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Gorenstein-projective and
semi-Gorenstein-projective modules

Claus Michael Ringel and Pu Zhang

Let A be an artin algebra. An A-module M will be said to be semi-Gorenstein-projective provided
that Ext'(M, A) = 0 for all i > 1. All Gorenstein-projective modules are semi-Gorenstein-projective
and only few and quite complicated examples of semi-Gorenstein-projective modules which are not
Gorenstein-projective have been known. One of the aims of the paper is to provide conditions on A such
that all semi-Gorenstein-projective left modules are Gorenstein-projective (we call such an algebra left
weakly Gorenstein). In particular, we show that in case there are only finitely many isomorphism classes
of indecomposable left modules which are both semi-Gorenstein-projective and torsionless, then A is left
weakly Gorenstein. On the other hand, we exhibit a 6-dimensional algebra A with a semi-Gorenstein-
projective module M which is not torsionless (thus not Gorenstein-projective). Actually, also the A-dual
module M* is semi-Gorenstein-projective. In this way, we show the independence of the total reflexivity
conditions of Avramov and Martsinkovsky, thus completing a partial proof by Jorgensen and Sega. Since
all the syzygy-modules of M and M* are 3-dimensional, the example can be checked (and visualized)
quite easily.

1. Introduction

1.1. Notations and definitions. Let A be an artin algebra. All modules will be finitely generated.
Usually, the modules we are starting with will be left modules, but some constructions then yield
right modules. Let mod A be the category of all finitely generated left A-modules and add(A) the full
subcategory of all projective modules.

If M is a module, let PM be a projective cover of M, and Q2M the kernel of the canonical map
PM — M. The modules ' M with ¢ > 0 are called the syzygy modules of M. A module M is said to be
Q-periodic provided that there is some ¢ > 1 with Q'M = M.

The right A-module M* = Hom(M, A) is called the A-dual of M. Let ¢p; : M — M™** be defined
by ¢y (m)(f) = f(m) form e M, f € M*. A module M is said to be forsionless provided that M is a
submodule of a projective module, or, equivalently, provided that ¢, is injective. A module M is called
reflexive provided that ¢, is bijective.

Supported by NSFC 11971304.

MSC2010: primary 16E65; secondary 16E05, 16G10, 16G50, 20G42.

Keywords: Gorenstein-projective module, semi-Gorenstein-projective module, left weakly Gorenstein algebra, torsionless
module, reflexive module, ¢-torsionfree module, Frobenius category, U-quiver.

1


http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2020.14-1
http://dx.doi.org/10.2140/ant.2020.14.1

2 Claus Michael Ringel and Pu Zhang

Let Tr M be the cokernel of f*, where f is a minimal projective presentation of M (this is the canonical
map P(QM) — PM). Note that Tr M is a right A-module, called the transpose of M.
A complete projective resolution is a (double infinite) exact sequence

P':---—>P71—>P0d—O>P1—>---

of projective left A-modules, such that Hom4 (P°, A) is again exact. A module M is Gorenstein-projective,
if there is a complete projective resolution P* with M isomorphic to the image of d°.

A module M will be said to be semi-Gorenstein-projective provided that Ext' (M, A) =0 for all i > 1.
All Gorenstein-projective modules are semi-Gorenstein-projective. If M is semi-Gorenstein-projective,
then so is QM. Denote by gp(A) the class of all Gorenstein-projective modules and by A the class
of all semi-Gorenstein-projective modules. Then gp(A) C *A. We propose to call an artin algebra
A left weakly Gorenstein provided that YA = gp(A), i.e., any semi-Gorenstein-projective module is
Gorenstein-projective. (And A is said to be right weakly Gorenstein if its opposite algebra AP is left
weakly Gorenstein.)

The first aim of the paper is to provide a systematic treatment of the relationship between semi-
Gorenstein-projective modules and Gorenstein-projective modules, see theorems 1.2 to 1.4. Some of these
results are (at least partially) known or can be obtained from the literature, in particular see the paper
[B3] by Beligiannis, but we hope that a unified, elementary and direct presentation may be appreciated.

1.2. First, we have various characterizations of the left weakly Gorenstein algebras.
Theorem. Let A be an artin algebra. The following statements are equivalent:
(1) A is left weakly Gorenstein.
(2) Any semi-Gorenstein-projective module is torsionless.
(3) Any semi-Gorenstein-projective module is reflexive.
(4) For any semi-Gorenstein-projective module M, the map ¢y is surjective.
(5) For any semi-Gorenstein-projective module M, the module M* is semi-Gorenstein projective.
(6) Any semi-Gorenstein-projective module M satisfies Ext' (M*, A4) = 0.

(7) Any semi-Gorenstein-projective module M satisfies Ext' (Tr M, A,) = 0.
The equivalence of (1) and (2) was published by Huang—Huang [HH, Theorem 4.2].

1.3. The next result concerns artin algebras with finitely many indecomposable semi-Gorenstein-
projective modules or with finitely many indecomposable torsionless modules.

Theorem. If the number of isomorphism classes of indecomposable modules which are both semi-
Gorenstein-projective and torsionless is finite, then A is left weakly Gorenstein and any indecomposable
nonprojective semi-Gorenstein-projective module is Q2-periodic.

This combines two different directions of thoughts. First of all, Yoshino [Y] has shown that for
certain commutative rings R (in particular all artinian commutative rings) the finiteness of the number
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of isomorphism classes of indecomposable semi-Gorenstein-projective R-modules implies that R is left
weakly Gorenstein. This was generalized to artin algebras by Beligiannis [B3, Corollary 5.11]. Second,
according to Marczinzik [M1], all torsionless-finite artin algebras (these are the artin algebras with only
finitely many isomorphism classes of torsionless indecomposable modules) are left weakly Gorenstein.
Note that a lot of interesting classes of artin algebras are torsionless-finite, see 3.6.

1.4. If C is an extension-closed full subcategory of mod A, then the embedding of C into mod A provides
an exact structure on C, called its canonical exact structure (for the basic properties of exact structures, see
for example [K, Appendix A]). An exact category F is called a Frobenius category provided that it has
enough projective and enough injective objects and that the projective objects in F are just the injective
objects in F. We denote by P(F) (and by Z(F)) the full subcategory of the projective (respectively
injective) objects in F.

The subcategories gp(A) and *A are extension-closed, and with its canonical exact structure gp(A) is
Frobenius with P(gp(A)) = add A [B2, Prop. 3.8]. Thus, if A is left weakly Gorenstein, then F = gp(A)
is an extension-closed full subcategory of mod A which is Frobenius with the canonical exact structure
and satisfies P(F) € YA C F. The following result shows that these properties characterize left weakly
Gorenstein algebras.

Theorem. Let A be an artin algebra and F an extension-closed full subcategory of mod A such that F
is a Frobenius category with respect to its canonical exact structure. If P(F) C tA C F, then A is left
weakly Gorenstein and F = gp(A).

A full subcategory C of mod A is said to be resolving provided that it contains all the projective modules
and is closed under extensions, direct summands and kernels of surjective maps. Note that *A and gp(A)
are resolving subcategories.

Corollary 1. Let A be an artin algebra and F a resolving subcategory of mod A with *A C F. Assume

that F with its canonical exact structure is a Frobenius subcategory. Then A is left weakly Gorenstein and
F =gp(A).
Taking F = A in Theorem 1.4 we get

Corollary 2. An artin algebra A is left weakly Gorenstein if and only if A with its canonical exact

structure is a Frobenius subcategory.

We remark that gp(A) is the largest resolving Frobenius subcategory of mod A (compare [B1, Prop.
2.13, Theorem 2.11], [B2, p.145], and [B3, p.1989]; also [ZX, Prop. 5.1]). This implies Theorem 1.4 and
the two corollaries (as one of the referees has pointed out).

1.5. The U-quiver of an artin algebra A. The main tool used in the paper are the operator U, and the
O-quiver of A. Here are the definitions.

Recall that a map f : M — M’ is said to be left minimal provided that any map h : M’ — M’ with
hf = f is an automorphism [AR1]. A left add(A)-approximation will be called minimal provided that
it is left minimal. We denote by UM the cokernel of a minimal left add(A)-approximation of M. (The
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symbol U, pronounced “agemo”, should be a reminder that U has to be considered as a kind of inverse of
2.) It turns out that the operator U coincides with Tr  Tr, which has been studied by Auslander and
Reiten in [AR2]. See Subsection 4.4, and also 4.7.

Let w : M — P be a minimal left add(A)-approximation with cokernel map = : P — OM. If M is
indecomposable and not projective, then the image of w is contained in the radical of P, thus & is a
projective cover. If M is, in addition, torsionless (so that w is injective), then UM is indecomposable and
not projective, and QUM ~ M.

The U-quiver of A has as vertices the isomorphism classes [ X] of the indecomposable nonprojective
modules X and there is an arrow

[X] ~----[0X]

for any torsionless (indecomposable, nonprojective) module X. (We hope that the reader is not irritated by
the chosen orientation of the arrow: it corresponds to the usual convention when dealing with Ext-quivers.)
A component of the U-quiver will be called an U-component; a path in the O-quiver will be called an
O-path.

In the U-quiver, an arrow ending at [X] starts at [0 X], thus for any vertex [X], there is at most one
arrow ending in [ X]. If [Z] is the start of an arrow, say Z ~ U X for some vertex [ X ], then X ~ QUX ~QZ
implies that the arrow is uniquely determined. This shows that at any vertex of the O-quiver, at most one

arrow starts and at most one arrow ends. As a consequence, we have:

Proposition. Any U-component is a linearly oriented quiver A, with n > 1 vertices, or an oriented

cycle &n with n+1 > 1 vertices, or of the form —N, or N, or Z.

Note that we consider any subset I of Z as a quiver, with arrows from z to z—1 (provided that both
z—1 and z belong to I). For example, the interval {1, 2, ..., n} is the quiver A, with linear orientation
(with 1 being the unique sink and n the unique source). Here are the quivers —N and N:

~--0=<--0=<--0 O<~--0=<=--0=== -+
—N N

As we will see in 7.7, all cases mentioned here can arise as U-components.

An indecomposable nonprojective module M will be said to be of U-type A where Ae{A,, A,,—N,N, 7}
in case the U-component containing [M] is of the form A.

Let us collect what can be read out about an indecomposable nonprojective module when looking at its
position in the U-quiver. Recall that a module M is said to be ¢-torsionfree, provided Ext' (Tr M, A4) =0
for 1 <i <t (and oo-torsionfree, provided Ext’ (TrM, Ay) =0 for all i > 1); the definition is due to
Auslander (see [Al, Br, AB])).

Theorem. Let M be an indecomposable nonprojective module.
(0) [M] is an isolated vertex if and only if Ext'(M, A) # 0 and M is not torsionless.

(1) [M] is the start of a path of length t > 1 if and only if Ext'(M, A) =0 for 1 <i <t. In particular,
[M] is the start of an arrow if and only if Ext'(M, A) = 0.
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(1) [M] is the start of an infinite path if and only if M is semi-Gorenstein-projective.
(1”) [M] is of G-type —N if and only if M is semi-Gorenstein-projective, but not Gorenstein-projective.

(2) [M] is the end of a path of length t > 1 if and only if M is t-torsionfree for 1 <i <t, if and only
if O'='M is torsionless for 1 < i < t. In particular, [M] is the end of an arrow if and only if M is
torsionless; and [M] is the end of a path of length 2 if and only if M is reflexive.

(2') [M] is the end of an infinite path if and only if M is co-torsionfree, if and only if M is reflexive and
M* is semi-Gorenstein-projective.

(2" [M] is of O-type N if and only if M is oco-torsionfree, but not Gorenstein-projective.

