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RESONANT SPACES FOR VOLUME-PRESERVING ANOSOV FLOWS

MIHAJLO CEKIĆ AND GABRIEL P. PATERNAIN

We consider Anosov flows on closed 3-manifolds preserving a volume form �. Following Dyatlov
and Zworski (Invent. Math. 210:1 (2017), 211–229) we study spaces of invariant distributions with
values in the bundle of exterior forms whose wavefront set is contained in the dual of the unstable
bundle. Our first result computes the dimension of these spaces in terms of the first Betti number of
the manifold, the cohomology class [ιX�] (where X is the infinitesimal generator of the flow) and
the helicity. These dimensions coincide with the Pollicott–Ruelle resonance multiplicities under the
assumption of semisimplicity. We prove various results regarding semisimplicity on 1-forms, including
an example showing that it may fail for time changes of hyperbolic geodesic flows. We also study
non-null-homologous deformations of contact Anosov flows, and we show that there is always a splitting
Pollicott–Ruelle resonance on 1-forms and that semisimplicity persists in this instance. These results
have consequences for the order of vanishing at zero of the Ruelle zeta function. Finally our analysis also
incorporates a flat unitary twist in the resonant spaces and in the Ruelle zeta function.

1. Introduction

We study resonant spaces of invariant distributions with values in the bundle of exterior forms for volume-
preserving Anosov flows on 3-manifolds. One of the main motivations for looking at these spaces is that
when a natural restriction is placed on the wave front set of the distributions, their dimensions are related
to the Pollicott–Ruelle resonance multiplicities, which in turn determine the order of vanishing at zero of
the Ruelle zeta function. For the case of contact Anosov flows this analysis was carried out in [Dyatlov
and Zworski 2017] and here we show that the transition from “contact” to “volume-preserving” presents
some new features, making the overall picture more involved, partially due to the nonsmoothness of the
stable plus unstable bundle.

Let (M, �) be a closed 3-manifold equipped with a volume form � and let ϕt be a volume-preserving
Anosov flow with infinitesimal generator X . If we write the Anosov splitting as T M = RX ⊕ Es ⊕ Eu ,
then we define the spaces E∗0 , E∗s and E∗u as the duals of RX , Eu and Es respectively. In particular, this
means that for each x ∈ M, E∗u(x) is the annihilator of RX (x)⊕ Eu(x) and E∗u ⊂ T ∗M, a closed conic
subset. We denote by D′E∗u (M;�

k) the space of distributions with values in the bundle of exterior k-forms
and with wave front set contained in E∗u (see Section 2 for background on these notions). The resonant
spaces that we are interested in are

Resk(0) := {u ∈ D′E∗u (M;�
k) : ιX u = 0, ιX du = 0}.
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The dimensions of the spaces can be considered as geometric multiplicities. We note that [Dang and
Riviere 2017] studies generalised resonant spaces of forms (at zero) for arbitrary Anosov flows and these
have a good cohomology theory (see Remark 2.2 for more details and definitions) but in principle these
generalised resonant forms are not in the kernel of ιX and might only be in the kernel of some power of
the Lie derivative.

Our first result computes the dimension of these geometric spaces in terms of the first Betti number
b1(M) of the manifold M and two natural characteristics of the flow that we now recall.

Since X preserves the volume form�, its Lie derivative LX� is equal to 0. Hence the 2-form ω := ιX�

must be closed.

Definition 1.1. We say that X is null-homologous if the cohomology class [ω] is equal to 0, i.e., ω is
exact. For a null-homologous X , its helicity is the number

H(X) :=
∫

M
τ(X)�,

where τ is any 1-form such that dτ = ω.

It is easy to check that this definition is independent of the choice of primitive τ . The helicity (also
referred to as the asymptotic Hopf invariant) measures how much in average field lines wrap and coil
around one another. We refer to [Arnold and Khesin 1998] for a complete account of this concept as well
as its interpretation as an average self-linking number.

We can now state our first result:

Theorem 1.2. Let (M, �) be a closed 3-manifold with volume form � and let ϕt be a volume-preserving
Anosov flow. Then:

(1) dim Res0(0)= dim Res2(0)= 1.

(2) If [ω] 6= 0, then dim Res1(0)= b1(M)− 1.

(3) If [ω] = 0, then

dim Res1(0)=
{

b1(M) if H(X) 6= 0,
b1(M)+ 1 if H(X)= 0.

This result generalises [Dyatlov and Zworski 2017, Proposition 3.1] as a contact Anosov flow fits
into [ω] = 0 and H(X) 6= 0, since in that case we can take τ to be the contact 1-form and τ(X)= 1. In
Section 5 we give some examples to illustrate the various cases in Theorem 1.2, but we should point out
right away that we do not know of any example of a volume-preserving Anosov flow with zero helicity.

We note that all the notions involved in Theorem 1.2 are invariant under time changes. Namely, if f is
a positive smooth function, the flow of f X is also Anosov and with the same E∗u . Hence the resonant
spaces Resk(0) are the same for all such flows. Also the notion of being null-homologous or having
nonzero helicity is unaffected by time changes.

As mentioned before, the dimensions of Resk(0) are important since they are related to the Pollicott–
Ruelle resonance multiplicities mk(0). In general mk(0) ≥ dim Resk(0), and equality holds under the
following condition (see Lemma 2.1):
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Definition 1.3. X or ϕt is said to be k-semisimple if given u ∈ D′E∗u (M;�
k) with ιX u = 0 and ιX du ∈

Resk(0), then u ∈ Resk(0), i.e., ιX du = 0.

Semisimplicity for k = 0, 2 will be easy to establish, but 1-semisimplicity does not always hold. In the
case of contact Anosov flows, 1-semisimplicity was proved in [Dyatlov and Zworski 2017, Lemma 3.5].
For general volume-preserving Anosov flows the bundle Eu ⊕ Es is only Hölder continuous [Foulon
and Hasselblatt 2003] and thus the 1-form adapted to the flow, defined to be zero on Eu ⊕ Es and 1 on
the generator X , is only Hölder continuous. As a consequence the computations done in [Dyatlov and
Zworski 2017, Lemma 3.5] are no longer viable due to this lack of smoothness.

Our next two results show that the picture for volume-preserving Anosov flow is rather more subtle. Let
X� denote the set of vector fields that preserve� and let X 0

�⊂X� denote those which are null-homologous.

Theorem 1.4. Let (M, �) be a closed 3-manifold with volume form �. Consider a smooth 1-parameter
family Xε of volume-preserving Anosov vector fields with X0 1-semisimple:

(1) If Xε ∈ X 0
� for every ε and H(X0) 6= 0, then Xε is 1-semisimple for all ε sufficiently small.

(2) If X0 is not null-homologous, then Xε is 1-semisimple for all ε sufficiently small.

For any hyperbolic surface, there is a time change of the geodesic flow which is not 1-semisimple.

Consider now a contact Anosov flow X with contact form α on a closed 3-manifold M. In particular,
by Theorem 1.4 we know that 1-semisimplicity persists in X 0

� and near X , where � = −α ∧ dα. The
next theorem gives us a local picture for what happens near X and away from X 0

�.

Theorem 1.5. Consider Y ∈X� \X 0
�. Then for sufficiently small ε, the flow Xε = X+εY is 1-semisimple.

Moreover, there is a splitting Pollicott–Ruelle resonance −iλε = O(ε2) of −iLXε acting on �1
∩ ker ιXε

with λε < 0 for ε 6= 0, with Pollicott–Ruelle multiplicity 1 (see Figure 1).

1A. Ruelle zeta function. We denote the set of primitive closed orbits of X by G0 (i.e., the ones that are
not powers of a closed orbit in M); the period of γ ∈ G0 is denoted by lγ . The Ruelle zeta function is
defined as

ζ(s) :=
∏
γ∈G0

(1− e−slγ ). (1-1)

The infinite product converges for Re s� 1 and its meromorphic continuation to all C was first established
in [Giulietti et al. 2013] in full generality and subsequently in [Dyatlov and Zworski 2016], where
a microlocal approach was employed; see [Pollicott 2013] for a survey of dynamical zeta functions.
Moreover, it was shown in [Dyatlov and Zworski 2016] that there is a factorisation (assuming that Es and
Eu are orientable)

ζ(s)=
ζ1(s)

ζ0(s)ζ2(s)
, (1-2)

where ζk(s) is an entire function with the order of vanishing at each s ∈ C equal to mk(is) for k = 0, 1, 2.
Here mk(λ) is the Pollicott–Ruelle resonance multiplicity (see Section 2 for more details). Hence the order
of vanishing of ζ at s = 0 is determined by m(0) :=m1(0)−m0(0)−m2(0). Using this and Theorem 1.2
we derive the following:
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Figure 1. Left: resonance spectrum of LX acting on �1(S6) for a closed hyperbolic
surface 6. According to [Guillarmou et al. 2018; Dyatlov et al. 2015] and Remark 8.3
below, the green crosses correspond to (large) eigenvalues µ≥ 1

4 of −16 , the blue ones
correspond to (small) eigenvalues µ≤ 1

4 and the red ones are “special”. Right: resonance
spectrum of LXε acting on�1(S6) and the splitting resonance, according to Theorem 1.5.
We remark that the resonances in the rest of this paper will often be given by λ= is, i.e.,
obtained by a rotation of π

2 from this picture.

Corollary 1.6. Let (M, �) be a closed 3-manifold with a volume-preserving Anosov flow ϕt whose stable
and unstable bundles are orientable. Then

sn(M,X)ζ(s)

is holomorphic close to zero, where

n(M, X)= 3− b1(M) if [ω] 6= 0,

n(M, X)= 2− b1(M) if [ω] = 0 and H(X) 6= 0,

n(M, X)= 1− b1(M) if [ω] = 0 and H(X)= 0.

Moreover, if ϕt is 1-semisimple, then sn(M,X)ζ(s)|s=0 6= 0.

The Ruelle zeta function for the suspension of a hyperbolic toral automorphism A∈SL(2,Z) is equal to

ζ(s)=
(e−s
− λ)(e−s

− 1/λ)
(e−s − 1)2

,

where λ and 1/λ are eigenvalues of A. This has a pole of order 2 at s = 0, which of course matches the
computation in Corollary 1.6 since b1(M) = 1. However, the corollary asserts that any other volume-
preserving non-null-homologous Anosov flow on M will have ζ with the same behaviour at s = 0 since
1-semisimplicity holds trivially given that Res1(0) is zero-dimensional. An interesting class of Anosov
flows with [ω] 6= 0 is given in [Bonatti and Langevin 1994]. These examples have a transverse torus, but
they are not conjugate to suspensions. We do not know if they are 1-semisimple.
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Magnetic flows are also examples to which the previous corollary applies. They are null-homologous
(see Section 5), but they are generically not contact (see [Dairbekov and Paternain 2005]); hence they
were not covered by the main result in [Dyatlov and Zworski 2017]. In this setting, magnetic flows can
be described by a vector field of the form X + (λ ◦π)V, where X is the geodesic vector field, V is the
vertical vector field of the circle fibration π : S6→ 6, and λ ∈ C∞(6) (here M is equal to S6, the
unit circle bundle of the orientable surface 6). They are volume-preserving since X and V preserve the
canonical volume form. Suppose the geodesic flow is Anosov. Thanks to item (1) in Theorem 1.4, if λ is
small enough, the magnetic flows remain Anosov and 1-semisimple and hence the order of vanishing of
the zeta function at zero is the same as for Anosov geodesic flows, namely −χ(6).

The last statement in Theorem 1.4 and Theorem 1.5 have consequences for the zeta function. The
failure of 1-semisimplicity means that m1(0)≥ b1(M)+ 1, and hence the order of vanishing at zero of
the zeta function is strictly bigger than that of the geodesic flow case. Hence time changes can a priori
produce alterations in the properties of ζ near zero. Similarly the cohomology class [ω] can also produce
alterations. For the particular construction of Theorem 1.4 we do not know the precise order of vanishing
at zero.

Corollary 1.7. The order of vanishing of the zeta function ζXε(s) of the flow Xε from Theorem 1.5 at zero,
for ε 6= 0, is equal to b1(M)−3. Moreover, for the time change f X of the geodesic flow on the hyperbolic
surface constructed in Theorem 1.4, the order of vanishing is greater than or equal to −χ(6)+ 1.

1B. Flat unitary twists. It is possible (and natural) to introduce a unitary twist in the discussion above.
Consider (M, �) a closed 3-manifold with volume form � and X a volume-preserving Anosov vector
field. Let E be a Hermitian vector bundle over M, equipped with a unitary connection A. We consider
D′E∗u (M;�

k
⊗ E) the space of distributions with values in the bundle of E-valued exterior k-forms and

with wave front set contained in E∗u . We replace the exterior differential d by the covariant derivative dA

(induced by the connection A) acting on E-valued differential forms. Thus we can define resonant spaces

Resk,A(0) := {u ∈ D′E∗u (M;�
k
⊗ E) : ιX u = 0, ιX dAu = 0}.

We shall compute the dimensions of these spaces in analogy to Theorem 1.2 under the assumption that
A is flat and unitary, i.e., d2

A = 0 and dA is compatible with the Hermitian inner product on E . Recall
that flat unitary connections are in 1-1 correspondence with representations of π1(M) into the unitary
group. Under this condition, one can define twisted Betti numbers bi (M, E) in the standard way (we note
that these numbers may depend on A). The upshot is a theorem similar to Theorem 1.2 where the Betti
numbers bi (M) are replaced by bi (M, E); see Theorem 4.1 for the full statement. With this information
in hand we can study a twisted Ruelle zeta function,

ζA(s) :=
∏
γ∈G0

det (Id−αγ e−slγ ). (1-3)

Here, given a point x0 on γ ∈ G0, we denote by αγ the parallel transport map (i.e., an element of the
holonomy group) along the loop determined by γ . It is easy to check that the product is independent of the
choice of x0 on γ , as this amounts to conjugating αγ by a linear map. Note that if E = M×C and dA = d ,
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the expression in (1-3) reduces to that in (1-1). If the connection A is flat, we recover the definition of
the twisted Ruelle zeta function considered in [Fried 1986]; it was also studied in [Adachi 1988; Adachi
and Sunada 1987], where functions of this type were called L-functions in analogy with number theory.
Fried conjectured that the coefficient at zero of ζA for an acyclic connection (i.e., one that has vanishing
Betti numbers) is related to the analytic torsion, but proved it only for hyperbolic manifolds. For recent
progress on this conjecture and more information, see [Dang et al. 2020; Shen 2018; Zworski 2018].

The notion of semisimplicity extends naturally to the twisted case (just replace d by dA in Definition 1.3).
In that case we will say a flow ϕt or X is 1-semisimple with respect to dA. Putting everything together
we shall derive the following corollary:

Corollary 1.8. Let (M, �) be a closed 3-manifold with a volume-preserving Anosov flow ϕt whose stable
and unstable bundles are orientable. Let E be a Hermitian vector bundle equipped with a unitary flat
connection A. Then

sn(M,X,A)ζA(s)

is holomorphic close to zero, where

n(M, X, A)= 3b0(M, E)− b1(M, E) if [ω] 6= 0,

n(M, X, A)= 2b0(M, E)− b1(M, E) if [ω] = 0 and H(X) 6= 0,

n(M, X, A)= b0(M, E)− b1(M, E) if [ω] = 0 and H(X)= 0.

Moreover, if X is 1-semisimple with respect to dA, then sn(M,X,A)ζA(s)|s=0 6= 0.

