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We describe two conjectures, one strictly stronger than the other, that give descriptions of the integral
Bernstein center for GLn(F) (that is, the center of the category of smooth W (k)[GLn(F)]-modules,
for F a p-adic field and k an algebraically closed field of characteristic ` different from p) in terms of
Galois theory. Moreover, we show that the weak version of the conjecture (for m ≤ n), together with
the strong version of the conjecture for m < n, implies the strong conjecture for GLn . In a companion
paper (Invent. Math. 214:2 (2018), 999–1022) we show that the strong conjecture for n− 1 implies the
weak conjecture for n; thus the two papers together give an inductive proof of both conjectures. The
upshot is a description of the Bernstein center in purely Galois theoretic terms; previous work of the
author shows that this description implies the conjectural “local Langlands correspondence in families”
of (Ann. Sci. Éc. Norm. Supér. (4) 47:4 (2014), 655–722).

1. Introduction

Emerton and the author [Emerton and Helm 2014] described a conjectural “local Langlands correspondence
in families” for the group GLn(F), where F is a p-adic field. More precisely, we showed that given a suit-
able coefficient ring A (in particular complete and local with residue characteristic ` different from p), and
a family of Galois representations ρ :G F→GLn(A), there is, up to isomorphism, at most one admissible
A[GLn(F)]-module π(ρ) that “interpolates the local Langlands correspondence across the family ρ” and
satisfies certain technical hypotheses. (We refer the reader to [Emerton and Helm 2014, Theorem 1.1.1]
for the precise result.) We further conjecture that such a representation π(ρ) exists for any ρ.

The paper [Helm 2016b] gives an approach to the question of actually constructing π(ρ) from ρ. The key
new idea is the introduction of the integral Bernstein center, which is by definition the center of the category
of smooth W (k)[GLn(F)]-modules. More prosaically, the integral Bernstein center is a ring Z that acts
on every smooth W (k)[GLn(F)]-module, compatibly with every morphism between such modules, and
is the universal such ring. The structure of Z encodes deep information about “congruences” between
W (k)[GLn(F)]-modules (for instance, if two irreducible representations of GLn(F) in characteristic zero
become isomorphic modulo `, the action of Z on these two representations will be via scalars that are
congruent modulo `.)

MSC2010: primary 11F33; secondary 11F70, 22E50.
Keywords: Langlands correspondence, modular representation theory, p-adic groups.

2607

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2020.14-10
http://https://doi.org/10.2140/ant.2020.14.2607
http://dx.doi.org/10.1007/s00222-018-0816-y
http://dx.doi.org/10.24033/asens.2224


2608 David Helm

Morally, the problem of showing that π(ρ) exists for all ρ amounts to showing — for a sufficiently
general notion of “congruence” — that whenever there is a congruence between two representations
of G F , there is a corresponding congruence on the other side of the local Langlands correspondence.
It is therefore not surprising that one can rephrase the problem of constructing π(ρ) in terms of the
structure of Z . Indeed, Theorem 7.4 of [Helm 2016b] reduces the question of the existence of π(ρ) to a
conjectured relationship between the ring Z and the deformation theory of mod ` representations of G F

(Conjecture 7.2 of [Helm 2016b]).
The primary goal of this paper, together with its companion paper [Helm and Moss 2018], is to prove

a version of this conjecture, and thus establish the local Langlands correspondence in families. More
precisely, we introduce a collection of finite type W (k)-algebras Rν that parametrize representations of
the Weil group WF of F with fixed restriction to prime-to-` inertia, and whose completion at a given
maximal ideal is a close variant of a universal framed deformation ring. We then conjecture that there is a
map Z→ Rν that is “compatible with local Langlands” in a certain technical sense (see Conjecture 9.2
below for a precise statement and discussion.) This conjecture, which we will henceforth call the “weak
conjecture”, becomes Conjecture 7.2 of [Helm 2016b] after one completes Rν at a maximal ideal, and
hence implies both that conjecture and the existence of π(ρ).

If a map Z → Rν of the conjectured sort exists it is natural to ask what the image is. The “strong
conjecture” (Conjecture 9.3 below) gives a description of this image (and in fact gives a description of
the direct factors of Z in purely Galois-theoretic terms.) As the names suggest, the “strong conjecture”
implies the “weak conjecture.”

The main result of this paper is that if the weak conjecture holds for all GLm(F), with m less than or
equal to a fixed n, and the strong conjecture holds for m < n, then the strong conjecture holds as well for
the group GLn(F). In the companion paper [Helm and Moss 2018], we show that the strong conjecture
for GLn−1(F) implies the weak conjecture for GLn(F). Since the case n = 1 is easy (it is a consequence
of local class field theory), the two papers together will establish both conjectures for all n, and hence the
local Langlands correspondence for GLn in families.

Our approach relies on three main ingredients. The first is an input from finite group theory, namely the
endomorphism ring of the Gelfand–Graev representation 0 of GLn(Fq). In Section 2 we introduce this
ring and describe some of its basic properties, following Bonnafé and Kessar [2008]. A crucial structure
on this endomorphism ring is its canonical symmetrizing form, which Bonnafé and Kessar describe in
terms of “Curtis homomorphisms” arising from Deligne–Lusztig restriction. In Section 3 we describe the
connection between this endomorphism ring and the ring Z .

The second key ingredient is the behavior of the integral Bernstein center Z with respect to parabolic
induction; for a Levi M of G there are natural maps Z → Z M compatible, in a certain sense, with
parabolic induction from M to G. In Section 3 we recall results of [Helm 2016a] (see Theorems 3.9
and 3.12, below) that say that in certain key cases the images of these maps are “large” in a certain
sense, and that the failure of these maps to have image that is “as large as possible” is controlled by the
endomorphism ring of a Gelfand–Graev representation.
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The third key ingredient is the construction of the rings Rν which occupies Sections 4, 7, and 8. These
moduli spaces admit maps between them coming from taking direct sums of representations; these maps
serve a purpose analogous to the “parabolic induction” maps from Z to Z M . The functions on such
spaces also admit subalgebras Bq,n that play a role analogous to the subalgebras of Z arising from the
endomorphism ring Eq,n of a Gelfand–Graev representation. The strong conjecture leads us to expect
that in fact Eq,n and Bq,n are isomorphic, but it seems difficult to show this directly (although it is easy
to show if one inverts `). Instead, we make use of the symmetrizing form on Eq,n to show that if there
exists a map from Eq,n to Bq,n then it must be an isomorphism (see Sections 5 and 6.)

Once we have established this, our argument goes as follows. First we show that the strong conjecture
holds after inverting `; this essentially follows easily from the classical Bernstein–Deligne theory of
the Bernstein center over algebraically closed fields. We then assume the strong conjecture for m < n,
and the weak conjecture for m ≤ n. This gives us in particular a map Eq,n → Bq,n that is necessarily
an isomorphism. Using this, and considering various parabolic restriction maps from Z to various Levi
subgroups, together with the corresponding maps on the rings Rν of representations of WF , we show,
using our “large image” results for Z , that Z must “fill out” the entire ring of invariant functions in Rν ,
thus proving the strong conjecture for GLn .

In the process of carrying out this inductive argument we prove that Eq,n is isomorphic to Bq,n for
all n. This is a statement purely in finite group theory that is of independent interest. We know of no
more direct proof of this isomorphism than the one described here.

Throughout this paper we adopt the following conventions: F is a p-adic field with residue field Fq , k
is an algebraically closed field of characteristic ` 6= p, K is the field of fractions of W (k), and K is an
algebraic closure of K. Algebraic groups over F with be denoted by uppercase calligraphic letters T , G,
etc.; for any such group the corresponding uppercase letters T, G, etc. will denote the groups of F-points
of T , G, and so forth. In particular there is an implicit dependence of T on T .

2. Finite groups

Before beginning our study of the Bernstein center we develop some finite group theory that will be
essential for our approach. Most of the ideas in this section originally appear in [Bonnafé and Kessar 2008].

Fix distinct primes p and `, and a power q of p. Let G be the group GLn over Fq , and let G = G(Fq).
We will consider the representation theory of G over the Witt ring W (k), where k is an algebraic closure
of F`. Let K be the field of fractions of W (k), and fix an algebraic closure K of K.