(3) [M] is the start of an infinite path and also the end of an infinite path if and only if M is Gorenstein-
projective. M is of U-type Z if and only if M is Gorenstein-projective and not Q-periodic. M is of
U-type A, for some n > 0 if and only if M is Gorenstein-projective and Q-periodic.

(4) A-duality provides a bijection between the isomorphism classes of the reflexive indecomposable
A-modules of O-type A, and the isomorphism classes of the reflexive indecomposable A°°-modules of
O-type A,,. Thus, for any n >3, A has U-components of form A, if and only if A°® has G-components
of form A,,.

(5) A-duality provides a bijection between the isomorphism classes of the reflexive indecomposable
A-modules of G-type N and the isomorphism classes of the reflexive indecomposable A°P-modules of
O-type —N. Thus, A has U-components of form N if and only if A°° has G-components of form —N.

Remark 1. Characterizations of Gorenstein-projective modules. The G-quiver shows nicely that an
indecomposable module M is Gorenstein-projective if and only if both M and Tr M are semi-Gorenstein-
projective, if and only if M is reflexive and both M and M* are semi-Gorenstein projective: See (1'), (2')
and (3).

Remark 2. Symmetry. The U-quiver shows a symmetry between the semi-Gorenstein-projective
modules and the co-torsionfree modules: An indecomposable nonprojective module M is semi-Gorenstein-
projective provided there is an infinite O-path starting in M; and M is oco-torsionfree, provided there is
an infinite U-path ending in M.

Remark 3. Weakly Gorenstein algebras. An artin algebra A is left weakly Gorenstein if and only if
there are no modules of U-type —N, see (1”). Similarly, A is right weakly Gorenstein if and only if there
are no modules of G-type N, see (2”) and (5).

1.6. The first example of a semi-Gorenstein-projective module which is not Gorenstein-projective was
constructed by Jorgensen and Sega [JS] in 2006, for a commutative algebra of dimension 8. Recently,
Marczinzik [M2] presented some noncommutative algebras with semi-Gorenstein-projective modules
which are not Gorenstein-projective. In 6.1, we exhibit a class of 6-dimensional k-algebras A(g) with
parameter g € k \ {0} and a family M («) of 3-dimensional indecomposable A (g)-modules (with « € k)
in order to find new examples:
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Theorem. Let A(q) be the 6-dimensional algebra defined in 6.1. If the multiplicative order of
q is infinite, then the A-modules M(q) and M(q)* both are semi-Gorenstein-projective, but M(q) is
not torsionless, thus not Gorenstein-projective; all the syzygy modules Q' M (q) and Q' (M (q)*) with
t > 0 are 3-dimensional and indecomposable; the module M (q)** >~ QM (1) is also 3-dimensional, but

decomposable.

Addendum. For any q, the A(q)-modules M (o) with o € k \ qZ are Gorenstein-projective. Thus, if
k is infinite, then there are infinitely many isomorphism classes of 3-dimensional Gorenstein-projective

modules.

1.7. Independence of the total reflexivity conditions. It was asked by Avramov and Martsinkowsky
[AM] whether the following conditions which characterize the Gorenstein-projective modules, are

independent.

(G1) The A-module M is semi-Gorenstein-projective.
(G2) The A-dual M* = Hom(M, 4A) of M is semi-Gorenstein-projective.
(G3) The A-module M is reflexive.

Theorem. For artin algebras, the conditions (G1), (G2) and (G3) are independent.

Proof. Theorem 1.6 provides a A(g)-module M (namely M = M (q)) satisfying the conditions (G1), (G2)
and not (G3). It remains to use the following proposition. (I

Proposition. If a module M is semi-Gorenstein-projective and not Gorenstein-projective, then QM
satisfies (G1) and (G3), but not (G2).

If a module M’ satisfies (G1) and (G3), but not (G2), then N = (M’)* is a right module satisfying (G2)
and (G3), but not (G1).

Proof. Let M be semi-Gorenstein-projective and not Gorenstein-projective. Then Q2M is reflexive and
semi-Gorenstein-projective. By Lemma 2.5, (2M)* = Tr M. Thus (Q>M)* is not semi-Gorenstein-
projective (otherwise, M is Gorenstein-projective).

If M’ satisfies (G1) and (G3), but not (G2), then (M")* is reflexive and (M’)** = M’ is semi-Gorenstein-
projective, i.e., N = (M')* satisfies (G2) and (G3), but not (G1). O

Actually, for our example A = A(g), there is also an A-module which satisfies (G2), (G3), but not
(G1), namely the module M (1), see 7.5.

In [JS], where Jorgensen and Sega present the first example of a semi-Gorenstein-projective module
which is not Gorenstein-projective, they also exhibited modules satisfying (G1), (G3), but not (G2), and
modules satisfying (G2), (G3), but not (G1). The algebra A considered in [JS] is commutative. It is an
open problem whether there exists a commutative ring A with a module M satisfying (G1), (G2), but
not (G3). The forthcoming paper [RZ4] will be devoted to a better understanding of the modules M with

both M and M* being semi-Gorenstein-projective.
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1.8. Outline of the paper. The proofs of theorems 1.2, 1.3 and 1.4 are given in sections 2, 3 and 5,
respectively. We use what we call (as a shorthand) approximation sequences, namely exact sequences

0 X—-Y—=>Z7Z—-0

with ¥ projective and Ext!(Z, A) = 0, see section 2. Of special interest are the approximation sequences
with both X and Z indecomposable and nonprojective; in this case, we have X = QZ and Z = UX, and
we call them U-sequences, see section 3.

Section 4 deals with the U-quiver of A. An essential ingredient in this setting seems to be Corollary
4.4. The corresponding Remark 1 in 4.4 asserts that the kernel of the canonical map O'M — (U' M)** is
equal to Ext’ +1 (Tr M, Ay), and its cokernel is equal to Exti+2 (TrM, Ay), forall £ > 0.

In sections 6 and 7, we present the 6-dimensional algebra A = A (q) depending on a parameter g € k\ {0},
which we need for Theorem 1.6. We analyze some 3-dimensional representations which we denote by
M (o) with o € k. Essential properties of the modules M () can be found in 6.3 to 6.5; they are labeled
by (1) to (9). The properties (1) to (5) in 6.3 are those which are needed in order to exhibit a module,
namely M (g), which is semi-Gorenstein-projective, but not torsionless, provided the multiplicative order
of g is infinite (see 6.4). The remaining properties (6) to (9) in 6.5 show, in particular, that in case the
multiplicative order of ¢ is infinite, also the A-dual M (g)* of M(g) is semi-Gorenstein-projective. The
proof of Theorem 1.6 and its Addendum is given in 6.7 and 6.8. In 7.1 and 7.2, some components of the
U-quivers of the algebras A and A°P are described.

The final sections 8 and 9 add remarks and mention some open questions.

1.9. Terminology. We end the introduction with some remarks concerning the terminology and its
history. The usual reference for the introduction of Gorenstein-projective modules (under the name
modules of Gorenstein dimension zero) is the Memoirs by Auslander and Bridger [AB] in 1969. Actually,
in his thesis [Br], Bridger attributes the concept of the Gorenstein dimension to Auslander: In January 1967,
Auslander gave four lectures at the Séminaire Pierre Samuel (see the notes [A1] by Mangeney, Peskine
and Szpiro). In these lectures, he discussed the class of all reflexive modules M such that both M and
M* are semi-Gorenstein-projective modules and denoted it by G(A) [A1, Definition 3.2.2]. Thus G(A)
is the class of the Gorenstein-projective modules and the conditions (G1), (G2) and (G3) served as the
first definition. In [AB, Proposition 3.8], it is shown that a module M belongs to G (A) if and only if both
M and Tr M are semi-Gorenstein-projective. Of course, we should stress the following: Whereas some
formulations in [AB] assume that the ring A in question is a commutative noetherian ring, all the essential
considerations in [A1l, Br, AB] are shown in the setting of an abelian category with enough projectives,
and of the category of finitely generated modules over a, not necessarily commutative, noetherian ring.
Enochs and Jenda [EJ1, EJ2] have reformulated the definition of Gorenstein-projective modules in terms
of complete projective resolutions, see also [Chr]. Several other names for the Gorenstein-projective
modules are in use, they are also called “totally reflexive”” modules [AM], and “maximal Cohen—Macaulay”
modules [Buch] and “Cohen—Macaulay” modules [B2].
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We should apologize that we propose a new name for the modules M with Ext' (M, A) =0 for all i > 1,
namely semi-Gorenstein-projective. These modules have been called for example “Cohen—Macaulay
modules” or “stable modules”. However, the name “Cohen—Macaulay module” is in conflict with its
established use for commutative rings, and, in our opinion, the wording “stable” may be too vague as a
proper identifier. We hope that the name semi-Gorenstein-projective describes well what is going on: that
there is something like a half of a complete projective resolution (“semi” means “half”’). We also propose
the name left weakly Gorenstein for an algebra A with gp(A) = *A (in contrast to “nearly Gorenstein” in
[M2]); of course, a Gorenstein algebra A satisfies gp(A) = *A, but the algebras with gp(A) = +A seem
to be quite far away from being Gorenstein. The left weakly Gorenstein algebras have also been called
“algebras with condition (GC)” in [CH].

2. Approximation sequences. Proof of Theorem 1.2

2.1. Lemma. Lete€ : 0 — X 25 Y T Z — 0 be an exact sequence with Y projective. Then the

following conditions are equivalent:
(i) w is a left add(A)-approximation.
(i) Ext'(Z, A) =0.
(iii) The A-dual sequence €* of € is exact.

An exact sequence 0 - X — Y — Z — 0 with Y projective satisfying the equivalent properties will
be called in this paper an approximation sequence (this is just a shorthand, since it is too vague to be used
in general). One may observe that the conditions (i), (ii) and (iii) are equivalent for any exact sequence
€:X 2> Y — Z — 0 with Y projective, even if w is not injective, but we are only interested in the short
exact sequences.

Proof of the equivalence of the properties. Since Y is projective, applying Hom(—, A) to € we get the
exact sequence 0 — Z* Isy* 25 X* - Ext'(Z, A) — 0. Note that w is a left add(A)-approximation
if and only if w* is surjective. From this we get the equivalence of (i) and (ii) and the equivalence of (ii)
and (iii). O

2.2. Also the following basic lemma is well-known (see, for example [R]).

Lemma. Let P_; N Py -5 P be an exact sequence of projective modules and let g = up be a

factorization with p : Po — I epi and u : I — Py mono. Then P*, J Py il P} is exact if and only if
u is a left add(A)-approximation.
For the convenience of the reader, we insert the proof.

Proof. Since f*g* = (gf)* = 0, we have Img* C Ker f*. Assume now that u is a left add(A)-
approximation and let & € Ker f*, thus Af = 0. Since p is a cokernel of f, there is ' with h = h'p.
Since u is a left add(A)-approximation, there is 4" with i’ =h"u. Thus h=h'p =h"up =h"g = g*(h")
belongs to the image of g*, there also Ker f* C Im g*.
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Conversely, we assume that Im g* = Ker f* and let 4 : I — A be a map. Then Apf = 0, so that
f*(hp) =0. Therefore ip belongs to Ker f*, thus to Im g*. There is 1" € P;" with hp = g*(h") =h"g =
h"up, and therefore h = h'u. O

This Lemma will be used in various settings, see 4.3.
2.3. A semi-Gorenstein-projective and Q2-periodic module is Gorenstein-projective.

