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Let A be an artin algebra. An A-module M will be said to be semi-Gorenstein-projective provided
that Exti (M, A) = 0 for all i ≥ 1. All Gorenstein-projective modules are semi-Gorenstein-projective
and only few and quite complicated examples of semi-Gorenstein-projective modules which are not
Gorenstein-projective have been known. One of the aims of the paper is to provide conditions on A such
that all semi-Gorenstein-projective left modules are Gorenstein-projective (we call such an algebra left
weakly Gorenstein). In particular, we show that in case there are only finitely many isomorphism classes
of indecomposable left modules which are both semi-Gorenstein-projective and torsionless, then A is left
weakly Gorenstein. On the other hand, we exhibit a 6-dimensional algebra 3 with a semi-Gorenstein-
projective module M which is not torsionless (thus not Gorenstein-projective). Actually, also the 3-dual
module M∗ is semi-Gorenstein-projective. In this way, we show the independence of the total reflexivity
conditions of Avramov and Martsinkovsky, thus completing a partial proof by Jorgensen and Şega. Since
all the syzygy-modules of M and M∗ are 3-dimensional, the example can be checked (and visualized)
quite easily.

1. Introduction

1.1. Notations and definitions. Let A be an artin algebra. All modules will be finitely generated.
Usually, the modules we are starting with will be left modules, but some constructions then yield
right modules. Let mod A be the category of all finitely generated left A-modules and add(A) the full
subcategory of all projective modules.

If M is a module, let P M be a projective cover of M , and �M the kernel of the canonical map
P M→ M . The modules �t M with t ≥ 0 are called the syzygy modules of M . A module M is said to be
�-periodic provided that there is some t ≥ 1 with �t M = M .

The right A-module M∗ = Hom(M, A) is called the A-dual of M . Let φM : M → M∗∗ be defined
by φM(m)( f )= f (m) for m ∈ M, f ∈ M∗. A module M is said to be torsionless provided that M is a
submodule of a projective module, or, equivalently, provided that φM is injective. A module M is called
reflexive provided that φM is bijective.
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Let Tr M be the cokernel of f ∗, where f is a minimal projective presentation of M (this is the canonical
map P(�M)→ P M). Note that Tr M is a right A-module, called the transpose of M .

A complete projective resolution is a (double infinite) exact sequence

P• : · · · → P−1
→ P0 d0

−→ P1
→ · · ·

of projective left A-modules, such that HomA(P•, A) is again exact. A module M is Gorenstein-projective,
if there is a complete projective resolution P• with M isomorphic to the image of d0.

A module M will be said to be semi-Gorenstein-projective provided that Exti (M, A)= 0 for all i ≥ 1.
All Gorenstein-projective modules are semi-Gorenstein-projective. If M is semi-Gorenstein-projective,
then so is �M . Denote by gp(A) the class of all Gorenstein-projective modules and by ⊥A the class
of all semi-Gorenstein-projective modules. Then gp(A) ⊆ ⊥A. We propose to call an artin algebra
A left weakly Gorenstein provided that ⊥A = gp(A), i.e., any semi-Gorenstein-projective module is
Gorenstein-projective. (And A is said to be right weakly Gorenstein if its opposite algebra Aop is left
weakly Gorenstein.)

The first aim of the paper is to provide a systematic treatment of the relationship between semi-
Gorenstein-projective modules and Gorenstein-projective modules, see theorems 1.2 to 1.4. Some of these
results are (at least partially) known or can be obtained from the literature, in particular see the paper
[B3] by Beligiannis, but we hope that a unified, elementary and direct presentation may be appreciated.

1.2. First, we have various characterizations of the left weakly Gorenstein algebras.

Theorem. Let A be an artin algebra. The following statements are equivalent:

(1) A is left weakly Gorenstein.

(2) Any semi-Gorenstein-projective module is torsionless.

(3) Any semi-Gorenstein-projective module is reflexive.

(4) For any semi-Gorenstein-projective module M, the map φM is surjective.

(5) For any semi-Gorenstein-projective module M, the module M∗ is semi-Gorenstein projective.

(6) Any semi-Gorenstein-projective module M satisfies Ext1(M∗, AA)= 0.

(7) Any semi-Gorenstein-projective module M satisfies Ext1(Tr M, AA)= 0.

The equivalence of (1) and (2) was published by Huang–Huang [HH, Theorem 4.2].

1.3. The next result concerns artin algebras with finitely many indecomposable semi-Gorenstein-
projective modules or with finitely many indecomposable torsionless modules.

Theorem. If the number of isomorphism classes of indecomposable modules which are both semi-
Gorenstein-projective and torsionless is finite, then A is left weakly Gorenstein and any indecomposable
nonprojective semi-Gorenstein-projective module is �-periodic.

This combines two different directions of thoughts. First of all, Yoshino [Y] has shown that for
certain commutative rings R (in particular all artinian commutative rings) the finiteness of the number
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of isomorphism classes of indecomposable semi-Gorenstein-projective R-modules implies that R is left
weakly Gorenstein. This was generalized to artin algebras by Beligiannis [B3, Corollary 5.11]. Second,
according to Marczinzik [M1], all torsionless-finite artin algebras (these are the artin algebras with only
finitely many isomorphism classes of torsionless indecomposable modules) are left weakly Gorenstein.
Note that a lot of interesting classes of artin algebras are torsionless-finite, see 3.6.

1.4. If C is an extension-closed full subcategory of mod A, then the embedding of C into mod A provides
an exact structure on C, called its canonical exact structure (for the basic properties of exact structures, see
for example [K, Appendix A]). An exact category F is called a Frobenius category provided that it has
enough projective and enough injective objects and that the projective objects in F are just the injective
objects in F . We denote by P(F) (and by I(F)) the full subcategory of the projective (respectively
injective) objects in F .

The subcategories gp(A) and ⊥A are extension-closed, and with its canonical exact structure gp(A) is
Frobenius with P(gp(A))= add A [B2, Prop. 3.8]. Thus, if A is left weakly Gorenstein, then F = gp(A)
is an extension-closed full subcategory of mod A which is Frobenius with the canonical exact structure
and satisfies P(F)⊆ ⊥A ⊆ F . The following result shows that these properties characterize left weakly
Gorenstein algebras.

Theorem. Let A be an artin algebra and F an extension-closed full subcategory of mod A such that F
is a Frobenius category with respect to its canonical exact structure. If P(F) ⊆ ⊥A ⊆ F , then A is left
weakly Gorenstein and F = gp(A).

A full subcategory C of mod A is said to be resolving provided that it contains all the projective modules
and is closed under extensions, direct summands and kernels of surjective maps. Note that ⊥A and gp(A)
are resolving subcategories.

Corollary 1. Let A be an artin algebra and F a resolving subcategory of mod A with ⊥A⊆F . Assume
that F with its canonical exact structure is a Frobenius subcategory. Then A is left weakly Gorenstein and
F = gp(A).

Taking F = ⊥A in Theorem 1.4 we get

Corollary 2. An artin algebra A is left weakly Gorenstein if and only if ⊥A with its canonical exact
structure is a Frobenius subcategory.

We remark that gp(A) is the largest resolving Frobenius subcategory of mod A (compare [B1, Prop.
2.13, Theorem 2.11], [B2, p.145], and [B3, p.1989]; also [ZX, Prop. 5.1]). This implies Theorem 1.4 and
the two corollaries (as one of the referees has pointed out).

1.5. The f-quiver of an artin algebra A. The main tool used in the paper are the operator f, and the
f-quiver of A. Here are the definitions.

Recall that a map f : M → M ′ is said to be left minimal provided that any map h : M ′→ M ′ with
h f = f is an automorphism [AR1]. A left add(A)-approximation will be called minimal provided that
it is left minimal. We denote by fM the cokernel of a minimal left add(A)-approximation of M . (The
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symbol f, pronounced “agemo”, should be a reminder that f has to be considered as a kind of inverse of
�.) It turns out that the operator f coincides with Tr�Tr, which has been studied by Auslander and
Reiten in [AR2]. See Subsection 4.4, and also 4.7.

Let ω : M→ P be a minimal left add(A)-approximation with cokernel map π : P→ fM . If M is
indecomposable and not projective, then the image of ω is contained in the radical of P , thus π is a
projective cover. If M is, in addition, torsionless (so that ω is injective), then fM is indecomposable and
not projective, and �fM ' M .

The f-quiver of A has as vertices the isomorphism classes [X ] of the indecomposable nonprojective
modules X and there is an arrow

[X ] ......................................................... [fX ]

for any torsionless (indecomposable, nonprojective) module X . (We hope that the reader is not irritated by
the chosen orientation of the arrow: it corresponds to the usual convention when dealing with Ext-quivers.)
A component of the f-quiver will be called an f-component; a path in the f-quiver will be called an
f-path.

In the f-quiver, an arrow ending at [X ] starts at [fX ], thus for any vertex [X ], there is at most one
arrow ending in [X ]. If [Z ] is the start of an arrow, say Z 'fX for some vertex [X ], then X '�fX '�Z
implies that the arrow is uniquely determined. This shows that at any vertex of the f-quiver, at most one
arrow starts and at most one arrow ends. As a consequence, we have:

Proposition. Any f-component is a linearly oriented quiver An with n ≥ 1 vertices, or an oriented
cycle Ãn with n+1≥ 1 vertices, or of the form −N, or N, or Z.

Note that we consider any subset I of Z as a quiver, with arrows from z to z−1 (provided that both
z−1 and z belong to I ). For example, the interval {1, 2, . . . , n} is the quiver An with linear orientation
(with 1 being the unique sink and n the unique source). Here are the quivers −N and N:

◦ ◦ ◦......................................... ......................................... .........................................· · ·

−N

◦ ◦ ◦......................................... ......................................... ......................................... · · ·

N

As we will see in 7.7, all cases mentioned here can arise as f-components.
An indecomposable nonprojective module M will be said to be off-type1where1∈{An, Ãn,−N,N,Z}

in case the f-component containing [M] is of the form 1.
Let us collect what can be read out about an indecomposable nonprojective module when looking at its

position in the f-quiver. Recall that a module M is said to be t-torsionfree, provided Exti (Tr M, AA)= 0
for 1 ≤ i ≤ t (and∞-torsionfree, provided Exti (Tr M, AA) = 0 for all i ≥ 1); the definition is due to
Auslander (see [A1, Br, AB]).

Theorem. Let M be an indecomposable nonprojective module.

(0) [M] is an isolated vertex if and only if Ext1(M, A) 6= 0 and M is not torsionless.

(1) [M] is the start of a path of length t ≥ 1 if and only if Exti (M, A)= 0 for 1 ≤ i ≤ t . In particular,
[M] is the start of an arrow if and only if Ext1(M, A)= 0.
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(1′) [M] is the start of an infinite path if and only if M is semi-Gorenstein-projective.

(1′′) [M] is of f-type −N if and only if M is semi-Gorenstein-projective, but not Gorenstein-projective.

(2) [M] is the end of a path of length t ≥ 1 if and only if M is t-torsionfree for 1 ≤ i ≤ t , if and only
if fi−1 M is torsionless for 1 ≤ i ≤ t . In particular, [M] is the end of an arrow if and only if M is
torsionless; and [M] is the end of a path of length 2 if and only if M is reflexive.

(2′) [M] is the end of an infinite path if and only if M is∞-torsionfree, if and only if M is reflexive and
M∗ is semi-Gorenstein-projective.

(2′′) [M] is of f-type N if and only if M is∞-torsionfree, but not Gorenstein-projective.

(3) [M] is the start of an infinite path and also the end of an infinite path if and only if M is Gorenstein-
projective. M is of f-type Z if and only if M is Gorenstein-projective and not �-periodic. M is of
f-type Ãn for some n ≥ 0 if and only if M is Gorenstein-projective and �-periodic.

(4) A-duality provides a bijection between the isomorphism classes of the reflexive indecomposable
A-modules of f-type An and the isomorphism classes of the reflexive indecomposable Aop-modules of
f-type An . Thus, for any n≥ 3, A has f-components of form An if and only if Aop has f-components
of form An .

(5) A-duality provides a bijection between the isomorphism classes of the reflexive indecomposable
A-modules of f-type N and the isomorphism classes of the reflexive indecomposable Aop-modules of
f-type −N. Thus, A has f-components of form N if and only if Aop has f-components of form −N.

Remark 1. Characterizations of Gorenstein-projective modules. The f-quiver shows nicely that an
indecomposable module M is Gorenstein-projective if and only if both M and Tr M are semi-Gorenstein-
projective, if and only if M is reflexive and both M and M∗ are semi-Gorenstein projective: See (1′), (2′)
and (3).

