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RESONANT SPACES FOR VOLUME-PRESERVING ANOSOV FLOWS

MIHAJLO CEKIC AND GABRIEL P. PATERNAIN

We consider Anosov flows on closed 3-manifolds preserving a volume form 2. Following Dyatlov
and Zworski (Invent. Math. 210:1 (2017), 211-229) we study spaces of invariant distributions with
values in the bundle of exterior forms whose wavefront set is contained in the dual of the unstable
bundle. Our first result computes the dimension of these spaces in terms of the first Betti number of
the manifold, the cohomology class [tx€2] (where X is the infinitesimal generator of the flow) and
the helicity. These dimensions coincide with the Pollicott—Ruelle resonance multiplicities under the
assumption of semisimplicity. We prove various results regarding semisimplicity on 1-forms, including
an example showing that it may fail for time changes of hyperbolic geodesic flows. We also study
non-null-homologous deformations of contact Anosov flows, and we show that there is always a splitting
Pollicott—Ruelle resonance on 1-forms and that semisimplicity persists in this instance. These results
have consequences for the order of vanishing at zero of the Ruelle zeta function. Finally our analysis also
incorporates a flat unitary twist in the resonant spaces and in the Ruelle zeta function.

1. Introduction

We study resonant spaces of invariant distributions with values in the bundle of exterior forms for volume-
preserving Anosov flows on 3-manifolds. One of the main motivations for looking at these spaces is that
when a natural restriction is placed on the wave front set of the distributions, their dimensions are related
to the Pollicott—Ruelle resonance multiplicities, which in turn determine the order of vanishing at zero of
the Ruelle zeta function. For the case of contact Anosov flows this analysis was carried out in [Dyatlov
and Zworski 2017] and here we show that the transition from “contact” to “volume-preserving” presents
some new features, making the overall picture more involved, partially due to the nonsmoothness of the
stable plus unstable bundle.

Let (M, 2) be a closed 3-manifold equipped with a volume form €2 and let ¢, be a volume-preserving
Anosov flow with infinitesimal generator X. If we write the Anosov splittingas TM = RX @ E; ® E,,,
then we define the spaces Ejj, E} and E as the duals of RX, E, and E; respectively. In particular, this
means that for each x € M, E(x) is the annihilator of RX (x) @ E,(x) and E; C T*M, a closed conic
subset. We denote by 7', (M; Q) the space of distributions with values in the bundle of exterior k-forms
and with wave front set contained in E * (see Section 2 for background on these notions). The resonant
spaces that we are interested in are

Res; (0) := {u € D] - (M; QY ixu=0, 1x du =0}.
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The dimensions of the spaces can be considered as geometric multiplicities. We note that [Dang and
Riviere 2017] studies generalised resonant spaces of forms (at zero) for arbitrary Anosov flows and these
have a good cohomology theory (see Remark 2.2 for more details and definitions) but in principle these
generalised resonant forms are not in the kernel of tx and might only be in the kernel of some power of
the Lie derivative.

Our first result computes the dimension of these geometric spaces in terms of the first Betti number
b1 (M) of the manifold M and two natural characteristics of the flow that we now recall.

Since X preserves the volume form €2, its Lie derivative Lx 2 is equal to 0. Hence the 2-form w :=(x 2
must be closed.

Definition 1.1. We say that X is null-homologous if the cohomology class [w] is equal to 0, i.e., w is
exact. For a null-homologous X, its helicity is the number

H(X) ::/ (X) Q,
M

where 7 is any 1-form such that d7 = w.

It is easy to check that this definition is independent of the choice of primitive t. The helicity (also
referred to as the asymptotic Hopf invariant) measures how much in average field lines wrap and coil
around one another. We refer to [Arnold and Khesin 1998] for a complete account of this concept as well
as its interpretation as an average self-linking number.

We can now state our first result:

Theorem 1.2. Let (M, 2) be a closed 3-manifold with volume form Q2 and let ¢; be a volume-preserving
Anosov flow. Then:

(1) dimRes((0) = dim Res,(0) = 1.
(2) If [w] #0, then dimRes;(0) = b (M) — 1.

3) If [w] =0, then
b1 (M) if H(X) #0,
bi(M)+1 if H(X)=0.
This result generalises [Dyatlov and Zworski 2017, Proposition 3.1] as a contact Anosov flow fits
into [w] = 0 and H(X) # 0, since in that case we can take 7 to be the contact 1-form and 7(X) = 1. In

dim Res; (0) = {

Section 5 we give some examples to illustrate the various cases in Theorem 1.2, but we should point out
right away that we do not know of any example of a volume-preserving Anosov flow with zero helicity.

We note that all the notions involved in Theorem 1.2 are invariant under time changes. Namely, if f is
a positive smooth function, the flow of f X is also Anosov and with the same E;;. Hence the resonant
spaces Resy (0) are the same for all such flows. Also the notion of being null-homologous or having
nonzero helicity is unaffected by time changes.

As mentioned before, the dimensions of Res; (0) are important since they are related to the Pollicott—
Ruelle resonance multiplicities m(0). In general m;(0) > dim Res; (0), and equality holds under the
following condition (see Lemma 2.1):
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Definition 1.3. X or ¢, is said to be k-semisimple if given u € D’..(M; QF) with txyu =0 and (xdu €
Res; (0), then u € Res (0), i.e., txdu = 0.

Semisimplicity for £ = 0, 2 will be easy to establish, but 1-semisimplicity does not always hold. In the
case of contact Anosov flows, 1-semisimplicity was proved in [Dyatlov and Zworski 2017, Lemma 3.5].
For general volume-preserving Anosov flows the bundle E, @& E; is only Holder continuous [Foulon
and Hasselblatt 2003] and thus the 1-form adapted to the flow, defined to be zero on E, & Es and 1 on
the generator X, is only Holder continuous. As a consequence the computations done in [Dyatlov and
Zworski 2017, Lemma 3.5] are no longer viable due to this lack of smoothness.

Our next two results show that the picture for volume-preserving Anosov flow is rather more subtle. Let
Xq denote the set of vector fields that preserve €2 and let Xg C Xg denote those which are null-homologous.

Theorem 1.4. Let (M, Q) be a closed 3-manifold with volume form Q2. Consider a smooth 1-parameter
family X, of volume-preserving Anosov vector fields with Xo 1-semisimple:

() If X, € Xg for every ¢ and H(Xo) # 0, then X, is 1-semisimple for all ¢ sufficiently small.
(2) If Xo is not null-homologous, then X, is 1-semisimple for all € sufficiently small.
For any hyperbolic surface, there is a time change of the geodesic flow which is not 1-semisimple.

Consider now a contact Anosov flow X with contact form « on a closed 3-manifold M. In particular,
by Theorem 1.4 we know that 1-semisimplicity persists in XSOZ and near X, where Q2 = —a Ada. The
next theorem gives us a local picture for what happens near X and away from Xg.

Theorem 1.5. Consider Y € Xq \Xg. Then for sufficiently small €, the flow X, = X +¢€Y is 1-semisimple.
Moreover, there is a splitting Pollicott—Ruelle resonance —i\, = O (&%) of —iLx, acting on Qln kerx,
with A; < 0 for & # 0, with Pollicott—Ruelle multiplicity 1 (see Figure I).

1A. Ruelle zeta function. We denote the set of primitive closed orbits of X by Gy (i.e., the ones that are
not powers of a closed orbit in M); the period of y € Gy is denoted by /,,. The Ruelle zeta function is
defined as
()= [ a—e". (1-1)
v€Go
The infinite product converges for Re s > 1 and its meromorphic continuation to all C was first established
in [Giulietti et al. 2013] in full generality and subsequently in [Dyatlov and Zworski 2016], where
a microlocal approach was employed; see [Pollicott 2013] for a survey of dynamical zeta functions.
Moreover, it was shown in [Dyatlov and Zworski 2016] that there is a factorisation (assuming that £ and
E, are orientable)
()=
Zo(s)82(s)

where i (s) is an entire function with the order of vanishing at each s € C equal to my(is) for k =0, 1, 2.

(1-2)

Here my ()) is the Pollicott—Ruelle resonance multiplicity (see Section 2 for more details). Hence the order
of vanishing of ¢ at s = 0 is determined by m(0) := m(0) —mg(0) — m>(0). Using this and Theorem 1.2
we derive the following:
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X = large eigenvalues X = splitting resonance
X = small eigenvalues
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Figure 1. Left: resonance spectrum of Ly acting on Q'(SX) for a closed hyperbolic
surface X. According to [Guillarmou et al. 2018; Dyatlov et al. 2015] and Remark 8.3
below, the green crosses correspond to (large) eigenvalues p > % of —Ay, the blue ones
correspond to (small) eigenvalues u < ‘—11 and the red ones are “special”’. Right: resonance
spectrum of Ly, acting on !(ST) and the splitting resonance, according to Theorem 1.5.
We remark that the resonances in the rest of this paper will often be given by A =is, i.e.,
obtained by a rotation of 7 from this picture.

Corollary 1.6. Let (M, 2) be a closed 3-manifold with a volume-preserving Anosov flow ¢, whose stable
and unstable bundles are orientable. Then

s"M0r(s)
is holomorphic close to zero, where
nM,X)=3-bi(M) if o] #0,
nM,X)=2—-b;(M) if [w]l=0and H(X) #0,
nM,X)=1=b;(M) if [w]=0and H(X)=0.
Moreover, if ¢; is 1-semisimple, then s"™M-X) ¢ (s)|;—g # 0.
The Ruelle zeta function for the suspension of a hyperbolic toral automorphism A € SL(2, Z) is equal to

(e =M =1/
(=17

g(s) =

where A and 1/X are eigenvalues of A. This has a pole of order 2 at s = 0, which of course matches the
computation in Corollary 1.6 since b1 (M) = 1. However, the corollary asserts that any other volume-
preserving non-null-homologous Anosov flow on M will have ¢ with the same behaviour at s = 0 since
1-semisimplicity holds trivially given that Res; (0) is zero-dimensional. An interesting class of Anosov
flows with [w] # 0 is given in [Bonatti and Langevin 1994]. These examples have a transverse torus, but
they are not conjugate to suspensions. We do not know if they are 1-semisimple.
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Magnetic flows are also examples to which the previous corollary applies. They are null-homologous
(see Section 5), but they are generically not contact (see [Dairbekov and Paternain 2005]); hence they
were not covered by the main result in [Dyatlov and Zworski 2017]. In this setting, magnetic flows can
be described by a vector field of the form X + (A o)V, where X is the geodesic vector field, V is the
vertical vector field of the circle fibration 7 : S¥ — X, and A € C*°(X) (here M is equal to S, the
unit circle bundle of the orientable surface X). They are volume-preserving since X and V preserve the
canonical volume form. Suppose the geodesic flow is Anosov. Thanks to item (1) in Theorem 1.4, if A is
small enough, the magnetic flows remain Anosov and 1-semisimple and hence the order of vanishing of
the zeta function at zero is the same as for Anosov geodesic flows, namely —x (X).

The last statement in Theorem 1.4 and Theorem 1.5 have consequences for the zeta function. The
failure of 1-semisimplicity means that m(0) > b (M) + 1, and hence the order of vanishing at zero of
the zeta function is strictly bigger than that of the geodesic flow case. Hence time changes can a priori
produce alterations in the properties of ¢ near zero. Similarly the cohomology class [w] can also produce
alterations. For the particular construction of Theorem 1.4 we do not know the precise order of vanishing
at zero.

Corollary 1.7. The order of vanishing of the zeta function {x_(s) of the flow X, from Theorem 1.5 at zero,
for e #£0, is equal to by (M) — 3. Moreover, for the time change f X of the geodesic flow on the hyperbolic
surface constructed in Theorem 1.4, the order of vanishing is greater than or equal to —x (X) + 1.

1B. Flat unitary twists. 1t is possible (and natural) to introduce a unitary twist in the discussion above.
Consider (M, 2) a closed 3-manifold with volume form 2 and X a volume-preserving Anosov vector
field. Let £ be a Hermitian vector bundle over M, equipped with a unitary connection A. We consider
Dl (M QF® &) the space of distributions with values in the bundle of £-valued exterior k-forms and
with wave front set contained in E ~. We replace the exterior differential d by the covariant derivative d4
(induced by the connection A) acting on £-valued differential forms. Thus we can define resonant spaces

Res, 4(0) :={u € D%*(M; Qk®<€') tixu =0, txydau =0}

We shall compute the dimensions of these spaces in analogy to Theorem 1.2 under the assumption that
A is flat and unitary, i.e., di =0 and d4 is compatible with the Hermitian inner product on £. Recall
that flat unitary connections are in 1-1 correspondence with representations of 1 (M) into the unitary
group. Under this condition, one can define twisted Betti numbers b; (M, £) in the standard way (we note
that these numbers may depend on A). The upshot is a theorem similar to Theorem 1.2 where the Betti
numbers b; (M) are replaced by b; (M, £); see Theorem 4.1 for the full statement. With this information
in hand we can study a twisted Ruelle zeta function,

ta(s) == [ ] det(dd— e e™"). (1-3)
y€Go

Here, given a point xo on y € Gy, we denote by o, the parallel transport map (i.e., an element of the
holonomy group) along the loop determined by y. It is easy to check that the product is independent of the
choice of xp on y, as this amounts to conjugating e, by a linear map. Note thatif £ =M x C and dy =d,
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the expression in (1-3) reduces to that in (1-1). If the connection A is flat, we recover the definition of
the twisted Ruelle zeta function considered in [Fried 1986]; it was also studied in [Adachi 1988; Adachi
and Sunada 1987], where functions of this type were called L-functions in analogy with number theory.
Fried conjectured that the coefficient at zero of ¢4 for an acyclic connection (i.e., one that has vanishing
Betti numbers) is related to the analytic torsion, but proved it only for hyperbolic manifolds. For recent
progress on this conjecture and more information, see [Dang et al. 2020; Shen 2018; Zworski 2018].