A particular instance of the corollary arises when we consider A to be the pullback of a flat connection
on a surface 6. In this case it is easy to check that (see Lemma 2.9)

2b0(M, E)− b1(M, E)= rank(E) χ(6).
Thus:

Corollary 1.9. Let E be a Hermitian vector bundle over an oriented closed Riemannian surface (6, g),
equipped with a unitary flat connection A. We consider M = S6 with footpoint map π and any Anosov
flow, 1-semisimple with respect to dπ∗A, null-homologous with nonzero helicity, preserving the volume form
of S6. We consider the pullback bundle π∗E with the pullback connection π∗A. Then in a neighbourhood
of zero we have srank(E)·χ(6)

· ζπ∗A(s) holomorphic such that

srank(E)·χ(6)
· ζπ∗A(s)|s=0 6= 0.

We remark that Corollary 1.9 applies in particular to contact flows, since for those 1-semisimplicity
holds with respect to any flat and unitary dA.

This paper is organised as follows. Section 2 gives preliminary information, recalls the Pollicott–Ruelle
resonances and proves some necessary lemmas. In Section 3 we recall the factorisation of the twisted
zeta function in terms of some traces of operators on E-valued k-forms. In Section 4, we compute the
dimension of the resonant spaces Resk,A(0) and obtain Theorem 1.2 as a particular case. Corollary 1.8
is also proved in this section. Section 5 gives examples and develops material needed for the study of
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time changes. Section 6 discusses perturbations and proves the main result needed for items (1) and
(2) in Theorem 1.4. Theorem 1.5 is proved in Section 7. Finally, Section 8 exhibits a time change of
the geodesic flow of a hyperbolic surface for which 1-semisimplicity fails, thus completing the proof of
Theorem 1.4.

2. Preliminary results

In this section we review the necessary tools to prove the results stated in the Introduction. In particular,
we recall the Pollicott–Ruelle resonances and put forward some preparatory lemmas.

2A. Microlocal analysis. Here we outline the microlocal tools necessary for our proofs. For more
information on distribution spaces and properties of wavefront sets see [Grigis and Sjöstrand 1994,
Chapter 7] or [Hörmander 1983, Chapters VI, VIII] and for more about pseudodifferential operators see
[Grigis and Sjöstrand 1994, Chapter 3] or [Hörmander 1985, Chapter XVIII].

Let M be a closed manifold and E a smooth complex vector bundle. We consider the space of infinitely
differentiable smooth sections and the space of distributional sections, respectively,

C∞(M; E) and D′(M; E).

We recall the notion of the wavefront set of a distribution, which keeps track of the directional singularities.
Given u ∈D′(Rn), we have (x, ξ) 6∈WF(u)⊂ T ∗Rn

\ 0= Rn
× (Rn

\ 0) if there exists ϕ ∈ C∞0 (R
n) with

ϕ(x) 6= 0 and an open conical neighbourhood U of ξ such that

|ϕ̂u(η)| = O(〈η〉−∞)

for η ∈U. Here we let 〈η〉= (1+|η|2)1/2 and by O(〈η〉−∞) we mean an expression bounded by CN 〈η〉
−N

for every N. A vector-valued distribution u ∈D′(Rn
;Rm) for some m ∈N may be identified with a vector

u = (u1, . . . , um) with ui ∈ D′(Rn). Then

WF(u) :=
m⋃

i=1

WF(ui ).

It is standard that these definitions are coordinate invariant, so for u ∈ D′(M; E) we have

WF(u)⊂ T ∗M \ 0.

It is moreover true that for any pseudodifferential operator A we have

WF(Au)⊂WF(A)∩WF(u)⊂WF(u),

a fact that will be used later on. Then, we introduce for a closed conic set 0 ⊂ T ∗M \ 0 the space

D′0(M; E)= {u ∈ D
′(M; E) |WF(u)⊂ 0}.

Note that by the above relation on wavefront sets, the spaces D′0(M; E) are invariant under the action of
pseudodifferential operators.
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2B. Pollicott–Ruelle resonances. Let us now quickly recall the microlocal approach to Pollicott–Ruelle
resonances, as in [Dyatlov and Zworski 2017]. Let M be a compact smooth manifold without boundary
and X be a smooth vector field. We assume that the flow ϕt of X is Anosov, i.e., that there is a splitting
of the tangent space

Tx M = RX (x)⊕ Eu(x)⊕ Es(x)

for each x ∈ M, where Eu(x) and Es(x) depend continuously on x and are invariant under the flow and,
moreover, that for some constants C, ν > 0 and a fixed metric on M

|dϕt(x) · v| ≤ Ce−ν|t | · |v|,
{

t ≥ 0, v ∈ Es(x),
t ≤ 0, v ∈ Eu(x).

We call Es(x) the stable bundle or direction and Eu(x) the unstable bundle or direction. It is a
well-known fact that the geodesic flow on the unit tangent bundle M = SN for N with negative sectional
curvature is Anosov.

Let us define the spaces E∗0(x), E∗u(x), E∗s (x) as the duals of E0(x) := RX (x), Es(x), Eu(x) respec-
tively. Explicitly, E∗u(x) is the annihilator of RX (x)⊕ Eu(x), E∗s (x) is the annihilator of RX (x)⊕ Es(x)
and E∗0(x) is the annihilator of Es(x)⊕Eu(x). The continuous vector bundle E∗u :=

⋃
x∈M E∗u(x)⊂ T ∗M

is a closed conic subset.
Let us consider a complex vector bundle E over M, equipped with a connection A (which defines

the covariant derivative dA) and a smooth potential 8 (section of the endomorphism bundle of E). This
defines a first-order operator

P =−i ιX dA+8 (2-1)

acting on sections of E , denoted by C∞(M; E). Later on we will dispense with 8, but for the moment it
can be included without trouble.

For λ ∈ C with sufficiently large Im λ > C0 > 0, we have the integral

R(λ) := i
∫
∞

0
eiλt e−i t P dt : L2(M; E)→ L2(M; E) (2-2)

converges and defines a bounded operator, holomorphic in λ and, moreover, R(λ)= (P−λ)−1 on L2. The
propagator ei t P is defined by solving the appropriate first-order PDE and the constant C0 depends on P.

In [Faure and Sjöstrand 2011] (see also [Dyatlov and Zworski 2016]) it is proved that the operator
R(λ) has a meromorphic extension to the entire complex plane

R(λ) : C∞(M; E)→ D′(M; E) (2-3)

for λ ∈ C and the poles of this continuation are the Pollicott–Ruelle resonances.
We proceed to define the multiplicity of a Pollicott–Ruelle resonance λ0. By definition, there is a

Laurent expansion of R(λ) at λ0 (see [Dyatlov and Zworski 2019, Appendix C])

R(λ)= RH (λ)−

J (λ0)∑
j=1

(P − λ0)
j−15

(λ− λ0) j , 5, RH (λ) : D′E∗u (M; E)→ D′E∗u (M; E) (2-4)
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where RH (λ) is the holomorphic part at λ0 and 5=5λ0 is a finite-rank projector given by

5λ0 =
1

2π i

∮
λ0

(λ− P)−1 dλ. (2-5)

Here, the integral is along a small closed loop around λ0 and it can be easily checked that 52
λ0
=5λ0 ,

[5λ0, P] = 0. The fact that RH (λ) and 5 can be extended to continuous operators on D′E∗u follows from
the restrictions on the wave front sets given in [Dyatlov and Zworski 2016, Proposition 3.3] and [Grigis
and Sjöstrand 1994, Theorem 7.8]. The Pollicott–Ruelle multiplicity of λ0, denoted by m P(λ0), is defined
as the dimension of the range of 5λ0 .

By applying P − λ to (2-4), we obtain (P − λ0)
J (λ0)5λ0 = 0 and so ran5λ0 ⊂ ker(P − λ0)

J (λ0). The
elements of ran5λ0 are called generalised resonant states and we will define, for j ∈ N,

Res( j)
P (λ0)= {u ∈ D′E∗u (M; E) : (P − λ0)

j u = 0}. (2-6)

We also write
ResP(λ0)= {u ∈ D′E∗u (M; E) : (P − λ0)

J (λ0)u = 0}.

In fact, we may show that ResP(λ0) is equal to the range of 5λ0 and we may think of J (λ0) as the size
of the largest Jordan block.

Lemma 2.1. Let u ∈ D′E∗u (M; E) be such that (P − λ0)
j0u = 0 with j0 ∈ N0 the minimal such number.

Then j0 ≤ J (λ0), 5λ0u = u and ker(P − λ0)
J (λ0) = ran5λ0 .

Proof. Assume that j0 > J (λ0) for the sake of contradiction. Since Sobolev spaces filter out D′(M; E),
there is an s > 0 such that u ∈ H−s(M; E). Recalling the definition of the anisotropic space HrG(M; E)
for r > 0 (see (6-1) below), we get

D′E∗u (M; E)∩ H−r (M; E)⊂HrG(M; E)

since HrG is microlocally equivalent to H−r near E∗u . Therefore u ∈ HrG(M; E) for r > s and by
Lemma 6.1 below (P − λ)−1

:HrG(M; E)→HrG(M; E) is meromorphic near λ0 for r � s.
Let us set v := (P − λ0)

j0−1u. Then (P − λ)−1v = (λ0 − λ)
−1v and by applying (2-5) to v we get

5λ0v = v. Note that (2-4) also implies (P − λ0)
J (λ0)5λ0 t = 0 for all t ∈HrG . But all this implies

(P − λ0)
j0−1u =5λ0(P − λ0)

j0−1u = (P − λ0)
j0−15λ0u = 0. (2-7)

This contradicts the minimality of j0 and proves the first claim.
For the second claim, take some u ∈ Res( j0)

P (λ0) and use induction on j0. Note that the first two
equalities of (2-7) show 5λ0u = u for j0 = 1 and more generally that

(P − λ0)
j0−1(5λ0u− u)= 0.

The fact that 5λ0 is a projector and the induction hypothesis show 5λ0u = u, proving the claim.
Lastly, if u ∈ ran5λ0 then 5λ0u = u and so (P − λ0)

J (λ0)u = 0 by (2-4), which together with the
previous paragraph shows ker (P − λ0)

J (λ0) ∩D′E∗u (M; E)= ran5λ0 . �
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Remark 2.2. Generalised resonant spaces of forms (at zero) have a good cohomology theory; see [Dang
and Riviere 2017, Theorem 2.1]. We emphasise that here we study resonant spaces at zero with j = 1 in
(2-6) and such that the elements are in the kernel of ιX , as well as conditions under which there are no
Jordan blocks.

2C. Coresonant states. Here we study the connection between the semisimplicity and a suitable pairing
between resonant and coresonant states. We start off with a lemma relating the adjoint of the spectral
projector and the spectral projector of the adjoint.

Lemma 2.3. Let P be a first-order differential operator acting on sections of E with principal symbol
−iσ(X)× IdE and consider the adjoint operator P∗. Denote the spectral projector of P at λ0 ∈ C by 5λ0

and of P∗ by 5′λ0
. Also, denote the resolvent by RP(λ)= (P − λ)−1. Then1

RP(λ)
∗
=−R−P∗(−λ̄) and 5∗λ =5

′

−λ̄
.

Proof. Firstly note that for Im λ� 1 and all u, v ∈ L2(M; E), by (2-2) we have the identity

〈RP(λ)u, v〉L2 = 〈u,−R−P∗(−λ̄)v〉L2 . (2-8)

Then by analytic continuation we have the equality in (2-8) for any u, v ∈C∞ for all λ ∈C. Moreover, by
continuity and the mapping properties of RP(λ) :D′E∗u (M; E)→D′E∗u (M; E) and R−P∗(−λ̄) :D′E∗s (M; E)→
D′E∗s (M; E) outside the poles, we have (2-8) for all u ∈ D′E∗u and v ∈ D′E∗s . This proves the first claim.
Now let u ∈ D′E∗u (M; E) and v ∈ D′E∗s (M; E). We may write

〈5λ0u, v〉 = − 1
2π i

∮
λ0

〈RP(λ)u, v〉 dλ=
1

2π i

∮
λ0

〈u, R−P∗(−λ̄)v〉 dλ= 〈u,5′−λ̄0
v〉.

This proves 5∗λ0
=5′

−λ̄0
. �

We proceed to define the coresonant states. Given an operator P as in Lemma 2.3 and a resonance
λ0∈C, the space of coresonant states at λ0 is Res−P∗(−λ̄0)⊂D′E∗s (M; E). By the wavefront set conditions,
notice that we may multiply resonances and coresonances in the scalar case, or form inner products; see,
e.g., [Grigis and Sjöstrand 1994, Proposition 7.6]. We are now ready to reinterpret the semisimplicity in
terms of the pairing

ResP(λ0)×Res−P∗(−λ̄0)→ C, (u, v) 7→ 〈u, v〉L2 . (2-9)

Observe that the pairing (2-9) is nondegenerate: we have 〈u, v〉 = 0 for all v ∈ Res−P∗(−λ̄0) if and only
if 〈u,5′

−λ̄0
ϕ〉 = 0 for all ϕ ∈ C∞(M; E). Then by Lemma 2.3 and since 5λ0u = u, this holds if and

only if u ≡ 0; by an analogous argument for the other entry, we obtain the nondegeneracy. In particular,
m P(λ0)=m−P∗(−λ̄0) and also J (λ0)= J ′(−λ̄0). Here J ′(µ) denotes the size of the largest Jordan block
of −P∗ at µ.

1Here we interpret −R−P∗(−λ̄) : C∞(M; E)→D′(M; E) as the operator obtained by meromorphic continuation, but with
respect to the flow generated by −X .
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Lemma 2.4. Assume P satisfies the assumptions of Lemma 2.3. Then we have that the semisimplicity for
P at λ0 holds if and only if the semisimplicity for −P∗ at −λ̄0 holds. Moreover, P is semisimple at λ0 if
and only if the pairing

Res(1)P (λ0)×Res(1)
−P∗(−λ̄0)→ C, (u, v) 7→ 〈u, v〉L2 . (2-10)

is nondegenerate.

Proof. For the first claim, simply note that by the previous paragraph we have J (λ0)= J ′(−λ̄0).
For the second claim, assume first that the pairing (2-10) is nondegenerate. Assume we have u, u′ ∈

D′E∗u (M; E), with (P − λ0)u = u′ where u′ ∈ Res(1)P (λ0). We want to show u′ = 0. We have, for any
v ∈ Res(1)

−P∗(−λ̄0),

〈u′, v〉 = 〈(P − λ0)u, v〉 = 〈u, (P∗− λ̄0)v〉 = 0.

Now nondegeneracy implies u′ = 0.
Assume next the semisimplicity holds for P at λ0 and let u ∈ Res(1)P (λ0) satisfy 〈u, v〉 = 0 for all

v ∈ Res(1)
−P∗(−λ̄0). Then we have, for all ϕ ∈ C∞(M; E),

〈u, ϕ〉 = 〈5λ0u, ϕ〉 = 〈u,5′
−λ̄0
ϕ〉 = 0.

Here we used Lemma 2.3 and the assumption. Thus u ≡ 0. The fact that −P∗ is semisimple at −λ̄0 and
an analogous argument for the other entry proves the nondegeneracy and finishes the proof. �

2D. Further preparatory results. We start by quoting an important technical result; see [Dyatlov and
Zworski 2017, Lemma 2.3].

Lemma 2.5. Suppose there exist a smooth volume form on M and a smooth inner product on the fibres of
E for which P∗ = P on L2(M; E). Suppose that u ∈ D′E∗u (M; E) satisfies2

Pu ∈ C∞(M; E), Im〈Pu, u〉L2 ≥ 0.