Remark 2. Symmetry. The f-quiver shows a symmetry between the semi-Gorenstein-projective
modules and the∞-torsionfree modules: An indecomposable nonprojective module M is semi-Gorenstein-
projective provided there is an infinite f-path starting in M ; and M is∞-torsionfree, provided there is
an infinite f-path ending in M .

Remark 3. Weakly Gorenstein algebras. An artin algebra A is left weakly Gorenstein if and only if
there are no modules of f-type −N, see (1′′). Similarly, A is right weakly Gorenstein if and only if there
are no modules of f-type N, see (2′′) and (5).

1.6. The first example of a semi-Gorenstein-projective module which is not Gorenstein-projective was
constructed by Jorgensen and Şega [JS] in 2006, for a commutative algebra of dimension 8. Recently,
Marczinzik [M2] presented some noncommutative algebras with semi-Gorenstein-projective modules
which are not Gorenstein-projective. In 6.1, we exhibit a class of 6-dimensional k-algebras 3(q) with
parameter q ∈ k \ {0} and a family M(α) of 3-dimensional indecomposable 3(q)-modules (with α ∈ k)
in order to find new examples:
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Theorem. Let 3(q) be the 6-dimensional algebra defined in 6.1. If the multiplicative order of
q is infinite, then the 3-modules M(q) and M(q)∗ both are semi-Gorenstein-projective, but M(q) is
not torsionless, thus not Gorenstein-projective; all the syzygy modules �t M(q) and �t(M(q)∗) with
t ≥ 0 are 3-dimensional and indecomposable; the module M(q)∗∗ '�M(1) is also 3-dimensional, but
decomposable.

Addendum. For any q, the 3(q)-modules M(α) with α ∈ k \ qZ are Gorenstein-projective. Thus, if
k is infinite, then there are infinitely many isomorphism classes of 3-dimensional Gorenstein-projective
modules.

1.7. Independence of the total reflexivity conditions. It was asked by Avramov and Martsinkowsky
[AM] whether the following conditions which characterize the Gorenstein-projective modules, are
independent.

(G1) The A-module M is semi-Gorenstein-projective.

(G2) The A-dual M∗ = Hom(M, A A) of M is semi-Gorenstein-projective.

(G3) The A-module M is reflexive.

Theorem. For artin algebras, the conditions (G1), (G2) and (G3) are independent.

Proof. Theorem 1.6 provides a 3(q)-module M (namely M = M(q)) satisfying the conditions (G1), (G2)
and not (G3). It remains to use the following proposition. �

Proposition. If a module M is semi-Gorenstein-projective and not Gorenstein-projective, then �2 M
satisfies (G1) and (G3), but not (G2).

If a module M ′ satisfies (G1) and (G3), but not (G2), then N = (M ′)∗ is a right module satisfying (G2)
and (G3), but not (G1).

Proof. Let M be semi-Gorenstein-projective and not Gorenstein-projective. Then �2 M is reflexive and
semi-Gorenstein-projective. By Lemma 2.5, (�2 M)∗ = Tr M . Thus (�2 M)∗ is not semi-Gorenstein-
projective (otherwise, M is Gorenstein-projective).

If M ′ satisfies (G1) and (G3), but not (G2), then (M ′)∗ is reflexive and (M ′)∗∗=M ′ is semi-Gorenstein-
projective, i.e., N = (M ′)∗ satisfies (G2) and (G3), but not (G1). �

Actually, for our example A = 3(q), there is also an A-module which satisfies (G2), (G3), but not
(G1), namely the module M(1), see 7.5.

In [JS], where Jorgensen and Şega present the first example of a semi-Gorenstein-projective module
which is not Gorenstein-projective, they also exhibited modules satisfying (G1), (G3), but not (G2), and
modules satisfying (G2), (G3), but not (G1). The algebra A considered in [JS] is commutative. It is an
open problem whether there exists a commutative ring A with a module M satisfying (G1), (G2), but
not (G3). The forthcoming paper [RZ4] will be devoted to a better understanding of the modules M with
both M and M∗ being semi-Gorenstein-projective.
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1.8. Outline of the paper. The proofs of theorems 1.2, 1.3 and 1.4 are given in sections 2, 3 and 5,
respectively. We use what we call (as a shorthand) approximation sequences, namely exact sequences

0→ X→ Y → Z→ 0

with Y projective and Ext1(Z , A)= 0, see section 2. Of special interest are the approximation sequences
with both X and Z indecomposable and nonprojective; in this case, we have X =�Z and Z = fX , and
we call them f-sequences, see section 3.

Section 4 deals with the f-quiver of A. An essential ingredient in this setting seems to be Corollary
4.4. The corresponding Remark 1 in 4.4 asserts that the kernel of the canonical map ft M→ (ft M)∗∗ is
equal to Extt+1(Tr M, AA), and its cokernel is equal to Exti+2(Tr M, AA), for all t ≥ 0.

In sections 6 and 7, we present the 6-dimensional algebra3=3(q) depending on a parameter q ∈ k\{0},
which we need for Theorem 1.6. We analyze some 3-dimensional representations which we denote by
M(α) with α ∈ k. Essential properties of the modules M(α) can be found in 6.3 to 6.5; they are labeled
by (1) to (9). The properties (1) to (5) in 6.3 are those which are needed in order to exhibit a module,
namely M(q), which is semi-Gorenstein-projective, but not torsionless, provided the multiplicative order
of q is infinite (see 6.4). The remaining properties (6) to (9) in 6.5 show, in particular, that in case the
multiplicative order of q is infinite, also the 3-dual M(q)∗ of M(q) is semi-Gorenstein-projective. The
proof of Theorem 1.6 and its Addendum is given in 6.7 and 6.8. In 7.1 and 7.2, some components of the
f-quivers of the algebras 3 and 3op are described.

The final sections 8 and 9 add remarks and mention some open questions.

1.9. Terminology. We end the introduction with some remarks concerning the terminology and its
history. The usual reference for the introduction of Gorenstein-projective modules (under the name
modules of Gorenstein dimension zero) is the Memoirs by Auslander and Bridger [AB] in 1969. Actually,
in his thesis [Br], Bridger attributes the concept of the Gorenstein dimension to Auslander: In January 1967,
Auslander gave four lectures at the Séminaire Pierre Samuel (see the notes [A1] by Mangeney, Peskine
and Szpiro). In these lectures, he discussed the class of all reflexive modules M such that both M and
M∗ are semi-Gorenstein-projective modules and denoted it by G(A) [A1, Definition 3.2.2]. Thus G(A)
is the class of the Gorenstein-projective modules and the conditions (G1), (G2) and (G3) served as the
first definition. In [AB, Proposition 3.8], it is shown that a module M belongs to G(A) if and only if both
M and Tr M are semi-Gorenstein-projective. Of course, we should stress the following: Whereas some
formulations in [AB] assume that the ring A in question is a commutative noetherian ring, all the essential
considerations in [A1, Br, AB] are shown in the setting of an abelian category with enough projectives,
and of the category of finitely generated modules over a, not necessarily commutative, noetherian ring.
Enochs and Jenda [EJ1, EJ2] have reformulated the definition of Gorenstein-projective modules in terms
of complete projective resolutions, see also [Chr]. Several other names for the Gorenstein-projective
modules are in use, they are also called “totally reflexive” modules [AM], and “maximal Cohen–Macaulay”
modules [Buch] and “Cohen–Macaulay” modules [B2].
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We should apologize that we propose a new name for the modules M with Exti (M, A)= 0 for all i ≥ 1,
namely semi-Gorenstein-projective. These modules have been called for example “Cohen–Macaulay
modules” or “stable modules”. However, the name “Cohen–Macaulay module” is in conflict with its
established use for commutative rings, and, in our opinion, the wording “stable” may be too vague as a
proper identifier. We hope that the name semi-Gorenstein-projective describes well what is going on: that
there is something like a half of a complete projective resolution (“semi” means “half”). We also propose
the name left weakly Gorenstein for an algebra A with gp(A)= ⊥A (in contrast to “nearly Gorenstein” in
[M2]); of course, a Gorenstein algebra A satisfies gp(A)= ⊥A, but the algebras with gp(A)= ⊥A seem
to be quite far away from being Gorenstein. The left weakly Gorenstein algebras have also been called
“algebras with condition (GC)” in [CH].

2. Approximation sequences. Proof of Theorem 1.2

2.1. Lemma. Let ε : 0→ X ω
−→ Y π

−→ Z → 0 be an exact sequence with Y projective. Then the
following conditions are equivalent:

(i) ω is a left add(A)-approximation.

(ii) Ext1(Z , A)= 0.

(iii) The A-dual sequence ε∗ of ε is exact.

An exact sequence 0→ X→ Y → Z→ 0 with Y projective satisfying the equivalent properties will
be called in this paper an approximation sequence (this is just a shorthand, since it is too vague to be used
in general). One may observe that the conditions (i), (ii) and (iii) are equivalent for any exact sequence
ε : X ω
−→ Y → Z→ 0 with Y projective, even if ω is not injective, but we are only interested in the short

exact sequences.

Proof of the equivalence of the properties. Since Y is projective, applying Hom(−, A) to ε we get the
exact sequence 0→ Z∗ π∗

−→ Y ∗ ω∗
−→ X∗→ Ext1(Z , A)→ 0. Note that ω is a left add(A)-approximation

if and only if ω∗ is surjective. From this we get the equivalence of (i) and (ii) and the equivalence of (ii)
and (iii). �

2.2. Also the following basic lemma is well-known (see, for example [R]).

Lemma. Let P−1
f
−→ P0

g
−→ P1 be an exact sequence of projective modules and let g = up be a

factorization with p : P0→ I epi and u : I → P1 mono. Then P∗
−1

f ∗
←− P∗0

g∗
←− P∗1 is exact if and only if

u is a left add(A)-approximation.
For the convenience of the reader, we insert the proof.

Proof. Since f ∗g∗ = (g f )∗ = 0, we have Im g∗ ⊆ Ker f ∗. Assume now that u is a left add(A)-
approximation and let h ∈ Ker f ∗, thus h f = 0. Since p is a cokernel of f , there is h′ with h = h′ p.
Since u is a left add(A)-approximation, there is h′′ with h′ = h′′u. Thus h = h′ p= h′′up= h′′g = g∗(h′′)
belongs to the image of g∗, there also Ker f ∗ ⊆ Im g∗.
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Conversely, we assume that Im g∗ = Ker f ∗ and let h : I → A be a map. Then hp f = 0, so that
f ∗(hp)= 0. Therefore hp belongs to Ker f ∗, thus to Im g∗. There is h′′ ∈ P∗1 with hp= g∗(h′′)= h′′g=
h′′up, and therefore h = h′′u. �

This Lemma will be used in various settings, see 4.3.

2.3. A semi-Gorenstein-projective and �-periodic module is Gorenstein-projective.

Proof. Let M be semi-Gorenstein-projective and assume that �t M = M for some t ≥ 1. Let · · · → Pi →

· · · → P0→ M→ 0 be a minimal projective resolution of M . Then

0→�t M→ Pt−1→ · · · → P0→ M→ 0 (+)

is the concatenation of approximation sequences. Since �t M = M , we can concatenate countably many
copies of (+) in order to obtain a double infinite acyclic chain complex of projective modules. As
a concatenation of approximation sequences, it is a complete projective resolution. Therefore, M is
Gorenstein-projective. �

2.4. Here are two essential observations.

(a) Let 0→ X→ Y → Z→ 0 be an approximation sequence. Then φX is surjective if and only if Z is
torsionless. We can also say: X is reflexive if and only if Z is torsionless.

(b) Let 0→ X→ Y → Z→ 0 be an approximation sequence. Then Ext1(X∗, AA)= 0 if and only if
φZ is surjective.

Proof of (a) and (b). Since 0→ X ω
−→ Y π

−→ Z→ 0 is an approximation sequence, it follows that

0→ Z∗ π∗
−→ Y ∗→ X∗→ 0

is an exact sequence of right A-modules. This induces an exact sequence

0→ X∗∗→ Y ∗∗ π
∗∗

−→ Z∗∗→ Ext1A(X
∗, AA)→ 0

of left A-modules, and we obtain the commutative diagram

0 −−−→ X −−−→ Y
π

−−−→ Z −−−→ 0yφX

∥∥∥ yφZ

0 −−−→ X∗∗ −−−→ Y ∗∗
π∗∗

−−−→ Z∗∗ −−−→ Ext1(X∗, AA) −−−→ 0.

By the Snake lemma, the kernel of φZ is isomorphic to the cokernel of φX , Thus φZ is a monomorphism
if and only if φX is an epimorphism. Since X is torsionless, X is reflexive if and only if φX is surjective.
This is (a).

