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Curtis homomorphisms and
the integral Bernstein center for GL,

David Helm

We describe two conjectures, one strictly stronger than the other, that give descriptions of the integral
Bernstein center for GL, (F) (that is, the center of the category of smooth W (k)[GL, (F)]-modules,
for F a p-adic field and k an algebraically closed field of characteristic £ different from p) in terms of
Galois theory. Moreover, we show that the weak version of the conjecture (for m < n), together with
the strong version of the conjecture for m < n, implies the strong conjecture for GL,. In a companion
paper (Invent. Math. 214:2 (2018), 999-1022) we show that the strong conjecture for n — 1 implies the
weak conjecture for n; thus the two papers together give an inductive proof of both conjectures. The
upshot is a description of the Bernstein center in purely Galois theoretic terms; previous work of the
author shows that this description implies the conjectural “local Langlands correspondence in families”
of (Ann. Sci. Ec. Norm. Supér. (4) 47:4 (2014), 655-722).

1. Introduction

Emerton and the author [Emerton and Helm 2014] described a conjectural “local Langlands correspondence
in families” for the group GL, (F), where F is a p-adic field. More precisely, we showed that given a suit-
able coefficient ring A (in particular complete and local with residue characteristic ¢ different from p), and
a family of Galois representations p : G — GL,(A), there is, up to isomorphism, at most one admissible
A[GL, (F)]-module 7 (p) that “interpolates the local Langlands correspondence across the family p” and
satisfies certain technical hypotheses. (We refer the reader to [Emerton and Helm 2014, Theorem 1.1.1]
for the precise result.) We further conjecture that such a representation 7 (p) exists for any p.

The paper [Helm 2016b] gives an approach to the question of actually constructing 77 (o) from p. The key
new idea is the introduction of the integral Bernstein center, which is by definition the center of the category
of smooth W (k)[GL,, (F)]-modules. More prosaically, the integral Bernstein center is a ring Z that acts
on every smooth W (k)[GL,, (F)]-module, compatibly with every morphism between such modules, and
is the universal such ring. The structure of Z encodes deep information about “congruences” between
W (k)[GL,, (F)]-modules (for instance, if two irreducible representations of GL, (F) in characteristic zero
become isomorphic modulo ¢, the action of Z on these two representations will be via scalars that are

congruent modulo £.)
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Morally, the problem of showing that 7 (p) exists for all p amounts to showing — for a sufficiently
general notion of “congruence” — that whenever there is a congruence between two representations
of G, there is a corresponding congruence on the other side of the local Langlands correspondence.
It is therefore not surprising that one can rephrase the problem of constructing 7 (p) in terms of the
structure of Z. Indeed, Theorem 7.4 of [Helm 2016b] reduces the question of the existence of w(p) to a
conjectured relationship between the ring Z and the deformation theory of mod ¢ representations of G ¢
(Conjecture 7.2 of [Helm 2016b]).

The primary goal of this paper, together with its companion paper [Helm and Moss 2018], is to prove
a version of this conjecture, and thus establish the local Langlands correspondence in families. More
precisely, we introduce a collection of finite type W (k)-algebras R, that parametrize representations of
the Weil group W of F with fixed restriction to prime-to-¢ inertia, and whose completion at a given
maximal ideal is a close variant of a universal framed deformation ring. We then conjecture that there is a
map Z — R, that is “compatible with local Langlands” in a certain technical sense (see Conjecture 9.2
below for a precise statement and discussion.) This conjecture, which we will henceforth call the “weak
conjecture”, becomes Conjecture 7.2 of [Helm 2016b] after one completes R, at a maximal ideal, and
hence implies both that conjecture and the existence of 7 (p).

If amap Z — R, of the conjectured sort exists it is natural to ask what the image is. The “strong
conjecture” (Conjecture 9.3 below) gives a description of this image (and in fact gives a description of
the direct factors of Z in purely Galois-theoretic terms.) As the names suggest, the “strong conjecture”
implies the “weak conjecture.”

The main result of this paper is that if the weak conjecture holds for all GL,, (F), with m less than or
equal to a fixed n, and the strong conjecture holds for m < n, then the strong conjecture holds as well for
the group GL, (F). In the companion paper [Helm and Moss 2018], we show that the strong conjecture
for GL,,_ (F) implies the weak conjecture for GL, (F). Since the case n = 1 is easy (it is a consequence
of local class field theory), the two papers together will establish both conjectures for all n, and hence the
local Langlands correspondence for GL, in families.

Our approach relies on three main ingredients. The first is an input from finite group theory, namely the
endomorphism ring of the Gelfand—Graev representation I" of GL, (Fy). In Section 2 we introduce this
ring and describe some of its basic properties, following Bonnafé and Kessar [2008]. A crucial structure
on this endomorphism ring is its canonical symmetrizing form, which Bonnafé and Kessar describe in
terms of “Curtis homomorphisms™ arising from Deligne—Lusztig restriction. In Section 3 we describe the
connection between this endomorphism ring and the ring Z.

The second key ingredient is the behavior of the integral Bernstein center Z with respect to parabolic
induction; for a Levi M of G there are natural maps Z — Zj; compatible, in a certain sense, with
parabolic induction from M to G. In Section 3 we recall results of [Helm 2016a] (see Theorems 3.9
and 3.12, below) that say that in certain key cases the images of these maps are “large” in a certain
sense, and that the failure of these maps to have image that is “as large as possible” is controlled by the
endomorphism ring of a Gelfand—Graev representation.
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The third key ingredient is the construction of the rings R, which occupies Sections 4, 7, and 8. These
moduli spaces admit maps between them coming from taking direct sums of representations; these maps
serve a purpose analogous to the “parabolic induction” maps from Z to Z;;. The functions on such
spaces also admit subalgebras B, ,, that play a role analogous to the subalgebras of Z arising from the
endomorphism ring E ¢.n of a Gelfand—Graev representation. The strong conjecture leads us to expect
that in fact E ¢.n and B, ,, are isomorphic, but it seems difficult to show this directly (although it is easy
to show if one inverts £). Instead, we make use of the symmetrizing form on E ¢.n to show that if there
exists a map from E g.n 10 By , then it must be an isomorphism (see Sections 5 and 6.)

Once we have established this, our argument goes as follows. First we show that the strong conjecture
holds after inverting £; this essentially follows easily from the classical Bernstein—Deligne theory of
the Bernstein center over algebraically closed fields. We then assume the strong conjecture for m < n,
and the weak conjecture for m < n. This gives us in particular a map E q.n —> By that is necessarily
an isomorphism. Using this, and considering various parabolic restriction maps from Z to various Levi
subgroups, together with the corresponding maps on the rings R, of representations of Wy, we show,
using our “large image” results for Z, that Z must “fill out” the entire ring of invariant functions in R,,
thus proving the strong conjecture for GL,,.

In the process of carrying out this inductive argument we prove that £ ¢.n 18 isomorphic to B, , for
all n. This is a statement purely in finite group theory that is of independent interest. We know of no
more direct proof of this isomorphism than the one described here.

Throughout this paper we adopt the following conventions: F is a p-adic field with residue field [, &
is an algebraically closed field of characteristic £ # p, K is the field of fractions of W (k), and K is an
algebraic closure of K. Algebraic groups over F' with be denoted by uppercase calligraphic letters 7, G,
etc.; for any such group the corresponding uppercase letters 7, G, etc. will denote the groups of F-points
of T, G, and so forth. In particular there is an implicit dependence of T on 7.

2. Finite groups

Before beginning our study of the Bernstein center we develop some finite group theory that will be
essential for our approach. Most of the ideas in this section originally appear in [Bonnafé and Kessar 2008].

Fix distinct primes p and £, and a power ¢ of p. Let G be the group GL,, over [F,, and let G=G (Fy).
We will consider the representation theory of G over the Witt ring W (k), where k is an algebraic closure
of [,. Let K be the field of fractions of W (k), and fix an algebraic closure K of K.

Our principal object of study in this section will be the Gelfand—Graev representation I" of G, with
coefficients in W (k). Fix a Borel B in G, with unipotent radical U, and let B, U denote the [F,-points
of B and U respectively. Also fix a generic character W : U — W (k)*. Then, by definition, we have
r= c-Indg W, where W is considered as a W (k)[U]-module that is free over W (k) of rank one, with the
appropriate action of U. The module I is then independent of the choice of W, up to isomorphism.

The objective of this first section is to study the endomorphism ring EndW(k)[(;](I:), which we denote
by E; . Our main tool for doing so will be the Deligne-Lusztig induction and restriction functors of
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[Bonnafé and Rouquier 2003]. Let L be the subgroup of G consisting of the Eq -points of a (not necessarily
split) Levi subgroup £ of GL,, and choose a parabolic subgroup P of GL, whose Levi subgroup is L.
Let RepW(k)(é) and RepW(k)(Z) denote the categories of W (k)[G]-modules and W (k)[L]-modules,
respectively. Then Deligne-Lusztig induction and restriction are functors:

\Q\

o

SP. pb (Repy 1 (G)) = D’ (Repyy i (L))

Q\l\

We will be concerned exclusively with the case where £ is a maximal torus in G. In this case the effect
of Deligne-Lusztig restriction on T has been described by Bonnafé and Rouquier when £ is a Coxeter
torus and by Dudas [2009] in general.

Theorem 2.1 (Bonnafé—Rouquier, Dudas). When L is the standard maximal torus, there is a natural

isomorphism

reSTT = WHRLLI-¢(w)]

in Db (Repy ) (L)), where w is the element of the Weyl group of G such that P" is the standard Borel,
L(w) is its length, and [—£(w)] denotes a cohomological shift.

Proof. This is the main theorem of [Dudas 2009]. O

An immediate consequence of this result is that, when 7 is the Fq—points of a torus in GL,, then an
endomorphism of T gives rise, by functoriality of Deligne—Lusztig restriction, to an endomorphism of
W (k)[T] (or, equivalently, an element of W (k)[T]). We thus obtain homomorphisms

Q7 Eqn— WHT]

for each torus 7 in G. These are integral versions of the classical “Curtis homomorphisms”.

Over K, it is not difficult to describe the structure of ' ® K, its endomorphism ring, and the associated
Curtis homomorphisms. Recall that an irreducible representation 77 of G is said to be generic if 7 contains
the character W, or, equivalently, if there exists a nonzero map from T to 7. The irreducible generic
representations of G over K are indexed by semisimple conjugacy classes s in G', where G’ is the group
of Fq—points in the group G’ that is dual to G. More precisely, given such an s, there exists a unique
irreducible generic representation Sty in the rational series attached to s.

The association of rational series to semisimple conjugacy classes in G’ depends on choices which we
now recall: let 1‘?) denote the prime-to- p roots of unity in iC, let (Q/ 7)P) denote the elements of order

prime to p in (Q/Z), and fix isomorphisms

(17) (@/Z)(l’) o~ ﬁ;.
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Now let ¢ be a semisimple element in G, let 7’ be a maximal torus containing s, and let 7 be the dual
torus in G. Let X and X’ denote the character groups of 7 and 7, respectively. We have isomorphisms
T(F,) =Hom(X/(Fr, —1)X, Gy),
T'(F,) =Hom(X'/(Fr, —1)X', Gy),

where Fr, is the endomorphism induced by the g-power Frobenius. We also have a natural duality
X/(Fr, —1)X = Hom(X'/(Fry —1) X/, (Q/Z)P)). The identifications we fixed above then give rise
to isomorphisms

T'(F,) = Hom(X'/(Fr, —1)X', Gy,) = X /(Fr, —1)X = Hom(T (F,), u'™).

In this way we associate, to any semisimple element ¢ of g_’([Fq), and any 7~ containing ¢, a character
o7, T(Fy) — KX

It is immediate (by applying the idempotent of C[G] corresponding to the rational series attached to s
to Theorem 2.1) that we then have:

Proposition 2.2. Let T be a maximal torus of G, and let B be a Borel containing T. Then, up to a
cohomological shift depending only on B, we have

TCBG ~ -
I"é St; = @ (pT/,l’

t~s;teT’

Returning to I', we have a direct sum decomposition
Fek=ss,
)

It follows immediately that the endomorphism ring of I’ ® K is isomorphic to a product of copies of K,
indexed by the semisimple conjugacy classes s in G'. As the endomorphism ring Endy ;5,(T) of T
embeds in this product, we see immediately that Endy, 5,(I') is reduced and commutative.

Indeed, it is not difficult to describe the maps ®7 ® K. The isomorphism

rek= s,
s
where s runs over semisimple conjugacy classes in G, gives rise to an isomorphism
E..@K=]]K.
On the other hand we have a direct sum decomposition S
RIT1=P o7,
t
of KC[T]-modules, and hence an algebra isomorphism

KT = ]_[16.
t
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It follows immediately from the previous paragraph that ® maps the factor of K of E 7, 2®K corresponding
to s identically to each factor of KC[T'] that corresponds to a ¢ in the G’-conjugacy class s, and to zero in
the other factors.