Then u ∈ C∞(M; E). In particular, the conclusion of the lemma holds for u a resonant state with the
eigenvalue λ ∈ R — just swap P with P − λ.

We also need a simple regularity result analogous to [Dyatlov and Zworski 2017, Lemma 2.1]. We
give it here for completeness

Lemma 2.6. Assume dA is flat and let 0⊂ T ∗M \0 be a closed conic set. Assume that u ∈D′0(M;�
k
⊗E)

and dAu ∈ C∞(M;�k+1
⊗ E). Then there exists v ∈ C∞(M;�k

⊗ E) and w ∈ D′0(M;�
k−1
⊗ E) such

that u = v+ dAw.

Proof. The proof follows formally by replacing d with dA and δ with d∗A in the proof [Dyatlov and
Zworski 2017, Lemma 2.1]. �

2The inner product in this paper is complex conjugate in the second variable.
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2E. Cohomology in a flat bundle. Given a manifold M of dimension n and a Hermitian vector bundle E
with a flat connection A, we may consider the complex given by

0 dA
−→ C∞(M; E) dA

−→ C∞(M;�1
⊗ E) dA
−→ · · ·

dA
−→ C∞(M;�n

⊗ E) dA
−→ 0. (2-11)

Here we extend, as usual, the action of dA to vector-valued differential forms by asking that the Leibnitz
rule holds. The homology of this complex will be denoted by H k

A(M; E) for k = 0, . . . , n. Consider now
6 an oriented Riemannian surface and let E be a Hermitian vector bundle over 6 equipped with a unitary,
flat connection A. We can pull back the bundle E to the unit sphere bundle π : S6→6 to obtain π∗E ,
equipped with a unitary, flat connection π∗A.

Lemma 2.7. Assume 6 has genus g 6= 1. Then the following map is an isomorphism:

π∗ : H 1
A(6; E)→ H 1

π∗A(S6;π
∗E). (2-12)

Proof. There is a vertical vector field V that generates the rotation in the fibres of S6. We first check
π∗ is injective, so assume π∗θ = dπ∗A F, where θ ∈ C∞(6;�1

⊗ E) is dA-closed and F ∈ C∞(S6; E).
This implies ιV dπ∗A F = 0. Note that if x ∈6, there is a small ball B with x ∈ B, over which E is trivial.
Thus ιV dπ∗A F = 0 implies V F = 0 (since ιVπ∗A = 0) and so F = π∗ f locally; this is easily seen to
extend to F = π∗ f globally for some f ∈ C∞(6; E). This implies π∗(dA f − θ)= 0 and so dA f = θ .

For surjectivity, take u ∈ C∞(S6;�1
⊗π∗E) with dπ∗Au = 0. We want to prove there are v and F

such that u = π∗v+ dπ∗A F, where v is dA-closed. This implies

ιV u = ιV dπ∗A F. (2-13)

If we solve (2-13), then w= u−dπ∗A F satisfies dπ∗Aw= 0 and ιVw= 0. By going to local trivialisations
where A= 0, a computation implies w=π∗v for some 1-form v locally. Again, by uniqueness this may be
easily extended to some global v ∈ C∞(6; E) with dAv = 0. We now focus on (2-13) and finding such F.

To this end, we introduce the pushforward map π∗ : C∞(S6;�1
⊗π∗E)→ C∞(6; E) by integrating

along the fibres

π∗ : α(x, v) 7→ β(x)=
∫

Sx6

α. (2-14)

One can show that the pushforward is well-defined and that it intertwines dA and dπ∗A; after going to a
trivialisation where A= 0, this reduces to showing commutation with d , which follows from [Bott and Tu
1982, Proposition 6.14.1]. Thus π∗ descends to cohomology; i.e., we have π∗ : H 1

π∗A(S6; E)→ H 0
A(6; E).

Now observe that (2-13) can be solved if and only if π∗u = 0. We introduce the section s ∈ C∞(6; E)
with s(x)= π∗u. Note that dAs = 0. Moreover, we have for K the Gaussian curvature of 6:∫

S6
〈u, π∗(sK d vol6)〉 =

∫
6

〈π∗u, sK d vol6〉 =
∫
6

‖s‖2K d vol6 = ‖s‖22πχ(6). (2-15)

Here we used that ‖s‖2 is constant, since s is parallel and A is unitary, and we applied Gauss–Bonnet theo-
rem. In the first equality we use a generalisation of [Bott and Tu 1982, Proposition 6.15]. We use the conven-
tion that 〈sα, s ′β〉= 〈s, s ′〉Eα∧β̄, where α and β are forms of complementary degree and s, s ′ are sections.
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On the other hand, we have π∗(K d vol6)=−dψ , where ψ is the connection 1-form on S6. Therefore
we have the pointwise identity, as dπ∗Au = 0 and dAs = 0,

〈u, π∗(sK d vol6)〉 = d〈u, (π∗s)ψ〉.

So by Stokes’ theorem we obtain that the first integral in (2-15) is zero. Since g 6= 1, we have χ(6) 6= 0
and so s = 0. Therefore π∗u = 0, which concludes the proof. �

Remark 2.8. Alternatively, we could have proved Lemma 2.7 more abstractly using a version of the
Gysin sequence for twisted de Rham complexes; see [Bott and Tu 1982, p. 177] for more details.

We now compute the Euler characteristic of the twisted de Rham complex. This shows that, although
the twisted Betti numbers, i.e., dimensions of H k

A(M; E) can jump by changing A, the Euler characteristic
is independent of the choice of flat connection. We could not find an appropriate reference for this result.

Lemma 2.9. The Euler characteristic of the chain complex (2-11), denoted by χA(M; E), is equal to

χA(M; E)= rank(E)χ(M).

Proof. A way to prove this is given by an application of the Atiyah–Singer index theorem; we sketch the
proof here. It starts by noting that, as with the usual nontwisted forms, we have

dA+ d∗A : C
∞(M;�odd

⊗ E)→ C∞(M;�even
⊗ E). (2-16)

Here�even
=
⊕

i �
2i and�odd

=
⊕

i �
2i+1 are the bundles of even and odd differential forms, respectively.

Let us introduce the twisted Hodge laplacian,1A=d∗AdA+dAd∗A. By Hodge theory, we have H k
A(M; E)∼=

ker1A|�k⊗E . Therefore, we also have ind(dA+ d∗A)= χA(M; E), where by ind we denote the index of
an operator.

By the Atiyah–Singer index theorem,

ind(dA+ d∗A)=
∫

T ∗M
ch(d(dA+ d∗A))T (T M)

=

∫
T ∗M

ch(E) ch(d(d + d∗))T (T M)

= rank(E)
∫

T ∗M
ch(d(d + d∗))T (T M)= rank(E)χ(M). (2-17)

Here, T denotes the Todd class and ch denotes the Chern character.3 The letter d denotes the difference
bundle. Since (E, A) is flat by assumption, we have ch(E)= rank(E). The transition to the second line is
justified since the principal symbol of dA+ d∗A is equal to σ(d + d∗)⊗ IdE , so that

d(dA+ d∗A)= d(σ (d + d∗)⊗ Id)= [G1⊗ E] − [G2⊗ E] = ([G1] − [G2]) · [E] ∈ K comp(T ∗M).

Here G1 and G2 are certain vector bundles over a one-point compactification of T ∗M and K comp denotes
the suitable K -theory. Since ch is multiplicative over the K -theory, we get the product of characters. The

3More explicitly, these are given for a vector bundle V over M with curvature two-form � and w = −�/(2π i), by
ch(V )= tr expw and T (V )= det(w/(1− exp(−w))). Here we apply the Taylor series at zero to forms.
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last equality follows from the Atiyah–Singer index theorem for the operator d + d∗ :�odd
→�even and

the nontwisted Hodge theory. �

3. Meromorphic continuation of ζA(s)

We devote this section to showing meromorphic continuation of ζA(s) given by (1-1) for an arbitrary
(possibly nonflat, nonunitary) A. We note that the meromorphic continuation of the Ruelle zeta function
was first established in [Giulietti et al. 2013] and later in [Dyatlov and Zworski 2016], and that here
we follow the latter microlocal approach. Let (M, g) be a compact Riemannian manifold and E a
Hermitian vector bundle over M equipped with a connection A and an endomorphism-valued function 8.
Also assume M admits an Anosov flow ϕt with generator X . We consider the first-order operator
P =−i ιX dA+8.

Let us denote by αx,t the parallel transport (with respect to P) in the fibres of E along integral curves
of ϕt :

αx,t : E(x)→ E(ϕt(x)). (3-1)

Recall now that the propagator e−i t P is the one-parameter family of operators, defined by solving the
first-order PDE in (t, x) for u ∈ C∞(M; E)(

∂

∂t
+ i P

)
(e−i t Pu)= 0. (3-2)

Then the solution u(t, x)= (e−i t Pu)(t, x) ∈ C∞(R×M; E) (we pull back E to R×M) and we have

(e−i t Pu)(t, x)= u(t, x)= αϕ−t x,t u(ϕ−t x). (3-3)

This follows by a computation in local coordinates. In fact, in a local coordinate system U 3 x over which
E |U ∼=U ×Cm is trivial and for small t , we have

(∂t + A(∂t)+ i8(ϕt x))αx,t = 0. (3-4)

We write A for the matrix of 1-forms associated to dA = d + A and identify αx,t with a matrix. Then we
may compute, using the chain rule,

∂t u(t, x)=−
(

A(X (x))+ i8(x)
)
αϕ−t x,t u(ϕ−t x)− (Xα)ϕ−t x,t u(ϕ−t x)−αϕ−t x,t Xu(ϕ−t x)

=−i P(αϕ−t x,t u)(t, x)+ X (αϕ−t x,t u)(t, x)− (Xαϕ−t x,t)u(ϕ−t x)−αϕ−t x,t Xu(ϕ−t x)

=−i Pu(t, x).

Here we used (3-4) in the first equality, the definition of P in the second and the chain rule in the last one.
We thus obtain (3-3) for small t and by iteration we obtain it for all t . As a consequence, we obtain for
any f ∈ C∞(M) and u ∈ C∞(M; E)

e−i t P( f u)= f ◦ϕ−t · e−i t Pu. (3-5)

Denote by Px,t the linearised Poincaré map for any time t and point x ∈ M :

Px,t = (dϕt(x))−T
:�1

0(x)→�1
0(ϕt x),
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where, for x ∈ M and k ∈ N, we define the subbundle of differential forms in the kernel of ιX by

�k
0 =�

k
∩ ker ιX .

We write −T for the inverse transpose. Note LX acts on sections of �k
0 for any k. Also, we have that ϕ∗t

is a one-parameter family of maps acting on �k
0, for any k, such that we may write (ϕt)

∗
= etLX. So we

obtain that, by the definition of ϕ∗
−t for any η a smooth k-form (see (3-3))∧kPx,t(η(x))= e−tLXη(ϕt x). (3-6)

Here
∧kPx,t is the exterior product of maps acting on �k

0. Given a closed orbit γ with period T, we
consider a point x0 ∈ γ and define

trαγ := trαx0,T .

Since the maps αϕt x0,T are conjugate for varying t , the trace is independent of γ . Similarly, we define

det(Id−Pγ ) := det(Id−Px0,T ).

In what follows, for technical purposes we assume that we have a constant β ∈ N such that

|det(Id−Pγ )| = (−1)β det(Id−Pγ ). (3-7)

This happens in particular if Es and Eu are orientable, where β = dim Es . This assumption may be
removed by using a suitable twist with an orientation bundle; see [Dyatlov and Guillarmou 2016; Dyatlov
and Zworski 2016; Giulietti et al. 2013] for details.

We will denote by γ # a general primitive periodic orbit, and if γ is an arbitrary periodic orbit, then l#
γ

will denote the period of the primitive periodic orbit corresponding to γ .

Theorem 3.1. Define for Re s� 1

FP(s) :=
∑
γ∈G

e−slγ l#
γ trαγ

|det(Id−Pγ )|
, (3-8)

where the sum is over all periodic trajectories. Then FP(s) extends meromorphically to all s ∈ C. The
poles of FP(s) are precisely s ∈ C, where is a Pollicott–Ruelle resonance of P. Moreover, the poles are
simple with residues equal to the Pollicott–Ruelle multiplicity m P(is).

Proof. We give only a sketch of the proof here, as it follows from [Dyatlov and Zworski 2016]. The sum
(3-8) converges by [loc. cit., Lemma 2.2] and as ‖αγ ‖ ≤CeClγ for some C > 0. Observe that by (3-3), we
have that the Schwartz kernel K of the propagator e−i t P, as a distribution K (t, y, x) ∈ D′(R×M ×M),
satisfies WF(K )⊂ N ∗S, where S = {(t, ϕt(x), x) : x ∈ M, t ∈ R} and N ∗S denotes the conormal bundle
of S. Therefore, Guillemin’s trace formula [loc. cit., Appendix B] applies to give, for t > 0,

tr[ e−i t P
|C∞(M;E) =

∑
γ∈G

l#
γ trαγ δ(t − lγ )

|det(Id−Pγ )|
.
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All that is left to do is to note that the remainder of the proof in [loc. cit., Section 4] is not sensitive to
changing ϕ∗

−t to a general propagator e−i t P for P as above. This completes the proof.
Alternatively, the whole statement follows from more general work [Dyatlov and Guillarmou 2016,

Theorem 4] on open systems. �

We now prove the meromorphic extension of the zeta function using the meromorphic continuation of
the trace above.

Proposition 3.2. The zeta function ζA(s) is given by

ζA(s)=
∏
γ #

det (Id−αγ #e−sl#
γ ) (3-9)

for large Re s and holomorphic in that region. Moreover, it has a meromorphic extension to the whole of C

and the poles and zeros of the extension are determined by Pollicott–Ruelle resonances of P=−i ιX dA+8

acting on differential forms with values in E .

Proof. We follow the now standard procedure of writing log ζA as an alternating sum of traces of maps
between bundles of differential forms with values in a vector bundle; see [Dyatlov and Zworski 2016,
equation (2.5)], originally due to [Ruelle 1976]. We write for large Re s

log ζA(s)=
∑
γ #

log det(Id−αγ #e−sl#
γ )=

∑
γ #

tr log(Id−αγ #e−sl#
γ )

=−

∑
γ #, j

tr(α j
γ #)e

− jsl#
γ

j
=−

∑
γ

tr(αγ )e−slγ
l#
γ

lγ

=

n−1∑
k=0

(−1)k+β+1
∑
γ

tr
(∧kPγ

)
tr(αγ )e−slγ

|det(Id−Pγ )|
l#
γ

lγ
=

n−1∑
k=0

(−1)k+βgk(s). (3-10)

We used the formula log det(Id+ A)= tr log(Id+ A), which works for ‖A‖ small enough, the fact that
there is a C > 0 such that ‖αγ ‖ ≤ CeClγ and [Dyatlov and Zworski 2016, Lemma 2.2]. The function gk

is defined as

gk(s)=−
∑
γ

tr
(∧kPγ

)
tr(αγ )e−slγ

|det(Id−Pγ )|
l#
γ

lγ
.