Proof. Let M be semi-Gorenstein-projective and assume that Q'M = M for some ¢ > 1. Let--- — P; —
-++— Py — M — 0 be a minimal projective resolution of M. Then

0-QM—->P_1— --—>Ph—>M-—-0 )

is the concatenation of approximation sequences. Since Q'M = M, we can concatenate countably many
copies of (+4) in order to obtain a double infinite acyclic chain complex of projective modules. As
a concatenation of approximation sequences, it is a complete projective resolution. Therefore, M is
Gorenstein-projective. ]

2.4. Here are two essential observations.

(@) Let 0 > X — Y — Z — 0 be an approximation sequence. Then ¢x is surjective if and only if Z is
torsionless. We can also say: X is reflexive if and only if Z is torsionless.

(b) Let 0 — X — Y — Z — 0 be an approximation sequence. Then Ext' (X*, A4) = 0 if and only if
¢z is surjective.

Proof of (a) and (b). Since 0 — X 2y 1> Z->0isan approximation sequence, it follows that
0 Z* 25 ¥* = X* >0

is an exact sequence of right A-modules. This induces an exact sequence

T

0> X"™ > VY™ 5 7% > Ext};(X*, A —0

of left A-modules, and we obtain the commutative diagram

0 ——> X y X 7 — 0

[ Js

0 —— X** Y Z* — Ext!/(X*, Ay) —— 0.

T

By the Snake lemma, the kernel of ¢ is isomorphic to the cokernel of ¢x, Thus ¢ is a monomorphism
if and only if ¢x is an epimorphism. Since X is torsionless, X is reflexive if and only if ¢x is surjective.
This is (a).

By the commutative diagram above, we see that ¢ is epic if and only if so is 7**, and if and only if
Extl (X*, A4) = 0. This is (b). O

Corollary. A module X is reflexive if and only if both X and GX are torsionless.
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Proof. If X is reflexive, then it is torsionless. Thus we may assume from the beginning that X is torsionless.
Any minimal left add(A)-approximation X — Y is injective and its cokernel is UX. The exact sequence
0— X - Y — UX — 0 is an approximation sequence, and 2.4(a) asserts that X is reflexive if and only
if UX is torsionless. ]

Remark. The assertion of the corollary can be strengthened as follows. For any module X, let us
denote by K X the kernel of the map ¢x : X — X**. Of course, K X is the kernel of any left add(A)-
approximation of X. Therefore X is torsionless if and only if K X = 0. Claim: The cokernel of the map
¢x : X = X* is isomorphic to KUX.

Proof. Let u : X — Y be a minimal add(A) approximation, say with cokernel p : ¥ — UX. The A-dual
of the exact sequence X — ¥ 25 UX — 0is 0 < X* <— V* <L~ (UX)* < 0, since u is an add(A)-

approximation. Using again A-duality, we obtain the exact sequence 0 — X** L y** 2 (5X)**.
Thus there is the following commutative diagram with exact rows:

u b/

X Y 00X —— 0
[T P
0 - X** u* Y** L UX**
Since ¢y is an isomorphism, the snake lemma yields Cok ¢px >~ Ker(¢;5x) = KUX. U

In 4.4, we will rewrite both K X and KU X in order to obtain the classical Auslander—Bridger sequence
(see Corollary and Remark 1 in 4.4).

2.5. Lemma. Let M be a module with Ext' (M, A) =0 fori = 1, 2. Then Tr M ~ (2>M)* and there is
a projective module Y such that M* ~ Q*TrM @Y.

Proof. Letmw : PM — M and 7’ : PQM — QM be projective covers with inclusion maps w: QM — PM
and ' : Q°M — PQM. Then wr’ is a minimal projective presentation of M. By definition, Tr M is the
cokernel of (wr’)*. Since Ext' (M, A) =0 fori = 1, 2, the exact sequences

0—>QZML/>PQMJT—/>QM—>O, 0> QM 2> PM>7>>M—0
are approximation sequences. As a consequence, the corresponding A-dual sequences
0« @M)* L2 (pamy* EX@M)* <0, 0« (QM)* < (PM)* &= M* <0
are exact. The concatenation
e 0« @My LD pamyt LT (puy El Mt 0

shows that (Q2M)* is a cokernel of (wr’)*, thus Tr M ~ (Q?M)*. In addition, € shows that Q> Tr M =
Q%(Q*M)* is the direct sum of M* and a projective module Y. O

2.6. Proof of Theorem 1.2
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(1) implies (2) to (7): This follows directly from well-known properties of Gorenstein-projective
modules. Namely, assume (1) and let M be Gorenstein-projective. Then M is reflexive, this yields (3),
but, of course, also (2) and (4). Second, M* is Gorenstein-projective, thus semi-Gorenstein-projective,
therefore we get (5) and (6). Finally, Tr M is Gorenstein-projective, thus semi-Gorenstein-projective,
therefore we get (7).

Both (3) and (4) imply (2): Let M be semi-Gorenstein-projective. Consider the approximation sequence
0— QM - PM — M — 0 and note that 2M is again semi-Gorenstein-projective. If (3) or just (4)
holds, we know that ¢q)y is surjective, thus by 2.4 (a), M is torsionless.

Both (6) and (7) imply (2): Let M be semi-Gorenstein-projective. Consider the approximation
sequences 0 — QM — PM — M — 0and 0 - Q°M — PM — QM — 0. Since M is semi-Gorenstein-
projective, also 2°M is semi-Gorenstein-projective. If (6) holds, we use (6) for Q?M in order to see that
Ext' (Q*M)*, A4) =0. If (7) holds, we use (7) for M in order to see that Ext' (Tr M, A 4) =0. According
to 2.5, we see that Tr M = (Q2M)*. Thus in both cases (6) and (7), we have Ext! (Q22M)*, A,) = 0.
According to 2.4 (b), it follows from Ext! (QZM)*, A4) = 0 that daum is surjective. By 2.4 (a), M is
torsionless.

Trivially, (5) implies (6). Altogether we have shown that any one of the assertions (3) to (7) implies (2).

It remains to show that (2) implies (1). Let M be semi-Gorenstein-projective and torsionless. We
want to show that M is Gorenstein-projective. Let M; = U'M for all i > 0 (with My = M). Since M,
is torsionless, there is an approximation sequence 0 — My — P} — M; — 0, and M, is again semi-
Gorenstein-projective. By assumption, M; is again torsionless. Inductively, starting with a torsionless
module M;, we obtain an approximation sequence ¢; : 0 - M; — P;y; — M;;1 — 0, we conclude
that with M; also M;, is semi-Gorenstein-projective. By (2) we see that M;; is torsionless, again.
Concatenating a minimal projective resolution of M with these approximation sequences ¢;, for 0 <1i, we
obtain a complete projective resolution of M. (Il

3. U-sequences. Proof of Theorem 1.3

3.1. An approximation sequence 0 - X — ¥ — Z — 0 will be called an U-sequence provided that
both X and Z are indecomposable and not projective (the relevance of such sequences was stressed
already in [RX]).

Lemma. An approximation sequence is the direct sum of U-sequences and an exact sequence 0 —
X' - Y — Z'— 0with X', Z' (thus also Y') being projective.

Proof. Let 0 - X > Y =5 Z — 0 be an approximation sequence. Since Y is projective and 7 is
surjective, a direct decomposition Z = Z; @ Z, yields a direct sum decomposition of the sequence. Since
w is a left add(A)-approximation, there is also the corresponding assertion: If X = X| ® X, then X =25y
is the direct sum of two maps X; — Y; and X, — Y», thus again we obtain a direct sum decomposition of
the sequence. This shows that for an indecomposable approximation sequence 0 — X —=> ¥ —» Z — 0,
the modules X and Z are indecomposable or zero (and, of course, not both can be zero).
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If Z is indecomposable and projective, then the sequence 0 - X — Y — Z — 0 splits off 0 —
0727 0, thus X = 0. Similarly, if X is indecomposable and projective, then the sequence
0—>X—>Y—>Z—>0sp1itsoff0—>X%X—>O—>0,thusZ:O.

It remains that 0 - X — Y — Z — 0 is an approximation sequence with both X and Z being
indecomposable and nonprojective. (Il

3.2. Lemma. Let € : 0 > X = Y =5 Z — 0 be an exact sequence. The following conditions are

equivalent:

(i) € is an U-sequence.

(i1) X and Z are indecomposable and not projective, w is a minimal left add(A)-approximation, 7w is a

projective cover, X = QZ, Z = UX.
(ii1) X is indecomposable and not projective, w is a minimal left add(A)-approximation.
(iv) Z is indecomposable and not projective, 7 is a projective cover, and Ext'(Z, A) = 0.
(v) X =QZ, Y is projective, Z = UX, and X is indecomposable.
(vi) X =QZ, Y is projective, Z = GX, and Z is indecomposable.

Proof. (i) implies (ii): Let € be an U-sequence. Then w has to be minimal, since otherwise € would split
off a nonzero sequence of the form 0 — 0 — P L P Owith P projective. Similarly, 7 has to be a
projective cover, since otherwise € would split off a nonzero sequence of the form 0 — P P00
Since w is a minimal left add(A)-approximation and Z is the cokernel of w, we see that Z = U X. Since
7 is a projective cover of Z and X is its kernel, X = QZ.

(ii) collects all the relevant properties of an U-sequence. The condition (iii), (iv), (v) and (vi) single
out some of these properties, thus (ii) implies these conditions.

(ii1) implies (i): Since X is indecomposable and not projective, € has no direct summand 0 — P HLIN
P — 0 — 0. Since w is left minimal, € has no direct summand 0 — 0 — P 1.poo. Similarly, (iv)
implies (i).

Both (v) and (vi) imply (i): Since Z = U X, we have Ext!(Z, A) =0. This shows that the sequence is an
approximation sequence. Since X = 2Z, the sequence € has no direct summand of the form 0 — P LI
P — 0— 0. Since Z = U X, the sequence € has no direct summand of the form 0 — 0 — P Lp-o.
Thus, € is a direct sum of U-sequences. Finally, since X or Z is indecomposable, ¢ is an U-sequence. []

3.3. Corollary. If M is indecomposable, nonprojective, semi-Gorenstein-projective, then QM is
indecomposable, nonprojective, semi-Gorenstein-projective and M = OQM.

Proof. Since M is semi-Gorenstein-projective module, the canonical sequence € : 0 > QM — PM —
M — 0 is an approximation sequence. Since M is indecomposable and not projective, and PM — M is
a projective cover, € is an U-sequence, thus 2M is indecomposable and nonprojective, and M = GQM,
by 3.2. Of course, with M also QM is semi-Gorenstein-projective. U
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3.4. Lemma. If the number of isomorphism classes of indecomposable modules which are both semi-
Gorenstein-projective and torsionless is finite, then any indecomposable nonprojective semi-Gorenstein-

projective module M is Q2-periodic.

Proof. According to 3.3, the modules ' M with ¢ > 1 are indecomposable modules which are torsionless
and semi-Gorenstein-projective. Since there are only finitely many isomorphism classes of indecomposable
torsionless semi-Gorenstein-projective modules, there are natural numbers 1 < s < ¢ with Q*M = Q' M.
Then

M=U'QLM=0CQM=Q M and t—s>1,
thus M is Q-periodic. (]

3.5. Proof of Theorem 1.3 We assume that the number of isomorphism classes of indecomposable
torsionless semi-Gorenstein-projective modules is finite. According to 3.4, any indecomposable nonpro-
jective semi-Gorenstein-projective module is ©2-periodic. 2.3 shows that any semi-Gorenstein-projective
Q-periodic module is Gorenstein-projective. ([l

Remark. One of the referees has pointed out that Theorem 1.3 can be improved by replacing the class
of all torsionless modules by an arbitrary full subcategory X which is closed under direct summands,
contains add(A), and contains for any indecomposable module M at least one syzygy module Q" M. If
LA N X contains only finitely many isomorphism classes of indecomposable modules, then A is left weakly

Gorenstein and any Gorenstein-projective module is Q2-periodic.

