-71)

We now turn to the bounds for each part of the decomposition (4-67). For a fixed B 2 S1ŒI �, we
introduce the nonlinear maps

Rem3.A/B D�ŒDA0.A/; B�C ŒDA.A/; B�� ŒA0.A/; ŒA0.A/; B��C ŒA
`; ŒA`; B��; (4-72)

Rem3s .A/B D�ŒDA0Is.A/; B�� ŒA0Is.A/; ŒA0Is.A/; B��; (4-73)

defined for spatial connections A on I such that .A; @tA/.t/ 2 T L
2C for each fixed time t 2 I. In view

of Theorems 3.5 and 3.6, for a caloric Yang–Mills wave A we have

Rem3AB D Rem3.A/B;

Rem3A.s/B D Rem3.A.s//BCRem3s .A/B:

The nonlinear maps Rem3.A/B and Rem3s .A/B are well-behaved:

Proposition 4.19. Suppose thatA.t/2 CQ for every t 2 I. Then the following properties hold with bounds
depending on Q, but otherwise independent of I :

� Let c and d be .�ı2; S/-frequency envelopes for A and B in Str1ŒI �, respectively. Then

kPk.Rem3.A/B/k
L1L2\L2 PH�1=2ŒI �

.Q;kAkStr1ŒI�
.c
Œı2�

k
/2dkC ckc

Œı2�

k
d
Œı2�

k
: (4-74)

� For a fixed A2 Str1ŒI �, Rem3.A/B is linear in B . On the other hand, for a fixed B with kBkStr1ŒI �� 1,
Rem3. � /B W Str1ŒI �! L1L2\L2 PH�1=2ŒI � is Lipschitz envelope-preserving.

� For a fixed A 2 Str1ŒI �, Rem3s .A/B is linear in B . On the other hand, for a fixed B 2 S1ŒI � with
kBkStr1ŒI � � 1, Rem3s .A/B is a Lipschitz map

Rem3s .A/B W Str1ŒI �! L1L2\L2 PH�
1
2 ŒI � (4-75)

7Although the definition depends on the whole space-time connection At;x , we deviate from our convention and simply write
Diff �

PA
, Diff �

P?A
, Rem�;2

A
etc. to avoid cluttered notation.
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with output concentrated at frequency s�1=2,

.1� s�/NRem3s .A/B W Str1ŒI �! 2�ı2k.s/L1 PH�ı2 \L2 PH�
1
2
�ı2 ŒI �: (4-76)

Next, we consider the term

2ŒA˛; @
˛B�D Diff �PABCDiff�

P?A
BCRem�;2A B:

We begin with Rem�;2A B , which obeys analogous bounds as PM2.A;B/ and P?M2.A;B/ (see
Proposition 4.15).

Proposition 4.20. For any � > 0, the term Rem�;2A B obeys the bound

kRem�;2A Bk.N\�X1/cd ŒI � . 2
C�.kAkS1c ŒI �Ck.P

?A;A0/kY 1c ŒI �/kBkS1d ŒI �
: (4-77)

In particular, its L2 PH�1=2-norm is bounded by

kRem�;2A Bk
L2 PH

�1=2

cd
ŒI �
. .kAkStr1cŒI �

Ck.rP?A;rA0/k.L2 PH1=2/cŒI �
/kBkStr1

d
ŒI �: (4-78)

Furthermore, Rem�;2A B admits the splitting

Rem�;2A B D Rem�;2A;smallBCRem�;2A;largeB

so that the N -norm of the small part obeys the improved bound

kRem�;2A;smallBkNcd ŒI � . 2
�ı2�kAkS1c ŒI �kBkS1d ŒI �

; (4-79)

and that of the large part is bounded by a divisible norm of .A0; A/:

kRem�;2A;largeBkNcd ŒI � . 2
C�.kAkDS1c ŒI �Ck.rP?A;rA0/k.L2 PH1=2/cŒI �

/kBkS1
d
ŒI �: (4-80)

Finally, if .B; I / is .";M/-energy-dispersed, then

kRem�;2A Bk
.N\L2 PH�1=2/cŒI �

. .2�ı2� C 2C�"ı2/kAkS1cŒI �M C 2
C�
k.rP?A;rA0/k.L2 PH1=2/cŒI �

M: (4-81)

It remains to consider the paradifferential terms. The term Diff �
P?A

B can be handled using the
following estimate, in combination with (3-22) and Proposition 4.12:

Proposition 4.21. For any � > 0, we have

kDiff�
P?A

Bk.X�1=2Cb1;�b1\�X1/cd ŒI � . kP
?AkY 1c ŒI �kBkS1d ŒI �

: (4-82)

Moreover, we have
kDiff�

P?A
BkL1L2

f
ŒI � . kP

?AkL1L1a ŒI �kBkS1e ŒI �; (4-83)

where

fk D

� X
k0<k��

ak0

�
ek :
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The only remaining term is the paradifferential term Diff �PAB . We first state the high-modulation
bounds.

Proposition 4.22. For any � > 0, consider the splitting Diff �PA D Diff �A0 CDiff �PxA, where

Diff �A0B D�
X
k

2ŒP<k��A0; @tPkB�; Diff �PxAB D
X
k

2ŒP<k��P`A; @
`PkB�:

For DiffA0B , we have the bound

kDiff �A0Bk.X�1=2Cb1;�b1\�X1/cd ŒI � . kA0kY 1c ŒI �kBkS1d ŒI �: (4-84)

On the other hand, for DiffPxAB , we have the bounds

kDiff �PxABk.� zX1/cd ŒI � . kAxkS1c ŒI �kBkS1d ŒI �; (4-85)

kDiff �PxABk.�X1/cd ŒI � . kAxk.S1\ zX1/cŒI �kBkS1d ŒI �; (4-86)

kDiff �PxABk.X�1=2Cb1;�b1 /cd ŒI � . kAxk.S1\X1/cŒI �kBkS1d ŒI �: (4-87)

Next, we consider the N \L2 PH 1=2 norm of DiffPAB . The contribution of each Littlewood–Paley
projection Pk0PA is perturbative, as the following proposition states:

Proposition 4.23. Let At;x be a caloric Yang–Mills wave on an interval I obeying

kAkS1ŒI � �M: (4-88)

Then for any � > 0 and k0 2 Z, we have

kDiff�Pk0PABk.N\L2 PH�1=2/d ŒI �
.M kBkS1

d
ŒI �: (4-89)

However, we cannot sum up in k0. The proper way to handle Diff �PA is not to regard it as a perturbative
nonlinearity, but rather as a part of the underlying linear operator. Indeed, for the operator �CDiff �PA,
we have the following well-posedness result:

Theorem 4.24. Let At;x be a caloric Yang–Mills wave on an interval I obeying (4-88). Consider the
following initial value problem on I �R4:�

�BCDiff �PAB DG;
.B; @tB/.t0/D .B0; B1/;

(4-90)

for some g-valued spatial 1-form G 2N \L2 PH�1=2ŒI �, .B0; B1/ 2 PH 1 �L2 and t0 2 I.
Then for � � �1.M/, where �1.M/� 1 is some function independent of At;x , there exists a unique

solution B 2 S1ŒI � to (4-90). Moreover, for any admissible frequency envelope c, the solution obeys the
bound

kBkS1c ŒI � .M k.B0; B1/k. PH1�L2/c
CkGk

.N\L2 PH�1=2/cŒI �
: (4-91)

As a quick corollary of Propositions 4.19–4.20 and Theorem 4.24, we obtain well-posedness of the
initial value problem associated to �A; see Theorem 5.1(1) below.
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Theorem 4.24 is proved in Sections 9, 10 and 11. The main ingredient for the proof is construction of
a parametrix for �CDiff �PA by renormalization with a pseudodifferential gauge transformation; for a
more detailed discussion, see Section 9.

The paradifferential wave equation (4-90) leads to the following weak divisibility property of the S1

norm, which will later play an important role in the energy induction argument.

Proposition 4.25. Let At;x be a caloric Yang–Mills wave on an interval I which obeys (4-88) for some
M > 0. Let B 2 S1ŒI � be a solution to the paradifferential wave equation (4-90) with the source
G 2N \L2 PH�1=2ŒI �, which obeys the bound

sup
t2I

k.B; @tB/.t/kL2 �E (4-92)

for some E > 0. Then there exists a partition I D
S
i2I Ii such that

kBkS1ŒIi � .E 1 for i 2 I; (4-93)

where
#I .E;M;kBk

S1ŒI�
;kGk

N\L2 PH�1=2ŒI�
1:

The proof of this proposition also involves the parametrix construction (see Sections 9, 10 and 11), as
well as Proposition 4.23.

We now state additional estimates satisfied by Diff �PA, which are needed to analyze the difference
of two solutions (or even approximate solutions). For this purpose, it is necessary to exploit the so-
called secondary null structure of the Yang–Mills equation, which becomes available after reiterating the
equations for PA.

We begin with simple bilinear estimates, which allow us to peel off the nonessential parts (in particular,
the contribution of the cubic and higher-order nonlinearities) of A0 and PA.

Proposition 4.26. We have

kDiff �A0Bk.N\L2 PH�1=2/f ŒI � . kA0k.L1L1\L2 PH3=2/aŒI �
kBkS1e ŒI �; (4-94)

kDiff �PxABk.N\L2 PH�1=2/f ŒI � . .kPAŒt0�k. PH1�L2/a
Ck�PAkL1L2aŒI �/kBkS1e ŒI �; (4-95)

where

fk D

� X
k0<k��

ak0

�
ek :

The contribution of the quadratic nonlinearities M2
0 and M2 in the equations for A0 and Ax , respec-

tively, cannot be treated separately. This is precisely where we exploit the secondary null structure, which
only manifests itself after combining the contribution of these nonlinearities in Diff �PA.

Proposition 4.27. Let

�A0 D ŒB
.1/`; @tB

.2/

`
�; (4-96)

�PADP ŒB.1/`; @xB
.2/

`
�; PAŒt0�D 0; (4-97)
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where B.1/; B.2/ 2 S1ŒI �. Then we have

kDiff �PABk.N\L2 PH�1=2/f ŒI � . zM kB
.1/
kS1c ŒI �

kB.2/kS1
d
ŒI �kBkS1e ŒI �; (4-98)

where

fk D

� X
k0<k��

ck0dk0

�
ek :

Next, we turn to the contribution of terms of the form ŒA˛; @
˛A� in the equation for PxA. The frequency

envelope bound for this term is slightly involved, because it does not obey a good N -norm estimate.

Proposition 4.28. Let A0 D 0 and

�PAj D

NX
nD1

P ŒBn.1/˛ ; @˛B
n.2/
j �; PAŒt0�D 0; (4-99)

where

kBn.1/kS1
cn
ŒI �Ck.B

n.1/
0 ;P?Bn.1//kY 1

cn
ŒI � � 1; kB

n.2/
kS1
dn
ŒI � � 1: (4-100)

Assume furthermore that

kPAkS1a ŒI � � 1; kBkS1e ŒI � � 1: (4-101)

Then we have

kDiff �PxABk.N\L2 PH�1=2/f ŒI � . 1; (4-102)

where

fk D

� X
k0<k��

.ak0 C

NX
nD1

cnk0d
n
k0/

�
ek :

Next, we state a trilinear estimate for Diff �PA in the presence of w2�which is analogous to Proposition 4.27.
This is needed for analyzing the dynamic Yang–Mills heat flow of a caloric Yang–Mills wave.

Proposition 4.29. Let

�A0 Dw20.B
.1/; B.2/; s/; (4-103)

�PADPw2x.B
.1/; B.2/; s/; PAŒt0�D 0; (4-104)

where B.1/ 2 S1ŒI �, P?B.1/ 2 Y 1ŒI � and B.2/ 2 S1ŒI �. Then we have

kDiff �PABk.N\L2 PH�1=2/f ŒI � . zM .kB.1/kS1c ŒI �CkP
?B.1/kY 1c ŒI �/kB

.2/
kS1
d
ŒI �kBkS1e ŒI �; (4-105)

where

fk D

� X
k0<k��

hs22k
0

i
�10
hs�12�2k

0

i
�ı2ck0dk0

�
ek :

Finally, we end this subsection with auxiliary estimates for Diff �PA, which are needed to justify
approximate linear energy conservation for the paradifferential wave equation.
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Proposition 4.30. Let � � 10. We have

kjDj�1Œr;Diff �PA�BkNcd . 2
�ı2�.kPAxkS1c ŒI �CkDA0kL2 PH1=2

c ŒI �
/kBkS1

d
ŒI �: (4-106)

Moreover, consider the L2-adjoint of Diff �PA, which is given by

.Diff �PA/
�B D

X
k

Pk@
˛ŒP˛A<k�� ; B�:

Then we have

k.Diff �PA/
�B �Diff �PABkNcd ŒI � . 2

�ı2�.kPAxkS1c ŒI �CkDA0kL2 PH1=2
c ŒI �

/kBkS1
d
ŒI �: (4-107)

5. Structure of caloric Yang–Mills waves

In this section, we use the results stated in Section 4 to study properties of subthreshold caloric Yang–Mills
waves satisfying an a priori S1-norm bound on an interval.

5A. Structure of a caloric Yang–Mills wave with finite S 1-norm. The following theorem provides
detailed properties of a caloric Yang–Mills wave with finite S1-norm. It will be useful for the proof of
the key regularity result (Theorem 6.1), as well as the main results stated in Section 1C.

For a regular solution to the Yang–Mills equation in the caloric gauge, we have seen in Theorem 3.5 that
(3-12), (3-13), (3-14) and (3-15) are satisfied. More generally, we say that a one-parameter family A.t/
.t 2 I / of connections in C (which is quite rough in general) solves the Yang–Mills equation in the caloric
gauge, or in short that A is a caloric Yang–Mills wave if .A; @tA/ 2 L1.I IT L

2C/ and satisfies (3-12),
(3-13), (3-14) and (3-15).

Theorem 5.1. Let A be a caloric Yang–Mills wave on a time interval I with energy E obeying

A.t/ 2 CQ for all t 2 I; (5-1)

kAkS1ŒI � �M (5-2)

for some 0 < Q;M <1. Let c be a ı5-frequency envelope for the initial data .A; @tA/.t0/ .t0 2 I / in
PH 1 �L2. Then the following properties hold:

(1) (linear well-posedness for�A) The initial value problem for the linear equation

�AuD f (5-3)
is well-posed. Moreover,

kukS1
d
ŒI � .M;Q k.u; @tu/.t0/k. PH1�L2/d

Ckf k
.N\L2 PH�1=2/d ŒI �

(5-4)

for any ı5-frequency envelope d .

(2) (frequency envelope bound)

kAkS1c ŒI �Ck�AAk.N\L2 PH�1=2/c2 ŒI � .M;Q 1: (5-5)

(3) (elliptic component bounds)

kA0kY 1
c2
ŒI �CkP

?AkY 1
c2
ŒI � .M;Q 1: (5-6)
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(4) (high modulation bounds)

k�Ak
�X1

c2
ŒI �Ck�AkX�1=2Cb1;�b1

c2
ŒI �
.M;Q 1: (5-7)

(5) (paradifferential formulation) For any � � 10,

k�ACDiff �PAAk.N\L2 PH�1=2/
c2
ŒI �
.M;Q 2C� : (5-8)

(6) (weak divisibility) There exists a partition I D
S
i2I Ii so that #I .M;Q 1 and

kAkS1ŒIi � .E 1: (5-9)

(7) (persistence of regularity) If .A; @tA/.t0/ 2 PHN � PHN�1 .N � 1/, then A 2 SN \ S1ŒI � and
A0 2 Y

N \Y 1ŒI �. Moreover,

kAkSN\S1ŒI �CkA0kYN\Y 1ŒI � .M;Q;N k.A; @tA/.t0/k. PHN� PHN�1/\. PH1�L2/
: (5-10)

For the subsequent properties, let QA be another caloric Yang–Mills wave on I obeying the same conditions
(5-1) and (5-2).

(8) (weak Lipschitz dependence on data) For � < 1 sufficiently close to 1, we have

kA� QAkS� ŒI � .M;Q k.A� QA; @t .A� @t QA//.t0/k PH�� PH��1 : (5-11)

(9) (elliptic component bound for the transport equation)

kA0k.jDj�2L2xL1t /c2 ŒI �
.M;Q 1: (5-12)

Moreover, if dk is a ı5-frequency envelope for A� QA in S1ŒI �, then

kA0� QA0k.jDj�2L2xL1t /ceŒI �
.M;Q 1; (5-13)

where ek D ckC ck.c � d/�k .

Remark 5.2. The frequency envelope bound (5-5) implies a uniform-in-time positive lower bound on the
energy concentration scale rc ; see Lemma 7.8 below. As a consequence, once Theorem 1.13 is proved,
finiteness of the S1-norm would imply that solution can be continued past finite endpoints of I (we note,
however, that Theorem 5.1 will be used in the proof of Theorem 1.13).

Remark 5.3. The combination of (1), (2) and the divisibility of the norm N \ L2 PH�1=2ŒI � (see
Proposition 4.6) show that a finite S1-norm Yang–Mills wave on I exhibits some modified scattering
behavior, i.e., that each Aj tends to a homogeneous solution to the equation �AuD 0 towards infinite
endpoints of I.

We start by establishing some weaker derived bounds.

Proposition 5.4. Let A be a caloric Yang–Mills wave on a time interval I, which obeys A.t/ 2 CQ for all
t 2 I and kAkS1ŒI � �M. Let c be a Cı5-frequency envelope for A in S1ŒI �, i.e., kAkS1c ŒI � � 1.
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(1) The following derived bounds for At;x hold:

kA0kY 1
c2
ŒI �CkP

?AkY 1
c2
ŒI � .M;Q 1; (5-14)

k�Ak
�X1

c2
ŒI �Ck�AkX�1=2Cb1;�b1

c2
ŒI �
.M;Q 1: (5-15)

(2) Let QA be another caloric Yang–Mills wave on I that also obeys k QAkS1ŒI � � M. Let d be a ı5-
frequency envelope for the difference A� QA in S1ŒI �; i.e., kA� QAkS1

d
ŒI � � 1. Then we have

kA0� QA0kY 1e ŒI �CkP
?A�P? QAkY 1e ŒI � .M;Q 1; (5-16)

k�.A� QA/k
�X1eŒI �

Ck�.A� QA/k
X
�1=2Cb1;�b1
e ŒI �

.M;Q 1; (5-17)

where ek D dkC ck.c � d/�k .

As a quick consequence of Proposition 5.4, we see that any caloric Yang–Mills wave A with A.t/ 2 CQ
for all t 2 I and kAkS1ŒI � �M obeys

kAkS1ŒI � .M;Q 1:

Remark 5.5. The reason why we state these weaker bounds as a separate proposition is for logical
clarity. As will be evident, the proof of Proposition 5.4 depends only on Propositions 4.12–4.22. In
fact, after these propositions are established in Section 8, Proposition 5.4 will be used in the proofs of
Proposition 4.23, Theorem 4.24 and Proposition 4.25 in Sections 8 and 9.

Proof of Proposition 5.4. Since A is a caloric Yang–Mills wave, Theorem 3.5 determines A0, @0A0 and
P?j AD�

�1@j @
`A` in terms of A. To derive the equation for @tP?A, we first compute

@tP
?AD @t

@x@
`

�
A` D�

�1@x@
`.F0`C @`A0C ŒA`; A0�/

D��1@x.D
`F0`C�A0C @

`ŒA`; A0�� ŒA
`; F0`�/:

By the constraint equation, we have D`F0` D 0. Expanding F0` in terms of At;x , we arrive at

@tP
?
j AD @jA0C�

�1@j .@
`ŒA`; A0�� ŒA

`; @tA`�C ŒA
`; @`A0�� ŒA

`; ŒA0; A`��/: (5-18)

The rest of the proof consists of combining Theorem 3.5 with Propositions 4.12, 4.13 and 4.22 in the
right order. We first sketch the proof of the nondifference bounds (5-14)–(5-15). We begin by verifying that

kjDjA0kY
c2
ŒI �CkjDjP

?AkY
c2
ŒI � .M;Q 1:

Indeed, by the mapping properties in Theorem 3.5 and the embeddings

L1 PH 1
\L2 PH

1
2 � Y;

the contributions of A3
0 in A0 and DA3 in P?A are handled easily. For the quadratic nonlinearities, we

apply (4-29) for A0, (4-37) with � D 0 for P?A and � D 1 for A0.
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Next, we show that

k@tA0kL2 PH1=2

c2
ŒI �
Ck@tP

?Ak
L2 PH

1=2

c2
ŒI �
.M;Q 1:

For @tA0, we use Theorem 3.5 for DA3
0 and (4-30) for the quadratic nonlinearity. For @tP?A, we

estimate the right-hand side of (5-18), where we use the Y ŒI �-norm bound for A0 that was just established.
We now consider �A. We first prove the weaker bound

k�Ak
� zX1

c2
ŒI �
.M;Q 1: (5-19)

By the mapping properties in Theorem 3.5 and the embeddings

L1L2\L2 PH�
1
2 ��X1\X�

1
2
Cb1;�b1 �� zX1

the contribution of Rj is acceptable in both cases. For the quadratic nonlinearities PM2CP?M2, and
the contribution of �A��AA, we apply (4-42), (4-43), (4-74), (4-77), (4-84) and (4-85); note that we
need to use (5-14) in both (4-77) and (4-84).

We are ready to prove (5-17). The desired estimate for the �X1ŒI �-norm follows by repeating
the preceding argument with (4-85) replaced by (4-86), and using (5-19). On the other hand, for the
�X�1=2Cb1;�b1 ŒI �-norm, we replace (4-85) by (4-87) instead, and use the �X1ŒI �-norm bound that we
have just proved.

Finally, the proof of the difference bounds (5-16)–(5-17) proceeds similarly, taking the difference of
each of the equations (3-12)–(3-15). We leave the details to the reader. �

We now prove Theorem 5.1, using the estimates stated in Section 4.

Proof of Theorem 5.1. Throughout this proof, we omit the dependence of constants on Q.

Proof of (1): We begin with a �A decomposition which will be repeatedly used in the sequel. Given
� > 10, we write

�A D�CDiff �PA�R
�
A;

where, using the decomposition in (4-67), the remainder R�A is given by

R�A D Diff �
P?A

�Rem�;2A �Rem�;3A :

Lemma 5.6. Let J � I. Let d be a ı5-frequency envelope for u in S1ŒJ �. Then we have

kR�Auk.N\L2 PH�1=2/d ŒJ �
.M .2�ı2�kAkS1ŒJ �C 2

C�C.A; J //kukS1
d
ŒJ �; (5-20)

with

C.A; J /D kP?AkY 1ŒJ �CkP
?Ak`1L1L1ŒJ �CkAkStr1ŒJ �Ck.rP?A;rA0/kL2 PH1=2ŒJ �

: (5-21)

Proof. We successively bound the three terms in R�A as follows. For the first of them we have

kDiff �
P?A

uk
.N\L2 PH�1=2/d ŒJ �

.M .kP?AkY 1ŒJ �CkP
?Ak`1L1L1ŒJ �/kukS1

d
ŒJ �;
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using the bounds (4-82) and (4-83), and noting that the second norm of A is estimated using (4-37) for
the quadratic part and (3-22) by

kP?Ak`1L1L1ŒJ � .M 1:

For the second term in R�A in (5-22) we have

kRem�;2A uk
.N\L2 PH�1=2/d ŒJ �

.M .2�ı2�kAkS1ŒJ �C 2
C�C.A; J //kukS1

d
ŒJ �;

as a consequence of (4-78), (4-79) and (4-80).
Finally, for the third term in R�A we have

kRem�;3A uk
.N\L2 PH�1=2/d ŒJ �

.M kAkStr1ŒJ �kukS1
d
ŒJ �

due to (4-74). �

To prove (1) we rewrite (5-3) in the form

.�CDiff �PA/uD f �R
�
Au: (5-22)

The important fact is that all the A norms in C.A; J / except for S1 are divisible norms, and also
controlled by M. On the other hand the S1 norm of A has the redeeming 2�ı2� factor. To proceed we
choose � large enough,

��M;Q 1:

Then we can subdivide the interval I D
S
j2J Jk so that #J .M 1, and so that in each interval Jj we

have smallness,
kR�Auk.N\L2 PH�1=2/d ŒJj �

�M kukS1
d
ŒJj �

: (5-23)

A second consequence of our choice for � is that Theorem 4.24 applies. Then we can successively
apply Theorem 4.24 in each interval Jk , treating R�A perturbatively.

Proof of (2): The argument here is similar to the previous one. For any interval J � I and any .�ı5; N /-
frequency envelope d for A in S1ŒJ � we can use the bounds (4-44)–(4-49) and (3-21) to estimate

k�AAk.N\L2 PH�1=2/d ŒJ � .M .2�ı2�kAkS1ŒJ �C 2
C�
kAkDS1ŒJ �/kAkS1

d
ŒJ �: (5-24)

As before we use the divisibility of the DS1 norm to partition the interval I into finitely many sub-
intervals Jk , whose number depends only on M, and so that in each subinterval we have

2�ı2�kAkS1ŒJ �C 2
C�
kAkDS1ŒJ � � "�M;Q 1:

We now specialize the choice of d , choosing it to be a minimal ı5-frequency envelope for A in the
first interval J1. Applying the result in part (1) in J1 we conclude that

d .M;Q cC "d;

which by the smallness of " implies that d .M;Q c. Then we reiterate.

Proofs of (3) and (4): These follow from (5-5) and Proposition 5.4.
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Proof of (5): This is obtained by combining the bound (5-20) for J D I and uDA with the bound (5-24).

Proof of (6): In view of (5), this is a direct consequence of Proposition 4.25.

Proof of (7): We use frequency envelopes. It suffices to show that if ck is a .�ı5; S/-frequency envelope
for the initial data in the energy space then C.M/ck is a frequency envelope for A in S1 and A0 in Y 1.
We begin with a version of Lemma 5.6:

Lemma 5.7. Let J � I. Let d D d.J / be a .�ı5; S/-frequency envelope for A in S1ŒJ �. Then we have

kR�AAk.N\L2 PH�1=2/d ŒJ �
.M .2�ı2�kAkS1ŒJ �C 2

C�C.A; J //kAkS1
d
ŒJ �: (5-25)

Proof. The same argument as in the proof of (5-8) applies for the first term in R�A, as there the output
frequency and the u input frequency are the same. On the other hand for the two remaining terms, the
frequency envelope d is inherited from the highest frequency input; see Propositions 4.19, 4.20. �

Combining the bound in the lemma with (5-24) we obtain the estimate

k�ACDiff �PAAk.N\L2 PH�1=2/d ŒJ � .M .2�ı2�kAkS1ŒJ �C 2
C�C.A; J //kAkS1

d
ŒJ �: (5-26)

Now we can conclude as in the proof of (2). We first choose � large enough so that Theorem 4.24
applies, and also so that

2�ı2�kAkS1ŒI ��M 1:

Then we divide the interval I into finitely many subintervals (again, depending only on M and Q) so that
for each subinterval J we have

2C�kAkDS1ŒJ ��M 1:

Thus, for each subinterval J we have ensured that

k�ACDiff �PAAk.N\L2 PH�1=2/d ŒJ ��M kAkS1
d
ŒJ �:

Let ck be a .�ı5; S/-frequency envelope for the initial data in the energy space, Then applying
Theorem 4.24 in the first interval J1 we conclude that

kPkAkS1ŒJ1� .M;Q ckC "dk; "�M 1; (5-27)

for any .�ı5; S/-frequency envelope dk for A in S1ŒJ1�. In particular if dk is a minimal .�ı5; S/-
frequency envelope for A in S1ŒJ1� then we obtain

dk .M ckC "dk;

which leads to

dk .M;Q ck;

i.e., the desired bound in J1. We now reiterate this bound in successive intervals Jj . Finally, the Y bound
follows as in (3).
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Proof of (8): Assume 0 < 1� � � ı5. We write the equation for ıAD A� QA in the form

.�CDiff �
P QA
/ıAD F � ;

where

F � D Diff �
PA�P QA

AC .R�AA�R
�
QA
QA/C .�AA��A QA/: (5-28)

We claim that we can estimate the terms in F � as follows:

kDiff �
PA�P QA

Ak
N��1\L2 PH��1�1=2ŒJ �

.M 2�c��.kAkS1 Ck QAkS1/kıAkS� ŒJ �; (5-29)

kR�AA�R
�
QA
QAk
N��1\L2 PH��1�1=2ŒJ �

.M 2C�.C.A; J /CC. QA; J //kıAkS� ŒJ �; (5-30)

k�AA��A QAkN��1\L2 PH��1�1=2ŒJ �
.M .C.A; J /CC. QA; J //kıAkS� ŒJ �: (5-31)

We first show how to conclude the proof of (8) using (5-29), (5-30) and (5-31). As in the proofs of
(1), (2) and (7), we first choose � large enough, ��M 1. Then we use divisibility for the expressions
C.A; J / and C. QA; J / in order to divide the interval I into subintervals Jj so that on each subinterval F �

is perturbative, i.e.,

kF �k
N��1\L2 PH��1�1=2ŒJj �

�M;� kıAkS� ŒJj �:

Finally, we apply Theorem 4.24 successively on the intervals Jj ; then (8) follows.
It remains to prove the bounds (5-29), (5-30) and (5-31). The bounds (5-30) and (5-31) are the

difference counterparts of (5-25) and (5-24), respectively, and are proved in a very similar fashion. Details
are omitted. We only remark that the requirement � < 1 is not needed here, and that these bounds hold
for any ı5-admissible frequency envelope ck for ıA in S1.

We now turn our attention to the novel part of the argument, which is the bound for Diff �
PA�P QA

A. It
is here that the condition � < 1 pays a critical role. This is done in the next lemma. For later use we
state the result in a more general fashion. This will be needed again in the proof of Proposition 6.4. A
variation of the same argument will also be needed in Proposition 6.3.

Lemma 5.8. Let J � I. Let ck , dk , bk be frequency envelopes for A; QA, respectively ıA and B in S1ŒJ �.
Then the expression Diff �

PA�P QA
B can be estimated as

kDiff �
PA�P QA

Bk
.N\L2 PH�1=2/f ŒJ �

.M;Q 2�c��kıAkS�
d
ŒJ �kBkS1

b
ŒJ �; (5-32)

where fk is given by

fk D

� X
k0�k��

dk0 C ck0.c � d/�k0

�
bk : (5-33)

Before proving the lemma we show that it implies (5-29). To measure ıA in S� we can choose the
frequency envelope dk with the property that 2.��1/kdk is a .�ı; 1� � C ı/-admissible envelope with
ı < 1

2
.1� �/, ı� ı5, and so that

kıAk2S� ŒJ � �
X
k

.2.��1/kdk/
2:
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Then we have

fk .M dk��ck .M 2�
1
2
.1��/�dk;

and (5-29) follows. We return to the proof of the lemma:

Proof of Lemma 5.8. We first recall the equations for PAx and A0. Following Theorem 3.5, these have
the form

�PAx DP ŒA`; @xA`�� 2P ŒA`; @
`Ax�CP.R.A/C ŒA`; ŒA

`; Ax��/;

�A0 D ŒA
`; @xA`�CQ.A; @0A/C�A3

0 :
(5-34)

Based on these equations we consider the following decomposition of PAD .PAx; A0/:

PAD .Amain
x ; Amain

0 /C .A2x; 0/C .A
3
x; A

3
0/;

where the three components are determined by the following three sets of equations:

�Amain
x DP ŒA`; @xA`�; Amain

x Œ0�D 0;

�Amain
0 D ŒA`; @xA`�;

A20 D 0, and

�A2x D�2P ŒA`; @
`Ax�; A2xŒ0�D 0;

and finally
�A3x DP.R.A/CP ŒA`; ŒA

`; Ax��/; A3xŒ0�DPAŒ0�;

�A30 DQ.A; @0A/C�A3
0 :

(5-35)

We also use the same set of equations and the same decomposition for P QA, and take the differences
ıAmain, ıA2 and ıA3. We are now ready to estimate the three contributions.

The contribution of ıAmain. For this we use the estimates in Proposition 4.27, which yield

kDiff �
PAmain�P QAmainBk.N\L2 PH�1=2ŒJ �/f

.M 2���kıAkS1
d
ŒJ �kBkS1

b
ŒJ �; (5-36)

where

fk D

� X
k0�k��

ck0dk0

�
bk;

which suffices. For later use, we also record the following consequence of Proposition 4.15, which
provides a bound for k�ıAmain

x k
N\L2 PH1=2 :

kıAmain
x kS1

cd
ŒJ � . kıAkS1

d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-37)

The contribution of ıA3. This is more easily dealt with using instead Proposition 4.26. We start with
A30�

QA30, which is estimated using the bounds (4-36) and (4-37) in Proposition 4.13 for the first term, and
(3-23) for the second, by

kA30�
QA30k.L1L1\L2 PH3=2/cd ŒJ �

.M kıAkS1
d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-38)
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Similarly, for A3x � QA
3
x we can apply the difference bound associated to (3-21) for Rx and Strichartz

estimates for the remaining cubic term to obtain

k�.A3x � QA
3
x/k.L1L2\L2 PH�1=2/cd ŒJ �

.M kıAkS1
d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-39)

As a consequence this also gives

kA3x �
QA3xkS1

cd
ŒJ � .M kıAkS�d ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-40)

Using (5-38) and (5-40) in Proposition 4.26 yields the desired bound

kDiff �
ıA3
Bk

.N\L2 PH�1=2/f ŒJ �
.M;Q kıAkS1

d
ŒJ �kBkS1

b
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/; (5-41)

with the same fk as in the previous case.

The contribution of A2. Here we will use Proposition 4.28. For this we need to verify its hypotheses. We
begin with (4-101), for which we combine (5-37) and (5-40) to conclude that

kıA2xkS1
d
ŒJ � .M kıAkS1

d
ŒJ �: (5-42)

Next we consider (4-100). Using the second part of Proposition 5.4 we obtain

kıAkS1eŒJ �Ck.ıA0;P
?ıA/kY 1e ŒJ � .M kıAkS1d ŒJ �; (5-43)

with
ek D dkC ck.c � d/<k :

The last two bounds allow us to use Proposition 4.28. This yields

kDiff �
ıA2
Bk

.N\L2 PH�1=2/f ŒJ �/
.M;Q kıAkS1

d
ŒJ �kBkS1c ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/; (5-44)

where

fk D

� X
k0�k��

dk0 C ek0dk0

�
bk :

The proof of the lemma is now concluded. �

Proof of (9): This is a direct consequence of the bounds (4-39) and (3-23) for the quadratic part A2
0 of A0,

and its cubic and higher part A3
0 . �

5B. Caloric Yang–Mills waves with small energy dispersion on a short interval. Next, we consider the
effect of small inhomogeneous energy dispersion on a time interval with compatible scale.

Theorem 5.9. Let A be a caloric Yang–Mills wave on a time interval I with energy E , obeying (5-1),
(5-2), as well as the smallness relations

kF kED�0ŒI � � "; jI j � ": (5-45)

Let c be a ı5-frequency envelope for A in S1ŒI �. Then for sufficiently small " > 0 depending on M and Q,
the following properties hold:
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(1) (small energy dispersion below scale 1 for A)

kAkED1
�0ŒI �
.E;Q "

ı2 : (5-46)

(2) (elliptic component bounds)

kA0kY 1c ŒI �CkP
?AkY 1c ŒI � .M;Q "

ı2 : (5-47)

(3) (high modulation bounds)
k�Ak

L2 PH
�1=2
c ŒI �

.M;Q "ı2 : (5-48)

(4) (paradifferential formulation)

k�ACDiff �PAAk.N\L2 PH�1=2/cŒI � .M;Q "
ı42C� : (5-49)

(5) (approximate linear energy conservation) For any t1; t2 2 I,ˇ̌
krA.t1/k

2
L2
�krA.t2/k

2
L2

ˇ̌
.M;Q "ı4 : (5-50)

(6) (approximate conservation of Q) For any t1; t2 2 I,

jQ.A.t1/�Q.A.t2//j.E;Q "
ı4 : (5-51)

Proof. Again, we omit the dependence of constants on Q. The property that will be used here repeatedly
is (4-21), which asserts that all nonsharp Strichartz norms are small. We recall it here for convenience:

sup
k

kPkF kStr .M "ı1 . "ı2 : (5-52)

Proof of (1): This is a consequence of the caloric bound (3-7) applied with dk D ".

Proof of (2): We repeat the arguments in the proof of Proposition 5.4(1). The bounds for the cubic and
higher terms in Theorem 3.5 use only the Strichartz Str1 norms, so the contributions of A3

0 in A0, DA3 in
P?A and DA3

0 in @tA0 are easily estimated. For the quadratic terms we replace (4-29) with (4-33) in the
case ofA0, and then (4-37) with (4-38) in the case of P?A and @tA0; again the smallness comes from Str1.

Proof of (3): We consider the terms in the Ax equation in Theorem 3.5. The cubic terms Rx and
ŒA`; ŒA

`; A�� are estimated only in terms of kAkStr1 . For the quadratic terms we use instead the bounds
(4-30), (4-36), (4-63) and (4-65); all smallness comes from Str1.

Proof of (4): We first establish the similar bound for �AA, which is given by (3-12). For the quadratic
terms we use (4-50) and (4-51). For the cubic term we use (3-21). Hence it remains to estimate the
difference

R�AAD Diff �
P?A

A�Rem�;2A A�Rem�;3A A:

For the first term we use (4-83), where the " smallness comes from the L1L1 norm of P?A due to the
bounds (4-38) and (3-22) for the quadratic and cubic parts of A? respectively.

For the second term we use the bound (4-81). The second term on the right is small due to (5-47),
so we obtain

kRem�;2A Ak
.N\L2 PH�1=2/c

.M .2�ı2� C 2C�"ı2/kAkS1c :
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Now we observe that on the right we can replace � with any �0 > � without any change in the proof.
Then it suffices to optimize with respect to �0.

For the third term we use directly (4-74).

Proof of (5): This statement is a corollary of (5-49). For the proof, we introduce the linear energy

Elin.A/.t/D
1

2

Z
R4

4X
�D0

j@�A.t/j
2 dx:

Given any interval I 0 D .t1; t2/� I, we consider

I D
Z

R�R4
�I 0h.�CDiff �PA/A; @tAi dt dx:

Integrating by parts, we may rewrite

I DElin.A/.t1/�Elin.A/.t2/C
1

2

Z
hDiff �PAA;Ai.t2/ dx�

1

2

Z
hDiff �PAA;Ai.t1/ dx

�
1

2

Z
R�R4

�I 0hŒ@t ;Diff �PA�A;Ai dt dxC
1

2

Z
R�R4

�I 0h.Diff �PA� .Diff �PA/
�/A; @tAi dt dx:

By Proposition 4.30 and the straightforward boundZ
hDiff �PAA;Ai.t/. 2

��
k.A;A0/.t/k PH1krA.t/k

2
L2
.M 2�� ;

we see that
jI � .Elin.A/.t1/�Elin.A/.t2//j.M 2�c� : (5-53)

On the other hand, by duality, we may put �I 0.�CDiff �PA/A and �I 0@tA in N and N �, respectively.
Then by Proposition 4.6, (5-2) and (5-49), we have

jIj.M "ı42C� : (5-54)

Optimizing the choice of �, (5-50) follows.