Also, we used the identity

det(Id−Pγ )=
n−1∑
k=0

(−1)k tr
(∧kPγ

)
,

which comes from linear algebra. Introduce then

Fk(s) := −g′k(s)=−
∑
γ

tr
(∧kPγ

)
tr(αγ )e−slγ l#

γ

|det(Id−Pγ )|
. (3-11)

This is reminiscent of (3-8). In fact, consider the vector bundle Ek :=�
k
0⊗ E . We extend the action of P

on E to the action on Ek by the Leibnitz rule and denote the associated first-order differential operator
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by Pk . We have, for w ∈ C∞(M;�k
0) and s ∈ C∞(M; E),

Pk(s⊗w)= (−i ιX dA+8)(s⊗w)= Ps⊗w+ s⊗ (−iLXw). (3-12)

Then we observe that, by using (3-12),

(∂t + i Pk)(e−i t Ps⊗ e−tLXw)= 0. (3-13)

Introduce the parallel transport βk,x,t : Ek(x)→ Ek(ϕt x) along the fibres of Ek . Then by (3-3), (3-6) and
(3-13)

βk,x,t(s(x)⊗w(x))= e−i t Pk (s⊗w)(ϕt x)

= e−i t Ps(ϕt x)⊗ e−tLXw(ϕt x)= αx,t(s(x))⊗
∧kPx,t(w(x)). (3-14)

We claim that for k = 0, 1, . . . , n− 1
FPk (s)= Fk(s).

To see this, observe that along a periodic orbit γ of period lγ by (3-14) we have

tr(βk,γ )= tr
(
αγ ⊗

∧kPγ
)
= tr(αγ ) · tr

(∧kPγ
)
.

Here we write βk,γ = βk,x0,lγ , where x0 is any point on γ . The trace trβk,γ is independent of x0. This
proves the claim.

By Theorem 3.1 and an elementary argument, for each k there exists a holomorphic function ζk,A(s)
such that

ζ ′k,A

ζk,A
=−Fk(s)= g′k(s).

Thus by (3-10) we obtain the factorisation

ζA(s)=
n−1∏
k=0

ζ
(−1)k+β
k,A (s). (3-15)

By Theorem 3.1, s ∈ C is a zero of ζk,A(s) precisely when is is a Pollicott–Ruelle resonance of Pk and
the multiplicity of the zero is equal to the Pollicott–Ruelle multiplicity at is. �

For convenience we restate the factorisation above for 3-manifolds.

Corollary 3.3. Consider a closed 3-manifold (M, g) with an Anosov flow X. Let E be a vector bundle
over M equipped with a connection A and a potential 8. Then, assuming Es is orientable, we have the
factorisation, where ζk,A is entire for k = 0, 1, 2,

ζA(s)=
ζ1,A(s)

ζ0,A(s)ζ2,A(s)
. (3-16)

Moreover, the order of zero at a point s of ζA(s) is equal to

m P1(is)−m P0(is)−m P2(is), (3-17)
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where m Pk (is) denotes the Pollicott–Ruelle resonance multiplicity at is of the operators Pk =−i ιX dA+8

acting on sections of the vector bundle Ek =�
k
0(M)⊗ E for k = 0, 1, 2.

4. Resonant spaces

In this section we prove:

Theorem 4.1. Let (M, �) be a closed 3-manifold with volume form � and let ϕt be a volume-preserving
Anosov flow. Let E be a Hermitian vector bundle equipped with a unitary flat connection A. Then:

(1) dim Res0,A(0)= dim Res2,A(0)= b0(M, E).

(2) If [ω] 6= 0, then dim Res1,A(0)= b1(M, E)− b0(M, E).

(3) If [ω] = 0, then

dim Res1,A(0)=
{

b1(M, E) if H(X) 6= 0,
b1(M, E)+ b0(M, E) if H(X)= 0.

Moreover, k-semisimplicity holds for k = 0, 2.

In particular, as a consequence we obtain:

Proof of Theorem 1.2. This is a direct consequence of Theorem 4.1 applied to trivial bundle E = M ×C

and the trivial connection dA = d. �

We break down the proof of Theorem 4.1 into the following subsections.

4A. Smooth invariant 1-forms. We first show that smooth resonant 1-forms are zero. The idea is that
an invariant 1-form decays along the stable direction in the future and in the unstable direction in the
past and so must vanish. This first subsection is quite general and holds in any dimension for any unitary
connection A and Hermitian matrix field 8. Recall that �k

0 =�
k
∩ ker ιX .

Lemma 4.2. We have

Res1,A,8(0)∩C∞(M;�1
0⊗ E)= {0}. (4-1)

Proof. We start by proving the following formula, which holds for any u ∈ C∞(M;�k
⊗ E):

αx,t(ux(ξ
k))= e−t (ιX dA+i8)uϕt x

((∧kdϕt
)
ξ k). (4-2)

Here ξ k
∈3k

x M is a k-vector and x is any point in M. The definitions of αx,t are given in (3-1) and (3-3).
Note firstly that it suffices to prove the claim above for u = s ⊗w, where w is a k-form and s is a

section of E , since we can write u as a sum of such terms near x and a term which is zero close to x . But
this follows from (3-14) and by the definition of the map Px,t .

If u ∈ Res1,A,8(0)∩C∞(M;�1
0⊗ E) we must have (−i ιX dA +8)u = 0 and ιX u = 0. This further

implies e−t (ιX dA+i8)u = u, since (∂t + ιX dA+ i8)u = 0. Then by (4-2) for k = 1 and ξ ∈ Es(x)

|ux(ξ)| = |αx,t ux(ξ)| = |uϕt x(dϕtξ)|. |dϕtξ |g . e−λt , t > 0. (4-3)
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Here we used that αx,t is a unitary isomorphism4 the Anosov property of X and that t > 0 in the last
inequality. By taking the limit t→∞, we get u is zero in the direction of Es . Similarly, we get that u is
zero in the direction of Eu , so u is zero. �

Remark 4.3. The above method shows that for an arbitrary smooth k-form u ∈ Resk,A,8(0), we have
u|∧k Eu

= 0 and u|∧k Es
= 0, and more generally one could compare rates of contraction and expansion to

obtain vanishing on larger subspaces. Other components can be nonzero, as can be seen, e.g., below from
the computation for Res2,A(0) for A flat.

4B. Res0,A(0) and Res2,A(0). Recall that ω = iX� and assume from now on that A is flat.

Lemma 4.4. We have

Res0,A(0)= {s ∈ C∞(M; E) : dAs = 0} = H 0
A(M, E), (4-4)

Res2,A(0)= {s ω : s ∈ C∞(M; E), dAs = 0}. (4-5)

Moreover, k-semisimplicity holds for k = 0, 2.

Proof. We distinguish the cases k = 0 or 2.

Case k = 0: If s ∈ Res0,A(0), then s ∈ C∞(M; E) by Lemma 2.5. Since A is flat, d2
As = 0 and therefore

dAs ∈Res1,A(0)∩C∞(M, �1
0⊗E) and by Lemma 4.2 we have dAs = 0. So in this case we get a bijection

with the parallel sections of E .
For semisimplicity, consider s ∈ D′E∗u (M; E) with ιX dAs =: v ∈ Res0,A(0). Then v ∈ C∞(M; E) by

Lemma 2.5 and v is parallel by the previous paragraph. For u ∈ C∞(M; E) parallel, since dA is unitary,
we have ∫

M
〈ιX dAs, u〉E �=

∫
M

X〈s, u〉E �= 0. (4-6)

By picking u = v, we get v = 0 and so s ∈ Res0,A(0).

Case k = 2: For u ∈ Res2,A(0), we may write u = sω for some distributional section s ∈ D′E∗u (M; E).
Then ιX dAu = 0 implies ιX dAs = 0, as LX�= dω = 0. By the analysis of Res0,A(0), we immediately
get that s is parallel.

For semisimplicity, assume ιX dAu = v ∈ Res2,A(0) with u ∈ D′E∗u (M;�
2
0⊗ E). So u = sω for some

s ∈ D′E∗u (M; E) and v = s ′ω with s ′ smooth and parallel. Therefore s ′ = ιX dAs ∈ Res0,A(0) and by
semisimplicity in the k = 0 case, we obtain s ′ = 0. �

Remark 4.5. In the proof of Lemma 4.4, the fact that J (0)= 1 in the case k = 0 also holds for A nonflat
and unitary. To see this, consider the spectral theoretic inequality, which holds for ϕ ∈ C∞(M; E),

‖(P − λ)ϕ‖L2 · ‖ϕ‖L2 ≥ | Im〈(P − λ)ϕ, ϕ〉L2 | = | Im λ|‖ϕ‖2L2 . (4-7)

4This can be shown as follows. Fix x ∈ M and take two parallel sections u1 and u2 of E along the orbit {ϕt x : t ∈ R},
solving locally in some trivialisation (∂t + A(∂t )+ i8)u j = 0 for j = 1, 2. Then ∂t 〈u1, u2〉E(ϕt x) = 〈(∂t + A(∂t ))u1, u2〉 +
〈u1, (∂t + A(∂t ))u2〉 = −i〈8u1, u2〉 + i〈u1,8u2〉 = 0, as dA is unitary and 8 is Hermitian. Therefore the parallel transport
preserves inner products and αx,t is unitary.
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Here we used that P = P∗ on L2. Therefore ‖R(λ)‖L2→L2 ≤ 1/| Im λ| for Im λ > 0, which implies
J (0)= 1.

4C. Res1,A(0). Recall that H 0
A(M; E) is the space of parallel sections (i.e., smooth sections s of E

such that dAs = 0). We start with a solvability result along the lines of [Dyatlov and Zworski 2017,
Proposition 3.3.].

Proposition 4.6. Assume X preserves a smooth volume form � and A is unitary and flat. Let f ∈
C∞(M; E) and assume

∫
M〈 f, s〉E�= 0 for all s ∈ C∞(M; E) parallel. Then there exists u ∈ D′E∗u (M; E)

such that ιX dAu = f .

Proof. Let us set P =−i ιX dA. By Lemma 4.4 we have the 0-semisimplicity and so J (0)= 1. Thus by
(2-4) near zero, where 5=50,

R(λ)= RH (λ)−
5

λ
.

Therefore, by applying P − λ to this equation we obtain close to zero

(P − λ)RH (λ)+50 = Id. (4-8)

We introduce u := −i RH (0) f , which lies in D′E∗u (M; E) by the mapping properties of RH (λ) in (2-4).
Then, assuming 50 f = 0 we have by (4-8), evaluated at λ= 0,

f = f −50 f = P RH (0) f = (i P)(−i RH (0) f )= ιX dAu.

Now we prove that 50 f = 0. By Lemmas 2.1 and 4.4, we get

ran(50)= ker(P|D′E∗u (M;E)
)= Res0,A(0)= H 0

A(M; E).

Since X is volume-preserving and A is unitary, we have P∗ = P. Therefore ran5′0 = H 0
A(M; E)

analogously, where5′0 denotes the spectral projector of−P with respect to the flow−X . Now Lemma 2.3
gives 5∗0 =5

′

0 and so for any g ∈ C∞(M; E)

〈50 f, g〉L2 = 〈 f,5∗0g〉L2 = 0.

Thus 50 f = 0, which concludes the proof. �

We proceed with:

Lemma 4.7. There is a linear map T : Res1,A(0)→ H 0
A(M; E) such that dAu = T (u)ω, where u ∈

Res1,A(0). The map T satisfies the following:

(1) If [ω] 6= 0 or H(X) 6= 0, then T is trivial.

(2) If H(X)= 0, then T is surjective.

Proof. Let u ∈ Res1,A(0). Since A is flat, d2
A = 0 and hence dAu ∈ Res2,A(0) and so dAu = sω with s

parallel and smooth, by Lemma 4.4. If we set T (u)= s, this defines a linear map such that dAu = T (u)ω.
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Next note that given parallel sections p, q ∈ H 0
A(M; E), the inner product 〈q, p〉E is a constant function

on M. By Lemma 2.6 there is a smooth v such that dAu = dAv. We write

d〈T (u), v〉E = 〈T (u), dAv〉E = ‖T (u)‖2ω

and observe that the left-hand side is exact. Hence we must have T ≡ 0 if [ω] 6= 0.
If [ω] = 0, we set ω = dτ and thus

dA(u− T (u)τ )= 0.

Using Lemma 2.6, we can write u− T (u)τ = η+ dA F, where η is a smooth 1-form with dAη = 0 and
F ∈ D′E∗u (M; E). Contracting with X and taking (pointwise) the inner product with T (u) we derive

−‖T (u)‖2τ(X)= ϕ(X)+ X〈T (u), F〉E , (4-9)

where ϕ is the smooth, closed 1-form ϕ := 〈T (u), η〉. But note that∫
M
ϕ(X)�=

∫
M
ϕ ∧ dτ =−

∫
M

d(ϕ ∧ τ)= 0.

Hence integrating (4-9) yields
−‖T (u)‖2H(X)= 0

and therefore T ≡ 0 if H(X) 6= 0, thus showing item (1) in the lemma.
To show item (2) assume H(X) = 0 and let s be a parallel section. We shall show that there is

u ∈ Res1,A(0) with T (u)= s. Note that for any parallel section p∫
M
〈sτ(X), p〉E �= 〈s, p〉E H(X)= 0.

By Proposition 4.6 there is an F ∈ D′E∗u (M; E) such that ιX dA F = sτ(X) and hence u := sτ − dA F ∈
Res1,A(0) and T (u)= s as desired. �

Lemma 4.8. There is an injection
ker T ↪→ H 1

A(M; E). (4-10)

The injection can be described as follows: Let u ∈ ker T. Then there exists F ∈ D′E∗u (M; E) such that

u− dA F ∈ C∞(M; E ⊗�1) (4-11)

and also dA(u− dA F)= 0. The injection map is given by

S : u ∈ ker T 7→ [u− dA F] ∈ H 1
A(M; E). (4-12)

An element [η] ∈ H 1
A(M; E) is in the image of S if and only if∫

M
〈p, η(X)〉E �= 0

for any parallel section p.
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Proof. Let u ∈ ker T, so that dAu = 0. By Lemma 2.6 there is F ∈ D′E∗u (M; E) such that u − dA F ∈
C∞(M;�1

⊗ E). We claim that the class [u − dA F] ∈ H 1
A(M; E) is independent of our choice of F.

Suppose there is a G such that u−dAG is smooth and dA-closed. Then dA(F−G)∈C∞(M;�1
⊗E), so

by Lemma 2.6 (or ellipticity), F −G is smooth and thus u− dA F and u− dAG belong to the same class.
For injectivity, we assume that u− dA F is exact; so without loss of generality assume u = dA F. Then

ιX u = 0 implies dA F(X)= 0, so by Lemma 4.4 we have F smooth and parallel, so u = 0.
If [η] is in the image of S, then η = u− dA F for some F ∈ D′E∗u (M; E). Contracting with X , we see

that η(X)=−dA F(X) and hence 〈p, η(X)〉E =−X〈p, F〉E . Integrating gives∫
M
〈p, η(X)〉E �= 0.

Conversely, if the last integral is zero for all p, Proposition 4.6 gives F ∈D′E∗u (M; E) such that −η(X)=
dA F(X) and u := η+ dA F ∈ ker T and Su = [η]. �

And finally we can compute the rank of S in terms of whether X is null-homologous or not.

Lemma 4.9. We have:

(1) dim S(ker T )= b1(M, E) if [ω] = 0.

(2) dim S(ker T )= b1(M, E)− b0(M, E) if [ω] 6= 0.

Proof. If X is null-homologous, we write ω = dτ . We use Lemma 4.8 to show that S is surjective.
Consider η ∈ H 1

A(M; E) and p ∈ H 0
A(M; E). Since the 1-form ϕ := 〈p, η〉 is closed we have∫

M
ϕ(X)�=

∫
M
ϕ ∧ dτ =−

∫
M

d(ϕ ∧ τ)= 0

and item (1) follows.
Suppose now [ω] 6= 0. We define a map W : H 1

A(M, E)→ (H 0
A(M, E))

∗ by

W ([η])(p) :=
∫

M
〈p, η(X)〉E �.

