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RESONANCES AND VISCOSITY LIMIT FOR
THE WIGNER-VON NEUMANN-TYPE HAMILTONIAN

KENTARO KAMEOKA AND SHU NAKAMURA

The resonances for the Wigner—von Neumann-type Hamiltonian are defined by the periodic complex distor-
tion in the Fourier space. Also, following Zworski, we characterize resonances as the limit points of discrete
eigenvalues of the Hamiltonian with a quadratic complex-absorbing potential in the viscosity-type limit.

1. Introduction

We consider the one-dimensional Schrodinger operator

2
P=—L 1V onLR)
dx

and its resonances, where V (x) is an oscillatory and slowly decaying potential. A typical example is

d? sin 2x
P = —m +a

where a € R. We note that P is not dilation-analytic in this case since the potential is exponentially

on L*(R),

growing in the complex direction. More generally, we consider the following class of potentials.

Assumption A. The potential V (x) has the form
J

V) =Y 5 x)Wx),
j=1
where J €N, s; € C(R; R) are periodic functions with period = whose Fourier series converge absolutely,
and W; € C*°(R; R) have analytic continuations to the region {z =x +iy | [x| > Ro, |y| < K|x|} for some
Ro > 0 and K > 0 with the bound |W;(z)| < C|z|™" for some u > 0 in this region; see Figure 1, left.

We note that V (x) = a(sin 2x)/x satisfies Assumption A for any K > 0. We also note that dilation-
analytic potentials satisfy Assumption A by setting s;(x) = 1. We first show that resonances can be
defined for this class of potentials. We write the set of threshold by 7 = {n?|n e NU{0}} (see Remark 2.2
for the necessity of 77). The resolvent on the upper half-plane is denoted by R, (z) = (z— P)~!, Imz > 0.

Theorem 1.1. Under Assumption A, there exists a complex neighborhood Q2 C C of [0, 00) \ T such
that the following holds: for any f, g € L% (R), the matrix element ( f, R, (z)g) has a meromorphic

comp
continuation to <.
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Figure 1. Left: the domain of analyticity of W; from Assumption A. Right: the domain 2
in Theorem 1.1 and Theorem 1.6.

Remark 1.2. The neighborhoods €2 in Theorems 1.1 and 1.6 are given explicitly in Sections 2 and 3; see
also Figure 1, right.

Remark 1.3. Unfortunately, the original Wigner—von Neumann potential [von Neumann and Wigner
1929], see also [Reed and Simon 1978, Section XIII.13],

V(x)=(14g(x)*)"2(=32sinx)(g(x)> cos x —3g(x)?sin’ x + g(x) cos x + sin® x),

where g(x) =2x —sin 2x, does not seem to satisfy Assumption A. In fact, the argument principle implies
that if v > % and £ > 1 with £ € Z, then g(z) £i have two zeros in the region

[zeC|(6—3)m <Rez < (¢+3)m, —vlogt <Imz <vlogt}.

Thus another method is needed to study the complex resonances for the original Wigner—von Neumann
Hamiltonian.

Following the standard theory of resonances, the complex resonances are defined using this meromorphic
continuation.

Definition 1.4. Let R (z) be the meromorphic continuation of the resolvent for P as in Theorem 1.1. A
complex number z € €2 is called a resonance if z is a pole of (f, Ry (z)g) for some f, g € Lgomp([R{) and
the multiplicity m, is defined as the maximal number m such that there exist fi,..., fiu, &1,---,8m €

L, mp(R) with
m

1
det(ﬁ %C(Z)(fi’ R+(§)gj)d§>‘ . #0,

i,j=1
where C(z) is a small circle around z. The set of resonances is denoted by Res(P).
Remark 1.5. Res(P) is discrete in €2 and m, < oo for any z € 2 (see Remark 2.3).

We prove Theorem 1.1 by introducing the periodic complex distortion in the Fourier space (see Section 2
for the definition and the underlying idea).
We now introduce the complex dissipative potential
d2

e +Vix)— iex?, &>0.