Proof of (6): We will use the caloric flow in order to compare Q.A.t1// and Q.A.t2//. Denote by A.t; s/
the caloric flow of A. We will split the difference in three as

Q.A.t1//�Q.A.t2//DQ.A.t1; 1//�Q.A.t2; 1//CQ.A.t1//�Q.A.t1; 1//�Q.A.t2//CQ.A.t2; 1//:

For the first difference we estimate at parabolic time s D 1 as follows:

jQ.A.t1; 1//�Q.A.t2; 1//j.
Z t2

t1

Z
R4

d

dt
jF.s; t; x/j3 dx dt

.
Z t2

t1

Z
R4
jF.1; t; x/j2 j@tF.1; x; t/j dx dt

.
Z t2

t1

Z
R4
jF.s; t; x/j2 j@tF j dx dt .E;Q jt1� t2jc

3
1 ;
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where at the last step we have simply used the fixed-time L2 bounds given by Proposition 3.1(1) and
Bernstein’s inequality. Now we gain smallness from the time interval.

For the remaining two differences we only need fixed-time estimates, which for reference we state
in the following.

Lemma 5.10. Let a 2 C be a caloric connection with energy E and Q.A/ D Q, and A its caloric
Yang–Mills flow.

(a) Assume that a is energy-dispersed at high frequencies,

kf kED�m � ": (5-55)

Then for its caloric Yang–Mills heat flow A.s/ we have

Q.a/�Q.A.2�2m//.E;Q "
c : (5-56)

(b) If a is fully energy-dispersed,
kf kED � "; (5-57)

then we have
Q.a/.E;Q "

c : (5-58)

Proof. (a) By scaling we can set m D 0. Denote by ck a frequency envelope for f in L2, and by dk
a frequency envelope for f in PW �2;1. By the energy dispersion bound we have dk � " for k � 0. By
Proposition 3.2 we have the L2 bound

kPkF kL2 .E;Q ckh2
2ksi�N ;

and the L1 bound
kPkF kL1 .E;Q 2

2kd
1
2

k
h22ksi�N :

We use these bounds to estimate the difference

Q.a/�Q.A.1//D
Z 1

0

Z
R4
jF.s; t; x/j3 dx ds

.
X

k1�k2�k3

Z 1

0

Z
R4
jPk1F.s; t; x/jjPk2F.s; t; x/jjPk3F.s; t; x/j dx ds

.E;Q
X

k1�k2�k3

1

1C 22k3
22k1d

1
2

k1
ck2ck3

.
X
1�k3

d
1
2

k3
c2k3 . "

1
2 ;

where at the next to last step we have used both the low-frequency decay and the off-diagonal decay for
the summation in k1 and k2.

(b) This follows by letting m!�1 in part (a). The proof of the lemma is concluded. �

The proof of (5-51) is also concluded. �
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5C. The dynamic Yang–Mills heat flow of a caloric Yang–Mills wave. Here we investigate the structure
of the dynamic Yang–Mills heat flow of a caloric Yang–Mills wave A with finite S1-norm. As before,
we consider two cases: (1) when A only obeys a finite S1-norm bound; and (2) when A has small
inhomogeneous energy dispersion on a short time interval of compatible scale.

In the general case, we have the following structure theorem.

Theorem 5.11. Let A be a caloric Yang–Mills wave with energy E on a time interval I, obeying (5-1) and
(5-2). Let At;x.s/ be the dynamic Yang–Mills heat flow of At;x at heat-time s > 0 in the caloric gauge.
Then the following properties hold:

(1) ( fixed-time bounds) For any t 2 I, let c.0/.t/ be a ı5-frequency envelope for rA.t/ in L2. Then

kPk.rA.s/�re
s�A/.t/kL2 .E;Q h2

�2ks�1i�ı4h22ksi�10c
.0/

k
.t/2; (5-59)

kPk@
`A`.t; s/kL2 .E;Q h2

2ksi�10c
.0/

k
.t/2; (5-60)

kPkrA0.t; s/kL2 .E;Q h2
2ksi�10c

.0/

k
.t/2; (5-61)

kPk�A.t; s/k PH�1 .E;Q h2
2ksi�10c

.0/

k
.t/2: (5-62)

(2) ( frequency envelope bounds) Let c be a ı5-frequency envelope for A in S1ŒI �. Then

kPk.A.s/� e
s�A/kS1ŒI � .M;Q h2�2ks�1i�ı4h22ksi�10c2k; (5-63)

kPkA0.s/kY 1ŒI � .M;Q h22ksi�10c2k; (5-64)

kPkP?A.s/kY 1ŒI � .M;Q h22ksi�10c2k : (5-65)

(3) (derived difference bounds) Let QA be a caloric Yang–Mills wave on I obeying k QAkS1ŒI � � zM, and
let d be a ı5-frequency envelope for the difference A.s/� QA in S1ŒI �. Then

kPk.A0.s/� QA0/kY 1ŒI �CkPk.P
?A.s/�P? QA/kY 1

d
ŒI �

.
M; zM;Q ekCminf1; .s�

1
2 jI j/ı4gh2�2ks�1i�ı4h22ksi�10c2k; (5-66)

kPk�.A.s/� QA/k�X1ŒI �CkPk�.A.s/� QA/kX�1=2Cb1;�b1 ŒI �
.
M; zM;Q ekCminf1; .s�

1
2 jI j/ı4gh2�2ks�1i�ı4h22ksi�10c2k; (5-67)

where ek D dkC ck.c � d/�k .

Remark 5.12. Combining (5-63) with the obvious bound for es�A, we get the simple bound

kPkA.s/kS1ŒI � .M;Q h22ksi�10ck : (5-68)

Next, we consider the effect of small inhomogeneous energy dispersion on a time interval of compatible
scale.

Theorem 5.13. Let A be a caloric Yang–Mills wave with energy E on a time interval I, obeying (5-1),
(5-2) and (5-45), and At;x.s/ be the dynamic Yang–Mills heat flow of At;x at heat-time s > 0 in the
caloric gauge. Let c be a ı5-frequency envelope for A in S1ŒI �. Then the following properties hold:



284 SUNG-JIN OH AND DANIEL TATARU

(1) ( fixed-time smallness bound)

krPk.A.s/� e
s�A/.t/kL2 .E;Q 2

ı4.m�k/C"ı4h2�2ks�1i�ı4h22ksi�10c
.0/

k
.t/; (5-69)

kPk@
`A`.t; s/kL2 .E;Q 2

ı4.m�k/C"ı4h22ksi�10c
.0/

k
.t/: (5-70)

(2) (small energy dispersion below scale 1 for A.s/)

kA.s/kED�1
�0ŒI �
.E;Q "

ı4 : (5-71)

(3) ( frequency envelope bounds)

kPk.A.s/� e
s�A/kS1ŒI � .M;Q "ı4h2�2ks�1i�ı4h22ksi�10ck; (5-72)

kPkA0.s/kY 1ŒI � .M;Q "ı4h22ksi�10ck; (5-73)

kPkP?A.s/kY 1ŒI � .M;Q "ı4h22ksi�10ck : (5-74)

(4) (derived difference bounds) Let QA be a caloric Yang–Mills wave on I with k QAkS1ŒI � � zM, and let d
be a ı5-frequency envelope for the difference A.s/� QA in S1ŒI �. Then

kPk.A0.s/� QA0/kY 1ŒI �CkPk.P
?A.s/�P? QA/kY 1

d
ŒI �

.
M; zM;Q ekC "

ı4h2�2ks�1i�ı4h22ksi�10ck; (5-75)

kPk�.A.s/� QA/k�X1ŒI �CkPk�.A.s/� QA/kX�1=2Cb1;�b1 ŒI �
.
M; zM;Q ekC "

ı4h2�2ks�1i�ı4h22ksi�10ck; (5-76)

where ek D dkC ck.c � d/�k .

We now turn to the proof of each theorem.

Proof of Theorem 5.11. In the proof, we omit the dependence of constants on M and Q. We introduce the
notation

A.t; s/D A.t; s/� es�A.t/:

Proof of (1): By (3-2) in Proposition 3.1 (note that @tA here corresponds to B in the proposition) we get

krPkA.t; s/kL2ŒI � . h2�2ks�1i�ı1h22ksi�10.c
.0/

k
/2: (5-77)

Now the second bound follows from (3-18) for DA3 and Proposition 4.13 for Q.A;A/.

Proof of (2): We proceed in several substeps.

Step 2.1: Our first (and main) goal is to prove

kPkA.s/kS1ŒI � . h2�2ks�1i�cı3h22ksi�10c2k : (5-78)

We begin by invoking (3-4) with .�; p/ D
�
1
4
; 4
�

and .�1; p1/ D
�
1
2
; 2
�
. Since S1ŒI � � Str1ŒI � �

L4 PW 1=4;4ŒI �, we also obtain (after taking L2t ŒI �)

krPkA.s/k
L2 PH1=2ŒI �

. h2�2ks�1i�ı1h22ksi�10c2k : (5-79)
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In view of the embedding PkL2 PH 1=2ŒI �� PkX
0;1=2
1 ŒI �� 2�kSkŒI �, we have

krPkA.s/kSkŒI � . h2
�2ksi�ı1h22ki�10c2k : (5-80)

To complete the proof of (5-78), it only remains to establish (recall (4-2))

k�PkA.s/k
L2 PH�1=2ŒI �

. h2�2ksi�ı1h22ki�10c2k : (5-81)

We argue differently depending on whether s22k & 1 or s22k� 1. In the former case, we consider es�A
and A.s/ separately. In view of (5-7), note that

k�Pkes�AkL2 PH�1=2ŒI � . h2
2k
i
�10c2k;

so it suffices to prove
k�PkA.s/kL2 PH�1=2ŒI � . h2

2k
i
�10c2k :

For this, we need to use the wave equation for A.s/ (see Theorem 3.6):

�A.s/D .���A.s//A.s/CM2.A.s/; A.s//CRj .A.s//CPw2x.A;A; s/CRj Is.A/: (5-82)

As in the proof of Proposition 5.4, we note that ���A.s/ contains the terms A0.s/, @`A.s/ and @0A0.s/
that are in turn determined by A;A.s/ (see Theorem 3.6). By (5-80) and an obvious bound for es�A,
we see that h22ksi�10ck is a frequency envelope for A.s/ in Str1ŒI �. The desired estimate is proved by
applying the L2L2-type estimates in Section 4 (observe that they only involve the Str1-norm of A!) and
Theorem 3.6.

In the case s22k � 1, we begin by writing A.s/ D .A.s/�A/C .1� es�/A. For the second term,
again by (5-7), we have

k�Pk.1� es�/AkL2 PH�1=2ŒI � . h2
�2ks�1i�ı1c2k :

Thus, for s22k� 1, it suffices to establish

k�Pk.A.s/�A/kL2 PH�1=2ŒI � . h2
�2ks�1i�cı3c2k : (5-83)

Here, we use the equation�.A.s/�A/ obtained by taking the difference of the equations in Theorems 3.5
and 3.6:

�.A.s/�A/D .���A.s//A.s/� .���A/ACM2.A.s/; A.s//�M2.A;A/

CRj .A.s//�Rj .A/CPjw2x.A;A; s/CRj Is.A/: (5-84)

We note that .���A.s//A.s/� .���A/A contains the differences A0.s/�A0, @`
`
A.s/� @`A` and

@0A0.s/� @0A0, for which similar difference equations may be derived from Theorems 3.5 and 3.6.
As before, ck is a ı5-frequency envelope for A and A.s/ in Str1ŒI �, whereas dk D h2�2ks�1i�cı3ck is

a ı3-frequency envelope for A.s/�A in Str1ŒI � by (5-80) and an obvious bound for .1� es�/A. Hence
the difference envelope ek in Theorem 3.5 obeys the bound

ek D dkC ck.c � d/�k . h2�2ks�1i�cı3ck :
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The desired estimate (5-83) is proved by applying the L2L2-type estimates in Section 4 (again, they only
involve the Str1-norms of rA, rA.s/ and r.A.s/�A/) and Theorem 3.6.

Step 2.2: To complete the proof, it remains to show that (5-78) implies (5-63)–(5-65). This is proved in a
completely analogous way to Proposition 5.4(1), replacing Theorem 3.5 by Theorem 3.6 (where we use
Propositions 4.16 and 4.17 for w0 and wx , respectively).

Proof of (3): This is analogous to the proof of Proposition 5.4(1). The only difference in the analysis
arises from the extra terms

(i) Pjw
2
x.@tA; @tA; s/CRj Is.A/ in �A.s/A.s/,

(ii) A0Is D�
�1w20.A;A; s/CA3

0Is.A/ in A0.s/,

(iii) DA0Is.A/ in @tA0.s/.

For the first term in (5-75) we need to estimate

kjDj�1w20.A;A; s/kY CkjDjA
3
0Is.A/kY CkDA0Is.A/kY :

The last two terms are estimated directly using (3-36) and (3-37) and Bernstein’s inequality. The first
term is estimated via (4-54).

For the extra gain when s1=2 > jI j we rebalance by using Hölder in time t and Bernstein in x. Because
of this, in that range it suffices to use L1L2 bounds instead of Y , and thus rely instead on (3-33) and
(3-34), and (4-52).

For the second term in (5-75) we follow the computation for @tP?A.s/ in the proof of Proposition 5.4.
The extra contributions there are

��1@j .@
`ŒA`.s/;A0Is�C ŒA

`.s/; @`A0Is�C ŒA
`; ŒA`;A0Is��/:

For these it suffices to use (4-53) and (3-36) for long intervals I, and (4-52) and (4-52) and (3-33) for
short intervals.

Finally, for the two terms in (5-76) we need to bound

kPjw
2
x.@tA; @tA; s/k�X1\X�1=2CbC1;�b1 CkRj Is.A/k�X1\X�1=2CbC1;�b1 :

For this it suffices to use the bounds (4-58) and (3-35) in the range jI j> s1=2, and (4-56) and (3-32) in
the range jI j � s1=2. �

Proof of Theorem 5.13. As before, we omit the dependence of constants on M and Q.

Proof of (1) and (2): The three bounds follow directly from Proposition 3.2, precisely in order from the
estimates (3-8), (3-9) and (3-7).

Proof of (3): We repeat the arguments in the proof of Theorem 5.11(2). The bound (5-79) for PkA.s/

goes through the Str1 norm, so by the same proof we also obtain for k � 0

krPkA.s/k
L2 PH1=2ŒI �

. h2�2ks�1i�cı3h22ksi�10"ı2ck : (5-85)

On the other hand for k � 0 we can use (5-69) and Hölder’s inequality in time to gain smallness.
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Similarly, the bound (5-81) also uses only Str1 norms so it can be replaced by

k�PkA.s/k
L2 PH�1=2ŒI �

. h2�2ks�1i�cı3h22ki�10"ı2ck (5-86)

for k � 0. Again for k � 0 we can use a simpler L1 PH�1 bound and then Hölder’s inequality in time.
Together, the bounds (5-85) and (5-86) imply (5-72).

Finally, it remains to establish (5-73) and (5-74). Here the same considerations as in the proof of (5-47)
apply, but using Theorem 3.6 instead of Theorem 3.5, as well as Proposition 4.16.

Proof of (4): This repeats the proof of Theorem 5.11(3), but taking advantage of the Str1 norm in
estimating A3

0Is and DA0Is and using (4-55) instead of (4-54). As before, the " gain is due to energy
dispersion if k � 0 and to the interval size otherwise. �

6. Energy-dispersed caloric Yang–Mills waves

The goal of this section is to prove the following key theorem for energy-dispersed subthreshold caloric
Yang–Mills waves, which is essentially a restatement of Theorem 1.20 in terms of the linear energy:

Theorem 6.1. There exist nondecreasing positive functionsM.E;Q/ and nonincreasing positive functions
".E;Q/ and T .E;Q/ so that the following holds. Let A be a regular caloric Yang–Mills wave on a time
interval I satisfying

inf
t2I
krA.t/k2

L2
�E; A.t/ 2 CQ for all t 2 I: (6-1)

If A moreover obeys the smallness bounds

kF kED�mŒI � � ".E;Q/; jI j � 2
�mT .E;Q/; (6-2)

then we have
kAkS1ŒI � �M.E;Q/: (6-3)

We next show that Theorem 1.16 immediately follows. Indeed, for caloric waves we have (see
Theorem 1.6)

krAkL2 .E;Q 1;

as well as
E .krAk

L2
1:

Thus the linear and nonlinear energy are interchangeable in the statement of the theorem. The (minor)
difference is that the nonlinear energy is exactly conserved, whereas the linear energy is only approximately
conserved for energy-dispersed Yang–Mills waves; see Theorem 5.9(5).

For the remainder of this section, we fix Q. We omit any dependence of constants on Q and write
".E/D ".E;Q/, T .E/D T .E;Q/, M DM.E;Q/ etc.

Theorem 6.1 is proved by an induction-on-energy argument of similar structure to [Sterbenz and Tataru
2010a; Oh and Tataru 2018]. For the initial step, we show that it holds for small E (Proposition 6.2). For
the induction step, we assume that the result holds for all solutions with infI Elin.A/�E, and we seek to
show that it holds up to infI Elin.A/�EC c.E/ for some small c.E/ > 0. Notably, in order to continue
the induction argument, we do not want c.E/ to depend on F.E/ or ".E/.
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6A. Induction on energy argument. As remarked earlier, the initial step of the proof of Theorem 6.1 is
essentially small-energy global regularity for the Yang–Mills equation in the caloric gauge, which is a
quick consequence of Theorem 5.1.

Proposition 6.2. There exists a small universal constant E� > 0 (in particular, independent of I ) such
that if a classical caloric Yang–Mills connection satisfies

inf
t2I
krA.t/k2

L2
�E�; (6-4)

then we have
kAkS1ŒI � .

p
E�: (6-5)

Proof. We will follow a standard continuity argument, similar to the one used in the Coulomb gauge
in [Krieger and Tataru 2017]. Start from a near minimum t0 for krA.t/k2

L2
. Denote by c a frequency

envelope for AŒt0� in PH 1 �L2. For a short time, there exists a classical solution, which satisfies

kAkS1ŒI � .E�:

We now consider the maximal interval I containing t0 and where the solution A exists as a classical
solution and satisfies

kAkS1ŒI � � 1: (6-6)

This in particular implies
Q.A/. 1:

Hence by Theorem 5.1(2) it follows that

kAkS1c ŒI � . 1;
and in particular

kAkS1ŒI � .E�: (6-7)

Assume now by contradiction that I has a finite end T . The S1 (6-6) bound implies that A is uniformly
bounded near t D T and has a limit as a classical solution. Hence it can be extended further as a classical
solution (for a precise statement, see in particular Theorem 7.6). However, in view of (6-7), if E� is
sufficiently small then by continuity we can find a larger interval I ¨ J where (6-6) holds. This is a
contradiction. It follows that the solution A is global and satisfies (6-7). �

For the induction step, consider a regular caloric Yang–Mills wave A on I such that

E < inf
t2I
krA.t/k2

L2
�EC c.E/; kF kED�0.I / � "; jI j � T: (6-8)

Our goal is to establish a uniform bound

kAkS1ŒI � �M (6-9)

for appropriately chosen c.E/ > 0 (depending only on E), ", T and M (which may depend on E, ".E/,
T .E/, M.E/ and c.E/).

Once this goal is achieved, we may extend M.E/, ".E/ and T .E/ to Œ0; E C c.E/� so that
M.E C c.E//DM, ".E C c.E//D " and T .E C c.E//D T, while keeping validity of Theorem 6.1
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in this range of energy. Since c.E/ is a positive number depending only on E, this procedure can be
continued until Theorem 6.1 holds for all regular subthreshold caloric Yang–Mills waves.

We now turn to the proof of (6-9). By translating and reversing t , we may assume without any loss of
generality that I D Œ0; TC/ for some TC > 0 and

E < krA.0/k2
L2
�EC 2c.E/:

Since A is regular, it can be easily seen that kAkS1Œ0;T / is a continuous function of T satisfying

lim sup
T!0C

kAkS1Œ0;T / . krA.t/kL2 .E
1
2 :

Therefore, on a subinterval J D Œ0; T /� I, we may make the bootstrap assumption

kAkS1ŒJ � � 2M: (6-10)

In order to improve (6-10) to (6-9), we compare A with a caloric Yang–Mills wave QA with S1ŒI �-norm
�M.E/ (eventually), which we construct as follows.

To begin with, we view the space-time connection At;x on I �R4 as a caloric initial data and solve
the dynamic Yang–Mills heat flow in the local caloric gauge, i.e.,

@sA�.t; x; s/DDkFk�.t; x; s/;

A�.t; x; 0/D A�.t; x/:

From the results in Section 3, we obtain a global-in-heat-time solutionAt;x.t; x; s/ on I�R4�Œ0;1/. Note
that @tA solves the linearized Yang–Mills heat flow in local caloric gauge, and we have .A; @tA/.t; s/ 2
T L

2C for every .t; s/ 2 I � Œ0;1/.
By the caloric gauge condition, the linear energy

k.A; @tA/.t; s/k
2
PH1�L2

D krA.t; s/k2
L2

eventually tends to zero as s!1. Thus there exists a heat-time s0� > 0 such that

k.A; @tA/.0; s/k
2
PH1�L2

DE:

To eliminate ambiguity, we take s0� to be the minimum such heat-time. In order to choose the cut-off
heat-time s�, we distinguish two scenarios:

(1) If s0� � 1, then we define s� D 1.

(2) If s0� < 1, then we define s� D s0�.

With s� chosen as above, we define QA to be the caloric Yang–Mills wave with initial data

. QA; @t QA/.0/D .A; @tA/.0; s�/:

In both scenarios, we aim to prove that QA exists on J and is well-approximated by A.s�/. Moreover,
by the induction hypothesis, QA should obey a nice S1-norm bound.
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Proposition 6.3. Let QA be defined as above. For sufficiently small "; T > 0 depending on M, M.E/,
T .E/, ".E/ and c.E/, the regular caloric Yang–Mills wave QA exists on the interval J and obeys

k QAkS1ŒJ � �M.E/CC0
p
E; (6-11)

kA.s�/� QAkS1
c�
ŒJ � .M "ı6 ; (6-12)

kA0.s�/� QA0kY 1
c�
ŒJ � .M "ı6 ; (6-13)

kP?A.s�/�P? QAkY 1
c�
ŒJ � .M "ı6 ; (6-14)

where C0 is a universal constant and c� is a frequency envelope defined as

c�k D 2
�ı�jk�k.s�/j: (6-15)

On the other hand, viewing A as a “high frequency perturbation” of QA, we show below that A stays
close to QA in the space S1.

Proposition 6.4. Let QA be defined as above on the interval J. Provided that cD c.E/ > 0 is chosen small
enough compared to E (but independent of M.E/, T .E/ or ".E/) and T; " > 0 are also sufficiently small
depending on M, M.E/, T .E/, ".E/ and c.E/, we have

kA� QAkS1ŒJ � .M.E/;E 1: (6-16)

Assuming the preceding two propositions, we may choose M sufficiently large compared to M.E/
and E, then choose " and T accordingly, so that the desired estimate (6-9) follows from (6-11) and (6-16).

It remains to prove Propositions 6.3 and 6.4, which are the subjects of Sections 6B and 6C, respectively.

6B. Control of QA�A.s�/: proof of Proposition 6.3. We introduce the notation

ıAlow
D QA�A.s�/: (6-17)

We proceed differently depending on how s� was chosen.

Scenario 1: s�D 1.� s0�/. This scenario is simpler to handle, and we do not need to invoke the induction
hypothesis.

Step 1.1: S1-norm bound for QA. We first prove the S1-norm bound (6-11). The idea is to exploit the
smoothing property of the Yang–Mills heat flow, which implies control of higher Sobolev norms of
. QA; @t QA/.0/D .A; @tA/.0; 1/ in terms of

p
E, and use subcritical local regularity of Yang–Mills in the

caloric gauge, which works in a time interval of length OE .1/.
Fix a large integer N (say N D 10). We claim that QA exists on J and

k QAkSN\S1ŒJ � .
p
E; (6-18)

provided that T is sufficiently small depending only on E (so that jJ j �E 1).
By the smoothing property for the Yang–Mills heat flow and its linearization in the caloric gauge (see

Section 3), we have
k. QA; @t QA/.0/k. PHN� PHN�1/\. PH1�L2/

.
p
E:
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For T sufficiently small (depending only on E), the following local-in-time a priori estimates at
subcritical regularity hold:

sup
t2J

k. QA; @t QA/.t/k. PHN� PHN�1/\. PH1�L2/
CjJ jk� QAk

L1. PHN�1\L2/ŒJ �
.
p
E;

sup
t2J

k. QA0; @t QA0/.t/k. PHN� PHN�1/\. PH1�L2/
.
p
E:

The proof is via Theorem 3.5 and, as usual, the Sobolev embedding into L1; we omit the details.
As a consequence of the preceding a priori bounds, we obtain (6-18) as desired. Moreover, by

Theorem 3.5 and the fixed-time bounds in Section 4, we have

k� QAk
L1 PH�1ŒJ �

.E 1: (6-19)

Step 1.2: S1-norm bound for A.s�/� QA. As a preparation for the proof of (6-12), we claim that

kA.s�/� QAkS1
c�
ŒJ � .M "c : (6-20)

In the present case, 2k.s�/ D 1. For frequencies higher than 1, we simply use (6-18) with smoothing
estimates for A.s�/ in S1. For frequencies lower than 1, we control �. QA � A.s�// in L1 PH�1 and
integrate in time.

By Theorem 5.11, we have

kPkA.s�/kS1ŒJ � .M2�20kC ; (6-21)

kPk�A.t; s/k PH�1 .M2
�20kC : (6-22)

Let �0 � k.s�/ be a parameter to be fixed below. By (6-20) and (6-21), we have

kPkıA
low
kS1ŒJ � � kPk QAkS1ŒJ �CkPkA.s�/kS1ŒJ � .M 2�c�0c�k for k � �0; (6-23)

where 0 < c� 1 is a universal constant. Since

Pk.L
1 PH�1ŒJ �/ ,! jJ j2kN \ .jJ j2k/

1
2L2 PH�

1
2 ;

for k � �0 it follows from (6-19) and (6-22) that

kPk�ıAlow
k
.N\L2 PH�1=2/ŒJ �

� kPk� QAk.N\L2 PH�1=2/ŒJ �CkPk�A.s�/k.N\L2 PH�1=2/ŒJ �
.M ..jJ j2�0/1=2C .jJ j2�0/C "c/c�k :

Since ıAlowŒ0�D 0, we arrive at

kPkıA
low
kS1ŒJ � .M ..jJ j2�0/

1
2 C .jJ j2�0/C "c/c�k for k � �0: (6-24)

Step 1.3: completion of proof. Finally, the bounds (6-12)–(6-14) follow from (6-20) and Theorem 5.11(3)
with dk D c�k provided that jJ j � T is sufficiently small. Here, note that

ek D c
�
k C ck.c � c

�/�k .M c�k :
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Scenario 2: s� D s0� > 1. In the second scenario, we analyze the equation satisfied by the difference
ıAlowDA.s�/� QA to prove (6-12), then make use of the induction hypothesis to derive (6-11). By another
continuous induction in time, we may make the following extra bootstrap assumptions:

k QAkS1ŒJ � � 2.M.E/CC0
p
E/; (6-25)

as well as

kıAlow
kS1
c�
ŒJ � � "

cı6 : (6-26)

Here we use a smaller power of ", so this last bound will only serve to ensure some a priori smallness of
ıAlow in S1c� .

By Theorem 5.13, we have

kPkA.s�/kS1ŒJ � .M ckh2
2ks�i

�10; (6-27)

kA.s�/kED1
�0ŒJ �

.E "ı4 ; (6-28)

k�A.s�/kL2 PH�1=2ŒJ � .M "ı4 : (6-29)

Therefore, .A.s�/; J / is .";M�/-energy-dispersed for M� .M 1 and "� "ı4 .

Step 2.1: bounds for ıAlow. Here we establish (6-12). We write an equation for ıAlow of the form

� QAıA
low
D F; ıAlowŒ0�D 0:

We claim that in each subinterval J1 of J and for each � > 10 we have the bound

kF k
.N\L2 PH�1=2/c� ŒJ1�

.M .2�cı��k QAkS1ŒJ1�C 2
C�C. QA; J1//kıA

low
kS1
c�
ŒJ1�
C "ı6 ; (6-30)

where C. QA; J1/ contains only divisible norms of QA; see (5-21).
We first verify that the bound (6-30) implies (6-12). Using the well-posedness for the � QA equation,

given by Theorem 5.1, in the time interval J1 D Œt1; t2�, we obtain the bound

kıAlow
kS1
c�
ŒJ1�
� C.M/

�
kıAlowŒt1�kHc� C .2

�cı��k QAkS1ŒJ1�C 2
C�C. QA; J1//kıA

low
kS1
c�
ŒJ1�
C "ı6

�
:

For this to be useful we need to ensure that the coefficient of kıAlowkS1
c�
ŒJ1�

on the right is small. To
achieve that we first choose � large enough, k�M 1, depending only on M, so that

C.M/2�cı��k QAkS1ŒJ �� 1:

Then we divide the interval J into subintervals Jj so that

C.M/2C�C. QA; Jj /� 1:

The number of such intervals depends only on M. On each subinterval Jj D Œtj�1; tj � we have the bound

kıAlow
kS1
c�
ŒJ1�
CkıAlowŒtj �kHc� � C.M/.kıAlowŒtj�1�kHc� C "

ı6/:

Reiterating this we obtain (6-12).
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If remains to prove the bound (6-30). We relabel J1 by J for simplicity. As a preliminary step, we
observe that, by Theorem 5.13 and the bootstrap assumption (6-26), we have

kıAlow
kS1

c�
ŒJ �CkıA

low
0 kY 1

c�
ŒJ �CkP

?ıAlow
kY 1
c�
ŒJ � .M kıA

low
kS1
c�
ŒJ �: (6-31)

In particular, this proves the bounds (6-13) and (6-14) once (6-12) is known.
The expression for F is obtained from Theorems 3.5 and 3.6,

F WD� QAıA
low
D� QA QA��A.s�/A.s�/C .�A.s�/�� QA/A.s�/;

where we further expand the two terms as

� QA QA��A.s�/A.s�/DM2. QA; QA/�M2.A.s�/; A.s�//CR. QA/�R.A.s�//

CPw2x.@tA; @tA; s/CRj Is.A/;

and

.�A.s�/�� QA/A.s�/D�Diff �
PıAlowA.s�/�Diff �

P?ıAlowA.s�/�Rem�;2
ıAlowA.s�/

C .Rem3.A.s�//�Rem3. QA//A.s�/CRem3s�.A/A.s�/:

We successively estimate the terms above as in (6-30):

(a) For M2. QA; QA/�M2.A.s�/; A.s�// we use the estimate (4-50). We inherit the envelope c� from
ıAlow but we also gain an additional power of " from the energy dispersion of A.s�/.

(b) For R. QA/�R.A.s�// we use the difference version of the bound (3-21), with a similar gain.

(c) For Pw2x.@tA; @tA; s/ we use (4-59), taking advantage of the energy dispersion for A.

(d) For Rj Is.A/ we use (3-35), gaining a power of " from the Str1 norm.

(e) For Diff �
P?ıAlowA.s�/ we use (4-82) combined with (6-31) for the high modulations, and (4-83)

combined with (4-37) and (3-22) for low modulations.

(f) For Rem�;2
ıAlowA.s�/ we use (4-81).

(g) For .Rem3.A.s�//�Rem3. QA//A.s�/ we use (4-74).

(h) For Rem3s�.A/A.s�/ we use (4-76).

This leaves us with the most difficult term Diff �
PıAlowA.s�/, for which we claim that

kDiff �
PıAlowA.s�/k.N\L2 PH�1=2/c� ŒJ �

.M 2�cı��kıAlow
kS1ŒJ �: (6-32)

For PıAlow we consider the same type of decomposition as in the proof of Lemma 5.8,

PıAlow
DPıAlow;main

CPıAlow;main;2
CPıAlow;rem;2

CPıAlow;rem;3;



294 SUNG-JIN OH AND DANIEL TATARU

where
ıA

low;main
0 D��1.Œ QA; @t QA�� ŒA.s�/; @tA.s�/�/;

ıA
low;main;2
0 D��1w0.A;A; s/;

ıA
low;rem;2
0 D 2��1.Q. QA; @t QA/�Q.A.s�/; @tA.s�///;

ıA
low;rem;3
0 D A30.

QA; @t QA/�A
3
0.A.s�/; @tA.s�//CA

3
0Is.A; @tA/;

and

ıAlow;main
x D��1.PM2. QA; QA/�PM2.A.s�/; A.s�///;

ıAlow;main;2
x D��1Pwx.A;A; s/;

ıAlow;rem;2
x D��1P.Œ QA˛; @˛ QA�� ŒA˛.s�/; @˛A.s�/�/;

ıAlow;rem;3
x D��1P.R. QA/�R.A.s�//�Rem3. QA/ QACRem3.A.s�//A.s�//

C��1P.Rj Is.A/�Rem3s .A/A.s�//;

where ��1 is the wave parametrix with zero Cauchy data at t D 0.
As a preliminary observation we note that

kıAlow;main
x kS1

c�
CkıAlow;main;2

x kS1
c�
CkıAlow;rem;2

x kS1
c�
CkıAlow;rem;3

x kS1
c�
.M kıAlow

kS1
c�
C"ı2 : (6-33)

This is a consequence of (4-42) for the first term, (4-59) and (5-47) for the second, and (3-21), (3-35),
(4-74) and (4-76) for the last term. The bound for the third term follows indirectly since they all add up
to ıAlow.

Now we consider the contributions of each of these terms to Diff �
PıAlowA.s�/.

The contributions of ıAlow;main
x and ıAlow;main

0 . These are considered together, and estimated using
Proposition 4.27. This yields the frequency envelope

fk D

� X
k0<k��

c�k0ck0h2
2k0s�i

�N

�
ckh2

2k0s�i
�N
kıAlow

kS1
c�
ŒJ � .M 2�cı��c�kkıA

low
kS1
c�
ŒJ �;

as needed.

The contributions of ıAlow;main;2
x and ıAlow;main;2

0 . These are also considered together, but now we want
to use Proposition 4.29. As they involve no ıAlow differences, we need to estimate these contributions
by "ı6. Unfortunately Proposition 4.29 provides no source for an energy dispersion gain, so we use a
trick, decomposing

Diff �
ıAlow;main;2A.s�/D Diff �

0

ıAlow;main;2A.s�/CDiff Œ�
0;��

ıAlow;main;2A.s�/;

where �0 > � is a secondary parameter to be chosen shortly. For the first term we apply Proposition 4.29,
which yields

kDiff �
0

ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �
.M 2�cı��

0

:

For the second term, on the other hand, we use instead the bounds (4-55) and (4-59), which capture both
the c� decay and the energy dispersion. The price to pay is that this way we only have access to the
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S1 norm of ıAlow;main;2, so we are only allowed to use (4-77). This yields

kDiff Œ�
0;��

ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �
.M "cıcıg2C�

0

:

We now add the last two bounds and then optimize in �0 to obtain the desired estimate

kDiff �
ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �

.M "ıh :

The contribution of ıAlow;rem;2. The ıAlow;rem;2
x part is estimated using Proposition 4.28, with (6-33)

serving to verify the hypothesis. For the output this yields the frequency envelope

fk D

� X
k0<k��

c�k0

�
ckh2

2k0s�i
�N .M 2�cı��c�k :

A simpler analysis applies for the contribution of ıAlow;rem;2
0 where we can use Proposition 4.13.

The contribution of ıAlow;rem;3. For the contribution of ıAlow;rem;3
0 we use (3-23) and (3-36), while for the

contribution of ıAlow;rem;3
x we use (3-21), (3-35), (4-74) and (4-76), all combined with Proposition 4.26.

Step 2.2: S1-norm bound for QA via induction hypothesis. Taking " sufficiently small and using the
bootstrap assumption (6-26), we may ensure that

k zF kED�0ŒJ � � ".E/: (6-34)

By the induction hypothesis, we may thus assume that

k QAkS1ŒJ � �M.E/: (6-35)

6C. Control of A� QAW proof of Proposition 6.4. Here, we seek to bound

ıAhigh
D A� QA:

We begin by observing that

k QAkED�1
�0ŒJ �

Ck� QAk
L2 PH�1=2ŒJ �

.M "ı6 :

Therefore, both .A; J / and . QA; J / are .";M/-dispersed, where ".M "ı6.

Step 1: consequence of approximate linear energy conservation. We claim that

sup
t2J

k.ıAhigh; @tıA
high/.t/k2

PH1�L2
. c.E/CCM "ı6 : (6-36)

Note that

ıAhigh
D .1� es��/AC es��A�A.s�/CA.s�/� QA:

We begin with the inequality

krA.t/k2
L2
� kr.1� es��/A.t/k2

L2
Ckes��A.t/k2

L2
;
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which follows from Plancherel and nonnegativity of the symbol of .1� es��/es��. By Theorem 5.13(1)
and (6-12), we have

kres��A.t/k2
L2
D kr QA.t/k2

L2
CCM "

ı6 ; (6-37)

kr.1� es��/A.t/k2
L2
D kr.A� QA/.t/k2

L2
CCM "

ı6 : (6-38)

Hence, by Theorem 5.9(5), we have

kr.A� QA/.t/k2
L2
� krA.t/k2

L2
�kr QA.t/k2

L2
CCM "

ı6

� krA.0/k2
L2
�kr QA.0/k2

L2
CCM "

ı6

� c.E/CCM "
ı6 :

Step 2: weak divisibility and reinitialization. By Theorem 5.1(7) there exists a partition J D
SK
kD1 Jk

such that K .M.E/ 1 and
k QAkS1ŒJk� .E 1; (6-39)

so that the number of such intervals is also controlled K .M.E/ 1. Using the uniform control of the
energy of ıAhigh in Step 1, it suffices to estimate ıAhigh in S1 separately in each of these intervals.

We will make a bootstrap assumption

kıAhigh
kS1ŒJk�

� 2: (6-40)

Then our goal is to improve (6-40) to

kıAhigh
kS1ŒJk�

� 1 (6-41)

by taking c�E 1, "�M 1 and T �M;" 1.
In view of (6-39) and (6-40), in all the estimates below within a single interval Jk , all implicit constants

will depend on E rather than M.E/. To simplify the notation we drop the subscript and replace Jk by J
in what follows.

Step 3: frequency envelope bounds. Let ck be a frequency envelope forA in S1ŒJ �. Then by Proposition 3.1,
the initial data in Jk for A.s/ has the frequency envelope 2�.k�k

�/Cck . By Theorem 5.1, we have a
similar envelope in S1,

kPk QA.s/kS1ŒJ Œ .E 2�.k�k
�/Cck : (6-42)

On the other hand, by the estimate (6-12) we have, under the assumption "�E 1, the bound

kPk. QA�A.s//kS1ŒJ � .E 2�ı�jk�k
�jck : (6-43)

Hence for the high-frequency difference Ah we have the bound

kPkıA
high
kS1ŒJ � .E 2�ı�.k�k

�/�ck : (6-44)

Step 4: control of nonlinearity. By Theorem 5.9(4) applied separately to A and QA we have

k.�CDiff �PA/ıA
high
CDiff �

PıAhigh
QAk
N\L2 PH�1=2ŒJ �

.E 2C�"ı4ı6 ; (6-45)
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where the parameter � � 10 is arbitrary for now, to be chosen later. We claim that the second term can be
estimated separately as

kDiff �
PıAhigh

QAk
N\L2 PH�1=2ŒJ �

.E 2�cı�� : (6-46)

This is a consequence of Lemma 5.8. To see that we use the bounds (6-42) and (6-44) to compute the
frequency envelope fk in Lemma 5.8. We have

fk .E
� X
k0<k��

2�cı�.k
0�k�/�ck0 C 2

�.k0�k�/Cck0.c
2c�/<k0

�
2�.k�k

�/Cck .E 2�cı�jk�k
�jck;

and thus (6-46) follows. Combining (6-45) with (6-46) yields

k.�CDiff �PA/ıA
high
k
N\L2 PH�1=2ŒJ �

.E 2�cı�� C 2C�"ı4ı6 : (6-47)

Hence by Theorem 5.1(1) we conclude that

kıAhigh
kS1ŒJk�

.E cC 2�cı�� C 2C�"ı4ı6 :

Hence by taking ��E 1, c�E 1, "�E;� 1 and T �E;";� 1, the desired conclusion (6-41) follows.