Our principal object of study in this section will be the Gelfand–Graev representation 0 of G, with
coefficients in W (k). Fix a Borel B in G, with unipotent radical U , and let B, U denote the Fq-points
of B and U respectively. Also fix a generic character 9 : U → W (k)×. Then, by definition, we have
0 = c-IndG

U
9, where 9 is considered as a W (k)[U ]-module that is free over W (k) of rank one, with the

appropriate action of U . The module 0 is then independent of the choice of 9, up to isomorphism.
The objective of this first section is to study the endomorphism ring EndW (k)[G](0), which we denote

by Eq,n . Our main tool for doing so will be the Deligne–Lusztig induction and restriction functors of
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[Bonnafé and Rouquier 2003]. Let L be the subgroup of G consisting of the Fq -points of a (not necessarily
split) Levi subgroup L of GLn , and choose a parabolic subgroup P of GLn whose Levi subgroup is L.
Let RepW (k)(G) and RepW (k)(L) denote the categories of W (k)[G]-modules and W (k)[L]-modules,
respectively. Then Deligne–Lusztig induction and restriction are functors:

i G
L⊆P : D

b(RepW (k)(L))→ Db(RepW (k)(G)),

rL⊆P
G
: Db(RepW (k)(G))→ Db(RepW (k)(L)).

We will be concerned exclusively with the case where L is a maximal torus in G. In this case the effect
of Deligne–Lusztig restriction on 0 has been described by Bonnafé and Rouquier when L is a Coxeter
torus and by Dudas [2009] in general.

Theorem 2.1 (Bonnafé–Rouquier, Dudas). When L is the standard maximal torus, there is a natural
isomorphism

rL⊆P
G

0 ∼=W (k)[L][−`(w)]

in Db(RepW (k)(L)), where w is the element of the Weyl group of G such that Pw is the standard Borel,
`(w) is its length, and [−`(w)] denotes a cohomological shift.

Proof. This is the main theorem of [Dudas 2009]. �

An immediate consequence of this result is that, when T is the Fq-points of a torus in GLn , then an
endomorphism of 0 gives rise, by functoriality of Deligne–Lusztig restriction, to an endomorphism of
W (k)[T ] (or, equivalently, an element of W (k)[T ]). We thus obtain homomorphisms

8T : Eq,n→W (k)[T ]

for each torus T in G. These are integral versions of the classical “Curtis homomorphisms”.
Over K, it is not difficult to describe the structure of 0⊗K, its endomorphism ring, and the associated

Curtis homomorphisms. Recall that an irreducible representation π of G is said to be generic if π contains
the character 9, or, equivalently, if there exists a nonzero map from 0 to π . The irreducible generic
representations of G over K are indexed by semisimple conjugacy classes s in G ′, where G ′ is the group
of Fq-points in the group G′ that is dual to G. More precisely, given such an s, there exists a unique
irreducible generic representation Sts in the rational series attached to s.

The association of rational series to semisimple conjugacy classes in G ′ depends on choices which we
now recall: let µ(p) denote the prime-to-p roots of unity in K, let (Q/Z)(p) denote the elements of order
prime to p in (Q/Z), and fix isomorphisms

µ(p) ∼= (Q/Z)
(p) ∼= F×q .
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Now let t be a semisimple element in G ′, let T ′ be a maximal torus containing s, and let T be the dual
torus in G. Let X and X ′ denote the character groups of T and T ′, respectively. We have isomorphisms

T (Fq)∼= Hom(X/(Frq −1)X,Gm),

T ′(Fq)∼= Hom(X ′/(Frq −1)X ′,Gm),

where Frq is the endomorphism induced by the q-power Frobenius. We also have a natural duality
X/(Frq −1)X ∼= Hom(X ′/(Frq −1)X ′, (Q/Z)(p)). The identifications we fixed above then give rise
to isomorphisms

T ′(Fq)∼= Hom(X ′/(Frq −1)X ′,Gm)∼= X/(Frq −1)X ∼= Hom(T (Fq), µ
(p)).

In this way we associate, to any semisimple element t of G′(Fq), and any T ′ containing t , a character
ϕT ′,t : T (Fq)→ K×.

It is immediate (by applying the idempotent of K[G] corresponding to the rational series attached to s
to Theorem 2.1) that we then have:

Proposition 2.2. Let T be a maximal torus of G, and let B be a Borel containing T . Then, up to a
cohomological shift depending only on B, we have

rT ⊆B
G

Sts ∼=
⊕

t∼s;t∈T ′

ϕT ′,t .

Returning to 0, we have a direct sum decomposition

0⊗K ∼=
⊕

s

Sts

It follows immediately that the endomorphism ring of 0⊗K is isomorphic to a product of copies of K,
indexed by the semisimple conjugacy classes s in G ′. As the endomorphism ring EndW (k)[G](0) of 0
embeds in this product, we see immediately that EndW (k)[G](0) is reduced and commutative.

Indeed, it is not difficult to describe the maps 8T ⊗K. The isomorphism

0⊗K ∼=
⊕

s

Sts,

where s runs over semisimple conjugacy classes in G ′, gives rise to an isomorphism

Eq,n ⊗K ∼=
∏

s

K.

On the other hand we have a direct sum decomposition

K[T ] ∼=
⊕

t

ϕT ,t

of K[T ]-modules, and hence an algebra isomorphism

K[T ] ∼=
∏

t

K.
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It follows immediately from the previous paragraph that8T maps the factor of K of Eq,n⊗K corresponding
to s identically to each factor of K[T ] that corresponds to a t in the G ′-conjugacy class s, and to zero in
the other factors.

Now let T range over all tori in G, and consider the product map

8 : Eq,n→
∏
T

W (k)[T ].

For each pair (T , ϕ), where ϕ is a character T → K×, we have a map

ξT ,ϕ :
∏

T

W (k)[T ] → K

given by composing the projection onto W (k)[T ] with the map ϕ :W (k)[T ] → K.
Define an equivalence relation on such pairs by setting (T 1, ϕ1)∼ (T 2, ϕ2) if t1 and t2 are conjugate

in G ′, where t1 and t2 are the elements of the dual tori T ′1 and T ′2 corresponding to ϕ1 and ϕ2. Then our
description of each 8T shows that, when (T 1, ϕ1)∼ (T 2, ϕ2), one has ξT 1,ϕ1

◦8= ξT 2,ϕ2
◦8. Thus 8

induces a bijection between the K-points of Spec Eq,n and the equivalence classes of pairs (T , ϕ).
In what follows, it will be necessary for us to consider certain direct factors of Eq,n arising from

idempotents of W (k)[G]. An `-regular semisimple conjugacy class s in G ′ gives rise, via the choices
we have made above, to an idempotent es in W (k)[G], that acts by the identity on the rational series
corresponding to those s ′ in G with `-regular part s, and zero elsewhere. We will denote by Eq,n,s the
direct factor es Eq,n of Eq,n . The K-points of Spec Eq,n,s are those corresponding to pairs (T , ϕ) such
that ϕ corresponds to an element t of T ′ whose `-regular part is s.

Now let s ∈ G ′ be `-regular semisimple and suppose that the characteristic polynomial of s is a power
of an irreducible polynomial of degree d . Then the centralizer L′ of s in G′ is a nonsplit Levi isomorphic
to ResFqd /Fq GLn/d . Let L be the Levi of G dual to L′. By [Bonnafé and Rouquier 2003, Théorème 11.8],
twisting by the character of L associated to s, followed by Deligne–Lusztig induction from L to G, is
an equivalence of categories from e1 RepW (k)(L) to es RepW (k)(G). Moreover, this equivalence carries
e10L to es0. (This follows from uniqueness of projective envelopes, since the former is the projective
envelope of the unique irreducible generic k-representation of L in the block corresponding to e1, and
the latter is the projective envelope of the unique irreducible generic k-representation of G in the block
corresponding to es .) We thus have:

Proposition 2.3. For s an `-regular semisimple element of G ′ whose characteristic polynomial is a power
of an irreducible polynomial of degree d over Fq . Then there is a natural isomorphism

Eq,n,s ∼= Eqd,n/d,1.

The induced map on K-points takes the K-point of Spec Eqd,n/d,1 corresponding to the `-primary conju-
gacy class t of L ′ to the K-point of Spec Eq,n,s corresponding to the conjugacy class of st in G ′.
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Proof. The first claim is immediate from the previous paragraph. The second follows from the description
of the equivalence of categories on irreducible generic K-representations. �

The final structure we will need to consider on Eq,n is a natural symmetrizing form considered by
Bonnafé and Kessar [2008, Section 3.B]. Define a W (k)-linear map θ : Eq,n→W (k) by the formula

θ(x)=
1
n!

∑
w∈Sn

θw(8T w
(x)),

where T w is the torus of G associated to the element w of the Weyl group, and θw :W (k)[Tw] →W (k)
is the canonical symmetrizing form on W (k)[Tw] given by “evaluation at the identity”. Note that we can
extend θ to a linear map Eq,n ⊗K→ K.