By the commutative diagram above, we see that φZ is epic if and only if so is π∗∗, and if and only if
Ext1A(X

∗, AA)= 0. This is (b). �

Corollary. A module X is reflexive if and only if both X and fX are torsionless.



10 Claus Michael Ringel and Pu Zhang

Proof. If X is reflexive, then it is torsionless. Thus we may assume from the beginning that X is torsionless.
Any minimal left add(A)-approximation X→ Y is injective and its cokernel is fX . The exact sequence
0→ X→ Y → fX→ 0 is an approximation sequence, and 2.4(a) asserts that X is reflexive if and only
if fX is torsionless. �

Remark. The assertion of the corollary can be strengthened as follows. For any module X , let us
denote by K X the kernel of the map φX : X → X∗∗. Of course, K X is the kernel of any left add(A)-
approximation of X . Therefore X is torsionless if and only if K X = 0. Claim: The cokernel of the map
φX : X→ X∗∗ is isomorphic to KfX.

Proof. Let u : X→ Y be a minimal add(A) approximation, say with cokernel p : Y → fX . The A-dual
of the exact sequence X u

−→ Y p
−→ fX→ 0 is 0← X∗ u∗

←− Y ∗ p∗
←− (fX)∗← 0, since u is an add(A)-

approximation. Using again A-duality, we obtain the exact sequence 0→ X∗∗ u∗∗
−→ Y ∗∗ p∗∗

−→ (fX)∗∗.
Thus there is the following commutative diagram with exact rows:

X
u

−−−→ Y
π

−−−→ fX −−−→ 0yφX

yφY

yφfX

0 −−−→ X∗∗
u∗∗
−−−→ Y ∗∗

π∗∗

−−−→ fX∗∗.

Since φY is an isomorphism, the snake lemma yields CokφX ' Ker(φfX )= KfX . �

In 4.4, we will rewrite both K X and KfX in order to obtain the classical Auslander–Bridger sequence
(see Corollary and Remark 1 in 4.4).

2.5. Lemma. Let M be a module with Exti (M, A)= 0 for i = 1, 2. Then Tr M ' (�2 M)∗ and there is
a projective module Y such that M∗ ' �2 Tr M ⊕ Y .

Proof. Let π : P M→M and π ′ : P�M→�M be projective covers with inclusion maps ω :�M→ P M
and ω′ :�2 M→ P�M . Then ωπ ′ is a minimal projective presentation of M . By definition, Tr M is the
cokernel of (ωπ ′)∗. Since Exti (M, A)= 0 for i = 1, 2, the exact sequences

0→�2 M ω′
−→ P�M π ′

−→�M→ 0, 0→�M ω
−→ P M > π >> M→ 0

are approximation sequences. As a consequence, the corresponding A-dual sequences

0← (�2 M)∗ (ω′)∗
←− (P�M)∗ (π ′)∗

←− (�M)∗← 0, 0← (�M)∗ ω∗
←− (P M)∗ π∗

←− M∗← 0

are exact. The concatenation

ε : 0← (�2 M)∗ (ω′)∗
←−−− (P�M)∗ (ωπ ′)∗

←−−− (P M)∗ π∗
←− M∗← 0

shows that (�2 M)∗ is a cokernel of (ωπ ′)∗, thus Tr M ' (�2 M)∗. In addition, ε shows that �2 Tr M =
�2(�2 M)∗ is the direct sum of M∗ and a projective module Y . �

2.6. Proof of Theorem 1.2
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(1) implies (2) to (7): This follows directly from well-known properties of Gorenstein-projective
modules. Namely, assume (1) and let M be Gorenstein-projective. Then M is reflexive, this yields (3),
but, of course, also (2) and (4). Second, M∗ is Gorenstein-projective, thus semi-Gorenstein-projective,
therefore we get (5) and (6). Finally, Tr M is Gorenstein-projective, thus semi-Gorenstein-projective,
therefore we get (7).

Both (3) and (4) imply (2): Let M be semi-Gorenstein-projective. Consider the approximation sequence
0→ �M → P M → M → 0 and note that �M is again semi-Gorenstein-projective. If (3) or just (4)
holds, we know that φ�M is surjective, thus by 2.4 (a), M is torsionless.

Both (6) and (7) imply (2): Let M be semi-Gorenstein-projective. Consider the approximation
sequences 0→�M→ P M→M→ 0 and 0→�2 M→ P M→�M→ 0. Since M is semi-Gorenstein-
projective, also �2 M is semi-Gorenstein-projective. If (6) holds, we use (6) for �2 M in order to see that
Ext1((�2 M)∗, AA)= 0. If (7) holds, we use (7) for M in order to see that Ext1(Tr M, AA)= 0. According
to 2.5, we see that Tr M = (�2 M)∗. Thus in both cases (6) and (7), we have Ext1((�2 M)∗, AA) = 0.
According to 2.4 (b), it follows from Ext1((�2 M)∗, AA) = 0 that φ�M is surjective. By 2.4 (a), M is
torsionless.

Trivially, (5) implies (6). Altogether we have shown that any one of the assertions (3) to (7) implies (2).
It remains to show that (2) implies (1). Let M be semi-Gorenstein-projective and torsionless. We

want to show that M is Gorenstein-projective. Let Mi = fi M for all i ≥ 0 (with M0 = M). Since M0

is torsionless, there is an approximation sequence 0→ M0→ P1→ M1→ 0, and M1 is again semi-
Gorenstein-projective. By assumption, M1 is again torsionless. Inductively, starting with a torsionless
module Mi , we obtain an approximation sequence εi : 0→ Mi → Pi+1 → Mi+1 → 0, we conclude
that with Mi also Mi+1 is semi-Gorenstein-projective. By (2) we see that Mi+1 is torsionless, again.
Concatenating a minimal projective resolution of M with these approximation sequences εi , for 0≤ i , we
obtain a complete projective resolution of M . �

3. f-sequences. Proof of Theorem 1.3

3.1. An approximation sequence 0→ X→ Y → Z→ 0 will be called an f-sequence provided that
both X and Z are indecomposable and not projective (the relevance of such sequences was stressed
already in [RX]).

Lemma. An approximation sequence is the direct sum of f-sequences and an exact sequence 0→
X ′→ Y ′→ Z ′→ 0 with X ′, Z ′ (thus also Y ′) being projective.

Proof. Let 0→ X ω
−→ Y π

−→ Z → 0 be an approximation sequence. Since Y is projective and π is
surjective, a direct decomposition Z = Z1⊕ Z2 yields a direct sum decomposition of the sequence. Since
ω is a left add(A)-approximation, there is also the corresponding assertion: If X = X1⊕X2, then X ω

−→ Y
is the direct sum of two maps X1→ Y1 and X2→ Y2, thus again we obtain a direct sum decomposition of
the sequence. This shows that for an indecomposable approximation sequence 0→ X ω

−→ Y π
−→ Z→ 0,

the modules X and Z are indecomposable or zero (and, of course, not both can be zero).
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If Z is indecomposable and projective, then the sequence 0→ X → Y → Z → 0 splits off 0→
0→ Z 1

−→ Z → 0, thus X = 0. Similarly, if X is indecomposable and projective, then the sequence
0→ X→ Y → Z→ 0 splits off 0→ X 1

−→ X→ 0→ 0, thus Z = 0.
It remains that 0→ X → Y → Z → 0 is an approximation sequence with both X and Z being

indecomposable and nonprojective. �

3.2. Lemma. Let ε : 0→ X ω
−→ Y π

−→ Z → 0 be an exact sequence. The following conditions are
equivalent:

(i) ε is an f-sequence.

(ii) X and Z are indecomposable and not projective, ω is a minimal left add(A)-approximation, π is a
projective cover, X =�Z, Z = fX.

(iii) X is indecomposable and not projective, ω is a minimal left add(A)-approximation.

(iv) Z is indecomposable and not projective, π is a projective cover, and Ext1(Z , A)= 0.

(v) X =�Z, Y is projective, Z = fX, and X is indecomposable.

(vi) X =�Z, Y is projective, Z = fX, and Z is indecomposable.

Proof. (i) implies (ii): Let ε be an f-sequence. Then ω has to be minimal, since otherwise ε would split
off a nonzero sequence of the form 0→ 0→ P 1

−→ P→ 0 with P projective. Similarly, π has to be a
projective cover, since otherwise ε would split off a nonzero sequence of the form 0→ P 1

−→ P→ 0→ 0.
Since ω is a minimal left add(A)-approximation and Z is the cokernel of ω, we see that Z = fX . Since
π is a projective cover of Z and X is its kernel, X =�Z .

(ii) collects all the relevant properties of an f-sequence. The condition (iii), (iv), (v) and (vi) single
out some of these properties, thus (ii) implies these conditions.

(iii) implies (i): Since X is indecomposable and not projective, ε has no direct summand 0→ P 1
−→

P→ 0→ 0. Since ω is left minimal, ε has no direct summand 0→ 0→ P 1
−→ P→ 0. Similarly, (iv)

implies (i).
Both (v) and (vi) imply (i): Since Z =fX , we have Ext1(Z , A)= 0. This shows that the sequence is an

approximation sequence. Since X =�Z , the sequence ε has no direct summand of the form 0→ P 1
−→

P→ 0→ 0. Since Z =fX , the sequence ε has no direct summand of the form 0→ 0→ P 1
−→ P→ 0.

Thus, ε is a direct sum of f-sequences. Finally, since X or Z is indecomposable, ε is an f-sequence. �

3.3. Corollary. If M is indecomposable, nonprojective, semi-Gorenstein-projective, then �M is
indecomposable, nonprojective, semi-Gorenstein-projective and M = f�M.

Proof. Since M is semi-Gorenstein-projective module, the canonical sequence ε : 0→�M→ P M→
M→ 0 is an approximation sequence. Since M is indecomposable and not projective, and P M→ M is
a projective cover, ε is an f-sequence, thus �M is indecomposable and nonprojective, and M = f�M ,
by 3.2. Of course, with M also �M is semi-Gorenstein-projective. �
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3.4. Lemma. If the number of isomorphism classes of indecomposable modules which are both semi-
Gorenstein-projective and torsionless is finite, then any indecomposable nonprojective semi-Gorenstein-
projective module M is �-periodic.

Proof. According to 3.3, the modules �t M with t ≥ 1 are indecomposable modules which are torsionless
and semi-Gorenstein-projective. Since there are only finitely many isomorphism classes of indecomposable
torsionless semi-Gorenstein-projective modules, there are natural numbers 1≤ s < t with �s M =�t M .
Then

M = fs�s M = fs�t M =�t−s M and t − s ≥ 1,

thus M is �-periodic. �

3.5. Proof of Theorem 1.3 We assume that the number of isomorphism classes of indecomposable
torsionless semi-Gorenstein-projective modules is finite. According to 3.4, any indecomposable nonpro-
jective semi-Gorenstein-projective module is �-periodic. 2.3 shows that any semi-Gorenstein-projective
�-periodic module is Gorenstein-projective. �

Remark. One of the referees has pointed out that Theorem 1.3 can be improved by replacing the class
of all torsionless modules by an arbitrary full subcategory X which is closed under direct summands,
contains add(A), and contains for any indecomposable module M at least one syzygy module �n M . If
⊥A∩X contains only finitely many isomorphism classes of indecomposable modules, then3 is left weakly
Gorenstein and any Gorenstein-projective module is �-periodic.

3.6. Torsionless-finite algebras. An artin algebra A is said to be torsionless-finite if there are only
finitely many isomorphism classes of indecomposable torsionless modules. Theorem 1.3 implies that
any torsionless-finite artin algebra is left weakly Gorenstein, as Marczinzik [M1] has shown. If 3 is
torsionless-finite, also 3op is torsionless-finite [R], thus a torsionless-finite artin algebra is also right
weakly Gorenstein. Note that many interesting classes of algebras are known to be torsionless-finite. In
particular, we have

The following algebras are torsionless-finite, hence left and right weakly Gorenstein.

(1) Algebras A such that A/ soc(A A) is representation-finite.

(2) Algebras stably equivalent to hereditary algebras, in particular all algebras with radical square zero.

(3) Minimal representation-infinite algebras.

(4) Special biserial algebras without indecomposable projective-injective modules.

See for example [R], where also other classes of torsionless-finite algebras are listed.
Chen [Che] has shown that a connected algebra A with radical square zero either is self-injective, or

else all the Gorenstein-projective modules are projective. The assertion that algebras with radical square
zero are weakly Gorenstein complements this result.
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4. The f-quiver

4.1. We recall that the f-quiver of A has as vertices the isomorphism classes [X ] of the indecomposable
nonprojective modules X and there is an arrow

[X ] ......................................................... [Z ]

provided that X is torsionless and Z = fX, thus provided that there exists an f-sequence 0→ X →
Y → Z→ 0. We will also write the vertex [X ] simply as X .