Now let 7 range over all tori in G, and consider the product map

®: Egn— [ [WHRIT).
T

For each pair (7, ¢), where ¢ is a character T — K*, we have a map

&, [[WBITI— K
T

given by composing the projection onto W (k)[T] with the map ¢ : W&k [T]— K.

Define an equivalence relation on such pairs by setting (71, ¢1) ~ (T2, ¢2) if #; and t, are conjugate
in G/, where 1, and t, are the elements of the dual tori 7~ ’1 and T’z corresponding to ¢ and ¢,. Then our
description of each ®7 shows that, when (T1, 1) ~ (T2, ¢2), one has &7, o © O =&7 0 © ®. Thus ¢
induces a bijection between the K-points of Spec E; , and the equivalence classes of pairs (7, ¢).

In what follows, it will be necessary for us to consider certain direct factors of E ¢.n arising from
idempotents of W (k)[G]. An £-regular semisimple conjugacy class s in G’ gives rise, via the choices
we have made above, to an idempotent e, in W (k)[G], that acts by the identity on the rational series
corresponding to those s’ in G with £-regular part s, and zero elsewhere. We will denote by E q.n,s the
direct factor e, E g.n Of E ¢.n- The K-points of Spec E g.n,s are those corresponding to pairs (7, ¢) such
that ¢ corresponds to an element ¢ of 7' whose ¢-regular part is s.

Now let s € G’ be £-regular semisimple and suppose that the characteristic polynomial of s is a power
of an irreducible polynomial of degree d. Then the centralizer £ of s in G’ is a nonsplit Levi isomorphic
to Res_,/r, GLy/a- Let L be the Levi of G dual to £. By [Bonnafé and Rouquier 2003, Théoréme 11.8],
twisting by the character of L associated to s, followed by Deligne—Lusztig induction from £ to G, is
an equivalence of categories from e RepW(k)(I:) to e Repw(k)((_}). Moreover, this equivalence carries
e1I' 7 to esI". (This follows from uniqueness of projective envelopes, since the former is the projective
envelope of the unique irreducible generic k-representation of L in the block corresponding to e;, and
the latter is the projective envelope of the unique irreducible generic k-representation of G in the block
corresponding to e;.) We thus have:

Proposition 2.3. For s an {-regular semisimple element of G’ whose characteristic polynomial is a power

of an irreducible polynomial of degree d over T,. Then there is a natural isomorphism

Eq,n,s = Eq",n/d,l .

The induced map on K-points takes the K-point of Spec E ¢4.njd,1 corresponding to the L-primary conju-
gacy class t of L' to the K-point of Spec E q.n.s corresponding to the conjugacy class of st in G
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Proof. The first claim is immediate from the previous paragraph. The second follows from the description
of the equivalence of categories on irreducible generic K-representations. (Il

The final structure we will need to consider on E ¢.n 18 @ natural symmetrizing form considered by
Bonnafé and Kessar [2008, Section 3.B]. Define a W (k)-linear map 0 : Eq’n — W (k) by the formula

0(x) = % > 0 (@7, (X)),
wes,
where T, is the torus of G associated to the element w of the Weyl group, and 6,, : WE)[T ] — W(k)
is the canonical symmetrizing form on WI[T ] given by “evaluation at the identity”. Note that we can
extend 6 to a linear map E, , ® K — K.
We then have:

Proposition 2.4. Let t be a semisimple conjugacy class in G, and let e, be the corresponding idempotent
oqu,n ® K. Then

1 1
Ole =15 D =N,

" wes, w

where N (w, t) is the number of elements of Tﬁv in the conjugacy class of t.

Proof. It is easy to see that @z (e;) is equal to the sum, over those ¢’ € 7', conjugate to #, of the
idempotents e, of KIT ,]. The claim is then immediate from the formula for 6. O

3. The integral Bernstein center

We now turn to the first main object of interest in this paper: the integral Bernstein center. Let
G = GL,(F), and denote by RepW(k)(G) and Repg(G) the categories of smooth W (k)[G]-modules
and smooth K[G]-modules, respectively.

By the phrase “integral Bernstein center” we mean the center of the category Repy ) (G). We recall
what this means:

Definition 3.1. The center of an Abelian category A is the ring of natural transformations Id 4 — Id 4,
where Id 4 denotes the identity functor on A.

By definition, if Z is the center of A, then specifying an element of Z amounts to specifying an
endomorphism of every object of 4, such that the resulting collection commutes with all arrows in A.
The center of A is thus a commutative ring that acts naturally on every object in A, and this action is
compatible with all morphisms in A.

Bernstein and Deligne [1984] gave a complete and explicit description of the center Z of Repi(G).
We briefly summarize their results: first, define an equivalence relation on pairs (M, 7), where M is a
Levi of G and 7 is an irreducible supercuspidal representation of M over K by declaring (M, 771) to be
inertially equivalent to (M», 73) if 7| is G-conjugate to an unramified twist of 7;. One then has:
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Theorem 3.2 [Bernstein and Deligne 1984, Proposition 2.10]. There is a bijection (M, ) — ey #)
between inertial equivalence classes of pairs (M, ) over K and primitive idempotents of Z, such that
for any irreducible smooth representation T1 of G over K e, 7) acts via the identity on Il if TI has

supercuspidal support in the inertial equivalence class of (M, ), and by zero otherwise.

The upshot is that Z decomposes as an infinite product of the rings e Mﬁ)f as (M, 1) runs over all
inertial equivalence classes of pairs. Denote e(Mﬁ)f by 2(M,fr)- Then Bernstein and Deligne gave a
complete description of the ring structure of ’z‘( M,7) that we now explain.

Let My be the smallest subgroup of M containing every compact open subgroup of M. Then M /M,
is a free abelian group of finite rank, and Spec [ M/M,] is a torus whose KC-points are in bijection
with the characters M /My — K*. Let H be the subgroup of these characters consisting of those
characters x such that 7 ® x is isomorphic to 7. Then H is a finite abelian group that acts on C[M/My].
The torus Spec KC[(M/My)]1¥ is a quotient of Spec C[M/M,]; its K-points correspond to H-orbits of
characters of M /M.

Now let W), be the subgroup of the Weyl group of G consisting of w such that wMw~! = M. Let
W () be the subgroup of Wy, consisting of w such that the representation 7% of M is an unramified
twist of 7. Then we have a natural action of Wy, (7) on K[(M/My)]", characterized by

TRx" =@ X)"”
for characters x of M /My. We then have:

Theorem 3.3 [Bernstein and Deligne 1984, Théoréme 2.13]. There is a unique natural isomorphism

=~ ~ (1~ W, (’~
Zow ) = (KL(M /M) )™
such that, for any irreducible representation T1 over K whose supercuspidal support has the form @ @ x,

Z(Mﬁ) acts on Il via the map

W (77)

(KI(M/Mo)1™) — K[M/Mo]l - K

corresponding to the character x : M /My — K*. In particular 2(M,ﬁ) is a reduced, finitely generated,
and normal K-algebra.

In particular, Z acts on two irreducible representations I, I1" of G via the same map Z — K if, and
only if, IT and IT" have the same supercuspidal support. This defines, for each (M, 77), a bijection between
the /C-points of Spec 2(Mﬁ) and supercuspidal supports in the inertial equivalence class of (M, 7); that
is, unramified twists of 7 considered up to Wy, (77)-conjugacy.

Now let L be a Leviin GL,; then L factors as a product of L; isomorphic to GL,, (F'). For each i, let M;
be a Levi in L;, and 7; an irreducible supercuspidal K-representation of M;. We then have isomorphisms

Zyt, 7, = (E[(Mi/(Mi)O)]Hi)WMi @,
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Let M be the product of the M;; we may regard it as a Levi of L and hence as a Levi of GL,(F). Let &
be the tensor product of the 77;. The quotient M /My factors naturally as a product of M;/(M;)o, and this
induces a map
(RLM /M) ™™ — Q) (RLM; / (M;)o)1H) " )
i
and hence a map
Ind(u, ) Zoniy) = Q) Zowt, -
1
On C-points this takes the K-point of the tensor product that corresponds to the collection of supercus-
pidal supports {(M;, 7; ® x;)} to the point of Spec Z(M,,a corresponding to the supercuspidal support
(M, ®i(7; ® Xi))-

We now turn to the study of Repy, ,(G); let Z denote the center of this category. In this setting there
is an analogue of the Bernstein—Deligne characterization of the primitive idempotents of Z. By [Helm
2016a, Theorem 11.8], such idempotents are parametrized by inertial equivalence classes of pairs (L, m),
where 7 is now an irreducible supercuspidal representation of L over .

If we let e[1. »] denote the idempotent of Z corresponding to (L, 1), Repy ) (G)(L.x) the corresponding
block, and Z[; ] the corresponding factor of the Bernstein center, then one has the following basic
structure results:

Theorem 3.4 [Helm 2016a, Theorem 12.8]. The ring Z|1 r| is a finitely generated, reduced, flat
W (k)-algebra.

It is important to note that, in contrast to the situation over IC, the ring Zi, ] is in general very far
from being normal.

We also have a description of Z|; ;) ® K in terms of Z. This can be made precise as follows: if
(M, 7) is a pair over K, and IT is an irreducible integral representation of G over K with supercuspidal
support in the inertial equivalence class of (M, 77), then there exists a (possibly proper) Levi subgroup L
of M, and an irreducible supercuspidal representation 7w of L, such that every irreducible subquotient
of the mod £ reduction of IT has supercuspidal support (L, ). Moreover, the inertial equivalence class
of (L, ) depends only on that of (M, ), and not on the particular choice of w. We say that (M, )
reduces modulo ¢ to (L, 7r); this defines a finite-to-one map from inertial equivalence classes over K to
inertial equivalence classes over k. One then has:

Theorem 3.5 [Helm 2016a, Proposition 12.1]. The natural map Z ® K — Z induces an isomorphism

Z[L,n] ®]€§ l_[ Z(M’ﬁ),
(M,7)

where the product is over all pairs (M, 77), up to inertial equivalence, that reduce modulo € to the pair (L, ).
From this and the description of the K-points of Spec 2( Mm,7) one immediately deduces:

Corollary 3.6. The KC-points of Spec Z1. | are in bijection with the supercuspidal supports of irreducible
smooth K-representations in Repy ) (G)(L.7)-
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We now give a more precise description of Zj; »1. We first reduce to a more easily studied special case:

Definition 3.7. A pair (L, ) is simple if there exist r, m such that n = rm, L is isomorphic to GL,, (F)",
and 7, up to unramified twist, is of the form (7/)®" for an irreducible supercuspidal representation 7’
of GL,, (F).

Note that any pair (L, ) factors uniquely as a product of simple pairs (L', '), with ' = (/)®",
such that no 7/ is an unramified twist of any other. One then has:

Theorem 3.8 [Helm 2016a, Theorem 12.4]. Let {(L', ')} be the natural decomposition of (L, ) as a
product of simple pairs. Then there is a natural isomorphism

Z[L,JT] = ® Z[Li,ni]
i
such that, for any sequence {(M', ')} reducing modulo € to {(L', ")}, the diagram

Zi 1 ®K — [Q; Ziri 2] ®K

| |

Zimzy —— Qi Zmi 71

commutes, where (M, 1) is the product of the (M;, ;), and the bottom horizontal map is the map
Indy(psi iy, described above.

We thus focus our attention on the case where (L, ) is simple. Fix an integer n| and an irreducible
supercuspidal representation 7’ of GL,, (F) over k. For each m > 0, let L,, be a Levi of GL,,,,(F)
isomorphic to GL,, (F)™, and let 7,,, be the representation (7’ Y®™ of L,,. We can then consider the family
of rings Z,, := Zjz,, x,] as n varies.

Section 13 of [Helm 2016a] contains detailed information about the structure of the family Z,,. In
particular this structure theory is closely related to the endomorphism rings of certain projective objects
Pk,,.1, for particular m. More precisely, consider the group of unramified characters x of GL,, (F)
such that 7’ ® yx is isomorphic to r’. This is a finite group; denote its order by f’. Then attached to

the system of pairs (L,,, ;) we have a system of projective objects Pk where m lies in the set

s Ton»
{1,e o Le ol e gl e }. (We refer the reader to Sections 7 and 9 of [Helm 2016a] for a construction
and structure theory of these objects.) For brevity, denote the representation Pk, 7, by Pp.