We then have:

Proposition 2.4. Let t be a semisimple conjugacy class in G ′, and let et be the corresponding idempotent
of Eq,n ⊗K. Then

θ(et)=
1
n!

∑
w∈Sn

1

#Tw

N (w, t),

where N (w, t) is the number of elements of T ′w in the conjugacy class of t .

Proof. It is easy to see that 8T w
(et) is equal to the sum, over those t ′ ∈ T ′w conjugate to t ′, of the

idempotents et ′ of K[Tw]. The claim is then immediate from the formula for θ . �

3. The integral Bernstein center

We now turn to the first main object of interest in this paper: the integral Bernstein center. Let
G = GLn(F), and denote by RepW (k)(G) and RepK(G) the categories of smooth W (k)[G]-modules
and smooth K[G]-modules, respectively.

By the phrase “integral Bernstein center” we mean the center of the category RepW (k)(G). We recall
what this means:

Definition 3.1. The center of an Abelian category A is the ring of natural transformations IdA→ IdA,
where IdA denotes the identity functor on A.

By definition, if Z is the center of A, then specifying an element of Z amounts to specifying an
endomorphism of every object of A, such that the resulting collection commutes with all arrows in A.
The center of A is thus a commutative ring that acts naturally on every object in A, and this action is
compatible with all morphisms in A.

Bernstein and Deligne [1984] gave a complete and explicit description of the center Z̃ of RepK(G).
We briefly summarize their results: first, define an equivalence relation on pairs (M, π̃), where M is a
Levi of G and π is an irreducible supercuspidal representation of M over K by declaring (M1, π̃1) to be
inertially equivalent to (M2, π̃2) if π̃1 is G-conjugate to an unramified twist of π̃2. One then has:
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Theorem 3.2 [Bernstein and Deligne 1984, Proposition 2.10]. There is a bijection (M, π̃) 7→ e(M,π̃)
between inertial equivalence classes of pairs (M, π̃) over K and primitive idempotents of Z̃ , such that
for any irreducible smooth representation 5 of G over K e(M,π̃) acts via the identity on 5 if 5 has
supercuspidal support in the inertial equivalence class of (M, π̃), and by zero otherwise.

The upshot is that Z̃ decomposes as an infinite product of the rings e(M,π̃) Z̃ as (M, π̃) runs over all
inertial equivalence classes of pairs. Denote e(M,π̃) Z̃ by Z̃(M,π̃). Then Bernstein and Deligne gave a
complete description of the ring structure of Z̃(M,π̃) that we now explain.

Let M0 be the smallest subgroup of M containing every compact open subgroup of M. Then M/M0

is a free abelian group of finite rank, and SpecK[M/M0] is a torus whose K-points are in bijection
with the characters M/M0 → K×. Let H be the subgroup of these characters consisting of those
characters χ such that π̃ ⊗χ is isomorphic to π̃ . Then H is a finite abelian group that acts on K[M/M0].
The torus SpecK[(M/M0)]

H is a quotient of SpecK[M/M0]; its K-points correspond to H -orbits of
characters of M/M0.

Now let WM be the subgroup of the Weyl group of G consisting of w such that wMw−1
= M. Let

WM(π̃) be the subgroup of WM consisting of w such that the representation π̃w of M is an unramified
twist of π̃ . Then we have a natural action of WM(π̃) on K[(M/M0)]

H, characterized by

π̃ ⊗χw ∼= (π̃ ⊗χ)
w

for characters χ of M/M0. We then have:

Theorem 3.3 [Bernstein and Deligne 1984, Théorème 2.13]. There is a unique natural isomorphism

Z̃(M,π̃) ∼=
(
K[(M/M0)]

H )WM (π̃)

such that, for any irreducible representation 5 over K whose supercuspidal support has the form π̃ ⊗χ ,
Z̃(M,π̃) acts on 5 via the map (

K[(M/M0)]
H )WM (π̃)

→ K[M/M0] → K

corresponding to the character χ : M/M0→ K×. In particular Z̃(M,π̃) is a reduced, finitely generated,
and normal K-algebra.

In particular, Z̃ acts on two irreducible representations 5, 5′ of G via the same map Z̃→ K if, and
only if, 5 and 5′ have the same supercuspidal support. This defines, for each (M, π̃), a bijection between
the K-points of Spec Z̃(M,π̃) and supercuspidal supports in the inertial equivalence class of (M, π̃); that
is, unramified twists of π̃ considered up to WM(π̃)-conjugacy.

Now let L be a Levi in GLn; then L factors as a product of L i isomorphic to GLni (F). For each i , let Mi

be a Levi in L i , and π̃i an irreducible supercuspidal K-representation of Mi . We then have isomorphisms

Z̃ Mi ,π̃i
∼=
(
K[(Mi/(Mi )0)]

Hi
)WMi (π̃i )

.
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Let M be the product of the Mi ; we may regard it as a Levi of L and hence as a Levi of GLn(F). Let π̃
be the tensor product of the π̃i . The quotient M/M0 factors naturally as a product of Mi/(Mi )0, and this
induces a map (

K[(M/M0)]
H )WM (π̃)

→

⊗
i

(
K[(Mi/(Mi )0)]

Hi
)WMi (π̃i )

and hence a map
Ind{(Mi ,π̃i )} : Z̃(M,π̃)→

⊗
i

Z̃(Mi ,π̃i ).

On K-points this takes the K-point of the tensor product that corresponds to the collection of supercus-
pidal supports {(Mi , π̃i ⊗ χi )} to the point of Spec Z̃(M,π̃) corresponding to the supercuspidal support
(M,⊗i (π̃i ⊗χi )).

We now turn to the study of RepW (k)(G); let Z denote the center of this category. In this setting there
is an analogue of the Bernstein–Deligne characterization of the primitive idempotents of Z . By [Helm
2016a, Theorem 11.8], such idempotents are parametrized by inertial equivalence classes of pairs (L , π),
where π is now an irreducible supercuspidal representation of L over k.

If we let e[L ,π ] denote the idempotent of Z corresponding to (L , π), RepW (k)(G)[L ,π ] the corresponding
block, and Z[L ,π ] the corresponding factor of the Bernstein center, then one has the following basic
structure results:

Theorem 3.4 [Helm 2016a, Theorem 12.8]. The ring Z[L ,π ] is a finitely generated, reduced, flat
W (k)-algebra.

It is important to note that, in contrast to the situation over K, the ring Z[L ,π ] is in general very far
from being normal.

We also have a description of Z[L ,π ] ⊗ K in terms of Z̃ . This can be made precise as follows: if
(M, π̃) is a pair over K, and 5 is an irreducible integral representation of G over K with supercuspidal
support in the inertial equivalence class of (M, π̃), then there exists a (possibly proper) Levi subgroup L
of M, and an irreducible supercuspidal representation π of L , such that every irreducible subquotient
of the mod ` reduction of 5 has supercuspidal support (L , π). Moreover, the inertial equivalence class
of (L , π) depends only on that of (M, π̃), and not on the particular choice of π . We say that (M, π̃)
reduces modulo ` to (L , π); this defines a finite-to-one map from inertial equivalence classes over K to
inertial equivalence classes over k. One then has:

Theorem 3.5 [Helm 2016a, Proposition 12.1]. The natural map Z ⊗K→ Z̃ induces an isomorphism

Z[L ,π ]⊗K ∼=
∏
(M,π̃)

Z̃(M,π̃),

where the product is over all pairs (M, π̃), up to inertial equivalence, that reduce modulo ` to the pair (L ,π).

From this and the description of the K-points of Spec Z̃(M,π̃) one immediately deduces:

Corollary 3.6. The K-points of Spec Z[L ,π ] are in bijection with the supercuspidal supports of irreducible
smooth K-representations in RepW (k)(G)[L ,π ].
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We now give a more precise description of Z[L ,π ]. We first reduce to a more easily studied special case:

Definition 3.7. A pair (L , π) is simple if there exist r,m such that n = rm, L is isomorphic to GLm(F)r ,
and π , up to unramified twist, is of the form (π ′)⊗r for an irreducible supercuspidal representation π ′

of GLm(F).

Note that any pair (L , π) factors uniquely as a product of simple pairs (L i , π i ), with π i ∼= (π ′i )
⊗ri ,

such that no π ′i is an unramified twist of any other. One then has:

Theorem 3.8 [Helm 2016a, Theorem 12.4]. Let {(L i , π i )} be the natural decomposition of (L , π) as a
product of simple pairs. Then there is a natural isomorphism

Z[L ,π ] ∼=
⊗

i

Z[L i ,π i ]

such that, for any sequence {(M i , π̃ i )} reducing modulo ` to {(L i , π̃ i )}, the diagram

Z[L ,π ]⊗K

��

//
[⊗

i Z[L i ,π i ]

]
⊗K

��

Z̃(M,π̃) //
⊗

i Z̃(M i ,π̃ i )

commutes, where (M, π̃) is the product of the (Mi , π̃i ), and the bottom horizontal map is the map
Ind{(M i ,π̃ i )} described above.