The notion of semisimplicity extends naturally to the twisted case (just replace d by d4 in Definition 1.3).
In that case we will say a flow ¢, or X is 1-semisimple with respect to d4. Putting everything together
we shall derive the following corollary:

Corollary 1.8. Let (M, 2) be a closed 3-manifold with a volume-preserving Anosov flow ¢, whose stable
and unstable bundles are orientable. Let £ be a Hermitian vector bundle equipped with a unitary flat

connection A. Then
s" MDA (s)

is holomorphic close to zero, where
nM,X,A)=3bg(M,E)—bi(M,E) if [w] #0,
n(M,X,A)=2by(M,E) —b1(M,E) if [w] =0and H(X) #0,
nM,X,A)=by(M,E)—b1(M,E) if [w]=0and H(X) =0.

Moreover, if X is 1-semisimple with respect to d 4, then s"M-X-A ¢, (s)]5—0 # 0.

A particular instance of the corollary arises when we consider A to be the pullback of a flat connection
on a surface X. In this case it is easy to check that (see Lemma 2.9)

2bo(M, E) —b1(M, £) =rank(€) x ().
Thus:

Corollary 1.9. Let £ be a Hermitian vector bundle over an oriented closed Riemannian surface (X, g),
equipped with a unitary flat connection A. We consider M = S with footpoint map w and any Anosov
flow, 1-semisimple with respect to d» 4, null-homologous with nonzero helicity, preserving the volume form
of SX. We consider the pullback bundle 7*E with the pullback connection 7*A. Then in a neighbourhood
of zero we have s™XE)x(Z) . ¢ .\ (s) holomorphic such that

Srank(t‘:)x(z) . é‘n*A(s)ls:O # 0'

We remark that Corollary 1.9 applies in particular to contact flows, since for those 1-semisimplicity
holds with respect to any flat and unitary dy4.

This paper is organised as follows. Section 2 gives preliminary information, recalls the Pollicott—Ruelle
resonances and proves some necessary lemmas. In Section 3 we recall the factorisation of the twisted
zeta function in terms of some traces of operators on £-valued k-forms. In Section 4, we compute the
dimension of the resonant spaces Res; 4(0) and obtain Theorem 1.2 as a particular case. Corollary 1.8
is also proved in this section. Section 5 gives examples and develops material needed for the study of
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time changes. Section 6 discusses perturbations and proves the main result needed for items (1) and
(2) in Theorem 1.4. Theorem 1.5 is proved in Section 7. Finally, Section 8 exhibits a time change of
the geodesic flow of a hyperbolic surface for which 1-semisimplicity fails, thus completing the proof of
Theorem 1.4.

2. Preliminary results

In this section we review the necessary tools to prove the results stated in the Introduction. In particular,
we recall the Pollicott—Ruelle resonances and put forward some preparatory lemmas.

2A. Microlocal analysis. Here we outline the microlocal tools necessary for our proofs. For more
information on distribution spaces and properties of wavefront sets see [Grigis and Sjostrand 1994,
Chapter 7] or [Hormander 1983, Chapters VI, VIII] and for more about pseudodifferential operators see
[Grigis and Sjostrand 1994, Chapter 3] or [Hormander 1985, Chapter X VIII].

Let M be a closed manifold and £ a smooth complex vector bundle. We consider the space of infinitely
differentiable smooth sections and the space of distributional sections, respectively,

C®(M;&) and D' (M;E).

We recall the notion of the wavefront set of a distribution, which keeps track of the directional singularities.
Given u € D'(R"), we have (x, &) € WF(u) C T*R"\ 0= R" x (R" \ 0) if there exists ¢ € Co°(R") with
@(x) # 0 and an open conical neighbourhood U of £ such that

lpu(m| = 0(n)~>)

for n € U. Here we let (n) = (1+|n|*)'/? and by O({n)~>) we mean an expression bounded by Cy ()N
for every N. A vector-valued distribution u € D'(R"; R™) for some m € N may be identified with a vector
u="uy,...,uy) withu; € D'(R"). Then

WF(u) := UWF(ul-).

i=1
It is standard that these definitions are coordinate invariant, so for u € D' (M; £) we have
WF(u) Cc T*M\ 0.
It is moreover true that for any pseudodifferential operator A we have
WF(Au) C WF(A) NWF(u) C WF(u),
a fact that will be used later on. Then, we introduce for a closed conic set I' C T*M \ O the space
Dr(M; ) ={ueD'(M; &) | WF(u) CT}.

Note that by the above relation on wavefront sets, the spaces D (M; £) are invariant under the action of
pseudodifferential operators.
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2B. Pollicott—Ruelle resonances. Let us now quickly recall the microlocal approach to Pollicott—Ruelle
resonances, as in [Dyatlov and Zworski 2017]. Let M be a compact smooth manifold without boundary
and X be a smooth vector field. We assume that the flow ¢, of X is Anosov, i.e., that there is a splitting
of the tangent space

TXM == RX(X) @ Eu(x) @ Es(-x)

for each x € M, where E,(x) and E(x) depend continuously on x and are invariant under the flow and,
moreover, that for some constants C, v > 0 and a fixed metric on M

tZO’ UEES(X)9

d .v<C*V|t‘.v’
ldgs(x) -v| < Ce |v] {tSO, veE,(x).

We call E;(x) the stable bundle or direction and E,(x) the unstable bundle or direction. It is a
well-known fact that the geodesic flow on the unit tangent bundle M = SN for N with negative sectional
curvature is Anosov.

Let us define the spaces Ej(x), Ej;(x), E}(x) as the duals of Eg(x) := RX (x), Es(x), E,(x) respec-
tively. Explicitly, E7(x) is the annihilator of RX (x) @ E,(x), E}(x) is the annihilator of RX (x) ® E(x)
and Ej(x) is the annihilator of E,(x)@® E, (x). The continuous vector bundle E}} := ), Ex(x) CT*M
is a closed conic subset.

Let us consider a complex vector bundle £ over M, equipped with a connection A (which defines
the covariant derivative d4) and a smooth potential ® (section of the endomorphism bundle of £). This
defines a first-order operator

P=—iixdy+® 2-1)

acting on sections of £, denoted by C*°(M; £). Later on we will dispense with @, but for the moment it
can be included without trouble.
For A € C with sufficiently large Im A > Cy > 0, we have the integral

[e.¢]
R(M) ::if eMe P dr L2(M; £) - L2(M; &) (2-2)
0

converges and defines a bounded operator, holomorphic in A and, moreover, R(L) = (P —1)~! on L?. The
propagator ¢''” is defined by solving the appropriate first-order PDE and the constant C depends on P.
In [Faure and Sjostrand 2011] (see also [Dyatlov and Zworski 2016]) it is proved that the operator

R(A) has a meromorphic extension to the entire complex plane
R(\) :C®(M; &) — D'(M; ) (2-3)

for A € C and the poles of this continuation are the Pollicott—Ruelle resonances.
We proceed to define the multiplicity of a Pollicott—Ruelle resonance Ay. By definition, there is a
Laurent expansion of R(X) at Ao (see [Dyatlov and Zworski 2019, Appendix C])

J (0)
RG)=Ry() =)

Jj=1

(P—20))"'10

TSRV H,RH(A):D/:(M;E)—>D/E§(M;8) (2-4)
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where Ry (A) is the holomorphic part at Ao and IT = IT,, is a finite-rank projector given by

1

_ 1 _ py-l _
=5 Ao(x Py ldn. (2-5)

H}‘—O
Here, the integral is along a small closed loop around A and it can be easily checked that H%O = Iy,
[I1,,, P]1=0. The fact that Ry (A) and IT can be extended to continuous operators on D, follows from
the restrictions on the wave front sets given in [Dyatlov and Zworski 2016, Proposition 3?3] and [Grigis
and Sjostrand 1994, Theorem 7.8]. The Pollicott—Ruelle multiplicity of Ly, denoted by m p (Ag), is defined
as the dimension of the range of IT;,.
By applying P — A to (2-4), we obtain (P — )’ *”T1;, = 0 and so ran IT;, C ker(P — Ag)’ *). The
elements of ran IT,, are called generalised resonant states and we will define, for j € N,

Res (o) = {u € Dp. (M; €) : (P — 19) u = 0}. (2-6)
We also write
Resp (ko) = {u € Dy (M3 €) : (P — ro)? @y =0},

In fact, we may show that Resp(A) is equal to the range of I1,, and we may think of J(1¢) as the size
of the largest Jordan block.

Lemma 2.1. Let u € Dg*(M; E) be such that (P — Ao)°u = 0 with jo € Ny the minimal such number:
Then jo < J(Xo), Il u = u and ker(P — X0)’ *0) = ran Iy,

Proof. Assume that jy > J(Ag) for the sake of contradiction. Since Sobolev spaces filter out D'(M; £),
there is an s > O such that u € H™*(M; £). Recalling the definition of the anisotropic space H,g(M; E)
for r > 0 (see (6-1) below), we get

D};Z(M; EYNH T (M; &) CHrg(M; E)

since H,¢ is microlocally equivalent to H™" near E. Therefore u € H,q(M; E) for r > s and by
Lemma 6.1 below (P — 1)~ : H,g(M; £) = H,g(M; E) is meromorphic near Ay for r > s.

Let us set v := (P — A9)®*~'u. Then (P — 1)~ 'v = (Ao — A)~'v and by applying (2-5) to v we get
IT,,v = v. Note that (2-4) also implies (P — AO)J(AO)HAOt =0 for all r € H,. But all this implies

(P —20) ' = T, (P — 1)t = (P — Ao) ™' T ,u = 0. (2-7)

This contradicts the minimality of jy and proves the first claim.
For the second claim, take some u € Resg.f(’)()»o) and use induction on jy. Note that the first two

equalities of (2-7) show IT,,u = u for jo =1 and more generally that
(P — )~ (T yu —u) = 0.

The fact that IT, is a projector and the induction hypothesis show IT,,u = u, proving the claim.
Lastly, if u € ranIT,, then IT,,u = u and so (P — X))y =0 by (2-4), which together with the
previous paragraph shows ker (P — 19)”*) N'D}..(M; £) =ranI1,,. O
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Remark 2.2. Generalised resonant spaces of forms (at zero) have a good cohomology theory; see [Dang
and Riviere 2017, Theorem 2.1]. We emphasise that here we study resonant spaces at zero with j =1 in
(2-6) and such that the elements are in the kernel of (x, as well as conditions under which there are no
Jordan blocks.

2C. Coresonant states. Here we study the connection between the semisimplicity and a suitable pairing
between resonant and coresonant states. We start off with a lemma relating the adjoint of the spectral
projector and the spectral projector of the adjoint.

Lemma 2.3. Let P be a first-order differential operator acting on sections of € with principal symbol
—io (X) x Idg and consider the adjoint operator P*. Denote the spectral projector of P at g € C by Iy,
and of P* by H’AO. Also, denote the resolvent by Rp (L) = (P — A)~\. Then!

Rp(M)*=—R_p:(—0) and T} =T1";.
Proof. Firstly note that for Im A >> 1 and all u, v € L?>(M; £), by (2-2) we have the identity
(Rp(Mu, v) 2 = (u, —R_p=(=1)v) 2. (2-8)

Then by analytic continuation we have the equality in (2-8) for any u, v € C* for all A € C. Moreover, by
continuity and the mapping properties of Rp (1) : Dy, (M; ) = Dy (M; E) and R_p+(—1) : Dy (M; E) —
Dl (M; €) outside the poles, we have (2-8) for all u € D}, and v € D}.. This proves the first claim.
Now let u € D%; (M; &) and v € D, f(M; £). We may write

1

__1 I 3 — Tl -
(Iou, v) = i A0<RP(A)M’ v)dr = i XO(u, R_p«(—M)v)dAr = (u, Hikov).

: * __ 17/
This proves ITj = H—Xo' U

We proceed to define the coresonant states. Given an operator P as in Lemma 2.3 and a resonance
Ao € C, the space of coresonant states at Ao is Res_ p« (—ro) C D (M E). By the wavefront set conditions,
notice that we may multiply resonances and coresonances in the scalar case, or form inner products; see,
e.g., [Grigis and Sjostrand 1994, Proposition 7.6]. We are now ready to reinterpret the semisimplicity in
terms of the pairing

Resp(Lo) X Res_p+(—Ag) = C, (u,v) — (u, V). (2-9)

Observe that the pairing (2-9) is nondegenerate: we have (u, v) =0 for all v € Res_ p(—Ap) if and only
if (u, H/—qu)) =0 for all ¢ € C*°(M; £). Then by Lemma 2.3 and since IT,,u = u, this holds if and
only if # = 0; by an analogous argument for the other entry, we obtain the nondegeneracy. In particular,
mp(ho) =m_p+(—Ag) and also J (Ao) = J'(—Ag). Here J'(w) denotes the size of the largest Jordan block
of —P* at u.

Here we interpret —R_ px (=2): C®(M; &) > D'(M; &) as the operator obtained by meromorphic continuation, but with
respect to the flow generated by —X.
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Lemma 2.4. Assume P satisfies the assumptions of Lemma 2.3. Then we have that the semisimplicity for
P at Lo holds if and only if the semisimplicity for — P* at —\go holds. Moreover, P is semisimple at A if
and only if the pairing

Res'y) (ho) x Res ). (=2o) = €, (u, v) > (u, v) 2. (2-10)
is nondegenerate.

Proof. For the first claim, simply note that by the previous paragraph we have J(1o) = J'(—Ao).