By Lemma 4.8 the image of S coincides with the kernel of W. Thus, to prove item (2) it suffices to show
that W is surjective. By Poincaré duality there is a closed 1-form ϕ such that∫

M
ϕ ∧ω 6= 0.

If p and q are parallel sections we compute

W ([qϕ])(p)= 〈p, q〉E

∫
M
ϕ(X)�= 〈p, q〉E

∫
M
ϕ ∧ω

and hence W is onto. �

We are now in shape to put the ingredients together and prove:

Proof of Theorem 4.1. The theorem follows directly after applying Lemmas 4.7 and 4.9. �

Putting together the material from this section and Section 3 we obtain:
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Proof of Corollary 1.8. The order of vanishing of ζ(s) is equal to m1(0)−m0(0)−m2(0) by Corollary 3.3.
By Theorem 4.1 we have that m0(0)= m2(0)= b0(M, E) and m1(0)≥ dim Res1,A(0), which concludes
the proof. �

Moreover, we obtain:

Proof of Corollary 1.6. This is a direct consequence of Corollary 1.8 applied to the case E = M ×C and
the trivial connection dA = d . �

5. Examples

In this section we consider a few noncontact examples of Anosov flows on the unit tangent bundle of a
surface. They illustrate the various cases in Theorem 1.2 and give specific deformations for Theorem 1.5.

5A. Structural equations. As a general reference for structural equations, see [Singer and Thorpe 1967,
Chapter 7]. For this section assume (6, g) is a compact oriented negatively curved surface. Let X be
the geodesic vector field on the unit sphere bundle S6. Denote by π : S6→6 the footpoint projection.
Then, there are 1-forms α, β and ψ on S6 defined by, for ξ ∈ T ∗(x,v)S6,

α(x,v)(ξ)= 〈v, dπ(ξ)〉x ,

β(x,v)(ξ)= 〈dπ(ξ), iv〉x ,

ψ(x,v)(ξ)= 〈K(ξ), iv〉x .

(5-1)

The 1-form α is called the contact form. From the defining equation one obtains ιXα = 0 and ιX dα = 0,
and �=−α∧dα is a volume form. Also, here K : T T6→ T6 is the connection map, i.e., the projection
along the horizontal subbundle, and ψ is called the connection 1-form. The expression iv denotes the
vector v rotated by an angle of π

2 (we fix an orientation). Explicitly,

K(x,v)(ξ) :=
DZ
dt
(0) ∈ Tx6, (5-2)

where (γ (t), Z(t)) is an arbitrary local curve in T6 with the initial data (γ (0), Z(0)) = (x, v) and
(γ̇ (0), Ż(0))= ξ ; D

dt denotes the Levi-Civita derivative along the curve. One can then show that {α, β,ψ}
form a coframe on S6 such that the following structural equations (see [Singer and Thorpe 1967, p. 188])
hold:

dα = ψ ∧β,

dβ =−ψ ∧α,

dψ =−Kα∧β.

(5-3)

From this, we deduce the following properties

ιXβ = ιXψ = 0, ιX dβ = ψ, ιX dψ =−Kβ. (5-4)

Furthermore, there is a natural choice of metric on S6, called the Sasaki metric. It is defined by the
splitting

T(x,v)S6 = H(x, v)⊕V(x, v)= ker(K(x, v)|S6)⊕ ker(dπ(x, v))
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into horizontal and vertical subspaces, respectively. Then the new metric is defined as

〈〈ξ, η〉〉 := 〈K(ξ),K(η)〉+ 〈dπ(ξ), dπ(η)〉. (5-5)

It follows after some checking from relations (5-3) and the definitions that {α, β,ψ} is an orthonormal
coframe for T ∗S6 with respect to the Sasaki metric. This also yields an orthonormal dual frame {X, H, V }.
We record the structural equations (5-3) for these vector fields:

[H, V ] = X,

[V, X ] = H,

[X, H ] = K V .

(5-6)

Here V is the generator of rotations in the vertical fibres.
We now use the Hodge star operator ∗ with respect to the Sasaki metric on S6 to write L∗X =−∗LX∗

on 1-forms. We also have an extra structure given by

α∧ Ju = ∗u (5-7)

for u a section of �1
0. Here J : �1

0 → �1
0 is the (dual) almost-complex structure associated to the

symplectic form dα on kerα = span{V, H} and is given by

J (u2β + u3ψ)= u3β − u2ψ, J 2
=−Id.

Therefore (L∗X )
ku = 0 for some k ∈ N is equivalent to Lk

X Ju = 0 and we obtain

Res
−iL∗X ,�

1
0
(0)= J−1 ResiLX ,�

1
0
(0). (5-8)

In the next section we use this relation together with time changes to derive an explicit expression for
coresonant states at zero.

5B. Time-reversal and resonant spaces. Here we consider the action under pullback of the time-reversal
map R : S6→ S6, given by R(x, v)= (x,−v). We first collect the information on this action on the
orthonormal frames and coframes given in (5-3) and (5-6).

Proposition 5.1. We have R∗α = −α, R∗β = −β and R∗ψ = ψ . Similarly, we have R∗X = −X ,
R∗H =−H and R∗V = V.

Proof. We consider the coframe case first. Simply observe that

R∗α(x,v)(ξ)= 〈−v, dπ d Rξ〉x =−α(x,v)(ξ)

so R∗α =−α. Similarly

R∗β(x,v)(ξ)= 〈−iv, dπ d Rξ〉x =−β(x,v)(ξ)

so R∗β = −β. Finally, recall that K(ξ) = DZ
dt (0), where c(t) = (γ (t), Z(t)) is any curve in T6 with

ċ(0)= ξ . Therefore

K(d Rξ)=−DZ
dt
(0)=−K(ξ)
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since c̃(t) = (γ (t),−Z(t)) is the curve adapted to −d Rξ . Now we easily see that R∗ψ = ψ from the
definition.

The frame case follows from the coframe case, since contractions commute with pullbacks. �

Now note that in any unit sphere bundle SN over an Anosov manifold (N , g1), the pullback by R
swaps the stable and unstable bundles. More precisely, we have

R∗E X
u,s = E R∗X

u,s = E−X
u,s = Es,u, R∗E0 = E0.

The upper index denotes the vector field with respect to which we are taking the stable/unstable bundles.
This follows from the fact that R intertwines the flows of X and −X . Thus we also have

R∗E∗u,s = E∗s,u, R∗E∗0 = E∗0 .

The upshot is of course that R∗ is an isomorphism between resonant and coresonant spaces, i.e., the
ones with the wavefront set in E∗u and in E∗s .

Proposition 5.2. The pairing (2-9) between resonant and coresonant states is equivalent to the pairing
on

Res
−iLX ,�

1
0
(0)×Res

−iLX ,�
1
0
(0), (u, v) :=

∫
S6

u ∧α∧ R∗v̄. (5-9)

The pairing (5-9) is Hermitian (i.e., conjugate symmetric).

Proof. We first claim that
Res
−iL∗X ,�

1
0
(0)= J−1 R∗ Res

−iLX ,�
1
0
(0). (5-10)

This is obtained from (5-8) and by observing that v ∈ ResiLX ,�
1
0
(0) if and only if R∗v ∈ Res

−iLX ,�
1
0
(0),

since R∗ commutes with ιX and d , and as R∗ swaps E∗u and E∗s by the discussion above. Thus by another
application of (5-7), we obtain (5-9). For the symmetry part, observe that R is orientation-preserving and

(u, v)=
∫

SM
u ∧α∧ R∗v̄ =−

∫
SM

R∗u ∧α∧ v̄ = (v, u). �

5C. Magnetic flows. These flows are determined by a smooth function λ ∈ C∞(6). The relevant vector
field is Xλ := X + λV. A calculation using the structure equations shows

ιXλ�=−dα+ λα∧β =−dα+ λπ∗σ,

where σ is the area form of g. If 6 has negative Euler characteristic, then Kσ generates H 2(6) and thus
there is a constant c and a 1-form γ such that

λσ = cKσ + dγ.

Therefore
ιXλ�=−dα+ λπ∗σ = d(−α− cψ +π∗γ ),

and hence Xλ ∈ X 0
�. If X is Anosov and λ is small, Xλ remains Anosov. In general these flows are not

contact; see [Dairbekov and Paternain 2005].
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5D. Explicit flows with [ω] 6= 0. In this subsection, we construct explicit volume-preserving non-null-
homologous Anosov flows that are close to the geodesic flow on a compact oriented negatively curved
surface (6, g). Let θ 6= 0 be a harmonic 1-form on 6. At the level of S6 this can be seen in terms of
two equations

X (θ)+ H V (θ)= 0,

H(θ)− X V (θ)= 0.
(5-11)

This first is zero divergence, the second is dθ = 0. To check these equations one can argue as follows.
We will use that dπ(x,v)(X (x, v)) = v and dπ(x,v)(H(x, v)) = iv. Given θ , we consider π∗θ and note
(using the standard formula for d applied to π∗θ )

d(π∗θ)(X, H)= Xπ∗θ(H)− H(π∗θ(X))−π∗θ([X, H ]).

By the structural equations, the term [X, H ] is purely vertical; hence it is killed by π∗θ . Now one can
check that π∗θ(H)(x, v)= θ(iv)= V (θ)=−(∗θ)(v) and π∗θ(X)= θ(v). Finally since

d(π∗θ)(X, H)= π∗ dθ(X, H)= dθ(dπ(X), dπ(H))= dθ(v, iv),

one obtains that dθ = 0 if and only if H(θ)− X V (θ)= 0. The form θ has zero divergence if and only if
∗θ is closed so the first equation also follows.

We consider the vector field Y := θX +V (θ)H. This vector field is dual to the 1-form on S6 given by
π∗θ = θα+ V (θ)β. This form is closed as well as ϕ := −V (θ)α+ θβ which is the pullback π∗(∗θ).
We can easily check that ϕ(Y )= 0 and π∗θ(Y )= [θ ]2+ [V (θ)]2.

The flows we wish to consider are of the form Xε = X + εY , where X is the Anosov geodesic vector
field and ε is small so that it remains Anosov. Using the above we observe:

• Xε preserves the volume form �= α∧β ∧ψ . This is thanks to the fact that θ has zero divergence.

• [ιXε�] 6= 0 for ε 6= 0. This is because π∗θ(Y )= [θ ]2+ [V (θ)]2 ≥ 0, and hence if θ is not trivial,∫
S6
π∗θ(Xε)�= ε

∫
S6
π∗θ(Y )� 6= 0. (5-12)

What we will prove in the coming sections is that Xε has a splitting resonance for 1-forms near zero,
and the semisimplicity does not break down.

6. Perturbations

In this section we study the behaviour of the Pollicott–Ruelle multiplicities under small deformations and
start with the proof of Theorem 1.4.

6A. Uniform anisotropic Sobolev spaces. We start by laying out the necessary tools to study perturba-
tions of Anosov flows and associated anisotropic Sobolev spaces. We will follow the recent approach
of [Guedes Bonthonneau 2020], where a uniform weight function that works in a neighbourhood of the
initial vector field is constructed. For brevity, we will only outline the necessary details. We refer the
reader to [Faure and Sjöstrand 2011] for more details in the case of a fixed vector field, and to [Dang
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et al. 2020] for an alternative construction of a weight function that works for perturbed vector fields.
The use of anisotropic spaces in hyperbolic dynamics has its origins in the works of many authors; see
[Baladi 2005; Baladi and Tsujii 2007; Blank et al. 2002; Butterley and Liverani 2007; Liverani 2004;
Gouëzel and Liverani 2006].

Let M be compact and X0 an Anosov vector field. By [Guedes Bonthonneau 2020, Section 2], there
exists a 0-homogeneous weight function m ∈ C∞(T ∗M \ 0) that applies to all flows with generators
‖X − X0‖C1 < η, for some η > 0, in a sense to be explained. It satisfies, for all such X ,

m = 1 near E∗u , m =−1 near E∗s , X∗m ≤ 0.

Here X∗ is the symplectic lift of X to T ∗M. We set G(x, ξ)∼ m(x, ξ) log(1+ |ξ |) for all |ξ | large. The
anisotropic Sobolev spaces are defined as, for r ∈ R,

Hh,rG = Oph(e
−rG)L2(M). (6-1)

Here h > 0 and Oph denotes a semiclassical quantisation on M ; we write Op := Op1. We will write
HrG = Op(e−rG)L2(M). Frequently we consider a smooth vector bundle E over M and in that case we
consider the corresponding spaces Hh,rG = Oph(e

−rG×IdE )L2(M; E). We will write

Hh,rG+k log〈ξ〉 = Oph(e
−rG)H k(M; E).

We will use the special notation HrG,k :=H1,rG+k log〈ξ〉=Op(e−rG)H k(M; E). We remark that the spaces
Hh,rG for varying h are all the same as sets, equipped with a family of distinct, but equivalent norms.

Let Xε be a smooth family of Anosov vector fields on M. Consider also a smooth family of differential
operators Pε with principal symbol σ(Xε)× IdE . We will consider any Q ∈ 9−∞(M; E) compactly
microsupported, self-adjoint operator, elliptic in the neighbourhood of the zero section in T ∗M. Introduce
now the spaces

Dεh,rG := {u ∈Hh,rG : Pεu ∈Hh,rG}

and equip them with the norm ‖u‖2Dε
h,rG
= ‖u‖2Hh,rG

+‖h Pεu‖2Hh,rG
. Completely analogously with HrG ,

we introduce DεrG , and also DεrG,k for an integer k.
Then [Guedes Bonthonneau 2020, Lemma 9] states:

Lemma 6.1. There exists an ε0 > 0 such that the following holds. Given any s0 > 0, k ∈ Z and
r > r(s0)+ |k|, there is hk > 0 such that for 0< h < hk , Im s >−s0, |Re s|< h−1/2 and |ε|< ε0,

Pε − h−1 Q− s : Dεh,rG+k log〈ξ〉→Hh,rG+k log〈ξ〉

is invertible and the inverse is bounded as O(1) independently of ε.

Here r(s) is a nonincreasing function of Im s, so that r(s) > rPε(Im s) for all ε ∈ (−ε0, ε0). Also, here
rPε(s0) represents a certain threshold (see [Guedes Bonthonneau 2020, p. 4]) depending on Pε such that
for r bigger than this quantity the resolvent (Pε − h−1 Q − s)−1

: Hh,rG → Hh,rG is holomorphic and
(Pε − s)−1

:HrG→HrG admits a meromorphic extension to Im s >−s0 and |Re s| ≤ h−1/2.
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6B. Pollicott–Ruelle multiplicities are locally constant. In this section we prove, using the construction
of anisotropic Sobolev spaces in the previous section, that in some fixed bounded region, the sums of
multiplicities of resonances are locally constant. Observe that under the assumptions in Lemma 6.1, we
have the factorisation property

(Pε − s)(Pε − h−1 Q− s)−1
= Id+ h−1 Q(Pε − h−1 Q− s)−1. (6-2)

This holds for s in �h,s0 := {s : Im s >−s0, |Re s|< h−1/2
}. We introduce the notation

D(ε, s) := h−1 Q(Pε − h−1 Q− s)−1.

