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RESONANCES AND VISCOSITY LIMIT FOR
THE WIGNER–VON NEUMANN-TYPE HAMILTONIAN

KENTARO KAMEOKA AND SHU NAKAMURA

The resonances for the Wigner–von Neumann-type Hamiltonian are defined by the periodic complex distor-
tion in the Fourier space. Also, following Zworski, we characterize resonances as the limit points of discrete
eigenvalues of the Hamiltonian with a quadratic complex-absorbing potential in the viscosity-type limit.

1. Introduction

We consider the one-dimensional Schrödinger operator

P =− d2

dx2 + V (x) on L2(R)

and its resonances, where V (x) is an oscillatory and slowly decaying potential. A typical example is

P =− d2

dx2 + a sin 2x
x

on L2(R),

where a ∈ R. We note that P is not dilation-analytic in this case since the potential is exponentially
growing in the complex direction. More generally, we consider the following class of potentials.

Assumption A. The potential V (x) has the form

V (x)=
J∑

j=1

sj (x)Wj (x),

where J ∈N, sj ∈C(R;R) are periodic functions with period π whose Fourier series converge absolutely,
and Wj ∈C∞(R;R) have analytic continuations to the region {z= x+ iy | |x |> R0, |y|< K |x |} for some
R0 > 0 and K > 0 with the bound |Wj (z)| ≤ C |z|−µ for some µ > 0 in this region; see Figure 1, left.

We note that V (x)= a(sin 2x)/x satisfies Assumption A for any K > 0. We also note that dilation-
analytic potentials satisfy Assumption A by setting sj (x) = 1. We first show that resonances can be
defined for this class of potentials. We write the set of threshold by T = {n2

| n ∈N∪{0}} (see Remark 2.2
for the necessity of T ). The resolvent on the upper half-plane is denoted by R+(z)= (z− P)−1, Im z > 0.

Theorem 1.1. Under Assumption A, there exists a complex neighborhood � ⊂ C of [0,∞) \ T such
that the following holds: for any f, g ∈ L2

comp(R), the matrix element ( f, R+(z)g) has a meromorphic
continuation to �.
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Figure 1. Left: the domain of analyticity of Wj from Assumption A. Right: the domain�
in Theorem 1.1 and Theorem 1.6.

Remark 1.2. The neighborhoods � in Theorems 1.1 and 1.6 are given explicitly in Sections 2 and 3; see
also Figure 1, right.

Remark 1.3. Unfortunately, the original Wigner–von Neumann potential [von Neumann and Wigner
1929], see also [Reed and Simon 1978, Section XIII.13],

V (x)= (1+ g(x)2)−2(−32 sin x)(g(x)3 cos x − 3g(x)2 sin3 x + g(x) cos x + sin3 x),

where g(x)= 2x− sin 2x , does not seem to satisfy Assumption A. In fact, the argument principle implies
that if ν > 1

2 and `� 1 with ` ∈ Z, then g(z)± i have two zeros in the region{
z ∈ C

∣∣ (`− 1
2

)
π ≤ Re z ≤

(
`+ 1

2

)
π,−ν log `≤ Im z ≤ ν log `

}
.

Thus another method is needed to study the complex resonances for the original Wigner–von Neumann
Hamiltonian.

Following the standard theory of resonances, the complex resonances are defined using this meromorphic
continuation.

Definition 1.4. Let R+(z) be the meromorphic continuation of the resolvent for P as in Theorem 1.1. A
complex number z ∈� is called a resonance if z is a pole of ( f, R+(z)g) for some f, g ∈ L2

comp(R) and
the multiplicity mz is defined as the maximal number m such that there exist f1, . . . , fm, g1, . . . , gm ∈

L2
comp(R) with

det
(

1
2π i

∮
C(z)

( fi , R+(ζ )gj ) dζ
)m

i, j=1
6= 0,

where C(z) is a small circle around z. The set of resonances is denoted by Res(P).

Remark 1.5. Res(P) is discrete in � and mz <∞ for any z ∈� (see Remark 2.3).

We prove Theorem 1.1 by introducing the periodic complex distortion in the Fourier space (see Section 2
for the definition and the underlying idea).