3.6. Torsionless-finite algebras. An artin algebra A is said to be forsionless-finite if there are only
finitely many isomorphism classes of indecomposable torsionless modules. Theorem 1.3 implies that
any torsionless-finite artin algebra is left weakly Gorenstein, as Marczinzik [M1] has shown. If A is
torsionless-finite, also A°P is torsionless-finite [R], thus a torsionless-finite artin algebra is also right
weakly Gorenstein. Note that many interesting classes of algebras are known to be torsionless-finite. In
particular, we have

The following algebras are torsionless-finite, hence left and right weakly Gorenstein.

(1) Algebras A such that A/ soc(4A) is representation-finite.
(2) Algebras stably equivalent to hereditary algebras, in particular all algebras with radical square zero.
(3) Minimal representation-infinite algebras.

(4) Special biserial algebras without indecomposable projective-injective modules.

See for example [R], where also other classes of torsionless-finite algebras are listed.
Chen [Che] has shown that a connected algebra A with radical square zero either is self-injective, or
else all the Gorenstein-projective modules are projective. The assertion that algebras with radical square

zero are weakly Gorenstein complements this result.
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4. The U-quiver

4.1. We recall that the U-quiver of A has as vertices the isomorphism classes [ X ] of the indecomposable
nonprojective modules X and there is an arrow

[X] =---- [Z]

provided that X is torsionless and Z = UX, thus provided that there exists an G-sequence 0 — X —
Y — Z — 0. We will also write the vertex [X] simply as X.

4.2. The A-dual of an U-sequence.

Lemma. (a) Lete : 0 > X — Y — Z — 0 be an approximation sequence and assume that X is
reflexive. Then Ext' (X*, Ax) = 0 if and only if Z is reflexive, if and only if the A-dual €* of € is again an
approximation sequence.

(b)Lete:0— X — Y — Z — 0 be an U-sequence with X reflexive. Then Z is reflexive, if and only if
the A-dual €* of € is again an U-sequence.

Proof. (a) By 2.4(a), we see that Z is always torsionless. Thus 2.4(b) shows that Ext'(X*, A4) =0 if
and only if Z is reflexive. First, assume that Z is reflexive. Then Ext! (X*, As) =0, and therefore we see
that the A-dual sequence €* is exact. We dualize a second time: the sequence €** is isomorphic to the
sequence €, since the three modules X, Y, Z are reflexive. This means that €** is exact, and therefore €*
is an approximation sequence. Second, conversely, if €* is an approximation sequence, then it is exact,
and therefore Ext! (X*, A4) = 0, thus Z is reflexive.

(b) Assume now that € is an U-sequence. First, assume that Z is reflexive. Since X, Z both are reflexive,
indecomposable and nonprojective, also X* and Z* are indecomposable and nonprojective, as we will
show below. Thus €* is an U-sequence. Conversely, if € is an U-sequence, then it is an approximation
sequence and thus Z is reflexive by (a). (I

We have used some basic facts about the A-dual M* of a module M.

(1) M* is always torsionless.
(2) If M is nonzero and torsionless, then M* is nonzero.

(3) If M is reflexive, indecomposable and nonprojective, then M* is reflexive, indecomposable and

nonprojective.

Proof. Here are the proofs (or see for example [L, p.144]). (1) There is a surjective map p : P — M with
P projective. Then p*: M* — P* is an embedding of M* into the projective module P*. The assertion
(2) is obvious.

(3) Let M be reflexive, indecomposable and nonprojective. Consider a direct decomposition M* =
N1 & N, with N| #0 and N, #0. Since M* is torsionless by (1), both modules N; and N, are torsionless,
therefore N # 0, N3 # 0, thus there is a proper direct decomposition M** = N @ N;. Since M is
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reflexive and indecomposable, this is impossible. Thus M* has to be indecomposable. If M* is projective,
then also M™* is projective. Again, since M is reflexive, this is impossible.

It remains to show that M* is reflexive. Since M** is isomorphic to M, we see that M*** is isomorphic
to M*, thus the canonical map M* — M™*** has to be an isomorphism (since it is a monomorphism of
modules of equal length). O

4.3. Lemma 2.2 outlines the importance of left add(A)-approximations when dealing with exact
sequences of projective modules. Let us give a unified treatment of the relevance of approximation
sequences and of U-sequences.

(a) An exact sequence - -- — P~! — P° ﬁ) P! — ... is a complete projective resolution if and only
if it is the concatenation of approximation sequences.

(@") An indecomposable nonprojective module M is Gorenstein-projective if and only if [M] is the start
of an infinite G-path and the end of an infinite O-path.

(b) A module M is semi-Gorenstein-projective if and only if a projective resolution (or, equivalently,
any projective resolution) is the concatenation of approximation sequences.

(b") An indecomposable nonprojective module M is semi-Gorenstein-projective if and only if [M] is the
start of an infinite G-path.

(c) A module M is reflexive and M* is semi-Gorenstein-projective if and only if there is an exact
sequence 0 — M — P! — P% — ... which is the concatenation of approximation sequences.

(¢") An indecomposable nonprojective module M is reflexive and M* is semi-Gorenstein-projective if
and only if [M] is the end of an infinite O-path.

Proof. We use that the A-dual of an approximation sequence is exact, thus the A-dual of the concatenation
of approximation sequences is exact.

(a) Let P* be a double infinite exact sequence of projective modules with maps d’ : P! — Pi*+!. Write
d' = o'’ with ' epi and ' mono. If P* is a complete projective resolution, then the exactness of
(P*)* at (P')* implies that o' is a left add(A)-approximation, see 2.2. Thus P* is the concatenation of
approximation sequences.

®)yLet--+— P — -+ — P - Py — M — 0 be a projective resolution of M. write the map
P;+1 — P; as w;mr; with 7r; epi and w; mono. If the A-dual of the sequence - - - — P; — - - - — Py is exact,
then all the maps w; with i > 1 have to be left add(A)-approximations. This shows that the projective
resolution is the concatenation of approximation sequences.

(b') Let M be indecomposable, nonprojective and semi-Gorenstein-projective. Since Ext' (M, A) =0,
the sequence 0 - QM — PM — M — 0 is an U-sequence and QM is again indecomposable and
nonprojective. Also, 2M is semi-Gorenstein-projective. Thus, we can iterate the procedure and obtain
the infinite path

(£) e [QPM] - [QM] ¢~ [M]



16 Claus Michael Ringel and Pu Zhang

Conversely, assume that there is an infinite path starting with [A], then it is of the form (x). Thus, for all
i > 1, we have Ext' (M, A) ~ Ext'(Q'~'M, A) = 0.

Proof of (c) and (/). Assume that there are given approximation sequences €; : 0 — M’ — P+l —
M+l — 0 for all i > 0, with M® = M. Then all the modules M’ are torsionless, thus reflexive by 2.4(a).
In particular, M itself is reflexive. The A-dual of ¢; is the sequence

€10« (M)« (P « (M <0,

which again is an approximation sequence by 4.2(a). The concatenation of the sequences € is a projective
resolution of M* = (M?)*. According to (b), M* is semi-Gorenstein-projective, since all the sequences
€ are approximation sequences.

Conversely, assume that M is reflexive and M* is semi-Gorenstein-projective. We want to construct
a sequence 0 - M — P! — P2 — ... which is the concatenation of approximation sequences. It
is sufficient to consider the case where M is indecomposable (in general, take the direct sum of the
sequences). If M is projective, then 0 - M — M — 0 — - -- is the concatenation of approximation
sequences.

Thus, it remains to consider the case where M is indecomposable and not projective. Since M is
torsionless, there is an U-sequence €9 : 0 > M — P! - M!' — 0 (with M! = UM). Note that M is
indecomposable, not projective, and that the A-dual € : 0 < M* « (PYY* « (M")* < 0is exact. Since
M is reflexive, M is torsionless by 2.4(a). Since M* is semi-Gorenstein-projective, Ext'(M*, Ay) =0,
therefore ¢),1 is surjective and € is an U-sequence, by 4.2. Altogether we know now that M !is reflexive,
but also that (M')* = Q(M*). With M* also 2 (M*) is semi-Gorenstein-projective.

Thus M satisfies again the assumptions of being indecomposable, not projective, reflexive and that
its A-dual (M")* is semi-Gorenstein-projective. Thus we can iterate the procedure for getting the next
U-sequence €1 : 0 — M! - P2 > M? — 0, with M? = U?M, and so on. Altogether, we obtain the
infinite path:

[M] <--- [OM] <-- [(*M] ~--

This completes the proof of (¢’) and thus also of (c).
(a) This follows immediately from (b’) and (c’). O

4.4. For any module M, we have denoted by K M the kernel of ¢y, : M — M™**. We are going to
identify K M with Ext'(Tr M, A4). Compare [A2, Proposition 6.3]. As a consequence, we see that
OM=TrQTr M.

Lemma. Let M be a module. Then Ext' (Tr M, A,) ~ K M and there is a right module Q such that
QTrM >~TrUOM @ Q. As a consequence, M >~ Tr Q Tr M, thus B' (M) = Tr Q' Tr(M) for t > 1.

Proof. Let PY L, p! 25 M >>> 0 be a minimal projective presentation of M. Thus Tr M is the

cokernel of f*. Let g’ : M — P? be a minimal left add(A)-approximation. Then K M is the kernel of g/,
thus ¢’ = uq, where g : M — M/ K M is the canonical projection and u is injective. Let g = g’ p = ugp.
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The composition

PO L, pl &, p2
is zero and the homology H (P° L, pr&, P?) is just K M, since
Ker(g)/Im(f) >~ Ker(gp)/ Ker(p) K M.
We claim that the A-dual sequence
(PO L= (Py* &= (P )

is exact. Since gf =0, we have f*g* = 0. Conversely, let 4 : P! — A be in the kernel of f*, thus
hf = 0. Therefore h factors through p = Cok f, say h = h’p with k' : M — A. Since uq is a left
add(A)-approximation, we obtain 4" : P> — A with i’ =h"uq. Thus h=h'p =h"ugp =h"g = g*(h")
is in the image of g*.

Since the cokernel of f* is Tr M, it follows that (x) is the begin of a projective resolution of Tr M
and hence Ext!(Tr M, A,) is obtained by applying Hom(—, A) to (x) and taking the homology at the
position 1. Applying Hom(—, A) to (%) we retrieve the sequence P* - P! -5 P2, thus Ext!(Tr M, A )
is equal to H(P° AN P! %5 P2) ~ K M. This is the first assertion.

By definition, the cokernel of g’ is UM. Thus the cokernel of g is UM, and therefore Cok g* ~
TrOM & Q' for some projective right module Q'. Now Cok g* = Im f*, since (x) is exact. Since
Cok f*=TrM, we have QTrM >~ 1Im f* @ Q" for some projective right module Q”. This shows that
QTrM>~Im f*@ Q" =Cokg*®d Q"' >TrOMDd Q' & Q" =TrOM & Q with Q = Q' @ Q”. This is
the second assertion.

Applying Tr to the isomorphism Q2 Tr M >~ Tr UM @ Q, one obtains TrQTr M =~ Tr(TrOM & Q) =
TrTrOM. Since UM has no nonzero projective direct summand, one gets TrTrOM >~ OM. Thus
OM=TrTrOM ~TrQTr M. ]

Corollary. Let M be a module. Then for all t > 0 one has
Ext ™ (Tr M, Ap) =~ K(U'M).

In particular, 5' M is torsionless if and only if Ext T\ (Tr M, A4) = 0. Also, Q' Tr M ~Tr 5'M & Q, for
some projective right module Q.