7. Proof of the main results

The purpose of this short section is to deduce Theorems 1.13, 1.20 and 1.18 from Theorem 6.1.

7A. Higher-regularity local well-posedness. In this subsection, we sketch the proof of higher-regularity
local well-posedness of the hyperbolic Yang–Mills equation. We first use the temporal gauge, which
works for general connections, and then turn to the caloric gauge, which works for data satisfying (1-12).

7A1. Temporal gauge. Here we write the Yang–Mills equations in the temporal gauge,

A0 D 0: (7-1)
They take the form

�AAj DDk@jAk; (7-2)

with the additional constraint equation
Dj @0Aj D 0: (7-3)

This can be viewed as a semilinear system of wave equations for the curl of A, coupled with a second-order
transport equation for the divergence of A.

We consider the Cauchy problem with initial data

AŒ0�D .Aj .0/; @tAj .0//:

The initial data is uniquely determined by the Yang–Mills initial data and the gauge condition (7-1).
The system (7-2) together with the constraint equation (7-3) is well-posed in regular Sobolev spaces.

Precisely, we have:

Theorem 7.1. The system (7-2) is locally well-posed inHN�HN�1 forN �2, with Lipschitz dependence
on the initial data.
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We further remark that the temporal gauge fully describes all classical solutions to the Yang–Mills
system:

Theorem 7.2. Let A be a solution to the Yang–Mills system which has local-in-time regularity .A; @tA/ 2
C.Œ0; T �IHN �HN�1/ for N � 3. Then A has a temporal gauge equivalent QA with the same regularity
. QA; @t QA/ 2 C.Œ0; T �IH

N �HN�1/.

To see this, it suffices to solve an equation for the gauge transformation O, namely

O�1@0O D A0; O.0; x/D I;

which is an ODE on the Lie group G. If A 2 C.HN / then this yields a unique solution O 2 C.HN /.
This in turn yields a temporal gauge equivalent solution

. QA; @t QA/ 2 C.Œ0; T �IH
N�1
�HN�2/:

This argument loses one derivative. However, the initial data is in HN �HN�1, which by the well-
posedness result yields a C.Œ0; T �IHN �HN�1/ solution. But by the HN�1 �HN�2 well-posedness
the two must agree, so we obtain a unique representation in the temporal gauge with the same data and
without loss of derivatives.

Remark 7.3. Analogues of Theorems 7.1 and 7.2 hold for the spaceHN
loc�H

N�1
loc instead ofHN�HN�1,

where HN
loc is equipped with the norm supx2R4k � kHN .B1.x//

.

7A2. Caloric gauge. In view of Theorem 1.11 we can fully describe caloric Yang–Mills waves as
continuous functions

I 3 t ! .Ax.t/; @0Ax.t// 2 T
L2C:

For higher-regularity Yang–Mills waves we have the following:

Theorem 7.4. Let A be a solution to the Yang–Mills system which has local-in-time regularity .A; @tA/ 2
C.Œ0; T �IHN �HN�1/ for N � 2. Assume in addition that the bound (1-12) is uniformly satisfied by its
caloric extension, globally in parabolic time. Then A has a caloric gauge equivalent QA with the same
regularity . QA; @t QA/ 2 C.Œ0; T �IHN �HN�1/.

This result is a direct consequence of Theorem 1.11, with one minor exception. Precisely, Theorem 1.11
does not directly yield the CtL2x regularity for @0A0. For that we instead need to refer to the expression
(3-15) and the bounds (3-18) and (4-28) for the two terms in (3-15).

Remark 7.5. The same result will easily hold for .A; @tA/ 2 C.Œ0; T �IH �L2/. However, if we only
assume that .A; @tA/ 2 C.Œ0; T �I PH 1 �L2/ then one would also need to resolve the remaining gauge
freedom. For that it suffices to observe that if two A’s have a small difference in L2, then the two O’s
can be chosen in tandem so that they agree at infinity.

In particular this says that a caloric gauge solution exists for as long as a regular solution exists and
the L3 bound in (1-12) remains finite. This will allow us to bootstrap the existence time for as long as we
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have good bounds in the caloric gauge. Precisely, for8 N � 3 suppose that an HN solution exists in the
caloric gauge up to time T . If this solution has uniform HN bounds up to time T , then its temporal gauge
representation has uniform HN bounds up to time T. Thus it can be extended further in the temporal
gauge, and hence also in the caloric gauge. This shows that a maximal caloric gauge solution must either
explode in HN at the (finite) end of its lifespan, or the L3 norm in (1-12) must explode. The latter cannot
happen for subthreshold solutions. Thus we have:

Theorem 7.6. The Yang–Mills system in the caloric gauge is locally well-posed in HN �HN�1 for
N � 2. Further, the solution extends for as long as the HN �HN�1 norm remains bounded and the
L3 norm in (1-12) remains bounded.

For regular data, this result reduces the problem of global well-posedness to that of obtaining uniform
bounds for caloric solutions.

7B. Local well-posedness in the caloric manifold CW proof of Theorem 1.13. For "� > 0, recall that the
energy concentration scale r"�c was defined as

r"�c Œa; e�D supfr W EBr .a; e/� "
2
�g D sup

�
r > 0 W sup

x2R4

1

2

X
˛<ˇ

kf˛ˇk
2
L2.Br .x//

� "2�

�
;

where fjk is the curvature form corresponding to aj , f0j D�fj0D ej and f00D 0. Since the definition
only involves f˛ˇ , we will slightly abuse the notation and simply write r"�c Œf � for r"�c Œa; e�.

Lemma 7.7. Let A be a regular caloric Yang–Mills wave on I D .�T0; T0/. For any " > 0, if "� is
sufficiently small compared to " and

T0 � r
"�
c Œa; e�;

then we have
kF kED�mŒI � � "; with 2m D ".r"�c Œa; e�/

�1:

Proof. By our notation, f˛ˇ D F˛ˇ .0/. After rescaling, we may set r"�c .F.0//D 1. We begin with the
observation that

kPkF.t/kL1 . 2ck�2�2k sup
x2R4
kF.t/kL2.B1.x//; (7-4)

which follows from the properties of the convolution kernel of Pk; in particular, it is rapidly decaying
on the scale 2�k and its L2-norm is bounded by 2�2k. Then, by the localized energy estimate for the
hyperbolic Yang–Mills equation, i.e.,

Eftg�BR�jtj.F /� Ef0g�BR.F / .0 < jt j<R/; (7-5)

the lemma follows. �

Proof of Theorem 1.13. We prove the theorem in several steps:

8The requirement N � 3 is so that there is no loss of regularity in the transition to the temporal gauge. Precisely, we want to
ensure that A0 2 C. PH1 \ PHNC1/.



300 SUNG-JIN OH AND DANIEL TATARU

Step 1: regular solutions. Let A be a regular caloric Yang–Mills wave with energy E and initial caloric
size Q. For "� small enough, to be chosen later, let rc WD r

"�
c be the corresponding energy concentration

scale for the initial data.
Our goal is to prove that if "� is small enough, depending only on E and Q, then the solution A persists

as a regular caloric solution up to time rc . Precisely, we will apply Theorem 6.1 to the solution A in order
to show that the solution A exists in Œ�rc ; rc� and satisfies the bound

kAkS1Œ�rc ;rc� �M.E ; 3Q/: (7-6)

We use a continuity argument. Let T0 � rc be a maximal time with the property that the solution A
given by Theorem 7.4 exists as a classical caloric solution in .�T0; T0/, and further satisfies the bound

sup
t2Œ�T0;T0�

Q.A.t//� 3Q: (7-7)

For 0 < T < T0 we seek to apply Theorem 6.1 to A in I D Œ�T; T �. To verify the hypothesis of
Theorem 6.1 we need to ensure that for a suitable choice of m we have

kF kED�m � ".E ; 3Q/; jI j � 2
�mT .E ; 3Q/:

For this it suffices to apply Lemma 7.7 with

"Dminf".E ; 3Q/; T .E ; 3Q/g;

which yields the appropriate choice of "�.
Now by Theorem 6.1 we obtain the uniform bound

kAkS1Œ�T;T � �M.E ; 3Q/; 0 < T < T0:

By the structure theorem, Theorem 5.1, it follows that higher-regularity bounds are also uniformly
propagated,

sup
t2.�T0;T0/

k.A; @tA/.t/kHN <1:

Thus by the local result for regular solutions in Theorem 7.6 we can continue the regular caloric Yang–Mills
connection A beyond the time interval Œ�T0; T0�.

Finally, we consider the bounds for Q.A/. These we can propagate using Theorem 5.9, which implies
that

sup
t2Œ�T0;T0�

Q.A.t//�Q.Q;E "
ı4 :

Readjusting " if needed, it follows that

sup
t2Œ�T0;T0�

Q.A.t//� 2Q: (7-8)

This implies that the bound (7-7) also can be propagated beyond ˙T0. This contradicts the maximality of
T0 unless T0 D rc . Hence the classical caloric Yang–Mills wave exists in Œ�rc ; rc� and (7-6) holds.
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Step 2: rough solutions. Given any caloric initial data .a; b/ with finite energy E and caloric size Q, we
consider the corresponding regularized data .a.s/; b.s// obtained using the Yang–Mills heat flow. We
have the uniform bounds

E.a.s/; b.s//� E.a; b/; Q.a.s/; b.s//�Q.a; b/:

In particular, we have .f .s/; e.s//! .f; e/ in PH 1�L2. This implies that the energy concentration scales
for .a.s/; e.s// converge to those for .a; e/. Thus, by the analysis in the smooth case above, for small
enough s the corresponding solutions A.s/ exist as smooth caloric Yang–Mills waves in I D Œ�rc ; rc�
and satisfy the uniform S1 bound (7-6).

Now we use the structure theorem, Theorem 5.1, to consider the limit as s! 0. If ck is a frequency
envelope for .a; e/, then by Proposition 3.1 it follows that:

(i) For .a.s/; b.s// we have the frequency envelope in PH 1 �L2

ck.s/D ckh2
2ksi�cı5 :

(ii) For the difference .a; b/� .a.s/; b.s// we have the envelope in PH 1 �L2

ıck.s/D ckh2
�2ks�1i�cı5 :

(iii) For the difference .a.s/; b.s//� .a.2s/; b.2s// we have the envelope in PH 1 �L2

c�k .s/D ck.s/2
�cı5jk�k.s/j:

By Theorem 5.1(2), it follows that ck.s/ is a frequency envelope for A.s/ in S1. Combining this with
Theorem 5.1(8), it follows that c�

k
.s/ is a frequency envelope for A.s/ � A.2s/. Summing up such

differences, we obtain the general difference bound

kA.s1/�A.s2/kS1 .E;Q cŒk.s1/;k.s2/�: (7-9)

This implies that the limit
AD lim

s!0
A.s/

exists in s. We define A to be the caloric Yang–Mills wave associated to the .a; b/ data. We remark that
by (7-9) we have the difference bound

kA�A.s/kS1 .E;Q c�k.s/: (7-10)

Step 3: difference bound. The difference bound in part (4) of the theorem is a direct consequence of the
difference bound in Theorem 5.1(8).

Step 4: continuous dependence. We consider a convergent sequence of caloric initial data

.a.n/; b.n//! .a; b/ in PH 1
�L2: (7-11)

Let A.n/.s/ and A.s/ be the corresponding solutions with regularized data.
Denote by cn

k
a corresponding sequence of frequency envelopes for the initial data .a.n/; b.n// in

PH 1 �L2. By Theorem 5.1(2), these are also frequency envelopes for the solutions A.n/.s/.
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By Theorem 7.4 we know that for each s we have

A.n/.s/! A.s/ in S1

and in effect in stronger topologies. Then we estimate

lim sup
n!1

kA.n/�AkS1 . lim
s!1

lim sup
n!1

kA.n/.s/�A.s/kS1 C c
n
�k.s/C c�k.s/

. lim
s!1

lim sup
n!1

cn
�k.s/:

But the last limit is zero in view of the convergence in (7-11). The continuous dependence follows. �

We end this subsection with a lemma that bounds the energy concentration scale from below by an
L2-frequency envelope for F, which proves Remark 5.2.

Lemma 7.8. Let c be a frequency envelope for F˛ˇ in L2 for all ˛; ˇ 2 f0; 1; : : : ; 4g. Suppose that
kck`2�m

<C�1"� for some m 2 Z and a sufficiently large universal constant C > 0. Then r"�c .F /� 2�m.

Proof. It suffices to establish the bound
kF kL2.B.x;2�k/ . c�k :

To see this we use Bernstein’s inequality to estimate

kF kL2.B.x;2�k/ . kF�kkL2 C
X
j<k

2�2kkFj kL1 . c�kC
X
j<k

22j�2kcj � c�k : �

7C. Regularity of energy-dispersed solutionsW proof of Theorem 1.20. Consider a time t0 where Q.A.t//
is nearly minimal. From Lemma 5.10 we have the estimate

Q.A.t0//.E "
c :

If " is small enough this allows us to conclude first that Q� 1, and then that

Q.E "c :

Now a straightforward continuity argument shows that

Q.A.t//� 1; t 2 I;

which again by Lemma 5.10 yields

Q.A.t//.E "
c ; t 2 I:

Then we can apply directly the result in Theorem 6.1 for any m 2 Z. This eliminates any restriction on
the size of the interval I.

7D. Gauge transformation into temporal gaugeW proof of Theorem 1.18. To produce a temporal gauge
solution to (1-1) from the caloric gauge solution we use a gauge transformation O defined as the solution
to the ODE

O�1@tO D A0; O.0/D I: (7-12)

Here for A0 we have the regularity given by Theorem 5.1(9), namely

A0 2 `
1
jDj�2L2xL

1
t : (7-13)
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We use this to compute the regularity of O:

Lemma 7.9. (a) Assume that A0 is as in (7-13). Then the solution O to the ODE has the following
properties:

(i) OIx 2 Ct . PH 1/.

(ii) O is continuous in both x and t .

(b) Consider two solutions O and zO arising from A0 and QA0. Then we have:

(i) ( PH 1 bound)
kO�1@xO � zO

�1@x zOk PH1 . kA0� QA0k`1jDj�2L2xL1t :

(ii) (uniform bound)
kd.O; zO/kL1 . kA0� QA0k`1jDj�2L2xL1t :

Proof. (a) We first consider the ODE

O�1@tO D F; O.0/D I; (7-14)

and observe that for smooth F this is easily solvable.
Next we consider a smooth one-parameter family of solutions O.h/. For this we compute

d

dt
.O�1@hO/D @hF � ŒF;O

�1@hO�;

which immediately leads to

jO�1@hO.t/j �

Z t

0

j@hF.s/j ds:

Comparing two solutions O and zO generated by F and zF using the straight line between them, it follows
that

d.O.t/; zO.t//�

Z t

0

jF.s/� zF .s/j ds: (7-15)

This yields a Lipschitz property for the map

L1t 3 F !O 2 Ct ;

which is thus by density extended to all F 2 L1t .
Next we turn our attention to A0, which by Bernstein’s inequality satisfies

A0 2 CxL
1
t :

This implies the desired continuity of O.
Finally we consider the evolution of O�1@xO,

d

dt
.O�1@xO/D @xA0� ŒA0; O

�1@xO�:

Since @xA0 2 L4xL
1
t , this immediately gives

O�1@xO 2 L
4
xCt � CL

4:
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A second differentiation yields as well

@x.O
�1@xO/ 2 L

2
xCt � CL

2:

(b) The uniform bound for the difference follows directly from (7-15). For the difference of the derivatives
we compute

@t .O
�1@jO � zO

�1@j zO/C ŒA0; O
�1@jO � zO

�1@j zO�D @jA0� @j QA0� ŒA0� QA0; zO@j zO�:

As above, we can estimate this first in L4 and then in PH 1. �

To conclude the proof of Theorem 1.18 it remains to verify (i) that gauge transformations O having
the properties in the above lemma yield temporal connections AŒt� 2 C. PH 1/, and (ii) these connections
depend continuously on the initial data.

For the continuity in time we write

AŒt� DO.A�O�1@xO/O
�1:

The second term above is in Ct PH 1 due to the previous lemma. For the first term we differentiate, then
use again the lemma combined with the continuity of O and dominated convergence.

For the continuous dependence of the temporal solutions with caloric data the same argument as above
applies. However, we also need to consider general finite-energy initial data sets. Here the construction
of the temporal gauge solutions starting from a general initial data .a; e/ goes as follows:

(1) Given the initial position a 2 PH 1, we consider the gauge transformation O DO.a/ which turns a
into . Qa; Qe/, its caloric gauge counterpart.

(2) Given the caloric data . Qa; Qe/ we have as above a unique temporal solution QA.

(3) To return to the data .a; e/ we apply to A the inverse gauge transformation O�1 to obtain the
temporal solution A.

The regularity of the gauge transformation O is O�1@xO 2 PH 1, which suffices in order for it to map
C. PH 1/ connections into C. PH 1/ connections. It remains to prove the continuous dependence. Consider a
convergent sequence of data .a.n/; e.n//! .a; e/ in PH 1 �L2. Without any restriction in generality we
can assume that .a; e/ is caloric. Denote by O.n/ the corresponding gauge transformations, which, we
recall, are only unique up to constant gauge transformations. Then we need to show that for a well chosen
(sub-)sequence of representatives O.n/ we have the following properties:

(1) .O.n//�1@xO.n/! 0 in PH 1.

(2) O.n/.x/! I a.e. in x.

But this is a consequence of Theorem 1.2; see also Remark 1.3 (recall also that OIx DAd.O/.O�1@xO/).

8. Multilinear estimates

The purpose of this section is to prove most of the results stated without proof in Section 4. The exceptions
are Theorem 4.24 and Proposition 4.25, which involve construction of a parametrix for �CDiff �PA; their
proofs are given in the next section.
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8A. Disposable operators and null forms. In this subsection we collect preliminary materials that are
needed for analysis of the multilinear operators in the nonlinearity of the Yang–Mills equation in the
caloric gauge.

8A1. Disposable operators. Boundedness properties of the multilinear operators arising in caloric gauge
(see Section 3) can be conveniently phrased in terms of disposability (after multiplication with appropriate
weights) of these operators.

We begin by considering the multilinear operator Q with the symbol

Q.�; �/D
j�j2� j�j2

2.j�j2Cj�j2/
D
.�C �/ � .� � �/

2.j�j2Cj�j2/
;

which arose in the wave equation for Ax (most notably through the expression for @`A`) in the caloric
gauge.

Lemma 8.1. For any k; k1; k2 2 Z, the bilinear operator

2kmax�kPkQ.Pk1. � /; Pk2. � //

is disposable.

Proof. To begin with, note the symbol bound

jQ.�; �/j.
j�C �j

.j�j2Cj�j2/
1
2

;

which implies that the symbol of 2kmax�kPkQ.Pk1. � /; Pk2. � // is uniformly bounded. In the case
k2 < k1� 5 so that jkmax� kj � 3, it can also be checked that

2n1k12n2k2 j@
.n1/

�
@.n2/� .Pk.�C �/Q.�; �/Pk1.�/Pk2.�//j.n1;n2 1;

which proves the desired disposability property. By symmetry, the case k1 < k2� 5 follows as well. In
the case jk1 � k2j < 5 (so that jkmax � k1j < 10), making the change of variables .�; �/D .�; �C �/, it
can be seen that

2k1�k2n1k12n2kj@
.n1/

�
@
.n2/

�
.Pk.�/Q.�; � � �/Pk1.�/Pk2.� � �//j.n1;n2 1;

which implies disposability of 2kmax�kPkQ.Pk1. � /; Pk2. � //. �

Next, we consider the multilinear operator W .s/ with the symbol

W .�; �; s/D�
1

2� � �
e�sj�C�j

2

.1� e2s���/;

which arose in the wave equation for the Yang–Mills heat flow development Ax.s/ of a caloric Yang–Mills
wave.

Lemma 8.2. For any k; k1; k2 2 Z and s > 0, the bilinear operator

hs22ki10hs�12�2kmaxi22kmaxPkW .Pk1. � /; Pk2. � /; s/ (8-1)
is disposable.
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Proof. Without loss of generality, we may assume that s D 1 by scaling. We distinguish two scenarios:

Case 1: high-low or low-high, k Dmaxfk1; k2gCO.1/. To prove disposability of (8-1), it suffices to
show that

h22kmaxi
112n1k12n2k2

ˇ̌̌̌
@
.n1/

�
@.n2/�

�
Pk.�C �/e

�j�C�j2 1� e
2���

� � �
Pk1.�/Pk2.�/

�ˇ̌̌̌
.n1;n2 1

for any n1; n2 2 N. Since the derivatives of Pk.�C �/Pk1.�/Pk2.�/ already obey desirable bounds, it
only remains to prove

h22kmaxi
112n1k12n2k2

ˇ̌̌̌
@
.n1/

�
@.n2/�

�
e�j�C�j

2 1� e2���

� � �

�ˇ̌̌̌
.n1;n2 1 (8-2)

for �; � in the support of the symbol (8-1).
Since k D maxfk1; k2g CO.1/, we have 22kmax ' j�j2 C j�j2 ' j� C �j2. On the one hand, it is

straightforward to verify

2n1k12n2k2 j@
.n1/

�
@.n2/� e�j�C�j

2

j.n1;n2 2
n1k12n2k2.1Cj�C �j2/

n1Cn2
2 e�j�C�j

2

.n1;n2 2
.n1Cn2/kmaxh22kmaxi

n1Cn2
2 e�j�C�j

2

:

On the other hand, we also have

2n1k12n2k2
ˇ̌̌̌
@
.n1/

�
@.n2/�

�
1� e2���

� � �

�ˇ̌̌̌
.n1;n2 2

n1k12n2k2.1Cj�j2Cj�j2/
n1Cn2
2 .1C e2���/

.n1;n2 2
.n1Cn2/kmaxh22kmaxi

n1Cn2
2 .1C e2���/:

The key point here is that when j� � �j � 1, the denominator � � � cancels with the first term in the Taylor
expansion of the numerator 1� � � �; we omit the details. Combining (8-3) and (8-3), it follows that

2n1k12n2k2
ˇ̌̌̌
@
.n1/

�
@.n2/�

�
e�j�C�j

2 1� e2���

� � �

�ˇ̌̌̌
.n1;n2 h2

2kmaxi
n1Cn2e�j�C�j

2

.1C e2���/:

Since e�j�C�j
2

.1C e2���/D e�j�C�j
2

C e�.j�j
2Cj�j2/ . e�C�122kmax, (8-2) follows.

Case 2: high-high, k <maxfk1; k2g�C . As usual, we make the change of variables .�; �/D .�; �C �/.
It suffices to prove

h22ki10h22kmaxi2n1k12n2k
ˇ̌̌̌
@
.n1/

�
@
.n2/

�

�
Pk.�/e

�j� j2 1� e
2��.���/

� � .� � �/
Pk1.�/Pk2.� � �/

�ˇ̌̌̌
.n1;n2 1:

Note that the derivatives of h22ki10Pk.�/e�j� j
2

Pk1.�/Pk2.� � �/ already obey desirable bounds. Hence
we are only left to show

h22kmaxi2n1k12n2k
ˇ̌̌̌
@
.n1/

�
@
.n2/

�

�
1� e2��.���/

� � .� � �/

�ˇ̌̌̌
.n1;n2 1 (8-3)

for �; � in the support of (8-1).
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Note that k1 D kmaxCO.1/. In the case 22kmax . 1, (8-3) follows from

j@
.n1/

�
@
.n2/

�
..2� � .� � �//�1.1� e2��.���///j.n1;n2 1;

which follows by Taylor expansion at � � .� � �/D 0. In the case 22kmax & 1, we use

2n1k12n2kj@
.n1/

�
@
.n2/

�
.� � .� � �//�1j. 2�2kmax ;

2n1k12n2kj@
.n1/

�
@
.n2/

�
.1� e2��.���//j. 1;

both of which follow from simple computation, whose details we omit. �

8A2. Null forms. We now discuss the null forms that arise in caloric gauge, which occur in conjunction
with various (disposable) translation-invariant operators. To treat these in a systematic fashion, it is useful
to define null forms in terms of an appropriate decomposition property of the symbol.

Definition 8.3 (null forms). Let T be a translation-invariant bilinear operator on R1C4 and let˙2fC;�g
be a sign. Given k1; k2 2 Z, `; `0 2 �N, !;!0 2 S3, define

�˙ Dmaxfj†.!;˙!0/j; 2`; 2`
0

g:

(1) We say that T is a null form of type N˙, and write

T . � ; � /DN˙. � ; � /;

if for every k1; k2 2 Z, `; `0 2 �N and !;!0 2 S3, T admits a decomposition of the form

T ..�; �/; .�; �//.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �˙2
k1Ck2O..�; �/; .�; �//

X
i1;i22N

ai1.�/bi2.�/;

where the Fourier multipliers

.1Cji1j/
100ai1 ; .1Cji2j/

100bi2 (8-4)

are disposable, and the translation-invariant bilinear operator with symbol

O..�; �/; .�; �//
is disposable as well.

(2) We say that T is a null form of type N if T . � ; � /DNC. � ; � / and T . � ; � /DN�. � ; � /.

(3) We say that T is a null form of type N0;˙, and write

T . � ; � /DN0;˙. � ; � /;

if for every k1; k2 2 Z, `; `0 2 �N and !;!0 2 S3, T admits a decomposition of the form

T .�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �
2
˙2

k1Ck2O..�; �/; .�; �//
X
i1;i22N

ai1.�/bi2.�/;

where the Fourier multipliers

.1Cji1j/
100ai1 ; .1Cji2j/

100bi2 (8-5)
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are disposable, and also the translation-invariant bilinear operator which has symbol O..�; �/; .�; �// is
disposable as well.

In particular, O, ai1 and bi2 may depend on k1; k2; `; `0; !; !0, but the disposability bounds stated
above do not.

Remark 8.4 (null form gain). To exploit the null form, it is convenient to make the following observation:
as an immediate consequence of the definition, we may write

N˙.Pk1P
!
` u; Pk2P

!0

`0 v/D C�˙2
k1Ck2 zO.Pk1P

!
` u; Pk2P

!0

`0 v/

for a universal constant C > 0 and some disposable zO. Analogous statements hold for N and N0;˙.

Remark 8.5 (behavior under symbol multiplication). The properties of T in Definition 8.3 seem compli-
cated at first, but its usefulness comes from the fact that it is well-behaved under symbol-multiplication
with a disposable multilinear operator. More precisely, if O. � ; � / is a disposable translation-invariant
bilinear operator and T . � ; � / is a null form in the sense of Definition 8.3, then the translation-invariant
bilinear operator with symbol O.�; �/T .�; �/ is clearly also a null form of the same type.

We now verify that the standard null forms are indeed null forms according to Definition 8.3. We have
the following separation-of-variables result for the symbols of the standard null forms.

Lemma 8.6 (standard null forms). Consider the symbols

Nij .�; �/D �i�j � �j�i ; N0;˙.�; �/D˙j�jj�j � � � �:

These symbols admit the decompositions

j�j�1j�j�1Nij .�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/Dminf�C; ��g
X
i1;i22N

ai1.�/bi2.�/; (8-6)

j�j�1j�j�1N0;˙.�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �
2
˙

X
i1;i22N

a0i1.�/b
0
i2
.�/; (8-7)

where
.1Cji1j/

100ai1 ; .1Cji1j/
100a0i1 ; .1Cji2j/

100bi2 ; .1Cji2j/
100b0i2 (8-8)

are disposable.

As a corollary, it follows that Nij is a null form of type N, whereas N0;˙ are null forms of type N˙.
As before, ai1 , a0i1 , bi2 and b0i2 depend on k1; k2; `; `0; !; !0, but the disposability bounds stated in

(8-8) do not.
This lemma can be proved by performing separation of variables using Fourier series on an appro-

priate rectangular box containing the support of Pk1P
!
`
.�/Pk2P

`0

! .�
0/. For the details in the case of

j�j�1j�j�1Nij .�; �/, we refer to [Gavrus and Oh 2016, Proof of Proposition 7.8]. For N0;˙, observe that
zN0;˙.�; �/ WD j�j

�1j�j�1N0;˙.�; �/ obeys

j zN0;˙.�; �/j. �2˙; j@� zN0;˙.�; �/j. 2�k1�˙; j@� zN0;˙.�; �/j. 2�k2�˙;

j@
.n1/

�
@.n2/�

zN0;˙.�; �/j. 2�n1k12�n2k2 .n1Cn2 � 2/
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for �; � in the support of Pk1P
!
`
.�/Pk2P

`0

! .�/. Using these symbol bounds, the case of N0;˙ can be
handled by essentially the same proof as in [Gavrus and Oh 2016, Proof of Proposition 7.8]. See also
[Gavrus 2019, Section 8].

We now present algebraic lemmas, which are used to identify null forms in the Yang–Mills equation in
the caloric gauge. The following lemma identifies all bilinear null forms.

Lemma 8.7. Let O be a disposable bilinear operator on R1C4. Let A be a spatial 1-form and let u; v be
functions in the Schwartz class on R1C4. Then we have

O.P`A; @`u/D
X
j

N .jDj�1Aj ; u/; (8-9)

PxO.u; @xv/D jDj�1N .u; v/: (8-10)

Moreover, we also have

O.@˛u; @˛v/DN0;C.QCu;QCv/CN0;C.Q�u;Q�v/

CN0;�.QCu;Q�v/CN0;�.Q�u;QCv/CR0.u; v/; (8-11)

where

R0.u0; v0/DO..Dt � jDj/QCu0C .Dt CjDj/Q�u;Dtv0/

CO.jDj.QCu0�Q�u0/; .Dt � jDj/QCv0C .Dt CjDj/Q�v0/: (8-12)

Remark 8.8. As is evident from the proof below, Lemma 8.7 readily generalizes to a disposable multilinear
operator O that has one of the above structures with respect to two inputs. We omit the precise statement,
as the notation gets unnecessarily involved. However, we point out that this is all we need in order to
handle the trilinear secondary null structure.

Remark 8.9. An alternative way to make use of the null form O.@˛u; @˛v/ is to rely on the simple
algebraic identity

2O.@˛u; @˛v/D�O.u; v/�O.�u; v/�O.u;�v/: (8-11)0

We have elected to use the decomposition (8-11) to unify the treatment of null forms.

Proof. We begin with (8-9) and (8-10). By Remark 8.5, it suffices to consider the case when O.u; v/ is
the product uv. Then it is a well-known fact (going back to [Klainerman and Machedon 1994; 1995])
that P`A@`u and Pj .u@xv/ are standard null forms, i.e.,

P`A@`uDN j̀ ..��/
�1@`Aj ; u/; (8-13)

Pj .u@xv/D .��/
�1@`N j̀ .u; v/: (8-14)

We omit the simple symbol computation. Hence (8-9) and (8-10) follow.
Next, we prove (8-11), which is essentially the well-known fact that @˛u@˛v D�D˛uD˛v is a null

form. To verify (8-11), we first decompose uDQCuCQ�u and v DQCvCQ�, then we substitute

DtQ
˙uD˙jDjQ˙uC .Dt �jDj/Q

˙u; DtQ
˙0v D˙0jDjQ˙

0

vC .Dt �
0
jDj/Q˙

0

v:



310 SUNG-JIN OH AND DANIEL TATARU

When O.u; v/D uv, the contribution of the first terms givesX
˙;˙0

.˙˙0 jDjQ˙ujDjQ˙
0

v�D`Q˙uD`Q
˙0v/D

X
˙;˙0

N0;˙˙0.Q
˙u;Q˙

0

v/:

By Remark 8.5, the same contribution constitutes the first four terms in (8-11) in general. Note moreover
that the remainder makes up R0.u; v/, which proves (8-11). �

Next, we present an algebraic computation, which will be used to reveal the trilinear secondary null
form of the caloric Yang–Mills wave equation.

Lemma 8.10. Let O;O0 be disposable bilinear operators on R1C4. Then we have

O0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1PiO.u.1/; @xu.2//; @iu.3//

DO0.��1O.u.1/; @˛u.2//; @˛u.3//�O0.��1��1@t@˛O.u.1/; @˛u.2//; @tu.3//

�O0.��1��1@`@˛O.u.1/; @`u.2//; @˛u.3//;

provided that ��1O, ��1O and ��1��1O are well-defined in the sense that their kernels have finite
masses.

Of course, the requirement that the kernels of ��1O, ��1O and ��1��1O have finite masses is
excessively strong for the validity of the lemma, but it will be verified in the applications below.

Proof. The proof of this lemma is the same as in [Krieger et al. 2015, Appendix]. Using the identities

��1���1 D��1��1.�@2t /; PiB D Bi ��
�1@i@

`B`; @0 D�@0 D�@t

and adding and subtracting O0.��1��1@t@`O.u.1/; @`u.2//; @tu.3//, we may write

O0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1PiO.u.1/; @xu.2//; @iu.3//

DO0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1O.u.1/; @iu.2//; @iu.3//

�O0.��1��1@t@0O.u.1/; @0u.2//; @tu.3//�O0.��1��1@i@`O.u.1/; @`u.2//; @iu.3//

�O0.��1��1@t@`O.u.1/; @`u.2//; @tu.3//�O0.��1��1@0@`O.u.1/; @`u.2//; @0u.3//

DO0.��1O.u.1/; @˛u.2//; @˛u.3//�O0.��1��1@t@˛O.u.1/; @˛u.2//; @tu.3//

�O0.��1��1@`@˛O.u.1/; @`u.2//; @˛u.3//:

In the last equality, we paired the first and the second, the third and the fifth, and the fourth and the sixth
terms, respectively, from the preceding lines. �

8B. Summary of global-in-time dyadic estimates. In what follows,we denote byO a disposable translation-
invariant bilinear operator on R1C4, and by N a bilinear null form as in Definition 8.3(2). Let u and v
be test functions on R1C4. For convenience, we also introduce test functions u0 and v0, which stand for
inputs of the form ru and rv, respectively, in the applications.

Given k; k1; k2 2Z, we define kmaxDmaxfk; k1; k2g and kminDminfk; k1; k2g. We use the shorthand
uk1 D Pk1u, vk2 D Pk2v and v0

k2
D Pk2v

0.
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8B1. Bilinear estimates for elliptic components. We start with simple bilinear bounds which do not
involve any null forms.

Proposition 8.11. We have

kPkO.uk1 ; v
0
k2
/k
L2 PH�1=2

. 2�ı1.kmax�kmin/kDuk1kStr0kv
0
k2
kStr0 ; (8-15)

kPkO.uk1 ; v
0
k2
/k
L9=5 PH�4=9

. 2�ı1.kmax�kmin/kDuk1kStr0kv
0
k2
kStr0 ; (8-16)

kPkO.uk1 ; v
0
k2
/k
L1 PW �2;1

. 2�ı1jk1�k2jkDuk1kSkv
0
k2
kS : (8-17)

Furthermore, we have the following simpler variants of (8-15), (8-16) and (8-17):

kPkO.uk1 ; v
0
k2
/k
L2 PH�1=2

. 2�ı1.kmax�kmin/kuk1kL2 PH3=2kv
0
k2
kS ; (8-18)

kPkO.uk1 ; v
0
k2
/k
L9=5 PH�4=9

. 2�ı1.kmax�kmin/kuk1kL2 PH3=2kv
0
k2
kS ; (8-19)

kPkO.uk1 ; v
0
k2
/k
L1 PW �2;1

. 2
2
3
kmin2�

4
3
k2�

1
6
k12

5
6
k2.2

1
6
k1kuk1kL2L6/.2

� 5
6
k2kv0k2kL2L6/: (8-20)

8B2. Bilinear estimates concerning the N -norm. Next, we state the N -norm estimates which will be
used for the bilinear expressions arising from PM, P?M and Rem�;2.

Proposition 8.12. We have

kPkN .uk1 ; vk2/kN . 2
�ı1.kmax�kmin/2kkDuk1kSkDvk2kS ; (8-21)

kPkO.@˛uk1 ; @˛vk2/kN . 2
�ı1.kmax�kmin/2kmaxkDuk1kSkDvk2kS ; (8-22)

kPkO.u0k1 ; vk2/kL1L2 . 2
�ı1.kmax�kmin/ku0k1kL2 PH1=2.2

1
6
k2kvk2kL2L6/: (8-23)

Furthermore, for any � 2 N, we have the low-modulation gain

kPkQ<kmin��N .Q<kmin��uk1 ;Q<kmin��vk2/kN . 2
�ı1�2kkDuk1kSkDvk2kS ; (8-24)

kPkQ<kmin��O.@
˛Q<kmin��uk1 ; @˛Q<kmin��vk2/kN . 2

�ı1�2kmaxkDuk1kSkDvk2kS : (8-25)

For the term Diff �PAB , we need to distinguish the case when the low-frequency input A has a dominant
modulation. For this purpose, we borrow the bilinear operator H�

k
(and its “dual” Hk) from [Krieger et al.

2015].
Given a bilinear translation-invariant operator O, we introduce the expression HkO (resp. H�

k
O), which

essentially separates out the case when the modulation of the output (resp. the first input) is dominant.
More precisely, we define

HkO.u; v/D
X

j Wj<kCC

QjO.Q<j�Cu;Q<j�Cv/;

H�kO.u; v/D
X

j Wj<kCC

Q<j�CO.Qju;Q<j�Cv/
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for some universal constant C such that C <C0, where C0 is the constant in Lemma 8.21. We also define

HO.u; v/D
X

k;k1;k2Wk<k2�C

PkHkO.Pk1u; Pk2v/;

H�O.u; v/D
X

k;k1;k2Wk1<k2�C

H�k1PkO.Pk1u; Pk2v/:

We are now ready to state our estimates for the N -norm of the term DiffPAB .

Proposition 8.13. For k1 < k� 10, we have

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/kN . kDuk1kSkDvk2kS ; (8-26)

kPk.1�H�k1/O.uk1 ; v
0
k2
/kN . kuk1kL2 PH3=2kv

0
k2
kS ; (8-27)

kPkH�k1N .jDj
�1uk1 ; vk2/kN . kuk1kZ1kDvk2kS ; (8-28)

kPkH�k1O.uk1 ; v
0
k2
/kN . kuk1k��1=2�1=2Z1kv

0
k2
kS : (8-29)

Furthermore, for k1 < k� 10 and any � 2 N, we have

kPkH�k1N .jDj
�1Q<k1��uk1 ; vk2/kN . 2

�ı1�kuk1kZ1kDvk2kS ; (8-30)

kPkH�k1O.Q<k1��uk1 ; v
0
k2
/kN . 2�ı1�kuk1k��1=2�1=2Z1kv

0
k2
kS : (8-31)

8B3. Bilinear estimates concerning Xs;b;pr -type norms. We now state the Z1-, Z1p0- and zZ1p0-norm
bounds. We begin with the ones for the bilinear expressions arising from PM2, Rem�;2A and M2

0.