We now introduce the complex dissipative potential

Pε =−
d2

dx2 + V (x)− iεx2, ε > 0.
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We easily see that Pε, ε > 0, has purely discrete spectrum on L2(R). Zworski [2018] proved that the
set of resonances can be characterized as limit points of the eigenvalues of Pε as ε → 0, namely
limε→0 σd(Pε) = Res(P) for compactly supported potentials employing the dilation-analytic method.
Zworski [2018] also proposed a problem of finding a potential V (x) such that the limit set of σd(Pε)
when ε→ 0 is not discrete, and suggested V (x)= (sin x)/x as a candidate for such a V (x). Our next
result disproves this conjecture (away from the thresholds).

Theorem 1.6. Under Assumption A, there exists a complex neighborhood � ⊂ C of [0,∞) \ T such
that limε→0 σd(Pε)= Res(P) in � including multiplicities. In particular, limε→0 σd(Pε) is discrete in �.
More precisely, for any z ∈� there exists ρ0 > 0 such that for any 0< ρ < ρ0 there exists ε0 > 0 such
that for any 0< ε < ε0

#σd(Pε)∩ B(z, ρ)= mz,

where B(z, ρ)= {w ∈ C | |w− z| ≤ ρ}.

Wigner–von Neumann-type Hamiltonians have been investigated by many authors. See for instance
[Behncke 1991; 1994; Cruz-Sampedro et al. 2002; Devinatz et al. 1991; Froese and Herbst 1982; Hinton
et al. 1991; Klaus 1991; Lukic 2013; Rejto and Taboada 1997; Richard et al. 2016]. To our knowledge,
the definition of the complex resonances based on the complex distortion for Schrödinger operators with
oscillatory and slowly decaying potentials is new. The complex distortion in the momentum variables
is studied in [Cycon 1985; Sigal 1984] for radially symmetric dilation-analytic or sufficiently smooth
exponentially decaying potentials. In [Nakamura 1990], this method is extended to the not necessarily
radially symmetric case. See the references in that work for related earlier works on the complex distortion.

Stefanov [2005] studied the approximation of resonances by the fixed complex-absorbing potential
method in the semiclassical limit. Similar methods are used in generalized geometric settings in [Nonnen-
macher and Zworski 2009; 2015; Vasy 2013]. As mentioned above, Theorem 1.6 was proved by Zworski
[2018] for compactly supported potentials. This was extended to more general dilation-analytic potentials
in [Xiong 2020]. Analogous results were proved for Pollicott–Ruelle resonances in [Dyatlov and Zworski
2015] (see also [Dang and Riviere 2017; Drouot 2017]), and for 0th-order pseudodifferential operators in
[Galkowski and Zworski 2019]. For the numerical results and original approach in physical chemistry,
see the references in [Stefanov 2005; Zworski 2018].

This paper is organized as follows. In Section 2, we present the proofs of the theorems for the model
case V (x) = a(sin 2x)/x , which contain all the essential ideas for the general case. In Section 3, we
present technical arguments which complete the proofs for the general case.

2. The model case

In this section, we explain the general ideas for the proofs and give the full proofs for the model case
V (x)= a(sin 2x)/x , a ∈ R.

2A. Periodic distortion in the Fourier space. The main idea of Theorem 1.1 is as follows: We note the
standard dilation-analytic method for the complex resonances does not apply to our potentials. On the
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other hand, it is known that if we set

A′ = 1
2(x · D

′
+ D′ · x), D′u(x)= 1

2π i (u(x +π)− u(x −π)),

then we can construct a Mourre theory with this conjugate operator; see [Nakamura 2014]. We can use
this operator as the generator of complex distortion to define the resonances for our model. Actually, in
the Fourier space, A′ is a differential operator

Ã′ = 1
2π ((i∂ξ ) · sin(πξ)+ sin(πξ) · (i∂ξ )),

and this generates a periodic complex distortion in the Fourier space; see [Nakamura 1990] for Hunziker-
type local distortion in the Fourier space.