4.2. The A-dual of an f-sequence.

Lemma. (a) Let ε : 0→ X → Y → Z → 0 be an approximation sequence and assume that X is
reflexive. Then Ext1(X∗, AA)= 0 if and only if Z is reflexive, if and only if the A-dual ε∗ of ε is again an
approximation sequence.

(b) Let ε : 0→ X→ Y → Z→ 0 be an f-sequence with X reflexive. Then Z is reflexive, if and only if
the A-dual ε∗ of ε is again an f-sequence.

Proof. (a) By 2.4(a), we see that Z is always torsionless. Thus 2.4(b) shows that Ext1(X∗, AA)= 0 if
and only if Z is reflexive. First, assume that Z is reflexive. Then Ext1(X∗, AA)= 0, and therefore we see
that the A-dual sequence ε∗ is exact. We dualize a second time: the sequence ε∗∗ is isomorphic to the
sequence ε, since the three modules X, Y, Z are reflexive. This means that ε∗∗ is exact, and therefore ε∗

is an approximation sequence. Second, conversely, if ε∗ is an approximation sequence, then it is exact,
and therefore Ext1(X∗, AA)= 0, thus Z is reflexive.

(b) Assume now that ε is an f-sequence. First, assume that Z is reflexive. Since X, Z both are reflexive,
indecomposable and nonprojective, also X∗ and Z∗ are indecomposable and nonprojective, as we will
show below. Thus ε∗ is an f-sequence. Conversely, if ε is an f-sequence, then it is an approximation
sequence and thus Z is reflexive by (a). �

We have used some basic facts about the A-dual M∗ of a module M .

(1) M∗ is always torsionless.

(2) If M is nonzero and torsionless, then M∗ is nonzero.

(3) If M is reflexive, indecomposable and nonprojective, then M∗ is reflexive, indecomposable and
nonprojective.

Proof. Here are the proofs (or see for example [L, p.144]). (1) There is a surjective map p : P→ M with
P projective. Then p∗ : M∗→ P∗ is an embedding of M∗ into the projective module P∗. The assertion
(2) is obvious.

(3) Let M be reflexive, indecomposable and nonprojective. Consider a direct decomposition M∗ =
N1⊕N2 with N1 6= 0 and N2 6= 0. Since M∗ is torsionless by (1), both modules N1 and N2 are torsionless,
therefore N ∗1 6= 0, N ∗2 6= 0, thus there is a proper direct decomposition M∗∗ = N ∗1 ⊕ N ∗2 . Since M is
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reflexive and indecomposable, this is impossible. Thus M∗ has to be indecomposable. If M∗ is projective,
then also M∗∗ is projective. Again, since M is reflexive, this is impossible.

It remains to show that M∗ is reflexive. Since M∗∗ is isomorphic to M , we see that M∗∗∗ is isomorphic
to M∗, thus the canonical map M∗→ M∗∗∗ has to be an isomorphism (since it is a monomorphism of
modules of equal length). �

4.3. Lemma 2.2 outlines the importance of left add(A)-approximations when dealing with exact
sequences of projective modules. Let us give a unified treatment of the relevance of approximation
sequences and of f-sequences.

(a) An exact sequence · · · → P−1
→ P0 d0

−→ P1
→ · · · is a complete projective resolution if and only

if it is the concatenation of approximation sequences.
(a′) An indecomposable nonprojective module M is Gorenstein-projective if and only if [M] is the start

of an infinite f-path and the end of an infinite f-path.
(b) A module M is semi-Gorenstein-projective if and only if a projective resolution (or, equivalently,

any projective resolution) is the concatenation of approximation sequences.
(b′) An indecomposable nonprojective module M is semi-Gorenstein-projective if and only if [M] is the

start of an infinite f-path.
(c) A module M is reflexive and M∗ is semi-Gorenstein-projective if and only if there is an exact

sequence 0→ M→ P1
→ P2

→ · · · which is the concatenation of approximation sequences.
(c′) An indecomposable nonprojective module M is reflexive and M∗ is semi-Gorenstein-projective if

and only if [M] is the end of an infinite f-path.

Proof. We use that the A-dual of an approximation sequence is exact, thus the A-dual of the concatenation
of approximation sequences is exact.

(a) Let P• be a double infinite exact sequence of projective modules with maps d i
: P i
→ P i+1. Write

d i
= ωiπ i with π i epi and ωi mono. If P• is a complete projective resolution, then the exactness of

(P•)∗ at (P i )∗ implies that ωi is a left add(A)-approximation, see 2.2. Thus P• is the concatenation of
approximation sequences.

(b) Let · · · → Pi → · · · → P1 → P0 → M → 0 be a projective resolution of M . write the map
Pi+1→ Pi as ωiπi with πi epi and ωi mono. If the A-dual of the sequence · · ·→ Pi→· · ·→ P0 is exact,
then all the maps ωi with i ≥ 1 have to be left add(A)-approximations. This shows that the projective
resolution is the concatenation of approximation sequences.

(b′) Let M be indecomposable, nonprojective and semi-Gorenstein-projective. Since Ext1(M, A)= 0,
the sequence 0→ �M → P M → M → 0 is an f-sequence and �M is again indecomposable and
nonprojective. Also, �M is semi-Gorenstein-projective. Thus, we can iterate the procedure and obtain
the infinite path

(∗) · · · L99 [�2 M] L99 [�M] L99 [M]
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Conversely, assume that there is an infinite path starting with [M], then it is of the form (∗). Thus, for all
i ≥ 1, we have Exti (M, A)' Ext1(�i−1 M, A)= 0.

Proof of (c) and (c′). Assume that there are given approximation sequences εi : 0→ M i
→ P i+1

→

M i+1
→ 0 for all i ≥ 0, with M0

= M . Then all the modules M i are torsionless, thus reflexive by 2.4(a).
In particular, M itself is reflexive. The A-dual of εi is the sequence

ε∗i : 0← (M i )∗← (P i+1)∗← (M i+1)∗← 0,

which again is an approximation sequence by 4.2(a). The concatenation of the sequences ε∗i is a projective
resolution of M∗ = (M0)∗. According to (b), M∗ is semi-Gorenstein-projective, since all the sequences
ε∗i are approximation sequences.

Conversely, assume that M is reflexive and M∗ is semi-Gorenstein-projective. We want to construct
a sequence 0→ M → P1

→ P2
→ · · · which is the concatenation of approximation sequences. It

is sufficient to consider the case where M is indecomposable (in general, take the direct sum of the
sequences). If M is projective, then 0→ M → M → 0→ · · · is the concatenation of approximation
sequences.

Thus, it remains to consider the case where M is indecomposable and not projective. Since M is
torsionless, there is an f-sequence ε0 : 0→ M→ P1

→ M1
→ 0 (with M1

= fM). Note that M1 is
indecomposable, not projective, and that the A-dual ε∗0 : 0← M∗← (P1)∗← (M1)∗← 0 is exact. Since
M is reflexive, M1 is torsionless by 2.4(a). Since M∗ is semi-Gorenstein-projective, Ext1(M∗, AA)= 0,
therefore φM1 is surjective and ε∗0 is an f-sequence, by 4.2. Altogether we know now that M1 is reflexive,
but also that (M1)∗ =�(M∗). With M∗ also �(M∗) is semi-Gorenstein-projective.

Thus M1 satisfies again the assumptions of being indecomposable, not projective, reflexive and that
its A-dual (M1)∗ is semi-Gorenstein-projective. Thus we can iterate the procedure for getting the next
f-sequence ε1 : 0→ M1

→ P2
→ M2

→ 0, with M2
= f2 M , and so on. Altogether, we obtain the

infinite path:

[M] ................................................. [fM] ......................................... [f2 M] ......................................... · · ·

This completes the proof of (c′) and thus also of (c).
(a′) This follows immediately from (b′) and (c′). �

4.4. For any module M , we have denoted by K M the kernel of φM : M → M∗∗. We are going to
identify K M with Ext1(Tr M, AA). Compare [A2, Proposition 6.3]. As a consequence, we see that
fM = Tr�Tr M .

Lemma. Let M be a module. Then Ext1(Tr M, AA) ' K M and there is a right module Q such that
�Tr M ' TrfM ⊕ Q. As a consequence, fM ' Tr�Tr M, thus ft(M)∼= Tr�t Tr(M) for t ≥ 1.

Proof. Let P0 f
−→ P1 p

−→ M >>> 0 be a minimal projective presentation of M . Thus Tr M is the
cokernel of f ∗. Let g′ : M→ P2 be a minimal left add(A)-approximation. Then K M is the kernel of g′,
thus g′ = uq , where q : M→ M/K M is the canonical projection and u is injective. Let g = g′ p = uqp.
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The composition

P0 f
−→ P1 g

−→ P2

is zero and the homology H(P0 f
−→ P1 g

−→ P2) is just K M , since

Ker(g)/ Im( f )' Ker(qp)/Ker(p)' K M.

We claim that the A-dual sequence

(P0)∗
f ∗
←− (P1)∗

g∗
←− (P2)∗ (∗)

is exact. Since g f = 0, we have f ∗g∗ = 0. Conversely, let h : P1
→ A be in the kernel of f ∗, thus

h f = 0. Therefore h factors through p = Cok f , say h = h′ p with h′ : M → A. Since uq is a left
add(A)-approximation, we obtain h′′ : P2

→ A with h′ = h′′uq . Thus h = h′ p = h′′uqp = h′′g = g∗(h′′)
is in the image of g∗.

Since the cokernel of f ∗ is Tr M , it follows that (∗) is the begin of a projective resolution of Tr M
and hence Ext1(Tr M, AA) is obtained by applying Hom(−, A) to (∗) and taking the homology at the
position 1. Applying Hom(−, A) to (∗)we retrieve the sequence P0 f

−→ P1 g
−→ P2, thus Ext1(Tr M, AA)

is equal to H(P0 f
−→ P1 g

−→ P2)' K M . This is the first assertion.

By definition, the cokernel of g′ is fM . Thus the cokernel of g is fM , and therefore Cok g∗ '
TrfM ⊕ Q′ for some projective right module Q′. Now Cok g∗ = Im f ∗, since (∗) is exact. Since
Cok f ∗ = Tr M , we have �Tr M ' Im f ∗⊕ Q′′ for some projective right module Q′′. This shows that
�Tr M ' Im f ∗⊕ Q′′ = Cok g∗⊕ Q′′ ' TrfM ⊕ Q′⊕ Q′′ = TrfM ⊕ Q with Q = Q′⊕ Q′′. This is
the second assertion.

Applying Tr to the isomorphism �Tr M ' TrfM ⊕ Q, one obtains Tr�Tr M ' Tr(TrfM ⊕ Q)=
Tr TrfM . Since fM has no nonzero projective direct summand, one gets Tr TrfM ' fM . Thus
fM ' Tr TrfM ' Tr�Tr M . �

Corollary. Let M be a module. Then for all t ≥ 0 one has

Extt+1(Tr M, AA)' K(ft M).

In particular, ft M is torsionless if and only if Extt+1(Tr M, AA)= 0. Also, �t Tr M ' Trft M ⊕ Qt for
some projective right module Qt .

Proof. By induction on t , one has �t Tr M ' Trft M ⊕ Qt for some projective right module Qt . It
implies that Extt+1(Tr M, AA)' Ext1(�t Tr M, AA)' Ext1(Trft M, AA) and thus Ext1(Trft M, AA)'

K (ft M). �

Remark 1. For any t ≥ 0, there is an exact sequence of the form

0→ Extt+1(Tr M, AA)→ ft M φft M−−→ (ft M)∗∗→ Extt+2(Tr M, AA)→ 0.
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If t = 0, it is the classical Auslander–Bridger sequence

0→ Ext1(Tr M, AA)→ M→ M∗∗→ Ext2(Tr M, AA)→ 0

(see [AB], also [ARS]).

Proof. The corollary asserts that the kernel of the map φft M : ft M → (ft M)∗∗ is isomorphic to
Extt+1(Tr M, AA). On the other hand, the Remark at the end of 2.4 shows that Cokφft M ' Kft+1 M .
Since Kft+1 M ' Ext1(Trft+1 M, AA) ' Ext1(�t+1 Tr M, AA) ' Extt+2(Tr M, AA), it follows that
Cokφft M ' Extt+2(Tr M, AA). �

Remark 2. If M is any module, fTr M ' Tr�M.