For the second claim, assume first that the pairing (2-10) is nondegenerate. Assume we have u, u’ €
Dp(M; ), with (P — Ao)u = u’ where u’ € Resg)(ko). We want to show u’ = 0. We have, for any
v euRes(_lig*(—)_»o),

(', v) = (P — ho)u, v) = (u, (P* — 1o)v) =0.

Now nondegeneracy implies u’ = 0.
Assume next the semisimplicity holds for P at Ao and let u € Resg)(ko) satisfy (u, v) = 0 for all
Ve Res(_li)*(—io). Then we have, for all ¢ € C®°(M; &),
(I/l, ‘P) = (HAOM, (/)> = (l/t, H/—)_\0¢> =0.

Here we used Lemma 2.3 and the assumption. Thus u = 0. The fact that — P* is semisimple at —A( and
an analogous argument for the other entry proves the nondegeneracy and finishes the proof. (|

2D. Further preparatory results. We start by quoting an important technical result; see [Dyatlov and
Zworski 2017, Lemma 2.3].

Lemma 2.5. Suppose there exist a smooth volume form on M and a smooth inner product on the fibres of
& for which P* = P on L*(M; €). Suppose that u € D,.(M; €) satisﬁes2

PueC®(M; &), Im(Pu,u)>0.

Then u € C®°(M; £). In particular, the conclusion of the lemma holds for u a resonant state with the
eigenvalue ). € R— just swap P with P — A.

We also need a simple regularity result analogous to [Dyatlov and Zworski 2017, Lemma 2.1]. We
give it here for completeness

Lemma 2.6. Assume d, is flat and let T' C T* M\ 0 be a closed conic set. Assume that u € D.(M; Q")
and dau € C®°(M; Q1 ® &). Then there exists v e C°(M; QX ® E) and w € D (M; Q1 ® &) such
thatu =v+daw.

Proof. The proof follows formally by replacing d with d4 and § with d in the proof [Dyatlov and
Zworski 2017, Lemma 2.1]. O

2The inner product in this paper is complex conjugate in the second variable.
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2E. Cohomology in a flat bundle. Given a manifold M of dimension n and a Hermitian vector bundle £
with a flat connection A, we may consider the complex given by

0245 COM; &) Y45 c®M: Q' @) M5 ... B cooM: Q" @ E) 5 0. 2-11)

Here we extend, as usual, the action of d4 to vector-valued differential forms by asking that the Leibnitz
rule holds. The homology of this complex will be denoted by H ’/,f (M; &) for k=0, ...,n. Consider now
¥ an oriented Riemannian surface and let £ be a Hermitian vector bundle over £ equipped with a unitary,
flat connection A. We can pull back the bundle £ to the unit sphere bundle 7 : S¥ — X to obtain 7 *¢&,
equipped with a unitary, flat connection 7*A.

Lemma 2.7. Assume X has genus g # 1. Then the following map is an isomorphism:
m* HY(Z5E) — HL  (SZ; %€). (2-12)

Proof. There is a vertical vector field V that generates the rotation in the fibres of SX. We first check
7* is injective, so assume 7*0 = dy«4 F, where 6 € C®(Z; Q! ® &) is dy-closed and F € C®(SX; £).
This implies tydy+4 F = 0. Note that if x € X, there is a small ball B with x € B, over which & is trivial.
Thus tydy«s F =0 implies VF =0 (since ty7*A = 0) and so F = 7* f locally; this is easily seen to
extend to F = * f globally for some f € C*(X; £). This implies 7*(ds f —0) =0 and so ds f = 0.

For surjectivity, take u € C*(SZ; Q! @ 7*€) with dy«,u = 0. We want to prove there are v and F
such that u = 7*v + d+4 F, where v is d4-closed. This implies

tyu = tydgsaF. (2-13)

If we solve (2-13), then w = u —d;« 4 F satisfies d,+4w =0 and 1y w = 0. By going to local trivialisations
where A =0, a computation implies w = 7 *v for some 1-form v locally. Again, by uniqueness this may be
easily extended to some global v € C*°(X; &) with dqv = 0. We now focus on (2-13) and finding such F.
To this end, we introduce the pushforward map 7, : C®(SX; Q! @ 7*) — C*®(X; &) by integrating
along the fibres
T a(x, v) — B(x) =/ o. (2-14)
i)
One can show that the pushforward is well-defined and that it intertwines d4 and dy+4; after going to a
trivialisation where A = 0, this reduces to showing commutation with d, which follows from [Bott and Tu
1982, Proposition 6.14.1]. Thus m, descends to cohomologys; i.e., we have m, : H;*A(SE; E)— HAO(E; &).
Now observe that (2-13) can be solved if and only if 7,u = 0. We introduce the section s € C*(Z; &)
with s(x) = m.u. Note that d4s = 0. Moreover, we have for K the Gaussian curvature of X:

f (u,n*(stvolz)):f(rr*u,stvolg):/ IsII?K d vols = ||s||1*27 x (2). (2-15)
SX ) p))

Here we used that ||s||? is constant, since s is parallel and A is unitary, and we applied Gauss—Bonnet theo-
rem. In the first equality we use a generalisation of [Bott and Tu 1982, Proposition 6.15]. We use the conven-
tion that (sa, s'B) = (s, s')ea A B, where o and B are forms of complementary degree and s, s’ are sections.
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On the other hand, we have 7 *(K d voly) = —d v, where v is the connection 1-form on $X. Therefore
we have the pointwise identity, as d;«au = 0 and das =0,

(u, 7*(sK dvoly)) =d{u, (x*s)¥).

So by Stokes’ theorem we obtain that the first integral in (2-15) is zero. Since g # 1, we have x (¥) #0
and so s = 0. Therefore m,.u = 0, which concludes the proof. O

Remark 2.8. Alternatively, we could have proved Lemma 2.7 more abstractly using a version of the
Gysin sequence for twisted de Rham complexes; see [Bott and Tu 1982, p. 177] for more details.

We now compute the Euler characteristic of the twisted de Rham complex. This shows that, although
the twisted Betti numbers, i.e., dimensions of H 1’; (M; €) can jump by changing A, the Euler characteristic
is independent of the choice of flat connection. We could not find an appropriate reference for this result.

Lemma 2.9. The Euler characteristic of the chain complex (2-11), denoted by xa(M; £), is equal to
xa(M; €) = rank (&) x (M).

Proof. A way to prove this is given by an application of the Atiyah—Singer index theorem; we sketch the
proof here. It starts by noting that, as with the usual nontwisted forms, we have

da+di: C®¥(M; QLU QE) — C¥(M; Q"R E). (2-16)

Here Q¥ =P, Q% and Q% =P, Q%! are the bundles of even and odd differential forms, respectively.
Let us introduce the twisted Hodge laplacian, A 4 =d’id s +dad}. By Hodge theory, we have H ’; M; &=
ker A 4|qrge. Therefore, we also have ind(dy + d) = xa(M; &), where by ind we denote the index of
an operator.

By the Atiyah—Singer index theorem,

ind(ds +d%) = / ch(d(dy 4 d3)T(T M)
T*M

= f ch(&) ch(d(d +d*)T(T M)
T*M

= rank(£) ch(d(d +d")T(TM) =rank(E) x (M). (2-17)
T*M

Here, 7 denotes the Todd class and ch denotes the Chern character.’ The letter d denotes the difference

bundle. Since (£, A) is flat by assumption, we have ch(£) = rank(€). The transition to the second line is
justified since the principal symbol of d4 + d} is equal to o (d + d*) ® Idg, so that

d(da +dy) =do(d+d)®ld) =[G1®E] - [G2®E] = ([G1] — [G2)) - [E] € K™ (T*M).

Here G and G are certain vector bundles over a one-point compactification of 7*M and K “°™P denotes
the suitable K-theory. Since ch is multiplicative over the K-theory, we get the product of characters. The

3More explicitly, these are given for a vector bundle V over M with curvature two-form 2 and w = —Q/(27i), by
ch(V) =trexpw and 7 (V) = det(w/(1 —exp(—w))). Here we apply the Taylor series at zero to forms.
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last equality follows from the Atiyah—Singer index theorem for the operator d + d* : Q°% — Q&M and
the nontwisted Hodge theory. (|

3. Meromorphic continuation of 4 (s)

We devote this section to showing meromorphic continuation of ¢4(s) given by (1-1) for an arbitrary
(possibly nonflat, nonunitary) A. We note that the meromorphic continuation of the Ruelle zeta function
was first established in [Giulietti et al. 2013] and later in [Dyatlov and Zworski 2016], and that here
we follow the latter microlocal approach. Let (M, g) be a compact Riemannian manifold and £ a
Hermitian vector bundle over M equipped with a connection A and an endomorphism-valued function .
Also assume M admits an Anosov flow ¢, with generator X. We consider the first-order operator
P=—iixds+ .
Let us denote by ay ; the parallel transport (with respect to P) in the fibres of £ along integral curves
of ¢;:
oyt E(x) = E(gr(x)). (3-1)

Recall now that the propagator e~/’? is the one-parameter family of operators, defined by solving the

first-order PDE in (z, x) for u € C®°(M; &)

(% +iP)(e—”Pu) —0. (3-2)
Then the solution u(t, x) = (e ""Pu)(t, x) € C®°(R x M; £) (we pull back £ to R x M) and we have
" u)(t, x) = u(t, x) = oy yu(p—rx). (3-3)

This follows by a computation in local coordinates. In fact, in a local coordinate system U > x over which
E |y E U x C™ is trivial and for small 7, we have

(8 + A(@) +i®(gx))ax,; = 0. (3-4)

We write A for the matrix of 1-forms associated to d4 = d 4 A and identify o, ; with a matrix. Then we
may compute, using the chain rule,

du(t,x) =—(AX () +iPx))otg_x tt(9_sx) — (X)g_x it (9_1X) — gy x Xut(9_1X)
= —i P(og_,x,u)(t, x) + X(ap_x ), X) — (Xy_x, JU(P—1X) — dg_x, s Xu(p—_1x)
= —iPu(t, x).

Here we used (3-4) in the first equality, the definition of P in the second and the chain rule in the last one.
We thus obtain (3-3) for small 7 and by iteration we obtain it for all . As a consequence, we obtain for
any f € C*(M) and u € C*(M; )

e (fuy=fope™ . (3-5)
Denote by P, ; the linearised Poincaré map for any time ¢ and point x € M:

Prer = (do, ()™ Qi (x) = Q(rx),
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where, for x € M and k € N, we define the subbundle of differential forms in the kernel of (x by
8216 =QF Nkerty.

We write —7 for the inverse transpose. Note Ly acts on sections of Qlé for any k. Also, we have that ¢
is a one-parameter family of maps acting on QF, for any k, such that we may write (¢;)* = e/~*. So we
obtain that, by the definition of ¢*, for any n a smooth k-form (see (3-3))

NP (n(x) = e Fn (g x). (3-6)

Here /\kPx, ¢ 1s the exterior product of maps acting on Qg. Given a closed orbit y with period T, we
consider a point xo € y and define

trog, (= troty, -
Since the maps ay,x,, 7 are conjugate for varying ¢, the trace is independent of y. Similarly, we define
det(Id — P,) := det(Id — Py, 7).
In what follows, for technical purposes we assume that we have a constant § € N such that
|det(Id — P,)| = (—1)” det(1d — P,). (3-7)

This happens in particular if E; and E, are orientable, where 8 = dim E;. This assumption may be
removed by using a suitable twist with an orientation bundle; see [Dyatlov and Guillarmou 2016; Dyatlov
and Zworski 2016; Giulietti et al. 2013] for details.

We will denote by y* a general primitive periodic orbit, and if y is an arbitrary periodic orbit, then l)’f
will denote the period of the primitive periodic orbit corresponding to y .

Theorem 3.1. Define for Res > 1

—sl, 1#
e Vlytray

FP(S) Z=)§m, (3'8)

where the sum is over all periodic trajectories. Then Fp(s) extends meromorphically to all s € C. The
poles of Fp(s) are precisely s € C, where is a Pollicott—Ruelle resonance of P. Moreover, the poles are
simple with residues equal to the Pollicott—Ruelle multiplicity mp (is).

Proof. We give only a sketch of the proof here, as it follows from [Dyatlov and Zworski 2016]. The sum
(3-8) converges by [loc. cit., Lemma 2.2] and as [jay, || < CeC for some C > 0. Observe that by (3-3), we
have that the Schwartz kernel K of the propagator e ~//?, as a distribution K (¢, y, x) € D'(R x M x M),
satisfies WF(K) C N*S, where S = {(¢, ¢;(x), x) : x € M, t € R} and N*S denotes the conormal bundle
of S. Therefore, Guillemin’s trace formula [loc. cit., Appendix B] applies to give, for ¢ > 0,

Btra, 8t —1,)

tre T
2 |det(ld—Py)

b _itP
"lese) =
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All that is left to do is to note that the remainder of the proof in [loc. cit., Section 4] is not sensitive to
changing ¢*, to a general propagator e ~''¥ for P as above. This completes the proof.

Alternatively, the whole statement follows from more general work [Dyatlov and Guillarmou 2016,
Theorem 4] on open systems. U

We now prove the meromorphic extension of the zeta function using the meromorphic continuation of
the trace above.

Proposition 3.2. The zeta function £4(s) is given by

tas) =[] det (1d — ar,pe™") (3-9)
y#
for large Re s and holomorphic in that region. Moreover, it has a meromorphic extension to the whole of C
and the poles and zeros of the extension are determined by Pollicott—Ruelle resonances of P = —itx dsg+®
acting on differential forms with values in £.