P. =
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We easily see that P,, ¢ > 0, has purely discrete spectrum on L?(R). Zworski [2018] proved that the
set of resonances can be characterized as limit points of the eigenvalues of P, as ¢ — 0, namely
lim,_,9 04(P:) = Res(P) for compactly supported potentials employing the dilation-analytic method.
Zworski [2018] also proposed a problem of finding a potential V (x) such that the limit set of o;(Pe)
when ¢ — 0 is not discrete, and suggested V (x) = (sinx)/x as a candidate for such a V (x). Our next
result disproves this conjecture (away from the thresholds).

Theorem 1.6. Under Assumption A, there exists a complex neighborhood 2 C C of [0, 0c0) \ T such
that lim,_, o 04(P:) = Res(P) in Q including multiplicities. In particular, lim._, o o4(P;) is discrete in 2.
More precisely, for any z € Q2 there exists pg > 0 such that for any 0 < p < pg there exists g9 > 0 such
that for any 0 < ¢ < g

#oy(Pe) N B(z, p) = my,

where B(z, p) ={w e C||w—z| < p}.

Wigner—-von Neumann-type Hamiltonians have been investigated by many authors. See for instance
[Behncke 1991; 1994; Cruz-Sampedro et al. 2002; Devinatz et al. 1991; Froese and Herbst 1982; Hinton
et al. 1991; Klaus 1991; Lukic 2013; Rejto and Taboada 1997; Richard et al. 2016]. To our knowledge,
the definition of the complex resonances based on the complex distortion for Schrodinger operators with
oscillatory and slowly decaying potentials is new. The complex distortion in the momentum variables
is studied in [Cycon 1985; Sigal 1984] for radially symmetric dilation-analytic or sufficiently smooth
exponentially decaying potentials. In [Nakamura 1990], this method is extended to the not necessarily
radially symmetric case. See the references in that work for related earlier works on the complex distortion.

Stefanov [2005] studied the approximation of resonances by the fixed complex-absorbing potential
method in the semiclassical limit. Similar methods are used in generalized geometric settings in [Nonnen-
macher and Zworski 2009; 2015; Vasy 2013]. As mentioned above, Theorem 1.6 was proved by Zworski
[2018] for compactly supported potentials. This was extended to more general dilation-analytic potentials
in [Xiong 2020]. Analogous results were proved for Pollicott—Ruelle resonances in [Dyatlov and Zworski
2015] (see also [Dang and Riviere 2017; Drouot 2017]), and for Oth-order pseudodifferential operators in
[Galkowski and Zworski 2019]. For the numerical results and original approach in physical chemistry,
see the references in [Stefanov 2005; Zworski 2018].

This paper is organized as follows. In Section 2, we present the proofs of the theorems for the model
case V(x) = a(sin2x)/x, which contain all the essential ideas for the general case. In Section 3, we
present technical arguments which complete the proofs for the general case.

2. The model case

In this section, we explain the general ideas for the proofs and give the full proofs for the model case
V(x) =a(sin2x)/x, a € R.

2A. Periodic distortion in the Fourier space. The main idea of Theorem 1.1 is as follows: We note the
standard dilation-analytic method for the complex resonances does not apply to our potentials. On the
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other hand, it is known that if we set
A'=1x-D'+D'x), Dux)=s-ux+mn)—ulx—m)),

then we can construct a Mourre theory with this conjugate operator; see [Nakamura 2014]. We can use
this operator as the generator of complex distortion to define the resonances for our model. Actually, in
the Fourier space, A’ is a differential operator

A = %((iag) -sin(ww§) +sin(w§) - (i0g)),
and this generates a periodic complex distortion in the Fourier space; see [Nakamura 1990] for Hunziker-

type local distortion in the Fourier space.
Thus we introduce the periodic distortion in the Fourier space

Dp(E) = £ +0sin(E), Upf(E) = Dy(E)? f(Dy(£)),

where 0 € (=7~ !, #~!). In the Fourier space, P has the form P = g2 4 \7, where V = (271)_1/2\7* isa
convolution operator and V is the Fourier transform f/\(s )= Qm)~1/? f V (x)e ¢ dx. Hence we have