Thus we introduce the periodic distortion in the Fourier space

8θ (ξ)= ξ + θ sin(πξ), Uθ f (ξ)=8′θ (ξ)
1
2 f (8θ (ξ)),

where θ ∈ (−π−1, π−1). In the Fourier space, P has the form P̃ = ξ 2
+ Ṽ, where Ṽ = (2π)−1/2V̂∗ is a

convolution operator and V̂ is the Fourier transform V̂ (ξ)= (2π)−1/2
∫

V (x)e−i xξ dx . Hence we have

P̃θ :=Uθ P̃U−1
θ = (ξ + θ sin(πξ))2+ Ṽθ , Ṽθ =Uθ Ṽ U−1

θ .

Lemma 2.1. Let V (x) = a(sin 2x)/x for a ∈ R. Then Ṽθ = (8′θ )
1/2Ṽ (8′θ )

1/2, where (8′θ )
1/2 is a

multiplication operator by 8′θ (ξ)
1/2, and Ṽ = (a/2)χ[−2,2]∗, where χ[−2,2] denotes the character-

istic function of [−2, 2]. In particular, Ṽθ is analytic with respect to θ and ξ 2-compact for θ ∈
C \ ((−∞,−π−1

] ∪ [π−1,∞)).

Proof. By direct computation, we immediately have Ṽ=(a/2)χ[−2,2]∗. Thus we have, for θ∈(−π−1,π−1),

Ṽθ f (ξ)=Uθ Ṽ U−1
θ f (ξ)

=

∫
R

8′θ (ξ)
1
2

a
2
χ[−2,2](8θ (ξ)− η)(8

−1
θ )
′(η)

1
2 f (8−1

θ (η)) dη

=

∫
R

8′θ (ξ)
1
2

a
2
χ[−2,2](8θ (ξ)−8θ (η))8

′

θ (η)
1
2 f (η) dη.

On the other hand, we note
d

dξ
(8θ (ξ)−8θ (η))= 1+ θπ cos(πξ) > 0

for θ ∈ (−π−1, π−1). Moreover, we have

8θ (η± 2)−8θ (η)=±2+ θ(sin(π(η± 2))− sin(πη))=±2.

These imply that −2≤8θ (ξ)−8θ (η)≤ 2 if and only if −2≤ ξ − η ≤ 2. Thus we have

Ṽθ f (ξ)=
∫

R

8′θ (ξ)
1
2

a
2
χ[−2,2](ξ − η)8

′

θ (η)
1
2 f (η) dη

= (8′θ )
1
2 Ṽ (8′θ )

1
2 f (ξ).

The second part of Lemma 2.1 follows from the first part. We note that (8′θ )
1
2 is well-defined for

θ ∈C\((−∞,−π−1
]∪[π−1,∞)) since8′θ (ξ)= 1+θπ cos(πξ) 6= 0 and C\((−∞,−π−1

]∪[π−1,∞))

is simply connected. �
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Figure 2. Left: σess(P̃θ ) for θ = 0.2i . Right: the region �n,δ.

2B. Definition of resonances. In Sections 2B and 2C, we assume that V (x) = a(sin 2x)/x for a ∈ R.
The modifications needed for the general case are explained in Section 3.

By Lemma 2.1 we learn that P̃θ is analytic with respect to θ in the sense of Kato, and the essential
spectrum of P̃θ is given by

σess(P̃θ )= {(ξ + θ sin(πξ))2 | ξ ∈ R};

see Figure 2, left.

Remark 2.2. We note that, for complex θ ,

σess(P̃θ )∩ [0,∞)= {n2
| n ∈ N∪ {0}}.

Thus T = {n2
| n ∈ N∪ {0}} ⊂ [0,∞) is considered as the set of thresholds with respect to our periodic

complex distortion in the Fourier space and is analogous to the set of threshold {0} ⊂ [0,∞) in the case
of the usual complex scaling. In addition to the usual threshold 0, the set T contains energy n2, n ∈N, at
which corresponding plane waves e±inx are half-harmonics, i.e., the waves of half-multiple frequencies
of the oscillating part of the potential.

We fix n ∈N, and for the energy interval ((n−1)2, n2) we take θ = (−1)niδ=±iδ. We easily see that
for 0< δ < π−1 the essential spectrum of P̃±iδ is the graph of a function κ±δ : [0,∞)→ R in R2 ∼= C.
Namely, we may define κ±δ(x), x = Re z ≥ 0, by the relation

σess(P̃±iδ)= {z ∈ C | Im z = κ±δ(Re z), Re z ≥ 0}.