Proof. By induction on ¢, one has Q' Tr M ~ TrU' M @ Q, for some projective right module Q,. It
implies that Ext'™! (Tr M, A4) ~Ext' (Q' Tr M, A4) ~Ext'(Tr0'M, A») and thus Ext!(Tr ' M, A4) ~
K(U'M). a

Remark 1. For any t > 0, there is an exact sequence of the form

0 — Ext'I(Tr M, Ax) — O'M 284 (5" MY™ — Ext'2(Tr M, A4) — 0.
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If t =0, it is the classical Auslander—Bridger sequence
0— Ext'(Tr M, Ay) - M — M*™ — Ext*(Tr M, A») — 0

(see [AB], also [ARS])).

Proof. The corollary asserts that the kernel of the map ¢y : O'M — (G'M)** is isomorphic to
Ext't!(Tr M, A4). On the other hand, the Remark at the end of 2.4 shows that Cok ¢ >~ KOt M.
Since KUO't'M ~ Ext!(TrU"H' M, A4) ~ Ext/(QH Tr M, Ay) ~ Ext'T>(Tr M, Ay), it follows that
Cok ¢y >~ Ext!T2(Tr M, Ay). O

Remark 2. If M is any module, 5'Tr M >~ Tr QM.

Proof. There is a projective module P such that Tr Tr M @ P >~ M. According to Lemma 4.4 we have
OTrM>=TrQTrITrM =TrQ(TrTrM & P) ~TrQM. [l

Remark 3. In contrast to the isomorphism given in Remark 2, the right modules Q Tr M and Tr UM
discussed in the lemma do not have to be isomorphic. For example, let M be a module with M* = 0. Then
OM =0, thus TrOM = 0. On the other hand, if f : P| — P (M) is a minimal projective presentation
of M, then the kernel of f* is M*, thus zero, and therefore Q Tr M >~ (P(M))*. Thus, we see that the
right module Q with QTr M >~ Tr OM & Q may be nonzero.

4.5. Modules at the end of an G-path of length .
Proposition. Let M be any module and t > 1. The following conditions are equivalent:
(i) UM is torsionless for 1 <i <t.

(i1) M is t-torsionfree (thus Ext!(TrM, As) =0 forl1 <i<t).

If M is indecomposable and not projective, then these conditions are equivalent to
(iii) M is the end of an U-path of length t.

Already the special cases t = 1 and ¢ = 2 are of interest (but well-known): A module M is 1-torsionfree
if and only if M is torsionless (this is case t = 1); a module M is 2-torsionfree if and only if both M and
QM are torsionless, thus if and only if M is reflexive (this is the case t = 2, taking into account Corollary
2.4). These special cases t =1 and ¢t = 2 are discussed at several places; let us refer in particular to [ARS],
Corollary IV.3.3. Our general proof is inspired by [AB].

Proof of Proposition. For the equivalence of (i) and (ii), see Corollary in 4.4: It asserts for any i > 1, that
U~ M is torsionless if and only if Ext'(Tr M, A4) =0.

In order to show the equivalence of (i) and (iii), let M be indecomposable and not projective. If (iii) is
satisfied, there is an U-path of length 7 ending in M. This path has to be ' M, oM, ..., OM, M.
This shows that for any module ' M with O <i < ¢, there is an arrow starting in ' M, and therefore
U’ M has to be torsionless.

Conversely, assume that (i) is satisfied. We show (iii) by induction on ¢. For any ¢ > 1, there is the arrow
UOM — M, since M is indecomposable, nonprojective and torsionless. According to 3.2, the module UM
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is again indecomposable and nonprojective. Thus, if £ > 2, we can use induction in order to obtain a path
of length ¢ — 1 ending in UM, since all the modules U’ (UM) with 0 <i <t — 1 are torsionless. (]

4.6. Proof of Theorem 1.5 (1) follows from the fact that Ext' (M, A) = Ext'~!1(QM, A) for t > 2. For
the special case t = 2, see Corollary 2.4. (2) is Proposition 4.5. For (1), (2") and (3), see 4.3. For (4) and
(5), we refer to 4.2(b). Note that in an O-component of the form A,, with n > 3, as well as in those of the
form —N, all but precisely two vertices are the isomorphism classes of reflexive modules, whereas any
vertex of an O-component of the form N is the isomorphism class of a reflexive module. O

4.7. The adjoint functors U and Q2. Here we collect some important properties of the construction U.
Some details of the proofs are left to the reader, since the assertions are not needed in the paper.

If C’ C C are full subcategories of mod A, let C/C’ be the category with the same objects as C such that
Homg,¢e/ (X, Y) is the factor group of Home (X, Y) modulo the subspace of all maps X — Y which factor
through a direct sum of modules in C’.

(1) The functor U is the left adjoint of the endo-functor Q2 of mod A/ add A. Direct verification is easy.
But we should also add that Auslander and Reiten have shown in [AR2, Corollary 3.4] that the functor
Tr Q2 Tr is left adjoint to €2, and we have identified in 4.4 the functors U and Tr €2 Tr.

(2) Let L(A) be the full subcategory of all torsionless modules, and Z(A) the full subcategory of all
modules Z with Ext' (Z, A) = 0. For any module M, the module QM belongs to L(A), and the module
OM belongs to Z(A), in addition, GM has no nonzero projective direct summand.

(3) If Z satisfies Ext'(Z, A) = 0 and has no nonzero projective direct summand, then OQ2Z >~ Z (see 3.2).
If X is torsionless and has no nonzero projective direct summand, then QUX >~ X (see 1.5 or also 3.2). In
this way, one shows that the functors 2 and U provide inverse categorical equivalences

L(A)/add(A) % Z(A)/add(A)

(4) Thus, Q2 and U provide inverse bijections between isomorphism classes as follows:

indecomposable 5 indecomposable
nonprojective modules X D— nonprojective modules Z
which are torsionless with Ext'(Z, A) =0

The arrows of the U-quiver visualize this bijection.

4.8. Gorenstein algebras. Recall that an artin algebra A is said to be d-Gorenstein provided that the
injective dimension of both 4 A and A4 is equal to d. Of course, any algebra of global dimension d is
d-Gorenstein The following result of Beligiannis [B2, Proposition 4.4] yields additional examples of
weakly Gorenstein algebras.

Proposition. Let A be an artin algebra and assume that the injective dimension of 4 A is at most d.

Then A is right weakly Gorenstein and any module of the form QM is semi-Gorenstein projective.
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Proof. Since the injective dimension of 4A is at most d, one knows that for any module M, the
syzygy module QM is semi-Gorenstein-projective. [Namely, for all i > 1, we have Ext' (QM, A) =
Ext?* (M, A) =Ext' (M, £?A) = 0; here, £ N denotes the cokernel of an injective envelope of a module
N.] This implies that A cannot have any indecomposable module of O-type N. [Namely, if M is of
U-type N, then M is oco-torsionfree and therefore M = Q4 (¢ M). But as we have seen, this implies that
M is semi-Gorenstein-projective, therefore Gorenstein-projective. Thus M is of U-type Z and not N.]
Therefore A is right weakly Gorenstein. (]

Corollary 1. Let A be d-Gorenstein. If an indecomposable nonprojective module M belongs to an
O-path of length d, then M is Gorenstein-projective. If the global dimension of A is d, then there is no
O-path of length d.

Proof. Since the inj. dim. 4 A =d, A is right weakly Gorenstein and any module ¢ M is semi-Gorenstein-
projective. Since inj. dim. A 4 is finite, A is also left weakly Gorenstein, thus the modules ¢ M are even

Gorenstein-projective. (Il

Corollary 2. If A is d-Gorenstein, then A has no G-component of form —N, N or A, withn > d. If
the global dimension of A is d, then any G-component is of form A, withn <d.

5. Proof of Theorem 1.4

Since add(A) € tA C F, we see that add(A) € P(F) = Z(F). Thus Extl‘(X, A) =0, for all X € F.

For X € F, there is an exact sequence 0 - K — QO — X — 0 with Q € P(F) and K € F. By
P(F) € *A we have Q € *A. Thus ExtL(X, A) =0 and Ext’/'"H(X, A) = Exty (K, A) form > 1. So
Exti (X, A) =0, and in particular Exti(K , A) = 0. Repeating this process we see that X € *A. Thus
F C *A, and hence *A = F is Frobenius.

For L € P(+A), consider an exact sequence 0 > K - P — L — 0 with P € add(A). Since L and
P are in YA, K € *A. So Ext!, (L, K) = 0, thus the exact sequence splits and L € add(A). This shows
P(+A) C add(A) € P(*A), and hence P(+4) = add(A).

Now consider X € *A. Since *A is Frobenius, there is an exact sequence 0 - X — I — C — 0
with I € Z(+A) = P(+ A) = add(A) and C € 1A. So X is torsionless. This shows that A is left weakly
Gorenstein, according to Theorem 1.2. O

6. An example

Let k be a field and g € k\ {0}. We consider a 6-dimensional local algebra A = A(g). If k is infinite, then
we show that there are infinitely many Gorenstein-projective A-modules of dimension 3. Let o(q) = |¢%|
be the multiplicative order of g. If o(q) is infinite, we show that there is also a semi-Gorenstein-projective

A-module of dimension 3 which is not Gorenstein-projective.
6.1. The algebra A = A(g). The algebra A is generated by x, y, z, subject to the relations:

xz, yz, zz, yZ, Xy +qyx, xz —2x, Zy —ZX.
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The algebra A has a basis 1, x, y, z, yx, and zx and may be visualized as follows:

Here, we use the following convention: The vertices are the elements of the basis, the arrows are labeled
by x, y, z. A solid arrow v — v’ labeled say by x means that xv = v/, a dashed arrow v --+ v’ labeled
by x means that xv is a nonzero multiple of v’ (in our case, xy = —gyx). If v is a vertex and no arrow
starting at v is labeled say by x, then xv = 0.

One diamond in the picture has been dotted in order to draw attention to the relation xy + gyx; this
relation plays a decisive role when looking at QM for a given A-module M.

We study the following modules M («) with « € k. The module M («) has a basis v, v/, v”, such that

xv=av’, yv =1, zv =", and such that v" and v” are annihilated by x, y, z. That is,

v
M@): xiiiiy\
}ii
/ v//

The modules M (o) with @ € k are pairwise nonisomorphic indecomposable A-modules.

For o € k, we define m, = x —ay € A. In order to provide a proof of Theorem 1.5, we now collect
some general results for the modules M (), Am,, and the right ideals m, A which are needed.

6.2. The module M (g).

Lemma. The intersection of the kernels of all the homomorphisms M (q) — A A is zM(q) = kv” and
M(q)/zM(q) >~ Am. In particular, M (q) is not torsionless and M (q)* = (Am)*.

Proof. Let f: M(q) = Av — A A be a homomorphism. Let f(v) = c1x 4+ c2y 4+ ¢32 4+ cayx + cszx
with ¢; € k. By ¢f (V') = f(xv) = xf(v) = —cagyx +c3zx and f (V') = f(yv) = yf (v) = c;yx, we get
¢y = —cy and ¢3 = 0. Thus, f(v) =c1(x — y) +cayx + cszx. It follows that f(v") = f(zv) =zf (v) =0.
This shows that v” is contained in the kernel of any map f : M(g) = Av — A A. On the other hand, the
homomorphism g : M(q) = Av — A given by g(v) = x — y = m has kernel kv”. This completes the
proof of the first assertion.