We thus focus our attention on the case where (L , π) is simple. Fix an integer n1 and an irreducible
supercuspidal representation π ′ of GLn1(F) over k. For each m > 0, let Lm be a Levi of GLn1m(F)
isomorphic to GLn1(F)

m , and let πm be the representation (π ′)⊗m of Lm . We can then consider the family
of rings Zm := Z[Lm ,πm ] as n varies.

Section 13 of [Helm 2016a] contains detailed information about the structure of the family Zm . In
particular this structure theory is closely related to the endomorphism rings of certain projective objects
PKm ,τm for particular m. More precisely, consider the group of unramified characters χ of GLn1(F)
such that π ′ ⊗ χ is isomorphic to π ′. This is a finite group; denote its order by f ′. Then attached to
the system of pairs (Lm, πm) we have a system of projective objects PKm ,τm , where m lies in the set
{1, eq f ′ , `eq f ′ , `2eq f ′ , . . . }. (We refer the reader to Sections 7 and 9 of [Helm 2016a] for a construction
and structure theory of these objects.) For brevity, denote the representation PKm ,τm by Pm .

For such m, let Em denote the endomorphism ring of Pm . Then, by Corollary 9.2 of [Helm 2016a],
Em is a reduced, finite type, `-torsion free W (k)-algebra. Moreover, we have a map Zm→ Em that gives
the action of Zm on the object Pm of RepW (k)(GLn1m(F))[Lm ,πm ].

If m is arbitrary, the relationship between the rings Zm and Em is more complicated. For a partition ν
of m, we will say that ν is q-relevant if each νi belongs to the set {1, eq , `eq , `

2eq , . . . }, where eq is the
multiplicative order of q modulo ` (relevant partitions were called admissible in [Helm 2016a]). Let ν
be the maximal q f ′-relevant partition of m. Let Mν and Pν be the standard Levi and (upper triangular)
parabolic subgroups of GLn1m attached to n1ν, so that Mν is a product of GLn1νi (F), and consider
the representation

⊗
i Pνi of Mν . Then Zm acts on the parabolic induction i

GLn1m(F)
Pν

⊗
i Pνi , and we have:
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Theorem 3.9 [Helm 2016a, Theorem 13.7]. The action of Zm on i
GLn1m(F)
Pν

⊗
i Pνi factors through the

action of
⊗

i Eνi on
⊗

i Pνi . Moreover, the resulting map

Zm→
⊗

i

Eνi

is injective with saturated image, and is an isomorphism if m lies in {1, eq f ′ , `eq f ′ , . . . }. (Note that in this
case ν is the one-element partition {m} of m.)

For m in {1, eq f ′ , `eq f ′ , . . . } we thus have a natural identification of Zm with Em . For arbitrary m, we
can regard the map Zm→

⊗
i Eνi as a map Zm→

⊗
i Zνi . Denote this map by Indν . It is injective with

saturated image.
For m in {1, eq f ′ , `eq f ′ , . . . }, the results of Sections 7 and 9 of [Helm 2016a] give very precise

information about Em , and hence Zm . In particular there is an integer f dividing f ′, and a cuspidal
k-representation σm of GLm f ′/ f (Fq f ) (attached to an `-regular conjugacy class (s ′1)

m with s ′1 irreducible of
degree f ′ over Fq f ), such that the projective Pm is a compact induction c-Ind

GLn1m(F)
Km

κ̃m⊗Pσm , where κ̃m

comes from type theory and Pσm is the projective envelope of σm , inflated to a representation of Km via a
natural map Km→ GLm f ′/ f (Fq f ).

Section 5 of [Helm 2016a] shows that Pσm is the projection of the Gelfand–Graev representation of
GLm f ′/ f (Fq f ) to the block containing σm . In particular, the results of Section 2 identify the endomorphisms
of Pσm with Eq f ,md,s , where we have written s = (s1)

m and d = f ′
f . By Proposition 2.3 we may identify

Eq f ,md,s with Eq f ′,m,1.
We thus obtain an embedding of Eq f ′,m,1 in Em for such m. Furthermore, Section 9 of [Helm 2016a]

constructs an invertible element 2m,m of Em . We thus obtain a map

Eq f ′,m,1[T, T−1
] → Em

taking T to 2m,m . It follows easily from the description of Em as a Hecke algebra in Section 9 of [Helm
2016a] that the image of this map consists of the elements of Em supported on double cosets of the form
Kmzr

m,m Km for various r . (In particular, this image is saturated in Em .)
The image of Eq f ′,m,1 in Zm is easy to describe. Indeed, we have:

Proposition 3.10. Let m lie in {1, eq f ′ , `eq f ′ , . . . }, and let x be an element of Eq f ′,m,1, where the latter
is considered as a subalgebra of Zm . Then for any irreducible K-representations 5,5′ of GLn1m(F) in
the same block of RepK(GLn1m(F)), the action of x on 5 and 5′ is via the same scalar. Conversely, any
element of Zm with this property lies in Eq f ′,m,1.

Proof. The ring Zm annihilates both 5 and 5′ unless 5 and 5′ belong to a block of the form
RepK(GLn1m(F))(Ms ,πs) for a suitable s, in the notation of [Helm 2016a, Section 9]. In this case the
action of Zm on 5 and 5′ factors through the action of Zm on the summand c-Ind

GLn1m(F)
Km

κ̃m ⊗ Sts of
c-Ind

GLn1m(F)
Km

κ̃m ⊗Pσm ⊗K. In particular the action of x on 5 and 5′ factors through the action of x
on Sts , which is by a scalar.
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Since Eq f ′,m,1 is saturated in Zm , it suffices to prove the converse over K. But it follows easily from
our factorization of Zm in characteristic zero that every idempotent of Zm ⊗K is contained in Eq f ′,m,1;
since these idempotents correspond to the blocks of RepK(GLn1m(F))M,π the claim follows. �

We also make the following observation about the action of 2m,m ∈ Zm :

Proposition 3.11. Let P be a parabolic subgroup of GLn1m(F), with Levi subgroup M, and let π be an
irreducible cuspidal K-representation of M such that i G

P π lies in the block corresponding to Lm, πm .
Suppose that M decomposes as a product of groups Mi =GLn1mi (F), and let χ be an unramified character
of M, of the form ⊗i (χi ◦ det), where we regard (χi ◦ det) as a character of Mi .

Let x ∈ K× be the scalar by which 2m,m acts on i G
P π . Then 2m,m acts on i G

P π ⊗χ via x
∏

i χ
f ′

i ($F ).

Proof. For some s, the pair (M, π) is conjugate to an unramified twist of one of the pairs (Ms, πs)

described in Section 9 of [Helm 2016a]. Thus, by Theorem 9.4 of [Helm 2016a], the action of 2m,m

on π is via the element θm,s of Z Ms ,πs defined in Section 9 of [Helm 2016a], and the claim is immediate
from the definition of θm,s in that section. �

Finally, let m′ and m be two consecutive elements of {1, eq f ′ , `eq f ′ , . . . }, and set j = m
m′ . Theorem 13.5

of [Helm 2016a] then provides a map

Indm′,m : Zm→ Z⊗ j
m′

that is compatible with parabolic induction, in the sense that the action of x in Zm on i
GLn1m(F)
P π (where

P = MU is a parabolic such that M is isomorphic to GLn1m′(F) j ) is induced by the action of Indm′,m(x)
on π . The image of this map is not saturated but we have:

Theorem 3.12 [Helm 2016a, Theorem 13.6]. Let y be an element of Z⊗ j
m′ such that, for some a,

`a y lies in the image of Indm′,m . Then there exists an element ỹ of Zm , an element x of Eq f ′,m,1[T
±1
],

and an integer b > 0 such that Indm′,m(x)= `b(y− Indm′,m(ỹ)).

The map Indm′,m is not injective, but its kernel has a rather simple structure:

Proposition 3.13. There exists an ideal Im′,m of Eq f ′,m,1 such that the kernel of Indm′,m is equal
to Im′,m[2

±1
m,m].