More explicitly, if x = ξ 2
− δ2 sin2(πξ) for ξ ∈ R, then κ±δ(x)=±2δξ sin(πξ). A important fact is that

κ(−1)nδ(x) < 0 for x ∈ ((n− 1)2, n2).
We set δ0 = π

−1 and take any 0< δ < δ0. We also set

�n,δ = {z = x + iy | (n− 1)2 < x < n2, y > κ(−1)nδ(x)};

see Figure 2, right. Note that �n,δ ⊂�n,δ′ if 0< δ < δ′ < δ0.

Proof of Theorem 1.1 for the model case. We fix n ∈ N and δ > 0 as above, and we write A= L2
comp(R).

We first note that Uθ f̂ ( f ∈ A) has an analytic continuation for complex θ . We denote the resolvent
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R+(z) on the Fourier space by R̃+(z). For f, g ∈A, we have

( f̂ , R̃+(z)ĝ)= (Uθ f̂ ,Uθ R̃+(z)U−1
θ Uθ ĝ)= (Uθ̄ f̂ , (z− P̃θ )−1Uθ ĝ),

where θ ∈R and Im z> 0. The right-hand side is analytic with respect to θ by Lemma 2.1, where θ ranges
over a complex neighborhood of {(−1)niδ | 0≤ δ < δ0}. This in turn implies that the left-hand side has a
meromorphic continuation to�n,δ0 with respect to z. Thus Theorem 1.1 is proved for�=

⋃
n∈N�n,δ0 . �

Remark 2.3. We set

5θ
z =

1
2π i

∮
C(z)

(ζ − P̃θ )−1 dζ

to be the spectral projection for P̃θ . Then we have

1
2π i

∮
C(z)

( f, R+(ζ )g) dζ = 1
2π i

∮
C(z)

(Uθ̄ f̂ , (ζ − P̃θ )−1Uθ ĝ) dζ = (Uθ̄ f̂ ,5θ
z Uθ ĝ).

We note that {Uθ f̂ | f ∈ A} is dense in L2, which is proved by an argument similar to [Hunziker
1986, Theorem 3]. This implies that mz = rank[5θ

z ]. Namely, the resonances coincide with the discrete
eigenvalues of P̃θ including multiplicities. In particular, Res(P) is discrete and mz <∞ for any z ∈�.

2C. Viscosity limit. As in [Zworski 2018], the essential ingredient of the proof of Theorem 1.6 is the
resolvent estimate of the distorted operator which is uniform with respect to ε in the case of V = 0. We
prove this by employing the semiclassical analysis in the Fourier space with the semiclassical parameter
h=
√
ε. Since we work in the Fourier space, the term−iεx2

= iε∂2
ξ is the usual viscosity term (multiplied

by i) and the viscosity limit corresponds to the semiclassical limit.
For notational simplicity, we set P0 = P , P̃0 = P̃ and P̃0,θ = P̃θ . In the Fourier space, Pε, ε ≥ 0, has

the form
P̃ε = ξ 2

+ Ṽ + iε∂2
ξ .

Hence the distorted operator P̃ε,θ =Uθ P̃εU−1
θ is given by

P̃ε,θ = (ξ + θ sin(πξ))2+ Ṽθ − iεDξ (1+πθ cos(πξ))−2 Dξ − iεrθ (ξ),

where rθ (ξ)=−8′θ (ξ)
−1/2∂ξ (8

′

θ (ξ)
−1∂ξ (8

′

θ (ξ)
−1/2)) is a function which is analytic with respect to θ

and bounded with respect to ξ . Since P̃ε,θ has a compact resolvent, P̃ε,θ , ε > 0, has purely discrete
spectrum. Moreover, for fixed ε > 0, P̃ε,θ is analytic with respect to θ in the sense of Kato. These imply
that the eigenvalues of P̃ε,θ coincide with those of P̃ε including multiplicities by the same argument as in
Remark 2.3. Thus it is enough to show that the eigenvalues of P̃ε,θ converge to those of P̃θ as ε→+0.

Proof of Theorem 1.6 for the model case. We first prove the resolvent estimate (2-1) for the distorted free
Hamiltonian

Q̃ε,θ = (ξ + θ sin(πξ))2− iεDξ (1+πθ cos(πξ))−2 Dξ − iεrθ (ξ), ε ≥ 0.