Proof. There is a projective module P such that Tr Tr M ⊕ P ' M . According to Lemma 4.4 we have
fTr M ' Tr�Tr Tr M = Tr�(Tr Tr M ⊕ P)' Tr�M . �

Remark 3. In contrast to the isomorphism given in Remark 2, the right modules �Tr M and TrfM
discussed in the lemma do not have to be isomorphic. For example, let M be a module with M∗= 0. Then
fM = 0, thus TrfM = 0. On the other hand, if f : P1→ P(M) is a minimal projective presentation
of M , then the kernel of f ∗ is M∗, thus zero, and therefore �Tr M ' (P(M))∗. Thus, we see that the
right module Q with �Tr M ' TrfM ⊕ Q may be nonzero.

4.5. Modules at the end of an f-path of length t .

Proposition. Let M be any module and t ≥ 1. The following conditions are equivalent:

(i) fi−1 M is torsionless for 1≤ i ≤ t .

(ii) M is t-torsionfree (thus Exti (Tr M, AA)= 0 for 1≤ i ≤ t).
If M is indecomposable and not projective, then these conditions are equivalent to

(iii) M is the end of an f-path of length t.

Already the special cases t = 1 and t = 2 are of interest (but well-known): A module M is 1-torsionfree
if and only if M is torsionless (this is case t = 1); a module M is 2-torsionfree if and only if both M and
�M are torsionless, thus if and only if M is reflexive (this is the case t = 2, taking into account Corollary
2.4). These special cases t = 1 and t = 2 are discussed at several places; let us refer in particular to [ARS],
Corollary IV.3.3. Our general proof is inspired by [AB].

Proof of Proposition. For the equivalence of (i) and (ii), see Corollary in 4.4: It asserts for any i ≥ 1, that
fi−1 M is torsionless if and only if Exti (Tr M, AA)= 0.

In order to show the equivalence of (i) and (iii), let M be indecomposable and not projective. If (iii) is
satisfied, there is an f-path of length t ending in M . This path has to be ft M, ft−1 M, . . . , fM, M .
This shows that for any module fi M with 0 ≤ i < t , there is an arrow starting in fi M , and therefore
fi M has to be torsionless.

Conversely, assume that (i) is satisfied. We show (iii) by induction on t . For any t ≥ 1, there is the arrow
fM→ M , since M is indecomposable, nonprojective and torsionless. According to 3.2, the module fM
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is again indecomposable and nonprojective. Thus, if t ≥ 2, we can use induction in order to obtain a path
of length t − 1 ending in fM , since all the modules fi (fM) with 0≤ i < t − 1 are torsionless. �

4.6. Proof of Theorem 1.5 (1) follows from the fact that Extt(M, A)= Extt−1(�M, A) for t ≥ 2. For
the special case t = 2, see Corollary 2.4. (2) is Proposition 4.5. For (1′), (2′) and (3), see 4.3. For (4) and
(5), we refer to 4.2(b). Note that in an f-component of the form An with n ≥ 3, as well as in those of the
form −N, all but precisely two vertices are the isomorphism classes of reflexive modules, whereas any
vertex of an f-component of the form N is the isomorphism class of a reflexive module. �

4.7. The adjoint functors f and �. Here we collect some important properties of the construction f.
Some details of the proofs are left to the reader, since the assertions are not needed in the paper.

If C′ ⊆ C are full subcategories of mod A, let C/C′ be the category with the same objects as C such that
HomC/C′(X, Y ) is the factor group of HomC(X, Y ) modulo the subspace of all maps X→ Y which factor
through a direct sum of modules in C′.

(1) The functor f is the left adjoint of the endo-functor � of mod A/ add A. Direct verification is easy.
But we should also add that Auslander and Reiten have shown in [AR2, Corollary 3.4] that the functor
Tr�Tr is left adjoint to �, and we have identified in 4.4 the functors f and Tr�Tr.

(2) Let L(A) be the full subcategory of all torsionless modules, and Z(A) the full subcategory of all
modules Z with Ext1(Z , A)= 0. For any module M, the module �M belongs to L(A), and the module
fM belongs to Z(A); in addition, fM has no nonzero projective direct summand.

(3) If Z satisfies Ext1(Z , A)= 0 and has no nonzero projective direct summand, then f�Z ' Z (see 3.2).
If X is torsionless and has no nonzero projective direct summand, then �fX ' X (see 1.5 or also 3.2). In
this way, one shows that the functors � and f provide inverse categorical equivalences

L(A)/ add(A) Z(A)/ add(A)....................................................................................................................... ............

...................................................................................................................................

�

f

(4) Thus, � and f provide inverse bijections between isomorphism classes as follows:
indecomposable

nonprojective modules X
which are torsionless




indecomposable
nonprojective modules Z

with Ext1(Z , A)= 0

........................................................................................................................................................... ............

.......................................................................................................................................................................

�

f

The arrows of the f-quiver visualize this bijection.

4.8. Gorenstein algebras. Recall that an artin algebra A is said to be d-Gorenstein provided that the
injective dimension of both A A and AA is equal to d. Of course, any algebra of global dimension d is
d-Gorenstein The following result of Beligiannis [B2, Proposition 4.4] yields additional examples of
weakly Gorenstein algebras.

Proposition. Let A be an artin algebra and assume that the injective dimension of A A is at most d.
Then A is right weakly Gorenstein and any module of the form �d M is semi-Gorenstein projective.
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Proof. Since the injective dimension of A A is at most d, one knows that for any module M , the
syzygy module �d M is semi-Gorenstein-projective. [Namely, for all i ≥ 1, we have Exti (�d M, A)=
Extd+i (M, A)= Exti (M, 6d A)= 0; here, 6N denotes the cokernel of an injective envelope of a module
N .] This implies that A cannot have any indecomposable module of f-type N. [Namely, if M is of
f-type N, then M is∞-torsionfree and therefore M =�d(fd M). But as we have seen, this implies that
M is semi-Gorenstein-projective, therefore Gorenstein-projective. Thus M is of f-type Z and not N.]
Therefore A is right weakly Gorenstein. �

Corollary 1. Let A be d-Gorenstein. If an indecomposable nonprojective module M belongs to an
f-path of length d, then M is Gorenstein-projective. If the global dimension of A is d, then there is no
f-path of length d.

Proof. Since the inj. dim. A A= d , A is right weakly Gorenstein and any module �d M is semi-Gorenstein-
projective. Since inj. dim. AA is finite, A is also left weakly Gorenstein, thus the modules �d M are even
Gorenstein-projective. �

Corollary 2. If A is d-Gorenstein, then A has no f-component of form −N, N or An with n > d. If
the global dimension of A is d, then any f-component is of form An with n ≤ d.

5. Proof of Theorem 1.4

Since add(A)⊆ ⊥A ⊆ F , we see that add(A)⊆ P(F)= I(F). Thus Ext1A(X, A)= 0, for all X ∈ F .
For X ∈ F , there is an exact sequence 0→ K → Q → X → 0 with Q ∈ P(F) and K ∈ F . By

P(F) ⊆ ⊥A we have Q ∈ ⊥A. Thus Ext1A(X, A) = 0 and Extm+1
A (X, A) = ExtmA(K , A) for m ≥ 1. So

Ext2A(X, A) = 0, and in particular Ext2A(K , A) = 0. Repeating this process we see that X ∈ ⊥A. Thus
F ⊆ ⊥A, and hence ⊥A = F is Frobenius.

For L ∈ P(⊥A), consider an exact sequence 0→ K → P→ L→ 0 with P ∈ add(A). Since L and
P are in ⊥A, K ∈ ⊥A. So Ext1A(L , K )= 0, thus the exact sequence splits and L ∈ add(A). This shows
P(⊥A)⊆ add(A)⊆ P(⊥A), and hence P(⊥A)= add(A).

Now consider X ∈ ⊥A. Since ⊥A is Frobenius, there is an exact sequence 0→ X → I → C → 0
with I ∈ I(⊥A)= P(⊥A)= add(A) and C ∈ ⊥A. So X is torsionless. This shows that A is left weakly
Gorenstein, according to Theorem 1.2. �

6. An example

Let k be a field and q ∈ k \ {0}. We consider a 6-dimensional local algebra 3=3(q). If k is infinite, then
we show that there are infinitely many Gorenstein-projective 3-modules of dimension 3. Let o(q)= |qZ

|

be the multiplicative order of q . If o(q) is infinite, we show that there is also a semi-Gorenstein-projective
3-module of dimension 3 which is not Gorenstein-projective.

6.1. The algebra 3=3(q). The algebra 3 is generated by x, y, z, subject to the relations:

x2, y2, z2, yz, xy+ qyx, xz− zx, zy− zx .
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The algebra 3 has a basis 1, x, y, z, yx , and zx and may be visualized as follows:

3 :

1

x y

yx

......................................................................... ........
....

.....................................................................
....
............

......................................................................... ........
....

z

zx

.................................................................................................................................................................................................. ...........
.

............................................................................................................................. .........
...

....................................................................................................................................................................................................................................................................... ............
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..

x

x
x

y

y

z

zz

Here, we use the following convention: The vertices are the elements of the basis, the arrows are labeled
by x, y, z. A solid arrow v→ v′ labeled say by x means that xv = v′, a dashed arrow v 99K v′ labeled
by x means that xv is a nonzero multiple of v′ (in our case, xy =−qyx). If v is a vertex and no arrow
starting at v is labeled say by x , then xv = 0.

One diamond in the picture has been dotted in order to draw attention to the relation xy+ qyx ; this
relation plays a decisive role when looking at �M for a given 3-module M .

We study the following modules M(α) with α ∈ k. The module M(α) has a basis v, v′, v′′, such that
xv = αv′, yv = v′, zv = v′′, and such that v′ and v′′ are annihilated by x, y, z. That is,

v

v′ v′′

..................................................
.....
.......
.....

..................................................................................................................................... .........
...

........

........

........

........
.
.......
.

x y zM(α) :
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The modules M(α) with α ∈ k are pairwise nonisomorphic indecomposable 3-modules.

For α ∈ k, we define mα = x −αy ∈3. In order to provide a proof of Theorem 1.5, we now collect
some general results for the modules M(α), 3mα, and the right ideals mα3 which are needed.

6.2. The module M(q).

Lemma. The intersection of the kernels of all the homomorphisms M(q)→ 33 is zM(q)= kv′′ and
M(q)/zM(q)'3m1. In particular, M(q) is not torsionless and M(q)∗ = (3m1)

∗.

Proof. Let f : M(q) = 3v→ 33 be a homomorphism. Let f (v) = c1x + c2 y + c3z + c4 yx + c5zx
with ci ∈ k. By q f (v′)= f (xv)= x f (v)=−c2qyx + c3zx and f (v′)= f (yv)= y f (v)= c1 yx , we get
c2 =−c1 and c3 = 0. Thus, f (v)= c1(x− y)+ c4 yx+ c5zx . It follows that f (v′′)= f (zv)= z f (v)= 0.
This shows that v′′ is contained in the kernel of any map f : M(q)=3v→ 33. On the other hand, the
homomorphism g : M(q)=3v→3 given by g(v)= x − y = m1 has kernel kv′′. This completes the
proof of the first assertion.

The map g provides a surjective map p : M(q)→3m1 and p∗ : M(q)∗→ (3m1)
∗ is bijective, thus

an isomorphism of right 3-modules. �

6.3. The modules M(α) with α ∈ k. We consider now the modules M(α) in general, and relate them
to the left ideals 3mα , and to the right ideals mα3. Let us denote by Uα the two-sided ideal generated by
mα, it is 3-dimensional with basis mα, yx, zx . Actually, for any α ∈ k, the right ideal mα3 is equal to
Uα (but we prefer to write Uα instead of mα3 when we consider it as a left module). For α 6= 1, the left
ideal 3mα is equal to Uα.
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If M is a module and m ∈ M , we denote by r(m) : 33→ M the right multiplication by m (defined by
r(m)(λ)= λm. Similarly, if N is a right3-module and a ∈ N , let l(a) :33→ N be the left multiplication
by a.

We denote by uα :3mα→3 and u′α : mα3→3 the canonical embeddings.

(1) The right ideal mα3 is 3-dimensional (and equal to Uα), for all α ∈ k.

(2) The left ideal3mα is 3-dimensional (and equal to Uα), for α∈k\{1}, whereas3m1 is 2-dimensional.

(3) We have M(α)'3/Uα for all α ∈ k.

Proof. The map r(v) :3→ M(α) is surjective (thus a projective cover) and

r(v)(mα)= mαv = (x −αy)v = xv−αyv = αv′−αv′ = 0.