Py:=UyPU; = (£ +0sin(€)’> 4+ Vo, Vy=UpVU, .
Lemma 2.1. Ler V(x) = a(sin2x)/x for a € R. Then Vg = (®,)'/2V (@))%, where (®})'/ is a
multiplication operator by CD’@(S)]/Z, and V = (a/2) x[—2,21%, where x[_22] denotes the character-

istic function of [—2,2]. In particular, Vy is analytic with respect to 0 and &2-compact for 0 €
(D \ ((—OO, _nil] ) [7[717 OO))'

Proof. By direct computation, we immediately have V= (a/2) x[—2,21*. Thus we have, for0 e (—n LN,

Vof() =Us VU, f(£)

= fR () S x1-2.21(@0(§) =) (@5 ) ()7 £ (@5 () dn
= fR P} (6)? 5 x1-2.21(P0 (§) = o ()P ()7 £ () dn.

On the other hand, we note

%(% (&) — Do(n) = 1 + 67 cos(n&) > 0

for 6 € (—7'[_1, 7~ 1). Moreover, we have
Dy(n+2) — Py(n) =2+ 0(sin(r(n £2)) —sin(wn)) = £2.
These imply that —2 < ®4(§) — Dy(n7) <2 if and only if —2 <& —n < 2. Thus we have

T (© = [ @0 aamE @yt s dn

1 ~ 1
= (®p)2V(®p)2 f (&)
The second part of Lemma 2.1 follows from the first part. We note that (CD’Q)% is well-defined for
6 € C\((—oo, =t~ U[r ™, 00)) since ® (&) =1+ cos(w&) # 0 and C\ ((—oo, —7 1 U[r 7, 00))
is simply connected. 0
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1 Imz

: Gess(ﬁG)

, (1—1)2 72 Rez
Imz =kyo2(Rez)

B Imz =«4+s(Rez)

Figure 2. Left: oess(ﬁg) for 6 = 0.2i. Right: the region €2, ;.

2B. Definition of resonances. In Sections 2B and 2C, we assume that V(x) = a(sin2x)/x for a € R.
The modifications needed for the general case are explained in Section 3.
By Lemma 2.1 we learn that Py is analytic with respect to 6 in the sense of Kato, and the essential
spectrum of Py is given by
oess(Py) = {(§ +0 sin(r8)* | § € R);

see Figure 2, left.

Remark 2.2. We note that, for complex 6,
Uess(i;G) N [Ov OO) = {Yl2 | neNU {0}}

Thus 7 = {n? | n € NU{0}} C [0, c0) is considered as the set of thresholds with respect to our periodic
complex distortion in the Fourier space and is analogous to the set of threshold {0} C [0, co) in the case
of the usual complex scaling. In addition to the usual threshold 0, the set 7~ contains energy n%, n € N, at

+inx

which corresponding plane waves e are half-harmonics, i.e., the waves of half-multiple frequencies

of the oscillating part of the potential.

We fix n € N, and for the energy interval ((n — )2, n?) we take 8 = (—1)"i8 = +i8. We easily see that
for 0 < § < 7! the essential spectrum of Fii(g is the graph of a function k45 : [0, c0) — R in RZx~C.
Namely, we may define k15(x), x = Rez > 0, by the relation

Oess(Pis) = {z € C | Imz = k45(Re z), Rez > 0).