In the following, we fix n ∈ N, and set θ = (−1)niδ =±iδ, 0< δ < δ0, as in Section 2B.
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We set h =
√
ε and view Q̃ε,θ as an h-pseudodifferential operator in the Fourier space. Recall that �n,δ

is defined in Section 2B; see Figure 2, right. We easily see that the numerical range of the h-principal
symbol of Q̃ε,θ , i.e.,

{(ξ + θ sin(πξ))2− i(1+πθ cos(πξ))−2x2
| x, ξ ∈ R},

is disjoint from �n,δ for small δ > 0. For instance, this is true for 0< δ ≤ δ1, where δ1 = (
√

2− 1)π−1.
The constant δ1 comes from requiring

sup
x≥0

∣∣∣ d
dx
κ±δ(x)

∣∣∣= ∣∣∣ d
dx
κ±δ(0)

∣∣∣= 2πδ
1−π2δ2

is less than or equal to the minimal value 1
2(1/(πδ)−πδ) with respect to ξ ∈ R of the absolute value of

the slope of the half-line {−i(1±πδi cos(πξ))−2x2
| x ∈ R} in the complex plane. For simplicity, we

consider 0<δ<δ1 and do not pursue the optimal δ. Now we fix 0<δ<δ1 and z ∈�n,δ . Then there exists
ρ0 > 0 such that there is no resonance in B(z, ρ0)b�n,δ possibly expect for z, where B(z, ρ) denotes
the ball of radius ρ with the center at z. In the following, we fix 0< ρ < ρ0, and let w ∈ Bz = B(z, ρ).
By the standard semiclassical calculus we learn (Q̃ε,θ −w)

−1 exists and

‖(Q̃ε,θ −w)
−1
‖L2→L2 ≤ C (2-1)

for w ∈ Bz and for sufficiently small ε > 0. We note that it also holds for ε = 0.
We next employ the perturbation argument. Since (Q̃ε,θ −w)

−1 exists, we have

P̃ε,θ −w = (1+ Ṽθ (Q̃ε,θ −w)
−1)(Q̃ε,θ −w).

By Lemma 2.1 and the boundedness of (ξ 2
+ i)(Q̃ε,θ −w)

−1, we learn Ṽθ (Q̃ε,θ −w)
−1 is compact for

ε ≥ 0. Thus the analytic Fredholm theory can be applied. We have

(w− P̃ε,θ )−1
= (∂w(P̃ε,θ −w))(P̃ε,θ −w)−1

= (∂w Ṽθ (Q̃ε,θ −w)
−1)(1+ Ṽθ (Q̃ε,θ −w)

−1)−1

+(1+ Ṽθ (Q̃ε,θ −w)
−1)(w− Q̃ε,θ )

−1(1+ Ṽθ (Q̃ε,θ −w)
−1)−1.

The Gohberg–Sigal factorization [1971, Theorem 3.1] applied to 1+ Ṽθ (Q̃ε,θ −w)
−1, Cauchy’s theorem

and the cyclicity of the trace imply that

tr
∮
∂Bz

(1+ Ṽθ (Q̃ε,θ −w)
−1)(w− Q̃ε,θ )

−1(1+ Ṽθ (Q̃ε,θ −w)
−1)−1 dw = 0.

Thus the number of the eigenvalues of Pε,θ , ε ≥ 0, in Bz is given by

tr 1
2π i

∮
∂Bz

(w− P̃ε,θ )−1 dw = tr 1
2π i

∮
∂Bz

(∂w Ṽθ (Q̃ε,θ −w)
−1)(1+ Ṽθ (Q̃ε,θ −w)

−1)−1 dw.