Thus,3mα⊆Ker(r(v)). Also, zx ∈Ker(r(v)), thus Ker(r(v))=Uα . This shows that M(α) is isomorphic
to 3/Uα. �

(4) For α ∈ k \ {1}, we have M(qα)'3mα.

Proof. Consider the map r(mα) : 3→ 3mα. Since r(mα)(mqα) = mqαmα = 0, we see that Uqα ⊆

Ker(r(mα)). For α 6= 1, the module 3mα is 3-dimensional, therefore r(mα) yields an isomorphism
3/Uqα→3mα. Using (3) for M(qα), we see that M(qα)'3/Uqα '3mα. �

(5) For any map f : 3mα → 3, there is λ ∈ 3 with f = r(λ)uα, for all α ∈ k. Thus uα is a left
add(3)-approximation.

Proof. Let f : 3mα → 3 be any map. Let f (mα) = c1x + c2 y + c3z + c4 yx + c5zx with ci ∈ k.
Since f (ymα)= f (yx) and y f (mα)= c1 yx , we see that f (yx)= c1 yx . Since f (xmα)= f (−αxy)=
qα f (yx)= qαc1 yx and x f (mα)= c2xy+c3zx =−qc2 yx+c3zx , we see that qαc1 yx =−qc2 yx+c3zx ,
therefore c2 =−αc1 and c3 = 0. Thus, f (mα)= c1(x −αy)+ c4 yx + c5zx belongs to Uα = mα3, say
f (mα)= mαλ with λ ∈3. Therefore f (mα)= mαλ= r(λ)uα(mα), but this means that f = r(λ)uα . �

6.4. Lemma. Let α ∈ k \ {1}. Then there is an f-sequence

0→ M(qα)→3→ M(α)→ 0.

Proof. According to (3), M(α) '3/Uα. Since α 6= 1, we have Uα =3mα by (2). Thus, we have the
following exact sequence

0→3mα
uα
−→3→ M(α)→ 0

According to (5) the embedding uα :3mα→3 is a left add(3)-approximation. Thus, the sequence is an
f-sequence. Finally, (4) shows that 3mα ' M(qα). �

Corollary 1. The module M(0) is Gorenstein-projective with �-period equal to 1. �

Corollary 2. If o(q)=∞, then the module M(q) is semi-Gorenstein-projective.
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Proof. We assume that o(q)=∞. Then q t
6= 1 for all t ≥ 1. By 6.4, all the sequences

0→ M(q t+1)→3→ M(q t)→ 0.

with t ≥ 1 are f-sequences. They can be concatenated in order to obtain a minimal projective resolution
of M(q). This shows that M(q) is semi-Gorenstein-projective. �

6.5. The right 3-modules mα3 and M(α)∗. We have started in 6.3 to present essential properties of
the modules M(α). We look now also at the modules mα3 and M(α)∗. We continue the enumeration of
the assertions as started in 6.3.

(6) �(mqα3)= mα3 for all α ∈ k.

Proof. We consider the composition of the following right 3-module maps

33
l(mα)
−−→33

l(mqα)
−−→33

Since mqαmα = 0, the composition is zero. The image of l(mα) is the right ideal mα3, the image of
l(mqα) is the right ideal mqα3. Both right ideals are 3-dimensional, thus the sequence is exact. Thus
mα3 = Ker(p), for a surjective map p : 33 → mqα3. Now p is a projective cover, thus Ker(p) =
�(mqα3), and therefore �(mqα3)' mα3. �

(7) (3mα)
∗
= mα3 for all α ∈ k.

Proof. First, let us show that (3mα)
∗ is 3-dimensional. On the one hand, besides uα , there are homomor-

phisms3mα→3with image kyx and with image kzx , which shows that (3mα)
∗ is at least 3-dimensional.

According to (5), any homomorphism 3mα→3 maps into 3mα3=Uα. Since Uα is 3-dimensional,
we have dim Hom(33,Uα)= 3, therefore dim(3mα)

∗
= dim Hom(3mα,3)= dim Hom(3mα,Uα)≤

dim Hom(33,Uα)= 3.
Second, using again (5), we see that (3mα)

∗ is, as a right 3-module, generated by uα . Thus, there is a
surjective homomorphism θα :33→ (3mα)

∗ of right 3-modules defined by θα(1)= uα. We have

(θα(mq−1α))(mα)= (θα(1)mq−1α)(mα)= (uαmq−1α)(mα)= mαmq−1α = 0,

therefore θα(mq−1α) = 0. It follows that θα yields a surjective map 33/mq−1α3→ (3mα)
∗. Actually,

this map has to be an isomorphism, since mq−1α3 is 3-dimensional. Therefore 33/mq−1α3' (3mα)
∗.

By (6), 33/mq−1α3' mα3. This completes the proof. �

(8) M(qα)∗ = mα3 for all α ∈ k.

Proof. For α 6= 1, we have M(qα)'3mα by (4), thus we use (7). For α = 1, we use 6.2 and then (7). �

Let us stress that (7) and (8) show that M(q)∗ and (3m1)
∗ are isomorphic, namely isomorphic to m13,

whereas M(q) and 3m1 themselves are not isomorphic.

(9) Let α ∈ k \ {1, q}. For any homomorphism g : mα3→3 there is λ ∈3 with g = l(λ)u′α . Thus, u′α
is a left add(3)-approximation.
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Proof. Let g : mα3→ 33 be a homomorphism. We claim that g(mα) ∈ 3mα. Let g(mα) = c1x +
c2 y+ c3z+ c4 yx + c5zx with ci ∈ k. Now, g(mαx)= g(−αyx)=−αg(yx) and g(mα)x = c2xy+ c3zx .
Also, g(mα y) = g(xy) = −qg(yx), and g(mα)y = c1xy + c3zx = −c1qyx + c3zx , thus g(yx) =
−q−1g(mα y) = −q−1(−c1qyx + c3zx) = c1 yx − q−1c3zx . It follows that c2 yx + c3zx = −αg(yx) =
−α(c1 yx−q−1c3zx)=−αc1 yx+αq−1c3zx . Therefore c2=−αc1 and c3=αq−1c3. Since we assume that
α 6=q , it follows that c3=0. Therefore g(mα)= c1x−αc1 y+c3z+c4 yx+c5zx= c1(x−αy)+c4 yx+c5zx
belongs to Uα. Since we also assume that α 6= 1, we have Uα =3mα. Thus g(mα) ∈3mα.

As a consequence, there is λ∈3 with g(mα)= λmα , therefore g(mα)= λmα = l(λ)u′α(mα). It follows
that g = l(λ)u′α. �

6.6. Lemma. Let α ∈ k \ {1, q}. Then there is an f-sequence of right 3-modules

0→ mα3
u′α−→33→ mqα3→ 0.

Proof. This is 6.5(6) and (9). �

6.7. Proof of Theorem 1.6 According to 6.5(8), we have M(q)∗ = m13. As we know from 6.2, M(q)
is not torsionless.

We assume now that o(q)=∞. The Corollary 2 in 6.4 shows that M(q) is semi-Gorenstein-projective.
Since q−t

6= 1 for all t ≥ 1, the sequences

0→ mq−t3
u′α−→33→ mq−t+13→ 0

with t ≥ 1 are f-sequences, by 6.6. They can be concatenated in order to obtain a minimal projective
resolution of m13 and show that m13 is semi-Gorenstein-projective.

Finally, we want to show that M(q)∗∗ = �M(1). According to 6.3(5), the map u1 : 3m1 → 3 is
a minimal left add(3)-approximation, thus we may consider as in 2.4(a) the following commutative
diagram with exact rows:

0 −−−→ 3m1
u1
−−−→ 3

π1
−−−→ 3/3m1 −−−→ 0y ∥∥∥ yφ

0 −−−→ (3m1)
∗∗
−−−→ 3

π∗∗1
−−−→ (3/3m1)

∗∗
−−−→ Ext1(M ′(q)∗,33)

where φ = φ3/3m1 . The submodule zx(3/3m1) belongs to the kernel of any map 3/3m1→3, and it
is the kernel of the map p :3/3m1→ M(1) defined by p(1)= v. This shows that zx(3/3m1) is the
kernel of φ, thus the image of φ is just M(1). But the image of φ coincides with the image of π∗∗1 . In
this way, we see that (3m1)

∗∗ is the kernel of a projective cover of M(1), thus equal to �M(1).
Of course, �M(1) is decomposable, namely isomorphic to 3m1⊕ kzx . �

6.8. Proof of Addendum 1.6. We denote by qZ the set of elements of k which are of the form q i with
i ∈ Z. Assume that α ∈ k \ qZ, thus q tα 6= 1 for all t ∈ Z. According to 6.4, all the sequences

0→ M(q t+1α)→3→ M(q tα)→ 0
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with t ∈ Z are f-sequences. They can be concatenated in order to obtain a complete projective resolution
for M(α), thus M(α) is Gorenstein-projective.

The following (well-known) lemma shows that there are infinitely many elements α ∈ k \ qZ.

Lemma. Assume that k is an infinite field and q ∈ k. Then k \ qZ is an infinite set.
We include a proof.

Proof. The assertion is clear if o(q) is finite. Thus, let o(q) be infinite (in particular, q 6= 0). Assume that
the multiplicative group k∗ = k \ {0} is cyclic, say k∗ = wZ. Then o(w) =∞, and each element in k∗

different from 1 has infinite multiplicative order. Since (−1)2 = 1, we see that k is of characteristic 2.
Now w+ 1 6= 0 shows that w+ 1=wn for some n > 1, thus w is algebraic over the prime field Z2. Thus
k = Z2(w) is a finite field, a contradiction. Since k∗ is not cyclic, there is a ∈ k∗ \ qZ. Then a · qZ is an
infinite subset of k∗ \ qZ. �

7. Further details for 3 = 3(q)

7.1. The f-components involving modules M(α). The only f-sequences which involve a module of
the form M(α) with α ∈ k are those exhibited in 6.6.

Proof. We have to show that there is no f-sequence ending in M(1) and no f-sequence starting in M(q).
Since �M(1) is decomposable, there is no f-sequence ending in M(1). By 6.2, the module M(q) is not
torsionless, thus no f-sequence starts in M(q). �

We now want to determine the f-type of the modules M(α). According to Corollary 1 in 6.4, M(0) is
of f-type Ã0. Thus, we now assume that α 6= 0.

7.2. Let us assume that o(q)=∞ (for the case that o(q) is finite, see 7.6). There are three kinds of
f-components which involve modules of the form M(α) with α ∈ k∗. There is one component of the form
−N, it has M(q) as its source, and there is one component of the form N, it has M(1) as its sink:

M(q4) M(q3) M(q2) M(q) M(1) M(q−1) M(q−2)........................................ ........................................ ........................................ ........................................ ........................................... .................................... ....................................
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.

.

.

.

.

.

The remaining ones contain the modules M(α) with α 6= 0 and α /∈ qZ; they are of the form Z:

M(q4α) M(q3α) M(q2α) M(qα) M(α) M(q−1α) M(q−2α)........................................ ................................ ................................ ................................ ........................................ .................................... ............................... ...............................
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.

The positions of the reflexive modules are shaded.

According to Theorem 1.5, there are the following observations concerning the behavior of the modules
M(α) with α ∈ k.

• The module M(α) is Gorenstein-projective if and only if α /∈ qZ.

• The module M(α) is not Gorenstein-projective, but semi-Gorenstein-projective if and only if α = q t

for some t ≥ 1.

• The module M(α) is torsionless if and only if α 6= q.
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• The module M(α) is reflexive if and only if α /∈ {q, q2
}.

• The module M(α) is not Gorenstein-projective, but∞-torsionfree if and only if α = q t for some
t ≤ 0.

It seems worthwhile to know the canonical maps φX : X→ X∗∗ for the nonreflexive modules X =M(q)
and X = M(q2). For M(q) we refer to 6.7: there it is shown that M(q)∗∗ =�M(1) and that the image
of φM(q) is 3m1.

It remains to look at X = M(q2). The module M(q2)∗∗ is the submodule 3mq +3z of 3 and φM(q2)

is the inclusion map

M(q2)=3mq →3mq +3z = M(q2)∗∗.

Proof. Since M(q2) is torsionless, the map φM(q2) is injective. There is the following commutative
diagram with exact rows:

0 −−−→ M(q2)
uq
−−−→ 3

πq
−−−→ M(q) −−−→ 0yφM(q2)

∥∥∥ yφM(q)

0 −−−→ M(q2)∗∗
u∗∗q
−−−→ 3

π∗∗q
−−−→ M(q)∗∗ −−−→ Ext1(M(q2)∗,33) .