Proof. Since Eq f ′,m,1[2
±1
m,m] is saturated in Zm we can prove this after tensoring with K. We have a

decomposition

Zm ⊗K ∼=
∏

i

Z̃(Mi ,π̃i ),

where (Mi , π̃i ) run over the K-inertial equivalence classes in the block corresponding to [Lm, πm].
In particular the partitions corresponding to the Mi are all q f ′-relevant. Fix a factor in this product
corresponding to a pair (Mi , π̃i ). On this factor, we can describe the map Indm′,m in the following way: let
(Mi j , π̃i j ) run over the set of Mν-inertial equivalence classes of pairs that are GLn1m-inertially equivalent
to (Mi , π̃i ), where ν is the partition (m′, . . . ,m′) of m and Mν is the corresponding Levi of GLn1m . Since
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Mi j is a Levi contained in Mν the pair (Mi j , π̃i j ) breaks up as a product of m
m′ pairs (Mi jk, π̃i jk) in GLn1m′ .

On the factor Z̃(Mi ,π̃i ) of Zm ⊗K, Indm,n is the sum of the maps

Ind(Mi j ,π̃i j ) : Z̃(Mi ,π̃i )→

⊗
k

Z̃(Mi jk ,π̃i jk).

In particular Indm′,m is injective on the factor Z̃(Mi ,π̃i ) if Mi is a proper Levi subgroup and zero otherwise.
When Mi is not a proper Levi then the pair (Mi , π̃i ) gives a cuspidal inertial equivalence class, so Z̃(Mi ,π̃i )

is isomorphic to K[2±1
m,m]. Thus the kernel of Indm′,m ⊗K is equal to Ĩm′,m[2

±1
m,m], where Ĩm,m is the ideal

of Eq f ′,m,1⊗K generated by the idempotents of the latter that correspond to cuspidal inertial equivalence
classes (Mi , π̃i ). �

4. The ring Rq,n

We now turn to the second principal object of study of this paper, which is a moduli space of representations
of WF . We begin by studying spaces of tame representations. Let Xq,n be the affine W (k)-scheme
parametrizing pairs of invertible n by n matrices (Fr, σ ) such that Fr σ Fr−1

= σ q , and let X0
q,n be the

connected component of Xq,n containing the k-point Fr = σ = Idn . Let Sq,n and Rq,n be the rings of
functions on Xq,n and X0

q,n , respectively, so that Xq,n = Spec Sq,n and X0
q,n = Spec Rq,n .

Lemma 4.1. Let L be an algebraically closed field that is a W (k)-algebra and x be an L-point of Xq,n

corresponding to a pair (Frx , σx) of elements of GLn(L). Then x lies in X0
q,n if , and only if , the

eigenvalues of σx are `-power roots of unity.

Proof. Consider the map Xq,n → An
W (k) that takes a point x to the coefficients of the characteristic

polynomial of σx . Let Y be the image of this map. For all L and x , σx is an element of GLn(L) conjugate
to its q-th power, so its image in Y (L) is a polynomial of degree n whose roots, counted with multiplicities,
are stable under the q-th power map. That is, every point of Y (L) corresponds to the characteristic
polynomial of a diagonal matrix that is conjugate to its q-th power. Conversely, given such a matrix σ it
is easy to construct an L-point x of Xq,n with σx = σ .

Let Ỹ ⊂ An
W (k) be the space of diagonal matrices that are conjugate to their q-th powers; we then

have a map Ỹ → An
W (k) that sends such a matrix to the coefficients of its characteristic polynomial. The

argument of the previous paragraph shows that the (set-theoretic) image of Ỹ is equal to Y. On the other
hand, Ỹ (K) is a finite collection of points; indeed, the entries of any diagonal matrix that is conjugate to
its q-th power are roots of unity of order bounded in terms of q and n. Thus the “coordinates” of each
K-point of Ỹ are integral over W (k), and every point of Ỹ (k) is in the closure of some point of Ỹ (K).
It follows that the same is true for Y ; in particular Y is the closure of a finite set of K-points, and the
closure of any K-point of Y meets the special fiber of Y. Therefore, the connected component Y 0 of Y
containing the image of X0

q,n is the closure of the set of K-points of Y that “specialize” mod ` to the
characteristic polynomial (X − 1)n of the identity matrix. The only k-point of this component arises from
the characteristic polynomial of the identity matrix, and the K-points of this component correspond to
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characteristic polynomials of elements of Ỹ (K) whose roots reduce to 1 modulo `. The roots of such
a polynomial are `-power roots of unity. Therefore, for x in X0

q,n(L) the roots of the characteristic
polynomial of σx are `-power roots of unity, as required.

Conversely, let x be an L-point of Xq,n , and suppose that the eigenvalues of σx are `-power roots of
unity. Note that GLn(L) acts on Xq,n(L), by conjugation on both F and σ , and this action preserves the
connected components. We may thus assume σx is in Jordan normal form; in particular its entries lie in k
or an integral extension O of W (k). Moreover, for a fixed σx , the set of Frx such that Frx σx = σ

q
x Frx is

a linear space; there is thus an invertible Fr′x whose entries lie in k or W (k), such that Fr′x σx = σ
q
x Fr′x

and (Fr′x , σx) lies on the same connected component as x .
If L has characteristic `, the above construction yields a k-point of Xq,n in the same connected

component as x . If L has characteristic zero, the closure of the point (Fr′, σ ) constructed above contains a
k-point (Fr′′, σ ′) of Xq,n in the same connected component as x . Moreover, σ ′ is unipotent and in Jordan
normal form. Thus in the closure of orbit of (Fr′′, σ ′) under conjugation by diagonal matrices there is a
point where σ is the identity. It is clear that such a point lies in the connected component of the k-point x
where Frx = σx = Idn . �

The ring Rq,n is rather well-behaved from an algebraic standpoint. In particular, one has:

Proposition 4.2. The ring Rq,n is reduced and locally a complete intersection. Moreover, Rq,n is flat as
a W (k)-algebra.

Proof. This argument is a slight elaboration of an argument due to Choi [2009]. We give a sketch here.
First note that Xq,n is given by n2 relations in a space of dimension 2n2

+ 1. Consider the map
Xq,n → An2

W (k) that sends a point x to the matrix σx . Let L be an algebraically closed field that is a
W (k)-algebra, and let x be an L-point of Xq,n .

The group GLn(L) acts on the set of L-points of Xq,n by conjugation. Consider the locally closed
subset Uσx of Spec An2

L consisting of those σ ′ conjugate to σx . For any L-point σ ′ of Uσx , the fiber
of Xq,n ×W (k) L over σ ′ consists of pairs (Fr′ h, σ ′), where Fr′ is a fixed element of GLn such that
Fr′ σ ′(Fr′)−1

= (σ ′)q and h commutes with σ ′

In particular, the dimension of the preimage of Uσ in Xq,n ×W (k) L is equal to the dimension of Uσ

plus the dimension of the stabilizer of σ under conjugation; this is clearly n2. As σ varies over a finite list
of conjugacy classes, the preimages of the Uσ cover Xq,n ×W (k) L; thus Xq,n ×W (k) L is equidimensional
of dimension n2. On the other hand the dimension of Xq,n is at least n2

+ 1. It follows that the Zariski
closures of the preimages of sets Uσ are irreducible components of Xq,n , and that no irreducible component
of Xq,n is contained in the special fiber (as it would then be a component of Xq,n×W (k) k of dimension at
most n2). It also follows that every irreducible component of Xq,n has dimension n2

+ 1, because if we
had a component of larger dimension then its base change to K would have dimension greater than n2. In
particular Xq,n is a complete intersection. It follows that Rq,n is a local complete intersection.

An argument of Choi [2009, Theorem 3.0.13] shows that (Spec Rq,n)m
[ 1
`

]
is generically smooth for

any maximal ideal m of Rq,n; in particular X0
q,n is generically reduced. By the unmixedness theorem the
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local complete intersection X0
q,n has no embedded points, so Rq,n is reduced. As the generic points of

Spec Rq,n all have characteristic zero, we may conclude that Rq,n is flat over W (k). �

We have a universal pair of matrices (Fr, σ ) in GLn(Rq,n). The above result immediately implies:

Corollary 4.3. There exists a power `a of ` such that σ `
a

is unipotent in GLn(Rq,n).

Proof. Since Rq,n is reduced and flat over W (k), it suffices to check that σ `
a

is unipotent for some a
at each of the generic points of Spec Rq,n , all of which lie in characteristic zero. This is an immediate
consequence of Lemma 4.1. �

Let L be a finite extension of K. We call an L-point of X0
q,n integral if the corresponding map Rq,n→ L

factors through the ring of integers OL .

Lemma 4.4. Let x be an L-point of X0
q,n , and suppose that the eigenvalues of Frx lie in O×L ′ for some

finite extension L ′ of L. Then there is an integral point of X0
q,n in the GLn-orbit of x.