Proof. We follow the now standard procedure of writing log ¢4 as an alternating sum of traces of maps
between bundles of differential forms with values in a vector bundle; see [Dyatlov and Zworski 2016,
equation (2.5)], originally due to [Ruelle 1976]. We write for large Re s

log £a(s) = Z log det(Id — «,, s’ﬁ) = Z trlog(Id — ay#e—slﬁ)
o
tr(o’ #)e isty

#
=— Z =— Z tr(ay)e_‘Yij—:

tr /\ Py) tr(ay )e Sl 1 !
_ k+p+1 ¥ 14 v _ —1)kth -
E (=1 E ded—7,) 1, kEZO( D" gk (s). (3-10)

We used the formula log det(Id + A) = trlog(Id + A), which works for || A|| small enough, the fact that
there is a C > 0 such that ||, || < C e and [Dyatlov and Zworski 2016, Lemma 2.2]. The function g
is defined as

5 (AP (e, e 1

8k($) == detd—P,)| I,

Also, we used the identity
n—1

det(Id —Py) = Y (=D tr(APy),
k=0
which comes from linear algebra. Introduce then
(NP, ) tr(ey e 1

Fil) = =gi) = = —— iy (3-11)
y Y

This is reminiscent of (3-8). In fact, consider the vector bundle & := Q’é ® £. We extend the action of P
on £ to the action on &; by the Leibnitz rule and denote the associated first-order differential operator
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by Py. We have, for w € C®(M; Qf) and s € C*°(M; &),
Pis®@w)=(—iixdsa+P) QW) =PsQw+sQ (—iLxw). (3-12)
Then we observe that, by using (3-12),
B +iP)(e " s@e X w) =0. (3-13)

Introduce the parallel transport By , ; : Ex(x) — Ex(@sx) along the fibres of £¢. Then by (3-3), (3-6) and
(3-13)
Brori (s(x) @w(x)) = e " (s @ w) (g x)
= "Ps(px) ® e w(px) = 04 (5(6)) & NPy (w (). (3-14)

We claim that fork=0,1,...,n—1
Fp(s) = Fi(s).

To see this, observe that along a periodic orbit y of period I, by (3-14) we have
w(Br,) =tr(a, @ NP, = tr(e,) - tr(A'P)).

Here we write By, = B xg.i ) where x¢ is any point on y. The trace tr B ,, is independent of xo. This
proves the claim.
By Theorem 3.1 and an elementary argument, for each k there exists a holomorphic function i 4(s)
such that /
b _ —Fi(s) = g, ().
Sk, A

Thus by (3-10) we obtain the factorisation
n—1
a) =" ). (3-15)
k=0
By Theorem 3.1, s € C is a zero of ¢ 4(s) precisely when is is a Pollicott—Ruelle resonance of P; and
the multiplicity of the zero is equal to the Pollicott—Ruelle multiplicity at is. O

For convenience we restate the factorisation above for 3-manifolds.

Corollary 3.3. Consider a closed 3-manifold (M, g) with an Anosov flow X. Let £ be a vector bundle
over M equipped with a connection A and a potential ®. Then, assuming E; is orientable, we have the
factorisation, where &y 4 is entire for k =0, 1, 2,

Gl
) = )

Moreover, the order of zero at a point s of {4(s) is equal to

(3-16)

mp, (is) —mp,(is) —mp,(is), (3-17)
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where m p, (is) denotes the Pollicott—Ruelle resonance multiplicity at i's of the operators Py = —itx dpa+ &
acting on sections of the vector bundle £, = Q](;(M) Q& fork=0,1,2.

4. Resonant spaces
In this section we prove:

Theorem 4.1. Let (M, Q2) be a closed 3-manifold with volume form Q and let ¢, be a volume-preserving
Anosov flow. Let £ be a Hermitian vector bundle equipped with a unitary flat connection A. Then:

(1) dimResp, 4(0) =dimResy 4(0) =bo(M, &).
(2) If [w] #0, then dimRes; 4(0) =b1 (M, E) —bo(M, E).
3) If [w] =0, then

bi(M, & j X) #0,
dimResl’A(O)={ 1(M, &) l_fH( )7
bi(M, &) +bo(M, &) if H(X)=0.
Moreover, k-semisimplicity holds for k =0, 2.
In particular, as a consequence we obtain:

Proof of Theorem 1.2. This is a direct consequence of Theorem 4.1 applied to trivial bundle £ =M x C
and the trivial connection d4 =d. O

We break down the proof of Theorem 4.1 into the following subsections.

4A. Smooth invariant 1-forms. We first show that smooth resonant 1-forms are zero. The idea is that
an invariant 1-form decays along the stable direction in the future and in the unstable direction in the
past and so must vanish. This first subsection is quite general and holds in any dimension for any unitary
connection A and Hermitian matrix field ®. Recall that Q’é = QFNkerty.

Lemma 4.2. We have
Res| 4.9(0) NC®(M; Q) ® &) = {0}. (4-1)

Proof. We start by proving the following formula, which holds for any u € C®(M; Q¥ ® £):

gy (E5)) = 7" ati®y ((Nodg,)ER). (4-2)

Here &X € A§M is a k-vector and x is any point in M. The definitions of o, ; are given in (3-1) and (3-3).
Note firstly that it suffices to prove the claim above for # = s ® w, where w is a k-form and s is a
section of £, since we can write u as a sum of such terms near x and a term which is zero close to x. But
this follows from (3-14) and by the definition of the map Py ;.
If u € Resy 4.9(0) N C®(M; Q(l) ® &) we must have (—itxds + ®)u = 0 and txu = 0. This further
implies e/ x4ati®)y — y since (9; + txds +i®)u = 0. Then by (4-2) for k =1 and & € E(x)

| ()] = et i ()] = lug, o (d@iE)| Sld@i§lg Se™™,  1>0. (4-3)
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Here we used that o, ; is a unitary isomorphism* the Anosov property of X and that # > 0 in the last
inequality. By taking the limit # — 0o, we get u is zero in the direction of E;. Similarly, we get that u is
zero in the direction of E,, so u is zero. O

Remark 4.3. The above method shows that for an arbitrary smooth k-form u € Resy 4.4 (0), we have
ul NE, = 0 and u| NE, = 0, and more generally one could compare rates of contraction and expansion to
obtain vanishing on larger subspaces. Other components can be nonzero, as can be seen, e.g., below from
the computation for Resy 4(0) for A flat.

4B. Resg, 4(0) and Res; 4(0). Recall that w = ix2 and assume from now on that A is flat.

Lemma 4.4. We have

Resp 4(0) = {s € C¥(M; E) : dps =0} = HY(M, ), (4-4)
Resr A(0) ={sw:s € C®°(M;E), dys =0}. (4-5)

Moreover, k-semisimplicity holds for k =0, 2.

Proof. We distinguish the cases k = 0 or 2.

Case k =0: If s € Resg 4(0), then s € C*°(M; £) by Lemma 2.5. Since A is flat, df‘s = 0 and therefore
das €Res; A(0)NC®(M, Q(l) ® &) and by Lemma 4.2 we have d4s = 0. So in this case we get a bijection
with the parallel sections of £.

For semisimplicity, consider s € D, (M; £) with 1xdas =: v € Resp 4(0). Then v € C*(M; ) by
Lemma 2.5 and v is parallel by the pre\;tious paragraph. For u € C*°(M; &) parallel, since d4 is unitary,
we have

f(tdiS,u)gQ:/ X(s,u)e 2=0. (4-6)
M M

By picking u = v, we get v =0 and so s € Resp 4(0).

Case k = 2: For u € Resy 4(0), we may write u = sw for some distributional section s € D, (M; E).
Then txdau = 0 implies txdas =0, as LxQ2 = dw = 0. By the analysis of Resg 4(0), we immuediately
get that s is parallel.

For semisimplicity, assume (xdsu = v € Resp 4(0) with u € D, (M; Q% ® E). So u = sw for some
s € Dp.(M; €) and v = s’w with 5" smooth and parallel. Therefore s’ = tx das € Resp 4(0) and by
semisinulplicity in the k = 0 case, we obtain s’ = 0. U

Remark 4.5. In the proof of Lemma 4.4, the fact that J(0) = 1 in the case k = 0 also holds for A nonflat
and unitary. To see this, consider the spectral theoretic inequality, which holds for ¢ € C*°(M; &),

1P =2l llle = [Im((P = 1), @) 2| = [ Tm Al ]| (4-7)

4This can be shown as follows. Fix x € M and take two parallel sections u1 and u, of £ along the orbit {¢;x : t € R},
solving locally in some trivialisation (3; + A(9;) +i®P)uj =0 for j =1, 2. Then 9;{uy, uz)g(p,x) = (@ + A(dr))uy, uz) +
(ug, (0 + A ))up) = —i(Puq, up) +iuy, duy) =0, as d4 is unitary and @ is Hermitian. Therefore the parallel transport
preserves inner products and oy ¢ is unitary.
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Here we used that P = P* on L2. Therefore IR z2-r2 < 1/]ImA| for ImA > 0, which implies
JO)=1.

4C. Resy, 4(0). Recall that HX(M ; €) is the space of parallel sections (i.e., smooth sections s of £
such that das = 0). We start with a solvability result along the lines of [Dyatlov and Zworski 2017,
Proposition 3.3.].

Proposition 4.6. Assume X preserves a smooth volume form Q2 and A is unitary and flat. Let [ €
C>®(M; &) and assume fM(f, $)eQ2=0forall s € C*°(M; &) parallel. Then there exists u € Dy (M; E)
such that txdau = f.

Proof. Letus set P = —itx d4. By Lemma 4.4 we have the 0-semisimplicity and so J(0) = 1. Thus by

(2-4) near zero, where Il = I,

R(k):RH(A)—%.

Therefore, by applying P — A to this equation we obtain close to zero
(P—=XMRpy(A)+TIIp =1d. (4-8)

We introduce u := —i Ry (0) f, which lies in D’..(M; £) by the mapping properties of Ry (L) in (2-4).
Then, assuming I1p f = 0 we have by (4-8), evaluated at A =0,

f=f—Tof =PRy)f =UP)(—iRyg0)f) =txdau.
Now we prove that [Ty f = 0. By Lemmas 2.1 and 4.4, we get

ran(To) = ker(Plp:_(u.¢)) = Reso,a(0) = Hy(M; €.

Since X is volume-preserving and A is unitary, we have P* = P. Therefore ranIlj = Hg(M ;&)
analogously, where IT{, denotes the spectral projector of — P with respect to the flow —X. Now Lemma 2.3
gives IT§ = ITj; and so for any g € C*°(M; &)

(Mo f, &) 2 = (f. 15g) 2 = 0.
Thus Ip f = 0, which concludes the proof. U
We proceed with:

Lemma 4.7. There is a linear map T : Res; 4(0) — Hg (M; &) such that dyu = T (u)w, where u €
Res; 4(0). The map T satisfies the following:

(1) If [w] #0 or H(X) # 0, then T is trivial.
(2) If H(X) =0, then T is surjective.

Proof. Let u € Resy 4(0). Since A is flat, df‘ =0 and hence dqu € Resy 4(0) and so dqu = sw with s
parallel and smooth, by Lemma 4.4. If we set T (u) = s, this defines a linear map such that dyu = T (1) w.



RESONANT SPACES FOR VOLUME-PRESERVING ANOSOV FLOWS 815

Next note that given parallel sections p, g € Hg (M; £), the inner product (g, p)¢ is a constant function
on M. By Lemma 2.6 there is a smooth v such that dqgu = dav. We write

d(T (u), v)e = (T W), dav)e = | T ()|’

and observe that the left-hand side is exact. Hence we must have T = 0 if [w] # 0.
If [w] =0, we set w = dt and thus

da(u—Tw)t) =0.

Using Lemma 2.6, we can write u — T (u)t = n +da F, where n is a smooth 1-form with d4n =0 and
F € Dy.(M; ). Contracting with X and taking (pointwise) the inner product with 7' (u) we derive

—IT@Pt(X) = (X) + X(T ), F)e, (4-9)

where ¢ is the smooth, closed 1-form ¢ := (T (u«), ). But note that

/(p(X)Q=f cp/\dr=—/d(<p/\r)=0.
M M M

Hence integrating (4-9) yields
—IT@PHX) =0

and therefore T = 0 if H(X) # 0, thus showing item (1) in the lemma.
To show item (2) assume H(X) = 0 and let s be a parallel section. We shall show that there is
u € Resy 4(0) with T' (1) = s. Note that for any parallel section p

/M (5T(X), phe @ = (s, phe H(X) =0.

By Proposition 4.6 there is an F € D (M; £) such that txds F = st(X) and hence u := st —dsF €
Res; 4(0) and T (u) = s as desired. ]

Lemma 4.8. There is an injection
ker T — H}(M;E). (4-10)

The injection can be described as follows: Let u € ker T. Then there exists F € D), ;(M ; €) such that
u—dyF e C®(M; ER@QY) (4-11)
and also dpy(u —ds F) = 0. The injection map is given by
S:uekerT > [u—dsFle H\(M;E). (4-12)
An element [n] € H}x (M; &) is in the image of S if and only if

/ (P n(X))e @ =0
M

for any parallel section p.
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Proof. Let u € ker T, so that dqu = 0. By Lemma 2.6 there is F € D.(M; £) such that u —dsF €
C®(M; Q' ®&). We claim that the class [u — dsF] € HA(M; &) is inculependent of our choice of F.
Suppose there is a G such that u —d 4 G is smooth and d-closed. Then ds(F — G) € C*(M, Q'®E),so
by Lemma 2.6 (or ellipticity), F' — G is smooth and thus u —d4 F and u — d4 G belong to the same class.

For injectivity, we assume that u — d4 F is exact; so without loss of generality assume u = d4 F. Then
txu = 0 implies d4 F (X) =0, so by Lemma 4.4 we have F' smooth and parallel, so u = 0.