More explicitly, if x =& 2 _ 52 sin? (&) for & € R, then k45(x) = £256& sin(&). A important fact is that
K(—1ys(x) <0 for x € (n — )%, n?).
We set 8o = 7! and take any 0 < 6 < 8g. We also set

Qus={z=x+iy|(n— 1)2 <x< nz, y > Kk—1ys(x));
see Figure 2, right. Note that Q, s C Q2,5 if 0 <8 < 8’ < Jy.
Proof of Theorem 1.1 for the model case. We fix n € N and § > 0 as above, and we write A = L2 (R).

comp

We first note that Uy f (f € A) has an analytic continuation for complex 6. We denote the resolvent
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R (z) on the Fourier space by §+ (). For f, g € A, we have
(fs Ri(2)8) = WUaf, UgRy ()U; ' Us§) = WU f, (z — Po) "' Ugd),

where 6 € R and Im z > 0. The right-hand side is analytic with respect to 8 by Lemma 2.1, where 6 ranges
over a complex neighborhood of {(—1)"i§ | 0 < § < §p}. This in turn implies that the left-hand side has a
meromorphic continuation to €2, 5, with respect to z. Thus Theorem 1.1 is proved for = Un en S2n,50- U

Remark 2.3. We set

o_ 1 A
IT; = i C(Z)(C Py) dg

to be the spectral projection for Py. Then we have

1 2 ~ _ N 2 N
=P (RO dE=5—=P Usf, (&~ P Usd)ds = Uz f, 1;Usd).
2mi C) 2wi C()
We note that {Uy f | f € A} is dense in L2, which is proved by an argument similar to [Hunziker
1986, Theorem 3]. This implies that m, = rank[l'[f]. Namely, the resonances coincide with the discrete

eigenvalues of Py including multiplicities. In particular, Res(P) is discrete and m, < oo for any z € Q.

2C. Viscosity limit. As in [Zworski 2018], the essential ingredient of the proof of Theorem 1.6 is the
resolvent estimate of the distorted operator which is uniform with respect to ¢ in the case of V = 0. We
prove this by employing the semiclassical analysis in the Fourier space with the semiclassical parameter

h = /. Since we work in the Fourier space, the term —iex?

=i 8352 is the usual viscosity term (multiplied
by i) and the viscosity limit corresponds to the semiclassical limit.
For notational simplicity, we set Py = P, Po P and Po g = P9 In the Fourier space, P., ¢ > 0, has
the form
Po=£"+V +ied}.
Hence the distorted operator Fg,g =Uy ﬁg U, Uis given by
P, o= (€ +0sin(w£))> + Vg —ie D (1 + 76 cos(§)) 2D —ierg (£),

where rg(§) = — ()~ 1/285(<I>’ &)~ 185 (P (&)~ 1/2)) is a function which is analytic with respect to 6
and bounded with respect to £. Since P, o has a compact resolvent, Pg 9, € > 0, has purely discrete
spectrum. Moreover, for fixed ¢ > 0, Pg,g is analytic with respect to 6 in the sense of Kato. These imply
that the eigenvalues of ﬁg,g coincide with those of P, including multiplicities by the same argument as in
Remark 2.3. Thus it is enough to show that the eigenvalues of 1’5&9 converge to those of Fg as ¢ —> +0.

Proof of Theorem 1.6 for the model case. We first prove the resolvent estimate (2-1) for the distorted free
Hamiltonian

Oeo = (€ +0sin(wE))2 — ieDg (1 + 70 cos(T£)) 2Dy — ierg(§), &> 0.

In the following, we fix n € N, and set 6 = (—1)"i§ = £id, 0 < § < &, as in Section 2B.
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We set h = /¢ and view ég,g as an h-pseudodifferential operator in the Fourier space. Recall that €2, s
is defined in Section 2B; see Figure 2, right. We easily see that the numerical range of the A-principal
symbol of égyg, ie.,

{(E +0sin(mE))* —i(1+ 7m0 cos(n&)) *x* | x, € € R},
is disjoint from €2, s for small § > 0. For instance, this is true for 0 < é < §;, where §; = (\/5— DL

The constant §; comes from requiring

9 o0 = | L s = 22
a5 0| =[O = T

sup

x>0
is less than or equal to the minimal value %(1 /(r8) — m8) with respect to & € R of the absolute value of
the slope of the half-line {—i (1 £ 7 di cos(m& ) "2x2 | x € R} in the complex plane. For simplicity, we
consider 0 < § < 61 and do not pursue the optimal §. Now we fix 0 < § < 61 and z € €2,, 5. Then there exists
0o > 0 such that there is no resonance in B(z, pg) € €2, s possibly expect for z, where B(z, p) denotes
the ball of radius p with the center at z. In the following, we fix 0 < p < pg, and let w € B, = B(z, p).
By the standard semiclassical calculus we learn (é&@ —w)~! exists and