Since Q is smoothing, we have that D(ε, s) is of trace class, and, moreover, since for any ε, ε′

D(ε, s)− D(ε′, s)= h−1 Q(Pε′ − h−1 Q− s)−1(Pε′ − Pε)(Pε − h−1 Q− s)−1,

we have that ε 7→ D(ε, s) is continuous with values in holomorphic maps from �h,s0+1 to L(HrG,HrG).
Here L(A, B) denotes the space of bounded operators from A to B, with the operator norm.

Then Pε− s :DεrG→HrG are an analytic family of Fredholm operators for Im s >−s0. Consider now
a resonance s1 of P = P0, and a simple closed curve γ around s1 containing no resonances on itself or in
its interior except s1, such that γ ⊂�h,s0 . The fact that D(ε, s) is continuous allows us to say that for ε
small, a neighbourhood of γ still contains no resonances of Pε. Introduce the family of projectors

5ε :=
1

2π i

∮
γ

(s− Pε)−1 ds.

Our first aim is to prove:

Lemma 6.2. The ranks of 5ε are locally constant; i.e., there is an ε1 > 0 such that rank5ε is constant
for ε ∈ (−ε1, ε1).

Proof. We first claim that, for ε small enough,

1
2π i

tr
∮
γ

∂s(Id+ D(ε, s))−1(Id+ D(ε, s)) ds =− rank5ε. (6-3)

The left-hand side is well-defined by the generalised argument principle [Dyatlov and Zworski 2019,
Theorem C.11], since the contour integral is a finite-rank operator. To prove the equality in (6-3), we
apply the residue theorem for meromorphic families of operators. Use (6-2) to obtain the left-hand side
of (6-3) is equal to

1
2π i

tr
∮
γ

(
(s− Pε)−1

+ (Pε − h−1 Q− s)(Pε − s)−2)(Pε − s)(Pε − h−1 Q− s)−1 ds

=−
1

2π i
tr
∮
γ

(Pε − h−1 Q− s)−1 ds+ 1
2π i

tr
∮
γ

(Pε − h−1 Q− s)(Pε − s)−1(Pε − h−1 Q− s)−1 ds.

The first integrand in the second line above vanishes, since (Pε−h−1 Q−s)−1 is holomorphic; the second
one is equal to − tr5ε =− rank5ε, by the cyclicity of traces. This shows (6-3).
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Now recall by Jacobi’s formula that we have

1
2π i

tr
∮
γ

∂s(Id+ D(ε, s))−1(Id+ D(ε, s)) ds =− 1
2π i

∮
γ

tr((Id+ D(ε, s))−1∂s D(ε, s)) ds

=−
1

2π i

∮
γ

∂s det(Id+ D(ε, s))
det(Id+ D(ε, s))

ds.

Here we used integration by parts, and that ∂s D(ε, s) is a smoothing operator to commute trace and
integration. In particular, the continuity of ε 7→ D(ε, s) as above and so that of the Fredholm determinant
ε 7→ det(Id+ D(ε, s)) and its derivative ε 7→ ∂s det(Id+ D(ε, s)) imply that for ε small enough the
integrand changes by a small margin, and since the integral is integer-valued, we obtain the claim.5 �

Note that a priori projections 5ε are continuous only as functions of ε with values in L(HrG,1,HrG)

and L(HrG,HrG,−1) if the resolvents (Pε− s)−1 are. The maps 5ε : ran50→ ran5ε are isomorphisms
for small ε by Lemma 6.2. We will show ε 7→5ε ∈L(HrG,HrG) is continuous; we follow the argument in
[Chaubet and Dang 2019, Appendix A]. Pick a basis ϕ j

∈HrG,1, j = 1, . . . , k = rank50, of ran50, and
define ϕ j

ε :=5εϕ
j ; then ε 7→ ϕ

j
ε ∈HrG is continuous. Define also ϕ̃ j

ε =505εϕ
j and note ε 7→ ϕ̃

j
ε ∈HrG

is also continuous. Let ν j
ε be the dual basis in ran50 of ϕ̃ j

ε ; then ε 7→ ν
j
ε ∈ (ran50)

′ is continuous. Here
the prime denotes the dual. Finally, let l j

ε := ν
j
ε ◦50 ◦5ε, continuous as a map ε 7→ l j

ε ∈H′rG . Then we
may write

5ε =

k∑
j=1

ϕ j
ε ⊗ l j

ε .

By construction, this map is continuous HrG→HrG for r > r(s0)+ 1.
One may further bootstrap this argument as in [Chaubet and Dang 2019] to reobtain [Guedes Bonthon-

neau 2020, Lemma 10]:

Lemma 6.3. For r > r(s0)+ k + 1 and ε small enough, ε 7→ 5ε is a Ck family of bounded operators
on HrG .

We are now in good shape to prove some of the basic perturbation statements from the Introduction.

Proof of Theorem 1.4(1) and (2). If X0 ∈ X 0
� has nonzero helicity, then for ε small enough, H(Xε) 6= 0

and we may assume by Lemma 6.2 that m1,Xε(0)≤ m1,X0(0)= b1(M). Thus by Theorem 1.2, we have
dim Res

−iLXε ,�
1
0
(0)= b1(M)=m1,Xε(0), so that Xε is 1-semisimple, which proves (1). The proof of (2)

is completely analogous to the proof above and we omit it. �

7. Proof of Theorem 1.5

In this section we discuss what happens with semisimplicity if we perturb an arbitrary contact Anosov
flow. For this purpose, consider M, a closed orientable 3-manifold, and a contact Anosov flow X on M.
This implies there is a contact 1-form α such that�=−α∧dα is a volume form, α(X)= 1 and ιX dα= 0.

5Alternatively, one may apply the generalised Rouché’s theorem [Dyatlov and Zworski 2019, Theorem C.12] to conclude that
the sums of null multiplicities (in the sense of Gohberg–Sigal theory; see [Dyatlov and Zworski 2019, Appendix C]) over the
resonances in the interior of γ of operators Id+ D(ε, s) for small enough ε are constant. By (6-3), we know that these sums of
null multiplicities are equal to rank5ε , which proves the claim.
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We consider a frame {X1, X2} of kerα (such a frame exists since M is parallelizable) such that
dα(X1, X2)=−1. The dual coframe {α, α1, α2} to {X, X1, X2} satisfies

dα = α2 ∧α1, �=−α∧ dα = α∧α1 ∧α2.

Next, consider a Riemannian metric g on M making {X, X1, X2} an orthonormal frame. Observe that
�1
=Rα⊕�1

0 and for any u= u1α1+u2α2 ∈D′(M;�1
0), we have for the action of the Hodge star ∗ of g

∗u = u1α2 ∧α+ u2α∧α1 = α∧ (u2α1− u1α2). (7-1)

We introduce the complex structure J :�1
0→�1

0 given by

Ju := u2α1− u1α2,

so that ∗u = α∧ Ju. In particular, we have L∗X u =−∗LX ∗ u = 0 if and only if

LX Ju = 0. (7-2)

Let Y ∈ X�. Since Y preserves � we may consider the winding cycle map associated to Y :

WY : H 1(M)→ C, WY (θ) :=

∫
M
θ(Y )�.

Clearly Y is null-homologous if and only if WY ≡ 0. The next lemma characterises the property of Y
being null-homologous in terms of a distinguished resonant state of X . Let5 denote the spectral projector
at zero of −iLX acting on �1 (see (2-5)). Set

u :=5LYα ∈ Res−iLX ,�1(0).

Lemma 7.1. We have ιX u = 0. Let θ be a (real) smooth closed 1-form and let ψ ∈ D′E∗s (M) be such that
v := (J )−1(θ + dψ) ∈ Res

−iL∗X ,�
1
0
(0). Then

〈u, v〉L2 =−WY (θ).

In particular, Y is null-homologous if and only if u = 0.

Proof. We may write for some a, a1, a2 ∈ C∞(M)

Y = aX + a1 X1+ a2 X2

and a calculation shows

LYα = (ιY d + dιY )α = a1ιX1 dα+ a2ιX2 dα+ da. (7-3)

Therefore, we have

ιX u =5ιXLYα =5Xa = X5a = 0. (7-4)
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In the previous equation we used that 5a is constant by Theorem 1.2 and that 5 commutes with X . Next
we compute, using that ∗v = α∧ (θ + dψ),

〈LYα, v〉L2 =

∫
M
(a1ιX1dα+ a2ιX2 dα+ da)∧α∧ (θ + dψ)

=−

∫
M
(a1ιX1 + a2ιX2)(θ + dψ)�

=−

∫
M
ιY (θ + dψ)�=−

∫
M
ιY θ �=−WY (θ). (7-5)

Here we used the graded commutation rule for contractions, integration by parts and the following facts:
θ + dψ is closed, ιX (θ + dψ)= 0 and Y is volume-preserving. By Lemma 2.3 it follows that 5∗v = v.
By this and the computation in (7-5), it follows that

〈u, v〉L2 = 〈5LYα, v〉L2 = 〈LYα, v〉L2 =−WY (θ)

as desired. Clearly, the relation 〈u, v〉 = −WY (θ) implies that if u = 0, then Y is null-homologous. If Y
is null-homologous, then 〈u, v〉 = 0 for all v. Since 1-semisimplicity holds for X , Lemma 2.4 implies
u = 0 and the lemma is proved. �

The next lemma provides important information about the pairing between resonant and coresonant
states in the contact case.

Lemma 7.2. Let θ be a smooth closed 1-form on M. Let ϕ ∈ D′E∗u (M) and ψ ∈ D′E∗s (M) be such that

u = θ + dϕ ∈ Res
−iLX ,�

1
0
(0),

v = (J )−1(θ + dψ) ∈ Res
−iL∗X ,�

1
0
(0).

(7-6)

Then

Re〈u, v〉L2 = Re
∫

M
(θ + dϕ)∧α∧ (θ̄ + dψ̄)≤ 0

with equality if and only if θ is exact, or in other words u = v = 0.

Proof. By (7-6) we have ιX u = 0 and ιXv = 0, so Xϕ = Xψ =−θ(X). We have the chain of equalities

Re〈u, v〉L2 =−

∫
M

Re(θ ∧ θ̄ )∧α−Re
∫

M
ϕ dα∧ θ̄

= Re
∫

M
ϕθ̄(X)�=−Re〈ϕ, Xϕ〉L2 = Im〈−i Xϕ, ϕ〉L2 . (7-7)

Here we used Xϕ =−θ(X), Re(θ ∧ θ̄ )= 0 and integration by parts.
Assume now Re〈u, v〉L2 ≥ 0. By the computation in (7-7), Lemma 2.5 implies ϕ ∈ C∞(M), so

u ∈ C∞(M;�1
0) and Lemma 4.2 implies u ≡ 0 and θ exact, so also v ≡ 0. �
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7A. Constructing the splitting resonance. Let Y ∈X� such that Y is not null-homologous and consider
a perturbation of X

Xε = X + εY.

Consider a simple closed curve γ around zero, so that no resonances of −iLXε on �1(M) cross the
curve γ for small enough values of the parameter ε. Consider the family of projectors given by

5ε :=5LXε
=

1
2π i

∮
γ

(λ+ iLXε)
−1 dλ. (7-8)

By Lemma 6.3, the5ε are Ck in ε in suitable topologies. More precisely, we have ε 7→5ε ∈L(HrG,HrG)

is Ck for r > r(0)+ k+ 1 (i.e., r large enough).
We will construct the splitting resonant state “by hand”. For that purpose, consider

tε = LXε5εα = ε5εLYα.

Here we used that 5ε commutes with ιXε and d, which follows since the integral defining 5ε does so.
Our candidate for the splitting resonance is

uε :=5εLYα.

Firstly, we note that ιXεuε = 0, which follows from

ιXε tε = LXε5ε(1+ εα(Y ))= 0.

This is because

5ε f =
1

vol(M)

∫
M

f �

is constant, which follows from Theorem 1.2. We also understand that 5ε acts on forms of any degree,
and is given by the expression (7-8). This implies directly that ιXεuε = 0 for ε 6= 0, and then by continuity
we have ιXεuε = 0 for all ε.

Fix now ε 6= 0. Then either exactly one resonance “splits” by Lemma 6.2 and Theorem 1.2, so we must
have LXε tε = µεtε for some µε 6= 0 and thus LXεuε = µεuε, or a resonant state does not split, in which
case LXε tε = 0 and so LXεuε = 0. Also, we clearly have LX u0 = 0. Therefore, there exists a function λε
such that for each small enough ε

LXεuε = λεuε. (7-9)

Hence we may write

λε =
〈LXεuε, u∗〉
〈uε, u∗〉

,

where u∗ is a coresonant 1-form at zero such that 〈u0, u∗〉 6= 0. Such a 1-form exists by Lemma 2.4.
Therefore, for ε small enough and by continuity the above expression makes sense, so we conclude that
λε is in C2 for ε in an interval around zero. Note that λ0 = 0 and that by Lemma 7.1, u0 6= 0 since Y is
not null-homologous.
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7B. Proving that λε 6= 0. We dedicate this subsection to proving that λε 6= 0 for ε 6= 0 and we achieve
this by looking at the second-order derivatives of λε in ε. Recall we have a C2 family of resonant 1-forms
uε =5εLYα corresponding to resonances −iλε for the flow X + εY such that

ιX+εY duε = λεuε,

ιX+εY uε = 0.
(7-10)

We will denote u0 by u and λ0 by λ, and we apply the same principle to the derivatives of λ and u at zero.
We want to linearise (7-10) by taking derivatives in ε.

First linearisation of (7-10): We take the first derivative of (7-10) to get

ιY duε + ιX+εY du̇ε = λ̇εuε + λεu̇ε,

ιY uε + ιX+εY u̇ε = 0.
(7-11)

Evaluating (7-11) at ε = 0, we get the system

ιY du+ ιX du̇ = λ̇u,

ιY u+ ιX u̇ = 0.
(7-12)

This further simplifies, since u is a resonant state at zero, so by Lemma 4.7 we have du = 0. By (7-1)
we may write ∗u∗ = α∧w, where w = Ju∗ and we have LXw = 0 and ιXw = 0. Much as before, since
w ∈ D′E∗s (M;�

1
0) we have dw = 0. Therefore, by taking the inner product with u∗ in (7-12), we get

λ̇〈u, u∗〉 = 〈ιX du̇, u∗〉 =
∫

M
ιX du̇ ∧α∧w

=−

∫
M

du̇ ∧w =−
∫

M
u̇ ∧ dw = 0.

This implies λ̇= 0.

Second linearisation of (7-10): By taking the ε derivative of (7-11) we get

2ιY du̇ε + ιX+εY düε = λ̈εuε + 2λ̇εu̇ε + λεüε,

2ιY u̇ε + ιX+εY üε = 0.
(7-13)

We evaluate (7-13) at ε = 0 to get
2ιY du̇+ ιX dü = λ̈u,

2ιY u̇+ ιX ü = 0.
(7-14)

Consider the same coresonant state u∗ as above. Pairing (7-14) with u∗ yields

λ̈〈u, u∗〉 = 2
∫

M
ιY du̇ ∧α∧w+

∫
M
ιX dü ∧α∧w. (7-15)

Now the second integral above is equal to −
∫

M dü ∧w = 0, by integration by parts.
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The first integral is a bit trickier and it is equal to∫
M
ιY du̇ ∧α∧w =

∫
M
(a1ιX1 + a2ιX2) du̇ ∧α∧w

=

∫
M
(a1ιX1 + a2ιX2)w du̇ ∧α =

∫
M
w(Y ) du̇ ∧α. (7-16)

Here we used that ιX du̇ = 0 by the first linearisation analysis and ιXw = 0. Note that ιX du̇ = 0 also
implies that du̇ ∧α is X -invariant, so the integral

∫
M w(Y ) du̇ ∧α may be interpreted as “some winding

cycle”.
Observe that WF(du̇)⊂WF(u̇)⊂ E∗u . This follows by differentiating 5ε at zero to deduce

5̇0 =
1

2π i

∮
γ

(λ+ iLX )
−1(−iLY )(λ+ iLX )

−1 dλ= i(RH (0)LY50+50LY RH (0)).