If [n] is in the image of S, then n = u — d4 F for some F € D;:* (M; &). Contracting with X, we see
that n(X) = —d4 F(X) and hence (p, n(X))e = —X{(p, F)e¢. Integurating gives

f (p n(X))e 2 = 0.
M

Conversely, if the last integral is zero for all p, Proposition 4.6 gives F € D'..(M; £) such that —n(X) =
daF(X)andu:=n+dsF € kerT and Su = [n]. O

And finally we can compute the rank of S in terms of whether X is null-homologous or not.
Lemma 4.9. We have:
(1) dim Sker T) =b1 (M, &) if [w] =0.
(2) dimS(kerT) =b1 (M, E) —bo(M, €) if [@w] #0.

Proof. If X is null-homologous, we write @ = dt. We use Lemma 4.8 to show that S is surjective.
Consider n € H/}\(M; &) and p € HS(M; £). Since the 1-form ¢ := (p, n) is closed we have

/go(X)Q:/ (p/\dt:—/d((p/\t):O
M M M
and item (1) follows.

Suppose now [w] # 0. We define a map W : H)‘ M, &) — (Hg (M, &))* by

W(nD(p) = /M(p, n(X))e 2.

By Lemma 4.8 the image of S coincides with the kernel of W. Thus, to prove item (2) it suffices to show
that W is surjective. By Poincaré duality there is a closed 1-form ¢ such that

/Mgo/\a);éo.

If p and g are parallel sections we compute

WgeD(p) =(p.q)e / P(X)Q=(p,q)e / A
and hence W is onto. " " O
We are now in shape to put the ingredients together and prove:
Proof of Theorem 4.1. The theorem follows directly after applying Lemmas 4.7 and 4.9. U

Putting together the material from this section and Section 3 we obtain:
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Proof of Corollary 1.8. The order of vanishing of ¢ (s) is equal to m(0) —my(0) —m,(0) by Corollary 3.3.
By Theorem 4.1 we have that m((0) = m,(0) = bo(M, £) and m(0) > dim Res; 4(0), which concludes
the proof. (|

Moreover, we obtain:

Proof of Corollary 1.6. This is a direct consequence of Corollary 1.8 applied to the case £ = M x C and
the trivial connection d4 =d. (|

5. Examples

In this section we consider a few noncontact examples of Anosov flows on the unit tangent bundle of a
surface. They illustrate the various cases in Theorem 1.2 and give specific deformations for Theorem 1.5.

SA. Structural equations. As a general reference for structural equations, see [Singer and Thorpe 1967,
Chapter 7]. For this section assume (X, g) is a compact oriented negatively curved surface. Let X be
the geodesic vector field on the unit sphere bundle SX. Denote by 7 : S¥ — X the footpoint projection.
Then, there are 1-forms «, 8 and i on S defined by, for § € T(’;’ U)S PR

A(x,v)(§) = (v, dr (),
Bx.w)(§) = (dm(§), iv)x, (5-1)
Ve () = (K(§), iv)x.
The 1-form « is called the contact form. From the defining equation one obtains tyx =0 and ty da =0,
and Q = —a Ada is a volume form. Also, here K : TT X — T X is the connection map, i.e., the projection

along the horizontal subbundle, and i is called the connection 1-form. The expression iv denotes the
vector v rotated by an angle of 7 (we fix an orientation). Explicitly,

Kow(® =220 e T, %, (52)

where (y(¢), Z(t)) is an arbitrary local curve in TX with the initial data (y(0), Z(0)) = (x, v) and
(y(0), Z 0)) =§&; d—Dt denotes the Levi-Civita derivative along the curve. One can then show that {«, 8, ¥}
form a coframe on S such that the following structural equations (see [Singer and Thorpe 1967, p. 188])
hold:

da =y AB,
dB = -y Aa, (5-3)
dyr=—Ka A B.

From this, we deduce the following properties
ixB=1x¥ =0, xdf=1v, xdy=—-Kp. (5-4)

Furthermore, there is a natural choice of metric on S¥, called the Sasaki metric. It is defined by the
splitting
T )SE =H(x,v) ®V(x, v) =ker(K(x, v)|sz) B ker(dm (x, v))
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into horizontal and vertical subspaces, respectively. Then the new metric is defined as

(&, m) == (K(&), K(m)) + (d7(§), dm (n)). (5-5)

It follows after some checking from relations (5-3) and the definitions that {«, 8, ¥} is an orthonormal
coframe for 7*S¥ with respect to the Sasaki metric. This also yields an orthonormal dual frame {X, H, V}.
We record the structural equations (5-3) for these vector fields:

[H,V]=X,
[V,X]=H, (5-6)
[X,H]=KV.

Here V is the generator of rotations in the vertical fibres.
We now use the Hodge star operator * with respect to the Sasaki metric on SX to write £% = — % Lx*
on 1-forms. We also have an extra structure given by

oa AN Ju = *u (5-7)

for u a section of Q(]). Here J : Q(]) — Q(l) is the (dual) almost-complex structure associated to the
symplectic form da on ker o« = span{V, H} and is given by

JuaB+usy) =usp—uyy, J*=-Id.
Therefore (E}})ku =0 for some k € N is equivalent to E’}J u = 0 and we obtain
Res_;zy o1(0) = J ! Res, .21 (0). (5-8)
In the next section we use this relation together with time changes to derive an explicit expression for

coresonant states at zero.

5B. Time-reversal and resonant spaces. Here we consider the action under pullback of the time-reversal
map R : §¥ — S, given by R(x, v) = (x, —v). We first collect the information on this action on the
orthonormal frames and coframes given in (5-3) and (5-6).

Proposition 5.1. We have R*a« = —a, R*f = —B and R*Y = . Similarly, we have R*X = —X,
R*H =—H and R*V = V.

Proof. We consider the coframe case first. Simply observe that
R ) (§) = (—v,dm dRE), = —a (1) (§)
s0 R*a = —«. Similarly
R*ﬁ(x,v)(g) = (—iv,dn dR§), = _,B(x,v)(g)

so R*B = —pB. Finally, recall that K(¢) = %(0), where c(t) = (y(t), Z(t)) is any curve in T X with
¢(0) = &. Therefore

K(RE) =~ L (0) = —K(©)
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since ¢(t) = (y(t), —Z(t)) is the curve adapted to —d RE. Now we easily see that R*yy = ¢ from the
definition.
The frame case follows from the coframe case, since contractions commute with pullbacks. (|

Now note that in any unit sphere bundle SN over an Anosov manifold (N, g;), the pullback by R
swaps the stable and unstable bundles. More precisely, we have
RES, =ElS =E,{=E.. R'E=Es.
The upper index denotes the vector field with respect to which we are taking the stable/unstable bundles.

This follows from the fact that R intertwines the flows of X and —X. Thus we also have

R*'EY =E}

u,s s,u’

* * *
The upshot is of course that R* is an isomorphism between resonant and coresonant spaces, i.e., the
ones with the wavefront set in £ and in E7.

Proposition 5.2. The pairing (2-9) between resonant and coresonant states is equivalent to the pairing
on

Res_iﬁxﬂé(O) X Res_iﬁx’%(O), (u,v) = / uno AR D. (5-9)
)

The pairing (5-9) is Hermitian (i.e., conjugate symmetric).

Proof. We first claim that

This is obtained from (5-8) and by observing that v € Res; Lx.Q) (0) if and only if R*v € Res_; Ly.Q) 0),
since R* commutes with ¢y and d, and as R* swaps E; and E by the discussion above. Thus by another
application of (5-7), we obtain (5-9). For the symmetry part, observe that R is orientation-preserving and

(u,v):/ quz/\R*E:—/ Runoanv=(v,u). O

SM SM

5C. Magnetic flows. These flows are determined by a smooth function A € C*°(X). The relevant vector

field is X := X + AV. A calculation using the structure equations shows
lx,Q=—da+raAB=—da+r7"0,

where o is the area form of g. If ¥ has negative Euler characteristic, then Ko generates H>(X) and thus
there is a constant ¢ and a 1-form y such that

ro =cKo +dy.
Therefore

x,Q=—da+rr"0c =d(—a —cy +7%y),

and hence X, € Xg. If X is Anosov and A is small, X, remains Anosov. In general these flows are not
contact; see [Dairbekov and Paternain 2005].
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5D. Explicit flows with [w] # 0. In this subsection, we construct explicit volume-preserving non-null-
homologous Anosov flows that are close to the geodesic flow on a compact oriented negatively curved
surface (X, g). Let & # 0 be a harmonic 1-form on X. At the level of S this can be seen in terms of
two equations

X@)+HV(®)=0,

H@®)—-XV(©)=0.

(5-11)

This first is zero divergence, the second is d6 = 0. To check these equations one can argue as follows.
We will use that dm(y ) (X (x, v)) = v and dn(, ) (H (x, v)) = iv. Given 6, we consider 7*6 and note
(using the standard formula for d applied to 7 *0)

d(n*0)(X,H)=X7"0(H) — H(r*0(X)) —7*0([X, H]).

By the structural equations, the term [X, H] is purely vertical; hence it is killed by 7*6. Now one can
check that 7*0(H)(x, v) =0(iv) = V(0) = —(x60)(v) and 7*0(X) = O(v). Finally since

d(n*0)(X,H)=n"d0(X, H) =d0(dn(X),dn(H)) =d6(v,iv),

one obtains that d6 = 0 if and only if H(0) — XV () = 0. The form 6 has zero divergence if and only if
x0 is closed so the first equation also follows.

We consider the vector field Y := 60X 4 V (6) H. This vector field is dual to the 1-form on SX given by
70 = 0a + V(0)B. This form is closed as well as ¢ := —V (0)a + 68 which is the pullback 7*(x6).
We can easily check that ¢(Y) =0 and 7*6(Y) = 01>+ [V (9)1°.

The flows we wish to consider are of the form X, = X 4 €Y, where X is the Anosov geodesic vector
field and ¢ is small so that it remains Anosov. Using the above we observe:

o X, preserves the volume form 2 = a A 8 A ¥. This is thanks to the fact that 6 has zero divergence.

e [tx, 2] # 0 for & # 0. This is because 7*6(Y) = [0]% 4+ [V (8)]* = 0, and hence if 6 is not trivial,

f n*Q(XS)Q:s;/ T*0(Y) Q # 0. (5-12)
AP AP

What we will prove in the coming sections is that X, has a splitting resonance for 1-forms near zero,
and the semisimplicity does not break down.

6. Perturbations

In this section we study the behaviour of the Pollicott—Ruelle multiplicities under small deformations and
start with the proof of Theorem 1.4.

6A. Uniform anisotropic Sobolev spaces. We start by laying out the necessary tools to study perturba-
tions of Anosov flows and associated anisotropic Sobolev spaces. We will follow the recent approach
of [Guedes Bonthonneau 2020], where a uniform weight function that works in a neighbourhood of the
initial vector field is constructed. For brevity, we will only outline the necessary details. We refer the
reader to [Faure and Sjostrand 2011] for more details in the case of a fixed vector field, and to [Dang
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et al. 2020] for an alternative construction of a weight function that works for perturbed vector fields.
The use of anisotropic spaces in hyperbolic dynamics has its origins in the works of many authors; see
[Baladi 2005; Baladi and Tsujii 2007; Blank et al. 2002; Butterley and Liverani 2007; Liverani 2004;
Gouézel and Liverani 2006].

Let M be compact and X an Anosov vector field. By [Guedes Bonthonneau 2020, Section 2], there
exists a 0-homogeneous weight function m € C°(T*M \ 0) that applies to all flows with generators
IX — Xollct < n, for some 1 > 0, in a sense to be explained. It satisfies, for all such X,

m=1 near E}, m=—1 near E}, X.m <0.

Here X, is the symplectic lift of X to T*M. We set G(x, &) ~ m(x, &) log(1 + |&]) for all |&| large. The
anisotropic Sobolev spaces are defined as, for r € R,

Hp.rc = Opy, (e "O)L*(M). (6-1)

Here h > 0 and Op,, denotes a semiclassical quantisation on M; we write Op := Op;. We will write
Hrg = Op(e_’G)LZ(M ). Frequently we consider a smooth vector bundle £ over M and in that case we
consider the corresponding spaces Hy, . = Op,, (e " ¢*14e) L2(M; £). We will write

Hh,rG+kloge) = Opy, (e " HN(M; &).

We will use the special notation H, i :=H1,rG+klog(g) = Op(e‘rG)Hk(M; £). We remark that the spaces
Hp rc for varying h are all the same as sets, equipped with a family of distinct, but equivalent norms.

Let X, be a smooth family of Anosov vector fields on M. Consider also a smooth family of differential
operators P, with principal symbol o (X.) x Ide. We will consider any Q € W~*°(M; £) compactly
microsupported, self-adjoint operator, elliptic in the neighbourhood of the zero section in 7* M. Introduce
now the spaces

Dy, ={ue€Mn,G: Peu € Hyrc)
and equip them with the norm ||u||%]g — ||u||%_[h o T IlhPeu II%LIHG. Completely analogously with H, g,

we introduce D;;, and also Dy for an integer k.
Then [Guedes Bonthonneau 2020, Lemma 9] states:

Lemma 6.1. There exists an gy > 0 such that the following holds. Given any so > 0, k € Z and
r > r(so) + |k|, there is hy > O such that for 0 < h < hy, Ims > —sq, |Res| < h™'/2 and |¢| < &,

Pe—h7'Q —=5:D} G irioge) = HirG+klogle)
is invertible and the inverse is bounded as O(1) independently of .