1(Qep —w) Moo <C 2-1)

for w € B, and for sufficiently small ¢ > 0. We note that it also holds for ¢ = 0.
We next employ the perturbation argument. Since (égﬂg —w)~! exists, we have

Pog—w=(14Vo(Qep —w) )(Qeo —w).

By Lemma 2.1 and the boundedness of (£2 4 i)(égyg —w)~ L, we learn \79(@5,9 —w)~! is compact for
& > 0. Thus the analytic Fredholm theory can be applied. We have
(W= Pep) ™ = 0u(Pep — w)) (Peg —w) ™"
= (Vo (Qep —w) N1+ Vg(Qep —w)™H™!
+(1+ Ve (Qep —w) DW= Qo) A+ Vy(Qep—w)™H~

The Gohberg—Sigal factorization [1971, Theorem 3.1] applied to 1 + %(ég,g —w)" |, Cauchy’s theorem
and the cyclicity of the trace imply that

trf (14 Vo(Qeo —w) ™ H(w — 0eo) "1+ Vg (Qep —w)™H) L dw =0.
dB.

Thus the number of the eigenvalues of P, g, € > 0, in B; is given by

1

tr —
2mi

~ 1 ~ o~ _ ~ o~ 1
yg (w— Peg) ldw:tr—.yg (3w Va(Qep —w) N1+ Va(Qep —w) ) dw.
9B, 2mi 9B,

Note that the right-hand side of this equality is the number of zeros of 1 4 %(é&g —w)~"in B, in the
sense of [Gohberg and Sigal 1971, Theorem 2.1]. Thus the operator-valued Rouché theorem [Gohberg
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and Sigal 1971, Theorem 2.2] implies that in order to prove Theorem 1.6, it suffices to show

11+ Va(Qo.p — w) ™) = (1 4+ Vo(Qep — w) ™) A+ Vo (Qop —w) H7 22 < 1

for w € d B, and small ¢ > 0. Since (1+ ‘79(@0’9 —w)~ ")~ ! exists and independent of & > 0 for w € 9B,
the above estimate holds if we show

lim [ V5(Qo.p —w)™" = Vo (Qep —w) 'l p2 =0 (2-2)

uniformly for w € 9 B;.
Let y > 0. We claim that we can decompose Vg = Vy 1 + Vp 2, where Vj | is a smoothing pseudodif-
ferential operator in the Fourier space and ||Vy 2|12 12 < y. To see this, we take the decomposition

~ I~ 1 1~ 1 I~ 1~ ~
Vo = (0)2V (Pp)2 = (Py)2 Vi g(Pp)2 4+ (Py) 2 Vo g (D)2 = Vo1 + Vo2

for large R > 0, where Vj, r 1is the Fourier multiplier on the Fourier space by V; g, x € C2°(R) such that
x = 1 near x =0, and

sin 2x sin2x [ x sin 2x X
S () (8)) b b

Then the claimed properties are easily verified.

Since ||(§g,g —w) 7,22 < C for small ¢ > 0 and w € B., we have
1Vo.2(Qo6 —w) ™" = Vo2 (Qeip — w) 'l 12 2 < 2C,
where C is independent of y. By the resolvent equation, we also learn
Vo.1(Qo0 —w) ™' — Vg 1(Qeo —w) ™!
= —ieVp1(Qo,0 —w) ™ (Ds(1 476 cos(w8) > Dg +rg (§))(Dep —w) ™"

Since %,1 is a smoothing pseudodifferential operator and (éo,(; — w)~! is also a pseudodifferential
operator with a bounded symbol, Vg,l (éo,g — w)_ng is L2-bounded. Thus we have

1Vo.1(Qo06 —w) ™ = Vo 1(Qeo —w) " 122 < Cye,
with some (y-dependent) constant C,, > 0. If & is so small that ¢ < (C/C, )y, we have
1Vo(Qo.6 —w) ™" = Vo(Qep —w) "l z2 2 <2Cy + Cpe <3Cy
and thus (2-2) is proved since y > 0 may be arbitrary small. Thus Theorem 1.6 is proved for Q2 =
Unen Q- O
3. The general case

3A. Analyticity of ‘79. We recall that 179 was defined in Section 2A.