Note that the right-hand side of this equality is the number of zeros of 1+ Ṽθ (Q̃ε,θ −w)
−1 in Bz in the

sense of [Gohberg and Sigal 1971, Theorem 2.1]. Thus the operator-valued Rouché theorem [Gohberg
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and Sigal 1971, Theorem 2.2] implies that in order to prove Theorem 1.6, it suffices to show

‖((1+ Ṽθ (Q̃0,θ −w)
−1)− (1+ Ṽθ (Q̃ε,θ −w)

−1))(1+ Ṽθ (Q̃0,θ −w)
−1)−1

‖L2→L2 < 1

for w ∈ ∂Bz and small ε > 0. Since (1+ Ṽθ (Q̃0,θ −w)
−1)−1 exists and independent of ε > 0 for w ∈ ∂Bz ,

the above estimate holds if we show

lim
ε→0
‖Ṽθ (Q̃0,θ −w)

−1
− Ṽθ (Q̃ε,θ −w)

−1
‖L2→L2 = 0 (2-2)

uniformly for w ∈ ∂Bz .
Let γ > 0. We claim that we can decompose Ṽθ = Ṽθ,1+ Ṽθ,2, where Ṽθ,1 is a smoothing pseudodif-

ferential operator in the Fourier space and ‖Ṽθ,2‖L2→L2 < γ . To see this, we take the decomposition

Ṽθ = (8′θ )
1
2 Ṽ (8′θ )

1
2 = (8′θ )

1
2 Ṽ1,R(8

′

θ )
1
2 + (8′θ )

1
2 Ṽ2,R(8

′

θ )
1
2 = Ṽθ,1+ Ṽθ,2

for large R > 0, where Ṽ j,R is the Fourier multiplier on the Fourier space by V j,R , χ ∈ C∞c (R) such that
χ = 1 near x = 0, and

a sin 2x
x
= a sin 2x

x
χ
( x

R

)
+ a sin 2x

x

(
1−χ

( x
R

))
= V1,R + V2,R.

Then the claimed properties are easily verified.
Since ‖(Q̃ε,θ −w)

−1
‖L2→L2 ≤ C for small ε ≥ 0 and w ∈ Bz , we have

‖Ṽθ,2(Q̃0,θ −w)
−1
− Ṽθ,2(Q̃ε,θ −w)

−1
‖L2→L2 ≤ 2Cγ,

where C is independent of γ . By the resolvent equation, we also learn

Ṽθ,1(Q̃0,θ −w)
−1
− Ṽθ,1(Q̃ε,θ −w)

−1

=−iεṼθ,1(Q̃0,θ −w)
−1(Dξ (1+πθ cos(πξ))−2 Dξ + rθ (ξ))(Q̃ε,θ −w)

−1.

Since Ṽθ,1 is a smoothing pseudodifferential operator and (Q̃0,θ − w)
−1 is also a pseudodifferential

operator with a bounded symbol, Ṽθ,1(Q̃0,θ −w)
−1 D2

ξ is L2-bounded. Thus we have

‖Ṽθ,1(Q̃0,θ −w)
−1
− Ṽθ,1(Q̃ε,θ −w)

−1
‖L2→L2 ≤ Cγ ε,

with some (γ -dependent) constant Cγ > 0. If ε is so small that ε ≤ (C/Cγ )γ , we have

‖Ṽθ (Q̃0,θ −w)
−1
− Ṽθ (Q̃ε,θ −w)

−1
‖L2→L2 ≤ 2Cγ +Cγ ε ≤ 3Cγ

and thus (2-2) is proved since γ > 0 may be arbitrary small. Thus Theorem 1.6 is proved for � =⋃
n∈N�n,δ1 . �

3. The general case

3A. Analyticity of Ṽθ . We recall that Ṽθ was defined in Section 2A.

Lemma 3.1. Under Assumption A, Ṽθ is analytic with respect to θ and ξ 2-compact for θ in some complex
neighborhood of {iδ | −Kπ−1 < δ < Kπ−1

}, where K is the constant in Assumption A.
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Proof of Lemma 3.1. For real θ , the integral kernel Ṽθ (ξ, η) of Ṽθ is given by

Ṽθ (ξ, η)=
1
√

2π
8′θ (ξ)

1
2 V̂ (8θ (ξ)−8θ (η))8′θ (η)

1
2 , ξ, η ∈ R.