Proof. Extending L if necessary, we may assume that the eigenvalues of σx are in L , and hence OL . Then
(for instance, by putting σx in Jordan normal form) we can find an OL -sublattice M of Ln preserved
by σx . Using Frx σx Fr−1

x = σ
q
x , we find that Frx M, Fr2

x M, etc. are also preserved by σx . Consider the
lattice M ′ given by M+Frx M+· · ·+Frn−1

x M ; it is clearly preserved by σx . On the other hand, since Frx

is annihilated by a polynomial with integral coefficients, Frn
x M is contained in M ′, and hence Frx M ′ is

contained in M ′. Since Frx has unit determinant we must have Frx M ′ = M ′. Thus M ′ is stable under both
Frx and σx . Choosing a basis for M ′, we find an integral point of X0

q,n in the same GLn-orbit as x . �

Lemma 4.5. For any positive integer m, and any element λ of O×L , there is an element gm,λ of GLm(L),
with unit eigenvalues, such that gm,λ Jm,λq g−1

m,λ = J q
m,λ, where Jm,λ is the unipotent Jordan block of size m.

Proof. The matrices Jm,λq and J q
m,λ are regular with the same eigenvalues, hence conjugate by some

g′ ∈GLm(L). Since Jm,λq is contained in a unique Borel subgroup of GLm (namely, the standard one), the
same is true of Jm,λq . Thus g′ normalizes the standard Borel, so g′ is upper triangular. The eigenvalues
of g′ are thus given by its diagonal entries g′1, . . . , g′m . Comparing the (i, i + 1) entries of J q

m,λ and Jm,λq

we find that g′i+1/g′i = λ
q−1q. In particular, multiplying g′ by a suitable scalar we may assume g′ has

integral eigenvalues, as desired. �

Proposition 4.6. The images of the integral points of X0
q,n are dense in X0

q,n .

Proof. Fix a point (Frx , σx) of X0
q,n . After conjugating σx appropriately we may assume that σx is in

Jordan normal form (and thus in particular has integral entries, since we have shown that the eigenvalues
of σx are roots of unity). Moreover, since σx is conjugate to its q-th power, for any eigenvalue λ of σ there
is a size-preserving bijection between the Jordan blocks of σx of eigenvalue λ and those of eigenvalue λq.
Let (mi , λi ) denote the size and eigenvalue of the i-th Jordan block of σx . Then we can find a permutation
matrix w such that wσxw

−1 is also in Jordan normal form, but where the i-th Jordan block is of size mi

with eigenvalue λq
i . Let g be the block diagonal matrix whose i-th block is the matrix gmi ,λi from the

above lemma. Then gwσx(gw)−1
= σ

q
x . Moreover gw has unit eigenvalues, as some power of gw is
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block diagonal with blocks given by powers of the matrices gmi ,λi . Thus by Lemma 4.4 we can find an
integral point (Fr′x , σ

′
x) of X0

q,n in the GLn-orbit of the point (gw, σx).
Now consider the condition g′σ ′x = σ

′
x g′, for arbitrary matrices g′. This is a linear condition on g′ with

coefficients in OL . The scheme parametrizing such g′ is not quite a vector space scheme over OL (it need
not be flat over OL ), but the closure of its general fiber is such a scheme. Let U be the open subscheme
of this closure consisting of invertible g′. Then U contains the identity in particular, so its special fiber is
nonempty. However, in an open subset of a vector space scheme over OL whose special fiber is nonempty,
the OL -points form a dense subset. Thus integral points are dense in U.

On the other hand, the points (Fr′x u, σ ′x), as u runs over the integral points of U, are all integral points
of X0

q,n , and (since integral points of U are dense in U ) their closure is the set of all points (Fr′y, σ
′
x)

in X0
q,n . Conjugating by integral points of GLn , which are clearly dense in GLn , we find that the closure

of the integral points contains the entire locus of points (Fr′′x , σ
′′
x ) with σ ′′x conjugate to σx . Since σx was

chosen arbitrarily the result follows. �

Corollary 4.7. The ring Rq,n is `-adically separated; that is, the intersection of the ideals `i Rq,n is zero.

Proof. Let f be an element of Rq,n that is divisible by `i for all i . Then, for any integral point x : Rq,n→OL ,
the image x( f ) is divisible by `i for all i and is therefore zero. In other words, f vanishes on a dense
subset of X0

q,n . Since X0
q,n is reduced, f is zero. �

Now fix a Frobenius element F̃r in WF , and a topological generator σ̃ of the quotient IF/I (`)F . Let t`
be the isomorphism of IF/I (`)F with the additive group of Z` that takes σ̃ to 1. By Corollary 4.3, for
some positive integer a the matrix σ `

a
in GLn(Rq,n) is unipotent; that is, its characteristic polynomial is

(X − 1)n . The following lemma allows us to make sense of (σ `
a
)b for any b ∈ Z`:

Lemma 4.8. Let R be a flat, `-adically separated Z`-algebra, and M ∈ GLn(R) such that (M − 1)n = 0.
Then there exists a unique `-adically continuous homomorphism φM : Z`→ GLn(R) such that for all
b ∈ Z, φM(b)= Mb.

Proof. Consider the power series exp t log(1+ X) in Q[t][[X ]], and let pi (t) be the coefficient of X i

in this power series. For any i , and any integer b, Let Ni be the (i + 1) by (i + 1) Jordan block with
eigenvalue zero; then pi (b) is the upper right entry of (1+ Ni )

b, and is thus an integer. In particular
each pi is a Z`-valued function on Z`. Given M as above, and t ∈ Z`, we may thus define φM by

φM(t)= 1+ p1(t)(M − 1)+ · · ·+ pn−1(t)(M − 1)n−1,

and it is clear that this has the claimed properties. �

(Recall that for an `-adically separated ring A, and a locally profinite group H, a representation
ρ : H → GLn(A) is `-adically continuous if, for all positive integers i , the preimage of the subgroup
Id+`i Mn(A) of GLn(A) is open in H.)

We will henceforth write (σ `
a
)b for φ(σ `a )(b), given b ∈ Z`.
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We thus have an `-adically continuous representation ρF,n :WF → GLn(Rq,n) defined by

ρF,n(F̃riw)= Fri σ j (σ `
a
)b

for any w ∈ IF and any j ∈ Z, b ∈ Z` such that j + `ab = t`(w). Note that, by the above lemma, this is
the unique `-adically continuous representation that takes F̃r to Fr and σ̃ to σ .

The pair (Rq,n, ρF,n) has the following universal property, which is easily seen to characterize the pair
up to isomorphism:

Proposition 4.9. For any finitely generated, `-adically separated W (k)-algebra A, and any framed,
`-adically continuous representation ρ : WF/I (`)F → GLn(A), there is a unique map: Rq,n → A such
that ρ is the base change of ρF,n .

Proof. Given ρ, we have a pair of matrices (ρ(F̃r), ρ(σ̃ )) in GLn(A), satisfying

ρ(F̃r)ρ(σ̃ )ρ(F̃r)−1
= ρ(σ̃ )q ,

and hence a map Sq,n → A. Moreover, since the restriction of ρ to IF factors through IF/I (`)F and is
`-adically continuous, the eigenvalues of ρ(σ̃ ) are `-power roots of unity. Thus the map Sq,n→ A factors
through Rq,n and the result follows. �

If we regard the K-points of X0
q,n as framed representations of WF/I (`)F , then one can show:

Proposition 4.10. Let x be a K-point of X0
q,n . Then there is a point y in the closure of the GLn-orbit of x

such that the representation ρy is semisimple.

Proof. Replacing x with a point in the same GLn-orbit, we may assume that the framing on ρx is such
that ρx is block upper triangular, with block sizes n1, . . . nr , and that for 1≤ i ≤ r , the restriction ρi of ρx

to the i-th diagonal block is irreducible. Let M be the block diagonal matrix whose i-th block is given
by t i times the ni by ni identity matrix, for some parameter t . Then the limit, as t approaches zero, of
Mρx M−1 exists and is semisimple. �

We will later need the following observation about the representation ρF,n .

Proposition 4.11. As x varies over the K-points of X0
q,n , the restriction of ρss

x to IF is constant on
connected components of X0

q,n ×W (k)K.

Proof. The restriction of ρss
x to IF is determined by the characteristic polyomial of σx ; since the eigenvalues

of σx have bounded `-power order there are only finitely possible characteristic polynomials of σx . �

5. The inertial subalgebra of Sq,n

Our next goal is to study the finite rank W (k)-subalgebra of Sq,n generated by the coefficients of the
characteristic polynomial of σ . Consider the map

W (k)[r1, . . . , rn, r−1
n ] → Sq,n

that takes ri to the coefficient of Xn−i in this characteristic polynomial.
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By the theory of symmetric functions, for 1≤ i ≤ n there are unique polynomials Pi,q in the variables
r1, . . . , rn with the following property: for all t1, . . . , tn ∈ K, define r1, . . . , rn ∈ K by the identity

(X − t1) · · · (X − tn)= Xn
+ r1 Xn−1

+ r2 Xn−2
+ · · ·+ rn.