For such m, let E,, denote the endomorphism ring of P,,. Then, by Corollary 9.2 of [Helm 2016a],
E,, is a reduced, finite type, £-torsion free W (k)-algebra. Moreover, we have a map Z,, — E,, that gives
the action of Z,, on the object Py, of Repy ) (GLy m (F))(L,,.7,1-

If m is arbitrary, the relationship between the rings Z,, and E,, is more complicated. For a partition v
of m, we will say that v is g-relevant if each v; belongs to the set {1, e, £e,, Ezeq, ...}, where ¢, is the
multiplicative order of ¢ modulo £ (relevant partitions were called admissible in [Helm 2016a]). Let v
be the maximal ¢/ -relevant partition of m. Let M, and P, be the standard Levi and (upper triangular)
parabolic subgroups of GL, , attached to n;v, so that M, is a product of GL,,,,(F), and consider
the representation (), P, of M,,. Then Z,, acts on the parabolic induction i S}"]m " ®); P.,, and we have:
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Theorem 3.9 [Helm 2016a, Theorem 13.7]. The action of Z,, on i SUL"”"(F) Q) Py, factors through the

action of ), E,, on Q), Py,. Moreover, the resulting map
Zn —> Q) E,
i

is injective with saturated image, and is an isomorphism if m lies in {1, e ol Le g e }. (Note that in this

case v is the one-element partition {m} of m.)

For m in {1, €yr Eeq +, ...} we thus have a natural identification of Z,, with E,,. For arbitrary m, we
can regard the map Z,, — ), E,, as amap Z,, = ), Z,,. Denote this map by Ind,. It is injective with
saturated image.

For m in {1, e s legrs ... }, the results of Sections 7 and 9 of [Helm 2016a] give very precise
information about E,,, and hence Z,,. In particular there is an integer f dividing f’, and a cuspidal
k-representation oy, of GL s/ (F,s) (attached to an £-regular conjugacy class (s))™ with s{ irreducible of
degree f’ over [, ), such that the projective P, is a compact induction c—Ind%"]m(F) Km ® Py, , where &,
comes from type theory and P, is the projective envelope of o,,, inflated to a representation of K,, via a
natural map Ky, — GLyp7 7 (F, 7).

Section 5 of [Helm 2016a] shows that P, is the projection of the Gelfand—Graev representation of
GLy 77 (F,r) to the block containing o, In particular, the results of Section 2 identify the endomorphisms
of P,, with E 4/, md,s» Where we have written s = (s1)" and d = fT/ By Proposition 2.3 we may identify
Eytmas With E .

We thus obtain an embedding of E g m.1 in E,, for such m. Furthermore, Section 9 of [Helm 2016a]
constructs an invertible element ®,, ,, of E,,. We thus obtain a map

E .y pilT, T 1> Ey

taking 7' to ®,, ,,. It follows easily from the description of E,, as a Hecke algebra in Section 9 of [Helm
2016a] that the image of this map consists of the elements of E,, supported on double cosets of the form
Kz, Km for various r. (In particular, this image is saturated in Ey,.)

The image of E ! m,1 10 Zpy 1s easy to describe. Indeed, we have:

Proposition 3.10. Let m lie in {1, e o Le gf's e }, and let x be an element of E ol m. 1> where the latter
is considered as a subalgebra of Z,,. Then for any irreducible K-representations I1, I1" of GL,,,, (F) in
the same block of Repic(GL,,,n (F)), the action of x on I1 and T1" is via the same scalar. Conversely, any
element of Z,, with this property lies in l_?qf/’myl.

Proof. The ring Z,, annihilates both IT and IT" unless IT and IT" belong to a block of the form

Repic(GL,, 1 (F))(m, =,y for a suitable s, in the notation of [Helm 2016a, Section 9]. In this case the
GLuym (F) -

action of Z,, on IT and IT’ factors through the action of Z,, on the summand c-Ind K Km ® Sty of
GLym(F) ~ = . . " .
c-Ind K, i (F) km @ Po,, ® K. In particular the action of x on IT and IT" factors through the action of x

on Sty, which is by a scalar.
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Since E g m1 is saturated in Z,,, it suffices to prove the converse over KC. But it follows easily from
our factorization of Z,, in characteristic zero that every idempotent of Z,, ® K is contained in E ol w1

since these idempotents correspond to the blocks of Repi(GLy,,,, (F))m,» the claim follows. U
We also make the following observation about the action of ®,, ,, € Z,,:

Proposition 3.11. Let P be a parabolic subgroup of GL,,;, (F), with Levi subgroup M, and let 7t be an
irreducible cuspidal K-representation of M such that i gn lies in the block corresponding to L, 1y,.
Suppose that M decomposes as a product of groups M; = GLj,,, (F), and let x be an unramified character
of M, of the form ®; (x; o det), where we regard (x; o det) as a character of M.

Let x € K* be the scalar by which ®,, ,, acts on igrr. Then ®y, ,, acts on ign ® x via x ]—[i Xif,(wF).

Proof. For some s, the pair (M, ) is conjugate to an unramified twist of one of the pairs (Mj, 75)
described in Section 9 of [Helm 2016a]. Thus, by Theorem 9.4 of [Helm 2016a], the action of ®,, ,,
on m is via the element 6, s of Zj;, -, defined in Section 9 of [Helm 2016a], and the claim is immediate
from the definition of 6,, s in that section. O

Finally, let m’ and m be two consecutive elements of {1, e o Le g }, and set j = % Theorem 13.5
of [Helm 2016a] then provides a map

I, 2 Zn — 227

. . . .. . . . . .GLy m (F)
that is compatible with parabolic induction, in the sense that the action of x in Z,, oni, "' ( m (where

P = MU is a parabolic such that M is isomorphic to GL,, , (F )7) is induced by the action of Indyy ()
on 7. The image of this map is not saturated but we have:

Theorem 3.12 [Helm 2016a, Theorem 13.6]. Let y be an element of Z,ff,j such that, for some a,
£%y lies in the image of Ind,, ,,. Then there exists an element y of Z,,, an element x of qu/’mﬁl[Til],

and an integer b > 0 such that Ind,y ,, (x) = 2P (y —Ind,y 1n (3))-
The map Ind,, ,, is not injective, but its kernel has a rather simple structure:

Proposition 3.13. There exists an ideal I, ,, of E o m.1 such that the kernel of Ind, ., is equal
10 Ly m[OF,].

i [@i}m] is saturated in Z,, we can prove this after tensoring with IC. We have a

Proof. Since E, s
decomposition
Zn®K= 1_[ PZV(Miﬁi)’
4
where (M;, 7;) run over the K-inertial equivalence classes in the block corresponding to [L,,, 7]
In particular the partitions corresponding to the M; are all g/ -relevant. Fix a factor in this product
corresponding to a pair (M;, ;). On this factor, we can describe the map Ind,, ,, in the following way: let
(M;j, ;) run over the set of M, -inertial equivalence classes of pairs that are GL,, ,-inertially equivalent
to (M;, 7t;), where v is the partition (m’, ..., m’) of m and M, is the corresponding Levi of GL,,,. Since



Curtis homomorphisms and the integral Bernstein center for GL, 2619

M;; is a Levi contained in M, the pair (M;;, 77;;) breaks up as a product of % pairs (M;jk, ;ji) in GL;,, .
On the factor Z(Mi’f[i) of Z, ® K, Ind,, , is the sum of the maps

Indu; 7,) © Zomy 7)) = @ Z (M)
k
In particular Ind,, ,, is injective on the factor Z (M;,7;) if M; is a proper Levi subgroup and zero otherwise.
When M; is not a proper Levi then the pair (M;, ;) gives a cuspidal inertial equivalence class, so A (M;,7)
is isomorphic to K[©E! 1. Thus the kernel of Ind,,,» ®K is equal to I:nr,,n[®,ﬂ,f}m], where I, ,, is the ideal
of E /' m1® KC generated by the idempotents of the latter that correspond to cuspidal inertial equivalence
classes (M;, 7t;). O

4. Thering R, ,

We now turn to the second principal object of study of this paper, which is a moduli space of representations
of Wr. We begin by studying spaces of tame representations. Let X, , be the affine W (k)-scheme
parametrizing pairs of invertible n by n matrices (Fr, o) such that Fro Fr~! = o9, and let Xg’n be the

connected component of X, , containing the k-point Fr = o =1d,.. Let S, , and R, , be the rings of

0

functions on X, », and X,

respectively, so that X, , = Spec S, , and X(q)’n = Spec Ry .

Lemma 4.1. Let L be an algebraically closed field that is a W (k)-algebra and x be an L-point of X »
corresponding to a pair (Fry, o) of elements of GL,(L). Then x lies in Xg’n if, and only if, the
eigenvalues of o are £-power roots of unity.

Proof. Consider the map X, , — A"},(k) that takes a point x to the coefficients of the characteristic
polynomial of 0. Let Y be the image of this map. For all L and x, o, is an element of GL,, (L) conjugate
to its g-th power, so its image in Y (L) is a polynomial of degree n whose roots, counted with multiplicities,
are stable under the g-th power map. That is, every point of Y (L) corresponds to the characteristic
polynomial of a diagonal matrix that is conjugate to its g-th power. Conversely, given such a matrix o it
is easy to construct an L-point x of X, , with oy, = 0.

Let Y C %ﬁv(k) be the space of diagonal matrices that are conjugate to their g-th powers; we then
have a map ¥ — N‘ﬁv(k) that sends such a matrix to the coefficients of its chEracteristic polynomial. The
argument of the previous paragraph shows that the (set-theoretic) image of Y is equal to Y. On the other
hand, Y (K) is a finite collection of points; indeed, the entries of any diagonal matrix that is conjugate to
its g-th power are roots of unity of order bounded in terms of ¢ and n. Thus the “coordinates” of each
IC-point of Y are integral over W (k), and every point of Y (k) is in the closure of some point of Y ().
It follows that the same is true for Y; in particular Y is the closure of a finite set of KC-points, and the
closure of any C-point of ¥ meets the special fiber of Y. Therefore, the connected component Y° of ¥
containing the image of Xg,n is the closure of the set of C-points of Y that “specialize” mod £ to the
characteristic polynomial (X — 1)" of the identity matrix. The only k-point of this component arises from
the characteristic polynomial of the identity matrix, and the KC-points of this component correspond to
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characteristic polynomials of elements of Y (IC) whose roots reduce to 1 modulo £. The roots of such
a polynomial are £-power roots of unity. Therefore, for x in Xg’n(L) the roots of the characteristic
polynomial of o, are £-power roots of unity, as required.

Conversely, let x be an L-point of X, ,, and suppose that the eigenvalues of o, are £-power roots of
unity. Note that GL, (L) acts on X, ,(L), by conjugation on both F and o, and this action preserves the
connected components. We may thus assume o, is in Jordan normal form; in particular its entries lie in &
or an integral extension O of W (k). Moreover, for a fixed o, the set of Fr, such that Fr, o, = o Fr, is
a linear space; there is thus an invertible Fr,, whose entries lie in k or W (k), such that Fr, o, = oy Fr/
and (Fr, o) lies on the same connected component as x.

If L has characteristic £, the above construction yields a k-point of X, , in the same connected
component as x. If L has characteristic zero, the closure of the point (Fr’, o) constructed above contains a
k-point (Fr”, ¢”) of X, , in the same connected component as x. Moreover, ¢’ is unipotent and in Jordan
normal form. Thus in the closure of orbit of (Fr”, o) under conjugation by diagonal matrices there is a
point where o is the identity. It is clear that such a point lies in the connected component of the k-point x
where Fr, = o, =1d,,. O

The ring R, , is rather well-behaved from an algebraic standpoint. In particular, one has:

Proposition 4.2. The ring R, , is reduced and locally a complete intersection. Moreover, R, , is flat as
a W (k)-algebra.

Proof. This argument is a slight elaboration of an argument due to Choi [2009]. We give a sketch here.

First note that X, , is given by n? relations in a space of dimension 21> + 1. Consider the map
Xgn — N‘ﬁé(k) that sends a point x to the matrix o,. Let L be an algebraically closed field that is a
W (k)-algebra, and let x be an L-point of X, ,.

The group GL, (L) acts on the set of L-points of X, , by conjugation. Consider the locally closed
subset U,, of Spec Af consisting of those o’ conjugate to o,. For any L-point o’ of U,_, the fiber
of Xy n Xw) L over o’ consists of pairs (Fr’' k, o’), where Fr' is a fixed element of GL, such that
Fr' o’ (Fr')~!' = (¢/)? and h commutes with o’

In particular, the dimension of the preimage of U, in X, , Xw) L is equal to the dimension of U,
plus the dimension of the stabilizer of o under conjugation; this is clearly n% As o varies over a finite list
of conjugacy classes, the preimages of the U, cover X, , Xwx) L; thus X, , Xw«) L is equidimensional
of dimension 1% On the other hand the dimension of Xg.n 1s at least n? + 1. It follows that the Zariski
closures of the preimages of sets U,, are irreducible components of X, ,,, and that no irreducible component
of X, , is contained in the special fiber (as it would then be a component of X, , X w ) k of dimension at
most n2). It also follows that every irreducible component of X ¢,n has dimension n? + 1, because if we
had a component of larger dimension then its base change to K would have dimension greater than 2 In
particular X, , is a complete intersection. It follows that R, , is a local complete intersection.