Proposition 8.14. We have

kPkN .uk1 ; vk2/k�Z1p0 . 2
�ı1.kmax�kmin/2kkDuk1kSkDvk2kS ; (8-32)

kPkN .uk1 ; vk2/k�Z1 . 2
�ı1jk1�k2j2kkDuk1kSkDvk2kS : (8-33)

Furthermore, for k � k1�C , we have

kPk.1�Hk/N .uk1 ; vk2/k�Z1 . 2
�ı1.k1�k/2kkDuk1kSkDvk2kS ; (8-34)

kPk.1�Hk/O.uk1 ; v
0
k2
/k�1=2�1=2Z1 . 2�ı1.k1�k/kDuk1kSkv

0
k2
kS : (8-35)

The following bounds are for the null form arising from Diff �PxAB; we remark that this is the only
place where we need to use the intermediate zZ1p0-norm.

Proposition 8.15. We have

kPkN .jDj�1uk1 ; vk2/k� zZ1p0
. 2�ı1.kmax�kmin/kuk1kS1kDvk2kS ; (8-36)

kPkN .jDj�1uk1 ; vk2/k�Z1p0 . 2
�ı1.kmax�kmin/kuk1kS1\ zZ1p0

kDvk2kS ; (8-37)

kPkN .jDj�1uk1 ; vk2/k�Z1 . 2
�ı1.kmax�kmin/kuk1kS1\Z1p0

kDvk2kS ; (8-38)

kPkN .jDj�1uk1 ; vk2/kX�1=2Cb1;�b1 . 2
�ı1.kmax�kmin/kuk1kS1\Z1p0

kDvk2kS : (8-39)

Finally, the following bounds are used to handle Diff �A0B and Diff �
P?A

B .
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Proposition 8.16. We have

kPkO.uk1 ; v
0
k2
/k
�Z1p0

. 2�ı1.kmax�kmin/kDuk1kY kv
0
k2
kS ; (8-40)

kPkO.uk1 ; v
0
k2
/k�Z1 . 2�ı1.kmax�kmin/kDuk1kY kv

0
k2
kS ; (8-41)

kPkO.uk1 ; v
0
k2
/kX�1=2Cb1;�b1 . 2

�ı1.kmax�kmin/kDuk1kY kv
0
k2
kS : (8-42)

8B4. Trilinear null form estimate. Let u.1/, u.2/, u.3/ be test function on R1C4. Given ki 2 Z, we
introduce the shorthand u.i/

ki
D Pkiu

.i/ .i D 1; 2; 3/.

Proposition 8.17. Let O and O0 be disposable bilinear operators on R1C4. Let j < k � C and k <
minfk0; k1; : : : ; k3g�C . Consider the expression

N cubic
k;j .u

.1/

k1
; u
.2/

k2
; u
.3/

k3
/DQ<j�CO0.��1PkQjO.Q<j�Cu

.1/

k1
; @0Q<j�Cu

.2/

k2
/; @0Q<j�Cu

.3/

k3
/

CQ<j�CO0.��1PkQjP`O.Q<j�Cu
.1/

k1
; @xQ<j�Cu

.2/

k2
/; @`Q<j�Cu

.3/

k3
/:

Then we have

kN cubic
k;j .u

.1/

k1
; u
.2/

k2
; u
.3/

k3
/kL1L2 . 2�ı1.k1�k/2�ı1.k�j /kDu

.1/

k1
kSkDu

.2/

k2
kSkDu

.3/

k3
kS : (8-43)

In fact, for later use (in Section 11), it is convenient to also state a more atomic form of (8-43). Given
ki 2 Z and a rectangular box C.i/, we use the shorthand u.i/

ki ;C.i/
D PkiPC.i/u

.i/ .i D 1; 2/.

Proposition 8.18. Suppose O and O0 are translation-invariant bilinear operators on R1C4 such that
O.P !

`
� ; P !

0

`0
� / and O0.P !

`
� ; P !

0

`0
� / are disposable for every `; `0 2 �N and !;!0 2 S3. Let j < k�C ,

k <minfk0; k1; : : : ; k3g�C and C.1/; C.2/ 2 fCk.`/g, where `D j�k
2

. We have

kPk0Q<j�CO
0.��1PkQjO.Q<j�Cu

.1/

k1;C.1/
; @˛Q<j�Cu

.2/

k2;C.2/
/; @˛Q<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS ; (8-44)

kPk0Q<j�CO
0.��1��1PkQj @t@˛O.Q<j�Cu

.1/

k1;C.1/
; @˛Q<j�Cu

.2/

k2;C.2/
/; @tQ<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS ; (8-45)

kPk0Q<j�CO
0.��1��1PkQj @`@˛O.Q<j�Cu

.1/

k1;C.1/
; @`Q<j�Cu

.2/

k2;C.2/
/; @˛Q<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS : (8-46)

8C. Proof of the interval-localized estimates. In this subsection, we prove all estimates claimed in
Section 4 except Theorem 4.24 and Proposition 4.25, which are proved in the next section.

The key technical issue we address here is passage to interval-localized frequency envelope bounds (as
stated in Section 4) from the global-in-time dyadic estimates stated in Section 8B.

In what follows, we denote by O and O disposable multilinear operators on R1C4 and R4, respectively,
which may vary from line to line. Similarly, �kI indicates a generalized time cutoff adapted to the scale 2�k,
which may vary from line to line.
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8C1. Estimates that do not involve any null forms. Here we establish Propositions 4.12, 4.13, 4.14 and
4.18, whose proofs do not involve any null forms.

Proofs of Propositions 4.12 and 4.13. We introduce the shorthand A0 D @tA and B 0 D @tB . Using (4-25)
and Lemma 8.1 we write

jDj�1PkM2
0.Pk1A;Pk2B/D 2

�kPkO.Pk1A;Pk2B
0/; (8-47)

PkQ.Pk1A;Pk2B/D 2
k2�kmaxPkO.Pk1A;Pk2B/; (8-48)

jDj�1PkQ.Pk1A;Pk2@tB/D 2
�kmaxPkO.Pk1A;Pk2B

0/; (8-49)

jDj�2PkDM2
0.Pk1A;Pk2B/D 2

�k2�kmaxPkO.Pk1A
0; Pk2B

0/: (8-50)

Step 1: fixed-time estimates. Applying Hölder and Bernstein (to one of the inputs or the output, whichever
has the lowest frequency), we obtain

kPkO.Pk1u
0; Pk2v

0/kL2 . 22kminku0kL2kv
0
kL2 : (8-51)

Recalling (8-47)–(8-50), the fixed-time estimates (4-27), (4-28) and (4-35) follow.

Step 2: space-time estimates. Here, we prove the remaining estimates in Propositions 4.12 and 4.13. In
this step, we simply extend A;B;A0; B 0 by zero outside I. Furthermore, we define

M�;2
0;small.A;B/D

X
jkmax�kminj��

PkM2
0.Pk1A;Pk2B/; (8-52)

M�;2
0;large.A;B/D

X
jkmax�kminj<�

PkM2
0.Pk1A;Pk2B/; (8-53)

so that M�;2
0 .A;B/DM�;2

0;small.A;B/CM�;2
0;large.A;B/.

Step 2.1: L2 PH 1=2-norm estimates. We first verify (4-29)–(4-34), (4-36) and (4-38) with theL2 PH 1=2-norm
(instead of the Y -norm) on the left-hand side. All of these estimates follow from (8-15) and (8-47)–(8-50).
The small factor in (4-31) arises from the exponential gain in (8-15) and the frequency gap � in (8-52),
whereas the factor "ı2M in (4-33), (4-34) and (4-38) arises from (4-21).

Step 2.2: L1L1-norm estimates. By Hölder’s inequality, we have

kPkukLp0 PW 2�3=p0;p
0
0
. kPkuk1��0

L2 PH1=2
kPkuk

�0

L1 PW �1;1
; (8-54)

where �0 D 2
�
1
p0
�
1
2

�
2 .0; 1/. Therefore, (4-29), (4-31) and (4-33) follow by combining (8-17) with the

L2 PH 1=2-norm estimates from Step 2.1. On the other hand, for (4-32) we use (8-20) instead of (8-17),
which allows us to use the DS1-norm on the right-hand side at the expense of losing the exponential
off-diagonal gain. Finally, for (4-37) and (4-38), observe that by (8-20), (8-48) and (8-49) we have

kjDj���1Q.Pk1A;Pk2B
0/kL1L1 . 2�ı1.kmax�kmin/kPk1AkDS1kjDj

��Pk2B
0
kDS1

for � D 0; 1. Therefore, the L1L1-norm bound in (4-37) follows directly, whereas the Y -norm bounds
in (4-37) and (4-38) follow after interpolating with the L2 PH 1=2-norm estimates from Step 2.1. �
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Proofs of Proposition 4.14. For this proof we use the square function L10=3x L2t component of the Sk norm,
for which we have

kukSsq
k
D 2�

3
10
k
kuk

L
10=3
x L2t

:

We recall that the symbol of �A2
0 is

�A2
0.�; �/D

j�j2

j�j2Cj�j2
:

Then we use Bernstein at the lowest frequency to estimate

kPk�A2
0.Ak1 ; @tAk2/kL2L1 . 2

�2.k2�k1/C2�
7
10
k12

3
10
k22

4
10
kminck1ck2 . 2

� 3
10
.kmax�kmin/ck1ck2 :

Now the bound (4-39) immediately follows due to the off-diagonal decay. �

Proof of Proposition 4.18. The bounds in this proposition are trivial consequences of Proposition 8.11,
along with the observation that kjDjukStr0 . krukL2 PH1=2 . We omit the details. �

8C2. Estimates for PM2, P?M2 and Rem2;�. We now present the proofs of Propositions 4.15 and
4.20, which require the bilinear null form estimates in Proposition 8.12, as well as the Xs;b;pr -type norm
estimates in Propositions 8.14, 8.15 and 8.16.

Proof of Proposition 4.15. Unless otherwise stated, we extend the inputs A;B by homogeneous waves
outside I. For k; k1; k2 2 Z, by Lemma 8.1, note that

PkPM2.Pk1A;Pk2B/D PkPO.Pk1A; @xPk2B/; (8-55)

PkP?M2.Pk1A;Pk2B/D 2
�kmaxPkO.@˛Pk1A; @

˛Pk2B/ (8-56)

for some disposable operator O on R4. Note also that, by Lemma 8.7, the right-hand sides are null forms.

Step 0: proofs of (4-40), (4-41). In view of (8-55) and (8-56), both follow easily using the standard
Littlewood–Paley trichotomy and (8-51).

Step 1: proofs of (4-42), (4-43), (4-44) and (4-45). The N -norm bounds in (4-42) and (4-43) follow from
the null form estimates (8-21)–(8-22). On the other hand, the �X1-norm bounds in (4-42) and (4-43)
follow from (8-15), (8-16) and (8-32); we remark that the �Z1p0-norm bound for P?M is unnecessary,
since PP?MD 0. Estimates (4-44) and (4-45) immediately follow from (8-15), where we may simply
extend A, @tA, B , @tB by zero outside I as in the proofs of Propositions 4.12 and 4.13 above.

Step 2: proofs of (4-46), (4-47), (4-48) and (4-49). Since the case of PM2 (i.e., estimates (4-46) and
(4-48)) can be read off from [Oh and Tataru 2018, Proof of Proposition 4.1], we will only provide a
detailed proof in the case of P?M2 (i.e., estimates (4-47), (4-49)).

Step 2.1: off-diagonal dyadic frequencies. If maxfjk� k1j; jk� k2jg � �, then by (8-22) we have

kPkP?M2.Pk1A;Pk2B/kN . 2
�ı1.kmax�kmin/kPk1AkS1kPk2BkS1

. 2�
1
2
ı1�2�

1
2
ı1.kmax�kmin/kPk1AkS1kPk2BkS1 :

Hence the contribution in the case maxfjk� k1j; jk� k2jg � � can always be put in P?M�;2
small.
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Step 2.2: balanced dyadic frequencies, short time interval. Next, we consider the case when jk�k1j< �,
jk� k2j< � and jI j � 2�kCC�. Then by Hölder and (8-56), we simply estimate

kPkP?M2.Pk1A;Pk2B/kL1L2ŒI � . jI j
1
2 kPkP?M2.Pk1A;Pk2B/kL2L2ŒI �

. jI j
1
2 2�kmaxkO.@˛Pk1A; @˛Pk2B/kL2L2

. 2C�kjDj�
3
4rAk1kL4L4ŒI �kjDj

� 3
4rBk2kL4L4ŒI �:

Therefore, when jI j � 2�kCC�, the contribution in the case maxfjk � k1j; jk � k2jg < � can be put in
P?M�;2

large.

Step 2.3: balanced dyadic frequencies, long time interval. Finally, we consider the case when jk�k1j<�,
jk� k2j< � and jI j � 2�kCC�. We define P?M�;2

large by the relationX
maxfjk�k1j;jk�k2jg<�

PkP?M2.Pk1A;Pk2B/

D

X
maxfjk�k1j;jk�k2jg<�

PkQ<kmin��P
?M2.Pk1Q<kmin��A;Pk2Q<kmin��B/CP?M�;2

large.A;B/:

By (8-25), the first term on the right-hand side gains a factor of 2�cı1�, and therefore can be put in
P?M�;2

small. Now it only remains to establish (4-49) for P?M�;2
large defined as above.

By definition, P?M�;2
large.A;B/ is the sum over f.k; k1; k2/ Wmaxfjk� k1j; jk� k2jg< �g of

PkP?M2.Pk1A;Pk2B/�PkQ<kmin��P
?M2.Pk1Q<kmin��A;Pk2Q<kmin��B/:

Since we are allowed to lose an exponential factor in � in (4-49), it suffices to freeze k; k1; k2 and estimate
the preceding expression. At this point, we divide into three subcases:

Step 2.3a: output has high modulation. When the output has modulation � 2kmin��, we use the X0;�1=21 -
component of the N -norm. Since the kernel of PkQ�kmin�� decays rapidly in t on the scale ' 2�k2C�,
we have

kPkQ�kmin��P
?M2.Pk1A;Pk2B/kX0;�1=21 ŒI �

. 2C�2�
1
2
k
k�kI P?M2.Pk1A;Pk2A/kL2L2

for some generalized cutoff function �kI adapted to the scale 2�k. Then, by Proposition 4.10,

2C�2�
1
2
k
k�kI P?M2.Pk1A;Pk2A/kL2L2 . 2

C�
k�kI jDj

� 3
4rPk1AkL4L4k�

k
I jDj

� 3
4rPk2BkL4L4

. 2C�kjDj�
3
4rPk1AkL4L4ŒI �kjDj

� 3
4rPk2BkL4L4ŒI �;

which is acceptable.

Step 2.3b: A has high modulation. Next, we consider the case when the output has modulation < 2kmin��,
yet A has modulation � 2kmin��. The kernel of PkQ<kmin�� again decays rapidly in t on the scale
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' 2�k2C�. For any 2� q �1, we have

kPkQ<kmin��P
?M2.Q�kmin��Pk1A;Pk2B/kL1L2ŒI �

. 2C�k�kI P?M2.Q�k1��Pk1A;Pk2B/kL1L2

. 2C�kjDj�
1
q�Pk1AkLq0L2k�

k
I jDj

2� 1
qrPk2BkLqL1

. 2C�kjDj�
1
q�Pk1AkLq0L2ŒI �kjDj

2� 1
qrPk2BkLqL1ŒI �;

where we used Proposition 4.10 on the last line. Taking q D 2, we see that the last line is bounded by
. 2C�k�Pk1AkL2 PH�1=2ŒI �kPk2BkDS1ŒI �, which is acceptable.

Step 2.3c: B has high modulation. Finally, the only remaining case is when the output and A have
modulation < 2kmin��, but B has modulation � 2kmin��. Proceeding as in Step 2.3b, and using the fact
that the kernel of Pk1Q<kmin�� decays rapidly in t on the scale ' 2�k2C�, we have

kPkQ<kmin��P
?M2.Q<kmin��Pk1A;Q�kmin��Pk2B/kL1L2ŒI �

. 2C�k�kI P?M2.Q<k1��Pk1A;Q�k2��Pk2B/kL1L2

. 2C�k�kI jDj
� 3
2rQ<kmin��Pk1AkL2L1kjDj

� 1
2�Pk2BkL2L2

. 2C�kjDj�
3
2rPk1AkL2L1ŒI �k�Pk2BkL2 PH�1=2ŒI �;

which is acceptable.

Step 3: proofs of (4-50) and (4-51). Since the L2 PH�1=2-norm bounds follow from (4-21), (4-44) and
(4-45), it remains to only consider the N -norm. The case of PM2 can be read off from [Oh and Tataru
2018, Proof of Proposition 4.1]. Finally, for P?M2, we split into the small and large parts as in Step 2.
For the small part, we already have

kP?M�;2
small.A;B/kNcŒI � . 2

�cı1�kAkS1c ŒI �M:

For the large part, we proceed as in Step 2, except we choose q D 9
4

in Step 2.3b. Then by (4-20), (4-21)
and the embedding

Str1ŒI �� L4L4ŒI �\L9=4L1ŒI �;

it follows that

kP?M�;2
large.A;B/kNcŒI � . 2

C�"ı1kAkS1cŒI �M:

Therefore, choosing 2�� D "c with c > 0 sufficiently small, (4-51) follows. �

Remark 8.19. As a corollary of the preceding proof in the case of PM2, we obtain the following
statement: let O be a disposable operator on R4, and let A;B be g-valued functions (or 1-forms) on I.
Then we have

kPk.O.@iPk1A; @jPk2B/�O.@jPk1A; @iPk2B//kNŒI�

. 2C.kmax�kmin/2kkPk1AkDS1ŒI �kPk2BkDS1ŒI �: (8-57)
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Moreover, if .B; I / is .";M/-energy-dispersed, then

kPk.O.@iPk1A; @jPk2B/�O.@jPk1A; @iPk2B//kNŒI�. 2
C.kmax�kmin/2k"cı1kPk1AkS1ŒI �M: (8-58)

Proof of Proposition 4.20. We decompose Rem�;2A B into

Rem�;2A B D Rem�;2
PxA

BCRem�;2
P?A

BCRem�;2A0 B;

where

Rem�;2
PxA

B D
X

k;k1;k2
k1�k2��

2PkŒP`Pk1A; @
`Pk2B�; (8-59)

Rem�;2
P?A

B D
X

k;k1;k2
k1�k2��

2PkŒPk1P
?
` A; @

`Pk2B�; (8-60)

Rem�;2A0 B D�
X

k;k1;k2
k1�k2��

2PkŒPk1A0; Pk2@tB�: (8-61)

By Littlewood–Paley trichotomy, note that the summands on the right-hand sides of (8-59)–(8-61) vanish
unless k� k1 � �CC .

Unless otherwise stated, we extend B by homogeneous waves outside I. For (8-59), we extend A by
homogeneous waves outside I and for (8-60)–(8-61), we extend P?

`
A and A0 by zero outside I. (Of

course P? of the extended A does not coincide with such an extension of P?A outside I, but this will
not be an issue.)

Step 1: proofs of (4-77) and (4-78). The N -norm bound in (4-77) follows from Lemma 8.7 and (8-21) for
Rem�;2

PxA
B , and (8-23) for Rem�;2

P?A
B , Rem�;2A0 B . On the other hand, for the�X1-norm bound in (4-77),

we apply (8-15), (8-16), (8-32) to Rem�;2
PxA

B , and (8-18), (8-19) and (8-40) to Rem�;2
P?A

B , Rem�;2A0 B .
Finally, (4-78) follows from (8-15) and (8-18).

Step 2: proofs of (4-79), (4-80) and (4-81). The term Rem�;2A0 B can be put in Rem�;2A;largeB , since for each
triple .k; k1; k2/ within the range k1 � k2� �, by (8-23) we have

kPkŒPk1A0; Pk2@tB�kL1L2ŒI � D kPkO.�IPk1A0; �IPk2@tB/kL1L2

. 2k2�k1kPkO.�I jDjPk1A0; �I jDj
�1Pk2@tB/kL1L2

. 2�2�ı1.kmax�kmin/kPk1A0kL2 PH3=2ŒI �
kPk2BkDS1ŒI �:

Similarly, the term Rem�;2
P?A

B can be put in Rem�;2A;largeB . Moreover, the contributions of these two terms
to (4-81) are clearly acceptable, since they need not gain any small factor.

It remains to handle the term Rem�;2
PxA

B . We proceed differently according to the length of I. If
jI j � 2�kCC�, we define

Rem�;2A;smallB D
X

k;k1;k2Wk1�k2��
maxfjk1�k2j;jk1�kjg�C0�

2PkŒP`Pk1A; @
`Pk2B�;
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and if jI j � 2�kCC� , we define

Rem�;2A;smallB D
X

k;k1;k2Wk1�k2��;
maxfjk1�k2j;jk1�kjg�C0�

2PkŒP`Pk1A; @
`Pk2B�

C

X
k;k1;k2

maxfjk1�k2j;jk1�kjg<C0�

2PkQ<kmin�C0� ŒP`Pk1Q<kmin�C0�A; @
`Pk2Q<kmin�C0�B�:

In both cases, we put the remainder Rem�;2
PxA

B �Rem�;2A;smallB in Rem�;2A;largeB .
Choosing C0 > 0 large enough (depending on ı1), it follows from Lemma 8.7, (8-21) and (8-24) that

Rem�;2A;smallB obeys the desired bound (4-79); this bound is also acceptable for (4-81). On the other hand,

the contribution of Rem�;2
PxA

B �Rem�;2A;smallB in (4-80) and (4-81) can be handled by proceeding as in
Steps 2.2–2.3 and 3 in proof of Proposition 4.15; for the details, we refer to [Oh and Tataru 2018, Proof
of Proposition 4.6]. �

8C3. Estimates for Diff �
P?A

B and high-modulation estimates for Diff �PAB . Next, we prove Proposi-
tions 4.21 and 4.22, which mainly concern the X�1=2Cb1;�b1 \�X1-norms of Diff �

P?A
B and Diff �PAB .

Proof of Proposition 4.21. We extend B by homogeneous waves outside I, and P?A by zero outside I.
Note that

kDP?AkY . kP?AkY 1ŒI �; kBkS1 . kBkS1ŒI �: (8-62)

To prove (4-82), we need to estimate the X�1=2Cb1;�b1 \�X1-norm of �IDiff �
P?A

B . We may write

�IDiff �
P?A

B D
X
k

2ŒP<k��P
?
` A; �I@

`PkA�D
X
k

2kO.P<k��P?A; �IPkA/:

Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-62), we obtain (4-82). On the other hand, (4-83)
simply follows from Hölder’s inequality L1L1 �L1L2! L1L2. �

Proof of Proposition 4.22. We extend A;B by homogeneous waves outside I, and A0 by zero outside I.
In addition to kAkS1 . kAkS1ŒI �, observe that we have

kDA0kY . kA0kY 1ŒI �; kPAkZ1p0 . kPAkZ1p0 ŒI �; kPAk zZ1p0 . kPAk zZ1p0 ŒI �: (8-63)

Moreover, by (4-10), we have

k�IrAkS . krAkS . kAkS1ŒI �; k�IrBkS . krBkS . kBkS1ŒI �: (8-64)

We first prove (4-84), for which we need to estimate the X�1=2Cb1;�b1 \�X1-norm of �IDiff �A0B .
We may write

�IDiff �A0B D�
X
k

2ŒP<k��A0; �I@tPkB�D
X
k

O.P<k��A0; �IPk@tB/:

Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-63)–(8-64), we obtain (4-84).
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For (4-85), (4-86) and (4-87), by Lemma 8.7, we may write

�IDiff �PxAB D�
X
k

2ŒP<k��P`A; �I@
`PkB�D

X
k

N .jDj�1P<k��PA; �IPkB/:

By (8-36), (8-37) and (8-39), combined with (8-15), (8-16) and the extension relations (8-63)–(8-64), we
obtain the desired estimates. �

8C4. Estimates for Diff �PAB . Here we prove Propositions 4.23, 4.26, 4.27, 4.28 and 4.30. Note that, by
the estimates proved so far in this subsection, we may now use Proposition 5.4 (see also Remark 5.5).

Before we embark on the proofs, we first establish some bilinear Z1-norm bounds that will be used
multiple times below.

Lemma 8.20. We have

kPkPM2.�IPk1A;Pk2B/k�Z1 . 2
�ı1jk1�k2jkPk1AkS1ŒI �kPk2BkS1ŒI �; (8-65)

kPkM2
0.�IPk1A;Pk2B/kL1L1 . 2

�ı1jk1�k2jkPk1AkS1ŒI �kPk2BkS1ŒI �; (8-66)

kPkŒPk1P`A; �I@
`Pk2B�k�Z1 . 2

�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �; (8-67)

kPkŒPk1G;�IrPk2B�k�Z1 . 2
�ı1.kmax�kmin/kPk1GkY 1ŒI �kPk2BkS1ŒI �: (8-68)

Moreover, for k < k1� 10, we have

k.1�Hk/PkPM2.�IPk1A;Pk2B/k�Z1 . 2
�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �; (8-69)

k.1�Hk/PkM2
0.�IPk1A;Pk2B/k�1=2�1=2Z1 . 2

�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �: (8-70)

These bounds follow from Lemma 8.7, (8-17), (8-34), (8-35), (8-38) and (8-41), where we use (8-63)
and (8-64) to absorb �I and return to interval-localized norms. We omit the straightforward details.

Proof of Proposition 4.23. As in the proof of Proposition 4.22, we extend A;B by homogeneous waves
outside I, and A0 by zero outside I. Furthermore, we extend P?A by zero outside I, and denote the
extension by G (we emphasize that, in general, G does not coincide with P?A outside I ). In addition to
(8-63) and (8-64), by Proposition 5.4 (see also Remark 5.5) we have

kAkS1 .M 1; kDA0k`1Y .M 1; kDGk`1Y .M 1: (8-71)

In the case of the L2 PH�1=2-norm on the left-hand side, (4-89) now follows easily from (8-15) and (8-18).
It remains to estimate the N -norm of Diff �Pk0PAB .

By our extension procedure, note that Pk0A0 and Pk0PxA obey the equations

�Pk0A0 D Pk0
�
Œ�IA

`; @tA`�C 2Q.A; �I@tA/C�I�A3
0.A/

�
;

�Pk0PxAD Pk0P
�
PM2.�IA;A/C 2ŒA0; �I@tA�� 2ŒG`; �I@

`A�� 2ŒP`A; �I@
`A�

�
CPk0P.�IR.A/��IRem3.A/A/:



THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC GAUGE 321

For the cubic and higher-order nonlinearities, by Theorem 3.5 and Proposition 4.19, we have

k�IPk0�A3
0.A/kL1L2 .M 1; (8-72)

k�IPk0R.A/kL1L2 .M 1; (8-73)

k�IPk0Rem3.A/AkL1L2 .M 1: (8-74)

For the quadratic nonlinearities, we use (8-17) for Œ�IA`; @tA`� and Q.A; �I@tA/, Lemma 8.7 and
(8-33) for PM2Œ�IA;A/, Lemma 8.7 and (8-38) for �ŒP`A; �I@`A�, and (8-41) for ŒA0; �I@tA� and
ŒG`; �I@

`A�. Combining these with the cubic and higher-order estimates and the embedding L1L2 �
�Z1\��1=2�1=2Z1, we arrive at

kPk0A0kL1L1CL2 PH3=2\��1=2�1=2Z1
.M 1; (8-75)

kPk0PxAkZ1 .M 1: (8-76)

By Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Hölder’s inequality L1L1�L1L2!L1L2, it follows
that

kPkDiff �Pk0A0Pk2BkN . kPk0A0kL1L1CL2 PH3=2\��1=2�1=2Z1
kDBkS ;

kPkDiff �Pk0PxA
Pk2BkN . kPk0PxAkS1\Z1kDBkS :

Thanks to the frequency gap � � 5, note furthermore that the left-hand sides vanish unless kD k2CO.1/.
This completes the proof of Proposition 4.23. �

Proof of Proposition 4.26. Estimate (4-94) follows easily using Hölder and Bernstein. To prove (4-95),
we extend PA;B by homogeneous waves outside I, so that kPk1�PAkL1L2 � kPk1�PAkL1L2ŒI � and
kPk2BkS1 . kPk2BkS1ŒI �. Moreover, by the embedding L1L2 �N \�Z1, we have

kPk1PAkS1\Z1 . kPk1rPA.t0/kL2 CkPk1�PAkL1L2ŒI �:

Then (4-95) follows by Lemma 8.7, (8-26) and (8-28). �

Proof of Proposition 4.27. Here, in addition to the bilinear null forms (Lemma 8.7), we need to use the
secondary null structure (Lemma 8.10).

Without loss of generality, we set t0 D 0. We extend B , B.1/ and B.2/ by homogeneous waves
outside I, and then define A0 and PA by solving (4-96) and (4-97), respectively.9 In A0 and PA, we
separate out the (high� high! low) interaction terms by defining

Ahh0 D
X

k;k1;k2
k<k1�10

��1PkŒPk1B
.1/`; Pk2@tB

.2/

`
�;

PAhh D
X

k;k1;k2
k<k1�10

��1PkP ŒPk1B
.1/`; @xPk2B

.2/

`
�;

9We may put in �I on the right-hand sides of (4-96) and (4-97), but it is not necessary.
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where ��1f refers to the solution to the inhomogeneous wave equation �uD f with .u; @tu/.0/D 0.
We also introduce

HAhh0 D
X

k;k1;k2
k<k1�10

��1HkPkŒPk1B
.1/`; Pk2@tB

.2/

`
�;

HPAhh D
X

k;k1;k2
k<k1�10

��1HkPkP ŒPk1B
.1/`; @xPk2B

.2/

`
�:

Accordingly, we split

Diff �PAB D
X
k

�
2ŒP<k��.A0�HAhh0 /; @

0PkB�C 2ŒP<k��.P`A�HP`A
hh/; @`PkB�

�
(8-77)

C

X
k

�
2ŒP<k��HAhh0 ; @

0PkB�C 2ŒP<k��HP`A
hh; @`PkB�

�
: (8-78)

By Propositions 4.12, 4.15 and Lemma 8.20, we have

kA0kY 1
cd
CkA0�A

hh
0 kL1L1cd

CkAhh0 kY 1
cd
CkAhh0 �HAhh0 k��1=2�1=2Z1

cd
. kB.1/kS1c kB

.2/
kS1
d
;

kPAkS1
cd
CkPAhh�HPAhhkZ1

cd
. kB.1/kS1c kB

.2/
kS1
d
:

Combining these bounds with Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Hölder’s inequality L1L1�
L1L2! L1L2, it follows that



X

k

ŒP<k��.A0�HAhh0 /; @
0PkB�






Nf

. kB.1/kS1c kB
.2/
kS1
d
kBkS1e ;



X

k

ŒP<k��.P`A�HP`A
hh/; @`PkB�






Nf

. kB.1/kS1c kB
.2/
kS1
d
kBkS1e ;

which handles the contribution of (8-77). On the other hand, unraveling the definitions, we may rewrite
(8-78) as

(8-78)D
X�

Q<j�CO0.��1PkQjO.Pk1Q<j�CB
.1/; @0Pk2Q<j�CB

.2//; @0Q<j�CPk3B/

CQ<j�CO0.��1PkQjP`O.Pk1Q<j�CB
.1/; @xPk2Q<j�CB

.2//; @`Q<j�CPk3B/
�

for some disposable operators O and O0, where the summation is taken over the range f.k; k1; k2; k3/ W
k < k1� 10; k < k3� �C 5g. By (8-43), it follows that

k(8-78)kL1L2
f
. kB.1/kS1c kB

.2/
kS1
d
kBkS1e ;

which is acceptable. Finally, for the L2 PH�1=2-norm of Diff �PAB , note that (8-15) and the preceding
bounds imply

kPk.Diff �PAB/kL2 PH�1=2 . ck��dk��ek;

which is better than what we need. �
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Proof of Proposition 4.28. As in the preceding proof, we extend B , B.1/ and B.2/ by homogeneous
waves outside I. This time, however, we also extend PA by homogeneous waves outside I. We moreover
extend B0 and P?B.1/ by zero outside I, where the latter is denoted by G.1/. Note that PA solves the
equation

�PADP
�
ŒP`B

.1/; �I@
`B.2/�C ŒB

.1/
0 ; �I@

0B.2/�C ŒG
.1/

`
; �I@

˛B.2/�
�
:

By Lemma 8.20 and the frequency envelope bounds (4-100)–(4-101), it follows that

kPAkZ1
cd
. .kB.1/kS1cŒI �Ck.B

.1/
0 ; G.1//kY 1c ŒI �/kB

.2/
kS1
d
ŒI � � 1: (8-79)

On the other hand, recall that kPAkS1a � 1 by (4-101). Therefore, by Lemma 8.7, (8-26) and (8-28), we
have

kDiff �PxABkNf . 1:

On the other hand, by (8-15), we also have

kPk.Diff �PxAB/kL2 PH�1=2 . ak��ek;

which is better than what we need. The desired estimate (4-102) follows. �

Proof of Proposition 4.30. We move the problem to the entire real line using the free-wave extension for
PAx and B , and the zero extension for A0.

The expression jDj�1Œr;Diff �PA�B is a translation-invariant bilinear expression in PA and B , whose
Littlewood–Paley pieces can be expressed in the form

jDj�1Œr;Diff �Pk0PA�PkB D 2
k0�kO.Pk0PA˛; @˛PkB/; k0 < k� �; (8-80)

with O disposable. By (8-9) the spatial part is a null form, so we can rewrite the above expression as

2�kN .Pk0PAx; PkB/C 2k
0�kO.Pk0A0; Pk@tB/:

We consider separately the spatial part and the temporal part. For the spatial part we use the bound (8-21)
to estimate

k2�kN .Pk0PAx; PkB/kN . 2�ı1jk�k
0j
kP 0kPAkS1kBkS1 ;

which suffices after summation in k0 < k� �.
For the temporal part we use instead the bound (8-23), which yields

k2k
0

O.Pk0A0; PkB/kL1L2 . 2�ı1jk�k
0j
kP 0kDA0kL2 PH1=2kBkS1 ;

which again suffices.
The expression Diff �Pk0PAB � .Diff �Pk0PA/

�B is easily seen to have the same form as in (8-80), so the
same estimate follows. �
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8C5. Estimates involving W . Here we prove Propositions 4.16, 4.17 and 4.29, which involve w20 and w2x .

Proof of Proposition 4.16. By definition (3-29), we have

Pkw20.Pk1A;Pk2B; s/D�2PkW .Pk1@tA;Pk2�B; s/:

Applying Lemma 8.2 to the expression on the right-hand side, we have

PkW .Pk1@tA;Pk2�B; s/D�hs2
2k
i
�10
hs�12�2kmaxi

�12�2kmax22k2PkO.Pk1@tA;Pk2B/ (8-81)

for some disposable operator O on R4. The rest of the proof follows that of Proposition 4.12. First, by
(8-51), it follows that

kjDj�1Pkw20.Pk1A;Pk2B; s/kL2

. hs22ki�10hs�12�2kmaxi
�122.kmin�kmax/2k2�kkPk1@tAkL2kPk2Bk PH1 :

From this dyadic bound, the frequency envelope bound (4-52) follows. Indeed, for any 0 < ı0 < 4ı and
any ı0-admissible frequency envelopes c; d , we compute

hs22ki�10hs�12�2kmaxi
�12�ı.kmax�kmin/ck1dk2 . hs2

2k
i
�10
hs�12�2kmaxi

�12�
1
2
ı.kmax�kmin/ckdk

. hs22ki�10hs�12�2ki�
1
4
ıckdk; (8-82)

which proves (4-52). The estimate (4-53) follows in a similar manner from (8-51).
Next, extending @tA and B by zero outside I, then applying (8-15) and (8-17), it follows that

kjDj�1Pkw20.Pk1A;Pk2B; s/kL2 PH�1=2ŒI �

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/22.k1�kmax/kPk1AkStr1ŒI �kPk2BkStr1ŒI �;

kjDj�2Pkw20.Pk1A;Pk2B; s/kL1L1ŒI �

. hs22ki�10hs�12�2kmaxi
�122.k1�kmax/kPk1AkS1ŒI �kPk2BkS1ŒI �:

Using (4-21) and (8-54), these two bounds imply (4-54) and (4-55), as in the proof of Proposition 4.12,
Step 2. �

Proof of Proposition 4.17. We begin with algebraic observations. By (3-30), we have

PkPjw2.Pk1A;Pk2B; s/D� 2PkPjW .Pk1@tA
`; @xPk2@tB`; s/

C 4PkPjW .Pk1P@tA
`; @`Pk2@tB; s/

C 4PkPjW .Pk1P
?@tA

`; @`Pk2@tB; s/; (8-83)

where, by Lemma 8.2, we may write

PkPjW .Pk1@tA
`; @xPk2@tB`; s/

D hs22ki�10hs�12�2kmaxi
�12�2kmaxPkPjO.Pk1@tA

`; @xPk2@tB`/; (8-84)
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PkPjW .Pk1@tPA
`; @`Pk2@tB; s/

D�2hs22ki�10hs�12�2kmaxi
�12�2kmaxPkO.P`Pk1@tA; @

`Pk2@tB/; (8-85)

PkPjW .Pk1@tP
?A`; @`Pk2@tB; s/

D�2hs22ki�10hs�12�2kmaxi
�12�2kmaxPkO.Pk1@tP

?
` A; @

`Pk2@tB/ (8-86)

for some disposable operator O on R4. Note that (8-84) and (8-85) are null forms according to Lemma 8.7,
and (8-86) is favorable since @tP?A is controlled in the L2 PH 1=2-norm.

Given the above formulas for wx , the proof of the estimates (4-56) and (4-57) is almost identical to
the proof of (4-52) and (4-53), using the dyadic bounds (8-51), (8-51) and (8-82).

We now prove (4-58). We extendA;B by homogeneous waves outside I. By (8-15), (8-16), Lemma 8.7,
(8-21) and (8-32), it follows that

kPkPjW .Pk1@tA; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/2k1Ck2�2kmaxkPk1AkS1kPk2BkS1 ;

kPkPjW .Pk1@tPA; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/2kCk2�2kmaxkPk1AkS1kPk2BkS1 ;

kPkPjW .Pk1@tP
?A; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/22k2�2kmaxkPk1@tP

?Ak
L2 PH1=2kPk2BkS1 :

Clearly, 2k1Ck2�2kmax , 2kCk2�2kmax and 22k2�2kmax are bounded, so they may be safely discarded. By the
same frequency envelope computation (8-82) as before, we obtain (4-58).

In the energy-dispersed case (4-59), we proceed as in the proofs of Propositions 4.15 and 4.20. The
contribution of (8-86) is already acceptable, since we need not gain any smallness factor. Moreover, for
the contribution of (8-84) and (8-85), the case of L2 PH�1=2 on the left-hand side can be easily handled
using (8-15) and (4-21); we omit the details.