Here r(s) is a nonincreasing function of Im s, so that r(s) > rp, (Ims) for all ¢ € (—&o, €9). Also, here
rp,(So) represents a certain threshold (see [Guedes Bonthonneau 2020, p. 4]) depending on P, such that
for r bigger than this quantity the resolvent (P, — h'o—s)1: Hp.rG — Hn.rc 1s holomorphic and
(P, —s)"": H,.c > H,c admits a meromorphic extension to Ims > —sp and |Re s| < h=172,
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6B. Pollicott—Ruelle multiplicities are locally constant. In this section we prove, using the construction
of anisotropic Sobolev spaces in the previous section, that in some fixed bounded region, the sums of
multiplicities of resonances are locally constant. Observe that under the assumptions in Lemma 6.1, we
have the factorisation property

(Pe—s)(Pe—h7'Q—s) ' =1d+h'QP. —h7'Q—s)"". (6-2)
This holds for s in 5, :={s : Ims > —sp, |Res| < h=1/2}. We introduce the notation
D(e,s):=h"'Q(P,—h~'Q—s5)"".
Since Q is smoothing, we have that D (e, s) is of trace class, and, moreover, since for any ¢, &’
D(e,s) = D(e',5) =h™' Q(Py —h™'Q =)' (Ps = P)(P. —h™' Q=) 7",

we have that € — D(e, s) is continuous with values in holomorphic maps from 2 5,+1 to L(H,G, H,G)-
Here L(A, B) denotes the space of bounded operators from A to B, with the operator norm.

Then P; —s : D}, — H,¢ are an analytic family of Fredholm operators for Ims > —s¢. Consider now
a resonance s; of P = Py, and a simple closed curve y around s; containing no resonances on itself or in
its interior except s1, such that y C 2, 4,. The fact that D(g, s) is continuous allows us to say that for ¢
small, a neighbourhood of y still contains no resonances of P.. Introduce the family of projectors

1 -1
I, == — — P, .
e =5 f; (s —P:) " ds
Our first aim is to prove:

Lemma 6.2. The ranks of I, are locally constant; i.e., there is an &1 > 0 such that rank I'l; is constant
for e € (—eq, €1).

Proof. We first claim that, for ¢ small enough,

% tr% 3;(Id+ D(e, 5))~'(d + D(e, 5)) ds = — rank I1,. (6-3)
Y

The left-hand side is well-defined by the generalised argument principle [Dyatlov and Zworski 2019,
Theorem C.11], since the contour integral is a finite-rank operator. To prove the equality in (6-3), we
apply the residue theorem for meromorphic families of operators. Use (6-2) to obtain the left-hand side
of (6-3) is equal to

1 -1 -1 -2 -1 -1
%trfl((s_Pa) +(Pe—h"Q—5)(P:—5) )(Ps_s)(Pa_h Q—s) ' ds

— 1 trf(Ps —h'o—s)"lds+ 1 tryg(Pg —h Q=) (Po—s) " (P.—h7'Q —s5)" ! ds.
2mi Y 2mi Y

The first integrand in the second line above vanishes, since (P, — h 1o —s)"lis holomorphic; the second
one is equal to — tr [1, = — rank I'1,, by the cyclicity of traces. This shows (6-3).
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Now recall by Jacobi’s formula that we have

1 trf 8,(Id+ D(e. s)) " (d + D(e. 5)) ds = ——— f tr((Id + D(e. 5)) "' 9, D(e. s)) ds
2mi Y 2mi Y

1 oy det(Id+ D(e, 5))

2ri J, det(Id+ D(e, 5))

Here we used integration by parts, and that d; D (e, s) is a smoothing operator to commute trace and
integration. In particular, the continuity of € — D(e, s) as above and so that of the Fredholm determinant
e > det(Id + D(e, s)) and its derivative ¢ +— 9 det(Id + D(e, s)) imply that for ¢ small enough the
integrand changes by a small margin, and since the integral is integer-valued, we obtain the claim.” [J

Note that a priori projections I1, are continuous only as functions of ¢ with values in L(H,¢.1, HrG)
and L(H,q, Hrg.—1) if the resolvents (P, — s)~ ! are. The maps I, : ran [Ty — ran I, are isomorphisms
for small ¢ by Lemma 6.2. We will show & — I1. € L(H,g, H,g) is continuous; we follow the argument in
[Chaubet and Dang 2019, Appendix A]. Pick a basis ¢/ € Hrc1, J=1,..., k=rankIlp, of ran 1y, and
define gog :=I1,¢/; then ¢ — <pg € H, ¢ is continuous. Define also gﬁg =TIyI1,¢’ and note & @! e Mg
is also continuous. Let vg be the dual basis in ran ITj of (;1{ ; then & — vg € (ran I1p)’ is continuous. Here
the prime denotes the dual. Finally, let lg = vsj o I1p o I1,, continuous as a map € +— lg € H;G. Then we
may write

k
H€=Z¢g®1g.
j=1

By construction, this map is continuous H,g — H,g for r > r(sg) + 1.
One may further bootstrap this argument as in [Chaubet and Dang 2019] to reobtain [Guedes Bonthon-
neau 2020, Lemma 10]:

Lemma 6.3. Forr > r(so) +k + 1 and & small enough, & — T, is a C* family of bounded operators
on H,g.

We are now in good shape to prove some of the basic perturbation statements from the Introduction.

Proof of Theorem 1.4(1) and (2). If Xy € Xg has nonzero helicity, then for & small enough, H(X.) # 0
and we may assume by Lemma 6.2 that m x, (0) < m; x,(0) = b1(M). Thus by Theorem 1.2, we have
dim Res_iﬁxs’% (0) =b1 (M) =m, x,(0), so that X, is 1-semisimple, which proves (1). The proof of (2)
is completely analogous to the proof above and we omit it. U

7. Proof of Theorem 1.5

In this section we discuss what happens with semisimplicity if we perturb an arbitrary contact Anosov
flow. For this purpose, consider M, a closed orientable 3-manifold, and a contact Anosov flow X on M.
This implies there is a contact 1-form « such that Q = —a Ada is a volume form, «(X) =1 and tx do =0.

5Alternatively, one may apply the generalised Rouché’s theorem [Dyatlov and Zworski 2019, Theorem C.12] to conclude that
the sums of null multiplicities (in the sense of Gohberg—Sigal theory; see [Dyatlov and Zworski 2019, Appendix C]) over the
resonances in the interior of y of operators Id + D (e, s) for small enough ¢ are constant. By (6-3), we know that these sums of
null multiplicities are equal to rank I'l¢, which proves the claim.
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We consider a frame {X;, X»} of kera (such a frame exists since M is parallelizable) such that
da(X1, Xp) = —1. The dual coframe {«, a1, @z} to {X, X, X,} satisfies

dao=ayAa;, Q=—aAda=oAa; Aa).

Next, consider a Riemannian metric g on M making {X, X, X} an orthonormal frame. Observe that
Ql=Ra® Q(l) and for any u = ujay +uan € D'(M, Q(l)), we have for the action of the Hodge star * of g

*uU=ujr AN +ura Aoig =a A (U] — ujan). (7-1)
We introduce the complex structure J : ) — € given by
Ju = uroy —ujoy,
so that *u = o A Ju. In particular, we have L% u = — * Lx *u = 0 if and only if
LxJu=0. (7-2)

Let Y € Xq. Since Y preserves Q2 we may consider the winding cycle map associated to Y:
Wy:H'(M)—C, Wy(9):= f oY) Q.
M

Clearly Y is null-homologous if and only if Wy = 0. The next lemma characterises the property of Y
being null-homologous in terms of a distinguished resonant state of X. Let IT denote the spectral projector
at zero of —i Ly acting on Q' (see (2-5)). Set

u:=IlLya e ReS_i[,X’Ql(O).

Lemma 7.1. We have txu = 0. Let 6 be a (real) smooth closed 1-form and let r € D, «(M) be such that
vi= (/)"0 +dy) €Res_; . o1(0). Then

(u, v)p2 = —Wy(0).
In particular, Y is null-homologous if and only if u = 0.
Proof. We may write for some a, aj, a; € C*°(M)
Y=aX+a X +a X,
and a calculation shows

Lya = (tyd +diy)a = aply, do +ariyx, do +da. (7-3)
Therefore, we have

ixu =IlixLya =T1Xa = XIla=0. (7-4)
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In the previous equation we used that I1a is constant by Theorem 1.2 and that [T commutes with X. Next
we compute, using that xv = o A (0 +d V),

(Lya, v)Lz=/ (artx,da+asx, doa+da) Na A (O +dy)
M
=—/ (artx, +axtx,) @ +dy) Q
M

:—/ Ly(@—i—dw)Q:—/ 1y Q= —-Wy(0). (7-5)
M

M

Here we used the graded commutation rule for contractions, integration by parts and the following facts:
0 +dvy is closed, tx (0 +dy) =0 and Y is volume-preserving. By Lemma 2.3 it follows that [T*v = v.
By this and the computation in (7-5), it follows that

(U, v)2 = (IlLya, v);2 = (Lya, V)2 = —Wy(0)

as desired. Clearly, the relation (u, v) = —Wy(0) implies that if u = 0, then Y is null-homologous. If Y
is null-homologous, then (u, v) = 0 for all v. Since 1-semisimplicity holds for X, Lemma 2.4 implies
u = 0 and the lemma is proved. O

The next lemma provides important information about the pairing between resonant and coresonant
states in the contact case.

Lemma 7.2. Let 0 be a smooth closed 1-form on M. Let ¢ € D/Eif (M) and yr € D;E;F (M) be such that

1 (7_6)
v=(J)"(O+dy) e RCS_I-L;’Q(I)(O).

Then
Re(u, v);2 =Re/ O+dp) AaA@+dP) <0
M

with equality if and only if 6 is exact, or in other words u = v = 0.
Proof. By (7-6) we have txu =0 and txv =0, so X¢ = X1y = —6(X). We have the chain of equalities
Re(u, v);2 = —/ Re(0 A D) Aa—Re/ pda AO
M M
= Ref 90(X) Q2= —Relp, X¢);2 = Im(—i X, @) ;2. (7-7)
M
Here we used X¢ = —0(X), Re(9 AH) = 0 and integration by parts.

Assume now Re(u, v);2 > 0. By the computation in (7-7), Lemma 2.5 implies ¢ € C*°(M), so
ueC®M,; Q(l)) and Lemma 4.2 implies # = 0 and 6 exact, so also v = 0. O
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7A. Constructing the splitting resonance. Let Y € X such that Y is not null-homologous and consider
a perturbation of X
X, =X+¢Y.

Consider a simple closed curve y around zero, so that no resonances of —iLy, on Q' (M) cross the
curve y for small enough values of the parameter ¢. Consider the family of projectors given by

Mo =Ty, = 50 7{@ +iLy) " dr. (7-8)
14

By Lemma 6.3, the 1, are C *in & in suitable topologies. More precisely, we have ¢ +— I1, € L(H,G, H,c)
is Ck forr > r(0) +k+1 (ie., r large enough).
We will construct the splitting resonant state “by hand”. For that purpose, consider

e = EXE Mo =¢ell Lya.

Here we used that 1, commutes with ty, and d, which follows since the integral defining I1, does so.
Our candidate for the splitting resonance is

ug :=I.Lya.
Firstly, we note that (x, u, = 0, which follows from
tx.te = Lx Il (1+ea(Y)) =0.

This is because

1
Hef = oo /MfQ

is constant, which follows from Theorem 1.2. We also understand that I, acts on forms of any degree,
and is given by the expression (7-8). This implies directly that ¢y, u, = 0 for ¢ # 0, and then by continuity
we have tx,u, = 0 for all .

Fix now ¢ # 0. Then either exactly one resonance “splits” by Lemma 6.2 and Theorem 1.2, so we must
have Lx t. = pet, for some p, 7 0 and thus Lx, u, = pcu,, or a resonant state does not split, in which
case Lx, 1. =0 and so Lx,u, =0. Also, we clearly have Lxuo = 0. Therefore, there exists a function A,
such that for each small enough ¢

Lx e = Agllg. (7-9)
Hence we may write
o e )
(ué" u*>

where u* is a coresonant 1-form at zero such that (ug, u*) % 0. Such a 1-form exists by Lemma 2.4.
Therefore, for ¢ small enough and by continuity the above expression makes sense, so we conclude that
Ae is in C? for ¢ in an interval around zero. Note that Ay = 0 and that by Lemma 7.1, ug # 0 since Y is
not null-homologous.
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7B. Proving that L. # 0. We dedicate this subsection to proving that A, # 0 for ¢ # 0 and we achieve
this by looking at the second-order derivatives of A, in . Recall we have a C? family of resonant 1-forms
u, = I Lya corresponding to resonances —i A, for the flow X 4+ ¢Y such that
(X+tey dug = Agle, (7-10)
txteytte =0.
We will denote ug by u and 1y by A, and we apply the same principle to the derivatives of A and u at zero.
We want to linearise (7-10) by taking derivatives in ¢.

First linearisation of (7-10): We take the first derivative of (7-10) to get

ty dug +txyey dite = hellg + Aglig,

. (7-11)
lyue +ixyeyite =0.
Evaluating (7-11) at € = 0, we get the system
vy du+ iy dit = hu,
(7-12)

tyu+txu =0.

This further simplifies, since u is a resonant state at zero, so by Lemma 4.7 we have du = 0. By (7-1)
we may write xu™ = a A w, where w = Ju™* and we have Lxw = 0 and txw = 0. Much as before, since
w € Dy. (M; Q(l)) we have dw = 0. Therefore, by taking the inner product with u* in (7-12), we get

A(u,u*):(txdit,u*)zf ixdi Ao Aw

M

=—f dit/\wz—/ undw=0.
M M

Second linearisation of (7-10): By taking the & derivative of (7-11) we get

This implies 4 = 0.