The map g provides a surjective map p : M(g) — Ami and p*: M(g)* — (Am)* is bijective, thus
an isomorphism of right A-modules. ]

6.3. The modules M («) with o € k. We consider now the modules M («) in general, and relate them
to the left ideals Am,, and to the right ideals my A. Let us denote by U, the two-sided ideal generated by
My, it is 3-dimensional with basis m,, yx, zx. Actually, for any o € k, the right ideal my A is equal to
U, (but we prefer to write U, instead of m, A when we consider it as a left module). For o # 1, the left
ideal Amy, is equal to U,.
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If M is a module and m € M, we denote by r(m) : A — M the right multiplication by m (defined by
r(m)(A) = Am. Similarly, if N is aright A-module and a € N, letl(a) : Ay — N be the left multiplication
by a.

We denote by uy : Amg — A and u), : mg A — A the canonical embeddings.

(1) The right ideal my A is 3-dimensional (and equal to Uy,), for all « € k.
(2) The left ideal Amy, is 3-dimensional (and equal to U,), for a € k\{1}, whereas Am is 2-dimensional.
3) We have M (o) ~ A/ U, forall a € k.

Proof. The map r(v) : A — M («) is surjective (thus a projective cover) and
r()(mgy) =muv = (x —ay)v=xv—ayv =av’ —av’ =0.
Thus, Am, € Ker(r(v)). Also, zx € Ker(r (v)), thus Ker(r (v)) = U,. This shows that M («) is isomorphic
to A/ Uyg. O
(4) For a € k\ {1}, we have M (qa) >~ Amy,.

Proof. Consider the map r(my) : A — Amg. Since r(my)(myq) = mgemy = 0, we see that Uy, C
Ker(r(my)). For o # 1, the module Am, is 3-dimensional, therefore r(m,) yields an isomorphism
A/Uyq — Amg. Using (3) for M (qa), we see that M (qa) >~ A/ Usq > Amyg. O

(5) For any map [ : Amy — A, there is A € A with [ = r(Mugy, for all @ € k. Thus uy is a left
add(A)-approximation.

Proof. Let f : Amg — A be any map. Let f(my) = c1x + c2y + ¢32 + cayx + cszx with ¢; € k.
Since f(ymgy) = f(yx) and yf(my) = c1yx, we see that f(yx) = c1yx. Since f(xmy) = f(—axy) =
gof(yx)=gqaciyx and xf (my) = coxy+c3zx = —qgcayx +c3zx, we see that gaciyx = —qgeryx +c3zx,
therefore ¢c; = —acy and ¢3 = 0. Thus, f(my) = c1(x —ay) + cayx + cszx belongs to Uy, = my A, say
f(my) =mgyA with A € A. Therefore f(my) = mer =r(A)uy(my), but this means that f =r(AM)uy. U

6.4. Lemma. Let o € k\ {1}. Then there is an G-sequence
0> M(ga) > A— M(x) — 0.

Proof. According to (3), M(a) =~ A/U,. Since @ # 1, we have U, = Amg by (2). Thus, we have the
following exact sequence

0— Amg = A — M(a) = 0

According to (5) the embedding u, : Am, — A is a left add(A)-approximation. Thus, the sequence is an
U-sequence. Finally, (4) shows that Am, >~ M (qa). U

Corollary 1. The module M(0) is Gorenstein-projective with Q-period equal to 1. (I

Corollary 2. If 0(q) = 00, then the module M (q) is semi-Gorenstein-projective.
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Proof. We assume that 0o(g) = 0o. Then ¢’ # 1 for all t > 1. By 6.4, all the sequences
0—> Mg — A — M(g") — 0.

with ¢ > 1 are U-sequences. They can be concatenated in order to obtain a minimal projective resolution
of M(q). This shows that M (g) is semi-Gorenstein-projective. O

6.5. The right A-modules m, A and M («)*. We have started in 6.3 to present essential properties of
the modules M («). We look now also at the modules m, A and M («)*. We continue the enumeration of
the assertions as started in 6.3.

(6) Q(myoaA) =muA forall a € k.
Proof. We consider the composition of the following right A-module maps

Ay L A g A

Since mgyqmq = 0, the composition is zero. The image of /(m,) is the right ideal mq A, the image of
[(myq) is the right ideal m o A. Both right ideals are 3-dimensional, thus the sequence is exact. Thus
mq A = Ker(p), for a surjective map p : Ay — myoA. Now p is a projective cover, thus Ker(p) =
Q(myq ), and therefore Q(myq A) = myA. U

(7 (Amy)* =myA forall a € k.

Proof. First, let us show that (Am,)* is 3-dimensional. On the one hand, besides u,, there are homomor-
phisms Am, — A with image kyx and with image kzx, which shows that (Am)* is at least 3-dimensional.
According to (5), any homomorphism Am, — A maps into Am,A = U,. Since U, is 3-dimensional,
we have dim Hom(, A, U,) = 3, therefore dim(Amg)* = dim Hom(Am,, A) = dim Hom(Am,, U,) <
dim Hom(, A, Uy,) = 3.

Second, using again (5), we see that (Am)* is, as a right A-module, generated by u,. Thus, there is a
surjective homomorphism 6, : Ay — (Amgy)* of right A-modules defined by 6, (1) = u,. We have

(Qoz(mqfla))(ma) = (Oa(l)mqfla)(ma) = (uamqfla)(moz) =MgMy-1y = 0,

therefore 6, (m,-1,) = 0. It follows that 6, yields a surjective map Ap/m -1,A — (Amg)*. Actually,
this map has to be an isomorphism, since m,-1, A is 3-dimensional. Therefore Ax/mg -1, A > (Amg)*.
By (6), An/mg-14A >~ mgA. This completes the proof. ]

®) M(ga)* =myA forall a € k.
Proof. For a # 1, we have M (qa) >~ Amyg, by (4), thus we use (7). For « = 1, we use 6.2 and then (7). [

Let us stress that (7) and (8) show that M (g)* and (Am)* are isomorphic, namely isomorphic to m A,
whereas M (g) and Am; themselves are not isomorphic.

(9) Let a € k\ {1, q}. For any homomorphism g : mqA — A there is A € A with g = [(A)u,,. Thus, u,,
is a left add(A)-approximation.
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Proof. Let g : myA — A be a homomorphism. We claim that g(my) € Am,. Let g(my,) = c1x +
2y +c3z+ cayx + cszx with ¢; € k. Now, g(mgx) = g(—ayx) = —ag(yx) and g(my)x = coxy + c3zx.
Also, g(mgy) = g(xy) = —qg(yx), and g(my)y = c1xy + c3zx = —ci1gyx + c3zx, thus g(yx) =
—q_lg(mo,y) = —q_l(—clqyx +c3zx) =c1yx — q_lcgzx. It follows that coyx + c32x = —ag(yx) =
—a(c1yx—q 'e3zx) = —aci yx+oag ™! !
o #q, it follows that c3 =0. Therefore g(my) =cix—aciy+c3z4+cayx+cszx =ci(x —ay)+cayx+cszx

c3zx. Therefore c; = —ac) and c3 =g~ c3. Since we assume that
belongs to U,. Since we also assume that o # 1, we have U, = Amg. Thus g(my) € Amy,.

As a consequence, there is A € A with g(my) = Am, therefore g(mgy) = Amgy =1(X)u,,(my). It follows
that g = I(A)u,,. O

6.6. Lemma. Let o € k\ {1, q}. Then there is an U-sequence of right A-modules
0—>mo,Ai>AA—>mqu—>0.

Proof. This is 6.5(6) and (9). O

6.7. Proof of Theorem 1.6 According to 6.5(8), we have M (g)* =mA. As we know from 6.2, M(q)
is not torsionless.

We assume now that o(g) = co. The Corollary 2 in 6.4 shows that M (g) is semi-Gorenstein-projective.
Since ¢~ # 1 for all ¢ > 1, the sequences

’
0— mqfrA”—%AA—)m 1A — 0

q

with ¢ > 1 are U-sequences, by 6.6. They can be concatenated in order to obtain a minimal projective
resolution of m; A and show that m A is semi-Gorenstein-projective.

Finally, we want to show that M(g)** = QM(1). According to 6.3(5), the map u; : Am; — A is
a minimal left add(A)-approximation, thus we may consider as in 2.4(a) the following commutative
diagram with exact rows:

uy Ty

0 —— Aml A A/Am1 —— 0
| | I
0 —— (Am)™ A s (AJAm)T ——s Ext'(M'(q)*, An)

where ¢ = ¢ /am,. The submodule zx (A /Am) belongs to the kernel of any map A/Am; — A, and it
is the kernel of the map p : A/Am; — M(1) defined by p(i) = v. This shows that zx (A /Am) is the
kernel of ¢, thus the image of ¢ is just M(1). But the image of ¢ coincides with the image of 7;*. In
this way, we see that (Am)** is the kernel of a projective cover of M (1), thus equal to QM (1).

Of course, QM (1) is decomposable, namely isomorphic to Am| @ kzx. O

6.8. Proof of Addendum 1.6. We denote by ¢7 the set of elements of k which are of the form ¢’ with
i € Z. Assume that « € k \ g7, thus ¢'a # 1 for all t € Z. According to 6.4, all the sequences

0—> Mg o) > A— M(G'a) >0
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with ¢ € Z are U-sequences. They can be concatenated in order to obtain a complete projective resolution
for M (a), thus M («) is Gorenstein-projective.
The following (well-known) lemma shows that there are infinitely many elements o € k \ gZ.

Lemma. Assume that k is an infinite field and q € k. Then k \ ¢” is an infinite set.
We include a proof.

Proof. The assertion is clear if o(g) is finite. Thus, let o(g) be infinite (in particular, g # 0). Assume that
the multiplicative group k* = k \ {0} is cyclic, say k* = w”?. Then o(w) = oo, and each element in k*
different from 1 has infinite multiplicative order. Since (—1)2 = 1, we see that k is of characteristic 2.
Now w + 1 # 0 shows that w 4+ 1 = w" for some n > 1, thus w is algebraic over the prime field Z,. Thus
k = Z,(w) is a finite field, a contradiction. Since k* is not cyclic, there is a € k* \ gZ. Then a - g7 is an
infinite subset of k* \ ¢Z. O

7. Further details for A = A(q)

7.1. The U-components involving modules M («). The only U-sequences which involve a module of
the form M (a) with a € k are those exhibited in 6.6.

Proof. We have to show that there is no U-sequence ending in M (1) and no U-sequence starting in M (g).
Since QM (1) is decomposable, there is no U-sequence ending in M (1). By 6.2, the module M (g) is not
torsionless, thus no U-sequence starts in M (q). U

We now want to determine the U-type of the modules M (v). According to Corollary 1 in 6.4, M (0) is
of U-type Ay. Thus, we now assume that v % 0.

7.2. Let us assume that o(q) = oo (for the case that o(q) is finite, see 7.6). There are three kinds of
U-components which involve modules of the form M («) with o € k*. There is one component of the form

—N, it has M (q) as its source, and there is one component of the form N, it has M (1) as its sink:

The remaining ones contain the modules M (o) witha #0 and o ¢q”;

The positions of the reflexive modules are shaded.

According to Theorem 1.5, there are the following observations concerning the behavior of the modules
M (o) with « € k.

o The module M () is Gorenstein-projective if and only if o ¢ q”.

o The module M () is not Gorenstein-projective, but semi-Gorenstein-projective if and only if o« = q'

for some t > 1.

e The module M () is torsionless if and only if o # q.
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o The module M (a) is reflexive if and only if o ¢ {q, q*}.

o The module M () is not Gorenstein-projective, but co-torsionfree if and only if o = q' for some
t<0.

It seems worthwhile to know the canonical maps ¢x : X — X** for the nonreflexive modules X = M (q)
and X = M(g?). For M(g) we refer to 6.7: there it is shown that M (¢)** = QM (1) and that the image

0f¢M(q) s Aml.
It remains to look at X = M(qz). The module M(qz)** is the submodule Am g, + Az of A and ¢y,

is the inclusion map

Mg = Amy — Amy+ Az = M(gH)*".