An argument of Choi [2009, Theorem 3.0.13] shows that (Spec Ry ) [%] is generically smooth for
any maximal ideal m of R, ,; in particular ngn is generically reduced. By the unmixedness theorem the
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local complete intersection Xf},n has no embedded points, so R, , is reduced. As the generic points of
Spec R, all have characteristic zero, we may conclude that R, ,, is flat over W (k). O

We have a universal pair of matrices (Fr, o) in GL, (R ). The above result immediately implies:
Corollary 4.3. There exists a power £% of £ such that o is unipotent in GL,(Ry.n).

Proof. Since Ry , is reduced and flat over W (k), it suffices to check that ot is unipotent for some a
at each of the generic points of Spec R, ,, all of which lie in characteristic zero. This is an immediate
consequence of Lemma 4.1. U

Let L be a finite extension of K. We call an L-point of Xg,n integral if the corresponding map R, , — L

factors through the ring of integers Oy..

Lemma 4.4. Let x be an L-point of Xg,n’ and suppose that the eigenvalues of Fr, lie in OF, for some

finite extension L' of L. Then there is an integral point of Xg’ , in the GL,-orbit of x.

Proof. Extending L if necessary, we may assume that the eigenvalues of o, are in L, and hence Oy . Then
(for instance, by putting o, in Jordan normal form) we can find an Oy -sublattice M of L" preserved
by oy. Using Fr, o, Fr;l = oy, we find that Fr, M, Fri M, etc. are also preserved by o,. Consider the
lattice M’ given by M +Fr, M +- - -—{—Frﬁ_l M; it is clearly preserved by o. On the other hand, since Fr;,
is annihilated by a polynomial with integral coefficients, Fr} M is contained in M’, and hence Fry, M’ is
contained in M’. Since Fr, has unit determinant we must have Fr, M’ = M’. Thus M’ is stable under both

Fr, and o,. Choosing a basis for M’, we find an integral point of ngn in the same GL,-orbitas x. [J

Lemma 4.5. For any positive integer m, and any element A of O}, there is an element g,, 5 of GL,, (L),

with unit eigenvalues, such that gy 3 i 398,, I)L = JIZ ,» Where Jy, ;. is the unipotent Jordan block of size m.

Proof. The matrices J, 3« and J,Z’ , are regular with the same eigenvalues, hence conjugate by some
g’ € GL,,(L). Since J,, ;4 is contained in a unique Borel subgroup of GL,, (namely, the standard one), the
same is true of J,, 1s. Thus g’ normalizes the standard Borel, so g’ is upper triangular. The eigenvalues
of g’ are thus given by its diagonal entries g{, ..., g,,. Comparing the (i, i 4+ 1) entries of J,Z, , and Jy, 54
we find that g/, /g/ = 197 1q. In particular, multiplying g’ by a suitable scalar we may assume g’ has
integral eigenvalues, as desired. O

Proposition 4.6. The images of the integral points of Xg’n are dense in Xg,n.

Proof. Fix a point (Fry, oy) of Xg,n. After conjugating o, appropriately we may assume that o, is in
Jordan normal form (and thus in particular has integral entries, since we have shown that the eigenvalues
of o, are roots of unity). Moreover, since o, is conjugate to its g-th power, for any eigenvalue X of o there
is a size-preserving bijection between the Jordan blocks of o, of eigenvalue A and those of eigenvalue AZ.
Let (m;, ;) denote the size and eigenvalue of the i-th Jordan block of 0. Then we can find a permutation
matrix w such that wo, w~! is also in Jordan normal form, but where the i-th Jordan block is of size m;
with eigenvalue 1. Let g be the block diagonal matrix whose i-th block is the matrix g, ;, from the
above lemma. Then gwo,(gw)~! = 0. Moreover gw has unit eigenvalues, as some power of gw is
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block diagonal with blocks given by powers of the matrices gy, »,. Thus by Lemma 4.4 we can find an
integral point (Fr, o}) of Xg’n in the GL,,-orbit of the point (gw, oy).

Now consider the condition g'o, = o g, for arbitrary matrices g’. This is a linear condition on g’ with
coefficients in Op. The scheme parametrizing such g’ is not quite a vector space scheme over Oy, (it need
not be flat over Op), but the closure of its general fiber is such a scheme. Let U be the open subscheme
of this closure consisting of invertible g". Then U contains the identity in particular, so its special fiber is
nonempty. However, in an open subset of a vector space scheme over O whose special fiber is nonempty,
the O -points form a dense subset. Thus integral points are dense in U.

On the other hand, the points (Fr, u, o)), as u runs over the integral points of U, are all integral points
of XS,W and (since integral points of U are dense in U) their closure is the set of all points (Fr/y, o,
in Xg,n. Conjugating by integral points of GL,,, which are clearly dense in GL,,, we find that the closure
of the integral points contains the entire locus of points (Fr;, o)) with o conjugate to oy. Since o, was

chosen arbitrarily the result follows. ]
Corollary 4.7. The ring R, is £-adically separated, that is, the intersection of the ideals 4 Ry n is zero.

Proof. Let f be an element of R, , that is divisible by % for all i. Then, for any integral point x : Ry n— O,
the image x( f) is divisible by £ for all i and is therefore zero. In other words, f vanishes on a dense
subset of Xg’n. Since X(q)’n is reduced, f is zero. O

Now fix a Frobenius element Fr in W, and a topological generator ¢ of the quotient /¢ / Ig) . Letz,
be the isomorphism of Ip/I ff) with the additive group of Z, that takes 6 to 1. By Corollary 4.3, for
some positive integer a the matrix o** in GL, (Ry,») 1s unipotent; that is, its characteristic polynomial is
(X — 1)"*. The following lemma allows us to make sense of (ot)?b for any b € Zy:

Lemma 4.8. Let R be a flat, (-adically separated Z,-algebra, and M € GL,(R) such that (M — 1)" = 0.
Then there exists a unique £-adically continuous homomorphism ¢y : Z¢ — GL,(R) such that for all
beZ, pp(b) = M>

Proof. Consider the power series exp ¢ log(1 + X) in Q[z][[X]], and let p;(¢) be the coefficient of X i
in this power series. For any i, and any integer b, Let N; be the (i + 1) by (i + 1) Jordan block with
eigenvalue zero; then p; (b) is the upper right entry of (1 + N;)?, and is thus an integer. In particular
each p; is a Z,-valued function on Z,. Given M as above, and ¢ € Z,, we may thus define ¢, by

Pu (@) =1+ p1OM =D+ -+ ppr (DM — 1",
and it is clear that this has the claimed properties. (Il

(Recall that for an £-adically separated ring A, and a locally profinite group H, a representation
p: H— GL,(A) is £-adically continuous if, for all positive integers i, the preimage of the subgroup
Id +¢/ M, (A) of GL,(A) is open in H.)

We will henceforth write (o¢*)? for Gty (D), given b € Z,.



Curtis homomorphisms and the integral Bernstein center for GL, 2623

We thus have an £-adically continuous representation pr , : Wr — GL, (R, ,) defined by
pra(Fl'w) =Fr' o/ (c*)

for any w € Ir and any j € Z, b € Z, such that j 4+ £°b = t,(w). Note that, by the above lemma, this is
the unique ¢-adically continuous representation that takes FrtoFrand 6 too.

The pair (R, », pr,») has the following universal property, which is easily seen to characterize the pair
up to isomorphism:
Proposition 4.9. For any finitely generated, £-adically separated W (k)-algebra A, and any framed,
L-adically continuous representation p : Wp/Iff) — GL, (A), there is a unique map: R, , — A such
that p is the base change of pr .

Proof. Given p, we have a pair of matrices (,o(FNr), p(6)) in GL, (A), satisfying
p(Fr)p(3)p(Fr) ™! = p(5)?,

and hence a map S, , — A. Moreover, since the restriction of p to I factors through I /1 ff) and is
¢-adically continuous, the eigenvalues of p (o) are £-power roots of unity. Thus the map S, , — A factors
through R, , and the result follows. ]

If we regard the IC-points of X 2’,1 as framed representations of Wr /1 g), then one can show:

oge =y . O . . . N
Proposition 4.10. Let x be a K-point of X, ,,. Then there is a point y in the closure of the GLy-orbit of x

such that the representation p, is semisimple.

Proof. Replacing x with a point in the same GL,-orbit, we may assume that the framing on p, is such
that p, is block upper triangular, with block sizes n1, ... n,, and that for 1 <i <r, the restriction p; of p,
to the i-th diagonal block is irreducible. Let M be the block diagonal matrix whose i-th block is given
by ¢ times the n; by n; identity matrix, for some parameter . Then the limit, as ¢ approaches zero, of
Mp, M~ exists and is semisimple. O

We will later need the following observation about the representation pr .

0

Proposition 4.11. As x varies over the K-points of X a.n

the restriction of py’ to I is constant on

connected components of Xg}n X w ) K.

Proof. The restriction of p;° to I is determined by the characteristic polyomial of o, ; since the eigenvalues
of o, have bounded £-power order there are only finitely possible characteristic polynomials of 0. [

5. The inertial subalgebra of S, ,

Our next goal is to study the finite rank W (k)-subalgebra of S, , generated by the coefficients of the
characteristic polynomial of o. Consider the map

W, ooy a1 1= Sy

that takes r; to the coefficient of X"~ in this characteristic polynomial.



2624 David Helm

By the theory of symmetric functions, for 1 <i < n there are unique polynomials P; , in the variables
ri, ..., r, with the following property: for all 71, ...,¢, € I, define ry,...,r, e C by the identity

X=1) - X=t)=X"+r X"+ rnX"2+.. Fr,.

Then the P; , are the unique polynomials satisfying

(X—th) (X =t =X"4 Py (1, ..., )X 4t Pug(ri, ..., 1.
Since o is conjugate to its g-th power, for 1 <i < n the element P; ,(r1, ..., r,) —r; lies in the kernel
of the map W(k)[ry, ..., rn, rn_l] — Sy Let 1, , denote the ideal of W (k)[ry, ..., 1y, rn_l] generated

by the P; ,(r1, ..., r,) —r;, and let B, , denote the quotient W (k)[ry, ..., ry, rn_l]/Iq,,,. We will show
that in fact the map B, , — S, , is injective, and that moreover its image in S, , is saturated.

We will now realize B, , as a quotient of S, , in a natural way. We are grateful to Jack Shotton for
making us aware of the following construction, which is adapted from Proposition 7.10 in [Shotton 2018].
(Shotton uses a slightly different form for the matrix o, that is less convenient for our purposes, but the
arguments are otherwise exactly analogous.)

Let Y C Spec S,,, denote the locus on which o has the form

000... 0 —ry
100 ... 0 —rpy
010... 0 —-rp

000... 1 —n

(that is, on which o is the “companion matrix” of the polynomial X" + nX" 4 4, We may
embed Y as an open subscheme of the scheme Y’ parametrizing pairs of matrices (Fr, o) such that o is
invertible of the above form, the characteristic polynomial of o is equal to that of 0%, and Fro = o7 Fr.
Then Y is simply the open subscheme of Y’ on which Fr is invertible. The scheme Y’ then maps to
Spec By, via the map that takes (Fr, o) to the tuple (ry, ..., r,).

We have a map Y’ — Spec By, Xwx) Al&/(k) that takes (Fr, o) to the point (ry, ..., r,, Fr(e)),
where ¢, ..., e, is the standard basis for W (k)". In fact, one then has:

Proposition 5.1. The map Y’ — Spec B, , X w ) Ay @ is an isomorphism.

Proof. We describe an inverse map. Given (ry, ..., r,, v) in Spec B, , Xw«) N‘ﬁv(k) we associate the
pair (Fr, o), where o has the above form with —r,,, ..., —r; in the right column, and Fr is defined by
Fre; = 0@ ~D4y for 1 <i < n. One verifies easily that for 1 <i <n — 1, we have Fro (¢;) = 09 Fr(e;).
On the other hand, we have

09Fre, —Froe, = ((69)" +r ()" '+ +r)v= P, (c9)v,

where P, is the characteristic polynomial of o. The relations on Eq,n guarantee that Py = Pyq, SO
P, (0c%)v =0 by Cayley—Hamilton.
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We thus have a well-defined map that is clearly a right inverse to the map constructed above. To see
that it is also a left inverse, note that if Fro = o7 Fr, and Fr(e;) = v, then we must have

Fre; =Fro(e;_1) =09Fre;_;
so by induction Fr is determined by Fr(e;). O

Lemma 5.2. Let B be a finite rank W (k)-algebra, and V an open subset of Spec B X ) A"ﬂv(k) such
that the projection V. — Spec B is surjective. Then the map from B to Oy induced by the projection of V
onto Spec B is injective. If moreover, B is flat over W (k), then the image of B in Oy is saturated.

Proof. For each closed point x of Spec B, there exists an element a, of k" such that (x, a,) lies in V.
Lift a, to a W (k)-point a, of N‘ﬁv(k), and let Vy = V N (Spec B Xw ) ax). Then the projection of V to
Spec V identifies V, with an open subset of Spec B, and as x varies, the V, cover Spec B. If b is an
element of B that maps to zero in Oy, then it vanishes in particular on each V, and hence on Spec B, so
injectivity is clear.