We first consider the case of V ∈ C∞c (R;R). Then the Paley–Wiener estimate implies that Ṽθ (ξ, η) is
analytic with respect to θ ∈ C and has the off-diagonal decay bounds

|∂αξ ∂
β
η Ṽθ (ξ, η)| ≤ Cα,β,N 〈ξ − η〉−N , ξ, η ∈ R,

for any α, β and N, where Cα,β,N is independent of θ when θ ∈ C ranges over a bounded set. We also
recall the formula, see, e.g., [Zworski 2012, Section 8.1],

Ṽθ = bw(ξ, Dξ ; θ), b(ξ, x; θ)=
∫

R

Ṽθ

(
ξ +

η

2
, ξ −

η

2

)
e−i〈η,x〉 dη,

where bw denotes the Weyl quantization

bw(ξ, Dξ ; θ) f (ξ)= 1
2π

∫
R

∫
R

b
(
ξ + η

2
, x; θ

)
ei〈ξ−η,x〉 f (η) dη dx .

In fact, the integral kernel of bw(ξ, Dξ ; θ) is

1
2π

∫
R

b
(
ξ + η

2
, x; θ

)
ei〈ξ−η,x〉 dx

and this coincides with Ṽθ (ξ, η) by simple computations. These imply that Ṽθ is a pseudodifferential
operator in the Fourier space with a symbol rapidly decaying with respect to x (that is,

|∂αξ ∂
β
x b(ξ, x; θ)| ≤ Cα,β,N 〈x〉−N , ξ, x ∈ R,

for any α, β and N, where Cα,β,N is independent of θ when θ ∈C ranges over a bounded set) and analytic
with respect to θ . Thus Lemma 3.1 is proved in this case.

We next consider the case of V (x) = s(x)W (x), where s(x) and W (x) satisfy the condition in
Assumption A; see Figure 1, left. We first estimate the Fourier transform of W (x). By the deformation of
the integral (see Figure 3, left), we have

Ŵ (ξ)=
1
√

2π

∫
C±,τ

W (z)e−i zξ dz, ±ξ > 0,

where
C±,τ = (e±iτ (−∞, 0] − 2R0)∪ [−2R0, 2R0] ∪ (2R0+ e∓iτ

[0,∞)),

0 < τ < arctan K , and R0 is that in Assumption A. This expression shows that Ŵ (ξ) has an analytic
continuation to

Sτ = {z ∈ C∗| − τ < arg z < τ } ∪ {z ∈ C∗| − τ < arg z−π < τ };

see Figure 3, right. We see that Ŵ (ξ) decays rapidly in Sτ when |ξ |→∞ thanks to the smoothness of W.
For small ξ ∈ Sτ , we have |Ŵ (ξ)| ≤ C |ξ |−1/(1+µ), where µ > 0 is the constant in Assumption A. To see
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Im z

C−,τ

−2R0 2R0

τ

Re z

Im z
Sτ

τ

Re z

Figure 3. Left: the curve C−,τ , and C+,τ is its reflection with respect to the real axis.
Right: the domain Sτ .

this, we take C±,τ ′ for 0< τ < τ ′ < arctan K and estimate

|Ŵ (ξ)| ≤ C
∫
∞

0
e−cx |ξ |

〈x〉−µ dx = C |ξ |−1
∫
∞

0
e−c|x |

〈x/|ξ |〉−µ dx .

We divide the integral into
∫ ε

0 +
∫
∞

ε
and we obtain the bound

ε

|ξ |
+

1
|ξ |
〈ε/|ξ |〉−µ.

Taking ε = |ξ |µ/(1+µ), we have |Ŵ (ξ)| ≤ C |ξ |−1/(1+µ).
We next claim that the Fourier transform V̂ (ξ) has an analytic continuation to the region Tτ =

⋃
k∈Z Tτ,k ,

where (see Figure 4)

Tτ,k = {z ∈ C \ {0, 2}| − τ < arg z < τ,−τ < arg(2− z) < τ }+ 2k,

and the estimate ∑
k∈Z

sup
ξ∈Tτ,k
|ξ − 2k|

1
1+µ |ξ − 2k− 2|

1
1+µ |V̂ (ξ)|<∞ (3-1)

holds. To see this, we first denote the Fourier transform of s by ŝ(ξ)=
√

2π
∑

k∈Z akδ(ξ − 2k). Then we
have

V̂ (ξ)=
∑
k∈Z

ak Ŵ (ξ − 2k).

By Assumption A, we have
∑

k∈Z |ak |<∞. The estimates on Ŵ (ξ) above show∑
k∈Z

sup
ξ∈Tτ,k
|ξ − 2k|

1
1+µ |ξ − 2k− 2|

1
1+µ |Ŵ (ξ)|<∞.