It remains to consider only the N -norm of (8-84) and (8-85). For a parameter � > 0 to be chosen
below, the preceding proof of (4-58) implies that in the case kmax� kmin � �, we have

k(8-84)kN Ck(8-85)kN . hs22ki�10hs�12�2kmaxi
�12�

1
2
ı1�2�

1
2
ı1.kmax�kmin/kPk1AkS1kPk2BkS1 :

On the other hand, when kmax � kmin � �, we may apply Lemma 8.7 (in particular, (8-13) and (8-14))
and Remark 8.19, which implies

k(8-84)kN Ck(8-85)kN . hs22ki�10hs�12�2kmaxi
�12C�"cı1kPk1AkS1M:

Choosing 2� D "c for a sufficiently small c > 0, and performing a similar frequency envelope computation
as in (8-82), we arrive at (4-59). �

Proof of Proposition 4.29. We first note that both w0 and wx depend on @tB1, for which we control
k@tB1kSc and kP?@tB1kYc . We may assume that

k@tB
.1/
kScŒI �; kP

?@tB
.1/
kYcŒI �; kB

.2/
kS1
d
ŒI �; kBkS1e ŒI � � 1:
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We can now extend @tB1 by zero outside I, and B.2/ and B by free waves. Then the problem is reduced
to the similar problem on the real line. We begin with the simpler L2 PH�1=2 bound. For that we use
(4-53) and (4-58) to obtain

kPkw0kL2 PH�1=2 CkPkwxkN\�X1 . hs22k
0

i
�10
hs�12�2kmaxi

�ı2ckdk (8-87)

and then conclude with (8-15) and (8-18).
It remains to prove the N bound. We define

I.k0; k1; k2; k; s/

D
�
�Œ��1Pk0w

2
0.Pk1B

.1/; Pk2B
.2/; s/; @tPkB�C Œ��1Pk0P`w2x.Pk1B

.1/; Pk2B
.2/; s/; @`PkB�

�
;

so that

Diff �PAB D
X

k0;k1;k2;kWk0<k��

I.k0; k1; k2; k/

on I. Introducing the shorthand

kmax Dmaxfk0; k1; k2g; kmin Dminfk0; k1; k2g

and

˛.k0; k1; k2; s/D hs2
2k0
i
�10
hs�12�2kmaxi

�12�cı1.kmax�kmin/;

we claim that

kI.k0; k1; k2; k; s/kN . ˛.k0; k1; k2; s/ck1dk2ek : (8-88)

This would conclude the proof of the proposition after summation with respect to k1 and k2.
We start with a simple observation, namely that we can easily dispense with the high modulations of

@tB1 and B2 using Lemma 8.2, combined with Hölder and Bernstein inequalities and also (8-26) and
(8-30). Thus from here on we assume that

Pk1@tB
.1/
D Pk1Q<k1@tB

.1/; Pk2@tB
.2/
D Pk2Q<k2@tB

.2/:

In view of (8-83) and the identity

w20.A;B; s/D�2W .@tA; @
2
tB; s/� 2W .@tA;�B; s/;

we may expand

I.k0; k1; k2; k; s/D 2ŒPk0��1W .Pk1@tB
.1/;�Pk2B

.2/; s/; @tPkB�

C 4Œ��1Pk0P`W .Pk1P@tB
.1/;m; @mPk2@tB

.2/; s/; @`PkB�

C 4Œ��1Pk0P`W .Pk1P
?@tB

.1/;m; @mPk2@tB
.2/; s/; @`PkB�

C 2Œ��1Pk0W .Pk1@tB
.1/; @tPk2@tB

.2/; s/; @tPkB�

� 2Œ��1Pk0P`W .Pk1@tB
.1/;m; @xPk2@tB

.2/
m ; s/; @`PkB�

D I.1/C I.2/C I.3/C I.4/C I.5/: (8-89)
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The first term is easily estimated in L1L2 using Lemma 8.2 and Hölder and Bernstein inequalities by

kI.1/kL1L2 . kPk0��1W .Pk1@tB
.1/;�Pk2B

.2/; s/kL1L1k@tPkB�kL1L2

. hs22k
0

i
�10
hs�12�2kmaxi

�12
1
2
.kmin�kmax/k@tPk1B

.1/
k
L2 PW 1;8k�Pk2B

.2/
k
L2 PH�1=2

ek;

which suffices.
To continue, we use (8-23), (8-33) and the embedding L1L2 ��Z1, and we have

kPk0P`W .Pk1P@tB
.1/; @xPk2@tB

.2/; s/kN\�Z1 . ˛.k0; k1; k2; s/ck1dk2 ;

kPk0P`W .Pk1P
?@tB

.1/; @xPk2@tB
.2/; s/kN\�Z1 . ˛.k0; k1; k2; s/ck1dk2 :

This yields

k��1Pk0P`W .Pk1P@tB
.1/; @xPk2@tB

.2/; s/kS\Z1 . ˛.k0; k1; k2; s/ck1dk2 ;

k��1Pk0P`W .Pk1P
?@tB

.1/; @xPk2@tB
.2/; s/kS\Z1 . ˛.k0; k1; k2; s/ck1dk2 :

We use this directly for the next two terms I.2/ and I.3/, arguing in a bilinear fashion. The desired N
bound for both is obtained using both (8-26) and (8-30) with � D 0.

The final two terms are combined together in a trilinear null form,

I.4/C I.5/ D Diff �
P QA
B;

where
QA0 D�

�1Pk0W .Pk1@tB
.1/; @tPk2@tB

.2/; s/;

Ax D��1Pk0P`W .Pk1@tB
.1/;m; @xPk2@tB

.2/
m ; s/:

At this point we have placed ourselves in the same setting as in the proof of Proposition 4.27. Then the
same argument applies, with the only difference that, due to Lemma 8.2, we obtain an additional factor of

hs22k
0

i
�10
hs�12�2kmaxi

�12�2kmax2k1Ck2

as needed. Here the factors 2k1 and 2k2 come from one time derivative on B.1/ and B.2/, respectively, at
low modulation. Thus the N bound for I.4/C I.5/ follows. �

8C6. Estimates for Rem3.A/B and Rem3s .A/B . Finally, we sketch the proof of Proposition 4.19.

Proof of Proposition 4.19. By Hölder and Bernstein inequalities, it suffices to show that the following
nonlinear maps are Lipschitz and envelope-preserving:

Str1 3 A! .DA0;DA/ 2 L2� PH
1
2
C
\L2C PH

1
2
�;

Str1 3 A!A0 2 L
2 PH

3
2 :

The same applies for the maps

Str1 3 A!DA0;s 2 L
2� PH

1
2
C
\L2C PH

1
2
�;

Str1 3 A!A0Is 2 L
2 PH

3
2 ;

with the addition that now the output has to be also concentrated at frequency k.s/.
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The A0 property is a consequence of (4-30) for the quadratic term, and (3-23) for the cubic part A3
0 .

Similarly, the A0Is property is a consequence of (4-53) for the quadratic term, and (3-36) for the cubic
part A3

0Is .
The DA property follows from (a minor variation of) (4-36) for the quadratic part, and (3-18) for the

cubic part DA3.
Finally, the DA0 property is a consequence of (a small variation of) (4-30) for the quadratic part and

of (3-24) for the cubic part. Similarly, for DAs
0 we need (a small variation of) (4-53) and of (3-37). �

8D. Proof of the global-in-time dyadic estimates. In this subsection, we prove the global-in-time dyadic
estimates stated in Section 8B.

8D1. Preliminaries on orthogonality. Let O be a translation-invariant bilinear operator on R1C4. Consider
the expression “

u.0/O.u.1/; u.2// dt dx: (8-90)

Our general strategy for proving the dyadic estimates stated in Section 8B will be as follows: decompose
u.i/ by frequency projection into various sets, estimate each such piece, and exploit vanishing (or
orthogonality) properties of (8-90), which depend on the relative configuration of the frequency supports
of u.i/’s, to sum up. Some simple examples of orthogonality properties of (8-90) that we will use are as
follows:

Littlewood–Paley trichotomy: If u.i/ D Pk1u
.i/, then (8-90) vanishes unless the largest two numbers of

k0; k1; k2 are part by at most (say) 5. This property has already been used freely.

Cube decomposition: If u.i/DPkiPCiu
.i/ with CiDCkmin.0/ (i.e., is a cube of dimension 2kmin�� � ��2kmin)

situated in fj�j ' 2ki g, then (8-90) vanishes unless C0C C1C C2 3 0.
To obtain more useful statements, let Cmax, Cmed and Cmin denote the reindexing of the cubes C0, C1

and C2, which are situated at the annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively. Then
for every fixed Cmin and Cmax (resp. Cmed), there are only O.1/-many cubes Cmed (resp. Cmax) satisfying
CminC CmedC Cmax 3 0. Moreover, we have

j†.Cmax;�Cmed/j. 2kmax�kmin :

Geometrically, such cubes Cmax and Cmed are “nearly antipodal”.

We will also exploit the relationship between modulation localization and angular restriction for (8-90).
In the proofs below, we will only need the following simple statement. For a more complete discussion,
see, e.g., [Tao 2001].

Lemma 8.21 (geometry of the cone). Consider integers k0;k1;k2;j0;j1;j22Z such that jkmed�kmaxj�5.
For i D 0; 1; 2, let !i �S3 be an angular cap of radius ri < 2�5, ˙i 2 fC;�g, and u.i/ 2 S.R1C4/ have
frequency support in the region fj�j ' 2ki ; �=j�j 2 !i ; j� �˙i j�jj ' 2ji g. Suppose that jmax � kmin, and
define `D 1

2
minfjmax� kmin; 0g.
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Then the expression (8-90) vanishes unless

j†.˙i!i ;˙i 0!i 0/j. 2kmin�minfki ;ki0g2`Cmaxfri ; ri 0g

for every pair i; i 0 2 f0; 1; 2g .i ¤ i 0/.

Finally, we collect some often-used estimates. For k0 � k and `0 < �5, note that

2�
5
6
k
kPCk0 .`0/ukkL2L6 C 2

�k0� 1
2
k2�

1
2
`0
kPCk0 .`0/ukkL2L1 . kPCk0 .`0/ukkSkŒCk0 .`0/�;

where, by (4-1), we have X
C2fCk0 .`0/g

kPCukk
2
SkŒC� . kukk

2
Sk
' kukk

2
S :

Also note that, for any j � kC 2`, we haveX
!

kP !` Q<jukk
2
L1L2

. kukk2Sk ' kukk
2
S ;

by disposing of Q<j (using boundedness on L1L2) and using S ang
k
� Sk .

8D2. Bilinear estimates that do not involve any null forms. We first prove Proposition 8.11, which does
not involve any null forms.

Proof of Proposition 8.11. In this proof, we adopt the convention of writing LpLqC for LpL Qq with
Qq�1 D q�1 � ı0. In particular, if .p; q/ is a sharp Strichartz exponent with ı0 � p�1 � 1

2
� ı0, then

2.1=pC4=q�2�4ı0/kStr0k � L
pLqC.

To prove (8-15), we apply Hölder and Bernstein (on the lowest-frequency factor), where we put
uk1 in L9=4L.54=11/C and vk2 in L18L.27=13/C. The proof of (8-16) is similar, except we put vk2 in
L9L.54=23/C. The proofs of (8-18) and (8-19) are similar; for (8-18), we apply Hölder and Bernstein
with uk1 in L2L1 and vk2 in L1L2, and for (8-19) we put vk2 in L18L27=13 instead.

It only remains to establish (8-17) and (8-20). First, (8-20) follows simply by applying Hölder and
Bernstein (on the lowest-frequency factor), where we put uk1 , vk2 in L2L6. To prove (8-17), we divide
into two cases. When k � k1� 10, the desired bound follows by Hölder, where we put both uk1 and vk2
in L2L1. On the other hand, when k < k1� 10, we have k D kmin and k1 D k2CO.1/ by Littlewood–
Paley trichotomy. We decompose the inputs and the output by frequency projections to cubes of the form
Ck.0/, i.e.,

PkO.uk1 ; v
0
k2
/D

X
C; C1;C2

PkPCO.PC1uk1 ; PC2v
0
k2
/;

where C; C1; C2 2 fCk.0/g. The summand on the right-hand side vanishes except when �CC C1C C2 3 0.
For a pair C and C1 (resp. C2), there are only O.1/-many C2 (resp. C1) such that the preceding condition
holds. Moreover, there are only O.1/-many C in the annulus fj�j ' 2kg. Therefore, by Hölder and
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Cauchy–Schwarz (in C1 and C2), we have

2�2kkPkO.uk1 ; v
0
k2
/kL1L1 . 2�2k

�X
C1
kPC1uk1k

2
L2L1

�1
2
�X

C2
kPC2v

0
k2
k
2
L2L1

�1
2

. kDuk1kSkv
0
k2
kS ;

which completes the proof. �

8D3. Bilinear null form estimates for the N -norm. We now prove Proposition 8.12. We start with
a lemma quantifying the gain from the null form O.@˛. � /; @˛. � //, which is a quick consequence of
Lemmas 8.7 and 8.21.

Lemma 8.22. Let k; k1; k2; j; j1; j2 satisfy kmax�kmed � 5, j; j1; j2 � kminCC0, j1 D j CO.1/ and
j2 D j CO.1/. Define ` D minf.j � kmin/=2; 0g, and let C; C1; C2 be rectangular boxes of the form
Ckmin.`/. Then we have

PkQ<jPCO.@˛Q<j1PC1uk1 ; @˛Q<j2PC2vk2/D C2
2`PC zO.rPC1uk1 ;rPC2vk2/ (8-91)

for some universal constant C and a disposable operator zO.

Proof. By disposability of PkQ<jPC , Pk1Q<j1PC1 and Pk2Q<j2PC2 , we may harmlessly assume that
(say) j; j1; j2 < kmin� 5. Then we can take the decomposition

PkQ<jPCO.@˛Q<j1PC1uk1 ;@˛Q<j2PC2vk2/D
X

˙;˙1;˙2

PkQ
�
<jPCO.@˛Q˙1<j1PC1uk1 ;@˛Q

˙2
<j2
PC2vk2/:

By Lemma 8.21, the summand on the right-hand side vanishes (and thus (8-91) holds trivially) unless
j†.˙1C1;˙2C2/j. 2`. In such a case, (8-91) follows from the decompositions (8-11) in Lemma 8.7 and
the schematic identities

N0;˙1˙2.Q
˙1
<j1

PC1uk1 ;Q
˙2
<j2

PC2vk2/D C2
k1Ck222` zO.PC1uk1 ; PC2vk2/;

R0.Q˙1<j1PC1uk1 ;Q
˙2
<j2

PC2vk2/D C2
j 2�minfk1;k2g zO.rPC1uk1 ;rPC2vk2/;

which in turn follow from Definition 8.3 (see also Remark 8.4) and (8-12), respectively. �

Proof of Proposition 8.12. Estimates (8-21) and (8-24) were proved in [Oh and Tataru 2018, Proposi-
tion 7.1]. Estimate (8-23) is a simple consequence of Hölder and Bernstein for u0

k1
, vk2 or the output,

depending on which has the lowest frequency. In the remainder of the proof, we prove (8-22) and (8-25)
simultaneously.

Step 1: high-modulation inputs/output. The goal of this step is to prove

kPkO.@˛uk1 ; @˛vk2/�PkQ<kminO.@
˛Q<kminuk1 ; @˛Q<kminvk2/kN

. 2
kminCkmax

2 kruk1kSkrvk2kS : (8-92)

Note that this step is vacuous for (8-25). Here we do not need the null form, and simply view
O.@˛uk1 ; @

˛vk2/ as zO.ruk1 ;rvk2/ for some disposable zO.
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We begin by reducing (8-92) into an atomic form. For j; j1; j2 � kmin, we claim thatˇ̌̌̌Z
Qjwk zO.Q<j1u

0
k1
;Q<j2v

0
k2
/ dt dx

ˇ̌̌̌
. 2�

1
2
j 2kmin2

1
2
k1kwkkX0;1=21

ku0k1kSkv
0
k2
kL1L2 : (8-93)

Once we prove (8-93), by duality (recall that N � D L1L2\X0;1=21 ) we would haveX
j�kmin

kPkQjO.@˛uk1 ; @˛vk2/kN . 2
1
2
kmin2

1
2
k1kruk1kSkrvk2kL1L2 ;X

j�kmin

kPkQ<kminO.@
˛Qjuk1 ; @˛vk2/kN . 2

1
2
kmin2

1
2
k2kruk1kX0;1=21

krvk2kS ;X
j�kmin

kPkQ<kminO.@
˛Q<kminuk1 ; @˛Qj vk2/kN . 2

1
2
kmin2

1
2
k1kruk1kSkrvk2kX0;1=21

;

from which (8-92) would follow.
To prove (8-93), we decompose u0; v0; w by frequency projection to cubes of the form Ckmin.0/, i.e.,Z
Qjwk zO.Q<j1u

0
k1
;Q<j2v

0
k2
/ dt dx D

X
C0; C1; C2

Z
QjPC0wk zO.Q<j1PC1u

0
k1
;Q<j2PC1v

0
k2
/ dt dx;

where C; C1; C2 2 fCkmin.0/g.
Let Cmax, Cmed and Cmin denote the reindexing of the boxes C0, C1, C2, which are situated at the frequency

annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively. The summand on the right-hand side
vanishes unless CmaxC CmedC Cmin 3 0. For a fixed pair Cmin and Cmax (resp. Cmed), this happens only
for O.1/-many Cmed (resp. Cmax). Moreover, note that each Ci lies within an angular sector of size
O.2kmin�ki /; hence, Q<jiPCi is disposable .i D 1; 2/. Thus, by Hölder, Cauchy–Schwarz (in Cmax

and Cmed) and the fact that there are only O.1/-many cubes Cmin situated in fj�j ' 2kming (so any `r -sums
over Cmin are equivalent), we haveˇ̌̌̌ X
C0; C1; C2

Z
QjPC0wk zO.Q<j1PC1u

0
k1
;Q<j2PC2v

0
k2
/ dt dx

ˇ̌̌̌

.




�X

C0
kQjPC0wk.t; � /k

2
L2

�1
2





L2t





�X
C1
kPC1u

0
k1
.t; � /k2L1

�1
2





L2t





�X
C2
kPC2v

0
k2
.t; � /k2

L2

�1
2





L1t

.




Qjwk





L2L2

�X
C1
kPC1u

0
k1
k
2
L2L1

�1
2

kv0k2kL1L2

. 2�
1
2
j 2kmin2

1
2
k1kwkkX0;1=21

ku0k1kSkv
0
k2
kL1L2 ;

as desired.

Step 2: proofs of (8-22) and (8-25). For j < kmin and `D .j � kmin/=2, we claim that

kPkQjO.@˛Q<juk1 ; @˛Q<j vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k1kruk1kSkrvk2kS ; (8-94)
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kPkQ�jO.@˛Qjuk1 ; @˛Q<j vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k2kruk1kSkrvk2kS ; (8-95)

kPkQ�jO.@˛Q�juk1 ; @˛Qj vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k1kruk1kSkrvk2kS : (8-96)

Assuming that these estimates hold, we first conclude the proofs of (8-22) and (8-25). We start with
(8-22). By Step 1, it suffices to estimate PkQ<kminO.@

˛Q<kminuk1 ;Q<kminvk2/. Decomposing the
inputs and the output using Q<kmin D

P
j<kmin

Qj , and dividing cases according to which has dominant
modulation (corresponding to j in the above estimates), (8-22) follows by summing (8-94)–(8-96) over j.
To prove (8-25), observe simply that the modulation restrictions of the inputs and the output restricts the
j -summation to j < kmin� � in the preceding argument.

It remains to establish (8-94)–(8-96).

Step 2.1: proof of (8-94). Here we provide a detailed proof of (8-94); similar arguments involving
orthogonality and the null form gain will be used repeatedly in the remainder of this subsection.

We expand

PkQjO.@˛Q<juk1 ; @˛Q<j vk2/D
X

˙0;˙1;˙2

X
C0; C1; C2

PkQ
�0
j P�C0O.@

˛Q
˙1
<jPC1uk1 ; @˛Q

˙2
<jPC2vk2/;

where C0; C1; C2 2 fCkmin.`/g. By duality, in order to estimate the summand on the right-hand side, it
suffices to bound Z

PkQ
˙0
j PC0wO.@˛Q˙1<jPC1uk1 ; @˛Q

˙2
<jPC2vk2/ dt dx: (8-97)

Let Cmax, Cmed and Cmin denote the reindexing of the boxes �C, C1, C2, which are situated at the frequency
annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively.

Note that (8-97) vanishes unless C0 C C1 C C2 3 0. Combined with the geometry of the cone
(Lemma 8.21) we see that for a fixed Cmax (resp. Cmed), (8-97) vanishes except for O.1/-many Cmin and
Cmed (resp. Cmax). By Hölder, Cauchy–Schwarz (in Cmax and Cmed) and Lemma 8.22, we obtainˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

(8-97)
ˇ̌̌̌
.
X
˙0

22`




�X

C0
kPkQ

˙0
j PC0w.t; � /k

2
L2

�1
2





L2t

�





�X
C1
krPC1uk1.t; � /k

2
L1

�1
2





L2t





�X
C2
krPC2vk2.t; � /k

2
L2

� 1
2





L1t

.
X
˙0

22`kPkQ
˙0
j wkL2L2

�X
C1
krPC1uk1k

2
L2L1

�1
2

krvk2kL1L2

. 2�
1
2
j 2

5
2
`2kmin2

1
2
k1kwk

X
0;1=2
1
kruk1kSkrvk2kL1L2 :

By duality, (8-94) follows.

Steps 1.2–1.3: proofs of (8-95)–(8-96). We now sketch the proofs of (8-95) and (8-96), which are very
similar to Step 2.1. As before, we expand each modulation projection to the ˙-parts, and decompose the
output, u, v by frequency projection to �C0; C1; C2 2 fCkmin.`/g, respectively.
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We proceed as in Step 1.1 but put the test function w in L1L2 and the input with the dominant
modulation in L2L2. Then we obtainˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

“
PkQ

˙0
�jPC0O.@

˛Q
˙1
j PC1uk1 ; @˛Q

˙2
<jPC2vk2/

ˇ̌̌̌
.2�

1
2
j 2

5
2
`2kmin2

1
2
k2kwkL1L2kruk1kX0;1=21

krvk2kS ;ˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

“
PkQ

˙0
�jPC0O.@

˛Q
˙1
�jPC1uk1 ; @˛Q

˙2
j PC2vk2/

ˇ̌̌̌
.2�

1
2
j 2

5
2
`2kmin2

1
2
k1kwkL1L2kruk1kSkrvk2kX0;1=21

:

By duality, (8-95) and (8-96) follow. �

8D4. Bilinear estimates for theXs;b;pr -type norms. Next, we prove Propositions 8.13, 8.14, 8.15 and 8.16.

Proof of Proposition 8.13. Estimates (8-26) and (8-27) were proved in [Krieger et al. 2015, equations (132)
and (133)]; note that the slightly stronger S1-norm is used on the right-hand side in [Krieger et al. 2015,
equations (132) and (133)], but the proofs in fact lead to (8-26) and (8-27). Estimates (8-28) and (8-29)
follow from slight modifications of the proofs of [Krieger et al. 2015, equations (134) and (140)] (the
Z-norm in that paper is stronger than ours), as we outline below.

For (8-28), we first recall the definition of H�. For each j < k1�C , we introduce `D 1
2
.j � k1/ and

take the decomposition

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/D
X
!;!0

PkQ<j�CN .jDj�1P !` Qjuk1 ; P
`
!0Q<j�Cvk2/:

By the geometry of the cone (Lemma 8.21), the summand vanishes unless j†.!;˙!0/j. 2` for some
sign ˙. In this case, the null form N gains 2k1Ck22` (see Definition 8.3), and hence we have

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kL1L2

.
X

!;!0Wmin˙j†.!;˙!0/j.2`

2k22`kP !` Qjuk1kL1L1kP
!0

` Q<j�Cvk2kL1L2

. 2k22.
1
2
�2b0/`

�X
!

.2.
1
2
C2b0/`kP !` QkC2`uk1kL1L1/

2

�1
2
�X
!0

kP !
0

` Q<j�Cvk2k
2
L1L2

�1
2

. 2.
1
2
�2b0/`

�X
!

.2.
1
2
C2b0/`kP !` QkC2`uk1kL1L1/

2

�1
2

kDvk2kS :

In the second inequality, we used Cauchy–Schwarz (or Schur’s test) with the fact that the !;!0 is
essentially diagonal (i.e., for a fixed !, there are only O.1/ many !0’s such that the sum is nonvanishing,
and vice versa). Summing up in j < k1�C , then using the definition of the Z1-norm, (8-28) follows.

Next, (8-29) is proved by essentially the same argument (with the same numerology) as above. Here
we do not gain 2` from the null form N, but rather from the extra factor ��1=2�1=2 in the norm
��1=2�1=2Z1. Finally, (8-30) and (8-31) follow from the preceding proofs, once we observe that the



334 SUNG-JIN OH AND DANIEL TATARU

modulation localization of uk1 restricts the j -summation to j < k1� �, which then leads to the small
factor 2�.1=2�2b0/�. �

Proof of Proposition 8.14. In view of the embedding N \�Z1 ��Z1p0, (8-32) would follow once (8-33)
is proved. Estimates (8-34) and (8-35) follow from (134) and (141) in [Krieger et al. 2015], respectively.
Moreover, when k� k1�C , (8-33) follows from (134) and (135) in [loc. cit.]. In using the estimates from
[loc. cit.], we remind the reader that theZ-norm in [loc. cit.] (which is equal to

P
kkPkQ<kukX�1=4;1=4;11

)
is stronger the Z-norm in this work. Moreover, although (134), (135) and (141) in [loc. cit.] are stated
with the S1-norm on the right-hand side, an inspection of the proof reveals that only the S -norm is used.

It remains to establish (8-33) in the case k < k1�C . By Littlewood–Paley trichotomy, note that the
left-hand side vanishes unless k D kmin and k1 D k2CO.1/. By (8-34), we are only left to show that the
�Z1-norm of

PkHkN .uk1 ; vk2/D
X

j<kCC

PkQjN .Q<j�Cuk1 ;Q<j�Cvk2/ (8-98)

is bounded by . 2kkDuk1kSkDvk2kS .
Consider the summand of (8-98). We decompose the inputs and the output by frequency projections

to rectangular boxes of the form Ck.`/, where ` D minf.j � k/=2; 0g. Then we need to consider the
expression

PkQjPC N .Q<j�CPC1uk1 ;Q<j�CPC2vk2/;

where C; C1; C2 2 fCk.`/g. This expression is nonvanishing only when �C C C1 C C2 3 0. In fact,
combined with the geometry of the cone (Lemma 8.21), we see that for each fixed C1 (resp. C2), it is
nonvanishing only for O.1/-many C and C2 (resp. C1). The null form gains the factor 2k1Ck22`. By
Hölder and Cauchy–Schwarz (in C1 and C2), we have

kPkQjN .Q<j�Cuk1 ;Q<j�Cvk2/k�Z1

D 2�
3
2
k2�

1
2
j





 X
C; C1; C2

PkQjPCN .Q<j�CPC1uk1 ;Q<j�CPC2vk2/






L1L1

. 2�
3
2
k2�

1
2
j 2k1Ck22`

�X
C1
kQ<j�CPC1uk1k

2
L2L1

�1
2
�X

C2
kQ<j�CPC2vk2k

2
L2L1

�1
2

. 2�
1
2
.k�j /2kkDuk1kSkDvk2kS :

Summing up in j < kCC , the desired estimate follows. �

Proof of Proposition 8.15. For all the estimates, the most difficult case is when k1 < k � 10 (low-high
interaction) and when uk1 has the dominant modulation, i.e., the expression PkH�k1N .jDj

�1uk1 ; vk2/.

Step 1: proof of (8-36), (8-37) and (8-38). We divide into three cases: (1) k1 � k� 10, (2) k1 < k� 10
but either the output or vk2 has the dominant modulation, or (3) k1 < k� 10 and uk1 has the dominant
modulation.
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Step 1.1: k1 � k � 10. In this case, all three bounds can be proved simultaneously. The idea is to
apply Propositions 8.12 and 8.14. Indeed, by (8-33) and the fact that the left-hand side vanishes unless
k1 D kmaxCO.1/ (Littlewood–Paley trichotomy), we see that

kPkN .jDj�1uk1 ; vk2/k�Z1 . 2
k�k1kPkjDj

�1N .uk1 ; vk2/k�Z1

. 2�Cı1.kmax�kmin/kDuk1kSkDvk2kS :

Combined with (8-21), it follows that

kPkN .jDj�1uk1 ; vk2/kN\�Z1 . 2
�Cı1.kmax�kmin/kDuk1kSkDvk2kS :

By the chain of embeddings N \�Z1 ��Z1p0 �� zZ
1
p0

, the desired bounds follow.

Step 1.2: k1 < k� 10, contribution of 1�H�
k1

. By Littlewood–Paley trichotomy, PkN .jDj�1uk1 ; vk2/
vanishes unless k1D kmin and kD kmaxCO.1/. In Steps 1.2a–1.2c below, we estimate the�Z1-norm of
Pk.1�H�

k1
/N .jDj�1uk1 ; vk2/. Then in Step 1.2d, we conclude the proof by interpolating with (8-26).

Step 1.2a: High modulation inputs/output. The goal of this step is to prove

kPkN .jDj�1uk1 ; vk2/�PkQ<k1N .jDj
�1Q<k1CCuk1 ;Q<k1vk2/k�Z1

. 2�
1
4
.k�k1/kDuk1kSkDvk2kS : (8-99)

Here there is no need for null structure, so we simply write N .jDj�1uk1 ; vk2/ D O.uk1 ;Dvk2/. We
begin by proving

kPkQ�k1O.uk1 ;Dvk2/k�Z1 . 2
�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS : (8-100)

For j � k1, we take the decomposition

PkQjP
!
j�k
2

O.uk1 ;Dvk2/D
X
!0

PkQjP
!
j�k
2

O.uk1 ;DP
!0
j�k
2

vk2/:

Since .j � k/=2 � k1 � k, for each fixed ! there are only O.1/-many !0 such that the summand on
the right-hand side is (possibly) nonvanishing, and vice versa. Therefore, by Hölder, Bernstein and
Cauchy–Schwarz, we have

2.�
3
4
Cb0/.j�k/2�2k

�X
!

kPkQjP
!
j�k
2

O.uk1 ;DP
!0
j�k
2

vk2/k
2
L1L1

�

. 2.�
1
2
Cb0/.j�k/2�

1
2
.k�k1/.2�

1
2
k1kuk1kL2L1/

�X
!0

.2
1
6
k2kP !

0

j�k
2

vk2kL2L6/
2

�1
2

. 2.�
1
2
Cb0/.j�k1/2�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS :

Summing up in j � k1, we obtain (8-100).
Next, we prove

kPkQ<k1O.uk1 ;DQ�k1vk2/k�Z1 . 2
�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS : (8-101)
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By (4-6) and (uniform-in-j ) boundedness of Qj on L1L2, we have

kPkQ<k1f k�Z1 . 2
�b0.k�k1/kf kL1L2 : (8-102)

Therefore,

kPkQ<k1O.uk1 ;DQj vk2/k�Z1 . 2
�b0.k�k1/kPkQ<k1O.uk1 ;DQj vk2/kL1L2

. 2�
1
2
.j�k1/2�b0.k�k1/.2�

1
2
k1kuk1kL2L1/kDQj vk2kX0;1=21

. 2�
1
2
.j�k1/2�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS :

Then summing up in j � k1, (8-101) follows.
To conclude the proof of (8-99), note that kjDj�1=2uk1kL2L1 . kDuk1kS . Moreover, observe that

PkQ<k1O.Qjuk1 ;DQ<k1vk2/

vanishes unless j < k1C 10.

Step 1.2b: output has dominant modulation. Here we proveX
j<k1

kPkQjN .jDj�1Q<j1uk1 ;Q<j2vk2/k�Z1 . 2
�b0.k�k1/kDuk1kSkDvk2kS ; (8-103)

where j1; j2 D j CO.1/.
Let `D 1

2
.j �k1/. After taking the decompositions uk1 D

P
!0 P

!0

`
uk1 and vk2 D

P
!00 P

!00

.j�k/=2
vk2 ,

consider the expression

PkQjP
!
j�k
2

N .jDj�1Q<j1P
!0

` uk1 ;Q<j2P
!00
j�k
2

vk2/:

Using the geometry of the cone (Lemma 8.21), observe that for every fixed ! (resp. !00), the preceding
expression vanishes except for O.1/-many !0 and !00 (resp. !). Moreover, for such a triple !;!0; !00,
the null form N gains a factor of 2`. By Hölder, Bernstein (for P !

.j�k/=2
vk2) and Cauchy–Schwarz (in

!;!00), we have

kPkQjN .jDj�1Q<j1uk1 ;Q<j2vk2/k�Z1

. 2.�
3
4
Cb0/.j�k/2�2k

�X
!

kPkQjP
!
j�k
2

N .jDj�1Q<j1uk1 ;Q<j2vk2/k
2
L1L1

�1
2

. 2.�
1
2
Cb0/.j�k/2`2�

1
2
.k�k1/

�
sup
!0
2�

1
2
k1kQ<j1P

!0

` uk1kL2L1
��X

!

.2
1
6
k2kQ<j2P

!
j�k
2

vk2kL2L6/
2

�1
2

. 2�b0.k1�j /2�b0.k�k1/kDuk1kSkDvk2kS :

Summing up in j < k1, (8-103) follows.

Step 1.2c: v has dominant modulation. Next, we proveX
j<k1

kPkQ<j0N .jDj
�1Q<j1uk1 ;Qj vk2/k�Z1 . 2

�b0.k�k1/kDuk1kSkDvk2kS ; (8-104)
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where j0; j1D j CO.1/. As before, let `D .j �k1/=2. By (4-6) and (uniform-in-j ) boundedness of Qj
on L1L2, we have

kPkQ<jf k�Z1 . 2�b0.k�j /kf kL1L2 :

Hence it suffices to estimate the L1L2 norm of the output. This time, we take the decompositions
uk1 D

P
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 . By the geometry of the cone, for a fixed !, the expression

PkQ<j0N .jDj
�1Q<j1P

!
` uk1 ;QjP

!0

` vk1/

vanishes except for O.1/-many !0 and vice versa. Moreover, the null form N gains a factor of 2`. By
Hölder and Cauchy–Schwarz (in !;!0), we have

2�b0.k�j /kPkQ<j0N .jDj
�1Q<j1P

!
` uk1 ;QjP

!0

` vk2/kL1L2

. 2�b0.k�j /2
3
2
`2

1
2
k12�

1
2
j

�X
!

.2�
1
2
k12�

1
2
`
kQ<j1P

!
` uk1kL2L1/

2

�1
2
�X
!0

.2k2kQjP
!0

` vk2kX0;1=21
/2
�1
2

. 2.�
1
4
�b0/.k1�j /2�b0.k�k1/kDuk1kSkDvk2kS :

Summing up in j < k1, (8-104) is proved.

Step 1.2d: interpolation with (8-26). Combining (8-99), (8-103) and (8-104), we obtain

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/k�Z1 . 2

�b0.k�k1/kDuk1kSkDvk2kS :

On the other hand, (8-26) and the embeddingN �X0;�1=21 yields a similar bound for theX0;�1=21 -norm
without the exponential gain. Nevertheless, since we have

kf k
�Z1p0

. kf k�0
�Z1
kf k

1��0

X
0;�1=2
1

;

where �0 D 2
�
1
p0
�
1
2

�
> 0,

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/k�Z1p0

. 2��0b0.k�k1/kDuk1kSkDvk2kS :

Then the desired estimate for � zZ1p0 follows as well, thanks to the embedding �Z1p0 �� zZ
1
p0

.

Step 1.3: k1 < k� 10, contribution of H�
k1

. This is the most difficult case. We consider

PkH�k1N .jDj
�1uk1 ; vk2/D

X
j<k1CC

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/:

As before, by Littlewood–Paley trichotomy, this expression vanishes unless k1Dkmin and kDkmaxCO.1/.
Recall that all three norms� zZ1p0,�Z

1
p0

and�Z1 are of the typeXs;b;p1 . To ensure the `2-summability
in ! in the definition (4-3), we go through the LpL2 norm. More precisely, by Bernstein and L2-
orthogonality of P !

.j�k/=2
, note that

kPkQjf kXs;b;p1

. 2sk2
5
2
. 1
p
� 1
2
/k2bj 2

3
2
. 1
p
� 1
2
/j
kf kLpL2 :

Since bC 3
2

�
1
p
�
1
2

�
> 0 in all of these cases by (4-4), we have

kPkQ<jf kXs;b;p1

. 2sk2
5
2
. 1
p
� 1
2
/k2bj 2

3
2
. 1
p
� 1
2
/j
kf kLpL2 : (8-105)
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Hereafter, the proofs of the three bounds differ.

Step 1.3a: proof of (8-36). We decompose the inputs and the output by frequency projections to rectangular
boxes of the form Ck1.`/. Then we need to consider the expression

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/;

where C; C1; C2 2 fCk1.`/g. Note that the above expression is nonvanishing only when �CC C1C C2 3 0.
Moreover, by the geometry of the cone (Lemma 8.21), for each fixed C (resp. C2), this expression is
nonvanishing only for O.1/-many C1 and C2 (resp. C), and the null form gains the factor 2k1Ck22`.

For exponents p1; p2; q1; q2 � 2 such that p�11 C p
�1
2 D p

�1 and q�11 C q
�1
2 D 2

�1, proceeding
carefully to exploit spatial orthogonality in L2, we have

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kLpL2

D





 X
C; C1; C2

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/






LpL2

.




�X

C





X
C1;C2

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/.t; � /





2
L2

�1
2





L
p
t

. 2`2k2


sup

C1
kQjPC1uk1.t; � /kLq1




L
p1
t





�X
C2
kQ<j�CPC2vk2.t; � /k

2
Lq2

�1
2





L
p2
t

. 2`2k2kQjuk1kLp1Lq1
�X

C2
kQ<j�CPC2vk2k

2
Lp2Lq2

�1
2

: (8-106)

We now apply (8-105) and (8-106) with

.s; b; p; p1; q1; p2; q2/D

�
5

4
�
3

p0
C

�
1

4
� b0

�
�0;�

1

4
�

�
1

4
� b0

�
�0; p0; 2; 2;

2p0

2�p0
;1

�
;

where �0 D 2
�
1
p0
�
1
2

�
. We then obtain

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/k� zZ1p0

. 2�.1�
1
p0
/k
2k2.�

1
4
�. 1

4
�b0/�0/.j�k/2

� 3
2
.1� 1

p0
/.j�k/

2
3
4
.j�k/2`

�kQjuk1kL2L2

�X
C2
kPC2Q<j�Cvk2k

2
Lp2L1

�1
2

. 2.�
3
4
C 1
2
.1� 1

p0
/C. 1

4
�b0/�0/.k1�j /2

.� 1
2
.1� 1

p0
/C. 1

4
�b0/�0/.k�k1/

�kQjuk1kX1;1=21

�X
C2
kDPC2vk2k

2
Sk2 ŒCk1 .`/�

�1
2

:

On the last line, we used

kQ<j�CPC2vk2kLp2L1 . 2
. 3
2
��0/`2.2��0/.k1�k2/2.2�

1
2
�0/k2kPC2vk2kSk2 ŒCk1.`/�

;

which follows from interpolation. By (4-4), the factors in front of .k1�j / and .k�k1/ are both negative.
Summing up in j < k1CC , we obtain (8-36).
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Step 1.3b: proof of (8-37). As in the proof of (8-104) (Step 1.2c), we take the decompositions uk1 DP
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 , where `D .j �k1/=2. By the geometry of the cone (Lemma 8.21),

the null form gain, Hölder, Cauchy–Schwarz (in !;!0) and Bernstein (for uk1), we have

kPkQ<jN .jDj�1QjP !` uk1 ;Q<j�CP
!0

` vk2/kLpL2

. 2.1C3.1�
1
p
//`24.1�

1
p
/k12k2

�X
!

kP !` Qjuk1k
2
LpLp

0

�1
2
�X
!0

kP !
0

` Q<j�Cvk2k
2
L1L2

�1
2

: (8-107)

Applying (8-105) and (8-107) with .s; b; p/D
�
3
2
�

3
p0
C
�
1
4
� b0

�
�0;�

1
2
�
�
1
4
� b0

�
�0; p0

�
, where �0D

2
�
1
p0
�
1
2

�
, we obtain

kPkQ<jN .jDj�1QjP !` uk1 ;Q<jP
!0

` vk2/k�Z1p0

. 2�.1�
1
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/k
2.
1
4
�. 1

4
�b0/�0/.j�k/2

� 3
2
.1� 1
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/.j�k/

kPkQ<jN .jDj�1QjP !` uk1 ;Q<jP
!0

` vk2/kLp0L2

. 2.�
1
4
C. 1

4
�b0/�0C 12.1�

1
p0
//.k�k1/

kQjuk1kX9=4�3=p0C.1=4�b0/�0;3=4�.1=4�b0/�0;p01

kDvk2kS :

By our choices of b0 and p0, the overall factor in front of .k�k1/ is negative. Summing up in j <k1CC ,
we obtain the desired conclusion.