Now consider an element b of B/¢B, and suppose B maps to zero in Oy /£Oy. Then b maps to zero
in Oy, /€Oy, for all x, but since the V, are an open cover of Spec B this means b is zero in B/¢{B. [

We can now show:
Proposition 5.3. The map B, , — S, . is injective with saturated image.

Proof. We first show that the projection map from Y to Spec B is surjective. Indeed, for any algebraically
closed field L that is a W (k)-algebra, and any L-point (rq, ..., r,) of Spec B, the corresponding o is a
regular element of L whose characteristic polynomial is equal to that of o¢. In particular the eigenvalues
of ¢ are roots of unity of order prime to ¢. It is then clear, by considering the Jordan normal form of o,
that o7 is also regular. Over L any two regular matrices with the same characteristic polynomial are
conjugate, so there exists an element Fr of GL, (L) that conjugates o to 0. Then (Fr, o) is an L-point
of T mapping to (r1, ..., ).

The lemma now shows that the map from B, , to Oy is injective; since this map factors through S, ,
we see that B, , embeds in S, ,. Thus B, , is flat over W (k), and the lemma then shows that its image
in Oy is saturated. Once again using that the map from B, , to Oy factors through §, , we see that B, ,
is also saturated in S ,,. U

The map B, , — S, , induces amap B, , 1 — R, ,, where B, , i is the direct factor of B, , whose
JC-points correspond to conjugacy classes whose reduction modulo ¢ is the identity. Proposition 4.11,
together with Proposition 5.3, shows that B , 1 is precisely the subalgebra of R, , consisting of elements
whose value at a [C-point x of Spec R, , depends only on the semisimplification of the restriction
of p, to Ip.
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6. The symmetrizing form on B, ,

We now relate B, ,, with the endomorphism ring E ¢,n Of the Gelfand—Graev representation. We first work
over KC; since both B, , and E ¢.n are reduced, constructing an isomorphism of B, , ® K with Eq,n ®K
amounts to constructing a bijection on their -points.

Recall that the KC-points of Spec Eq,n are in bijection with the isomorphism classes of irreducible
generic representations of G and therefore (via Deligne-Lusztig restriction) with the equivalence classes
of pairs (w, ¢) where w is an element of the Weyl group of G and ¢ : T, — K* is a character. On the
other hand, a KC-point of Spec B, , is represented by an invertible diagonal matrix, with entries in I,
that is conjugate to its g-th power; that is, it is an invertible diagonal matrix ¢ such that there exists a
permutation matrix w with t* = 4.

In order to construct a natural bijection between these two sets we must fix some choices. First, we iden-
tify GL,, (KC) with the Langlands dual group G of G, with (diagonal) maximal torus T. Second, we choose a
topological generator & of the tame inertia group I/ Pr of F. Local class field theory gives an isomorphism

1 _
~ 1: X ~ 1
IF/PF:LLn”:q" zl(gnHom(qn—_1Z/Z, [F;),

where the first limit is over the norm maps, and the transition maps in the second limit, for m dividing n,
are given by “multiplication by (¢" —1)/(g™ —1)”.
On the other hand we have a chain of natural isomorphisms,

Hom((Q/Z)P, F;) = Hom(lin; (%Z/Z), F;) = Ir/Pr,
qn —_

so our choice of & gives us a natural map (Q/Z)?) — F; that is easily seen to be an isomorphism.

Now fix a w in the Weyl group W (G); we identify W (G) with the group of permutation matrices in
GL, (). Let X be the character group of the torus 7, of G; then X is dual to the character group X’ of
the group of diagonal matrices in GL,, (XC). We have an isomorphism 7, (E) = Hom(X/(Fr, —DX, I]_:j;),
where Fr, is the g-power Frobenius. If we denote by w'P) the prime-to-p roots of unity in >, then we
have an isomorphism

Hom(T', u'”) = X /(Fr, —1)X @ Hom(F*, u'").
Noting that Fr, acts on X by qw, and applying the duality isomorphism
X/(qw — )X =Hom(X'/(qw — 1) X', (@/2)")

as well as our isomorphism of (Q/Z)P) with ﬁqx arising from our choice of s, we see that Hom(T ,,, u'P)
is naturally isomorphic to Hom(X’/(gw — 1)X’, 1”’). An element of the latter is precisely a diagonal
matrix ¢, with entries in /C, such that (t*)4 = . We let qu_l denote the set of such matrices.

This construction associates to every w, and every character ¢ : T,, — K*, an element of Tq“’*l. One
easily verifies that it sends equivalent pairs (7, ¢) and (7, ¢') to conjugate diagonal matrices, and
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further induces a bijection between KC-points of Spec Eq,,, and those of Spec B, ,. We thus obtain an
isomorphism of E qn ® IC with By ® IC. This isomorphism is Gal(K/K)-equivariant and thus descends
to an isomorphism of E ,[7] with By a[7]-

Remark 6.1. The choices made in defining the bijection above means that this bijection is compatible
with local Langlands in the following sense: let 7 be an irreducible depth zero generic representation
of G over K, and let p be its Langlands parameter. If K denotes the kernel of the map G(Og) — g (Fy),

then 751

is an irreducible generic K-representation of G, and hence gives rise to a K-point of Spec E g.ne
On the other hand, the conjugacy class of the semisimplification of p (o) gives a K-point of Spec By n.

The bijection constructed above identifies these two points for every choice of = and p.

Since B, , and Eq’n are {-torsion free, we may regard them as W (k)-lattices in Bq,n[%] = Eq’n [%]
A priori it is not clear that either lattice is contained in the other. We will show later that in fact these
lattices coincide, but this is quite difficult — it will emerge from the same inductive argument that proves
both the weak and strong conjecture in Section 10. For the moment, it will suffice to prove something
much weaker.

Recall that one has a symmetrizing form 6 : E g.n —> W (k); the inclusion B, , — E g.n [%] allows us to

regard 0 as a map from B, , to K. The goal of the remainder of this section is to prove:
Theorem 6.2. The map 6 : B, , — K takes values in W (k).
As a corollary, we immediately deduce

Corollary 6.3. Suppose that the isomorphism By [ 1] = Eq.x[1] identifies E ., with a subring of By .
Then this isomorphism identifies E g.n With By ;.

Proof. (see Lemma 3.8 of [Bonnafé and Kessar 2008]) If Eq,n is contained in By ,, then 6 (be) lies in
W(k) forallb € B, ,, e € E ¢.ns thus By, is contained in the dual lattice to E ¢,n With respect to 6. But
since @ is a symmetrizing form on E ¢.n» this dual lattice is E g.,n- Thus By , and E ¢,n Must coincide inside

Eqali]: -

In order to prove Theorem 6.2 we compute the values of & on a W (k)-spanning set for B, ,. By
definition we have a surjection

WX = W), ..., 1oy 1, 15— By

with kernel I, ,. For each character A € X', let N, denote the subgroup of S, normalizing A. Then the

elements |

w

form a W (k)-basis of W (k)[X']%, as A runs over the elements of X', so their images in B, , (which we
also, slightly abusively, denote by r;) span B, , over W (k).
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Lemma 6.4. For . € X', let M, denote the number of w € S, such that the restriction of A to the
subgroup T)" of Hom(X ', IC*) is trivial. Then we have

M;

0
(ry) = N,

Proof. Let x be a Iz-point of Spec By », and let e, denote the element of B, , ® K that takes the value 1
at x and zero at all other KC-points of Spec By, ,,. Our construction of the isomorphism E,, , K = B, , ® K,
together with Proposition 2.4, shows that

0e.) = 1 Z Nw ' x) 1 N'(w, x)
e == —_— = — e ——
Yol o #TWE) ot = HT

where N'(w, x) denotes the number of elements of 7, , in the equivalence class corresponding to x. It

1 N
LAEFIMICDS #(T“; 0,

weS,

follows that we have

Since r, () depends only on the equivalence class of 7 € qu, we can rewrite this as

0(r3) —% > #le_] Z ZA ).

wes, ,eTw veS

Changing the order of the summation, we obtain

0(r) = ——— ,#NA 22 e 2 MO,

veS, wes, [equ*I

and the innermost sum is equal to O if A" is nontrivial on qufl and equal to #qu*1 otherwise. Thus the
sum over w is equal to M;» which is equal to M,. We thus have 6(r;) = M, /#N, as claimed. O

In light of this result, the proof of Theorem 6.2 is reduced to the following result:
Lemma 6.5. For any ) € X', the order of N, divides M.

It is clear that the set of w such that A is trivial on T,/ is stable under conjugation by elements of N,
but of course this action is not faithful, so the divisibility is not immediate.

We begin by observing that N, is the Weyl group of the Levi subgroup of GL,, centralizing A. This
Levi corresponds to a partition of the {1, 2, ..., n} into subsets, and N, is then the subgroup of S, that
preserves this partition. In particular if w lies in N,, then any cycle occurring in the cycle decomposition
of w also lies in N;.

Now let N, , denote the centralizer of w in N,. Let O(w) be the partition of the set {1, ..., n}
into orbits under the action of w; then conjugation by N, ,, permutes the orbits of w, yielding a map
N;.»w — Aut(O (w)), where Aut(O (w)) is the group of permutations of O (w).
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Definition 6.6. We will say that w is N,-minimal if the map N, ,, — Aut(O(w)) is injective.

Note that the property of being N,-minimal is stable under N,-conjugacy. Given an arbitrary N, -
conjugacy class in S,, we will associate an N,-minimal conjugacy class in a natural way. On the level
of specific permutations w this construction will depend not just on w but on a particular choice of
cycle representation for w. Here by a “cycle representation” of w we mean an unordered collection of
expressions of the form (x; ...x;), with xq, ..., x, distinct elements of {1, ..., n}, that correspond to a
disjoint set of cycles whose product is w. To give a cycle representation of w is equivalent to specifying,
for each orbit x of w on {1, ..., n}, a distinguished element x; of the orbit x.

Now fix w € S, along with a cycle representation of w, and let K be the kernel of the map from N, 4,
to Aut(O(w)). Then K acts on each orbit O (w); such an orbit x comes from a cycle (x; ... x,) in our
chosen cycle representation of w. Since K centralizes w, it must “cyclically permute” the elements of
this orbit; that is, the action of K factors through a map K — Z/rZ, where s € Z/rZ acts by sending
each x; to xj4s, and the indices are considered modulo . Let m be the order of the image of the
map K — Z/rZ, and set s = . Let x™" be the permutation given by the product of the m disjoint
cycles (x7 ... %xg) (Xgq1 - .. %25) « .. (Xr—s41 - .. X,). We then define w™?" to be the product, over all cycles
x € O (w), of the permutations x™in Tt is clear from the construction that if w is N, -minimal then w™" = w.

This construction depends on our choice of cycle representation of w; in particular if we represented
the cycle x = (x1...x;) as (xy41 . . . x,4+,) instead then we would obtain the product of cycles

(a1 - X)) st - o2 Xp25) oo (K —st 1+ - X))

instead of the product
(oo X)) (X1« - - X25) oo (Xp—gp 1 - - X))

Note that the former is N;-conjugate to the latter, via the permutation that, for each 0 < a < * and each
1 <b <y, takes X, 5+p tO X;145+c, Where ¢ is the unique integer between 1 and s such that as + b is
congruent to as + ¢ 4+ ¢ modulo s. However, the two permutations are of course not equal. Thus changing
the cycle representation of w conjugates w™™ by an element of N,. In particular the N,-conjugacy class
[w™"] depends only on w and not its cycle representation.

On the other hand, if we fix a v € N,, and a cycle representation of w, then conjugating this cycle
min 71)min

representation by v gives a cycle representation of vwv ™. Then if we compute w™" and (vwv

using these cycle representations it is easy to see that (vwv™")™" = pw™"y~!, In particular [w™"]

depends only on the N, -conjugacy class of w.
Lemma 6.7. For any w € S,,, w™n js N, -minimal.

Proof. Suppose for a contradiction that w™" is not N,-minimal, and let K be the kernel of the map
N yymin — Aut(O (w™")). Choose an element k of K other than the identity. By definition k preserves ev-
ery orbitin O (w) and acts nontrivially on at least one such orbit x = (x . .. x,); we have an s such that kx; =
xiys forall i. Let k¥’ denote the permutation that sends x; to x; ¢ for all i and fixes all other elements. Then

k' lies in N;, since k does and k’ is a product of cycles of k. Moreover it is clear that k” commutes with w™™,
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Our construction of w™™ from w implies that the w™"-cycle x is contained in a w-cycle x’ of the form
(x1...x,) for some multiple r’ of r, and that the cycles (x, 11 ...x2), etc. are cycles of w™n et k”
be the permutation that takes x; to x; 4, for all 1 <i <r’; then it is clear that k" centralizes w. We will
show that in fact k" lies in N, ; this gives a contradiction as then we have an element of N, _,, that acts by
a shift of length s on the cycle x’, meaning that in passing from w to w™™" the cycle x’ should decompose
into cycles of length dividing s, and not cycles of length r as we have supposed.