Then the Pi,q are the unique polynomials satisfying

(X − tq
1 ) · · · (X − tq

n )= Xn
+ P1,q(r1, . . . , rn)Xn−1

+ · · ·+ Pn,q(r1, . . . , rn).

Since σ is conjugate to its q-th power, for 1≤ i ≤ n the element Pi,q(r1, . . . , rn)− ri lies in the kernel
of the map W (k)[r1, . . . , rn, r−1

n ] → Sq,n . Let Iq,n denote the ideal of W (k)[r1, . . . , rn, r−1
n ] generated

by the Pi,q(r1, . . . , rn)− ri , and let Bq,n denote the quotient W (k)[r1, . . . , rn, r−1
n ]/Iq,n . We will show

that in fact the map Bq,n→ Sq,n is injective, and that moreover its image in Sq,n is saturated.
We will now realize Bq,n as a quotient of Sq,n in a natural way. We are grateful to Jack Shotton for

making us aware of the following construction, which is adapted from Proposition 7.10 in [Shotton 2018].
(Shotton uses a slightly different form for the matrix σ , that is less convenient for our purposes, but the
arguments are otherwise exactly analogous.)

Let Y ⊆ Spec Sq,n denote the locus on which σ has the form
0 0 0 . . . 0 −rn

1 0 0 . . . 0 −rn−1

0 1 0 . . . 0 −rn−2
...

...
...

0 0 0 . . . 1 −r1

 .

(that is, on which σ is the “companion matrix” of the polynomial Xn
+ r1 Xn−1

+ · · · + rn .) We may
embed Y as an open subscheme of the scheme Y ′ parametrizing pairs of matrices (Fr, σ ) such that σ is
invertible of the above form, the characteristic polynomial of σ is equal to that of σ q, and Fr σ = σ q Fr.
Then Y is simply the open subscheme of Y ′ on which Fr is invertible. The scheme Y ′ then maps to
Spec Bq,n via the map that takes (Fr, σ ) to the tuple (r1, . . . , rn).

We have a map Y ′ → Spec Bq,n ×W (k) An
W (k) that takes (Fr, σ ) to the point (r1, . . . , rn,Fr(e1)),

where e1, . . . , en is the standard basis for W (k)n . In fact, one then has:

Proposition 5.1. The map Y ′→ Spec Bq,n ×W (k) An
W (k) is an isomorphism.

Proof. We describe an inverse map. Given (r1, . . . , rn, v) in Spec Bq,n ×W (k) An
W (k) we associate the

pair (Fr, σ ), where σ has the above form with −rn, . . . ,−r1 in the right column, and Fr is defined by
Fr ei = σ

(i−1)qv for 1≤ i ≤ n. One verifies easily that for 1≤ i ≤ n− 1, we have Fr σ(ei )= σ
q Fr(ei ).

On the other hand, we have

σ q Fr en −Fr σen = ((σ
q)n + r1(σ

q)n−1
+ · · ·+ rn)v = Pσ (σ q)v,

where Pσ is the characteristic polynomial of σ . The relations on B̃q,n guarantee that Pσ = Pσ q , so
Pσ (σ q)v = 0 by Cayley–Hamilton.
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We thus have a well-defined map that is clearly a right inverse to the map constructed above. To see
that it is also a left inverse, note that if Fr σ = σ q Fr, and Fr(e1)= v, then we must have

Fr ei = Fr σ(ei−1)= σ
q Fr ei−1

so by induction Fr is determined by Fr(e1). �

Lemma 5.2. Let B be a finite rank W (k)-algebra, and V an open subset of Spec B ×W (k) An
W (k) such

that the projection V → Spec B is surjective. Then the map from B to OV induced by the projection of V
onto Spec B is injective. If moreover, B is flat over W (k), then the image of B in OV is saturated.

Proof. For each closed point x of Spec B, there exists an element ax of kn such that (x, ax) lies in V.
Lift ax to a W (k)-point ax of An

W (k), and let Vx = V ∩ (Spec B ×W (k) ax). Then the projection of V to
Spec V identifies Vx with an open subset of Spec B, and as x varies, the Vx cover Spec B. If b is an
element of B that maps to zero in OV , then it vanishes in particular on each Vx and hence on Spec B, so
injectivity is clear.

Now consider an element b of B/`B, and suppose B maps to zero in OV /`OV . Then b maps to zero
in OVx/`OVx for all x , but since the Vx are an open cover of Spec B this means b is zero in B/`B. �

We can now show:

Proposition 5.3. The map Bq,n→ Sq,n is injective with saturated image.

Proof. We first show that the projection map from Y to Spec B is surjective. Indeed, for any algebraically
closed field L that is a W (k)-algebra, and any L-point (r1, . . . , rn) of Spec B, the corresponding σ is a
regular element of L whose characteristic polynomial is equal to that of σ q. In particular the eigenvalues
of σ are roots of unity of order prime to q . It is then clear, by considering the Jordan normal form of σ ,
that σ q is also regular. Over L any two regular matrices with the same characteristic polynomial are
conjugate, so there exists an element Fr of GLn(L) that conjugates σ to σ q. Then (Fr, σ ) is an L-point
of T mapping to (r1, . . . , rn).

The lemma now shows that the map from Bq,n to OY is injective; since this map factors through Sq,n

we see that Bq,n embeds in Sq,n . Thus Bq,n is flat over W (k), and the lemma then shows that its image
in OY is saturated. Once again using that the map from Bq,n to OY factors through Sq,n we see that Bq,n

is also saturated in Sq,n . �

The map Bq,n→ Sq,n induces a map Bq,n,1→ Rq,n , where Bq,n,1 is the direct factor of Bq,n whose
K-points correspond to conjugacy classes whose reduction modulo ` is the identity. Proposition 4.11,
together with Proposition 5.3, shows that Bq,n,1 is precisely the subalgebra of Rq,n consisting of elements
whose value at a K-point x of Spec Rq,n depends only on the semisimplification of the restriction
of ρx to IF .
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6. The symmetrizing form on Bq,n

We now relate Bq,n with the endomorphism ring Eq,n of the Gelfand–Graev representation. We first work
over K; since both Bq,n and Eq,n are reduced, constructing an isomorphism of Bq,n ⊗K with Eq,n ⊗K
amounts to constructing a bijection on their K-points.

Recall that the K-points of Spec Eq,n are in bijection with the isomorphism classes of irreducible
generic representations of G and therefore (via Deligne–Lusztig restriction) with the equivalence classes
of pairs (w, ϕ) where w is an element of the Weyl group of G and ϕ : Tw→ K× is a character. On the
other hand, a K-point of Spec Bq,n is represented by an invertible diagonal matrix, with entries in K,
that is conjugate to its q-th power; that is, it is an invertible diagonal matrix t such that there exists a
permutation matrix w with tw = tq.

In order to construct a natural bijection between these two sets we must fix some choices. First, we iden-
tify GLn(K)with the Langlands dual group Ĝ of G, with (diagonal) maximal torus T̂ . Second, we choose a
topological generator σ̃ of the tame inertia group IF/PF of F. Local class field theory gives an isomorphism

IF/PF ∼= lim
←−−

F×qn
∼= lim
←−−

Hom
(

1
qn − 1

Z/Z, F×q

)
,

where the first limit is over the norm maps, and the transition maps in the second limit, for m dividing n,
are given by “multiplication by (qn

− 1)/(qm
− 1)”.

On the other hand we have a chain of natural isomorphisms,

Hom((Q/Z)(p), F×q )= Hom
(

lim
−−→

(
1

qn − 1
Z/Z

)
, F×q

)
∼= IF/PF ,

so our choice of σ̃ gives us a natural map (Q/Z)(p)→ F×q that is easily seen to be an isomorphism.
Now fix a w in the Weyl group W (G); we identify W (G) with the group of permutation matrices in

GLn(K). Let X be the character group of the torus T w of G; then X is dual to the character group X ′ of
the group of diagonal matrices in GLn(K). We have an isomorphism T w(Fq)∼=Hom(X/(Frq −1)X, F×q ),
where Frq is the q-power Frobenius. If we denote by µ(p) the prime-to-p roots of unity in K×, then we
have an isomorphism

Hom(Tw, µ
(p))∼= X/(Frq −1)X ⊗Hom(F×q , µ

(p)).