Then the estimate (3-1) follows from Young’s inequality in `1(Z) applied to sequences {ak}k∈Z and{
sup
ξ∈Tτ,k
|ξ − 2k|

1
1+µ |ξ − 2k− 2|

1
1+µ |Ŵ (ξ)|

}
k∈Z
.

By (3-1), we have |Ṽθ (ξ, η)| ≤ g(ξ − η) for some integrable function g. This is also true for
(∂/∂θ)Ṽθ (ξ, η) by Cauchy’s formula with respect to θ . Thus Young’s inequality implies that the
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Im z
Tτ

τ

Re z−4 −2 0 2 4 6

Tτ,−3 Tτ,−2 Tτ,−1 Tτ,0 Tτ,1 Tτ,2

Figure 4. The domains Tτ and Tτ,k .

operator Ṽθ with integral kernel Ṽθ (ξ, η) is L2-bounded and analytic with respect to θ . We note that if θ
is purely imaginary, we have

| Im(8θ (ξ)−8θ (η))| ≤ π |θ ||Re(8θ (ξ)−8θ (η))− 2k|,

with any k ∈ Z, in particular k such that |ξ − η − 2k| ≤ 1. Thus θ may be taken from a complex
neighborhood of {iδ | −π−1 tan τ < δ < π−1 tan τ }. Since 0< τ < arctan K is arbitrary, Ṽθ is analytic
for θ as claimed in Lemma 3.1.

To see ξ 2-compactness, we approximate V by C∞c functions. Take χ ∈ C∞c (R) such that χ = 1 near
x = 0. We take the decomposition V (x)= V1,R + V2,R , where R > 0,

V1,R = χ
( x

R

)
W (x)

∑
|k|≤R

ake2ikx ,

V2,R =W (x)
∑
|k|>R

ake2ikx
+

(
1−χ

( x
R

))
W (x)

∑
|k|≤R

ake2ikx .

We also denote the corresponding distorted operators on the Fourier space by Ṽθ,1,R and Ṽθ,2,R . Since
V1,R ∈ C∞c , we know Ṽθ,1,R is ξ 2-compact. We also see that limR→∞ ‖Ṽθ,2,R‖L2→L2 = 0 by the estimate
for V = s(x)W (x) as above. This completes the proof of Lemma 3.1. �

3B. Proofs of theorems for the general case. Although we set δ0= π
−1 for the model case in Section 2,

we set δ0 = min{π−1, Kπ−1
} for the general case in this subsection in view of Lemma 3.1. Similarly

we set δ1 =min{(
√

2− 1)π−1, Kπ−1
} in this subsection. Then all the statements in Sections 2B and 2C

remain true for these δ0 and δ1.

Proof of Theorem 1.1 for the general case. The proof is exactly the same as that for the model case in
Section 2 if we replace Lemma 2.1 by Lemma 3.1. �

Proof of Theorem 1.6 for the general case. The proof is almost the same as that for the model case in
Section 2. The only necessary change is the following: In the claim that we can take the decomposi-
tion Ṽθ = Ṽθ,1+ Ṽθ,2, where Ṽθ,1 is a smoothing pseudodifferential operator in the Fourier space and
‖Ṽθ,2‖L2→L2 < γ , we set Ṽθ,1 = Ṽθ,1,R and Ṽθ,2 = Ṽθ,2,R for large R > 0, where Ṽθ, j,R was defined in
the ξ 2-compactness part of the proof of Lemma 3.1. �
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Remark 3.2. In the case of V = a(sin 2x)/x + V0, V0 ∈ C∞c (R;R), Lemma 2.1 and the proof of
Lemma 3.1 show that Lemma 3.1 holds for θ ∈C\((−∞,−π−1

]∪[π−1,∞)). Thus the set of resonances
Resn(P) is defined in C \ (0,∞) for any n ∈N including multiplicities by the meromorphic continuation
of ( f, R+(z)g) from {z | 0< arg z < π} to

{z | 0< arg z < π} ∪ {z | arg z = 0, (n− 1)2 < |z|< n2
} ∪ {z | −2π < arg z < 0}.

This poses the problem of whether Resn(P) 6= Resn′(P) when n 6= n′.
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