To show that k” lies in N, it suffices to show that for all i, x;,, and x; lie in the same N, -orbit. For 1 <
i <r—s thisis clear since k" lies in N;_. On the other hand, since x” decomposes into cycles of length r in the
cycle decomposition of w™n there is an element of N, that carries x; to X+, forall i. The claim follows. [J

The association w — [w™"] defines an equivalence relation ~ on S, such that w ~ v if, and only if,
[w™in] = [v™"]. It is clear that each equivalence class for ~ is a union of N,-orbits. We will show that in
fact each equivalence class has cardinality equal to #N,. We begin by fixing an N,-minimal w. Then we
have an injection N, _,, — Aut(O(w)). We will say two orbits x, x" in O(w) are N;_,-equivalent if there
is an element of N, ,, that takes x to x. We then have:

Lemma 6.8. Suppose w is N, -minimal, and let v be a permutation of O(w) such that for all x € O (w),
vx is Ny y-equivalent to x. Then there is a unique element v of N, ., whose image in Aut(O (w)) is v. In

particular, N, ,, is a product of symmetric groups.

Proof. Uniqueness is clear from the definition of N,-minimality. For existence, fix an orbit x € O (w).
Then there is an element v, of N, ,, that takes x to vx. We can then define v to be the bijection on
{1,2, ..., n} that agrees with v, on x for all orbits x. Note that for all 1 <i <n, we have v(i) = v/ (i)
for x the w-orbit containing i; since v} is in N, we have A; = Ay (i) = AiGi)» SO v lies in N, U

We now fix a particular N,-minimal w, and a particular cycle representation of w. Since w is
N,-minimal we may (and do) choose this cycle representation so that it is preserved by the action of Ny ,,.
Then given any v € N;_,, define w(v) to be the permutation constructed as follows: for orbit of v on O (w),
choose an x representing that orbit. The orbit x then corresponds to a term (x; ... x,) in our chosen cycle

.vd_lxr), where d is

representation of w. Let w(v), be the permutation (x7 ...x, vXy... VX, ... vd 1y ..
the order of the v-orbit of x. Let w(v) be the product, over a set of representatives x for the orbits of v on
O(w), of w(v),. Note that as a permutation, w(v) is independent of our choices of representatives x but
does depend on our choice of cycle representation of w. On the other hand, our initial choice of cycle repre-

sentation of w, together with the choices of representatives x, gives rise to a cycle representation of w(v).

Lemma 6.9. Let u be an element of N;. Then u conjugates w(v) to w(v') if, and only if , u normalizes w

and conjugates v to v'. Moreover, we have w(v)™" = w.

Proof. First assume that u normalizes w. Then u actually fixes our chosen cycle representation of w,

since w is N, -minimal. It is then easy to see from the construction that w(u vu™ Y =uw)u~.
Conversely, assume u conjugates w(v) to w(v'). Let x = (x1 ... x,) be a cycle in our chosen represen-

tation of w, such that the induced cycle of w(v) is (x1...x, vX]... VX, ... v 1x; ... v?1x,). Since u
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d—1

conjugates w(v) to w(v')the cycle (uxy ... ux, uvxy ... uvx, ... uv? 'x; ... uv?

~Ix,) is a cycle of W (V).
This cycle contains a cycle (y; ... y,r) of our chosen representation of w. Thus, by construction of w(v"),
there is an s € Z/drZ such that the sequence

UX], .. . UXp, UVX], .. . UVXy, ... uvdﬁlxl, - uvdﬁlxr

coincides with the cyclic shift by s of the sequence

d—1 d'—1
Vis oo Yr's UYls .. .Uy, ...V Yi,-...0 Y,

where dr =d'r’.

Since u# and v both lie in N,, it follows that for all 1 <i <r, and all integers j, x; lies in the same
N;.-orbit as y; s j, where the indices are taken modulo . Let a = (r, ). Then for all i, x; lies in the
same N, -orbit as x;4,. Thus the permutation that takes x; to x;4, for all i and fixes all other elements lies
in N, . This permutation clearly normalizes w and fixes all orbits of w, so must be the identity since w is
N;-minimal. Thus @ = r, so r divides . Similar reasoning shows that r" divides r, so in fact r equals r’.

Now for all 1 <i <r, x; is in the same N, -orbit as y;;; there is thus an element of N, _,, that carries
the cycle (x;...x,) of w to the cycle (y;...y,). Since we chose our cycle representation of w to be
N, -stable, there is also an element of N, ,, that takes x; to y; for all i. There is thus an element of
N, that takes x; to x; for all 7, and fixes all other elements of {1, ..., n}. Since w is minimal, this is
impossible unless r divides s.

We have thus established that u takes the cycle x = (x;...x,) of w to the cycle (v¢yy, ..., vy;)
for some e, which is also a cycle of w. Since x was arbitrary, u preserves the cycles of w and thus
normalizes w. But now we have w(uvu™") = uw(v)u~" = W(v'), and it is easy to see that this implies
that wvu=! = v'.

For the final claim, let x = (x;...x,) be a cycle in our chosen representation of w, contained in
the cycle (x1...x,vxy...vx,. vy ov? Ty of w(v). The subgroup of N, , preserving the
latter cycle acts on it by cyclic shifts, and minimality of w implies that r divides the length of any
of these shifts. On the other hand it is clear that the permutation that agrees with v on the set

(X1, ..., X0, VX1, 0v, VXpy ..., vi 1y, . vd_lx,} and is the identity elsewhere induces a shift of length r
on this cycle. Our construction of @ (v)™™" thus demands that we break this cycle of i (v) into cycles of

length r. Doing this for all cycles of w(v) recovers w. O
We now show:

Lemma 6.10. Suppose w is Ny-minimal and w' ~ w. Then there exists v € N, (w) such that w' is

N -conjugate to w(v).

Proof. We first construct a cycle representation of w’ such that the induced cycle representation of (w’)™"
is N, (,ymin-invariant. To do this, first fix any orbit of w’ and choose a representation of the corresponding
cycle; we then obtain representations of one or more cycles in (w’)™", all of which are N, -conjugate. We
then proceed inductively: for each orbit x of w’, choose a cycle representation arbitrarily and consider
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the resulting cycles of (w’)™". If these cycles are not Nj-conjugate to other cycles of (w’)™" that have
already been constructed, there is nothing further to do and we may proceed to the next orbit of w’. If they
are conjugate to cycles we have already constructed, it need not be the case that the corresponding cycle
representations are N,-conjugate to those already extant (they may differ by a cyclic shift). However,
adjusting our choice of cycle representation of x by a suitable shift we may arrange that this holds.
Proceeding inductively we arrive at a (w’)™" and an N ».(w/ymn-invariant cycle representation of it.

Now for each cycle x of w’, our chosen decompositions give x = (x1 ... x,s) in w’, for some integers r, s
such that the corresponding cycles of (w’)™™ are (x| ...x,), (X4 ...X2), etc. Let v, be the permutation
that takes x; to x;, for all i (indices modulo rs); then v/ lies in N,. Taking v’ to be the product over the
orbits x of the v we obtain an element of N;_(,,min such that

w’ = (w')min(w).
Now if w’ ~ w then there exists a u € N, such that u(w’)™"y~! = w; taking v = uv'u~" we find that
uw'u"' = W(). O
Corollary 6.11. Suppose w is Ny -minimal. The number of w' such that w’ ~ w is equal to the order of Nj.

Proof. The previous lemmas show that the set of such w’ is the union of the N, -conjugacy classes of w(v),
as v runs over a set of representatives for the conjugacy classes in N, _,,. For each such v the size of its
N, -conjugacy class is equal to #N, /#N, ,. For each v, the index of N, ,, in N, _, is equal to the size of
the N, ,-conjugacy class C, of v. Thus the total number of such w’ is the sum

which is clearly equal to #Nj. O
We now relate the equivalence ~ to M, . Specifically, we observe:
Proposition 6.12. Suppose that w ~ w'. Then X is trivial on T," if, and only if, A is trivial on Tq“’/.

Proof. Tt suffices to show this in the case where w’ = w™" (for some chosen cycle representation of w),
as we can deduce any other case from this one and N,-conjugacy.

Let S, be the set of Ny-orbitson {1, ...,n},and f:{1,...,n} — S, the map that sends an element to
its N,-orbit. There exists a map g : S) — Z such that on the diagonal matrix ¢ with entries 7y, ..., t,, we
have A(r) = [T, Y.

An element of 7" is a diagonal matrix whose entries #; satisfy f,,) = tl.q for all i. In particular, for
eachi,t;isa (qd" —1)-st root of unity, where d; is the size of the w-orbit of i. In particular, X is trivial
on qu if, and only if, for all i the sum

di—1
=) qle(fw (@)
j=0
is divisible by g% — 1.
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In w™" the w-orbit of i breaks up as a union of Nj-conjugate orbits, each of size r. In particular for
each j, the elements w/ (i) and w/*" (i) lie in the same N, -orbit, so g(w/ (i)) = g(w’/*" (i)). This means
that the sum X; can be rewritten as

r—1
i=4q + o +q)) g g (f W (i)
j=0
In particular ¥; is divisible by ¢% — 1 if, and only if, the sum

r—1

Y alg(f(w (D))

j=0
is divisible by ¢” — 1. But this is precisely the condition for A to be trivial on w™", (Il

From this it follows that the quotient M, /#N, counts the number of N;-minimal orbits of w in S, such
that A is trivial on 7,”. In particular this quotient is an integer. This completes the proof of Lemma 6.5
and hence of Theorem 6.2.

7. Deformation theory

In this section we examine the local deformation theory of a representation p : Gp — GL, (k). As in

previous sections, let pre) denote the prime to £ part of the inertia group of F, and fix a topological

(9]

generator ¢ of Ip/ Iff) and a Frobenius element Fr in W /g,

We first recall some results of Clozel, Harris and Taylor:

Proposition 7.1 [Clozel et al. 2008, Lemmas 2.4.11-2.4.13]. Let T be an irreducible representation
of I I(f) over k, and let Gz be the subgroup of G that preserves T under conjugation. Then

(1) T lifts uniquely to a representation t of 1 g) over W (k),

(2) Tt extends uniquely to a representation of Ir N Gz of determinant prime to £,

(3) t extends (nonuniquely) to a representation of Gz.

If we fix a representation T of Gz as in part (3), we obtain an action of Gz/1 g) on Hom, o (t, p) for any
F

G p-module p. Moreover, we have a direct sum decomposition of G p-modules,

~ Gr
p= EB Indg’ [Hom,;a (T, p)®1],
(7]
where T runs over G g-conjugacy classes of irreducible representations of I}e) over k.

Fix, for each G p-conjugacy class of 7, a T as in the proposition. Suppose we are given a representation
pa: G — GL,(A). We then obtain a direct sum decomposition

pa =P Indg! Hom, o (z, pa) @ 1.
(7]
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It is clear that Hom « (7, pa) is a free A-module for all 7, and that the collection of Gz-representations
F
Hom, @ (7, p) 4 determines the representation ps up to isomorphism.
F

Definition 7.2. A pseudoframing of a continuous representation p4 : Gr — GL,(A) is a choice, for
each 7, of basis for each Hom 1o (t, pa). A pseudoframed deformation of a continuous representation
0 : Gr — GL, (k) (together with a chosen pseudoframing) is a lift p4 : Gr — GL, (A) of p, together
with a pseudoframing of p,4 that lifts the chosen pseudoframing of p.

Fix a p and a pseudoframing of p, and, for each 7, let pz be the Gz-representation Hom, « (7, p).
F
Let R; be the completed tensor product

®[ﬂ RE?

of the universal framed deformation rings of the pz. Over each such ring we have the universal framed
deformation pr of pz.
Using these, we construct a representation

= P mdg’[pf @ 1]
[7]
that has a natural pseudoframing induced by the universal framings of the representations ,ofD. One easily
verifies that the pair R®, p° is a universal object for pseudoframed deformations of p.

For each 7, the formal group Q acts on Spf R _ by “change of frame”. Let g;; be the product of
the g/'%. Then g;; acts on Spf R; by “Change of pseudoframing”.

For computational purposes it is often easier to work with R; rather than RE, as R; can be made
quite explicit. The two rings are related in a natural way: one has a ring R?’O that is universal for triples
consisting of a deformation p of p, a framing of p lifting that of p, and a pseudoframing of p lifting that
of p. Then Spf RE’Q is a (split) g;—torsor over Spf RE and a (split) gﬁD—torsor over Spf Rg.

We immediately deduce:

Corollary 7.3. The ring RE is a reduced, L-torsion free local complete intersection.