Proof. Since M(g?) is torsionless, the map ®m(q2 1s injective. There is the following commutative

diagram with exact rows:

2 g Tq
0 —— M(q") A M(g) —— 0

l"’M(qZ) “ l‘ﬁM(q)

ok

0 M 2 %k “q A T M Hok ElM Z*A
—> M(q°) (@) —— Ext'(M(q7)*, Ax) .

As we know already, the image of ¢y(,) and therefore of n;‘*, is Amy. Thus the kernel of n;* is
the submodule Am, + Az of A. Therefore M(g>)* = Amg + Az and ¢y, is the inclusion map
M(q?) = Amy — Amy + Az = M(g?)**. O

7.3. The U-components involving right A-modules myA. The U-sequences which involve a right
A-module of the form my A with o € k are those exhibited in 6.6 as well as

d

00— myA —= Ay D Ap — U(myA) — 0,

i

0—mA—=>ApNDAN— O(mA)— 0.

and, for q # 1,

Here, h : mg A — A, is defined by h(m,) = z, whereas h' : mi A — Ay is defined by h'(m1) = zx.

Uq
h
approximations. Clearly, the corresponding cokernels are not torsionless.

ui

Proof. 1t is easy to check that the map [ ] and, for g # 1, the map [ i ,] are minimal left add(A 4)-

In addition, we have to show that there is no U-sequence ending in m 2 A or in m4 A. But this follows
from the fact that the inclusion maps u; img A =Q(mpA) —> P(mgpeA) and L/1 imiA=Q(myA) —
P (myA) are not add(A A )-approximations. U
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Let o(q) = oo (the case that 0(g) < oo will be discussed in 7.6). There are five kinds of G-components
involving right A-modules of the form my, A with a € k, namely a component of the form N with m > A as
a sink, a component of the form —N with G(m | A) as a source, and a component of the form A, with sink
mg A and source G(myA):

U(quS/ O K)

The U-components containing right A-modules mq A with o € k \ g% are of the form Z:

In addition, there is the G-component consisting of the single right A-modules mgA, it is of theform A.

For the convenience of the reader, the pictures in 7.1 and 7.2 have been arranged so that the A-duality
is respected. Thus, in 7.1, the arrows are drawn from right to left, in 7.2 from left to right. Also we recall
from 6.3(8) that the A-dual of M(qa) is my A, therefore the position of m, A in the pictures 7.2 is the
same as the position of M (qa) in 7.1.

7.4. We complete the description of the behavior of the modules M («) started in 7.2.

o The module M () is not Gorenstein-projective, but M (a)* is semi-Gorenstein-projective, if and only
ifa =q' for somet < 1.
o The module M («) is not Gorenstein-projective, but M (a)* is co-torsionfree, if and only if o = q' for

some t > 3.

Proof. According to 7.2, the module M («) is Gorenstein-projective if and only if « ¢ gZ. Thus, we can
assume that & = ¢’ for some ¢ € Z. According to 6.3(8), the module M (¢") is isomorphic to mgi-1 A. The
display of the U-components shows that m -1 A is semi-Gorenstein-projective if and only if # — 1 <0,
thus if and only if 7 < 1, see Theorem 1.5. Similarly, we see that m -1 A is oo-torsionfree if and only if
t —1 > 2, thus if and only if # > 3. O

7.5. We have mentioned in 1.7 that one may use the algebra A = A(g) with o(g) = oo in order to
exhibit examples of modules M which satisfy precisely two of the three properties (G1), (G2) and (G3):

(1) M = M (q) satisfies (G1), (G2), but not (G3).
(2) M = M(q>) satisfies (G1), (G3), but not (G2).
(3) M = M) satisfies (G2), (G3), but not (G1).

Proof. For (1): this is the main assertion of Theorem 1.5. For (2): see 7.2 and 7.3. For (3): according to
7.2, M (1) is reflexive, but not Gorenstein-projective. According to 6.3(8), we have M (1)* = mg-1A, and
mg-1 A is semi-Gorenstein-projective, see 7.3. (I

Let us look for similar examples for A°P, thus, for right A-modules N.
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(1*) There is no right A-module of the form N = my A satisfying (G1), (G2), but not (G3).
(2%) The right A-module N = m - A satisfies (G1), (G3), but not (G2).
(3*) The right A-module N = m 2 A satisfies (G2), (G3), but not (G1).

Proof. (2*) There starts an infinite U-path at N =m - A, thus N satisfies (G1). There ends an U-path of
length 2 at N, thus N satisfies (G3). Of course, N* cannot be semi-Gorenstein-projective, since otherwise
N would be Gorenstein-projective.

(3*) Let N =mg2 A. According to 6.5(8), N = M(g>)*. As we know from 7.1, M(q?>) is reflexive,
thus N is reflexive and N* = M (¢3)** = M (¢?) is semi-Gorenstein-projective.

(1*) Assume that N =my A and N* are both semi-Gorenstein-projective. Since N cannot be Gorenstein-
projective, it is not reflexive. Thus a € {1, g}. Since [m,A] is the sink of an -component, my A is
not semi-Gorenstein-projective. Thus a = 1. But (m;A)* = M(g)** = QM(1), according to 6.5(8)
and Theorem 1.5. As we have mentioned already in the proof 6.7, QM (1) >~ Am @ k, where k is the
simple A-module. We claim that & is not semi-Gorenstein-projective, thus 2M (1) is not semi-Gorenstein-
projective.

Lemma. Let A be a local artin algebra which is not self-injective, and S its simple A-module. Then
Ext (S, aA) #0foralli > 1.
Proof. Let0 > 4A — Iy — I} — --- be a minimal injective coresolution. Since 4 A is not injective, all
the modules ; are nonzero. We have Ext' (S, 4A) = Hom(S, I;). U
7.6. Let us look also at the case when o(g) =n < oo.

Left modules M («) with o € k*. There are two kinds of U-components which involve modules of the
form M (a) with o € k*. There is one G-component of the form A, it has M (q) as its source, and M (1)
as its sink:

~--M(g*) ~-- M(q)

The remaining ones (containing the modules M () with a € k* \ g%) are directed cycles of cardinality n :

All modules in the cycles are reflexive. In the U-component of form A,, the modules M(g) and
M (qz) are not reflexive (they coincide for o(q) = 1); for o(q) > 3, there are n — 2 additional modules
M) =M(g"), M(g"?), ---, M(g*), M(g>) in the U-component, and these modules are reflexive.

Right modules m, A with « € k*. There is always the G-component of form Ay with Q(myA) as its
source and my A as its sink. In addition, for n > 2, there is an U-component of form A, containing the

modules mgi A with2 <i <n as well as Q(mA); it has Q(m1A) as its source, and m2 A as its sink:

qu mlA

P g
- -

OOmgA)  BmiA)
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The remaining U-components (containing the right modules mg A with a € k* \ g7) are directed cycles of

cardinality n:

Again, the modules in the cycles are reflexive. In the U-components of form A, and A;, the modules
mi A and O(mA), as well as my A and G(m,A) are not reflexive; whereas (for o(q) > 3) the modules
mgi A with 2 <i <n — 1 are reflexive.

Proof. First, let us look at left modules. According to 7.1, the U-sequences presented here are the only
ones involving modules of the form M («). Thus, [M (q)] is a source in the U-quiver and [M (1)] is a sink.
This holds true also for o(¢q) = 1: here ¢ = 1 and [M(1)] is both a sink and a source, thus a singleton

U-component (without any arrow). Finally, for any #, the elements 1, g, ..., ¢g"~! are pairwise different,
as are the elements o, ga, . .., ¢" 'a fora € k \ ¢7.
For dealing with the right modules, we refer to 7.3. (]

7.7. We have shown in 1.5 that any O-component is a linearly oriented quiver of type A,, (with n > 1
vertices), a directed cycle &n (with n + 1 > 1 vertices), or of the form —N, or N, or Z. Conversely, 7.2
and 7.6 show that all these cases arise for algebras of the form A(q).

7.8. A forthcoming paper [RZ1] will be devoted to a detailed study of all the 3-dimensional local
A-modules for the algebra A = A(q). If ¢ has infinite multiplicative order, we will encounter a whole
family of 3-dimensional local modules which are semi-Gorenstein-projective, but not torsionless. A
local artin algebra A with radical J is said to be short if J3 = 0. In particular, the algebras A(g) are
short local algebras. It is shown in [RZ2] that if A is a short local algebra with a module M which is
semi-Gorenstein-projective, but not Gorenstein-projective, then |J?| = |J/J?| — 1 > 2. This paper [RZ2],
as well as [RZ3], are devoted to the syzygy modules of modules over short local algebras.

8. Remarks

The first remarks draw the attention to the papers [JS] and [CH]. In 8.1, we show that the A (g)-modules
M(g~—*) with s > 0 and o(g) = oo satisfy some further conditions which were discussed by Jorgensen
and Sega. In 8.2 we show that the algebra A(g) for o(q) = oo does not satisfy the so-called Auslander
condition of Christensen and Holm.

In 8.3, we show that essential features of A (q) are related to corresponding ones of its subalgebra A’(q),
which is the quantum exterior algebra. 8.4 presents a two-fold covering of A(g) which has properties
similar to A(g), but provides for o(g) = oo examples of semi-Gorenstein-projective modules M which
are not Gorenstein-projective, with the additional property that End(M) = k.

8.1. The conditions (TR;) of Jorgensen and Sega. As we have mentioned, Jorgensen and Sega have
shown in [JS] that there exist semi-Gorenstein-projective modules which are not Gorenstein-projective.
Actually, the main result of [JS] is a stronger assertion.
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Following [JS], we say that an R-module M satisfies the condition (TR;) for some i > 1 provided
Ext' (M, R) =0, and that M satisfies the condition (TR;) for some i < —1 provided Ext™!(Tr M, Rg) =0.
Note that (TR;) is defined only for i # 0. Thus, M is semi-Gorenstein-projective if and only if M satisfies
(TR;) for all i > 1, and M is oo-torsionfree (i.e., Tr M is semi-Gorenstein-projective) if and only if M
satisfies (TR;) for all i < —1. Note that M satisfies (TR;) if and only if Tr(M) satisfies (TR_;). The
main theorem of Jorgensen and Sega asserts that there exists a local artinian ring R and a family M, of
R-modules, with My = QMg for s > 1, such that My satisfies (TR;) if and only ifi < s.

Such a module M, satisfies the conditions (G2) and (G3), and satisfies in addition the condition that
Ext’ (M;, R) =01if and only if 1 <i <s — 1. Of course, this is a condition which is much stronger than
the negation of (G1).

Let us show that our algebra A(q) with o(g) = oo also provides such examples. Of course, in contrast
to the algebra R exhibited by Jorgensen and Sega, A(g) is noncommutative. There is the following
general result:

Proposition. Let R be a local artinian algebra which is not self-injective, with simple R-module S.

If M is an indecomposable co-torsionfree module such that S is a proper direct summand of QM, then
M satisfies (TR;) if and only if i <O.

If M is an indecomposable module such that M satisfies (TR;) if and only if i <0, then for every s > 1,
the module U*~' M satisfies (TR;) if and only if i < s.

Proof. First, let M be indecomposable, co-torsionfree, with QM = § @ X for some nonzero module
X. Since M is oo-torsionfree, M satisfies (TR;) for i < —1. Since QM is decomposable, we have
Ext!' (M, R) #0, i.e., M does not satisfy (TR;). By Lemma 7.5, Ext' (S, R) # 0 for all i > 1. Thus, for
i > 2 we have Ext'(M, R) = Ext'"(QM, R) = Ext'"'(S, R) ® Ext ~' (X, R) # 0, which means that M
does not satisfy (TR;).