As we know already, the image of φM(q) and therefore of π∗∗q , is 3m1. Thus the kernel of π∗∗q is
the submodule 3mq +3z of 3. Therefore M(q2)∗∗ = 3mq +3z and φM(q2) is the inclusion map
M(q2)=3mq →3mq +3z = M(q2)∗∗. �

7.3. The f-components involving right 3-modules mα3. The f-sequences which involve a right
3-module of the form mα3 with α ∈ k are those exhibited in 6.6 as well as

0→ mq3

uq

h


−−→33⊕33→ f(mq3)→ 0,

and, for q 6= 1,

0→ m13

u1

h′


−−→33⊕33→ f(m13)→ 0.

Here, h : mq3→33 is defined by h(mq)= z, whereas h′ : m13→33 is defined by h′(m1)= zx.

Proof. It is easy to check that the map
[

uq

h

]
and, for q 6= 1, the map

[
u1

h′

]
are minimal left add(33)-

approximations. Clearly, the corresponding cokernels are not torsionless.
In addition, we have to show that there is no f-sequence ending in mq23 or in mq3. But this follows

from the fact that the inclusion maps u′q : mq3=�(mq23)→ P(mq23) and u′1 : m13=�(mq3)→

P(mq3) are not add(33)-approximations. �
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Let o(q)=∞ (the case that o(q) <∞ will be discussed in 7.6). There are five kinds of f-components
involving right 3-modules of the form mα3 with α ∈ k, namely a component of the form N with mq23 as
a sink, a component of the form −N with f(m13) as a source, and a component of the form A2 with sink
mq3 and source f(mq3):

mq33 mq23 mq3 m13 mq−13 mq−23 mq−33

f(m13)f(mq3)

........ ........ ................ ........ ........ ........ ................ ........ ........ ........ ........ ........... ........ ........ ........ ........ ........... ........ ........ ........ ............ ........ ........ ........ ............ ........

........
........
........
........
..................
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........
........
........
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The f-components containing right 3-modules mα3 with α ∈ k \ qZ are of the form Z:

mq3α3 mq2α3 mqα3 mα3 mq−1α3 mq−2α3 mq−3α3........ ................ ........ ........ ................ ........ ........ ................ ........ ........ ................ ........ ........ ................ ........ ........ ................ ........ ........ ................ ........ ........ ................ ........
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In addition, there is the f-component consisting of the single right 3-modules m03, it is of the form Ã0.

For the convenience of the reader, the pictures in 7.1 and 7.2 have been arranged so that the A-duality
is respected. Thus, in 7.1, the arrows are drawn from right to left, in 7.2 from left to right. Also we recall
from 6.3(8) that the A-dual of M(qα) is mα3, therefore the position of mα3 in the pictures 7.2 is the
same as the position of M(qα) in 7.1.

7.4. We complete the description of the behavior of the modules M(α) started in 7.2.

• The module M(α) is not Gorenstein-projective, but M(α)∗ is semi-Gorenstein-projective, if and only
if α = q t for some t ≤ 1.

• The module M(α) is not Gorenstein-projective, but M(α)∗ is∞-torsionfree, if and only if α = q t for
some t ≥ 3.

Proof. According to 7.2, the module M(α) is Gorenstein-projective if and only if α /∈ qZ. Thus, we can
assume that α = q t for some t ∈ Z. According to 6.3(8), the module M(q t) is isomorphic to mq t−13. The
display of the f-components shows that mq t−13 is semi-Gorenstein-projective if and only if t − 1≤ 0,
thus if and only if t ≤ 1, see Theorem 1.5. Similarly, we see that mq t−13 is∞-torsionfree if and only if
t − 1≥ 2, thus if and only if t ≥ 3. �

7.5. We have mentioned in 1.7 that one may use the algebra 3 = 3(q) with o(q) =∞ in order to
exhibit examples of modules M which satisfy precisely two of the three properties (G1), (G2) and (G3):

(1) M = M(q) satisfies (G1), (G2), but not (G3).

(2) M = M(q3) satisfies (G1), (G3), but not (G2).

(3) M = M(1) satisfies (G2), (G3), but not (G1).

Proof. For (1): this is the main assertion of Theorem 1.5. For (2): see 7.2 and 7.3. For (3): according to
7.2, M(1) is reflexive, but not Gorenstein-projective. According to 6.3(8), we have M(1)∗ = mq−13, and
mq−13 is semi-Gorenstein-projective, see 7.3. �

Let us look for similar examples for 3op, thus, for right 3-modules N .
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(1*) There is no right 3-module of the form N = mα3 satisfying (G1), (G2), but not (G3).

(2*) The right 3-module N = mq−23 satisfies (G1), (G3), but not (G2).

(3*) The right 3-module N = mq23 satisfies (G2), (G3), but not (G1).

Proof. (2*) There starts an infinite f-path at N = mq−23, thus N satisfies (G1). There ends an f-path of
length 2 at N , thus N satisfies (G3). Of course, N ∗ cannot be semi-Gorenstein-projective, since otherwise
N would be Gorenstein-projective.

(3*) Let N = mq23. According to 6.5(8), N = M(q3)∗. As we know from 7.1, M(q3) is reflexive,
thus N is reflexive and N ∗ = M(q3)∗∗ = M(q3) is semi-Gorenstein-projective.

(1*) Assume that N =mα3 and N ∗ are both semi-Gorenstein-projective. Since N cannot be Gorenstein-
projective, it is not reflexive. Thus α ∈ {1, q}. Since [mq3] is the sink of an f-component, mα3 is
not semi-Gorenstein-projective. Thus α = 1. But (m13)

∗
= M(q)∗∗ = �M(1), according to 6.5(8)

and Theorem 1.5. As we have mentioned already in the proof 6.7, �M(1)'3m1⊕ k, where k is the
simple 3-module. We claim that k is not semi-Gorenstein-projective, thus �M(1) is not semi-Gorenstein-
projective.

Lemma. Let A be a local artin algebra which is not self-injective, and S its simple A-module. Then
Exti (S, A A) 6= 0 for all i ≥ 1.

Proof. Let 0→ A A→ I0→ I1→ · · · be a minimal injective coresolution. Since A A is not injective, all
the modules Ii are nonzero. We have Exti (S, A A)∼= Hom(S, Ii ). �

7.6. Let us look also at the case when o(q)= n <∞.

Left modules M(α) with α ∈ k∗. There are two kinds of f-components which involve modules of the
form M(α) with α ∈ k∗. There is one f-component of the form An , it has M(q) as its source, and M(1)
as its sink:

M(1) M(qn−1) · · · M(q3) M(q2) M(q)........................................ ..................................... ........................................ ........................................ ........................................
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The remaining ones (containing the modules M(α) with α ∈ k∗ \ qZ) are directed cycles of cardinality n :

M(α) M(qn−1α) · · · M(q3α) M(q2α) M(qα)........................................ ..................................... ........................................ ........................................ ........................................
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

All modules in the cycles are reflexive. In the f-component of form An , the modules M(q) and
M(q2) are not reflexive (they coincide for o(q)= 1); for o(q) ≥ 3, there are n− 2 additional modules
M(1)= M(qn), M(qn−2), · · · ,M(q4), M(q3) in the f-component, and these modules are reflexive.

Right modules mα3 with α ∈ k∗. There is always the f-component of form A2 with �(mq3) as its
source and mq3 as its sink. In addition, for n ≥ 2, there is an f-component of form An containing the
modules mq i3 with 2≤ i ≤ n as well as �(m13); it has �(m13) as its source, and mq23 as its sink:

mq−13 mq−23 · · · mq23 mq3 m13

f(m13)f(mq3)

........ ........ ................ ........ ........ ........ ............. ........ ........ ........ ................ ........

........ ..
...... ....

.... .................
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...... ....

.... ..................
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The remaining f-components (containing the right modules mα3 with α ∈ k∗ \ qZ) are directed cycles of
cardinality n:

mq−1α3 mq−2α3 · · · mq2α3 mqα3 mα3........ ................ ........ ........ ........ ............. ........ ........ ........ ................ ........ ........ ........ ................ ........ ........ ........ ................ ........

........................ ........ ........ ................ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .......
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Again, the modules in the cycles are reflexive. In the f-components of form An and A2, the modules
m13 and f(m13), as well as mq3 and f(mq3) are not reflexive; whereas (for o(q)≥ 3) the modules
mq i3 with 2≤ i ≤ n− 1 are reflexive.

Proof. First, let us look at left modules. According to 7.1, the f-sequences presented here are the only
ones involving modules of the form M(α). Thus, [M(q)] is a source in the f-quiver and [M(1)] is a sink.
This holds true also for o(q) = 1: here q = 1 and [M(1)] is both a sink and a source, thus a singleton
f-component (without any arrow). Finally, for any n, the elements 1, q, . . . , qn−1 are pairwise different,
as are the elements α, qα, . . . , qn−1α for α ∈ k \ qZ.

For dealing with the right modules, we refer to 7.3. �

7.7. We have shown in 1.5 that any f-component is a linearly oriented quiver of type An (with n ≥ 1
vertices), a directed cycle Ãn (with n+ 1≥ 1 vertices), or of the form −N, or N, or Z. Conversely, 7.2
and 7.6 show that all these cases arise for algebras of the form 3(q).

7.8. A forthcoming paper [RZ1] will be devoted to a detailed study of all the 3-dimensional local
3-modules for the algebra 3=3(q). If q has infinite multiplicative order, we will encounter a whole
family of 3-dimensional local modules which are semi-Gorenstein-projective, but not torsionless. A
local artin algebra A with radical J is said to be short if J 3

= 0. In particular, the algebras 3(q) are
short local algebras. It is shown in [RZ2] that if A is a short local algebra with a module M which is
semi-Gorenstein-projective, but not Gorenstein-projective, then |J 2

| = |J/J 2
| − 1≥ 2. This paper [RZ2],

as well as [RZ3], are devoted to the syzygy modules of modules over short local algebras.

8. Remarks

The first remarks draw the attention to the papers [JS] and [CH]. In 8.1, we show that the 3(q)-modules
M(q−s) with s ≥ 0 and o(q)=∞ satisfy some further conditions which were discussed by Jorgensen
and Şega. In 8.2 we show that the algebra 3(q) for o(q)=∞ does not satisfy the so-called Auslander
condition of Christensen and Holm.

In 8.3, we show that essential features of3(q) are related to corresponding ones of its subalgebra3′(q),
which is the quantum exterior algebra. 8.4 presents a two-fold covering of 3(q) which has properties
similar to 3(q), but provides for o(q)=∞ examples of semi-Gorenstein-projective modules M which
are not Gorenstein-projective, with the additional property that End(M)= k.

8.1. The conditions (TRi ) of Jorgensen and Şega. As we have mentioned, Jorgensen and Şega have
shown in [JS] that there exist semi-Gorenstein-projective modules which are not Gorenstein-projective.
Actually, the main result of [JS] is a stronger assertion.
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Following [JS], we say that an R-module M satisfies the condition (TRi ) for some i ≥ 1 provided
Exti (M, R)= 0, and that M satisfies the condition (TRi ) for some i ≤−1 provided Ext−i (Tr M, RR)= 0.
Note that (TRi ) is defined only for i 6= 0. Thus, M is semi-Gorenstein-projective if and only if M satisfies
(TRi ) for all i ≥ 1, and M is∞-torsionfree (i.e., Tr M is semi-Gorenstein-projective) if and only if M
satisfies (TRi ) for all i ≤ −1. Note that M satisfies (TRi ) if and only if Tr(M) satisfies (TR−i ). The
main theorem of Jorgensen and Şega asserts that there exists a local artinian ring R and a family Ms of
R-modules, with Ms =�Ms+1 for s ≥ 1, such that Ms satisfies (TRi ) if and only if i < s.

Such a module Ms satisfies the conditions (G2) and (G3), and satisfies in addition the condition that
Exti (Ms, R)= 0 if and only if 1≤ i ≤ s− 1. Of course, this is a condition which is much stronger than
the negation of (G1).

Let us show that our algebra 3(q) with o(q)=∞ also provides such examples. Of course, in contrast
to the algebra R exhibited by Jorgensen and Şega, 3(q) is noncommutative. There is the following
general result:

Proposition. Let R be a local artinian algebra which is not self-injective, with simple R-module S.
If M is an indecomposable∞-torsionfree module such that S is a proper direct summand of �M, then

M satisfies (TRi ) if and only if i < 0.
If M is an indecomposable module such that M satisfies (TRi ) if and only if i < 0, then for every s ≥ 1,

the module fs−1 M satisfies (TRi ) if and only if i < s.