Proof. The construction above shows that it suffices to prove the same claim with RE replaced by Rg.
But the latter is a completed tensor product of rings of the form REf, and each of these is isomorphic to
the completion of a ring of the form R, , (with ¢ and n depending on 7) at a maximal ideal. The result
thus follows from the results of Section 4. O

Moreover, we may canonically identify both the QD—invariant elements of RE and the Qg—invariant
elements of R<> with the QD X gf invariant elements of R ° In particular these spaces of invariants are
naturally 1somorph1c

Given a choice of framing of p°, we get a map RD — R<> When restricted to QD—lnvarlants this map

is the isomorphism of (RD)gP with (Ro)gp constructed above Summarizing, we have:
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Lemma 7.4. For any choice of framing of p°, the induced map: RE — R; identifies the g?-invariant
elements of RE with the gg-invariant elements of R;. (In particular the image of this set of invariant

elements is saturated in R;.)

8. The rings R,

Letp:Wg/I 1(:13) — GL, (k) be a representation. Then we have a corresponding map x : R, , — k, with
kernel m. It follows easily from the universal property of the pair (R ,, pF,,) that the completion (R ;)m
is isomorphic to R?, and that this isomorphism is induced by the base change of pf , to (R,,,)m. In other
words, R, , is a global object that interpolates the formal deformation rings R; for p trivial on [/ I(f).

We would like to construct similar objects for p whose restriction to / g ) is nontrivial. Let us define:
Definition 8.1. An £-inertial type is a representation v of / 1(;) over k that extends to a representation of Wg.

Note that (as / ;f) is a profinite group of pro-order prime to £), such a representation lifts uniquely to a
representation of / I(f) over W (k), and this lift also extends to a representation of Wr. We will thus consider
an {-inertial type v as a representation over W (k) rather than over k& whenever it is convenient to do so.

Now fix an £-inertial type v, and for each irreducible representation T of / 1(96) over k, let nz be the
multiplicity of T in v (note that nz depends only on the Wg-conjugacy class of 7.) Let Wz be the subgroup
of Wp that fixes T under conjugation, let Fz be the fixed field of Wz, and let g7 denote the cardinality of
the residue field of F5.

We define R, to be the tensor product,

RV = ® Rlﬁ,nf’
T

where T runs over a set of representatives for the Wg-conjugacy classes of irreducible representations
appearing in v. For each T we have a representation pf. ,. over Ry, ,., which we regard as a representation
over R, in the obvious way.

Define the representation p, : Wr — GL,(R,) as follows:

Py = @Indw‘: PFen: ®T,

T
where T runs over a set of representative for the Wg-conjugacy classes of irreducible representations
appearing in v, and for each such 7, we have chosen an extension 7 of T to a representation Wrp —
GL, (W (k)) as in Proposition 7.1. Note that p, inherits a pseudoframing from the natural framings of the
OF:.n;» and that the restriction of p, to Il(f) is given by v.

For a map x : R, — k, the specialization (p,), is a pseudoframed representation Wy — GL, (k),
whose restriction to g) is given by v. This defines a bijection between k-points of Spec R, and such

pseudoframed representations. Moreover, it follows directly from the constructions of R, and prv)x

<

that the completion of R, at the maximal ideal corresponding to x is naturally isomorphic to R/, | ,in a

manner compatible with the universal family on the latter.
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Moreover, the universal property for each R, ,. immediately yields:

Proposition 8.2. For any finitely generated, £-adically separated W (k)-algebra A, and any pseudoframed,
L-adically continuous representation p : Wrp — GL,,(A) whose restriction to | 1(:6) is isomorphic to v, there

is a unique map: R, — A such that p is the base change of p,.

For each 7, the group GL,. acts on Ry, ... Let G, be the product of the GL,,_; then G, acts on Spec R,
by “changing the pseudoframe”.

9. Maps from Z[; . to R,

Now fix a pair (L, ), where L is a Levi subgroup of GL,(F) and 7 is an irreducible supercuspidal
k-representation of L. The mod £ semisimple local Langlands correspondence of Vignéras [2001] attaches
to 7 a semisimple k-representation p of Wr. Let v be the restriction of p to [ I(f). Then v lifts uniquely to
a W (k)-representation v of / (6), and we have:

Proposition 9.1. The irreducible KC-representations of GL,, (F) that are objects of Repyy ) (GLn (F))(L 7]
correspond, via local Langlands, to the K-representations of W whose restriction to 1 F  Is isomor-

phic to v.

Proof. This is an easy consequence of the compatibility of Vigneras’ mod £ correspondence with reduction
mod £. [l

This proposition shows that for any KC-point x of Spec R,, the representation p, corresponds, via
local Langlands (and Frobenius semisimplification if necessary) to an irreducible /C-representation I, in
Repy ) (GL, (F))[L .z}, and hence to a K-point of Spec Z{, . It is a natural question to ask whether this
map is induced by a map Z|; ,} — R,. Indeed, we conjecture:

Conjecture 9.2 (weak local Langlands in families). There is a map Zy, 1 — R, such that the induced
map on KC-points takes a point x of Spec R, to the K-point of Z|y ) that gives the action of Z, | on the
representation I, corresponding to p, by local Langlands. (We will say such a map is compatible with
local Langlands.)

Since R, is reduced and £-torsion free, such a map is unique if it exists. Note also that the image of
any element of Z|; ) under such a map is invariant under the action of G,, and so any such map must
factor through the subalgebra RL“" of G,-invariant elements of R,. We further conjecture:

Conjecture 9.3 (strong local Langlands in families). There is an isomorphism Z[ 5| = Rivnv such that
the composition

Z[L,n] — RLHV — RV
is compatible with local Langlands.

If one completes at a maximal ideal of R, corresponding to a representation p of Wg over k, and
uses Lemma 7.4 to relate the invariant elements of R%’ and Rg, one recovers Conjectures 7.5 and 7.6

of [Helm 2016b]. In particular (see Theorem 7.9 of [Helm 2016b]), Conjecture 9.2 above implies the
“local Langlands in families” conjecture [Emerton and Helm 2014, Conjecture 1.1.3].
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These conjectures should be viewed as relating “congruences” between admissible representations
(which are in some sense encoded in the structure of Zj;, 1) with “congruences” between representations
of Wr (encoded in R,). Since inverting £ destroys information about such congruences, one expects such
conjectures to be relatively straightforward with £ inverted. We will show that this is indeed the case.

First, note that any map

Zi11®K— R, ®K

that is compatible with local Langlands is Galois equivariant, and hence descends to a map

1 1
Zwng) = &g
compatible with local Langlands. It thus suffices to show:

Theorem 9.4. There is a map Zj, -1 ® K — R, ® K compatible with local Langlands (and therefore a
corresponding map over KC). Moreover, the image of this map is Rf)“V K.

To prove this, we first work on the level of connected components. We have an isomorphism

Zi®K =[] Ziw s,
M7
by Theorem 3.5, where (M, 1) varies over the inertial equivalence classes of pairs that reduce modulo £ to
(L, 7). Thus the connected components of Spec Z[, ,1®K are in bijection with the pairs (M, 7). Via local
Langlands, these correspond to representations of /r. More precisely, let IT be an admissible representation
of G, let p : Wr — GL,(K) correspond to IT via local Langlands, and let 5 : Wr — GL, () be the
representation of Wy corresponding to 77 via local Langlands. Then IT belongs to the block corresponding
to (M, ) if and only if the restriction of p* to Ir coincides with the restriction of p to If.

On the other hand, it is an easy consequence of Proposition 4.11 that as x varies over K-points of
Spec Ry, the restriction of p;’, to I is constant on connected components of Spec R, ® IC. We can
thus let R{(,3 be the direct factor of R, ® K corresponding to the union of the connected components of
Spec R, ® KC on which the restriction of oy o Ip is isomorphic to the restriction of p to Ir. We will see
later that Spec R? is in fact connected.

It then suffices to construct, for each (M, ), an isomorphism

Z.z — (RO™
compatible with local Langlands. Since (M, 77) is only well-defined up to inertial equivalence, we may
7 ® 72,
i

where the 77; are pairwise inertially inequivalent representations of GL,, (F). Unwinding the Bernstein—

assume that 7 has the form

Deligne description of Z M,7)» We obtain an isomorphism

Zwmwm = QKX ... X501,
i
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where the symmetric group S,, acts by permuting the elements X; 1, ..., X; .

For each i, and any o € IC, let Xi.o denote the unramified character of GL,, (F) that takes the value o
on any element of GL,, (F)) with determinant . An irreducible IT in Repg(M, ) has supercuspidal
support (M, ') for some 7" of the form

ri
)~ -
7' = Q Q)i ® i,
i j=1

for suitable «; ;. Then the d-th elementary symmetric functionin X; i, ..., X; ,,, considered as an element

of ZMJ;), acts on [T via the d-th elementary symmetric function in the ozl."'l, Ce O where fl/ is the
order of the group of unramified characters y such that 7; ® x is isomorphic to 7;.

For each i, the irreducible representation p; of W corresponding to 77; via local Langlands decomposes,
when restricted to I, as a direct sum of distinct irreducible representations of /r, all of which are
Wg-conjugate. Fix an irreducible representation 7; of /r contained in p;, and let W; be the normalizer
of 7; in Wg. Then there is a unique way of extending 7; to a representation of W; such that the induction
of the resulting extension to W is isomorphic to p;. (Note that this implies that W; has index fi’ in Wg.)

This choice of extension of 7; to W; gives rise to an action of W; on the space Hom;, (7;, p,). The
quotient of this space that lives over RE is a free Rf -module of rank r;, with an unramified action of W;.

Let ﬁi be a Frobenius element~of W;, and let P;(x) = Z;":O a; j X j~ be the characteristic polynomial
of ﬁi on Homy, (%;, py) (over RY). Consider the map 2(M,ﬁ) — R that sends the d-th elementary
symmetric function in X; 1, ..., X; , to the element (—l)dai, ri—d of Rf . One verifies easily that this map
is compatible with local Langlands.

It remains to show that (Rf )"V is generated by the images of these elements. Given a polynomial P;
of degree r;, with coefficients in a ring R, we can associate to it the unramified R-representation M;(P;)

of W; on which l?fi acts via the companion matrix of P;. The representation p({ P;}) given by

p({P:}) =D Indy M;(P)®7F

1

is then an R-point of Spec R?. In this way we obtain a natural map

R} — @KLY, ... Yiy,]
i

that in particular takes the element (—l)da,;rl._d of Rf to Y; 4. On the other hand, it is easy to see that
for every y in (Spec R%)(K), there is a point x in (Spec R%)(K) arising from a collection of polynomials
{P;(x)} such that y is in the closure of the G ,-orbit of x. It follows that the map

R) = @QKYit. ... Yin]

is injective on (R,’,a )V, Therefore ((R,)”)™ is generated by the elements a; ,. ,, completing the proof.
It is not hard to go slightly further, and show:
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Theorem 9.5. The image of Zj, 1 in R, [%] under the map of Theorem 9.4 lies in the normalization of R,,.

Proof. Fix an element x of Zj; -}, and let y be its image in Rv[%]. Let A be a discrete valuation ring
that is a W (k)-algebra, with field of fractions K of characteristic zero, and fix a map R, — A. This
corresponds to a pseudoframed representation p4 of Wg. Let [1g denote the admissible K -representation
corresponding to p4 ®4 K via local Langlands. Since p4 ® 4 K admits an A-lattice, so does [1g. In
particular the action of x on [Ig is via an element of A, so y maps to an element of A under the
map R[] — K. Since this is true for every A and every map R, — A, y lives in the normalization
of R, as claimed. O

10. Main results

The main objective of this section (and, indeed, the paper) is to show the following:

Theorem 10.1. Suppose that Conjecture 9.2 holds for all GL,,,(F), m < n, and Conjecture 9.3 holds for
m < n. Then

(1) the map Eq’n[%] — Bq,n[%] of Section 6 induces an isomorphism oqu,n with By ,, and
(2) Conjecture 9.3 holds for GL,(F).

We begin by proving the first claim, using the weak conjecture for GL,, in depth zero. Let Z° be the
product of the depth zero blocks of Repy, k) (G). The weak conjecture then gives rise to a map Z,? — Sy.n
compatible with the local Langlands correspondence. The subalgebra of Z° consisting of elements that
are constant on inertial equivalence classes is isomorphic to E ¢.n» by Proposition 3.10. By compatibility
with local Langlands together with Propositions 4.11 and 5.3 the image of E ¢.,n 1IN Sy, is contained in
B, ,, and the induced map E g, n[%] — By, [%] is the map considered in Section 6. It thus follows from
Corollary 6.3 that the map E, , — B, , is an isomorphism.