At this point, we recall that (−iLX − λ)
−1
= RH (λ)−50/λ. Since 50 and RH (0) extend to maps

D′E∗u (M;�
1)→ D′E∗u (M;�

1), we have that u̇ = 5̇0LYα ∈ D′E∗u (M;�
1).

By Theorem 1.2 it follows that du̇ ∧α = c� for some constant c. In fact, we have

c vol(M)=
∫

M
du̇ ∧α =

∫
M

u̇ ∧ dα =−
∫

M
u̇(X)�

=

∫
M

u(Y )�=WY (u).
(7-17)

In these lines we used the second equation of (7-12) and ιX u = 0. Combining (7-17), (7-15) and (7-16)
we have

λ̈〈u, u∗〉 = 2c
∫

M
w(Y )�= 2cWY (w)=

2WY (u)WY (w)

vol(M)
. (7-18)

Next we choose a special u∗. Namely, if we write u = θ + dϕ for some (real) smooth closed 1-form θ

and ϕ ∈ D′E∗u (M), then we choose u∗ = v as in Lemma 7.2. This ensures that 〈u, u∗〉< 0 and, moreover,
by Lemma 7.1 we have

〈u, u∗〉 = −WY (θ) < 0.

Hence (7-18) simplifies to

λ̈=
−2WY (θ)

vol(M)
< 0.

By the symmetry of the Pollicott–Ruelle resonance spectrum, we have that λε is real, since otherwise we
would contradict Lemma 6.2. We conclude by Taylor’s theorem

λε = ε
2
(
−

WY (θ)

vol(M)
+ O(ε)

)
.

In particular λε is negative (so nonzero) for sufficiently small ε 6= 0. Therefore, the resonance −iλε of
−iLXε splits to the upper half-plane and 0 is a strict local maximum for λε. This completes the proof of
Theorem 1.5.

We conclude this section with:
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Proof of the first part of Corollary 1.7. By Corollary 3.3, the order of vanishing of the Ruelle zeta
function at zero is equal to m1(0)−m0(0)−m2(0). By Theorem 1.2, we know m2(0)= m0(0)= 1 and
by Theorem 1.5 and Lemma 6.2 we have m1(0)= b1(M)− 1 for small enough nonzero ε. �

8. Time changes

In this section we consider the transformation X 7→ X̃ = f X , where X is an Anosov vector field and
f > 0 a positive smooth function and call such a transformation a time change. By [de la Llave et al.

1986, Lemma 2.1], we have that X̃ is also Anosov and, moreover, its stable and unstable bundles Ẽ s and
Ẽu are given by

Ẽ s
= {Z + θ(Z)X : Z ∈ E s

}. (8-1)

Here the continuous 1-form θ is given by solving LX ( f −1θ) = f −2 d f . Therefore, we notice that
Ẽ∗u = (Ẽ

s
⊕RX̃)∗ = E∗u and Ẽ∗s = (Ẽ

u
⊕RX̃)∗ = E∗s , where we used (8-1). This means that the resonant

states associated to the flow f X lie in suitable spaces D′E∗u , which will be very convenient.
We begin by recasting Lemma 2.4 to the case of 1-forms and consider a time change.

Proposition 8.1. Let X be an Anosov flow on a manifold M and let f > 0 be a positive smooth function.
Then L f X acting on �1

0 is semisimple at zero if and only if the pairing

Res(1)
−iLX ,�

1
0
(0)×Res(1)

−iL∗X ,�
1
0
(0)→ C, (u, v) 7→

〈
u
f
, v

〉
L2(M;�1)

(8-2)

is nondegenerate.

Proof. Let us determine the appropriate resonant spaces of L f X and L∗f X at zero. Note first that kerL f X =

kerLX on D′E∗u (M;�
1
0), since time changes preserve the E∗u set. Next, we compute L∗f X = L∗X ( f · )

on �1
0, with respect to a fixed smooth inner product (e.g., given by a metric). Therefore, we have

Res(1)
−iL∗f X ,�

1
0
(0)= 1

f
Res(1)
−iL∗X ,�

1
0
(0).

Thus the nondegeneracy of the pairing between resonances and coresonances is equivalent to the nonde-
generacy of (8-2) and applying Lemma 2.4 finishes the proof. �

8A. Time changes of the geodesic flow on a hyperbolic surface. The aim of this subsection is to ex-
plicitly specify the equations for 1-forms in the kernel of LX on the unit sphere bundle M = S6 of a
closed hyperbolic surface 6. We start by considering the case of general variable curvature and use the
orthonormal frame {α, β,ψ} constructed in Section 5A.

Let u ∈ D′(M;�1
0). Then u = bβ + fψ for some b, f ∈ D′(M) and we have

du = α∧ (X (b)− f K )+β ∧ψ(H( f )− V (b))+α∧ψ(b+ X ( f )).

Therefore, du = 0 implies
X (b)= K f,

X ( f )=−b,

H( f )= V (b).

(8-3)
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The first two equations come from ιX du = 0. The third is an additional one, which we know holds if
u ∈D′E∗u (M;�

1
0) and ιX du=0; it can be explained as an additional horocyclic invariance (see [Guillarmou

and Faure 2018] and below).
Now we specialise to K = −1, i.e., the case of hyperbolic surfaces. Then in the {β,ψ} coframe

spanning �1
0, the operator LX may be written as

LX = X × Id+
(

0 1
1 0

)
and the first two equations in (8-3) then read

(X − 1)(b− f )= 0,

(X + 1)(b+ f )= 0.

Thus f =−b as there are no resonances with positive imaginary part, since X is volume-preserving.6 The
third equation in (8-3) now gives U−b= 0, where U− = H+V is the horocyclic vector field spanning Eu .
Now we may also write, where the adjoint is with respect to the Sasaki metric on S6,

L∗X =−X × Id+
(

0 1
1 0

)
.

Therefore L∗Xv = 0, where v = b′β + f ′ψ for some b′, f ′ ∈ D′E∗s (M), is the same as

(−X + 1)(b′+ f ′)= 0,

(−X − 1)(b′− f ′)= 0.

Since we are looking at the vector field −X , no resonance with positive imaginary part gives f ′ =−b′

and so (X + 1)b′ = 0. The third equation in (8-3) then reads U+b′ = 0, where U+ = H −V spans the Es

bundle.
Therefore, we have

Res(1)
−iLX

(0)= {b(β −ψ) ∈ D′(M) : (X − 1)b = 0, (H + V )b = 0},

Res(1)
−iL∗X

(0)= {b(β −ψ) ∈ D′(M) : (X + 1)b = 0, (H − V )b = 0}.
(8-4)

Note that we may drop the wavefront set conditions, since they follow from the equations being satisfied.
We remark that since we know −iLX at 0 is semisimple by [Dyatlov and Zworski 2017], then so is −i X
at −i by the correspondence (8-4) and dim Res−i X (−i)= b1(M). Alternatively, we may use [Guillarmou
et al. 2018, Theorem 1] to deduce semisimplicity even at the special point −i for hyperbolic surfaces.

Proposition 8.2. Let f ∈C∞(M) and f > 0. Semisimplicity for−iL f X at zero acting on�1
0 is equivalent

to the nondegeneracy of the pairing

Res(1)
−i X (−i)×Res(1)i X (−i), (b1, b2) 7→

〈
b1

f
, b2

〉
L2(M)

. (8-5)

6This can be seen from (2-2), since e−i t P
= ϕ∗
−t is an isometric isomorphism on L2(M) and so the integral defining the

resolvent converges for Im λ > 0.
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Proof. The proof is based on the correspondence (8-4) and Proposition 8.1. Then for b1(β − ψ) ∈

Res(1)
−iL f X

(0) and (b2/ f )(β −ψ) ∈ Res(1)
−iL∗f X

(0), we have〈
b1(β −ψ),

b2

f (β −ψ)

〉
L2(M;�1)

= 2
〈
b1,

b2

f

〉
L2(M)

.

This proves that the pairing (8-5) is equivalent to the pairing (8-2), which finishes the proof. �

In the next sections, we would like to find out more about the pairing (8-5), similar to [Dyatlov et al.
2015; Guillarmou et al. 2018], where a pairing formula for generic resonances is proved.

Remark 8.3. Using the decomposition u = aα+ bβ + fψ , by (8-3) it may be seen that (LX + s)u = 0
is equivalent to (X + 1+ s)(b+ f )= 0, (X − 1+ s)(b− f )= 0 and (X + s)a = 0. This enables us to
determine the resonance spectrum of LX on 1-forms from the resonance spectrum of X on functions,
using the works of [Dyatlov et al. 2015; Guillarmou et al. 2018]. In particular, for Re s >−1 we obtain
b+ f = 0, which suffices to determine the spectrum on the left in Figure 1. The small and large eigenvalues
in this figure are in the sense of [Ballmann et al. 2016].

8B. Reduction to distributions on the boundary. We follow the notation from [Dyatlov et al. 2015,
Section 3]. We consider the hyperboloid model

H2
= {x = (x0, x1, x2)= (x0, x ′) ∈ R3

: 〈x, x〉M = x2
0 − x2

1 − x2
2 = 1, x0 > 0}

of hyperbolic geometry, equipped with the Riemannian metric −〈 · , · 〉M, restricted to T H2. Here
〈 · , · 〉M is called the Lorentzian metric. We also consider the action the isometry group G = PSO(1, 2)
of H2, consisting of matrices preserving the Lorentzian metric, orientation and the sign of x0. This
action extends to an action on the unit sphere bundle SH2, since G consists of isometries and in fact
G 3 γ 7→ γ · (1, 0, 0, 0, 1, 0) ∈ SH2 is a diffeomorphism. We also have explicitly

SH2
= {(x, ξ) ∈ H2

: x, ξ ∈ R3, 〈ξ, ξ〉M =−1, 〈x, ξ〉M = 0}. (8-6)

We will write ϕt for the geodesic flow on SH2 and X for the geodesic vector field. In the identification
(8-6), we may write

X = ξ · ∂x + x · ∂ξ .

Therefore the geodesic flow on SH2 may be explicitly written as

ϕt(x, ξ)= (x cosh t + ξ sinh t, x sinh t + ξ cosh t). (8-7)

We may compactify H2 to the closed unit ball B2 by embedding it with the map ψ0(x) = x ′/(x0+ 1)
and we call S1 bounding B2 the boundary at infinity. Note that to a point ν ∈ S1 we may associate a ray
{(s, sν) : s > 0}, which is asymptotic to the hyperboloid ray {(

√
1+ s2, sν) : s > 0}. The action of G

extends to an action on the boundary at infinity S1 as follows. Let γ ∈ G and ν ∈ S1. Then the matrix
action on R3

γ · (1, ν)= Nγ (ν)(1, Lγ (ν)) (8-8)

defines an action of γ ∈ G on S1 via Lγ . It also defines the multiplicative map Nγ : S1
→ R+.
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Denote by π : SH2
→ H2 the footpoint projection. We will consider the mappings

B±(x, ξ) : SH2
→ S1, B±(x, ξ)= lim

t→±∞
π(ϕt(x, ξ)). (8-9)

The limit in (8-9) is interpreted as the point of intersection of the geodesic starting at x and with tangent
vector ξ with the boundary at infinity. We introduce also

8± : SH2
→ R+, 8±(x, ξ) := x0± ξ0 > 0. (8-10)

In fact, then we can write for any (x, ξ) ∈ SH2

x ± ξ =8±(x, ξ)(1, B±(x, ξ)). (8-11)

The maps B± and 8± have nice interactions with the geodesic vector field X and the horocyclic vector
fields U±, defined in Section 8A. By this we mean that

d B± · X = 0, U±B± = 0. (8-12)

The first equation holds since B± is constant along X and the second one since B± is constant along
horospheres. We also have

X8± =±8±, U±8± = 0. (8-13)

Here, the first equation follows from 8±(ϕt(x, ξ))= e±t8±(x, ξ), which is true by (8-7). The second
one also follows from a computation. Finally, since 〈x + ξ, x − ξ〉M = 2 and by (8-11), for (x, ξ) ∈ SH2,
we have

8+(x, ξ)8−(x, ξ)(1− B+(x, ξ) · B−(x, ξ))= 2. (8-14)

The maps 8± and B± are G-equivariant in the following sense. We have

B±(γ · (x, ξ))= Lγ (B±(x, ξ)), 8±(γ · (x, ξ))= Nγ (B±(x, ξ))8±(x, ξ). (8-15)

Now the Jacobian of the map Lγ : S1
→ S1 may be computed explicitly and is given by

〈d Lγ (ν) · ζ1, d Lγ (ν) · ζ2〉R2 = Nγ (ν)−2
〈ζ1, ζ2〉R2, ζ1, ζ2 ∈ TνS1. (8-16)

Consider6=0\H2 a compact hyperbolic surface, where0⊂PSO(1, 2) is a discrete subgroup. Then we
may identify the unit sphere bundle as S6=0\SH2. We introduce the space of boundary distributions as

Bd0(λ)= {w ∈ D′(S1) | L∗γw(ν)= N−λγ (ν)w(ν), γ ∈ 0, ν ∈ S1
}. (8-17)

The generator X of the geodesic flow descends to S6 and we define the first band resonant states by

Res0
X (λ)= {u ∈ D

′

E∗u
(S6) | (X + λ)u = 0, U−u = 0}.

We similarly introduce the first band coresonant states via (see Section 2C)

Res0
X∗(λ)= {u ∈ D

′

E∗s
(S6) | (X − λ̄)u = 0, U+u = 0}.
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Then we have the correspondence, valid for all λ ∈ C proved in [Dyatlov et al. 2015, Lemma 5.6], which
we prove here for completeness. Note that by 8λ

±
for λ ∈ C we simply mean the exponentiation of the

function 8± > 0 by the exponent λ.

Lemma 8.4. Let π0 : SH2
→ S6 be the natural projection. Then

π∗0 Res0
X (λ)=8

λ
−

B∗
−

Bd0(λ). (8-18)

Similarly we have, for the space of coresonant states,

π∗0 Res0
X∗(λ)=8

λ̄
+

B∗
+

Bd0(λ̄). (8-19)

We also have Bd0(λ)= Bd0(λ̄).

Proof. Let w ∈ Bd0(λ) and put v =8λ
−

B∗
−
w ∈ D′(SH2) (the pullback of distributions under submersions

is well-defined; see [Grigis and Sjöstrand 1994, Corollary 7.9]). We use now the invariance properties 8±
and B± given by (8-15) to prove v is 0-invariant. For γ ∈ 0 we have

γ ∗v = (γ ∗8−)
λγ ∗B∗

−
w = B∗

−
(Nγ )λ8λ−B∗

−
L∗γw =8

λ
−

B∗
−
w = v.