Step 1.3c: proof of (8-38). We again take the decompositions uk1 D
P
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 ,

where `D .j � k1/=2. We use (8-105) with .s; b; p/D
�
�
5
4
� b0;�

3
4
C b0; 1

�
. By the geometry of the

cone (Lemma 8.21), the null form gain, Hölder and Cauchy–Schwarz (in !;!0), we have

2b0.j�k/kPkQ<jN .jDj�1QjP !` uk1 ;Q<j�CP
!0

` vk2/kL1L2

. 2b0.j�k/2`2k2
�X
!

kQjP
!
` uk1k

2

Lp0L
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0

�1
2
�X
!0

kQ<j�CP
!0

` vk2k
2

L
p0
0Lq0

�1
2

. 2.b0C.
1
4
�b0/�0/.k1�j /2�b0.k�k1/2

3.1� 1
p0
/.k�k1/

�kuk1kX3.1�1=p0/�1=2C.1=4�b0/�0;1=2�.1=4�b0/�0;p01

kDvk2kS ;

where q�10 D 2
�1� .p00/

�1 and �0D 2
�
1
p0
�
1
2

�
. By our choices of p0 and b0, the overall factors in front

of .k1� j / and .k� k1/ are both negative. Summing up in j < k1, the proof is complete.

Step 2: proof of (8-39). As in Step 1, we divide into three cases.

Step 2.1: k1 � k � 10. In view of the embedding N \L2 PH�1=2 � X�1=2Cb1;�b1 for any 0 < b1 < 1
2

,
the desired bound follows from (8-15) and (8-21).

Step 2.2: k1 < k� 10, contribution of 1�H�
k1

. Consider the expression

Pk.1�H�k1/N .jDj
�1uk1 ; vk2/:

Interpolating the N -norm bound (8-26) (recall that N �X0;�1=21 ) with an L2 PH�1=2-norm bound (which
is a minor modification of (8-15)), the desired estimate for this expression follows for 0 < b1 < 1

2
.
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Step 2.3: k1 < k� 10, contribution of H�
k1

. Finally, we estimate

PkH�k1N .jDj
�1uk1 ; vk2/D

X
j<k1CC

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/:

By (8-107), we have

2
. 1
p0
�1/k
kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kLp0L2

. 2.
1
2
C 3
2
.1� 1

p0
//.j�k1/2

. 1
p0
�1/k

2
4.1� 1

p0
/k12

�3.1� 1
p0
/k12.�

1
2
C. 1

4
�b0/�0/.j�k1/kuk1kZ1p0

kDvk2kL1L2

. 2.�
3
2
.1� 1

p0
/�. 1

4
�b0/�0/.k1�j /2

�.1� 1
p0
/.k�k1/

kuk1kZ1p0
kDvk2kS :

Summing up in j < k1CC and using the embedding 2.1�1=p0/kPkQ<kLp0L2 �X�1=2Cb1;�b1, which
holds by Bernstein since b1 < 1

p0
�
1
2

, the proof of (8-39) is complete. �

Proof of Proposition 8.16. As in Proposition 8.15, we divide the proof into two cases: k1 � k� 10 and
k1 < k� 10.

Step 1: k1 � k � 10. In this case, by (8-18), (8-23) and the embeddings L1L2 � �Z1p0 \�Z
1 and

L1L2\L2 PH�1=2 �X�1=2Cb1;�b1, the three bounds follow simultaneously.

Step 2: k1 < k� 10. We begin with (8-40) and (8-42). By Hölder and Bernstein, we have

2
. 1
p0
�1/k
kPkO.uk1 ; v

0
k2
/kLp0L2 . 2

�.1� 1
p0
/.k�k1/

kuk1k
Lp0 PW

2� 3
p0
;p0
0
kv0k2kL1L2

By (8-105) with .s; b; p/D
�
3
2
�

3
p0
;�1

2
; p0

�
, (8-40) follows. Moreover, by the L2 PH�1=2-norm estimate

(8-15) and the embedding PkQ<kLp0L2 �X�1=2Cb1;�b1, (8-42) follows as well.
It remains to prove (8-41). Applying (8-100) (from Step 1.2a of the proof of Proposition 8.15) with

Dvk2 D v
0
k2

and the embedding 2�3k1=2Pk1Y � L
2L1, we have

kPkQ�k1O.uk1 ; v
0
k2
/k�Z1 . 2�b0.k�k1/kDuk1kY kv

0
k2
kS :

On the other hand, by (8-102) and Hölder, we have

kPkQ<k1O.uk1 ; v
0
k2
/k�Z1 . 2�b0.k�k1/kPkO.uk1 ; v

0
k2
/kL1L2

. 2�b0.k�k1/23.1�
1
p0
/.k�k1/

kDuk1kY .2
. 3
p0
�3/k2

kv0k2kLp
0
0Lq0

/

. 2�b0.k�k1/23.1�
1
p0
/.k�k1/

kDuk1kY kv
0
k2
kS ;

where q�10 D 2
�1� .p00/

�1. By our choice of p0, the overall factor in front of .k�k1/ is negative; hence,
(8-41) follows. �

8D5. Trilinear null form estimates.

Proofs of Propositions 8.17 and 8.18. Estimate (8-43) would follow from Lemma 8.10 and the core
estimates (8-44), (8-45) and (8-46), combined with Lemma 8.21 and (4-1).
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Estimates (8-44), (8-45) and (8-46) can be established by repeating the proofs of (136), (137) and
(138) in [Krieger et al. 2015] with the following modifications:

� Thanks to the frequency localization of the inputs and the output to rectangular boxes of the type Ck.`/,
the bilinear operators O and O0 can be safely disposed of.

� Moreover, for any disposable multilinear operator M and rectangular boxes C; C0 of the type Ck.`/
situated in the annuli fj�j ' 2k1g and fj�j ' 2k2g, respectively, note that (by Lemma 8.7)

M.@˛Q˙<j�CPCuk1 ; @˛Q
˙0

<j�CPC0vk2 ; : : : /

D C2k1Ck2 maxfj†.˙C;˙0C0/j2; 2j�minfk1;k2gg zM.PCuk1 ; PC0vk2 ; : : : /

for some disposable zM, which suffices for the proofs in [Krieger et al. 2015].

We also note that although (136)–(138) in [Krieger et al. 2015] are stated with the factor 2ı.k�minfki g/

on the right-hand side, an inspection of the proofs reveals that the actual gain is 2ı.k�k1/, as claimed in
(8-44)–(8-46). We omit the straightforward details. �

9. The paradifferential wave equation

Sections 9, 10 and 11 are devoted to the proofs of Theorem 4.24 and Proposition 4.25. In this section, we
first reduce the task of proving these results to that of constructing an appropriate parametrix (Section 9A).
Parametrix construction, in turn, is reduced to constructing a renormalization operator that roughly
conjugates �CDiff �PA to �. Sections 10 and 11 are devoted proofs of the desired properties of the
renormalization operator.

9A. Reduction to parametrix construction. We start with a quick reduction of the problem (4-90). After
peeling off perturbative terms using commutator estimates (which will be sketched in more detail below),
we are led to consideration of the frequency-localized problem�

�ukC 2ŒP<k��P˛A; @˛uk�D fk;
.uk; @tuk/.0/D .u0;k; u1;k/;

(9-1)

for each k 2 Z. By scaling, we may normalize k D 0.
Our goal is to construct a parametrix to (9-1). We summarize the main properties of the parametrix in

this case, as well as the precise hypotheses on A˛ that we need, in the following theorem.

Theorem 9.1 (parametrix construction). Let A˛ be a g-valued 1-form on I �R4 such that

kAkS1ŒI �Ck�Ak`1X�1=2Cb1;�b1 ŒI � �M (9-2)

for some M > 0 and b1 > 1
4

. Let " > 0. Assume that � > �1.";M/ and

kAkDS1ŒI �Ck�Ak`1L2 PH�1=2 < ıp.";M; �1/ (9-3)
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for some functions �1.";M/� 1, 0 < ıp.";M; �1/� 1 independent of A˛ . Moreover, assume that there
exists QA˛ such that

k QAkS1ŒI �Ck.D QA0;DP? QA/kY ŒI � �M; (9-4)

k QAkDS1ŒI �Ck. QA0;P
? QA/k

L2 PH3=2ŒI �
< ıp.";M; �1/; (9-5)

and

k�A0�O. QA`; @0 QA`/k`1.�L1L1\L2 PH�1=2/ŒI � < ı
2
p.";M; �1/; (9-6)

k�PA�PO. QA`; @x QA`//�PO 0. QA˛; @˛ QA/k`1.L1L2\L2 PH�1=2/ŒI � < ı
2
p.";M; �1/; (9-7)

where O. � ; � / and O 0. � ; � / are disposable bilinear operators on R4. Then the following statements hold:

(1) Given any .u0; u1/2 PH 1�L2 and f 2N \L2 PH�1=2 such that u0; u1; f are all frequency-localized
in fC�1 � j�j � C g, there exists a g-valued function u.t/ on I which obeys

kukS1ŒI � .M k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
; (9-8)

k�uC 2ŒP<��P˛A; @˛u��f kN\L2 PH�1=2ŒI � � ".k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
/; (9-9)

kuŒ0�� .u0; u1/k PH1�L2
� ".k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒI �

/: (9-10)

Moreover, u is frequency-localized in f.2C /�1 � j�j � 2C g.

(2) Assume furthermore that

kAxk`1S1ŒI �CkA0k`1L2 PH3=2ŒI �
< ıo.M/ (9-11)

for some ıo.M/� 1 independent of A˛ . Then the approximate solution u constructed above obeys (9-8)
with a universal constant, i.e.,

kukS1ŒI � . k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
: (9-12)

In the remainder of this subsection, we sketch the proofs of Theorem 4.24 and Proposition 4.25
assuming Theorem 9.1. Then in the rest of this section, as well as in Sections 10 and 11, our goal will be
to establish Theorem 9.1.

Lemma 9.2. (a) Let At;x and QAt;x be g-valued 1-forms on I �R4, which satisfy (9-2), (9-3), (9-4), (9-5),
(9-6) and (9-7). Then for " > 0 sufficiently small (depending on M ) and � sufficiently large (depending on
", M ), given any .u0; u1/ 2 PH 1�L2 and f 2N \L2 PH�1=2ŒI �, there exists a unique solution u 2 S1ŒI �
to the IVP �

.�CDiff �PA/uD f;
uŒ0�D .u0; u1/;

(9-13)

which obeys
kukS1ŒI � .M k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒI �

: (9-14)

(b) If , in addition, kAk`1S1ŒI � obeys (9-11), then the solution u constructed above obeys (9-14) with a
universal constant, i.e.,

kukS1ŒI � . k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
: (9-15)
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Proof. Let uk be the function given by (the rescaled) Theorem 9.1 which is determined by the initial data
.Pku0; Pku1; Pkf /. We set

uapp D
X
k0

uk0 :

We claim u is a good approximate solution to (9-13) in the sense that in any subinterval J � I we have
kuappkS1ŒJ � .M k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒJ �

; (9-16)

kuappŒ0�� .u0; u1/k PH1�L2
. ".k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒJ �

/; (9-17)

and
k.�CDiff�PA/uapp�f kN\L2 PH�1=2ŒJ �

.M ."C2�ı2�C2C�.kPAk`1DS1ŒI �CkA0k`1L2 PH3=2ŒJ �
//

�.k.u0;u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒJ �
/: (9-18)

Assume that we have these bounds. Then the solution u to (9-13) is obtained as follows:

(i) We choose � large enough so that 2�ı2 �M 1.

(ii) We divide the interval I into subintervals Jj so that

2C�kPAkDS1ŒI �CkA0kL2 PH3=2ŒIj �
�M 1:

(iii) Within the interval J1 we now have small errors for the approximate solution uapp; hence we can
obtain an exact solution by reiterating.

(iv) We successively repeat the previous step on each of the subintervals Ij .

It remains to prove the bounds (9-16), (9-17) and (9-18). The first two follow directly from (9-8) and
(9-9) for uk after summation in k. We now consider (9-18), where we write

.�CDiff �PA/u�f D
X
k

.�ukC 2ŒP<k��PA˛; @˛uk��Pkf /C
X
k

gk;

where
gk D 2ŒP<k��PA˛; @

˛uk��
X
k0

ŒP�k0��PA˛; @
˛Pk0uk�

The first sum is estimated directly via (9-9), so it remains to estimate gk . We write

gk D g
1
kCg

2
k;

where
g1k D

X
k0DkCO.1/

Pk0 ŒP�k0��PA˛; @
˛Pk0uk�� ŒP�k0��PA˛; @

˛Pk0uk�;

g2k D
X

k0DkCO.1/

ŒPŒ�k0��;k��/PA˛; @
˛Pk0uk�:

Here g1
k

has a commutator structure, so we can estimate it as in Proposition 4.30, yielding a 2�ı2� factor.
For the expression g2

k
, on the other hand, we can apply Proposition 4.20 to split it into a small part and a

large part which uses only divisible norms. Thus (9-18) follows, and the proof of the lemma is concluded.
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(b) The same iterative construction applies, but no we no longer need to subdivide the interval as (9-11)
ensure that the divisible norms in (9-18) are actually small. �

Proof of Theorem 4.24 assuming Theorem 9.1. We prove the theorem by repeatedly applying the preceding
lemma in successive intervals. To achieve this, we begin by choosing " and � depending only on M so
that Lemma 9.2 holds. It remains to ensure that we can divide the interval I into subintervals Jj where
the conditions (9-2), (9-3), (9-4), (9-5), (9-6) and (9-7) hold.

We choose QAD A. We carefully observe that we cannot use Theorem 5.1 here, as Theorem 4.24 is
used in the proof of Theorem 5.1. However, we can use the weaker result in Proposition 5.4, which
immediately gives (9-2) and (9-4) from Theorem 5.1.

The remaining bounds are for divisible norms, so it suffices to establish them with a large constant
depending on M ; then we gain smallness by subdividing. Indeed, for (9-3) and (9-5) this still follows
from Proposition 5.4.

For (9-6) we choose O.A; @0A/D ŒA; @0A�. Then we can use (3-23) and (4-37). Finally for (9-7) we
choose in addition O.A˛; @

˛A/D�2ŒA˛; @
˛A�. Then by Theorem 9.1 we have

�A�O.A; @xA/�O.A˛; @
˛A/DR.A/CRem3.A/A

and it suffices to use (3-21) and (4-74). �

Proof of Proposition 4.25 assuming Theorem 9.1. We write

At;x D A
pert
t;x CA

nonpert
t;x ;

where
A

pert
t;x D

X
k2K

PkAt;x;

with jKj DOıo.M/�1M .1/ and
kAnonpert

k`1S1ŒI � < ıo.M/:

By Proposition 4.23, it follows that the contribution of any finite number of dyadic pieces of At;x in
Diff �PA is perturbative. More precisely, for Apert, we have

kDiff �PApertBkN\L2 PH�1=2ŒI � .jKj;M kBkS1ŒI �: (9-19)
Thus B solves also

.�CDiff �PAnonpert/B D zG;

where
k zGk

N\L2 PH�1=2ŒI �
.M kGkN\L2 PH�1=2ŒI �CkBkS1ŒI �:

We now claim that Theorem 9.1 and thus Lemma 9.2 apply for Anonpert. If that were true, then the
conclusion of the proposition is achieved by subdividing the interval I into finitely many subintervals Jj ,
depending only on M, so that

(i) Lemma 9.2 applies in Jj ,

(ii) the size of the inhomogeneous term k zGk
N\L2 PH�1=2ŒI �

is small in Jj .
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Indeed, to verify the hypothesis of Theorem 9.1 with A replaced by Anonpert it suffices to leave QAD A,
unchanged, but instead replace the operators O and O 0 by

�
1�

P
k2K Pk

�
O and

�
1�

P
k2K Pk

�
O 0,

respectively, which are still disposable. �

9B. Extension and space-time Fourier projections. As in [Krieger and Tataru 2017], our parametrix
will be constructed by conjugating the usual Fourier representation formula for the˙-half-wave equations
by a renormalization operator Op.Ad.O˙/<0/; see (9-50). The renormalization operator is designed so
that it cancels the most dangerous part of the paradifferential term 2ŒPA˛;<�� ; @

˛P0u� (Theorem 9.9),
and furthermore enjoys nice mapping properties in functions spaces we use (Theorem 9.6).

9B1. Extension to a global-in-time wave. As in [Krieger and Tataru 2017], our parametrix construction
for (9-1) involves fine space-time Fourier localization of PA, which necessitates extension of PA outside I.
Here we specify the extension procedure, and collect some of its properties that will be used later.

We extend PA by homogeneous waves outside I. By (9-2), this extension (still denoted by PA) obeys
the global-in-time bound

kPAkS1 Ck�PAk`1X�1=2Cb1;�b1 .M: (9-20)

By Proposition 4.10, for any p � 2 note that

k�kIPkPAkLpL1 . kPkPAkLpL1ŒI �: (9-21)

Moreover, by (9-3), we haveX
k

kPk�PAk
L2 PH�1=2

D k�PAk
`1L2 PH�1=2ŒI �

< ıp: (9-22)

Next, we specify the extension of A0, and also of the relations (9-6) and (9-7) outside I. We first
extend QA by homogeneous wave outside I and QA0 by zero outside I. These extensions (still denoted by
QA and QA0, respectively) satisfy the global-in-time bound

k QAkS1 CkD QA0kY .M: (9-23)

In addition, we introduce the extension zG of P? QA by zero outside I. It obeys

kD zGkY .M: (9-24)

We emphasize that, in general, P? QA does not coincide with zG outside I.
Define zR0 and P zR as

zR0.t/D�A0.t/�O. QA`.t/; @t QA`.t// for t 2 I;

P zR.t/D�PA.t/�PO. QA`.t/; @x QA`.t//CPO 0. QA˛; @
˛ QA/ for t 2 I;

and 0 for t 62 I. By the hypotheses (9-6) and (9-7), we have

k zR0k`1.�L1L1\L2 PH�1=2/ < ı
2
p; (9-25)

kP zRk
`1.L1L2\L2 PH�1=2/

< ı2p: (9-26)
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We extend A0 outside I by solving the equation

�A0 DO.�I QA
`; @t QA`/C�I zR0: (9-27)

By (8-15), (8-17), (9-5), (9-23) and (9-25), it follows that

kDA0k`1Y .M 2; (9-28)

k�A0k`1L2 PH�1=2 . ı
2
p: (9-29)

Moreover, observe that the extension PA obeys the equation

�PADPO.�I QA
`; @x QA`/CPO 0.P` QA; �I@

` QA/

�PO 0. QA0; �I@t QA/CPO 0. zG`; �I@
` QA/C�IP zR: (9-30)

9B2. Space-time Fourier projections. Here we introduce the space-time Fourier projections needed for
definition of the renormalization operator. We denote by .�; �/2R�R4 the Fourier variables for the input,
and by .�; �/ 2 R�R4 the Fourier variables for the symbol, which will be constructed from PA. We
remind the reader that our sign convention is such that the characteristic cone for a˙-wave is f�˙j�jD 0g.

Consider the following (overlapping) decomposition of R1C4, which is symmetric and homogeneous
with respect to the origin:

D!;˙cone D
˚
sgn.�/.� ˙ � �!/ > 1

16
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
\
˚
sgn.�/.� ˙ � �!/ < 4

5
j� j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

D
!;˙
null D

˚
j� ˙ � �!j< 1

8
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

D
!;˙
out D

˚
sgn.�/.� ˙ � �!/ < � 1

16
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
[
˚
sgn.�/.� ˙ � �!/ > 2

3
j� j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

where �? D �� .� �!/!. See Figure 1 for a plot of these domains.
We construct a smooth partition of unity adapted to the decomposition D!;˙cone [D

!;˙
null [D

!;˙
out DR1C4

as follows. We begin with the preliminary definitions

z…
!;˙
in .�; �/Dm>1

�
4

5

�.� ˙ � �!/

.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

z…
!;˙
med .�; �/Dm>1

�
8

sgn.�/j�j.� ˙ � �!/
.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

z…
!;˙
out .�; �/Dm>1

�
�8

sgn.�/j�j.� ˙ � �!/
.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

where m>1.z/ W R! Œ0; 1� is a smooth cutoff to the region fz > 1g (i.e., equals 1 there), which vanishes
outside

˚
z > 5

6

	
. Then we define the symbols

…!;˙cone .�; �/D
z…
!;˙
med .�; �/�

z…
!;˙
in .�; �/; (9-31)

…
!;˙
null .�; �/D 1�

z…
!;˙
med .�; �/�

z…
!;˙
out .�; �/; (9-32)

…
!;˙
out .�; �/D z…

!;˙
out .�; �/C z…

!;˙
in .�; �/: (9-33)
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� �!

D
!;˙
out D

!;˙
null

� ˙ � �! D 01

D
!;˙
out D!;˙

cone

�?

j�j2 D �2

Figure 1. Sketch of D!;˙cone , D!;˙med and D!;˙out in the hyperplane f� D 1g with ˙ D �.
Note that the actual domains are defined to be slightly overlapping.

Observe that 1D…!;˙cone C…
!;˙
null C…

!;˙
out , and supp …!;˙� �D

!;˙
� for � 2 fcone; null; outg. Moreover,

by symmetry, …!;˙� preserves the real-valued property.
We also make use of a dyadic angular decomposition with respect to !. Given � > 0, we define the

symbol

…
!;˙
>�

.�; �/Dm>1

�
j†.!;� sgn.�/j�/

�

�
:

Furthermore, we define
…
!;˙
��

.�; �/D 1�…
!;˙
>�

.�; �/;

…
!;˙
�

.�; �/D .…
!;˙
>�
�…

!;˙
>�=2

/.�; �/:

Since these symbols are real-valued and odd, the corresponding multipliers (which we simply denote by
…
!;˙
>�

, …!;˙
��

and …!;˙
�

, respectively) preserve the real-valued property.
The regularity of the symbols …!;˙cone , …!;˙null and …!;˙out degenerates as j�?j ! 0; however, they

are well-behaved when composed with …!;˙
�

Ph. The following lemma will play a basic role for our
construction.

Lemma 9.3. For any fixed ˙, ! 2 S3, n 2 N, h 2 2R and � 2 fcone; null; outg, the multiplier10

�n@
.n/

�
.…

!;˙
� …

!;˙
�

Ph/ is disposable.

Proof. In this proof, we take hD 0 by scaling, and fix ˙DC. Let � 2 fcone; nullg.
We begin with some elementary reductions. First, since 1D…!;˙coneC…

!;˙
null C…

!;˙
out , and �n@.n/

�
…
!;˙
�

P0

is disposable, it suffices to prove the lemma for just …!;˙cone and …!;˙null . In this case, note that the symbol
…
!;˙
� …

!;˙
�

mh.�/ (where mh is the symbol of Ph) is compactly supported. Furthermore, the lemma is
obvious if � & 1, since then the symbol is smooth in �; �; � on the unit scale. Therefore, we may assume
that � � 1.

10We quantize .�; �/ 7! .Dt ;Dx/.
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We now consider the case n D 0, when there is no �-differentiation. We fix ! 2 S3. To ease our
computation, we introduce the null coordinate system .�; �; Q�?/, where

� D � � � �!; � D � C � �!;

and Q�? 2 R3 are the coordinates for the constant �; �-spaces. Observe that

� C � �!

j�?j2Cj� C � �!j2
D

�

j Q�?j2C �2
' 1; j�?j D j Q�?j ' �; j�j ' �

2; j�j ' 1 (9-34)

on the support of …!;˙� …
!;˙
�

m0. Moreover, � D �.�; �; Q�?/ and j�j D j�j.�; �; Q�?/ are comparable
to 1, and are also smooth on the unit scale on the support of …!;˙� …

!;˙
�

m0. Recalling the definition
of …!;˙� , it can be computed from (9-34) that

j@˛�@
ˇ
�@



Q�?
…!;˙� j. ��2jˇ j�j
 j on supp…!;˙� …

!;˙
�

m0:

On the other hand,

j@˛�@
ˇ
�@



Q�?
.…

!;˙
�

m0/j. ��j
 j on supp…!;˙� …
!;˙
�

m0;

so it follows that

j@˛�@
ˇ
�@



Q�?
.…!;˙� …

!;˙
�

/j. ��2jˇ j�j
 j: (9-35)

Furthermore, from (9-34) we have

jsupp …!;˙� …
!;˙
�

m0j. �5: (9-36)

From these bounds, we see that the multiplier …!;˙� …
!;˙
�

P0 has a kernel with a universal bound on the
mass, and thus is disposable.

Finally, we sketch the proof in the case n� 1. We first claim that

j@
.n/

�
.…!;˙� …

!;˙
�

m0/j. ��n: (9-37)

Clearly j@.n/
�
…
!;˙
�
j.n��n, so it suffices to verify that j@.n/

�
…
!;˙
� j.n��n on the support of…!;˙� …

!;˙
�

m0.
Note that

j@˛� .� �!/j.j˛j
�
�; j˛j D 1;

1; j˛j � 2
on supp…!;˙� …

!;˙
�

m0: (9-38)

Then recalling the definition of …!;˙� and using the chain rule, the claim (9-37) follows. We remark that
a differentiation in � C � �! loses ��2, but we gain back a factor of � through the chain rule and (9-38).

Next, we fix ! 2 S3 and start differentiating in .�; �; Q�?/. Using the chain rule, (9-38) and (9-34), it
can be proved that

j@˛�@
ˇ
�@



Q�?
@
.n/

�
.…!;˙� …

!;˙
�

/j. ��2jˇ j�j
 j��n: (9-39)

We omit the details. Combined with (9-36), we see that �n@.n/
�
…
!;˙
� …

!;˙
�

P0 is disposable. �
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As a corollary of the proof of Lemma 9.3, we obtain the following disposability statement.

Corollary 9.4. For any fixed ˙, ! 2 S3, h; k 2 2R and � 2 fcone; null; outg, the translation-invariant
bilinear operator on R1C4 with symbol

…
j�j�1�;˙
� …

j�j�1�;˙

2`
Ph.�; �/PkP

!
` .�/

is disposable.

Clearly, the same corollary holds with any of the continuous Littlewood–Paley projections Ph; Pk
replaced by the discrete analogue.

We also record a lemma which describes how the operator � acts in the presence of …!;˙cone…
!;˙
�

Ph.

Lemma 9.5. For any fixed˙, ! 2 S3, n 2 N and h 2 2R, the multiplier

.2�2h��2�/�n@.n/
�
.…!;˙cone…

!;˙
�

Ph/ (9-40)

is disposable.

Proof. We set hD 0 by scaling. The symbol of � is ��2C j�j2. For a fixed !, we introduce the null
coordinate system .�; �; �?/ as before. Then observe that

j@˛�@
ˇ
�@



Q�?
.��2Cj�j2/j D j@˛�@

ˇ
�@



Q�?
.���CjQ�?j

2/j. �2��2jˇ j�j
 j

on the support of …!;˙cone…
!;˙
�

P0. The lemma follows by combining this bound with the proof of
Lemma 9.3. �

9C. Pseudodifferential renormalization operator. In this subsection we define the pseudodifferential
renormalization operator, and describe its main properties.

9C1. Definition of the pseudodifferential renormalization operator. As mentioned before, the aim for
our renormalization operator is not to remove all of PA, but only the most harmful (nonperturbative) part
of it. This part is defined as

A
main;˙
j;<h

D…
!;˙

�j�jı
…!;˙coneP<h.PA/j : (9-41)

Precisely, given a direction !, it selects the region which is both near the cone in a parabolic fashion near
the direction !, but also away from !, on an angular scale that is slowly decreasing as the frequency �
of A approaches 0. We emphasize that this decomposition depends on !, which is what will make our
renormalization operator a pseudodifferential operator.

To account for the fact that our gauge group is noncommutative, and also to better take advantage of
previous work in this area, we divide the construction of the renormalization operator in two steps. The
first step is microlocal but linear, and mirrors the renormalization construction in the (MKG) case; see
[Krieger et al. 2015; Oh and Tataru 2018]. Precisely, we define the intermediate symbol

‰˙;<h D�L
!
��
�1
!?
A

main;˙
j;<h

!j : (9-42)

Here the operator L!
�
��1
!?

is chosen as a good approximate inverse for L!
˙

, within the frequency-
localization region for Amain;˙

j;<h
. In effect this frequency-localization region is chosen exactly so that this
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property holds within. This is based on the decomposition

�L!˙L
!
�C�!? D�;

which gives
L!˙L

!
��
�1
!?
D 1����1

!?
:

Given Amain;˙
j;<h

and ‰˙;<h as above, we define their Littlewood–Paley pieces as

A
main;˙
j;h

D
d

dh
A

main;˙
j;<h

; ‰˙;h D
d

dh
‰˙;<h:

Now we come to the second step in the construction of the renormalization operator. This step is
nonlinear but local, and is based on the construction of the renormalization operator in [Sterbenz and
Tataru 2010a] for the corresponding wave map problem. Precisely, we solve the ODE

d

dh
O<h;˙O

�1
<h;˙ D‰˙;h;

lim
h!�1

k@xO<h;˙.t; x; �/kL1 D 0:

(9-43)

Thus our renormalization is achieved via the paradifferential operator

Ad.O˙/<0;

where the localization to small frequencies is so that this operator preserves the unit dyadic frequency shell.
The parameter ı > 0 is a universal constant, which is chosen below so that the parametrix construction

go through. In particular, we take 0 < ı < 1
100

. Logically, it is fixed at the end of Section 10.

9C2. Properties of the pseudodifferential renormalization operator. Now we state the key properties
satisfied by the renormalization operator Ad.O˙/<0 that we just defined; see Theorems 9.6 and 9.9.
Proofs of these results are the subjects of Sections 10 and 11, respectively.

Theorem 9.6 (mapping properties of the pseudodifferential renormalization operator). Let A be a Lie-
algebra-valued spatial 1-form on I �R4 such that AD P<��A and

kPAkS1ŒI � �M0

for some �;M0 > 0. Let ‰˙;<h, ‰˙;h and O<h;˙ be defined on R1C4 as above from the homogeneous-
wave extension of PA. Let Z be any of the spaces L2x , N or N �.

(1) For � > 20, the following bounds hold:

� (boundedness)
kOp.Ad.O˙/<0/.t; x;D/P0kZ!Z .M0 1: (9-44)

� (dispersive estimates)
kOp.Ad.O˙/<0/.t; x;D/P0kS]0!S0

.M0 1: (9-45)

(2) For any " > 0, there exist �0.";M0/� 1 (independent of Ax) such that if � > �0.";M0/, then

� (derivative bounds)
kŒ@t ;Op.Ad.O˙/<0/.t; x;D/�P0kZ!Z . ": (9-46)
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� (approximate unitarity)

k.Op.Ad.O˙/<0/.t; x;D/Op.Ad.O�1˙ /<0/.D; s; y/� I /P0kZ!Z . "; (9-47)

where the implicit constants are universal.

(3) There exists 0 < ıo.M0/� 1 (independent of Ax) such that if , in addition to the above hypothesis,

kPAxk`1S1ŒI � < ıo.M0/; (9-48)

then (9-44) and (9-45) hold with universal constants. That is, for � > 20 we have:

� (boundedness with a universal constant)

kOp.Ad.O˙/<0/.t; x;D/P0kZ!Z . 1: (9-44)0

� (dispersive estimates with a universal constant)

kOp.Ad.O˙/<0/.t; x;D/P0kS]0!S0
. 1: (9-45)0

Here the frequency-localization operator P0 can easily be replaced by a more general localization to
fj�j ' 1g.

Remark 9.7. As we will see in the proof below, �0.";M0/'" logM0 and ıo.M0/�M0 1.

Remark 9.8. Note that the symbol of each of the above PDOs is independent of � D �0, and thus it
defines a PDO on R4 for each fixed t . By the mapping property Z!Z with Z D L2x , we mean that the
PDO maps L2x! L2x for each fixed t , with a constant uniform in t .

Theorem 9.9 (renormalization error). Let A˛ be a g-valued 1-form on I �R4 such that A˛ D P<��A˛
and kPAxkS1ŒI � �M for some �;M > 0. Let " > 0. Assume that � > �1.";M/ and (9-3)–(9-7) hold for
some functions �1.";M/� 1 and 0 < ıp.";M; �1/� 1 independent of A˛ (to be specified below). Let
‰˙;<h, ‰˙;h and O<h;˙ be defined as above from the homogeneous-wave extension of PAx . Then we
have

k.�p
PA

Op.Ad.O˙/<0/�Op.Ad.O˙/<0/�/P0kS]
0;˙

ŒI �!N0;˙ŒI �
< ": (9-49)

Remark 9.10. As we will see later, �1.";M/'" logM and ıp.";M; �1/�M;�1 ".

9D. Definition of the parametrix and proof of Theorem 9.1. Our parametrix is given by

u.t/D
X
˙

�
1

2
Op.Ad.O˙/<0/.t; x;D/e˙it jDjOp.Ad.O1˙/<0/.D; 0; y/.u0˙ i jDj

�1u1/

COp.Ad.O˙/<0/.t; x;D/
1

jDj
K˙Op.Ad.O�1˙ /<0/.D; s; y/f

�
; (9-50)

where

K˙g.t/D

Z t

0

e˙i.t�s/jDjg.s/ ds:

With this definition, the proof of Theorem 9.1 starting from Theorems 9.6 and 9.9 is essentially identical
to the corresponding proof in [Oh and Tataru 2018] and is omitted.
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10. Mapping properties of the renormalization operator

10A. Fixed-time pointwise bounds for the symbols ‰ and O. Here we state fixed-time pointwise bounds
for‰ andO. We borrow these estimates from [Krieger and Tataru 2017], while carefully noting dependence
of constants on the frequency envelope of AD Ax in S1. The bounds below are stated using continuous
Littlewood–Paley projections Ph, but we note that the same bounds hold for discrete Littlewood–Paley
projections as well.

We begin with pointwise bounds for the g-valued symbol ‰h;˙.t; x; �/.

Lemma 10.1. The following bounds hold:

(1) For m� 0 and 0� n < ı�1, we have

j@
.n/

�
@.m�1/x r‰

.�/

˙;h
.t; x; �/j. 2mh�

1
2
�n
kAhkS1 : (10-1)

When mD 0, we interpret the expression on the left-hand side as @n
�
‰
.�/

˙;h
.

(2) Let ht � s; x�yi2 D 1Cjt � sj2Cjx�yj2. We have

j‰˙;h.t; x; �/�‰˙;h.s; y; �/j.minf2hht � s; x�yi; 1gkAhkS1 : (10-2)

(3) Finally, for 1� n < ı�1 we have

j@
.n/

�
.‰˙;h.t; x; �/�‰˙;h.s; y; �//j.minf2hht � s; x�yi; 1g2�.n�

1
2
/ıh
kAhkS1 : (10-3)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.3]. As a corollary of (10-1) we have

jr‰˙;hj. 2hkAhkS1 : (10-4)

Next, we consider the G -valued symbol O<h;˙.

Lemma 10.2. Let ch be an admissible frequency envelope for A in S1. Then the following bounds hold:

(1) For 0� n < ı�1, we have

j@
.n/

�
.O<h;˙/It;x.t; x; �/j.kAk

S1
2.1�nı/hch: (10-5)

(2) We have

d.O<h;˙.t; x; �/O
�1
<h;˙.s; y; �/; Id/.kAkS1 log.1C 2hht � s; x�yi/ch: (10-6)

(3) Finally, for 1� n < ı�1, we have

j@
.n�1/

�
.O<h;˙.t; x; �/O

�1
<h;˙.s; y; �//I� j

.kAk
S1

minf2hht � s; x�yi; 1g1�.n�
1
2
/ı.1Cht � s; x�yi/.n�

1
2
/ıch: (10-7)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.7].
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10B. Decomposability calculus. To handle symbol multiplications, we use the decomposability calculus
introduced in [Rodnianski and Tao 2004; Krieger and Sterbenz 2013], which allows us to roughly regard
these operations as multiplication by a function inLpLq. In the present work, we need an interval-localized
version in order to exploit small divisible norms.

Given � 2 2�N, consider a covering of the unit sphere S3 D f! 2 R4 W j�j D 1g by solid angular caps
of the form f! 2 S3 W j� �!j< �g with uniformly finite overlaps. We index these caps by their centers
� 2 S3, and denote by f.m�

�
/2.!/g the associated nonnegative smooth partition of unity on S3.

Let I be an interval. Consider a End.g/-valued symbol c.t; x; �/ on It � R4x � R4
�
, which is zero

homogeneous in �, i.e., depends only on the angular variable ! D �=j�j. We say that c.t; x; �/ is
decomposable in LqLr ŒI � if c D

P
� c

.�/, � 2 2�N andX
�

kc.�/kD�LqLr ŒI � <1; (10-8)

where

kc.�/kD�LqLr ŒI � D





� 40X
nD0

X
�

sup
!
.m

�

�
.!/k�n@

.n/

�
c.�/kLrx /

2

�1
2





L
q
t ŒI �

: (10-9)

We define kckDLqLr ŒI � to be the infimum of (10-8) over all possible decompositions c D
P
� c

.�/. In
what follows, we will use the convention of omitting ŒI � when I D R.

In the following lemma, we collect some basic properties of the symbol class DLqLr ŒI �.

Lemma 10.3. (1) For any two intervals such that I � I 0, we have

kckDLqLr ŒI � � kckDLqLr ŒI 0�:

(2) For any symbols c 2DLq1Lr1 ŒI � and d 2DLq2Lr2 ŒI �, its product obeys the Hölder-type bound

kcdkDLqt L
r
xŒI �
. kckDLq1Lr1 ŒI �kdkDLq2Lr2 ŒI �;

where 1� q1; q2; q; r1; r2; r �1, 1
q1
C

1
q2
D

1
q

and 1
r1
C

1
r2
D

1
r

.

(3) Let a.t; x; �/ be an End.g/-valued smooth symbol on I �R4x �R4
�

whose left quantization Op.a/
satisfies the fixed-time bound

sup
t2I

kOp.a/.t; x;D/kL2!L2 � Ca:

Then for any symbol c 2DLqLr, we have the space-time bound

kOp.ac/.t; x;D/kLq1L2ŒI �!Lq2Lr2 ŒI � . CakckDLqLr ŒI �;

where 1� q1; q2; q; r2; r �1, 1
q1
C
1
q
D

1
q2

and 1
2
C
1
r
D

1
r2

. An analogous statement holds in the
case of right quantization.

The proof is essentially the same as the global-in-time versions in [Krieger and Sterbenz 2013,
Chapter 10] and [Krieger et al. 2015, Lemma 7.1]; we omit the details.
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10C. Decomposability bounds for A, ‰ and O. Here we collect some decomposability bounds for A,
‰ and O that we will use in our proof of Theorems 9.6 and 9.9. As before, we state the bounds using
continuous Littlewood–Paley projections Ph, but note that the same bounds hold for discrete Littlewood–
Paley projections as well. For simplicity of notation, we will usually write kGkDLqLr D kad.G/kDLqLr
for a g-valued symbol G and kOkDLqLr D kAd.O/kDLqLr for a G -valued symbol O.