We now turn to the second claim. Fix a mod ¢ supercuspidal inertial equivalence class [L, ],

corresponding to an £-inertial type v, and note that we have tensor factorizations
Zun =Q) Ziimt: R = Q) Ryene
i 3

where the [L;, ;] are simple blocks. The former factorization is compatible with parabolic induction and
the latter arises from the direct sum decomposition
po=EPIndy’ pr,., ®1.
T

Since simple blocks correspond to types v with only one n; nonzero, these factorizations are compatible,
in the sense that if we have maps Z;, »,1 — R,, for each i that are compatible with local Langlands, then
their tensor product gives a map Zjz, 1 — R, compatible with local Langlands. Thus both Conjecture 9.2
and Conjecture 9.3 reduce to the corresponding conjectures on simple blocks. We thus henceforth assume
that [L, 7] is of the form [L,,, ,,] with 7, = rrf@" for a supercuspidal representation ;. Following
Section 3 we set Z, = Z|j,, x,]- The corresponding R,, is then isomorphic to R, , for some fixed 7.
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We first consider the case in which 7 is not gz-relevant. Let v be the maximal gz-relevant partition
of n. We have a commutative diagram

inv
Zz, — qu’n

|l

Qi Zy, — Rizgv,u,-
in which the horizontal maps are those arising from the weak conjecture, the left-hand vertical map is
Ind,, and the right-hand vertical map is induced by the map Spec ®; R, ,, — Ry, . that takes a collection
(Fr;, 0;) of matrices with Fr; o; Frl._1 = aﬂf to the pair (@l Fr;, B, o,-).

The horizontal maps are isomorphisms after inverting £, and our hypotheses imply that the lower
horizontal map is an isomorphism integrally. Moreover the left-hand vertical map is injective with
saturated image by Theorem 3.9 and the discussion in the paragraph following it. It follows immediately
that the top horizontal map must also be an isomorphism.

We now assume that n is gz-relevant (that is, it lies in {1, e,., £ey., ... }). Let m be the largest element
of this set that is strictly less than n. Set j = .

We have a subalgebra E ¢f' .1 Of Zy and compatibility with local Langlands shows that g’ = g¢z.
Thus the map Z, — R, , induces a map E . , 1 — Ry, ,. Reasoning as in the depth zero setting we see
that the image of this map is contained in B, , 1. It seems likely that the resulting map E g=n1 = Bgont
is the one considered in Section 6, but we do not prove this here. Instead we use the fact that we have
shown these two rings to be abstractly isomorphic, together with the following lemma:

Lemma 10.2. Let E be a finite rank, reduced, {-torsion free W (k)-algebra, and let f : E — E be an
injection. Then f is an isomorphism.

Proof. Clearly f is an isomorphism after inverting £. On the other hand, the hypotheses guarantee that

E [%] is a product of finite extensions of /C, and f is a [C-linear automorphism of this product. In particular

there is some power of f that is the identity. U

We thus conclude that the map Z,, — Ry, , coming from the weak conjecture induces an isomorphism
of Eg. .1 With By, 1.

Now consider the commutative diagram

K—K'

|

inv
Z, — qu

I

®j i j
Zm — (R(I;?:myg)/

in which the horizontal maps are induced by the weak conjecture, the lower left vertical map is Ind,, ,,
the lower right vertical map is the one taking a collection of pairs (Fr;, 0;) to their direct sum, and K
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and K’ are the kernels of the lower left and lower right vertical maps, respectively. As in the previous
case, all horizontal maps become isomorphisms after inverting £ and the bottom horizontal map is an
isomorphism integrally.

By Proposition 3.13 K is contained in the subalgebra qu,n,l[(afg}l] of Z,, and the image of this
subalgebra in R, , is saturated. It follows that the map from K to K’ is an isomorphism: if x is an
element of K’, then for some a, the product £%x is in the image of K. But then £“x is in the image of
Eg n1[©F)], s0 x is as well. On the other hand, the image of K in E,, , is saturated (as K is the
kernel of a map of rings that have no £-torsion), so x must lie in the image of K.

Let r be an element of R™ | and let r’ be its image in (R™ )®J_ There is then an element y of Zf,? J

qz.n’ qz.,m

whose image under the bottom horizontal map is ’. Since the map Z,, — R'™

go.n 18 an isomorphism after
inverting ¢, there exists a such that £¢y is in the image of Ind,, ;.

By Theorem 3.12, there exist y in Z, and x in E, ,1[©;}] such that Ind,, , (x) = £°(Ind,y, » (5) — ¥).
inv
qz, _
Ind,, »(x). Thus £b(s — r) lies in the image of E. 1 [®,f}1]. Since this image is saturated, the element

Let s be the image of y in R)",. The image of (s —r) in (R;‘;Ym)@’j coincides with the image of
s —r also lives in this image. Thus the map Z, — Riq‘;v,n is surjective, so it is an isomorphism.

We have thus completed the proof of Theorem 10.1. In [Helm and Moss 2018] we show that the
strong conjecture for GL,_; implies the weak conjecture for GL,,. Together with Theorem 10.1 and the
fact that the strong conjecture for GL; is an easy consequence of local class field theory, we obtain an
unconditional proof both of the strong conjecture, and of the existence of an isomorphism E gn = By n.
We refer the reader to the final section of [Helm and Moss 2018] for the details.

Remark 10.3. The isomorphism of E ¢.n With B , is an interesting result in finite group theory in its
own right. We are aware of no proof other than the one presented here; it is an interesting question to find
a purely group-theoretic proof of this result.

11. Affine Curtis homomorphisms

Having established both Conjectures 9.2 and 9.3 we now turn to an interesting consequence of Conjecture
9.2. Fix a w in S, (which we identify with the Weyl group of G). The conjugacy class of w gives rise to
a conjugacy class of nonsplit, unramified tori in G; we let T,, denote a representative of this conjugacy
class. In particular we have 7, = ]_[wl_ Resr,/r Gy, where the product is over the cycles w; of w and
F;/F is unramified of degree equal to the length of w;. Let d be the order of w in S,.

Let X be the character group of T,,, and let 7;- denote the algebraic group Hom(X', G,,) x Z/dZ
(regarded as an algebraic group over W (k)), where the action of 1 € Z/dZ on X' is via w™!. Then T.E
is the L-group of 7,,. Moreover, if we identify GL, (over W (k)) with the L-group of G in such a way
that X’ becomes identified with the character group of the diagonal torus in GL,,, then we have a natural
L-homomorphism from 7ZUL to GL,, that takes Hom(X’, G,,) to the diagonal torus and takes 1 € Z/nZ
to w~!. This allows us to transfer a Langlands parameter p,, : Wr — 7:5(16) for T, to a Langlands
parameter p : Wr — GL,,(K) for G.
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It will be useful to understand the interaction between this transfer and the block decompositions for
Repy 4 (Tw) and Repy, ) (G). Note that

T,y = To(F) = Hom(X, (F"))F,

where Fr is a fixed Frobenius element of Wpg, and its action on X is via w. Let T, US") denote the subgroup
Hom(X, (O;m)(@))ﬁ of T,,, where ((’);ur)“) denotes the elements of pro-order prime to £ in O .. Then
T is profinite, of pro-order prime to ¢, and the quotient T,/ T, is a discrete group. Indeed, explicitly,
one has
T,/T =[O =[[@ o xF)).
w; wi
where @ is a uniformizer of F' (hence also of F;.)

The blocks of Repyy ;) (Ty) are thus given by characters x ©) : T\ — W(k)*. Choose an extension x
of x® to a character T,, — W (k)*. Then “twisting by x” induces an equivalence of categories between
the block of Repy ) (Ty) corresponding to the trivial character of Tu()[) and the block corresponding
to x©). Denote the centers of these blocks by Z,, | and Z,, 4@, respectively; our choice of x then gives
an isomorphism of Z,, ; with Z,, @ .

On the other side of the Langlands correspondence, the local Langlands correspondence for tori
associates to x a Langlands parameter v, : W — T,E(K); the restriction vy, of ¥y, to [ I(f) depends only
on x . Consider the functor that associates to a W (k)-algebra R the set of parameters Wy — 7:UL(R)
whose restriction to ff) is equal to v,,. This functor is easily seen to be representable by a finite type
affine scheme Spec R}/, and there is a universal Langlands parameter p,, , : Wr — 7IUL(R})”). Note that
the torus Hom(X', G,,) € T;F acts on Spec R¥ by conjugation; let (R”)™ be the subring of R¥ invariant
under this action.

We then have the following proposition, which can be seen as an analogue of Conjecture 9.3 for the
nonsplit torus T,:

Proposition 11.1. There is a unique isomorphism
Lu : Zy g0 = (RE™

which is compatible with the local Langlands correspondence for tori, in the sense that for any Langlands
parameter p : Wg — 7IUL(I€), corresponding to a character x, of Ty, and any z € Z,, ,«», the value of x,
at z is equal to the value of L,, at the point of Spec(R}’) corresponding to p.

Proof. Any parameter Wr — T.E(R) of type v, differs from ¥,, by a parameter Wr — 7,Z(R) that
is trivial on [ g). Thus “twisting by v,,” induces an isomorphism of Spec R} with Spec R}’, where 1
is the trivial character of Ig) . On K-points, this isomorphism is compatible with the local Langlands
correspondence for tori and the “twisting by x” isomorphism of Z,, ; with Z,, , . We can thus reduce
to the case where x© and v,, are the trivial character.
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In this case we can be very explicit: on the one hand, we have isomorphisms
Zu1 = W(E)[T,/ T = W (k) [Hom(X, (F*)* /(O %) )],

where Fr acts on X via w and on O in the usual way. Let e be a uniformizer of F corresponding to
our Frobenius element Fr. We then have a canonical isomorphism

(F*)*/(Ofu) 0 27w x Y,
where Fr acts trivially on the first factor and by g-th powers on the second. We thus obtain an isomorphism
Zy1 = W(k)[Hom(X, 2)"1® W (k)[Hom(X/(qw — DX, F;)].

On the other side of the Langlands correspondence, fix a generator 6 of I/ Pg. Then a Langlands
parameter W — T.L trivial on / }@ is determined by the images of Fr and &; these form a pair of diagonal
matrices F and o such that Fw ™ lo (Fw™")~! =% Since F and o commute, this condition is equivalent
to the condition o~ = ¢4, Thus Spec R}’ decomposes as a product,

Spec R} = Spec W (k)[X'] x Spec W (k)[X'/(q —w)X'],

where the first factor parametrizes F and the second parametrizes o. The conjugation action of ¢ €
Hom(X’, G,,) on this product fixes the second factor and acts by multiplication by "' =1 on the first.
We thus obtain a product decomposition

Spec(RY)™ == Spec W (k)[X'/(1 —w)X'] x Spec W (k)[X'/(qg —w)X'].

On the first factor, the isomorphism of Z,, ; with (R {”)inv is induced by the isomorphism Hom(X, Z)" =
X'/(w—1)X". On the second factor we have to work a bit harder. Note that gw — 1 divides g” — 1, where r
is a multiple of the order of w. Thus Hom(X/(gw — 1) X, qu) is isomorphic to Hom(X/(gw — 1) X, [F;,).
Our choice of s gives rise to a system of generators for I]:;r for all r, compatible with respect to norm
maps; we can thus identifty Hom(X/(qgw — 1) X, [F;r) with the kernel of gw™' — 1 on X’/(¢" — 1) X', via
the isomorphism

X'/(¢"—1DX =Hom(X/(¢" — )X, Z/(q" — 1)Z).

Finally, multiplication by 1 +qw ™' +---+¢"~!'w'~" identifies this kernel with X'/(qw~' —1)X". The
resulting isomorphism of Hom(X/(gw — 1) X, I]_:;) with X'/(qw™' — 1) X’ is independent of r, and gives
the desired map from the second factor of Z,, | to the second factor of (R}")™. One checks easily that
the resulting isomorphism is compatible with local Langlands. U

The L-homomorphism of 7% into GL,, takes Langlands parameters for T, to Langlands parame-
ters for G. If the former has type v,, then so does the latter (where we regard v,, as an £-inertial
type by embedding it in GL, (W (k)) by identifying Hom(X', G,,) with the diagonal matrices.) Thus
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this L-homomorphism induces a map R’ — RY that takes R™ to (RY)™. Combining this with
Proposition 11.1 and Conjecture 9.2, we obtain a map

eZyn —> Zy 4o,

where e is the idempotent of Z, corresponding to the £-inertial type v. On K-points this map takes a point
of Spec Z,, ,« corresponding to a character with Langlands parameter p to the point of Spec eZ, corre-
sponding to the Langlands parameter obtained by composing p with the L-homomorphism of 7.% into GL,,.

On the other hand, if we fix a generic character W of the unipotent radical U of G, and let I" be the
module c—Indg W, then it follows from results in [Helm 2016b] that the natural map eZ,, — Endw x)[61(I")
is an isomorphism. We can thus view the map eZ, — Z,, ,«© as the affine group analogue of a Curtis
homomorphism. Since the Curtis homomorphisms have such a nice interpretation via Deligne—Lusztig
theory, it is natural to ask if a similar phenomenon is at play here:

Question 11.2. Does there exist an adjoint pair of functors

i : D’ (Repyy (Tw)) — D’ (Repyy (G)),
rw : D’ (Repy ) (G)) = D" (Repy o (F))

such that r,,(I") is a shift of the induction c-IndeT"’ 1, and the induced homomorphism
Z,—> Zy

is the product over suitable idempotents of the “affine Curtis homomorphisms” constructed above?
Moreover, is there a natural geometric construction of such an adjoint pair?
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