Thus v is 0-invariant and descends to D′(SM).
Now using (8-12) and (8-13), we obtain directly that (X + λ)v = 0 and U−v = 0. This proves

8λ
−

B∗
−

Bd0(λ) ⊂ π∗0 Res0
X (λ) (the wavefront set condition on v follows from [Grigis and Sjöstrand

1994, Chapter 7]). The other direction follows by reversing the steps above and noting that a function
(distribution) invariant by X and U− is immediately a pullback by B−. The statement about coresonant
states follows similarly. �

We now introduce the set of coordinates (ν−, ν+, s)∈ (S1
×S1)1×R on SH2, yielding a diffeomorphism

F : (S1
× S1)1×R→ SH2, and given by identification

(ν−, ν+, s)=
(

B−(x, ξ), B+(x, ξ),
1
2

log
8+(x, ξ)
8−(x, ξ)

)
. (8-20)

Here (S1 × S1)1 denotes the torus S1
× S1 without the diagonal 1. The coordinates (8-20) can be

interpreted as (ν−, ν+) parametrises the geodesic γ starting at ν− and ending at ν+ and s is the parameter
on this geodesic such that γ (−s) is the point on γ closest to e0 = (1, 0, 0) (or 0 in the disk model). The
geodesic flow in these coordinates is simply ϕt : (ν−, ν+, s) 7→ (ν−, ν+, s+ t).

The coordinates (8-20) enable us to write a product of distributions in resonant and coresonant spaces
more explicitly, but we first require an explicit computation of the Jacobian of the change of coordinates
(x, ξ)→ (ν−, ν+, s).

Lemma 8.5. For the coordinate system introduced in (8-20), we have the equality

F∗(dxdξ)=
2dν−dν+ds
|ν−− ν+|2

. (8-21)

Proof. This is the content of [Nicholls 1989, Theorem 8.1.1]. �
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Remark 8.6. The Jacobian popping up in Lemma 8.5 is well known and the current in (8-21) is called
the Liouville current.

We now prove that the invariant distributions formed as products of resonant and coresonant states
have a very nice form in the coordinates (8-20).

Proposition 8.7. Let w1 ∈ Bd0(λ) and w2 ∈ Bd0(λ̄), and consider the invariant distributions v1 =

8λ
−

B∗
−
w1 and v2 = 8

λ̄
+

B∗
+
w2 constructed in Lemma 8.4. Then the product distribution in (ν−, ν+, s)

coordinates takes the form7

F∗((v1v̄2)(x, ξ) dx dξ)= 22λ+1 w1(ν−)w̄2(ν+)

|ν−− ν+|2(λ+1) dν− dν+ ds. (8-22)

In particular, for λ=−1 the product F∗(v1v̄2) extends to a distribution on S1
× S1
×R.

Proof. By definition, we have the following expression for the product v1v̄2:

(v1v̄2)(x, ξ)= (8−(x, ξ)8+(x, ξ))λB∗
−
w1(x, ξ)B∗+w̄2(x, ξ). (8-23)

Now changing the coordinates to (ν−, ν+, s) given in (8-20) and by using the identity (8-14) we get

F∗(v1v̄2)(ν−, ν+, s)= 2λ(1− ν− · ν+)−λw1(ν−)w̄2(ν+)= 22λw1(ν−)w̄2(ν+)

|ν−− ν+|2λ
. (8-24)

Using the Jacobian computation in Lemma 8.5, we establish (8-22).
In the special case λ=−1, using (8-22) we may write

F∗(v1v̄2(x, ξ) dx dξ)= 1
2w1(ν−)w̄2(ν+) ds dν− dν+. (8-25)

In particular, for λ=−1 the distribution F∗(v1v̄2) extends to a distribution on the space S1
× S1
×R. �

Remark 8.8. The distributions in (8-14) are called distributions of Patterson–Sullivan type. See [Anan-
tharaman and Zelditch 2007] for more details, where the particular case of λ=− 1

2 + ir j is studied, in
connection to eigenvalues of 1 on 6 with eigenvalue 1

4 + r2
j . Note however there is an extra factor of

|ν−− ν+|
2 compared to (8-24), obtained by changing coordinates according to (8-20).

8C. Construction of a time change that is not semisimple on 1-forms. Here we construct a smooth,
positive function on the unit sphere bundle S6 of a compact hyperbolic surface 6 = 0\H2 such that
under a time change of the geodesic flow, the action of the Lie derivative on resonant 1-forms at zero is
not semisimple. We establish a few auxiliary lemmas first. We denote by π0 :H2

→ 0\H2 the associated
projection.

Lemma 8.9. Let w ∈ Bd0(−1). Then w(ν) dν is 0-invariant and we have∫
S1
w(ν) dν = 0.

7Formally, by (8-22) we mean an equality in the sense of 0-currents. More explicitly, we mean an equality in the sense of
distributions 〈22λ+1w1(ν−)w̄2(ν+)/|ν−− ν+|

2(λ+1), f 〉(S1×S1)1×R = 〈v1v̄2, f ◦ F−1
〉SH2 .
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Proof. For the first claim, recall that by (8-16) we have L∗γ dν = N−1
γ (ν) dν for any γ ∈ G. Therefore, by

(8-17) we have also L∗γ (w dν)= w dν for any γ ∈ 0, which gives the required property.
The second property is a direct consequence of the works [Dyatlov et al. 2015; Guillarmou et al. 2018]

on pairings. Note that [Dyatlov et al. 2015, Lemma 5.11] proves a pairing formula, which for λ=−1
gives

〈π∗v1, π∗v2〉6 = 0 (8-26)

for all v1 resonance states at −1 and v2 coresonant states at −1. Here π∗ maps first band resonant and
coresonant states at −1 to eigenfunctions of 1 on 6 at zero by [Dyatlov et al. 2015, Lemma 5.8], so π∗v1

and π∗v2 are constants. Using the time-reversal map R from Section 5B we may identify resonant and
coresonant states; i.e., we have R∗ : Res0

X (−1)→ Res0
X∗(−1) is an isomorphism. Moreover, we claim

that π∗R∗v = π∗v for any v ∈ Res0
X (−1). For this recall the connection 1-form ψ on S6 (dual to the

vertical fibre), and observe that π∗v = π∗(vψ). Then for any 2-form θ on 6

〈π∗(R∗vψ), θ〉6 =
∫

S6
R∗vψ ∧π∗θ = 〈π∗(vψ), θ〉6.

Here we used R∗ψ = ψ and π ◦ R = π . By applying (8-26) to v2 = R∗v1, we obtain that π∗ is zero on
both resonant and coresonant states.

Alternatively, this follows directly from the proof of [Guillarmou et al. 2018, Theorem 1] (more
precisely, see p. 19 of that work and the start of discussion of the λ0 =−n case). �

Next we prove an auxiliary lemma that relies on the dynamics of the action of 0 on S1.

Lemma 8.10. Letw ∈Bd0(−1) and let (ν−, ν+)∈ S1
×S1 with ν− 6= ν+. Then there exists a ϕ ∈C∞(S1),

such that:

(1) ϕ ≥ 0.

(2) ϕ(ν+) 6= 0.

(3) ϕ vanishes in a neighbourhood of ν−.

(4) 〈w, ϕ〉S1 = 0.

Proof. We denote by Bε(A) the ε-neighbourhood of a set A. Let ϕε ∈ C∞(S1) be a nonnegative function
with ϕε = 1 outside Bε(ν−) and ϕε = 0 in Bε/2(ν−); assume also 0≤ ϕε ≤ 1. Here ε > 0 is a small enough
positive number. If 〈w, ϕε〉 = 0 for some ε, we are done by setting ϕ = ϕε. If not, then we may assume
〈w, ϕε〉 > 0 for every ε > 0. Assume 〈w, ϕε〉 > 0 and 〈w, ϕδ〉 < 0 for some ε, δ > 0. Then if we take
s =−〈w, ϕε〉/〈w, ϕδ〉> 0, we have 〈w, ϕε + sϕδ〉 = 0 and so we are done by setting ϕ = ϕε + sϕδ.

Next, we may without loss of generality assume 〈w, ϕε〉> 0 for all ε > 0 small enough. By Lemma 8.9
we have 〈w, 1〉 = 0, which implies 〈w, 1−ϕε〉 < 0. The invariance of w(ν) dν under the action of 0
following from Lemma 8.9 then yields that for any ψ ∈ C∞(S1)

〈w,ψ〉 =

∫
S1

L∗γ (w(ν) dν)ψ =
∫

S1
w(ν)ψ ◦ Lγ−1(ν) dν = 〈w,ψ ◦ Lγ−1〉. (8-27)
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Now use that since 0∼=π1(M) has 2g≥ 4 generators, it is not elementary by [Katok 1992, Theorem 2.4.3].
Therefore, by Exercise 2.13 of that work we have that 0 contains infinitely many hyperbolic elements
(fixing exactly two elements of S1), no two of which have a common fixed points.

So take γ ∈ 0 hyperbolic such that ν−, ν+ are not in the set of fixed points of γ , which we denote by
{p1, p2}. Assume without loss of generality p1 is an attractor and p2 is a repeller.

By (8-27) for ψ = 1−ϕε, we get 〈w, 1−ϕε〉= 〈w, (1−ϕε) ◦ Lγ−1〉< 0. Since supp((1−ϕε)◦Lγ−1)=

Lγ (Bε(ν−)), we have that for n ≥ N0 large enough, ϕε,n := (1−ϕε) ◦ Lγ−n has support arbitrarily close
to p1, so disjoint from ν− and ν+. Therefore, for s =−〈w, ϕε〉/〈w, ϕε,n〉> 0, we have

〈w, ϕε + sϕε,n〉 = 0.

Then ϕ = ϕε + sϕε,n does the job. �

With this in hand, we can prove the following claim:

Theorem 8.11. Let6=0\H2 be a closed hyperbolic surface. Fix w2 ∈Bd0(−1) and let v2 ∈Res0
X∗(−1)

be the corresponding coresonant state, according to Lemma 8.4. Then there exists an f ∈ C∞(S6) with
f > 0 such that ∫

S6
f v1v̄2 dx dξ = 0 (8-28)

for all v1 ∈ Res0
X (−1). In other words, semisimplicity of the Lie derivative L−i X/ f acting on resonant

1-forms at zero fails.

Proof. We divide the construction of f into several steps.

Step 1: First, fix (x0, ξ0) ∈ SH2. Denote the corresponding coordinates of (x0, ξ0) by (ν0−, ν0+, s0),
according to (8-20). By Lemma 8.10, there is a nonnegative ϕ+ ∈ C∞(S1), nonvanishing at ν0+,
vanishing near ν0− and in the kernel of w2. Now let ϕ− ∈ C∞(S1) be such that ϕ− ≥ 0, ϕ−(ν0−) 6= 0
and supp(ϕ+) ∩ supp(ϕ−) = ∅. Also, let ψ ∈ C∞0 (R) be such that ψ(s0) 6= 0 and ψ ≥ 0. Set
χ(ν−, ν+, s) := ϕ+(ν+)ϕ−(ν−)ψ(s). Take any w1 ∈ Bd0(−1) and denote the corresponding element of
Res0

X (−1) by v1. Then by the computation in Proposition 8.7 for λ=−1, we have F∗π∗0(v1v̄2 dx dξ)=
1
2w1(ν−)w̄2(ν+) dν− dν+ ds and

〈π∗0(v1v̄2 dx dξ), F∗χ〉SH2 =
1
2〈w1(ν−)w̄2(ν+) dν− dν+ ds, χ〉(S1×S1)1×R

=
1
2〈w1, ϕ−〉〈w̄2, ϕ+〉〈ds, ψ〉 = 0

(8-29)

since 〈w2, ϕ+〉 = 0 by the construction. We will denote the χ above by χ(x0,ξ0) and by U(x0,ξ0) a
neighbourhood of (x0, ξ0) where F∗χ(x0,ξ0) > 0. Note that χ is a function in C∞0 ((S

1
× S1)1×R), by the

condition on disjoint supports of ϕ− and ϕ+ in the construction, and as ψ ∈ C∞0 (R). Therefore we have
F∗χ a function in C∞0 (SH2).

Step 2: Denote by D ⊂ H2 a compact fundamental domain for 6. Then SD is a fundamental domain
for S6. By compactness, we have an N > 0 and (xi , ξi ) ∈ SH2 for i = 1, 2, . . . , N such that

SD ⊂
⋃
(xi ,ξi )

U(xi ,ξi ).
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Define then

F∗χ(x, ξ) :=
N∑

i=1

F∗χ(xi ,ξi )(x, ξ) ∈ C∞0 (SH2).

By the construction, we have

〈π∗0(v1v̄2 dx dξ), F∗χ〉SH2 =
1
2

N∑
i=1

〈w1(ν−)w̄2(ν+) dν− dν+ ds, χ(xi ,ξi )〉(S1×S1)1×R = 0. (8-30)

Step 3: We introduce the pushforward map π∗ :C∞0 (SH2)→C∞(S6) by defining for any η ∈C∞0 (SH2)

π∗η(x, ξ) :=
∑
γ∈0

η(γ · (x0, ξ0)) ∈ C∞(S6). (8-31)

Here (x0, ξ0) ∈ π
−1
0 (x, ξ)⊂ SH2 is an arbitrary point in the fibre and the definition of π∗ is independent

of any choices. Note that the only accumulation points of orbits of 0 are on the boundary at infinity S1,
so the pushforward is well-defined and sequentially continuous. Note also that π∗ is dual to π∗0 in the
sense of distributions.

Then we observe that f (x, ξ) := π∗F∗χ(x, ξ) ∈ C∞(S6) satisfies the required properties. Firstly,

〈v1v̄2 dx dξ, f 〉S6 = 〈π∗0(v1v̄2 dx dξ), F∗χ〉SH2 = 0 (8-32)

by (8-30) from Step 2 and duality of π∗ with π∗0 . Secondly, we have f > 0. To see this, let (x, ξ) ∈ S6
and denote a lift to SH2 by (x0, ξ0). Then there exists γ ′ ∈ 0 with γ ′ · (x0, ξ0) ∈D. Therefore, there is an
i ∈ {1, 2, . . . , N } with γ ′ · (x0, ξ0) ∈U(xi ,ξi ) and so F∗χ(xi ,ξi )(γ

′
· (x0, ξ0)) > 0. Hence

f (x, ξ)=
∑
γ∈0

F∗χ(γ · (x0, ξ0))≥

N∑
i=1

F∗χ(xi ,ξi )(γ
′
· (x0, ξ0))≥ F∗χ(xi ,χi )(γ

′
· (x0, ξ0)) > 0.

This proves the first claim. The final claim now follows directly from the correspondence in (8-4) and
Proposition 8.1. �

Remark 8.12. One may see the element in the kernel of L2
X/ f and not in the kernel of LX/ f constructed

in Theorem 8.11 more explicitly. Namely, one such element is given by the formula

u′ =−i RH (0)( f u).

Here u ∈ Res0
X (−1) is an element such that

∫
S6 f uv dx dξ = 0 for all v ∈ Res0

X∗(−1) and RH (λ) is
the holomorphic part at zero of (−iLX − λ)

−1 on 1-forms. The conclusion follows as 50( f u)= 0 and
−i RH (0) is an inverse to LX on ker50 ∩D′E∗u (M;�

1).

Theorem 8.11 completes the proof of Theorem 1.4. We conclude this section with the following:

Proof of the second part of Corollary 1.7. By Theorem 1.4 there is a time change f X on the unit sphere
bundle S6 of a closed hyperbolic surface 6 with kerL2

f X 6= kerL f X on �1
0(S6). By Theorem 1.2, for

the flow f X we have m0(0) = m2(0) = 1 and dim Res1(0) = b1(6), so that m1(0) ≥ b1(6)+ 1. The
claim then follows by applying Corollary 3.3. �
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