For any � > 0, h 2 R and � 2 fcone; null; outg, recall the definition

A
.�/

˛;h;�;˙
D Ph…

!;˙
� …

!;˙
�

.PA/˛:

As before, we will often omit the subscript x for simplicity, and write A.�/
h;�;˙

D A
.�/

x;h;�;˙
etc.

These symbols obey the following global-in-time decomposability bounds:

Lemma 10.4. For q � 2 and � 2 fcone; null; outg, we have

kA
.�/

h;�;˙
�!kDLqL1 . 2.1�

1
q
/h�

5
2
� 2
q kAhkS1 ; (10-10)

kA
.�/

0;h;�;˙
kDLqL1 . 2.1�

1
q
/h�

5
2
� 2
q kA0;hkY 1 : (10-11)

Furthermore, for � D cone we have

k�A.�/
h;cone;˙ �!kDLqL1 . 2

.3� 1
p
/h�

9
2
� 2
q kAhkS1 ; (10-12)

k��1
!?
�A.�/

h;cone;˙ �!kDLqL1 . 2
.1� 1

p
/h�

5
2
� 2
q kAhkS1 : (10-13)

Proof. The symbols .�@!/n.…
!;˙
� …

!;˙
�

/ are smooth, homogeneous and uniformly bounded, and the
corresponding multipliers are disposable for fixed �. Then the bounds (10-10) and (10-11) follow by
Bernstein’s inequality using the Strichartz component of the S1 norm, and, respectively, the L2 PH 1=2

component of the rY 1 norm.
For the bounds (10-12) and (10-13) we need in addition to consider the size of the symbol of �, and,

respectively, ��1
!?

, within the support of Ph…
!;˙
cone…

!;˙
�

. This is �222h, respectively ��22�2h. Precisely,
we have the representations

�Ph…!;˙cone…
!;˙
�
D �222hO…!;˙cone…

!;˙
�

; ��1
!?
Ph…

!;˙
� …

!;˙
�
D ��22�2hO…!;˙cone…

!;˙
�

;

with O disposable; see, e.g., Lemma 9.5. Then (10-12) and (10-13) immediately follow from (10-10). �

Next, we consider the phase ‰˙, which was defined in (9-42). Given � > 0 and h 2 R, let

‰
.�/

h;˙
D Ph…

!;˙
�

‰˙:

We have the following global-in-time decomposability bounds.

Lemma 10.5. For q; r � 2 and 2
q
C
3
r
�
3
2

, we have

k.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr . 2�.

1
q
C 4
r
/h�

1
2
� 2
q
� 3
r kAhkS1 : (10-14)

In addition, suppose that � . 2a for some a 2 �N. Then for q; r � 2, we also have

kQhC2a.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr . 2�.

1
q
C 4
r
/h2�

2
q
a�

1
2
� 3
r kAhkS1 : (10-15)
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Furthermore,
k�‰.�/

h;˙
kDL2L1 . �

3
2 2

3
2
h
kAhkS1 : (10-16)

Proof. Observing that within the support of Ph…
!;˙
cone…

!;˙
�

the symbol L���1
!?

has the form 2�h��2O

with O disposable and depending smoothly on ! on the � scale, the first bound (10-14) is again a direct
consequence of the Strichartz bounds in the S1 norm for A.

For (10-15) it suffices to prove the case pD q D 2 and then use Bernstein’s inequality. But in this case
it suffices to use the X1;1=21 component of the S1 norm at fixed modulation.

For the last bound (10-16) it suffices to combine the L2L1 case of (10-14) with Lemma 9.5. �

We now consider the G -valued symbol O<h;˙, which was defined in (9-43). It obeys the following
global-in-time decomposability bounds.

Lemma 10.6. Let ch be an admissible frequency envelope for A in S1. Then for any q > 4, we have

k.O<h;˙Ix; O<h;˙It /kDLqL1 .kAk
S1
2.1�

1
q
/hch: (10-17)

When q D 2, an analogous bound with a slight loss holds:

k.O<h;˙Ix; O<h;˙It /kDL2L1 .kAkS1 2
1
2
.1�ı/hch: (10-18)

Proof. These bounds are a consequence of the ‰.�/
h;˙

bounds in the previous lemma. The proof is similar
to the proof of the similar result in [Krieger and Tataru 2017, Lemma 7.9] and is omitted. We note that
the constraint q > 4 in the first bound is to prevent losses in the � summation in (10-14). �

Finally, we consider interval-localized decomposability bounds, which will be needed to exploit
divisibility (i.e., the hypothesis (9-3)) to gain smallness.

Lemma 10.7. Let jI j � 2�h��, where h 2 R and � � 0. For q � 2, we have

k‰
.�/

h
kDLqL1ŒI � . 2C���C 2�hkAhkLqL1ŒI �; (10-19)

k��1
!?
�.! �A.�/

h;cone;˙/kDLqL1ŒI � . 2
C���C kAhkLqL1ŒI �; (10-20)

k! �A
.�/

h
kDLqL1ŒI � . 2C���C kAhkLqL1ŒI �; (10-21)

k! �A
.�/

0;h
kDLqL1ŒI � . 2C���C kA0;hkLqL1ŒI �: (10-22)

Proof. We will prove (10-19), and leave the similar cases of (10-20), (10-21), (10-22) to the reader.
By scaling, we set hD 0. By the definition of the class DLqL1ŒI �, we have

k‰
.�/
0 kDLqL1ŒI � . �

�2

� 40X
nD0

X
�

sup
!
km

�

�
.!/�n@

.n/

�
…!�…

!
coneP0.! �PA/k

2
LqL1ŒI �

�1
2

. ��C
40X
nD0

k�n@
.n/

�
…!�…

!
coneP0.! �PA/kLqL1ŒI �:

Fix n 2 Œ1; 40� and ! 2S3. From the proof of Lemma 9.3, we see that the projection �n
0

@
.n0/

�
…!
�
…!coneP0,

when viewed as a Fourier multiplier in .�; �/, has a symbol which is supported in a space-time cube of
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radius . 1, and its derivatives (up to 40, say) are bounded by ��C for some large universal constant C .
Moreover, we have j�n

00

@
.n00/

�
!j.n00 1. Denoting by �0I a generalized cutoff adapted at the unit scale as

in (4-22), we have

k�n@
.n/

�
…!�…

!
coneP0.! �PA/kLqL1ŒI � . �

�C
k�0IP0AkLqL1 :

Recall that A is extended outside I by homogeneous waves. By Proposition 4.10, the last expression is
bounded by

. 2C���C kP0AkLqL1ŒI �;

which proves (10-19). �

10D. Collection of symbol bounds. Before we continue, we introduce the quantity M� , which collects
various symbol bounds that we have so far.

We fix large enough N and a small universal constant ı� > 0. Then we let M� > 0 be the minimal
constant such that:

� The following pointwise bounds hold for all 0� n� ı�1 and 0�m�N :

j@
.n/

�
@.m�1/x r‰

.�/

˙;h
j � 2mh�

1
2
�nM� ;

j‰˙;h.t;x;�/�‰˙;h.s;y;�/j �minf2hht�s;x�yi;1gM� ;

j@
.n/

�
.‰˙;h.t;x;�/�‰˙;h.s;y;�//j �minf2hht�s;x�yi;1g2�.n�

1
2
/ıhM� ;

j@
.n/

�
.O<h;˙/It;x.t;x;�/j � 2

.1�nı/hM� ;

d.O<h;˙.t;x;�/O
�1
<h;˙.s;y;�/; Id/� log.1C2hht�s;x�yi/M� ;

j@
.n�1/

�
.O<h;˙.t;x;�/O

�1
<h;˙.s;y;�//I� j �minf2hht�s;x�yi;1g1�.n�

1
2
/ı.1Cht�s;x�yi/.n�

1
2
/ıM� :

� The following decomposability bounds hold for all � 2 fcone; null; outg, q; r � 2 and 2
q
C
3
r
�
3
2

:

kA
.�/

h;�;˙
�!kDLqL1 �2

.1� 1
q
/h�

5
2
� 2
qM� ;

kA
.�/

0;h;�;˙
kDLqL1 �2

.1� 1
q
/h�

5
2
� 2
qM� ;

k�A.�/
h;cone;˙ �!kDLqL1 �2

.3� 1
p
/h�

9
2
� 2
qM� ;

k��1
!?
�A.�/

h;cone;˙ �!kDLqL1 �2
.1� 1

p
/h�

5
2
� 2
qM� ;

k.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr �2

�. 1
q
C 4
r
/h�

1
2
� 2
q
� 3
rM� ;

kQhC2a.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr �2

�. 1
q
C 4
r
/h2�

2
q
a�

1
2
� 3
rM� .� . 2a . 1/;

k�‰.�/
h;˙
kDL2L1 ��

3
2 2

3
2
hM� ;

k.O<h;˙Ix; O<h;˙It /kDLqL1 �2
.1� 1

q
/hM� .q � 4C ı� /;

k.O<h;˙Ix; O<h;˙It /kDL2L1 �2
1
2
.1�ı/hM� :
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By the preceding results, there exists an M� such that

M� .M kAk`1S1 CkA0k`1Y 1 : (10-23)

In particular, note that all of the above symbol bounds are small if kAk`1S1 and kA0k`1Y 1 are.

10E. Oscillatory integral bounds. Given a smooth function a, let

Ka<0.t; xI s; y/D

Z
Ad.O<h;˙/<0.t; x; �/a.�/e

˙i.t�s/j�jei��.x�y/ Ad.O�1<h;˙/<0.�; y; s/
d�

.2�/4
:

Lemma 10.8. For a sufficiently small universal constant ı > 0, the following bounds hold for the kernel
Ka<0.t; xI s; y/:

(1) Assume that a is a smooth bump function on the unit scale. Then

jKa<0.t; xI s; y/j.M� ht � si
� 3
2 hjt � sj � jx�yji�100: (10-24)

(2) Let aD aC be a smooth bump function on a radially oriented rectangular box C of size 2k � .2kC`/3,
where k; `� 0. Then

jKa<0.t; xI s; y/j.M� 2
4kC3`

h22.kC`/.t � s/i�
3
2 h2k.jt � sj � jx�yj/i�100: (10-25)

(3) Let a D aC be a smooth bump function on a radially oriented rectangular box C of size 1� .2`/3,
where `� 0. Let ! 2 S3 be at angle' 2` from C. Then, for t � s D .x�y/ �!CO.1/,

jKa<0.t; xI s; y/j.M� 2
3`
h22`.t � s/i�100h2`.x0�y0/i�100; (10-26)

where x0 D x� .x �!/! and y0 D y � .y �!/!.

This lemma is proved as in [Krieger and Tataru 2017, Section 8.1] by stationary phase, using the
symbol bounds in Lemmas 10.1 and 10.2.

10F. Fixed-time L2 bounds. The goal of this subsection is to prove (9-44), (9-46), (9-47) and (9-44)0

for Z D L2. The common key ingredient is the following fixed-time L2 estimate:

Proposition 10.9. For ı > 0 sufficiently small, there exists ı.0/ > 0 such that the following statement
holds. Let hC 10� k � 0. Then for every fixed t , we have

�Op.Ad.O<h;˙/<k/.x;D/Op.Ad.O�1<h;˙/<k/.D;y/�1

�
P0



L2!L2

.M� 2
ı.0/hC2�10.k�h/: (10-27)

Lemma 10.10. There exists ı.0/ > 0 such that the following statement holds. Let h � 0 and a.�/ be a
smooth bump function adapted to fj�j. 1g. Then for every fixed t , we have

kOp.Ad.O<h;˙//.x;D/a.D/Op.Ad.O�1<h;˙//.D; y/� a.D/kL2!L2 .M� 2
ı.0/h: (10-28)

Proof. For simplicity of notation, we omit ˙ in O<h;˙, O�1
<h;˙

and ‰˙;h. Following the hypothesis, we
fix t 2 R.
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The idea is to derive a kernel estimate as in Lemma 10.8, but taking into account the frequency gap.
The kernel of the End.g/-valued operator in (10-28) is given by

K<h.x; y/D

Z
.Ad.O<h.x; �/O

�1
<h.y; �//� 1/a.�/e

i.x�y/�� d�

.2�/4
: (10-29)

We obtain two different estimates depending on whether jx�yj. 2�ı.0/h or jx�yj& 2�ı.0/h.

Case 1: jx�yj. 2�ı.0/h. In this case, we use the fundamental theorem of calculus and simply bound

jK<h.x; y/j.
“ h

�1

ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
ja.�/j d` d�

. sup
j�j.1

Z h

�1

ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
d`:

By the algebraic property

OŒu; v�O�1 D ŒOuO�1; OvO�1�; O 2G ; u; v 2 g;

we have

ad.u/Ad.O/D Ad.O/ ad.Ad.O�1/u/; Ad.O�1/ ad.u/D ad.Ad.O�1/u/Ad.O�1/:

Therefore,

d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

D ad.‰`/Ad.O<`/.x; �/Ad.O�1<` /.y; �/�Ad.O<`/.x; �/Ad.O�1<` / ad.‰`/.y; �/

D Ad.O<`/.x; �/ ad.Ad.O�1<` /‰`.x; �/�Ad.O�1<` /‰`.y; �//Ad.O�1<` /.y; �/:

Then using the fact that the norm on End.g/ is invariant under Ad.O/ for any O 2G, we haveˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
D jAd.O�1<` /‰`.x; �/�Ad.O�1<` /‰`.y; �/j:

By the symbol bounds (10-5) and (10-4), we have j@x.Ad.O�1
<`
/‰`/j.M� 2`. Thus, by the mean value

theorem, ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
.M� 2

`2�ı.0/h:

Integrating in `, we arrive at
jK<h.x; y/j.M� 2

.1�ı.0//h: (10-30)

Case 2: jx�yj& 2�ı.0/h. Here, the idea is to repeatedly integrate by parts in �. Since

@� Ad.O<h.x; �/O
�1
<h.y; �//D ad..O<h.x; �/O

�1
<h.y; �//I�/Ad.O<h.x; �/O

�1
<h.y; �//;

the symbol bound (10-5) implies

j@
.n/

�
Ad.O<h.x; �/O

�1
<h.y; �//j.n;M� 2

ıjn� 1
2
jh:
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Therefore, integrating by parts in � for N times in (10-29), we obtain

jK<h.x; y/j.ı;N;M�
1

jx�yj.1�ı/NC
1
2
ı

for jx�yj& 2�ı.0/h; 0�N < ı�1:

Finally, combining Cases 1 and 2, we obtain

sup
x

Z
jK<h.x; y/j dyC sup

y

Z
jK<h.x; y/j dx .M� 2

.1�5ı.0//h . 2ı.0/h

provided that ı.0/ is small enough. Bound (10-28) now follows. �

Corollary 10.11. For any k 2 R we have

kOp.Ad.O<h;˙//.x;D/P0kL2!L2 .M� 1; (10-31)

kOp.Ad.O<h;˙/<k/.x;D/P0kL2!L2 .M� 1: (10-32)

Proof. The first bound follows by a T T �-argument from Lemma 10.10. Next, note that Ad.O<h;˙/<k.x;�/
is simply a smooth average of translates of Ad.O<h;˙/.x; �/ in x. Therefore, the second bound follows
from the first by translation invariance of L2. �

Next, we borrow a lemma from [Krieger and Tataru 2017], which handles Ad.O<h;˙/k when k is
large compared to h.

Lemma 10.12. Let t 2 R, h� 0 and k � hC 10. Then we have

kOp.Ad.O<h;˙/k/.t; x;D/P0kL2!L2 .M� 2
�10.k�h/: (10-33)

Furthermore, for 1� q � p �1, h� 0 and k � hC 10, we have

kOp.Ad.O<h;˙/k/.t; x;D/P0kLpL2!LqL2 .M� 2
. 1
p
� 1
q
/h2�10.k�h/: (10-34)

Same estimates hold for the right quantization Op.Ad.O<h;˙/k.D; s; y/.

Remark 10.13. The specific factor 10 in the gain 2�10.k�h/ is not of any significance, but it is important
to note that this number is much bigger than 1; see the proof of Proposition 10.14 below.

For the proof, we refer to [Krieger and Tataru 2017, Proof of Lemma 8.4] or [Oh and Tataru 2018,
Proof of Lemma 9.11].

Proof of Proposition 10.9. Due to the frequency localization of the symbols in (10-27), we can harmlessly
insert a multiplier a.D/ whose symbol is a smooth bump function a.�/ adapted to fj�j. 1g, and then
discard P0 to replace (10-27) by

kOp.Ad.O<h;˙/<k/.x;D/a.D/Op.Ad.O�1<h;˙/<k/.D; y/� a.D/kL2!L2 .M� 2
ı.0/hC 2�10.k�h/:

Now it suffices to combine the last two lemmas. �

Proof of (9-44), (9-46), (9-47) and (9-44)0 in the case Z D L2. By a T T � argument, the bounds (9-44)
and (9-44)0 are immediate consequences of (10-27). Also from (10-27) we obtain the estimate (9-47)
with a constant 2�ı.0/�, which is less than " if � is chosen large enough depending only on M0.
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Finally, for (9-46) we compute

@t .Ad.O//<0 D .ad.OIt /Ad.O//<0I

therefore it suffices to combine the decomposability bound (10-17) for OIt with q D1 with (10-31).
The former bound yields a 2�� factor which again yields " smallness if � is large enough. �

10G. Space-time L2L2 bounds. Next, we establish (9-44), (9-46), (9-47) and (9-44)0 when Z D N
or N �. As we will see below, (9-44), (9-46) and (9-44)0 follow from the arguments in [Krieger and Tataru
2017]. In the bulk of this subsection, we focus on the task of establishing (9-47).

To state the key estimates, it is convenient to set up some notation. We introduce the compound
G -valued symbol

O<h;˙.t; x; s; y; �/DO<h;˙.t; x; �/O
�1
<h;˙.s; y; �/:

The quantization of Ad.O<h;˙/, which is an End.g/-valued compound symbol, takes the form

Op.Ad.O<h;˙//.t; x;D; y; s/D Op.Ad.O<h;˙//.t; x;D/Op.Ad.O�1<h;˙//.D; y; s/:

Given a compound End.g/-valued symbol a.t; x; s; y; �/, we define the double space-time frequency
projection

.a/�k.t; x; s; y; �/D S
t;x
<k
S
s;y

<k
a.t; x; s; y; �/:

Therefore, according to our conventions,

Ad.O<h;˙/�k.t; x; s; y; �/D Ad.O<h;˙/<k.t; x; �/Ad.O�1<h;˙/<k.s; y; �/:

Proposition 10.14. For ı > 0 sufficiently small, there exists ı.1/ such that the following bound holds for
any h < �20: 

�Op.Ad.O<h;˙/�0/.t; x;D; t; y/� 1

�
P0



N�!X

0;1=2
1
.M� 2

ı.1/h: (10-35)

Before we begin the proof, we state a lemma for passing to a double space-time frequency localization
of Ad.O<h;˙/, which is used several times in our argument below.

Lemma 10.15. For 2� q �1 and hC 10� k � 0, we have

�Op.Ad.O<h;˙/�0/�Op.Ad.O<h;˙/�k/
�
P0



LpL2!LqL2

.M� 2
. 1
p
� 1
q
/h210.h�k/: (10-36)

This lemma is a straightforward consequence of Lemma 10.12; we omit the proof.

Proof of (10-35). We follow [Oh and Tataru 2018, Proof of Proposition 9.13]. For simplicity, we omit ˙
in O<h;˙, O<h;˙ etc.

Step 1: high-modulation input. For any j 2 Z and j 0 � j � 5, we claim that

kQj .Op.Ad.O<h/�0/� 1/P0Qj 0kN�!X0;1=21
.M� 2

ı.0/h2
1
2
.j�j 0/: (10-37)
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Step 2: low modulation input, 1
2
h� j. Here, we take care of the easy case 1

2
h� j. Under this assumption,

we claim that

kQj .Op.Ad.O<h/�0/� 1/P0Q<j�5kN�!X0;1=21
.M� 2

4h: (10-38)

Note that

Qj .Op.Ad.O<h/�j�5/� 1/P0Q<j�5 D 0:

Thus, using the L1L2 portion of N �, it suffices to prove

kQj .Op.Ad.O<h/�0�Ad.O<h/�j�5/P0Q<j�5kN�!X0;1=21
.M� 2

4h:

Since Qj and Q<j�5 are disposable in L2L2 and L1L2, respectively, this estimate follows from
Lemma 10.15.

Step 3: low modulation input, j < 1
2
h, main decomposition. The goal of Steps 3–6 is to establish

kQj .Op.Ad.O<h/�0/�Ad.O
<jCQıh

/�0/P0Q<j�5kN�!X0;1=21
.M� 2

ı.0/h; (10-39)

provided that j C Qıh� h.
At the level of End.g/-valued compound symbols, we expand

Ad.O<h/�Ad.O
<jCQıh

/D LCQC C;

where

LD
Z
jCQıh�`�h

L
`;<jCQıh

d`;

QD
Z
jCQıh�`0�`�h

Q
`;`0;<jCQıh

d`0 d`;

C D
Z
jCQıh�`00�`0�`�h

C`;`0;`00;<`00 d`00 d`0 d`;

and the integrands L`;<k , Q`;`0;<k and C`;`0;`00;<k are defined recursively as

L`;<k.t;x;s;y;�/D ad.‰`/.t;x;�/Ad.O<k/.t;x;s;y;�/�Ad.O<k/.t;x;s;y;�/ad.‰`/.s;y;�/;

Q`;`0;<k.t;x;s;y;�/D ad.‰`/.t;x;�/L`0;<k.t;x;s;y;�/�L`0;<k.t;x;s;y;�/ad.‰`/.s;y;�/;

C`;`0;`00;<k.t;x;s;y;�/D ad.‰`/.t;x;�/Q`0;`00;<k.t;x;s;y;�/�Q`0;`00;<k.t;x;s;y;�/ad.‰`/.s;y;�/:

The three terms L`;<k , Q`;`0;<k and C`;`0;`00;<k are successively considered in the next three steps.

Step 4: low modulation input, j < 1
2
h, contribution of L. Our goal here is to prove

kQjL�0P0Q<j�5kN�!X0;1=21
.M� 2

ı.0/h: (10-40)

We introduce

L`;<k;�k0 D ad.‰`/.t; x; �/Ad.O<k/�k0.t; x; s; y; �/;�Ad.O<k/�k0.t; x; s; y; �/ ad.‰`/.s; y; �/

L`;<�1 D ad.‰`/.t; x; �/� ad.‰`/.s; y; �/



362 SUNG-JIN OH AND DANIEL TATARU

and take the decomposition

LD
Z
jCQıh�`�h

.L
`;<jCQıh

�L
`;<jCQıh;�j�5

/ d`C

Z
j�10Qıh�`�h

L
`;<jCQıh;�j�5

d`

C

Z
jCQıh�`�j�10Qıh

.L
`;<jCQıh;�j�5

�L`;<�1/ d`C
Z
jCQıh�`�j�10Qıh

L`;<�1 d`

DW L.1/CL.2/CL.3/CL.4/:

Step 4.1: low modulation input, j < 1
2
h, contribution of L.1/. For this term we can add a double frequency

localization� C on L
`;<jCQıh

and then harmlessly discard the double� 0 localization in (10-40). Then
it suffices to prove that for ` > j C ım we have

kQj Op.L
`;<jCQıh;�C

�L
`;<jCQıh;�j�5

/P0Q<j�5kL1L2!L2 .M� 2
� 1
6
Œ`�.jCQıh/�2.10C

1
2
/Qıh;

and then integrate with respect to `. But this is a consequence of the decomposability bound (10-14) with
q D 6 and r D1, together with the bound (10-34) with p D 6 and q D 2.

Step 4.2: low modulation input, j < 1
2
h, contribution of L.2/. Here as well as in the next two cases the

� 0 localization in ` has no effect and is discarded. The two terms in L
`;<jCQıh;�j�5

are similar; we
restrict our attention to the first one. Consider now the operator

Qj Op.ad.‰`/Ad.O
<jCQıh

/�j�5/Q<j�5 D
X
�

Qj Op.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5/Q<j�5:

The important observation here is that, because of the geometry of the cone, the frequency localizations
for both Ad.O<jCtdh/�j�5/ and ‰.�/

`
force a large angle � > 2.j�`/=2, or else the above operator

vanishes.
Given this bound for � , we can now use the decomposability bound (10-14) with q D 2 and r D1

combined with (10-34) with p D1 and q D1 to obtain

kOp.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5/P0kL1L2!L2 .M� 2

� 1
2
j 2

1
2
.j�`/��

1
2 ;

which after � summation in the range � > 2
1
2
.j�`/ yields

kQj Op.L.2//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j 2

5
2
Qıh;

which suffices.

Step 4.3: low modulation input, j < 1
2
h, contribution of L.3/. Here we have the same angle constraint as

above but this levels off for ` < j, namely � > 2�.`�j /C=2. However, we can now replace (10-32) with
(10-27) to obtain

kOp.ad.‰.�/
`
/.Ad.O

<jCQıh
/�j�5� I //P0kL1L2!L2 .M� 2

� 1
2
j 2�

1
2
.`�j /��

1
2 .2ı.0/.jC

Qıh/
C 210

Qıh/;

which after � and ` summation yields

kQj Op.L.3//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j .2.ı.0/�

1
4
Qı/h
C 29

Qıh/:

This suffices provided that Qı is small enough Qı < ı.0/.
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Step 4.4: low modulation input, j < 1
2
h, contribution of L.4/. Here we have the same range j � Qıh <

` < j C 10 Qıh for `. We also have the same constraint on the angle � > 2�.`�j /C=2 but this is no longer
relevant in this case, as we will gain in frequency, and this can override any angular losses.

This time we are able to take advantage of the difference structure for ‰. Precisely, it suffices to show
that for a, a localized at frequency 1, we have

kOp.ad.‰.�/
`
//.t; x;D/a.D/�a.D/Op.ad.‰.�/

`
//.t; x;D/kL1L2!LqL2 .M� 2

� 1
q
`2`��C : (10-41)

But this was already proved in [Oh and Tataru 2018, (9.40)].

Step 5: low modulation input, j < 1
2
h, contribution of Q. We proceed in the same manner as in the case

of L. Defining the symbols

Q`;`0;<k;�k0 D ad.‰`/.t; x; �/L`0;<k;�k0.t; x; s; y; �/�L`0;<k;�k0.t; x; s; y; �/ ad.‰`/.s; y; �/;

Q`;`0;<�1 D ad.‰`/.t; x; �/L`0;<�1.t; x; s; y; �/�L`0;<�1.t; x; s; y; �/ ad.‰`/.s; y; �/;

we decompose Q as

QD
Z
jCQıh�`0�`�h

.Q
`;`0;<jCQıh

�Q
`;`0;<jCQıh;�j�10

/ d`0 d`

C

Z
jCQıh�`0�`�h

j�10Qıh�`

Q
`;`0;<jCQıh;�j�10

d`0 d`

C

Z
jCQıh�`0�`�j�10Qıh

.Q
`;`0;<jCQıh;�j�10

�Q`;`0;<�1/ d`0 d`

C

Z
jCQıh�`0�`�j�10Qıh

Q`;`0;<�1 d`0 d`

DWQ.1/CQ.2/CQ.3/CQ.4/

Then we consider each term separately.

Step 5.1: low modulation input, j < 1
2
h, contribution of Q.1/. Proceeding as in Step 4.1, we have

Q�1 D
Z
jCQıh�`0�`�h

.Q
`;`0;<jCQıh;�C

�Q
`;`0;<jCQıh;�j�5

/�0 d`
0 d`

and we can again harmlessly discard the outer� 0. Applying the decomposability bound (10-14) with
q D 6 for ‰` and with q D1 for ‰`0 and r D1, together with the bound (10-34) with p D1 and
q D 3, we obtain

kQ
`;`0;<jCQıh;�C

�Q
`;`0;<jCQıh;�j�5

kL1L2!L2 .M� 2
� 1
6
Œ`�.jCQıh/�2.10C

1
2
/Qıh:

Summing up with respect to ` and `0 we obtain

kOp.Q.1//P0kL1L2!L2 .M� 2
10Qıh;

which suffices.
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Step 5.2: low modulation input, j < 1
2
h, contribution of Q.2/. Here and also for Q.3/ and Q.4/ we can

remove the outer frequency localization� 0, which does nothing. The expression Q.2/ contains four
terms depending on whether ‰` and ‰`0 act on the left or on the right. We consider one of them, for
which we need to bound the operator

Qj Op.ad.‰`/Ad.O
<jCQıh

/�j�5 ad.‰`0//Q<j�5P0:

We decompose with respect to angles intoX
�;� 0

Qj Op.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5 ad.‰.�

0/

`0
//Q<j�5P0

and consider the nontrivial scenarios. This is as in Step 5.2 but now we have two angles, which must
satisfy nonexclusively

either � > 2
1
2
.j�`/; or � 0 > 2

1
2
.j�`0/:

We can now use the decomposability bound (10-14) with q D 3 and r D1 for the large11 angle and
q D 6 and r D1 for the other angle combined with (10-34) with p D1 and q D1 to obtain either

kOp.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5 ad.‰.�

0/

`0
//P0kL1L2!L2 .M� 2

� 1
2
j 2

1
3
.j�`/��

1
6 2

1
6
.j�`0/� 0

1
6

or the same bound with the pairs .l; �/ and .l 0; � 0/ reversed. Summing with respect to `, `0, and also with
respect to � , � 0 subject to the constraints above, we obtain

kQj Op.Q.2//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j 2

5
3
Qıh;

which suffices.

Step 5.3: low modulation input, j < 1
2
h, contribution of Q.3/. We repeat the angle localization analysis

in the previous step, but as in Step 4.3, we again replace (10-32) with (10-27). The outcome is similar to
the one in Step 4.3; details are omitted.

Step 5.4: low modulation input, j < 1
2
h, contribution of Q.4/. Again we apply the same angle localization

analysis as in the previous two steps. However, as in Step 4.4, we also need to exploit the difference
between one of the two ‰’s and its adjoint. Consider one such term, e.g.,

ad.‰.�/
`
/.t; x; �/Œad.‰.�

0/

`0
/.t; x; �/� ad.‰.�

0/

`0
/.�; y; s/�:

For this it suffices to apply the disposability bound (10-14) for ‰.�/
`

combined with (10-41). The choice
of the exponents is no longer important. We obtain

kOp.Q.4//P0kL1L2!L2 .M� 2
� 1
2
j 2.1�C

Qı/j :

Step 6: low modulation input, j < 1
2
h, contribution of C. This repeats the analysis for L and Q, but we

no longer need to keep track of angular separation. Setting

C`;`0;`00;<k;�k0 D ad.‰`/.t; x; �/Q`0;`00;<k;�k0.t; x; s; y; �/�Q`0;`00;<k;�k0.t; x; s; y; �/ ad.‰`/.s; y; �/;

C`;`0;`00;<�1 D ad.‰`/.t; x; �/Q`0;`00;<�1.t; x; s; y; �/�Q`0;`00;<�1.t; x; s; y; �/ ad.‰`/.s; y; �/;

11That is, which satisfies the bound on the previous line.
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we decompose C as

C D
Z
jCQıh�`00�`0�`�h

.C`;`0;`00;<`00 � C`;`0;`00;<`00;��5/ d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�h

j�10Qıh�`

C`;`0;`00;<`00;��5 d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�j�10Qıh

.C`;`0;`00;<`00;�j�5� C`;`0;`00;<�1/ d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�j�10Qıh

C`;`0;`00;<�1 d`00 d`0 d`

DW C.1/C C.2/C C.3/C C.4/

and consider each of the terms separately.

Step 6.1: low modulation input, j < 1
2
h, contribution of C.1/. The same argument as in Steps 4.1 and 5.1

yields the bound

kOp.ad.‰`/ ad.‰`0/ ad.‰`00/.Ad..O<`00/�Ad..O<`00/��5//�0kL1L2!L2

.M� 2
� 1
2
j 2

1
6
.jCQıh�`/2

1
6
.jCQıh�`0/2

1
6
.jCQıh�`0/210`

00

2
1
2
Qıh;

as well as for any of the other choices of left/right quantizations for the ‰’s. Integration over j C Qıh <
`00 < `0 < ` < m

2
is now harmless.

Step 6.2: low modulation input, j < 1
2
h, contribution of C.2/. Applying the decomposability bound (10-14)

with qD 6 for each of the three ‰’s in the C2 integrand, as well as the L2 bound for Op.Ad..O<`00/��5/

yields the bound

kOp.ad.‰`/ ad.‰`0/ ad.‰`00/Ad..O
<jCQıh

//��5kL1L2!L2 .M� 2
� 1
2
j 2

1
6
.j�`/2

1
6
.j�`0/2

1
6
.j�`0/;

which suffices after integration in ` > j � 10 Qıh and `0; `00 > j C Qıh.

Step 6.3: low modulation input, j < 1
2
h, contribution of C.3/. This is the same argument as in the previous

step, but using (10-27) instead of (10-32).

Step 6.4: low modulation input, j < 1
2
h, contribution of C.4/. Here we are concerned with symbols of

the form
ad.‰`/.t; x; �/ ad.‰`0/.t; x; �/Œad.‰`00.t; x; �/� ad.‰`00.�; y; s/�;

where one or both of ad.‰`/ and ad.‰`0/ may be switched to the right and in the right quantization. Here
we use again the decomposability bound (10-14) with q D 6 for ‰` and ad.‰`0/, and (10-41) for the ‰`00
difference.

Step 7: low modulation input, j < 1
2
h, low frequency O. To complete the proof of the estimate (10-35)

it remains to show that

kQj Op.Ad.O
<jCQıh

/�0.t; x;D; y; s/� 1/P0Q<j�5kN�!X0;1=21
.M� 2

ı.1/h: (10-42)
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If j C Qıh� h, this is combined with the bound (10-39), which is the main outcome of Steps 3–6. Else,
this is used by itself, simply observing that we can harmlessly replace j C Qıh by h.

The above bound is identical to

kQj Op.Ad.O
<jCQıh

/�0�Ad.O
<jCQıh

/�j�5/.t; x;D; y; s/P0Q<j�5kN�!X0;1=21
.M� 2

ı.1/h;

which in turn would follow from

kOp.Ad.O
<jCQıh

/�0�Ad.O
<jCQıh

/�j�5/.t; x;D; y; s//P0kL1L2!L2 .M� 2
� 1
2
j 2ı.1/h:

But this is a direct consequence of the bound (10-34). �
Proof of (9-47) in the case Z DN or N �. For the estimate (9-47) with Z DN � we combine the L1L2

bound given by (10-27) with (10-35). If on the other hand Z D N, then the same bound follows by
duality. �

It remains to prove (9-44), (9-46) and (9-44)0 when Z D N or N �. For this purpose, we recall the
following result from [Krieger and Tataru 2017]:

Lemma 10.16. For `� k0˙O.1/, we have

kQ` Op.Ad.O<h;˙/k0/.t; x;D/Q<0P0kN�!X0;1=21
.M� 2

ı1.`�k
0/; (10-43)

kQ` Op.Ad.O�1<h;˙/k0/.D; y; s/Q<0P0kN�!X0;1=21
.M� 2

ı1.`�k
0/: (10-44)

In particular, summing over all .`; k0/ with `� k and k � k0CO.1/, we have

kQ<k.Op.Ad.O<h;˙/<0/�Op.Ad.O<h;˙/<k�C //.t; x;D/Q<0P0kN�!X0;1=21
.M� 1; (10-45)

kQ<k.Op.Ad.O�1<h;˙/<0/�Op.Ad.O�1<h;˙/<k�C //.D; y; s/Q<0P0kN�!X0;1=21
.M� 1: (10-46)

Proof. The proof of this lemma is similar to that of Proposition 10.14, but simpler in the sense the
frequency gap need not be exploited. It can be proved with exactly the same arguments as in [Krieger
and Tataru 2017, Proof of Proposition 8.5] (there, M� . "). Because of this, we will merely indicate here
how to modify the preceding proof of (10-35) to obtain (10-43). We leave the details, as well as the entire
case of (10-44), to the reader.

As before, we omit˙ in the symbols. We replace Ad.O<h/�k.t; x; s; y; �/�1 by Ad.O<h/<k.t; x; �/
throughout the proof of (10-35). The main decomposition (Step 4) now takes the form

Ad.O<h/.t; x; �/�Ad.O
<jCQıh

/D L0CQ0C C0

D

Z
jCQıh�`�h

L0
`;<jCQıh

d`C

Z
jCQıh�`0�`�h

Q0
`;`0;<jCQıh

d`0 d`

C

Z
jCQıh�`00�`0�`�h

C0
`;`0;`00;<jCQıh

d`00 d`0 d`;

where

L0`;<k.t; x; �/D ad.‰`/Ad.O<k/.t; x; �/;

Q0`;<k.t; x; �/D ad.‰`/L0`0;<k.t; x; �/D ad.‰`/ ad.‰`0/Ad.O<k/.t; x; �/;

C0`;<k.t; x; �/D ad.‰`/Q0`0;`00;<k.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/Ad.O<k/.t; x; �/:
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For the expansion of L, Q and C in Steps 5, 6 and 7, we replace L`;<k;�k0 , L`;<�1, Q`;`0;<k;�k0 ,
Q`;`0;<�1, C`;`0;`00;<k;�k0 and C`;`0;`00;<�1 by, respectively,

L0`;<k;<k0 D ad.‰`/Ad.O<k/<k0.t; x; �/;

L0`;<�1 D ad.‰`/.t; x; �/;

Q0`;`0;<k;<k0 D ad.‰`/L0`0;<k;<k0.t; x; �/D ad.‰`/ ad.‰`0/Ad.O<k/<k0.t; x; �/;

Q0`;`0;<�1 D ad.‰`/L0`0;<�1.t; x; �/D ad.‰`/ ad.‰`0/.t; x; �/;

C0`;`0;`00<k;<k0 D ad.‰`/Q0`0;`00;<k;<k0.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/Ad.O<k/<k0.t; x; �/;

C0`;`0;`00;<�1 D ad.‰`/Q0`0;`00;<�1.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/.t; x; �/:

Accordingly, we replace the use of (10-27) and (10-36) by (10-32) and (10-34), respectively, which results
in loss of the smallness factor 2ı.1/h in (10-43) compared to (10-35). �

Proof of (9-44), (9-46) and (9-44)0 in the case Z DN or N �. It suffices to consider the Z DN �; then
the case Z DN follows by duality. The L1L2 bound follows from the Z D L2 case, so for (9-44) and
(9-44)0 it remains to establish that

kQj Op.Ad.O<h;˙/<0/P0kN�!L2 .M� 2
� 1
2
j :

By Lemma 10.16 this reduces to

kQj Op.Ad.O<h;˙/<j�5/P0kN�!L2 .M� 2
� 1
2
j :

Now due to the frequency localization for Op.Ad.O<h;˙/<j�5 we can insert a (slight enlargement of)
Qj on the right, in which case we can simply use again the Z D L2 case.