Lemma 3.1. Under Assumption A, Vg is analytic with respect to 6 and £*-compact for 6 in some complex
neighborhood of {i8 | —Kn~' <8 < Kn~'}, where K is the constant in Assumption A.



RESONANCES AND VISCOSITY LIMIT FOR THE WIGNER-VON NEUMANN-TYPE HAMILTONIAN 869

Proof of Lemma 3.1. For real 6, the integral kernel Vg (&,n) of \79 is given by

Vo, n) = —— ) (£)F D (0(5) — Do) D, ()}, & 1R,

V2

We first consider the case of V € C°(R; R). Then the Paley—Wiener estimate implies that \79 (&,7n)is
analytic with respect to 6 € C and has the off-diagonal decay bounds

|8§‘8}f\79(§, M <CopnE—m"", &neR,

for any «, B and N, where C, g y is independent of & when 6 € C ranges over a bounded set. We also
recall the formula, see, e.g., [Zworski 2012, Section 8.1],

VG = bw(g’ D$7 9)7 b(é, X; 9) = / fi@ <§ + ga ‘i: - g)e_im’x) dT),
R
where b% denotes the Weyl quantization

6D 0)7@ = o [ [ 055 xi0) 0 peny

In fact, the integral kernel of bY (&, Dg; 0) is

1 b(gﬂ,x; 9)6i<sn,x> dx
21 R 2

and this coincides with V (&, n) by simple computations. These imply that Vyisa pseudodifferential
operator in the Fourier space with a symbol rapidly decaying with respect to x (that is,

108 92b(E, x:0)| < Capn(x)™V, & xeR,

for any «, B and N, where C, g v is independent of & when 6 € C ranges over a bounded set) and analytic
with respect to 6. Thus Lemma 3.1 is proved in this case.

We next consider the case of V(x) = s(x)W(x), where s(x) and W(x) satisfy the condition in
Assumption A; see Figure 1, left. We first estimate the Fourier transform of W (x). By the deformation of
the integral (see Figure 3, left), we have

1

W()e ¥ dz, =+&>0,
A 27T Cq,1T

W) =

where
Cir = (e*"(—00,0] —2Ro) U[—2Ry, 2Ro] U 2Ry + €T 7[0, 00)),

0 < 7 < arctan K, and Ry is that in Assumption A. This expression shows that VT’(S ) has an analytic
continuation to

S;={zeC'l—t<argz<t}U{zeC—1t<argz—m <1};

see Figure 3, right. We see that W(S ) decays rapidly in S; when |§| — oo thanks to the smoothness of W.
For small & € S;, we have |W(E ) < C|g|~/0+M) where > 0 is the constant in Assumption A. To see
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Imz Imz
A\

C.
T T

—2Ry 2Ry Rez

Rez

Figure 3. Left: the curve C_ ., and C ; is its reflection with respect to the real axis.
Right: the domain S;.

this, we take Cy  for 0 < 7 < 7/ < arctan K and estimate
A o0 o0
W)l < C/ el x) T dx = C|s|1/ e Mlix/|EN) T dux.
0 0

We divide the integral into fos + fgoo and we obtain the bound
€ 1

= (e/1ED TR
&1 18]

Taking & = |&|*/(+4), we have |17I7(§)| < Clg|~ Va4,
We next claim that the Fourier transform \7(5) has an analytic continuation to the region Ty =|J; .7 Tr k»
where (see Figure 4)