Proof. First, let M be indecomposable, ∞-torsionfree, with �M ∼= S ⊕ X for some nonzero module
X . Since M is ∞-torsionfree, M satisfies (TRi ) for i ≤ −1. Since �M is decomposable, we have
Ext1(M, R) 6= 0, i.e., M does not satisfy (TR1). By Lemma 7.5, Exti (S, R) 6= 0 for all i ≥ 1. Thus, for
i ≥ 2 we have Exti (M, R)∼= Exti−1(�M, R)∼= Exti−1(S, R)⊕Exti−1(X, R) 6= 0, which means that M
does not satisfy (TRi ).

Next, assume that M is an indecomposable module such that M satisfies (TRi ) if and only if i ≤−1.
For s ≥ 1 consider the module Ms = fs−1 M . For i ≤ −1, Ms satisfies (TRi ): in fact, by Lemma 4.4,
Ext−i (Tr(Ms), R)= Ext−i (Tr(fs−1 M), R)∼= Ext−i (Tr(Tr�s−1 Tr(M)), R)∼= Ext−i (�s−1 Tr(M), R)∼=
Ext−i+s−1(Tr(M), R)= 0.

If 1 ≤ i ≤ s − 1, then s − i ≥ 1 and Exti (Ms, R) = Exti (fs−1 M, R) ∼= Ext1(fs−i M, R) = 0, since
s− i − 1≥ 0 and fs−i−1 M is torsionless.

If i ≥ s, then i − s + 1 ≥ 1 shows that Exti (Ms, R)' Exti−s+1(M, R) 6= 0, i.e., Ms does not satisfy
(TRi ). �

Application: Let R=3=3(q) with o(q)=∞. Then M =M(1) is an indecomposable∞-torsionfree
module and S is a proper direct summand of �M , thus the Proposition above shows that for s ≥ 1,
Ms = fs−1 M = M(q−(s−1)) satisfies (TRi ) if and only if i < s. �

8.2. The Auslander condition of Christensen and Holm. Christensen and Holm [CH] say that a
left-noetherian ring A satisfies the Auslander condition, provided that for every finitely generated left
A-module M , there is an integer b(M) with the following property: if M ′ is a finitely generated left



Gorenstein-projective and semi-Gorenstein-projective modules 31

A-module, then the vanishing Ext�0(M,M ′)= 0 implies that Ext>b(M)(M,M ′)= 0. We are indebted
to Christensen and Holm for having drawn our attention to Theorem C of [CH] which asserts: If A is a
finite-dimensional k-algebra A satisfying the Auslander condition, then A is left weakly Gorenstein (here,
we have taken into account that a finite-dimensional k-algebra has a dualizing complex, see 3.4 in [CH]).
This shows that the algebra 3(q) with o(q)=∞ does not satisfy the Auslander condition. Actually, this
can be seen directly, using the following easy observation.

Proposition. Assume that A is a finite-dimensional k-algebra which satisfies the Auslander condition.
Let Ni with i ∈ Z be finite-dimensional right A-modules with �Ni = Ni−1 for all i . If at least one of the
modules Ni is semi-Gorenstein-projective, then all the modules Ni are semi-Gorenstein-projective, thus
Gorenstein-projective.

Proof. Note that A satisfies the Auslander condition if and only if for every finite-dimensional right A-
module N , there is an integer c(N ) such that for every finite-dimensional right A-module N ′, the vanishing
Ext�0(N ′, N ) = 0 implies that Ext>c(N )(N ′, N ) = 0 (here, c(N ) = b(DN ), where D = Hom(,−, k)
denotes the k-duality).

We assume that N0 is semi-Gorenstein-projective, whereas N1 is not semi-Gorenstein-projective. Then
we must have Ext1(N1, AA) 6= 0. Since N0 is semi-Gorenstein-projective, Extt(N0, AA)= 0 for all t ≥ 1
and therefore Extt+ j (N j , AA) = 0 for all t ≥ 1 and j ≥ 0. In particular, we have Ext�0(N j , AA) = 0
for all j ≥ 0. Now we use the Auslander condition with c = c(AA). Since Ext�0(Nc+1, AA) = 0,
we have Extc+1(Nc+1, AA) = 0. On the other hand, Extc+1(Nc+1, AA) ' Ext1(N1, AA) 6= 0. This is a
contradiction. �

For our algebra 3(q) with o(q) = ∞, let Ni = mq i3 with i ∈ Z. According to 6.5(6), we have
�Ni = Ni−1. As we know, the right module N0 = m13 = M(q)∗ is semi-Gorenstein-projective, but
not Gorenstein-projective, see Theorem 1.6. This shows that 3(q) with o(q)=∞ does not satisfy the
Auslander condition.

8.3. The quantum exterior algebra 3′ = 3′(q) in two variables (see, for example [S]). Let 3′ be
the k-algebra generated by x, y with the relations x2, y2, xy+ qyx . It has a basis 1, x, y, and yx . We
may use the following picture as an illustration:

1
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x

y

y
3′ :

If we factor out the socle of 3′, we obtain the 3-dimensional local algebra 3′′ with radical square zero
(it is generated by x, y with relations x2, y2, xy, yx).

Note that 3′(q) is a subalgebra of 3(q), and that 3z3 = 3z = span{z, zx}. The composition
3′ ↪→3�3/3z3 of the canonical maps is an isomorphism of algebras. In this way, the 3′-modules
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may be considered as the 3-modules which are annihilated by z. We should stress that the elements
mα = x −αy (which play a decisive role in our investigation) belong to 3′.

For α ∈ k, let M ′(α) be the 3′-module with basis v, v′, such that xv= αv′, yv= v′, and xv′ = 0= yv′.
In addition, we define M ′(∞) as the 3′-module with basis v, v′, such that xv = v′, yv = xv′ = yv′ = 0.
Here are the corresponding illustrations:
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xM ′(∞) :

The modules M ′(α) with α ∈ k ∪ {∞} are pairwise nonisomorphic and indecomposable, and any two-
dimensional indecomposable 3′-module is of this form. In particular, the left ideal 3′mα is isomorphic to
M ′(qα), for any α ∈ k∪{∞}. The essential property of the modules M ′(α) is the following: �3′M ′(α)=
M ′(qα). This follows from the fact that mqαmα = 0 and it is this equality which has been used frequently
in sections 6 and 7.

For all α ∈ k, M(α) considered as a3′-module, is equal to M ′(α)⊕k, where k is the simple3′-module.
Also, we should stress that rad3 considered as a left 3′-module is the direct sum of I and M ′(∞), where
I is the indecomposable injective 3′′-module.

8.4. A variation. Let 3̃ be the algebra defined by a quiver with two vertices, say labeled by 1 and 2,
with three arrows 1→ 2 labeled by x, y, z and with three arrows 2→ 1, also labeled by x, y, z, satisfying
the “same” relations as 3 (of course, now we have 14 relations: seven concerning paths 1→ 2→ 1 and
seven concerning paths 2→ 1→ 2). Whereas 3 is a local algebra, the algebra 3̃ is a connected algebra
with two simple modules S(1) and S(2).

For all the considerations in sections 6 and 7, there are corresponding ones for 3̃, but always we have
to take into account that now we deal with two simple modules S(1) and S(2): Corresponding to the
module M(α), there are two different modules, namely M1(α) with top S(1) and M2(α) with top S(2).
The modules M1(α) and M2(α) have similar properties as M(α), in particular, M1(q) and M2(q) are
semi-Gorenstein-projective and not Gorenstein-projective provided that o(q)=∞. There is one decisive
difference between the 3-modules and the 3̃-modules: The endomorphism ring of M1(α) and M2(α) is
equal to k, whereas the endomorphism ring of any M(α) is 3-dimensional.

9. Questions

9.1. We have constructed a module which satisfies the conditions (G1), (G2), but not (G3). As we
have mentioned already in the introduction, it is an open problem whether such a module does exist in
case we deal with commutative rings.

9.2. One may ask whether or not the finiteness of gp A implies that A is left weakly Gorenstein, There
is a weaker question: is A left weakly Gorenstein, in case all the Gorenstein-projective A-modules are
projective?
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9.3. Following Marczinzik [M1, question 1], one may ask whether a left weakly Gorenstein artin
algebra is also right weakly Gorenstein, thus whether the existence of an f-component of the form N

implies that also an f-component of the form −N exists.
Note that if any right weakly Gorenstein algebra is left weakly Gorenstein, then the Gorenstein

symmetry conjecture holds true. Namely, we claim: If inj. dim. A A ≤ d and inj. dim. AA > d (the
Gorenstein symmetry conjecture asserts that this should not happen), then A is right weakly Gorenstein,
but not left weakly Gorenstein.

Proof. Let Q be an injective cogenerator of mod A. We assume that inj. dim. A A is at most d. As we
have seen in 4.9, A is right weakly Gorenstein and any module of the form �d M is semi-Gorenstein
projective. Now assume that A is also left weakly Gorenstein. Then all the modules �d M are Gorenstein-
projective. In particular, Q′ =�d Q is Gorenstein-projective. A well-known argument shows that if Q′

is Gorenstein-projective, then Q′ is even projective. [Namely, assume that Q′ is Gorenstein-projective.
Then there is a Gorenstein-projective module Q′′ such that Q′ = P ′⊕�d+1 Q′′ with P ′ projective. Now
Ext1(�d Q′′, Q′) ' Extd+1(Q′′, Q′) ' Ext1(Q′′, Q) = 0, here the first isomorphism is the usual index
shift, whereas the second comes from the fact that Q′′ is (semi-)Gorenstein-projective and Q′ =�d Q (for
a semi-Gorenstein-projective module N , and any module Z , we have Exti+1(N , �Z)' Exti (N , Z) for
all i ≥ 1). But Ext1(�d Q′′, P ′⊕�d+1 Q′′)= 0 implies that Ext1(�d Q′′, �d+1 Q′′)= 0, thus the canonical
exact sequence 0→�d+1 Q′′→ P(�d Q′′)→�d Q′′→ 0 splits and �d+1 Q′′ has to be projective (even
zero). It follows that Q′ = P ′⊕�d+1 Q′′ is projective.] Since Q′ is projective, the projective dimension
of Q is at most d . Using duality, we see that inj. dim. AA ≤ d . �

9.4. Assume that there exists a nonreflexive A-module M such that both M and M∗ are semi-Gorenstein-
projective. Is then the same true for Aop? Even for A=3(q) with o(q)=∞, we do not know the answer.
According to 7.5(1*), a right A-module N of the form N = mα3(q) is reflexive, if both N and N ∗ are
semi-Gorenstein-projective. But, there could exist some other right A-module N satisfying (G1), (G2)
and not (G3).

9.5. The Nunke condition. Does there exist a semi-Gorenstein-projective module M 6= 0 with
M∗ = 0? Such a module would be an extreme example of a module satisfying (G1), (G2) and not (G3).
Marczinzik has pointed out that this question concerns the Nunke condition [H] for M , which asserts that
Exti (M, A) 6= 0 for some i ≥ 0, see [J]. Colby and Fuller [CF] have conjectured that the Nunke condition
should hold for any module M ; they called this the strong Nakayama conjecture. The strong Nakayama
conjecture obviously implies the generalized Nakayama conjecture which asserts that for any simple
module S there should exist some i ≥ 0 such that Exti (S, A) 6= 0. It is known that the Nunke condition is
satisfied in case the finitistic dimension conjecture holds true.

Note that if M is indecomposable and semi-Gorenstein-projective, then M∗ may be decomposable, as
Theorem 1.5 shows: the 3(q)op-module M(q)∗ is indecomposable and semi-Gorenstein-projective, but
M(q)∗∗ is decomposable.
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9.6. The conditions (TRi ). Following Jorgensen and Şega [JS], one may ask whether an A-module
which satisfies (TRi ) for all but finitely many values of i , has to be Gorenstein-projective. In general, this
is not the case, since there is the following proposition.

Proposition. If both M and M∗ are semi-Gorenstein-projective, then M satisfies the conditions (TRi )

for all i /∈ {−1,−2}.

Proof. Let M be semi-Gorenstein-projective. Then M satisfies (TRi ) for i ≥ 1. Since Ext1(M, A)= 0
for i = 1, 2, Lemma 2.5 asserts that there is a projective module Y such that M∗ ' �2 Tr M ⊕ Y .
Assume now that also M∗ is semi-Gorenstein-projective. Then for i ≥ 1, we have Exti+2(Tr M, AA)=

Exti (�2 Tr M, AA)= Exti (M∗, AA)= 0, thus M satisfies also (TRi ) for i ≤−3. �

Thus, our paper shows that there are (noncommutative) artinian rings with modules M which satisfy
(TRi ) for all i /∈ {−1,−2} and which are not Gorenstein-projective. For commutative artinian rings (and
this was the setting considered by Jorgensen and Şega) the question is open.
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