Similarly, in the case of (9-44)0 it suffices to show that

kQj Œ@t ;Op.Ad.O<h;˙/<0/�Q<jP0kN�!L2 .M� 2
� 1
2
j 2h:

We split into two cases. If j � 3
4
h then we write

@t Ad.O<h;˙/D ad.O<h;˙It /Ad.O<h;˙/<0/;

and then we can easily combine the decomposability bound (10-18) with the L2 boundedness of
Op.Ad.O<h;˙/<0/. Else we have

Qj Œ@t ;Op.Ad.O<h;˙/<0/�Q<jP0 DQj Œ@t ;Op.Ad.O<h;˙/Œj�5;0�/�Q<jP0:

Now we discard Qj , Q<j�5 and @t and use directly (10-34) with p D1 and q D 2. �

10H. Dispersive estimates. Finally, we sketch the proofs of (9-45) and (9-45)0. As in [Krieger and Tataru
2017], we exactly follow the argument in [Krieger et al. 2015, Section 11]. In the case of (9-45), we
replace the use of the oscillatory integral estimates (108), (110) and (111) in [loc. cit.] by (10-24), (10-25)
and (10-26), and the fixed-time L2 bound (114) in [loc. cit.] by (10-32), (118) in [loc. cit.] by (10-45)
etc. In case of (9-45)0, observe that all the constants in these bounds are universal under the smallness
assumption (9-48) for a suitable choice of ıo.M/, as we may take M� . 1.



368 SUNG-JIN OH AND DANIEL TATARU

There is one exception to the above strategy, namely the square function bound

kOp.Ad.O˙/<0.t; x;D/kS]0!L
10=3
x L2t

.M� 1: (10-47)

This is due to the fact that the square function norm was not part of the S0 norm in [Krieger et al. 2015;
Krieger and Tataru 2017], and was added only here. The same approach as in [Krieger and Tataru 2017]
allows us, via a T T �-type argument, to reduce the problem to an estimate of the form



Z ��l.t � s/S .t; s/B.s/ ds






L
10=3
x L2t

.M� kBkL10=7x L2t
;

where
S .t; s/D Op.Ad.O˙/<0.t; x;D/e˙i.t�s/jDjOp.Ad.O˙/<0.D; s; y/

and the bump function ��l corresponds to the modulation scale 2l in S]0. It is easily seen that the bump
function is disposable and can be harmlessly discarded. Hence in order to prove (10-47) it remains to
show that 



Z S .t; s/B.s/ ds






L
10=3
x L2t

.M� kBkL10=7x L2t
: (10-48)

To prove this we use Stein’s analytic interpolation theorem. We consider the analytic family of operators

TzB.t/D e
z2
Z
.t � s/zS .t; s/B.s/ ds

for z in the strip
�1� Imz � 3

2
:

Then it suffices to establish the uniform bounds

kTzkL2!L2 .M� 1; Rez D�1; (10-49)

kTzkL1xL2t!L
1
x L

2
t
.M� 1; Rez D 3

2
: (10-50)

For (10-49) we can use the bound (10-31) to discard the L2 bounded operators

Op.Ad.O˙/<0.t; x;D/e˙it jDj; e�isjDjOp.Ad.O˙/<0.D; s; y/:

Then we are left with the time convolutions with the kernels ez
2

tz. But these are easily seen to be
multipliers with uniformly bounded symbols.

For (10-50), on the other hand, we consider the kernel Kz.t; x; s; y/ of Tz . This is given by

Kz.t; x; s; y/D e
z2.t � s/zKa<0.t; x; s; y/

with a a smooth bump function on the unit scale. Hence by (10-24) we have the kernel bound

jKz.t; x; s; y/j.M� hjt � sj � jx�yji
�100; Rez D 3

2
:

Fixing x and y we have the obvious bound

kKz. � ; x; � ; y/kL2!L2 .M� 1:
Then (10-50) easily follows.
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11. Renormalization error bounds

Without loss of generality, we fix the sign ˙DC. In this section, unless we specify otherwise, Op. � /
denotes the left quantization. For the sake of simplicity, we also adopt the convention of simply writing
Ax for PxA.

11A. Preliminaries. We collect here some technical tools for proving the renormalization error bound.
We begin with a tool that allows us to split Op.ab/ into Op.a/Op.b/. The idea of the proof is based

on the heuristic identity Op.ab/�Op.a/Op.b/� Op.�i@�a � @xb/ for left-quantized pseudodifferential
operators; see [Krieger et al. 2015, Lemma 7.2] and [Krieger and Tataru 2017, Lemma 7.2].

Lemma 11.1 (composition via pseudodifferential calculus). Let a.t; x; �/ and b.t; x; �/ be End.g/-valued
symbols on It �R4x �R4

�
with bounded derivatives, such that a.t; x; �/ is homogeneous of degree 0 in �

and b.t; x; �/D P x
<h��10

b.t; x; �/ for some 0 < � < 1 and 2h� D � . Then we have

k.Op.a/Op.b/�Op.ab//P0kLqL2ŒI �!LrL2ŒI �

. k�@�akD�Lp2L1ŒI �kOp.��1@xb/P0kLqL2ŒI �!Lp1L2ŒI �; (11-1)

where r�1 D p�11 Cp
�1
2 :

Proof. For simplicity, in this proof we only present formal computation, which can be justified using the
qualitative assumptions on a and b.

Let us fix t 2I. Thanks to the frequency-localization condition b.x; �/DP x
<h��10

b.x; �/, we may write

.Op.a/Op.b/�Op.ab//P0 D
X
�

Op.a�
�
/Op.b�

�
/�Op.a�

�
b
�

�
/;

where

a
�

�
.x; �/D a.x; �/.m

�

�
/2.�/ Qm20.�/; b

�

�
.x; �/D b.x; �/ Qm

�

�
.�/m0.�/:

Here � runs over caps of radius ' � on S3 with uniformly finite overlaps, .m�
�
/2.�/ D .m

�

�
/2.�=j�j/

are the associated smooth partition of unity on S3 and m0.�/ is the symbol for P0. The functions
Qm
�

�
.�/D Qm

�

�
.�=j�j/ and Qm20.�/ are smooth cutoffs to the supports of m�

�
and m0, respectively, which can

be inserted thanks to the frequency-localization condition b.x; �/D P x
<h��10

b.x; �/.
For each �, we claim that

kOp.a�
�
/Op.b�

�
/�Op.a�

�
b
�

�
/kL2!L2

.
� 20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a. � ; !/kL1

�
kOp.��1@xb

�

�
/kL2!L2 : (11-2)

Assuming the claim, the proof can be completed as follows. Let us restore the dependence of the symbols
on t . By the definition of D�LqLr , we have



�X

�

� 20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a.t; �; !/kL1

�2 �1
2





L
p2
t ŒI �

. k�@�akD�Lp2L1ŒI �:
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On the other hand, by L2-almost orthogonality of Qm�
�
.�/ and Hölder in t , we have



�X

�

kOp.��1@xb
�

�
/k2
L2!L2

�1
2





L
p0
t ŒI �

. kOp.��1@xb/P0kLqL2!Lp1L2ŒI �;

where r�1Cp�10 D p
�1
1 . Therefore, by Cauchy–Schwarz in � and Hölder in t , (11-1) follows.

We now turn to the proof of (11-2). For simplicity of notation, we use the shorthand a D a�
�

and
b D b

�

�
for now. Then the kernel of Op.a/Op.b/�Op.ab/ can be computed as follows:

K.x; y/D

Z
ei.x�z/��ei.z�y/��.a.x; �/� a.x; �//b.z; �/ dz

d�

.2�/4
d�

.2�/4

D

Z 1

0

Z
ei.x�z/��ei.z�y/��.� � �/ � .@�a/.x; s�C .1� s/�/b.z; �/ dz

d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
ei.x�z/��ei.z�y/��.@�a/.x; s�C .1� s/�/.@xb/.z; �/ dz

d�

.2�/4
d�

.2�/4
ds:

Expanding

@�a.x; � /D

Z
e�i. � /�„.@�a/

_.x;„/ d„

and making the change of variables Qz D z� .1� s/„, we further compute

K.x; y/D�i

Z 1

0

Z
ei.x�s„�z/��ei.z�.1�s/„�y/��.@�a/

_.x;„/.@xb/.z; �/ d„dz
d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
ei.x�„�Qz/��ei.Qz�y/��.@�a/

_.x;„/.@xb/. QzC .1� s/„; �/ d„d Qz
d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
.@�a/

_.x;„/

�Z
ei.x�s„�y/��.@xb/.x� s„; �/

d�

.2�/4

�
d„ds:

On the last line, note that the �-integral inside the parentheses is precisely the kernel of Op.@xb/.x�s„;D/.
By translation invariance, we have

��1k.@xb/.x� s„;D/kL2!L2 D k.�
�1@xb/.x;D/P0kL2!L2 :

On the other hand, returning to the full notation a�
�
D a and rotating the axes so that � D .1; 0; 0; 0/, note

that a�
�
.x; � / is supported on a rectangle of dimension ' 1� � � � � � , and smooth on the corresponding

scale. Integrating by parts in � to obtain rapid decay in „ (of the form h„1i�N h�„0i�N, where
„0 D .„2; „3; „4/), we may estimate

�

Z
k.@�a

�

�
/_. � ; „/kL1 d„�

Z 



Z ei„���@�a. � ; �/.m
�

�
/2.�/ Qm20.�/

d�

.2�/4






L1

d„

. ��3
20X
nD1

Z
k�n@

.n/

�
a. � ; �/kL1m

�

�
.�/ Qm0.�/ d�:
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Passing to the polar coordinates � D �! (where �D j�j), integrating out � and using Hölder in ! (which
cancels the factor ��3), we arrive at

�

Z
k.@�a

�

�
/_. � ; „/kL1 d„.

20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a. � ; !/kL1 ;

which proves (11-2). �

Remark 11.2. As is evident from the proof, we in fact have the simpler bound

k.Op.a/Op.b/�Op.ab//P0kLqL2ŒI �!LrL2ŒI �
. kakD�Lp2L1ŒI �kOp.��1@xb/P0kLqL2ŒI �!Lp1L2ŒI �: (11-1)0

In other words, control of the D�Lp2L1-norm already encodes the fact that a is smooth in � on the
scale � .

In practice, Lemma 11.1 can be only be applied when we know that the symbol on the right (b in
Lemma 11.1) is smooth in x on the scale ��1. Fortunately, when b D Ad.O/, the remainder can be
controlled using decomposability bounds for ‰. We therefore have the following useful composition
lemma.

Lemma 11.3 (composition lemma). Let G D G.t; x; �/ be a smooth g-valued symbol on I �R4 �R4,
which is homogeneous of degree 0 in � and admits a decomposition of the form G D

P
�22�N G.�/, where

kG.�/kD�L2L1ŒI � � �
˛B

for some B > 0 and ˛ > 1
2
C ı. Then for every `� 0 we have

kOp.ad.G/Ad.O<`//P0�Op.ad.G//Op.Ad.O<`//P0kN�ŒI �!NŒI� .M B: (11-3)

Proof. Let us assume that ` > h� � 20, as the alternative case is easier.
We decompose the expression on the left-hand side of (11-3) into

P
�22�N D.�/, where

D.�/ D Op.ad.G.�//Ad.O<`//P0�Op.ad.G.�///Op.Ad.O<`//P0:

In order to reduce to the case when Lemma 11.1 is applicable, we introduce h� D log2 � and further
decompose D.�/ as

D.�/D

Z `

h��20

Op.ad.G.�//ad.‰h/Ad.O<h//P0dh�
Z `

h��20

Op.ad.G.�///Op.ad.‰h/Ad.O<h//P0dh

COp.ad.G.�//Ad.O<h��20/�h��10/P0�Op.ad.G.�///Op.Ad.O<h��20/h��10/P0

COp.ad.G.�//Ad.O<h��20/<h��10/P0�Op.ad.G.�///Op.Ad.O<h��20/<h��10/P0:

We claim that
kD.�/kL1L2ŒI �!L1L2ŒI � . �˛�

1
2B: (11-4)

Assuming (11-4), the proof can be completed by simply summing up in � 2 2�N, which is possible since
˛ > 1

2
C ı.



372 SUNG-JIN OH AND DANIEL TATARU

For the first term in the above splitting of D.�/, we haveZ `

h��20

kOp.ad.G.�// ad.‰h/Ad.O<h//P0kL1L2ŒI �!L1L2ŒI � dh

.M
Z `

h��20

kG.�/kD�L2L1ŒI �k‰hkDL2L1ŒI � dh

.M
Z `

h��20

�˛2.�
1
2
�ı/hB .M �˛�

1
2
�ıB:

The second term can be handled similarly. For the third term, we use the DL2L1 bound for G.�/ and
apply Lemma 10.12 to Ad.O<h��20/�h��10/, which leads to the acceptable bounds

kOp.ad.G.�//Ad.O<h��20/�h��10/P0kL1L2ŒI �!L1L2ŒI � .M �˛B;

kOp.ad.G.�///Op.Ad.O<h��20/�h��10/P0kL1L2ŒI �!L1L2ŒI � .M �˛B:

Finally, for the last term we use Lemma 11.1 (in fact, (11-1)0). �

11B. Decomposition of the error. Let

E D�p;�A Op.Ad.O/<0/�Op.Ad.O/<0/�:
We may take the decomposition

E DE1C � � �CE6;

where

E1 D 2i Op
�
.ad.! �Ax;<�� CA0;<�� CL!C‰/Ad.O//<0

�
jDxj;

E2 D 2i Op
�
.ad.! �OIxCOIt �L!C‰/Ad.O//<0

�
jDxj;

E3 D 2Op
�
ad.A˛;<��/.ad.O I˛/Ad.O//<0

�
COp

�
.ad.OI˛/ ad.O I˛/Ad.O//<0

�
;

E4 D Op..ad.@˛OI˛/Ad.O//<0/;

E5 D�2i Op.ad.A0;<��/Ad.O/<0/.Dt CjDxj/� 2i Op..ad.O<��It /Ad.O//<0/.Dt CjDxj/;

E6 D�2i Op
�
ŒS<0; ad.! �Ax;<�� CA0;<��/�Ad.O/

�
jDxj:

In the remainder of this section, we estimate each error term in order.

11C. Estimate for E1. Here, our goal is to prove

kE1P0kS]0 ŒI �!NŒI�
� "; (11-5)

with �1 large enough and ıp sufficiently small.

11C1. Preliminary reduction. For this term, we may simply work with I D R by extending the input by
homogeneous waves outside I. The desired smallness comes from � and bounds for �Ax and �A0 on I,
which controls the size of the symbol of E1 through our extension of A˛ as in Section 9B.
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We first dispose of the symbol regularization . � /<0 by translation invariance, and also throw away
jDxj using P0. Using (9-42) and the identity

L!CL
!
��

1

!?
D���1

!?
�C 1;

(11-5) reduces to showing 



Z ��
�1

Op.ad.Gh/Ad.O//P0 dh





S
]
0!N

� ";

where

Gh D ! �Ax;h�! �A
.�j�jı/

x;h;coneC�
�1
!?
�.! �A.�j�j

ı/

x;h;cone/CA0;h:

Note that each angular component G.�/
h
D…

!;C
�

Gh obeys

kG
.�/

h
kDL2L1 . 2

1
2
h�

3
2 .kAx;hkS1 CkA0;hkY 1/:

Therefore, by Lemma 11.3, we have



Z ��
�1

�
Op.ad.Gh/Ad.O//�Op.ad.Gh//Op.Ad.O//

�
P0 dh






N�!N

.M 2�
1
2
� ;

which is acceptable. By Lemma 10.12 applied to Op.Ad.O/�0/, we also have



Z ��
�1

Op.ad.Gh//Op.Ad.O/�0/P0 dh





N�!N

.M
Z ��
�1

2
1
2
h
kOp.Ad.O/�0/P0kL1L2!L2L2 dh

.M 2�
1
2
� :

Thus it suffices to show that



Z ��
�1

Op.ad.Gh//Op.Ad.O/<0/P0 dh





S
]
0!N

� ":

By (9-45), we have Op.Ad.O/<0/P0 W S
]
0! S0. Thus, in order to prove (11-5), we are left to establish



Z ��

�1

Op.ad.Gh//P0 dh





S0!N

� "; (11-6)

where we abuse the notation a bit and denote by P0 a frequency projection to a slightly enlarged region
of the form fj�j ' 1g.

At this point it is convenient to observe that the contribution of zR0 to A0 in (9-27) is easy to estimate
in L1L1 and can be harmlessly discarded. Thus from here on we assume that

zR0 D 0: (11-7)

In order to proceed, we write

Gh DGh;coneCGh;nullCGh;out;
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where
Gh;cone D ! �A

.<j�jı/

x;h;coneC�
�1
!?
�.! �A.�j�j

ı/

x;h;cone/CA0;h;cone;

Gh;null D ! �Ax;h;nullCA0;h;null;

Gh;out D ! �Ax;h;outCA0;h;out:

11C2. Estimate for Gh;cone. We claim that



Z ��
�1

Op.ad.Gh;cone//P0 dh






N�!N

� ": (11-8)

Let G.�/
h;cone D…

!;˙
�

Gh;cone and consider the expression Op.ad.G.�/
h;cone//P0. By the Fourier support

property of G.�/
h;cone (more precisely, the mismatch between its modulation . 2h�2 and the angle � ), it is

impossible that both the input and the output have modulation� 2h�2. Using the L2L2 norm for the
input or the output (whichever that has modulation & 2h�2), we may estimate

kOp.Gh;cone/P0kN�!N

.
X
�<1

2�
1
2
h��1kG

.�/

h;conekDL2L1

. 2
ı
2
h
kAx;hkS1 C

X
�<1

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 C

X
�<1

2�
1
2
h�

1
2 k�A0;hkL2L2 :

We now treat each term separately.

Case 1: contribution of small angle interaction. The term 2.ı=2/hkAx;hkS1 is acceptable since it is
integrable in �1< h < ��, and we gain a small factor 2�.ı=2/� as a result.

Case 2: contribution of �Ax . For the second term, we split the � -summation into � < 2�� and � � 2��.
In the former case, note that

kQ<hC2 log2 �CC�AxkL2L2 . �
2b1k�Ax;hkX�1=2Cb1;�b1 :

Since b1 > 1
4

, we may estimateX
�<2��

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 . 2

�.2b1� 12/�k�Ax;hkX�1=2Cb1;�b1 :

The last line is acceptable, since it is integrable in �1< h < ��, and it is small thanks to 2�.2b�1=2/�.
In the case � � 2��, we estimateX

��2��

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 . 2

1
2
�
k�Ax;hkL2 PH�1=2 :

After integration in h, this is acceptable thanks to (9-22).

Case 3: contribution of A0. In this case, we simply sum up in � < 1 and observe thatX
�<1

2�
1
2
h�

1
2 k�A0;hkL2L2 . k�A0;hkL2 PH�1=2 :

After integration in h, this term is then acceptable by (9-29).
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11C3. Estimate for Gh;out. We claim that



Z ��
�1

Op.ad.Gh;out//P0 dh






N�!N

� ": (11-9)

As in the case of Gh;cone, the idea is again to make use of the mismatch between modulation of Gh;out

and the angle � . Let G.�/
h;out D…

!;˙
�

Gh;out, and consider the expression Op.ad.G.�/
h;out//P0. By definition,

G
.�/

h;out has modulation & 2h�2. Thus, we take the decomposition G.�/
h;outD

P
aW2a&� QhC2aG

.�/

h;out. By the
Fourier support property of the symbol QhC2aG

.�/

h;out (more precisely, the mismatch between the angle �
and the modulation 2hC2a), it is impossible that both the input and the output have modulation� 2hC2a.
Using the L2L2 norm for the input or the output, we have

kOp.ad.Gh;out//P0kN�!N

.
X
a

X
�<minfC2a;1g

2�
1
2
.hC2a/

kQhC2aG
.�/

h;outkDL2L1

.
X
a

X
�<minfC2a;1g

.2�
1
2
.hC2a/22h�

5
2 kQhC2aAx;hkL2L2 C 2

� 1
2
.hC2a/22h�

3
2 kA0;hkL2L2/

.
X
a

.2
5
2
a�2�3a2�

1
2
h
kQhC2a�Ax;hkL2L2 C 2

3
2
a�2�a2�

1
2
h
k�A0;hkL2L2/:

We split the a-summation into a < �� and a > ��. In the former case, the sum is bounded by

2�.2b1�
1
2
/�
k�Ax;hkXb1�1=2;�b1 C 2

� 1
2
�
k�A0;hkL2 PH�1=2 ;

which is integrable in h and small thanks to 2�.2b1�1=2/� ; therefore it is acceptable. When a > ��, the
sum is bounded by

2
1
2
�
k�Ax;hkL2 PH1=2 Ck�A0;hkL2 PH�1=2 :

After integrating in h, this term is therefore acceptable by (9-22) and (9-29).

11C4. Estimate for Gh;null. We claim that



Z ��
�1

Op.ad.Gh;null//P0 dh






S0!N

� ": (11-10)

Let G.�/
h;null D…

!;˙
�

Gh;null. Note that G.�/
h;null has modulation ' 2h�2. Hence if either the input or the

output have modulation � 2�C 2h�2, the same argument as in the case of Gh;cone applies. Writing � D 2`,
it remains to prove



 X

`2�N

Z ��
�1

Q<hC2`�C Op.ad.! �A.2
`/

x;h;nullCA
.2`/

0;h;null//P0Q<hC2`�C dh






S0!N

� ": (11-11)

Our next simplification is to observe that we can harmlessly replace the symbols A.2
`/

x;h;null and A.2
`/

0;h;null
with the functions QhC2`Ax;h and QhC2`Ax;h. This is because the difference of the two is localized still
at modulation 2hC2`, but also at distance 2hC2` from the null plane f� C! � �D 0g. This would force
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either the input or the output modulation in (11-11) to be � 2�C 2hC2`, and again the same argument as
in the case of Gh;cone applies. Thus with j D hC 2` we have reduced the problem to estimating



X

j<h

Z ��
�1

Q<j�C ad.QjA˛;h/@
˛P0Q<j�C dh






S0!N

� "; (11-12)





X
j<h

Z ��
�1

Q<j�C ad.QjA0;h/.D0CjDxj/P0Q<j�C dh





S0!N

� ": (11-13)

The second bound is straightforward since .D0CjDxj/P0Q<0 W S0! L2 and A0 2 L2 PH 3=2.
Thus it remains to consider (11-12). From here on, we assume that A is determined by the expressions

(9-27) and (9-30) in terms of QA. By (11-7) we have already set zR0 D 0. It is equally easy to see that we
can set zRx D 0. Indeed, by (4-6) and (8-30) we have

kQ<j�C ad.��1PhR`/@`P0Q<j�C kS0!N . 2
ı1.j�h/k��1PhR`kZ1 . 2ı1.j�h/kPhR`kL1L2 ;

where RD �IP zR. Now the summability in j < h and the smallness is assured due to (9-26).
Once we have dispensed with the error terms, we are left with At;x given by

A0 D�
�1O.�I QA

`; @t QA`/; (11-14)

AD��1P.O.�I QA`; @x QA`/CO 0.P` QA; �I@
` QA/�O 0. QA0; �I@t QA/CO 0. zG`; �I@

` QA//: (11-15)

We consider the contributions of each of these terms in (11-12).

Step 1: the contribution of A0D��1O.�I QA`; @t QA`/ and Ax D��1PO.�I QA
`; @x QA`/. This is the main

component, which we have to treat in a trilinear fashion. In particular we have to ensure that we gain
smallness. For this we use a trilinear Littlewood–Paley decomposition to set

AD
X

k;k1;k2

A.k; k1; k2/D
X

k;k1;k2

HA.k; k1; k2/C
X

.1�H�/A.k; k1; k2/;

where
HA.k; k1; k2/ WDHPkPA.Pk1�I

QA`; Pk2@t
QA`/;

.1�H/A.k; k1; k2/ WD .1�H/PkPA.Pk1�I
QA`; Pk2@t

QA`/:

For the terms in the first sum we use the trilinear estimate (8-43), which gives

kQ<j�C ad.QjHA˛.k; k1; k2//@˛P0Q<j�C kS0!L1L2.2
�ı1jkmax�kminj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

For the Ax terms in the second sum we first use (8-21) and (8-33), (8-34) to obtain

k.1�H/Ax.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QAkS1kPk2

QAkS1

and then use (8-30) to conclude that

kQ<j�C ad.Qj .1�H/A`.k; k1; k2//@`P0Q<j�C kS0!N.2
�ı1jkmin�kmaxj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

Similarly, for the A0 terms in the second sum we use (8-35) and then (8-31) to obtain

kQ<j�C ad.Qj .1�H/A0.k; k1; k2//@0P0Q<j�C kS0!N.2
�ı1jkmin�kmaxj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1:
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Adding the last three bounds, we obtain

kQ<j�C ad.QjA˛.k; k1; k2//@˛P0Q<j�C kS0!N . 2
�ı1jkmax�kminj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

This gives both summability in k; k1; k2 and smallness provided we exclude the range of indices j; k1; k22
Œk� �0; kC �0� with �0� 1.

On the other hand, in the range excluded above, the operator PkQj is disposable, while both � and �
are elliptic, i.e., of size 22k. Then we can estimate

kQjA.k; k1; k2/kL1L1 . 2C�
0

kPk1
QAkDS1kPk2

QAkDS1 I

therefore we gain smallness from the divisible norm; see (9-5).

Step 2: the contribution of Ax D��1PO 0.P` QA; �I@
` QA/. This is a milder contribution, which we can

deal with in a bilinear fashion. Taking again the decomposition

Ax D
X

k;k1;k2

A.k; k1; k2/;

we use (8-38) to obtain

kAx.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QAkS1kPk1

QAkS1 :

Then by (8-30) it follows that

kQ<j�C ad.QjHAx.k; k1; k2//@˛P0Q<j�C kS0!L1L2

. 2�ı1jkmax�kminj2ı1.j�k/kPk1
QAkS1kPk1

QAkS1 : (11-16)

Again this is suitable outside the range j; k1; k2 2 Œk� �0; kC �0� with �0� 1, whereas in this range we
can use divisible norms as in the previous step.

Step 3: the contribution of PO 0. QA0; �I@t QA/CPO 0. zG`; �I@
` QA/. These two terms are similar, as we

have the same bounds available for QA0 and zGl . We will discuss QA0. Setting

Ax D��1PO 0. QA0; �I@t QA/; A0 D 0;

we decompose A as before,

Ax D
X

Ax.k; k1; k2/:

We can estimate the terms in the sum using (8-41) to get

kAx.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QA0kY 1kPk1

QAkS1 :

Then (11-16) follows again from (8-30), and we conclude as in Step 2.

11D. Estimate for E2. Our next goal is to estimate the error term E2, which arises from the multilinear
error between OI˛ and @˛‰. For this purpose, we rely crucially on interval localization of decomposable
norms (Lemma 10.7).
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11D1. Expansion of OI˛. We will prove that

kE2P0kN�ŒI �!NŒI� � " (11-17)

provided that �1 is large enough, and ıp is sufficiently small.
As usual, we may dispose of the symbol regularization . � /<0 by translation invariance. Also disposing

of jDxj using P0, it suffices to prove

Op
�
ad.! � .OIx � @x‰/C .OIt � @t‰//Ad.O/

�
P0



N�ŒI �!NŒI�

� ": (11-18)

Recall that @hO<hI˛ D‰h;˛C Œ‰h; O<hI˛�. Therefore,

@h.ad.O<hI˛/Ad.O<h//D ad.@˛‰h/Ad.O<h/C ad.‰h/Ad.O<hI˛/Ad.O<h/:

Repeatedly applying the fundamental theorem of calculus and this equation, we obtain the expansion

ad.OI˛/Ad.O/

D

Z ��
�1

ad.@˛‰h1/Ad.O<h1/ dh1 (11-19)

C

Z ��
�1

Z h1

�1

ad.‰h1/ ad.@˛‰h2/Ad.O<h2/ dh2 dh1 (11-20)

C � � �

C

Z ��
�1

Z h1

�1

� � �

Z h5

�1

ad.‰h1/ ad.‰h2/ � � � ad.@˛‰h6/Ad.O<h6/ dh6 � � � dh2 dh1: (11-21)

On the other hand,

@h.ad.@˛‰<h/Ad.O<h//D ad.@˛‰h/Ad.O<h/C ad.@˛‰<h/ ad.‰h/Ad.O<h/;

so we have

ad.@˛‰/Ad.O/D
Z ��
�1

ad.@˛‰h1/Ad.O<h1/ dh1 (11-22)

C

Z ��
�1

Z h1

�1

ad.@˛‰h2/ ad.‰h1/Ad.O<h1/ dh2 dh1: (11-23)

Observe that (11-19) and (11-22) coincide. Thus, we only need to consider the contribution of (11-20)–
(11-21) and (11-23) in (11-18).

11D2. Estimate for quadratic expressions. We begin with the contribution of the quadratic terms in ‰,
namely (11-20) and (11-23), which are most delicate. We claim that



Z ��

�1

Z h1

�1

Op.ad.‰h1/ ad.L!C‰h2/Ad.O<h2//P0 dh2 dh1






N�ŒI �!NŒI�

� "; (11-24)



Z ��
�1

Z h1

�1

Op.ad.L!C‰h2/ ad.‰h1/Ad.O<h1//P0 dh2 dh1






N�ŒI �!NŒI�

� "; (11-25)
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provided that �1 is large enough and ıp is sufficiently small. In what follows, we will focus on establishing
(11-24), as the proof for the other claim is analogous.

By (9-42) and the identity L!
C
L!��

1

!?
D���1

!?
�C 1, (11-24) would follow once we establish



Z ��

�1

Z h1

�1

Op
�
ad.‰h1/ ad.! �Amain

h2
/Ad.O<h2/

�
P0 dh2 dh1






N�ŒI �!NŒI�

�"; (11-26)



Z ��
�1

Z h1

�1

Op
�
ad.‰h1/ ad.��1

!?
�.! �Amain

h2
//Ad.O<h2/

�
P0 dh2 dh1






N�ŒI �!NŒI�

�": (11-27)

In Lemmas 10.4 and 10.7, note that ! �Amain;.�/
h

.D ! �A
.�/

x;h;cone;C/ and ��1
!?
�.! �Amain;.�/

h
/ obey the

same bounds. Therefore, (11-26) and (11-27) are proved in exactly the same way. In what follows, we
only consider (11-26).

Our first task is to remove Ad.O<h2/. For � 2 2�N, define

G.�/ D ad.‰.�/
h1
/ ad.! �Amain;.<�/

h2
/C ad.‰.��/

h1
/ ad.! �Amain;.�/

h2
/:

so that

G WD ad.‰h1/ ad.! �Amain
h2

/D
X
�22�N

G.�/:

Note that

kG.�/kDL2L1 .M 2
1
2
h12

1
2
.h2�h1/�

3
2 ;

by Lemma 10.4 and Lemma 10.5. Applying Lemma 11.3, then integrating �1 < h2 < h1 < ��, it
follows that



Z ��

�1

Z h1

�1

�
Op.ad.G/Ad.O<h2//�Op.ad.G//Op.Ad.O<h2//

�
P0 dh2 dh1






N�ŒI �!NŒI�

. 2�
1
2
� ;

which is acceptable. On the other hand, using the DL2L1 bound for G and Lemma 10.12, we have



Z ��
�1

Z h1

�1

Op.ad.G//Op.Ad.O<h2/�0/P0 dh2 dh1






N�ŒI �!NŒI�

.M
Z ��
�1

Z h1

�1

2
1
2
h12

1
2
.h2�h1/kOp.Ad.O<h2/�0/P0kL1L2ŒI �!L2L2ŒI � dh2 dh1

.M 2�
1
2
� ;

so we may replace Op.Ad.O<h2// by Op.Ad.O<h2//<0. Finally, by (9-44) we have

Op.Ad.O<h2/<0/P0 WN
�ŒI �!N �ŒI �;

so we are left to prove



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






N�ŒI �!NŒI�

� ": (11-28)
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In order to place ourselves in a context where we can apply Lemma 10.7, we begin by dispensing with
the case of short intervals

jI j � 2�h2�C� :

For very short intervals jI j � 2�h1�C� we have the bound



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






L1L2!L1L2

.M 2h2 jI j;

which is a consequence of fixed-time decomposability bounds, namely (10-10) with q D1 and (10-14)
with q D1 and r D1, combined with Hölder’s inequality in time. This suffices for the integration with
respect to h1 and h2 in this range.

For merely short intervals 2�h1�C� � jI j � 2�h2�C� we are allowed to use space-time decomposabilty
bounds but only for ‰h1 . In this case we apply (10-10) with q D1 and (10-14) with q D 6 and r D1,
combined with Hölder’s inequality in time, to obtain



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






L1L2!L1L2

.M 2�
1
6
h12h2 jI j

5
6 :

This again suffices for the integration with respect to h1 and h2 in this range.
For large intervals, on the other hand, we will use Lemma 10.7. We begin by decomposing ‰h1 DP
�1
‰
.�1/

h1
and Amain

h2
D
P
�2
A

main;.�2/
h2

. First, we consider the case 2h1�21 � 2
�2�2h2�22. For fixed h1, h2

and �2, we use interval localized decomposability calculus to estimateX
�1�2��2

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

//kL1L2ŒI �!L1L2ŒI �

.
X

�1�2��2
.1=2/.h2�h1/�2

k‰
.�1/

h1
kDL2L1ŒI �k! �A

main;.�2/
h2

kDL2L1ŒI �

. 2�2
1
4
.h2�h1/�2kAh1kS1.2

� 1
2
h2�
� 3
2

2 k! �A
main;.�2/
h2

kDL2L1ŒI �/:

Summing up in �2 < 2�2� , we see thatX
�2<2�2�

X
�1�2��2

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

/Ad.O<h2/j�j/kL1L2ŒI �!L1L2ŒI �

. 2��2
1
4
.h2�h1/kAh1kS1kAh2kS1 ;

which is acceptable. On the other hand, in the large angle case �2 � 2�2�, we use Lemma 10.7 to bound

2�
1
2
h2�
� 3
2

2 k! �A
main;.�2/
h2

kDL2L1ŒI � . 2C�kAh2kDS1ŒI �:

When 2h1�21 < 2�2�2h2�22, we extend the input to R � R4 by zero outside I and use modulation
localization. Here we do not apply Lemma 10.7, but rather gain smallness from ��. In this case, observe
that it is impossible for the input, the output and ‰.�1/

h1
to all have modulation� 2h2�22 DW j2. Therefore,

we split into three cases:
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Case 1: high-modulation input. We estimateX
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

//Q�j2�C kX1=2;10 !L1L2

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

2�
1
2
h2��12 k‰

.�1/

h1
kDL6L1k! �A

main;.�2/
h2

kDL3L1

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

2
1
6
.h2�h1/�

1
6

1 �
5
6

2 kAx;h1kS1kAx;h2kS1

. 2�
1
6
�2

1
4
.h2�h1/kAx;h1kS1kAx;h2kS1 ;

which is acceptable.

Case 2: high-modulation output. When the output has modulation � 2j2�C, then we have exactly the
same bound for L1L2!X

�1=2;1
0 (we use boundedness of Q<j2�C on L1L2).

Case 3: high modulation for ‰h1 . By boundedness of Q<j2�C on L1L2 and L1L2, it suffices to have
the estimateX
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kOp.ad.Q�j2�C‰
.�1/

h1
/ ad.! �Amain;.�2/

h2
//kL1L2!L1L2

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kQ�j2�C‰
.�1/

h1
kDL2L1k! �A

main;.�2/
h2

kDL2L1

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

�
1
2

1 �
1
2

2 kAx;h1kS1kAx;h2kS1

. 2�
1
2
�2

1
4
.h2�h1/kAx;h1kS1kAx;h2kS1 :

Here, we have use (10-15) for
P
j�j2�C

Qj‰
.�1/

h1
.

11D3. Estimate for higher-order expressions. The contribution of the cubic, quartic and quintic terms in
‰ in the expansion of OI˛ are treated in a similar manner as in the quadratic case; therefore, we omit the
proof. The only remaining case is the contribution of (11-21). For this term, we claim that



Z ��

�1

Z h1

�1

� � �

Z h5

�1

Op.ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6// dh6 � � � dh2 dh1






N�ŒI �!NŒI�

� "

for �1 large enough and ıp in (9-3) adequately small.
As in the case of the quadratic part, we start with very short intervals and move up the line. If

jI j< 2�h1�C� then we only apply fixed-time decomposability estimates, namely (10-14) with q D1
and r D1 and (10-17) also with q D1, together with Hölder in time, to obtain

Op

�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6/

�


L1L2!L1L2

.M 2h6 jI j;

which suffices for the h integration.
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If 2�h1�C� � jI j< 2�h2�C� then we switch to (10-14) with q D 6 and r D1 for ‰h1 , to obtain

Op
�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6/

�


L1L2!L1L2

.M 2�
1
6
h12h6 jI j

5
6 ;

which again suffices for the h integration.
Repeating this procedure for increasingly large I we eventually arrive at the last case jI j> 2�h6�C�.

There by Lemma 10.3 and boundedness of Ad.O<h6/ on L2, we have

Op
�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h2/

�


L1L2ŒI �!L1L2ŒI �

. k‰h1kDL6L1ŒI � � � � k‰h5kDL6L1ŒI �kO<h6I˛kDL6L1ŒI �:

Using Lemma 10.5 for ‰.�/
h

with � < 2�� and Lemma 10.7 for the rest, we have

k‰hkDL6L1ŒI � � 2
� 1
6
h.2��kAx;hkS1ŒI �CC2

C�
kAx;hkDS1ŒI �/:

This bound provides us with the desired smallness. By the previous estimate and (10-17), the h-integrals
converge as well, which proves our claim.

11E. Estimates for E3, . . . , E6. We finally handle the error terms E3, . . . , E6, for which we gain
smallness from the frequency gap �.

11E1. The estimate for E3. It suffices to show that

kE3P0kL1L2!L1L2 .M 2�
1
2
� :

But this is a consequence of the L2 boundedness for Op.Ad.O//, combined with the L2L1 decompos-
ability estimates for A˛ and OI˛ in Lemmas 10.4 and 10.6.

11E2. The estimate for E4. We expand with respect to h,

ad.@˛OI˛/Ad.O/D
Z ��
�1

@˛.ad.O<hI˛/ ad.‰h//Ad.O<h/ ad.�‰h/Ad.O<h/ dh:

For the first term we simply use two L2L1 decomposability estimates as in the case of E3. For the
second term, in view of the bound (10-16), we can apply Lemma 11.3 to discard the Ad.O<h/ factor.
Then it suffices to show that 



Z ��

�1

Op.ad.�‰h//P0 dh





S0!N

.M 2h:

After expanding ‰h in � , we note that, due to the frequency localization of ‰.�/
h

, either the input or the
output has modulation & 2h�2. We assume the former, as the other case is similar. Then we only need to
prove the bound 



Z ��

�1

Op.ad.�‰.�/
h
//P0 dh






L2!L1L2

.M �2
3
2
h;

which is an immediate consequence of the decomposability bound (10-16) for �‰.�/
h

.
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11E3. The estimate for E5. It suffices to show that

kE3P0kS]0!L1L2
.M 2�

1
2
� :

Since .Dt CjDxj/P0 W S
]
0! L2, this follows from the L2 boundedness for Op.Ad.O//, combined with

the L2L1 decomposability estimates for A˛ in Lemma 10.4.

11E4. The estimate for E6. In view of the L2L1 decomposability estimates for A˛ in Lemmas 10.4
and 11.3, we can discard the Ad.O/ factor. In addition, as in Proposition 4.30, we can express the
commutator ŒS0; Ah� in the form

ŒS0; Ah�f D 2
hO.Ah; f /:

Then we have reduced our problem to proving



Z ��
�1

2h Op.ad.! � rAx;h//P0 dh





S0!N

� ";



Z ��
�1

2h Op.ad.A0;h//P0 dh





S0!N

� ":

But then these follow, with the 2�ı1� gain, from (8-21) and (8-23), thanks to the extra derivative (i.e., the
2h factor).
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