Next, assume that M is an indecomposable module such that M satisfies (TR;) if and only if i < —1.
For s > 1 consider the module M, = O°~'M. For i < —1, M, satisfies (TR;): in fact, by Lemma 4.4,
Ext™ (Tr(M,), R) = Ext™ (Tr(U0*~'M), R) Z Ext ™! (Tr(Tr Q*~! Tr(M)), R) ZExt~' (Q*~ ' Tr(M), R) =
Ext™'+~1(Tr(M), R) = 0.

If1 <i<s—1,thens—i>1andExt (M, R) = Ext' (0*"'M, R) = Ext!(0*~'M, R) = 0, since
s —i—1>0and U~ M is torsionless.

Ifi > s, theni —s+ 1 > 1 shows that Ext! (Mg, R) ~ Exti_“'“(M, R) #0, i.e., M, does not satisfy
(TR;). O

Application: Let R = A = A(g) with o(q) = oo. Then M = M (1) is an indecomposable co-torsionfree
module and § is a proper direct summand of Q2M, thus the Proposition above shows that for s > 1,
M, = UM = M(g~“~V) satisfies (TR;) if and only if i < s. O

8.2. The Auslander condition of Christensen and Holm. Christensen and Holm [CH] say that a
left-noetherian ring A satisfies the Auslander condition, provided that for every finitely generated left
A-module M, there is an integer b(M) with the following property: if M’ is a finitely generated left
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A-module, then the vanishing Ext>(M, M) =0 implies that Ext™*™) (M, M') = 0. We are indebted
to Christensen and Holm for having drawn our attention to Theorem C of [CH] which asserts: If A is a
finite-dimensional k-algebra A satisfying the Auslander condition, then A is left weakly Gorenstein (here,
we have taken into account that a finite-dimensional k-algebra has a dualizing complex, see 3.4 in [CH]).
This shows that the algebra A(q) with o(q) = oo does not satisfy the Auslander condition. Actually, this
can be seen directly, using the following easy observation.

Proposition. Assume that A is a finite-dimensional k-algebra which satisfies the Auslander condition.
Let N; with i € Z be finite-dimensional right A-modules with QN; = N;_ for all i. If at least one of the
modules Nj; is semi-Gorenstein-projective, then all the modules N; are semi-Gorenstein-projective, thus

Gorenstein-projective.

Proof. Note that A satisfies the Auslander condition if and only if for every finite-dimensional right A-
module N, there is an integer ¢(N) such that for every finite-dimensional right A-module N’, the vanishing
Ext>(N’, N) = 0 implies that Ext™ ™ (N’, N) = 0 (here, ¢(N) = b(DN), where D = Hom(, —, k)
denotes the k-duality).

We assume that Ny is semi-Gorenstein-projective, whereas N is not semi-Gorenstein-projective. Then
we must have Ext! (N, A4) # 0. Since N is semi-Gorenstein-projective, Ext' (Ng, A4) =0 for all ¢ > 1
and therefore Ext't/ (Nj,Ap) =0forall > 1 and j > 0. In particular, we have Ext>>0(N i»Aa) =0
for all j > 0. Now we use the Auslander condition with ¢ = c(A4). Since Ext>*(N.,;, Ax) = 0,
we have Ext‘*! (N1, A4) = 0. On the other hand, Ext*! (N4, A4) ~ Ext' (N1, A4) # 0. This is a
contradiction. ]

For our algebra A(g) with o(q) = oo, let N; = m i A with i € Z. According to 6.5(6), we have
QN; = N;_1. As we know, the right module Ny = m A = M(g)* is semi-Gorenstein-projective, but
not Gorenstein-projective, see Theorem 1.6. This shows that A(g) with o(g) = oo does not satisfy the
Auslander condition.

8.3. The quantum exterior algebra A’ = A’(q) in two variables (see, for example [S]). Let A’ be
2

the k-algebra generated by x, y with the relations x2, y2, xy +gyx. It has a basis 1, x, y, and yx. We

may use the following picture as an illustration:

A

If we factor out the socle of A’, we obtain the 3-dimensional local algebra A” with radical square zero
(it is generated by x, y with relations x2, y2, xy, yx).

Note that A’(g) is a subalgebra of A(g), and that AzA = Az = span{z, zx}. The composition
A < A — A/AzA of the canonical maps is an isomorphism of algebras. In this way, the A’-modules
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may be considered as the A-modules which are annihilated by z. We should stress that the elements
mqy = x — ay (Which play a decisive role in our investigation) belong to A’.

For a € k, let M’ () be the A’-module with basis v, v/, such that xv = v/, yv =v’, and xv' =0 = yv'.
In addition, we define M’(o0) as the A’-module with basis v, v/, such that xv =/, yv = xv' = yv' =0.
Here are the corresponding illustrations:

v v
M/ . 1 / .
() ’“fiiy M'(0) : xl
#.
v v’

The modules M'(«) with @ € k U {00} are pairwise nonisomorphic and indecomposable, and any two-
dimensional indecomposable A’-module is of this form. In particular, the left ideal A’m,, is isomorphic to
M’ (ga), for any o € kU {oo}. The essential property of the modules M’ («) is the following: Qx M’ () =
M'(gqa). This follows from the fact that m,qm, = 0 and it is this equality which has been used frequently
in sections 6 and 7.

For all o € k, M («) considered as a A’-module, is equal to M’ () ®k, where k is the simple A’-module.
Also, we should stress that rad A considered as a left A’-module is the direct sum of I and M’(00), where
I is the indecomposable injective A”-module.

8.4. A variation. Let A be the algebra defined by a quiver with two vertices, say labeled by 1 and 2,
with three arrows 1 — 2 labeled by x, y, z and with three arrows 2 — 1, also labeled by x, y, z, satisfying
the “same” relations as A (of course, now we have 14 relations: seven concerning paths 1 — 2 — 1 and
seven concerning paths 2 — 1 — 2). Whereas A is a local algebra, the algebra A is a connected algebra
with two simple modules S(1) and S(2).

For all the considerations in sections 6 and 7, there are corresponding ones for A, but always we have
to take into account that now we deal with two simple modules S(1) and S(2): Corresponding to the
module M (), there are two different modules, namely M («) with top S(1) and M 2(a) with top S(2).
The modules M («) and M?(«) have similar properties as M («), in particular, M '(¢) and M?(q) are
semi-Gorenstein-projective and not Gorenstein-projective provided that o(qg) = co. There is one decisive
difference between the A-modules and the A-modules: The endomorphism ring of M Y(a) and M?(«) is
equal to k, whereas the endomorphism ring of any M («) is 3-dimensional.

9. Questions

9.1. We have constructed a module which satisfies the conditions (G1), (G2), but not (G3). As we
have mentioned already in the introduction, it is an open problem whether such a module does exist in
case we deal with commutative rings.

9.2. One may ask whether or not the finiteness of gp A implies that A is left weakly Gorenstein, There
is a weaker question: is A left weakly Gorenstein, in case all the Gorenstein-projective A-modules are
projective?
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9.3. Following Marczinzik [M1, question 1], one may ask whether a left weakly Gorenstein artin
algebra is also right weakly Gorenstein, thus whether the existence of an O-component of the form N
implies that also an O-component of the form —N exists.

Note that if any right weakly Gorenstein algebra is left weakly Gorenstein, then the Gorenstein
symmetry conjecture holds true. Namely, we claim: [f inj.dim. 4A < d and inj.dim. A4 > d (the
Gorenstein symmetry conjecture asserts that this should not happen), then A is right weakly Gorenstein,
but not left weakly Gorenstein.

Proof. Let Q be an injective cogenerator of mod A. We assume that inj. dim. 4 A is at most d. As we
have seen in 4.9, A is right weakly Gorenstein and any module of the form Q¢M is semi-Gorenstein
projective. Now assume that A is also left weakly Gorenstein. Then all the modules ¢ M are Gorenstein-
projective. In particular, Q' = Q¢ Q is Gorenstein-projective. A well-known argument shows that if Q’
is Gorenstein-projective, then Q' is even projective. [Namely, assume that Q' is Gorenstein-projective.
Then there is a Gorenstein-projective module Q” such that Q' = P’ @ Q4+ Q” with P’ projective. Now
Ext'(Q4Q", Q') ~ Ext?t1(Q”, Q') ~ Ext' (Q”, Q) = 0, here the first isomorphism is the usual index
shift, whereas the second comes from the fact that Q” is (semi-)Gorenstein-projective and Q' = Q4 Q (for
a semi-Gorenstein-projective module N, and any module Z, we have Ext't! (N, QZ) ~ Ext (N, Z) for
alli > 1). But Ext'(Q7Q”, P'®Q4+1 Q") =0 implies that Ext' (¢ 0", Q4+ Q") =0, thus the canonical
exact sequence 0 — Q410" — P(Q4Q") - Q¥ Q" — 0 splits and Q¢! Q” has to be projective (even
zero). It follows that Q' = P’ @ Q4+ Q" is projective.] Since Q' is projective, the projective dimension
of Q is at most d. Using duality, we see that inj. dim. A4 <d. O

9.4. Assume that there exists a nonreflexive A-module M such that both M and M* are semi-Gorenstein-
projective. Is then the same true for A°?? Even for A = A(g) with o(g) = 0o, we do not know the answer.
According to 7.5(1%), a right A-module N of the form N = m,A(q) is reflexive, if both N and N* are
semi-Gorenstein-projective. But, there could exist some other right A-module N satisfying (G1), (G2)
and not (G3).

9.5. The Nunke condition. Does there exist a semi-Gorenstein-projective module M # 0 with
M* = 0?7 Such a module would be an extreme example of a module satisfying (G1), (G2) and not (G3).
Marczinzik has pointed out that this question concerns the Nunke condition [H] for M, which asserts that
Ext' (M, A) # 0 for some i > 0, see [J]. Colby and Fuller [CF] have conjectured that the Nunke condition
should hold for any module M they called this the strong Nakayama conjecture. The strong Nakayama
conjecture obviously implies the generalized Nakayama conjecture which asserts that for any simple
module S there should exist some i > 0 such that Ext' (S, A) # 0. It is known that the Nunke condition is
satisfied in case the finitistic dimension conjecture holds true.

Note that if M is indecomposable and semi-Gorenstein-projective, then M* may be decomposable, as
Theorem 1.5 shows: the A(q)°P-module M (q)* is indecomposable and semi-Gorenstein-projective, but
M (g)** is decomposable.
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9.6. The conditions (TR;). Following Jorgensen and Sega [JS], one may ask whether an A-module
which satisfies (TR;) for all but finitely many values of i, has to be Gorenstein-projective. In general, this
is not the case, since there is the following proposition.

Proposition. If both M and M* are semi-Gorenstein-projective, then M satisfies the conditions (TR;)
foralli ¢ {—1, =2}.

Proof. Let M be semi-Gorenstein-projective. Then M satisfies (TR;) for i > 1. Since Ext!(M, A) =0
for i = 1,2, Lemma 2.5 asserts that there is a projective module Y such that M* ~ Q’TrM @ Y.
Assume now that also M* is semi-Gorenstein-projective. Then for i > 1, we have Ext' T2 (TrM, Ay) =
Ext' (Q*Tr M, A4) = Ext' (M*, A4) = 0, thus M satisfies also (TR;) for i < —3. O

Thus, our paper shows that there are (noncommutative) artinian rings with modules M which satisfy
(TR;) for all i ¢ {—1, —2} and which are not Gorenstein-projective. For commutative artinian rings (and
this was the setting considered by Jorgensen and Sega) the question is open.
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