2y ditg + txyey dile = Xaua + 2)'"8”.[8 + Aglig,

. . (7-13)
2ytle + txqeyiie = 0.
We evaluate (7-13) at ¢ = 0 to get
2y dii + 1x dii = hu,
. . (7-14)
2tyu +txiu = 0.
Consider the same coresonant state u™* as above. Pairing (7-14) with u* yields
X(u,u*>=2/ LyduAaAw+/ ixdii Aot Aw. (7-15)
M M

Now the second integral above is equal to — || y dii Aw =0, by integration by parts.
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The first integral is a bit trickier and it is equal to
/ tydu ANa Aw =/ (artx, +autx,)du Ao Aw
M M

=/ (altxl—i-aztxz)wdit/\a:/ w((Y)du Ao. (7-16)
M M

Here we used that txy du = 0 by the first linearisation analysis and txw = 0. Note that tx du = 0 also
implies that du A « is X-invariant, so the integral | y w(Y) du Ao may be interpreted as “some winding
cycle”.

Observe that WF(dit) C WF(i) C E;;. This follows by differentiating IT, at zero to deduce

My = ﬁ ?ﬁ (o +ilx) N (=iLy)(A+iLlx) " dr=i(Ry(0)Ly Il + oLy Ry (0)).
Y

At this point, we recall that (—iLx — A~ = Ry (L) — Iy/A. Since Iy and Ry (0) extend to maps
Dy (M; Q') — Djp. (M; Q1), we have that i = [oLyw € Dy (M; Q).
By Theorem 1.2 it follows that dit A @ = ¢S2 for some constant c. In fact, we have

cvol(M):/ du/\a:/ dAda:—/ u(X) Q2
M M M

(7-17)
= / u(¥) Q= Wy u).
M

In these lines we used the second equation of (7-12) and txu = 0. Combining (7-17), (7-15) and (7-16)
we have
. 2Wy (u)Wy (w)

AMu, u )=2c/1;[w(Y)§2=2ch(w) = W' (7-18)

Next we choose a special u*. Namely, if we write u = 0 + dg for some (real) smooth closed 1-form 6
and ¢ € D, (M), then we choose u* = v as in Lemma 7.2. This ensures that {(u, u*) < 0 and, moreover,
by Lemma 7.1 we have
(u, u*y = —-Wy (@) <0.
Hence (7-18) simplifies to
A= M <0.
vol(M)
By the symmetry of the Pollicott—Ruelle resonance spectrum, we have that X is real, since otherwise we
would contradict Lemma 6.2. We conclude by Taylor’s theorem

o W e
Ae =€ ( —Vol(M) +0(8)).

In particular A, is negative (so nonzero) for sufficiently small & # 0. Therefore, the resonance —iA, of
—iLy, splits to the upper half-plane and 0 is a strict local maximum for A,.. This completes the proof of
Theorem 1.5.

We conclude this section with:



RESONANT SPACES FOR VOLUME-PRESERVING ANOSOV FLOWS 829

Proof of the first part of Corollary 1.7. By Corollary 3.3, the order of vanishing of the Ruelle zeta
function at zero is equal to m(0) — m(0) — m>(0). By Theorem 1.2, we know m,(0) = m(0) = 1 and
by Theorem 1.5 and Lemma 6.2 we have m(0) = b1 (M) — 1 for small enough nonzero ¢. O

8. Time changes

In this section we consider the transformation X — X = fX, where X is an Anosov vector field and
f > 0 a positive smooth function and call such a transformation a time change. By [de la Llave et al.
1986, Lemma 2.1], we have that X is also Anosov and, moreover, its stable and unstable bundles E* and
E" are given by

E'={Z+6(Z)X:Z € E*}. (8-1)

Here the continuous 1-form 6 is given by solving Lx(f~'6) = f~2df. Therefore, we notice that
Ej; = (ES @® R%)* =E; and E;‘ = (E“ &) [R)?)* = E7, where we used (8-1). This means that the resonant
states associated to the flow fX lie in suitable spaces D’., which will be very convenient.

We begin by recasting Lemma 2.4 to the case of 1-forms and consider a time change.

Proposition 8.1. Let X be an Anosov flow on a manifold M and let f > O be a positive smooth function.
Then L yx acting on Q(l) is semisimple at zero if and only if the pairing

u
Res” (0 xRes" | [(0)>C, ,v)>(—,v (8-2)

—I[,X,QO _I[’X’QO 2 el

L2(M: Q)

is nondegenerate.
Proof. Let us determine the appropriate resonant spaces of £ x and E*} x at zero. Note first that ker £ rx =
ker Ly on D, ;(M ; Q(l)), since time changes preserve the E set. Next, we compute ﬁ? x =Lx(f)
on 52(1), with respect to a fixed smooth inner product (e.g., given by a metric). Therefore, we have

1) _ 1l
Res_ic?x’%(O) =7 Res_w;’% (0).
Thus the nondegeneracy of the pairing between resonances and coresonances is equivalent to the nonde-
generacy of (8-2) and applying Lemma 2.4 finishes the proof. O

8A. Time changes of the geodesic flow on a hyperbolic surface. The aim of this subsection is to ex-
plicitly specify the equations for 1-forms in the kernel of Lx on the unit sphere bundle M = SX of a
closed hyperbolic surface . We start by considering the case of general variable curvature and use the
orthonormal frame {«, B, ¥} constructed in Section 5A.

Letu € D'(M; Q(l)). Then u = bB + f for some b, f € D'(M) and we have

du=an(XO) - fK)+BAYH)=VD)+any b+ X(f)).

Therefore, du = 0 implies
X(b) =K,

X(f)=—b, (8-3)
H(f)=V D).
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The first two equations come from tx du = 0. The third is an additional one, which we know holds if
ueDy.(M; Q(l)) and ty du = 0; it can be explained as an additional horocyclic invariance (see [Guillarmou
and Faure 2018] and below).

Now we specialise to K = —1, i.e., the case of hyperbolic surfaces. Then in the {8, ¥} coframe
spanning €2}, the operator £x may be written as

01
Ex—XXId'i‘(l 0)

and the first two equations in (8-3) then read

(X —-Dk—-f)=0,
(X+1D(b+ f)=0.
Thus f = —b as there are no resonances with positive imaginary part, since X is volume-preserving.® The

third equation in (8-3) now gives U_b =0, where U_ = H + V is the horocyclic vector field spanning E,,.
Now we may also write, where the adjoint is with respect to the Sasaki metric on SX,

01
E}}z—XxId—i—(l 0).

Therefore L3 v =0, where v =0'B + f' for some V', ' € D%j (M), is the same as

=X+ + ) =0,

(=X -1 - f)=0.
Since we are looking at the vector field —X, no resonance with positive imaginary part gives f' = —b’
and so (X + 1)’ = 0. The third equation in (8-3) then reads U, b" = 0, where U, = H — V spans the E;

bundle.
Therefore, we have

Res'), (0)={b(B—v)eD'(M): (X —1)b=0, (H+V)b=0},
Res'!) .. (0) = {p(B—v) € D'(M): (X + )b =0, (H—V)b=0}.

ok
—iLly

(8-4)

Note that we may drop the wavefront set conditions, since they follow from the equations being satisfied.
We remark that since we know —i Ly at 0 is semisimple by [Dyatlov and Zworski 2017], then so is —i X
at —i by the correspondence (8-4) and dim Res_; x (—i) = b;(M). Alternatively, we may use [Guillarmou
et al. 2018, Theorem 1] to deduce semisimplicity even at the special point —i for hyperbolic surfaces.

Proposition 8.2. Let f € C*°(M) and f > 0. Semisimplicity for —i L yx at zero acting on Q(l) is equivalent
to the nondegeneracy of the pairing

b
Res")y (—i) x Res'Y (—i), (b1, by) — <—1, by (8-5)

f >L2(M).

—itP — <pit is an isometric isomorphism on L2(M) and so the integral defining the

This can be seen from (2-2), since e
resolvent converges for ImA > 0.
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Proof. The proof is based on the correspondence (8-4) and Proposition 8.1. Then for b;(8 — ) €
Res(_li)ﬁfx (0) and (b2/f)(B — ) € Res'” _(0), we have

—iL
b b
<b1(ﬁ—w>, —2> =2<b1, —2> .
FB=v) 201 Il
This proves that the pairing (8-5) is equivalent to the pairing (8-2), which finishes the proof. O

In the next sections, we would like to find out more about the pairing (8-5), similar to [Dyatlov et al.
2015; Guillarmou et al. 2018], where a pairing formula for generic resonances is proved.

Remark 8.3. Using the decomposition u = ax + b + f, by (8-3) it may be seen that (Lx +s)u =0
is equivalent to (X +14s)(b+ f) =0, (X —14s)(b— f) =0 and (X 4 s)a = 0. This enables us to
determine the resonance spectrum of Lx on 1-forms from the resonance spectrum of X on functions,
using the works of [Dyatlov et al. 2015; Guillarmou et al. 2018]. In particular, for Re s > —1 we obtain
b+ f =0, which suffices to determine the spectrum on the left in Figure 1. The small and large eigenvalues
in this figure are in the sense of [Ballmann et al. 2016].

8B. Reduction to distributions on the boundary. We follow the notation from [Dyatlov et al. 2015,
Section 3]. We consider the hyperboloid model

|]-|]2={x=(x0,x1,xz)=(x0,x/)e[R{3:(x,x)M:xg—xlz—xgzl, xg > 0}

of hyperbolic geometry, equipped with the Riemannian metric —(-, - )4, restricted to TH?. Here
(-, -)m is called the Lorentzian metric. We also consider the action the isometry group G = PSO(1, 2)
of H?, consisting of matrices preserving the Lorentzian metric, orientation and the sign of xo. This
action extends to an action on the unit sphere bundle SH?, since G consists of isometries and in fact
Goyry-(1,0,0,0,1,0) € SH? is a diffeomorphism. We also have explicitly

SH? = {(x,&) e H? 1 x, £ € R?, (£, &) =—1, (x,&) 0 =0} (8-6)

We will write ¢, for the geodesic flow on SH? and X for the geodesic vector field. In the identification
(8-6), we may write
X =& 0y+x 0.

Therefore the geodesic flow on SH? may be explicitly written as
¢ (x, &) = (xcosht + & sinht, x sinht 4 £ cosh t). (8-7)

We may compactify H? to the closed unit ball B> by embedding it with the map ¥ (x) = x"/(xo + 1)
and we call S! bounding B? the boundary at infinity. Note that to a point v € S! we may associate a ray
{(s, sv) : s > 0}, which is asymptotic to the hyperboloid ray {(+~/1 +s2, sv) : s > 0}. The action of G
extends to an action on the boundary at infinity S! as follows. Let ¥ € G and v € S'. Then the matrix
action on R?

y-(L,v)=N,(v)(1, Ly (v)) (8-8)

defines an action of y € G on S! via L, . It also defines the multiplicative map N,, : St — Ry.



832 MIHAJLO CEKIC AND GABRIEL P. PATERNAIN

Denote by 7 : SH? — H? the footpoint projection. We will consider the mappings
Bi(x,8):SH* > §', Bi(x, &)= Aim 7 (g (x, §)). (8-9)
—> 00

The limit in (8-9) is interpreted as the point of intersection of the geodesic starting at x and with tangent
vector £ with the boundary at infinity. We introduce also

oy : SH> — Ry, &L(x,&):=x0x& >0. (8-10)
In fact, then we can write for any (x, §) € SH?
xt&=Ps(x, 5, Br(x,§)). (8-11)

The maps B and ®_ have nice interactions with the geodesic vector field X and the horocyclic vector
fields Uy, defined in Section 8A. By this we mean that

dB1-X=0, Ui+B1=0. (8-12)

The first equation holds since B is constant along X and the second one since By is constant along
horospheres. We also have

Xby=4dy, UrdL=0. (8-13)

Here, the first equation follows from & (¢, (x, £)) = e™ . (x, £), which is true by (8-7). The second
one also follows from a computation. Finally, since (x + &, x — &)y = 2 and by (8-11), for (x, &) € SH?,
we have

Py (x,6)P_(x,5)(1 - By(x,8)-B_(x,§)) =2. (8-14)
The maps &4 and By are G-equivariant in the following sense. We have
Bi(y - (x,8)) =Ly(B+(x,8)), Px(y-(x,8))=Ny(B£(x,§))Px(x, ). (8-15)
Now the Jacobian of the map L, : § ' — S! may be computed explicitly and is given by
(dLy(v) - £1.dLy (V) - Q)2 = Ny () (01, Q)2 G152 € TS (8-16)

Consider ¥ =I"\H? a compact hyperbolic surface, where I' C PSO(1, 2) is a discrete subgroup. Then we
may identify the unit sphere bundle as S¥ = I"\ SH?. We introduce the space of boundary distributions as

Bd’(\) = {w e D'(SY) | Lyw(v) = N, (nw(v), y €T, ve S'). (8-17)
The generator X of the geodesic flow descends to SX and we define the first band resonant states by
Resy (M) = {u € D (ST) | (X +1)u =0, U_u=0}.
We similarly introduce the first band coresonant states via (see Section 2C)

Resy. (h) = {u € D (ST) | (X —Mu =0, Uyu =0}.
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Then we have the correspondence, valid for all A € C proved in [Dyatlov et al. 2015, Lemma 5.6], which
we prove here for completeness. Note that by ®% for A € C we simply mean the exponentiation of the
function @1 > 0 by the exponent A.