T.y={zeC\{0,2}| —t <argz < 7, -7 < arg(2 — z) < 7} + 2k,

and the estimate

3 sup 1€ — 2|77 € — 2k — 2|7 |V (€)] < oo (3-1)
kez §€Tek

holds. To see this, we first denote the Fourier transform of s by §(£§) = v/27 ), ., ax8(§ — 2k). Then we
have

VE) =) aW(E —2k).

keZ

By Assumption A, we have ), _, |ax| < oo. The estimates on W (&) above show

3 sup 1€ — 2|77 € — 2k — 2|77 W (&) < oo.
kez §€Tek

Then the estimate (3-1) follows from Young’s inequality in IAVA applied to sequences {ax}xez and

{ sup |& — 2K| ™7 |& — 2k — 2|77 | W (£)])

£eT, keZ

By (3-1), we have |Vg (&,n)| < g(¢ — n) for some integrable function g. This is also true for
(8/89)‘79 (£, n) by Cauchy’s formula with respect to 8. Thus Young’s inequality implies that the
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‘Imz

Figure 4. The domains 7 and 77 ;.

operator V, with integral kernel Vs (€, n) is L?-bounded and analytic with respect to 8. We note that if 6
is purely imaginary, we have

| Im(Py (§) — Do ()] = |0]|Re(Pg(§) — Pg(n)) — 2k,

with any k € Z, in particular k such that |§€ — n — 2k| < 1. Thus € may be taken from a complex
neighborhood of {i§ | —7~!'tant <& < 7' tant}. Since 0 < 7 < arctan K is arbitrary, Vy is analytic
for 8 as claimed in Lemma 3.1.

To see £2-compactness, we approximate V by CZ* functions. Take x € C2°(R) such that x =1 near
x = 0. We take the decomposition V (x) = Vi g + V2 g, where R > 0,

Vir= x(%)W(x) > aret,

|k|<R

Vo.r = W(x) Z ape?tr 4 (1 — X(%))W(x) Z age?**.

|k|>R |kI<R

We also denote the corresponding distorted operators on the Fourier space by Vg’l, g and ‘79,2’ R. Since
Vi,r € C, we know \79,1,13 is 52-compact. We also see that limg_, o || ‘79,2,R||L2»L2 = 0 by the estimate
for V =s(x)W(x) as above. This completes the proof of Lemma 3.1. Il

3B. Proofs of theorems for the general case. Although we set §o = ~! for the model case in Section 2,
we set 8o = min{w ~!, Kz ~!} for the general case in this subsection in view of Lemma 3.1. Similarly
we set §; = min{(«/i — 1Dz~ !, Kz~'} in this subsection. Then all the statements in Sections 2B and 2C
remain true for these d¢ and §;.

Proof of Theorem 1.1 for the general case. The proof is exactly the same as that for the model case in
Section 2 if we replace Lemma 2.1 by Lemma 3.1. U

Proof of Theorem 1.6 for the general case. The proof is almost the same as that for the model case in
Section 2. The only necessary change is the following: In the claim that we can take the decomposi-
tion Vg Vg 1+ V@ 2, where Vg 11 is a smoothlng pseudodlfferentlal operator in the Fourier space and
||V9,2||L2_)L2 <y, we set Vg,l = VG’I,R and Vg’z = Vg,z’R for large R > 0, where Vgu,,R was defined in
the £2-compactness part of the proof of Lemma 3.1. O
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Remark 3.2. In the case of V = a(sin2x)/x + Vp, Vo € CZ(R; R), Lemma 2.1 and the proof of
Lemma 3.1 show that Lemma 3.1 holds for 6 € C\ ((—o0, —7~"U[r ™!, 00)). Thus the set of resonances
Res, (P) is defined in C\ (0, co) for any n € N including multiplicities by the meromorphic continuation
of (f, R+(2)g) from {z |0 <argz < m}to

{z|0<argz <mw}U{z|argz =0, (n—1)2<|z|<n2}U{z|—27r<argz<0}.

This poses the problem of whether Res,, (P) # Res,/(P) when n # n'.
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