Lemma 8.4. Let iy : SH?> — SX be the natural projection. Then

7 Res (1) = ®* B* Bd°(A). (8-18)
Similarly we have, for the space of coresonant states,

7 Resy. (M) = &4 BX BA(R). (8-19)
We also have m =Bd°).

Proof. Let w € Bdo(k) and put v = ®* B*w € D'(SH?) (the pullback of distributions under submersions
is well-defined; see [Grigis and Sjostrand 1994, Corollary 7.9]). We use now the invariance properties @1
and By given by (8-15) to prove v is I'-invariant. For y € I' we have

y*v=(y*® )y B w=B*(N,)"®" B* Liw = ®" B*w =v.

Thus v is I'-invariant and descends to D' (SM).

Now using (8-12) and (8-13), we obtain directly that (X 4+ A)v = 0 and U_v = 0. This proves
o* B* Bd°(\) C b Res())( (1) (the wavefront set condition on v follows from [Grigis and Sjostrand
1994, Chapter 7]). The other direction follows by reversing the steps above and noting that a function
(distribution) invariant by X and U_ is immediately a pullback by B_. The statement about coresonant
states follows similarly. 0

We now introduce the set of coordinates (v_, v, s) € (S' x S1) A xR on SH?, yielding a diffeomorphism
F:(S'"x S5 x R— SH?, and given by identification

(8-20)

P4 (x,
(v—, vy, s) = <B(x, £), By(x, &), %log +(x §)>.

Q_(x,8)

Here (S; x S;)a denotes the torus S x S! without the diagonal A. The coordinates (8-20) can be
interpreted as (v_, vy ) parametrises the geodesic y starting at v_ and ending at v and s is the parameter
on this geodesic such that y (—s) is the point on y closest to eg = (1, 0, 0) (or O in the disk model). The
geodesic flow in these coordinates is simply ¢; : (v—, vy, s) > (v—, vy, s +1).

The coordinates (8-20) enable us to write a product of distributions in resonant and coresonant spaces
more explicitly, but we first require an explicit computation of the Jacobian of the change of coordinates

(x,8) = (v—, V4, 5).
Lemma 8.5. For the coordinate system introduced in (8-20), we have the equality

2dv_dv.ds

F*(dxdg) = —E
-~ Vt

(8-21)

Proof. This is the content of [Nicholls 1989, Theorem 8.1.1]. O
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Remark 8.6. The Jacobian popping up in Lemma 8.5 is well known and the current in (8-21) is called
the Liouville current.

We now prove that the invariant distributions formed as products of resonant and coresonant states
have a very nice form in the coordinates (8-20).

Proposition 8.7. Let w, € BdO(A) and wy € BdO(i), and consider the invariant distributions v, =
®* B*w; and vy = CID’}r Bl wy constructed in Lemma 8.4. Then the product distribution in (v_, vy, s)
coordinates takes the form’

A 24+l wi(vo)wa(vy)

F*((n102)(x, §) dx d§) = v — vy 204D

dv_dv,ds. (8-22)

In particular, for A = —1 the product F* (v vy) extends to a distribution on S' x S' x R.

Proof. By definition, we have the following expression for the product v;v;:

(V102)(x, §) = (P (x, ) Dy (x, §)* B w; (x, §) Bf ha(x, §). (8-23)
Now changing the coordinates to (v_, vy, s) given in (8-20) and by using the identity (8-14) we get

2 W1 (v )wa(vy)

Fr i) (0=, v, ) =20 = v v (0 (04) = 22 = (8-24)
Using the Jacobian computation in Lemma 8.5, we establish (8-22).
In the special case A = —1, using (8-22) we may write
F*(vivp(x, &) dx dé) = %wl (vo)wa(vy)dsdv_dvy. (8-25)
In particular, for . = —1 the distribution F*(v;v;) extends to a distribution on the space S IxSIxR. O

Remark 8.8. The distributions in (8-14) are called distributions of Patterson—Sullivan type. See [Anan-
tharaman and Zelditch 2007] for more details, where the particular case of A = —% +ir; is studied, in
connection to eigenvalues of A on ¥ with eigenvalue Alf + rjz.. Note however there is an extra factor of
|v_ — v4|?> compared to (8-24), obtained by changing coordinates according to (8-20).

8C. Construction of a time change that is not semisimple on 1-forms. Here we construct a smooth,
positive function on the unit sphere bundle S of a compact hyperbolic surface ¥ = I'\H? such that
under a time change of the geodesic flow, the action of the Lie derivative on resonant 1-forms at zero is
not semisimple. We establish a few auxiliary lemmas first. We denote by 7 : H> — I'\H? the associated
projection.

Lemma 8.9. Let w € Bd’(—1). Then w(v) dv is T-invariant and we have

/ w()dv =0.
Sl

7Formally, by (8-22) we mean an equality in the sense of O-currents. More explicitly, we mean an equality in the sense of
distributions (2241w (v_)by (v4) /Iv— — v POTD )y o= (018, fo Fh) gypo.
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Proof. For the first claim, recall that by (8-16) we have L’; dv = Ny_ L(v) dv for any y € G. Therefore, by
(8-17) we have also L) (wdv) = wdv for any y € I', which gives the required property.

The second property is a direct consequence of the works [Dyatlov et al. 2015; Guillarmou et al. 2018]
on pairings. Note that [Dyatlov et al. 2015, Lemma 5.11] proves a pairing formula, which for A = —1
gives

(1, Tev2)y =0 (8-20)

for all v; resonance states at —1 and v, coresonant states at —1. Here m, maps first band resonant and
coresonant states at —1 to eigenfunctions of A on X at zero by [Dyatlov et al. 2015, Lemma 5.8], so m,v;
and m,v, are constants. Using the time-reversal map R from Section 5B we may identify resonant and
coresonant states; i.e., we have R* : Res())((—l) — Resg)(*(—l) is an isomorphism. Moreover, we claim
that 7, R*v = m,v for any v € Res())((—l). For this recall the connection 1-form i on SX (dual to the
vertical fibre), and observe that 7,.v = m,(vy). Then for any 2-form 6 on X

(T (R*vY), 0)5 =/ Ry AmT™0 = (. (vi), 0) 5.

SE
Here we used R*y = ¢ and w o R = . By applying (8-26) to v, = R*v;, we obtain that 7, is zero on
both resonant and coresonant states.

Alternatively, this follows directly from the proof of [Guillarmou et al. 2018, Theorem 1] (more
precisely, see p. 19 of that work and the start of discussion of the Ao = —n case). O

Next we prove an auxiliary lemma that relies on the dynamics of the action of " on S'.

Lemma 8.10. Let w € Bd%(—1) and let (v_, vy) € St x St with v_ # v_.. Then there exists a ¢ € C*®(S),
such that:

(1) ¢ =0.
2) p(v4) #0.

(3) @ vanishes in a neighbourhood of v_.
@ (w, )51 =0.

Proof. We denote by B.(A) the e-neighbourhood of a set A. Let ¢, € C*°(S ) be a nonnegative function
with ¢, =1 outside B¢ (v_) and ¢, =01in B> (v_); assume also 0 < ¢ < 1. Here £ > 0 is a small enough
positive number. If (w, ¢.) = 0 for some ¢, we are done by setting ¢ = ¢.. If not, then we may assume
(w, ps) > 0 for every ¢ > 0. Assume (w, ¢.) > 0 and (w, ¢s) < O for some ¢, § > 0. Then if we take
s =—(w, @) /{w, gs) > 0, we have (w, ¢. + s@s) = 0 and so we are done by setting ¢ = @, + s@s.

Next, we may without loss of generality assume (w, ¢.) > 0 for all & > 0 small enough. By Lemma 8.9
we have (w, 1) = 0, which implies (w, 1 — ¢.) < 0. The invariance of w(v) dv under the action of I"
following from Lemma 8.9 then yields that for any ¥ € C*®(S!)

(w, ¥) = /Sl L;j(w(v) dv)yr = [sl wW)YoL,1(v)dv=(w,yoL,-1). (8-27)
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Now use that since I' = 771 (M) has 2g > 4 generators, it is not elementary by [Katok 1992, Theorem 2.4.3].
Therefore, by Exercise 2.13 of that work we have that I" contains infinitely many hyperbolic elements
(fixing exactly two elements of S'), no two of which have a common fixed points.

So take y € I' hyperbolic such that v_, vy are not in the set of fixed points of y, which we denote by
{p1, p2}. Assume without loss of generality p; is an attractor and p, is a repeller.

By (8-27) for ¢ =1—¢,, we get (w, 1 — ) =(w, (1 —¢,) o L,-1)<0. Since supp((1 —@e)oL,-1)=
L, (B¢(v-)), we have that for n > Ny large enough, ¢, , := (1 —¢,) o L,,—» has support arbitrarily close
to pi, so disjoint from v_ and v,. Therefore, for s = —(w, ¢¢)/(w, ¢ ) > 0, we have

(w, @ +5¢en) =0.
Then ¢ = ¢, + s¢. , does the job. O
With this in hand, we can prove the following claim:

Theorem 8.11. Let ¥ = I'\H? be a closed hyperbolic surface. Fix wy € Bdo(—l) and let vy € Res())(* (-1
be the corresponding coresonant state, according to Lemma 8.4. Then there exists an f € C®°(SX) with
f > 0 such that

f fui1t2dx dE =0 (8-28)
AP

forall vy € Res())((—l). In other words, semisimplicity of the Lie derivative L_;x s acting on resonant
1-forms at zero fails.

Proof. We divide the construction of f into several steps.

Step 1: First, fix (xg, &) € S H2. Denote the corresponding coordinates of (xg, &) by (vo—, Vo, So),
according to (8-20). By Lemma 8.10, there is a nonnegative ¢, € C*(S!), nonvanishing at vy,
vanishing near vy_ and in the kernel of w;. Now let ¢p_ € C*(S 1) be such that ¢_ >0, ¢_(vp_) #0
and supp(¢y) Nsupp(p-) = &. Also, let ¥ € C;°(R) be such that ¥ (so) # 0 and ¥ > 0. Set
x(_, vy, 8) =0 (vi)e_(v_)¥(s). Take any w; € Bdo(—l) and denote the corresponding element of
Resg)((—l) by v;. Then by the computation in Proposition 8.7 for A = —1, we have F*n[(viv,dx d§) =
%wl (v_)wy(vy)dv_dvs ds and

(i (viD2 dx dE), Fix)se = 3{wi(v_)Wo(v4) dv_ dvy ds, x)(sixsi), xR

= S (wi, ) (i, 1) (ds, ¥) =0
since (waz, 1) = 0 by the construction. We will denote the x above by x(x, &) and by U,.g) a
neighbourhood of (xo, §9) where Fi x(x,.5) > 0. Note that x is a function in Cgo((S1 x SHA x R), by the

condition on disjoint supports of ¢_ and ¢ in the construction, and as ¥ € C{°(R). Therefore we have
F, x a function in Cgo(Sl]-ﬂz).

(8-29)

Step 2: Denote by D C H? a compact fundamental domain for . Then SD is a fundamental domain
for SX. By compactness, we have an N > 0 and (x;, &;) € SH? fori =1,2,..., N such that

sDC | Unen.
(xi,&)
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Define then
N

Fux(x,8) = FiX(.g)(x. §) € CO(SH?).

i=1

By the construction, we have

| —

N
(mr(uiva2dx d), Fix) g = Z(wl(v—)w2(‘)+) dv_dvids, X&) (s'xs),xk = 0. (3-30)
i—1

Step 3: We introduce the pushforward map 7, : CSO(S[H]Q) — C*(8X) by defining for any n € C§° (SH?)

T (x, §) :=Zn(y-(XO,€o))€C°°(SE)- (8-31)
yel
Here (xo, §) € ! (x, &) C SH? is an arbitrary point in the fibre and the definition of m, is independent
of any choices. Note that the only accumulation points of orbits of I" are on the boundary at infinity S,
so the pushforward is well-defined and sequentially continuous. Note also that 7, is dual to 7r{* in the
sense of distributions.
Then we observe that f(x, &) := m, Fyx(x, &) € C*°(SX) satisfies the required properties. Firstly,

(vivadx d§, f)ss = (mp(Viv2dx d), Fix)ge =0 (8-32)

by (8-30) from Step 2 and duality of m, with 7r{%. Secondly, we have f > 0. To see this, let (x,£) € SX
and denote a lift to SH? by (xo, &). Then there exists y’ € I' with y’- (xo, &) € D. Therefore, there is an
ief{l,2,..., N} with )// - (x0, &p) € Ui, e and so F*X(xi,gi)()// - (x0, &9)) > 0. Hence

N
f(x’ %‘) = Z F*X(y : (x()’ go)) 2 Z F*X(X,‘,é,‘)(y/ : (x09 SO)) 2 F*X(x,—,x,-)(y/ : ('XO’ 50)) > 0

yel i=1
This proves the first claim. The final claim now follows directly from the correspondence in (8-4) and
Proposition 8.1. U

Remark 8.12. One may see the element in the kernel of ng /f and not in the kernel of Ly, constructed
in Theorem 8.11 more explicitly. Namely, one such element is given by the formula

u' = —iRy(0)(fu).

Here u € Resg)((—l) is an element such that fsz fuvdxdé =0 forall v e Res())(*(—l) and Ry (}) is
the holomorphic part at zero of (—iLx — A)~! on 1-forms. The conclusion follows as ITo( fu) = 0 and
—i Ry (0) is an inverse to Lx on ker [Ty N D, (M; Q).

Theorem 8.11 completes the proof of Theorem 1.4. We conclude this section with the following:

Proof of the second part of Corollary 1.7. By Theorem 1.4 there is a time change f X on the unit sphere
bundle S¥ of a closed hyperbolic surface ¥ with ker E? x ZkerLyx on Q(l)(S 3). By Theorem 1.2, for
the flow fX we have m((0) = m,(0) = 1 and dim Res;(0) = b;(X), so that m{(0) > b1 (X) + 1. The
claim then follows by applying Corollary 3.3. O
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