Noting that Frq acts on X by qw, and applying the duality isomorphism

X/(qw− 1)X ∼= Hom(X ′/(qw− 1)X ′, (Q/Z)(p))

as well as our isomorphism of (Q/Z)(p) with F×q arising from our choice of s, we see that Hom(Tw, µ
(p))

is naturally isomorphic to Hom(X ′/(qw− 1)X ′, µ(p)). An element of the latter is precisely a diagonal
matrix t , with entries in K, such that (tw)q = t . We let Tw−1

q denote the set of such matrices.

This construction associates to every w, and every character ϕ : Tw→ K×, an element of Tw−1

q . One
easily verifies that it sends equivalent pairs (T w, ϕ) and (T w′, ϕ′) to conjugate diagonal matrices, and
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further induces a bijection between K-points of Spec Eq,n and those of Spec Bq,n . We thus obtain an
isomorphism of Eq,n ⊗K with Bq,n ⊗K. This isomorphism is Gal(K/K)-equivariant and thus descends
to an isomorphism of Eq,n

[1
`

]
with Bq,n

[ 1
`

]
.

Remark 6.1. The choices made in defining the bijection above means that this bijection is compatible
with local Langlands in the following sense: let π be an irreducible depth zero generic representation
of G over K, and let ρ be its Langlands parameter. If K1 denotes the kernel of the map G(OG)→ G(Fq),
then πK1 is an irreducible generic K-representation of G, and hence gives rise to a K-point of Spec Eq,n .
On the other hand, the conjugacy class of the semisimplification of ρ(σ) gives a K-point of Spec Bq,n .
The bijection constructed above identifies these two points for every choice of π and ρ.

Since Bq,n and Eq,n are `-torsion free, we may regard them as W (k)-lattices in Bq,n
[ 1
`

]
∼= Eq,n

[ 1
`

]
.

A priori it is not clear that either lattice is contained in the other. We will show later that in fact these
lattices coincide, but this is quite difficult — it will emerge from the same inductive argument that proves
both the weak and strong conjecture in Section 10. For the moment, it will suffice to prove something
much weaker.

Recall that one has a symmetrizing form θ : Eq,n→W (k); the inclusion Bq,n→ Eq,n
[ 1
`

]
allows us to

regard θ as a map from Bq,n to K. The goal of the remainder of this section is to prove:

Theorem 6.2. The map θ : Bq,n→ K takes values in W (k).

As a corollary, we immediately deduce

Corollary 6.3. Suppose that the isomorphism Bq,n
[ 1
`

]
∼= Eq,n

[ 1
`

]
identifies Eq,n with a subring of Bq,n .

Then this isomorphism identifies Eq,n with Bq,n .

Proof. (see Lemma 3.8 of [Bonnafé and Kessar 2008]) If Eq,n is contained in Bq,n , then θ(be) lies in
W (k) for all b ∈ Bq,n , e ∈ Eq,n; thus Bq,n is contained in the dual lattice to Eq,n with respect to θ . But
since θ is a symmetrizing form on Eq,n , this dual lattice is Eq,n . Thus Bq,n and Eq,n must coincide inside
Eq,n

[1
`

]
. �

In order to prove Theorem 6.2 we compute the values of θ on a W (k)-spanning set for Bq,n . By
definition we have a surjection

W (k)[X ′]Sn =W (k)[r1, . . . , rn, r−1
n ]

Sn → Bq,n

with kernel Iq,n . For each character λ ∈ X ′, let Nλ denote the subgroup of Sn normalizing λ. Then the
elements

rλ =
1

#Nλ

∑
w∈Sn

λw

form a W (k)-basis of W (k)[X ′]Sn , as λ runs over the elements of X ′, so their images in Bq,n (which we
also, slightly abusively, denote by rλ) span Bq,n over W (k).
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Lemma 6.4. For λ ∈ X ′, let Mλ denote the number of w ∈ Sn such that the restriction of λ to the
subgroup Tw

q of Hom(X ′,K×) is trivial. Then we have

θ(rλ)=
Mλ

#Nλ
.

Proof. Let x be a K-point of Spec Bq,n , and let ex denote the element of Bq,n ⊗K that takes the value 1
at x and zero at all other K-points of Spec Bq,n . Our construction of the isomorphism Eq,n⊗K∼= Bq,n⊗K,
together with Proposition 2.4, shows that

θ(ex)=
1
n!

∑
w∈Sn

N (w−1, x)

#Tw(Fq)
=

1
n!

∑
w∈Sn

N ′(w, x)
#Tw−1

q
,

where N ′(w, x) denotes the number of elements of Tw
q in the equivalence class corresponding to x . It

follows that we have

θ(rλ)=
1
n!

∑
x

rλ(x)
∑
w∈Sn

N ′(w, x)
#Tw−1

q
.

Since rλ(t) depends only on the equivalence class of t ∈ Tw
q , we can rewrite this as

θ(rλ)=
1
n!

∑
w∈Sn

1
#Tw−1

q

∑
t∈Tw−1

q

1
#Nλ

∑
v∈Sn

λv(t).

Changing the order of the summation, we obtain

θ(rλ)=
1

n!#Nλ

∑
v∈Sn

∑
w∈Sn

1
#Tw−1

q

∑
t∈Tw−1

q

λv(t),

and the innermost sum is equal to 0 if λv is nontrivial on Tw−1

q and equal to #Tw−1

q otherwise. Thus the
sum over w is equal to Mλv which is equal to Mλ. We thus have θ(rλ)= Mλ/#Nλ as claimed. �

In light of this result, the proof of Theorem 6.2 is reduced to the following result:

Lemma 6.5. For any λ ∈ X ′, the order of Nλ divides Mλ.

It is clear that the set of w such that λ is trivial on T q
w is stable under conjugation by elements of Nλ,

but of course this action is not faithful, so the divisibility is not immediate.
We begin by observing that Nλ is the Weyl group of the Levi subgroup of GLn centralizing λ. This

Levi corresponds to a partition of the {1, 2, . . . , n} into subsets, and Nλ is then the subgroup of Sn that
preserves this partition. In particular if w lies in Nλ, then any cycle occurring in the cycle decomposition
of w also lies in Nλ.

Now let Nλ,w denote the centralizer of w in Nλ. Let O(w) be the partition of the set {1, . . . , n}
into orbits under the action of w; then conjugation by Nλ,w permutes the orbits of w, yielding a map
Nλ,w→ Aut(O(w)), where Aut(O(w)) is the group of permutations of O(w).
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Definition 6.6. We will say that w is Nλ-minimal if the map Nλ,w→ Aut(O(w)) is injective.

Note that the property of being Nλ-minimal is stable under Nλ-conjugacy. Given an arbitrary Nλ-
conjugacy class in Sn , we will associate an Nλ-minimal conjugacy class in a natural way. On the level
of specific permutations w this construction will depend not just on w but on a particular choice of
cycle representation for w. Here by a “cycle representation” of w we mean an unordered collection of
expressions of the form (x1 . . . xr ), with x1, . . . , xr distinct elements of {1, . . . , n}, that correspond to a
disjoint set of cycles whose product is w. To give a cycle representation of w is equivalent to specifying,
for each orbit x of w on {1, . . . , n}, a distinguished element x1 of the orbit x .

Now fix w ∈ Sn , along with a cycle representation of w, and let K be the kernel of the map from Nλ,w
to Aut(O(w)). Then K acts on each orbit O(w); such an orbit x comes from a cycle (x1 . . . xr ) in our
chosen cycle representation of w. Since K centralizes w, it must “cyclically permute” the elements of
this orbit; that is, the action of K factors through a map K → Z/rZ, where s ∈ Z/rZ acts by sending
each xi to xi+s , and the indices are considered modulo r . Let m be the order of the image of the
map K → Z/rZ, and set s = r

m . Let xmin be the permutation given by the product of the m disjoint
cycles (x1 . . . xs)(xs+1 . . . x2s) . . . (xr−s+1 . . . xr ). We then define wmin to be the product, over all cycles
x ∈O(w), of the permutations xmin. It is clear from the construction that ifw is Nλ-minimal thenwmin

=w.
This construction depends on our choice of cycle representation of w; in particular if we represented

the cycle x = (x1 . . . xr ) as (xt+1 . . . xt+r ) instead then we would obtain the product of cycles

(xt+1 . . . xt+s)(xt+s+1 . . . xt+2s) . . . (xr+t−s+1 . . . xr+t)

instead of the product
(x1 . . . xs)(xs+1 . . . x2s) . . . (xr−s+1 . . . xr ).

Note that the former is Nλ-conjugate to the latter, via the permutation that, for each 0≤ a < r
s and each

1 ≤ b ≤ s, takes xas+b to xt+as+c, where c is the unique integer between 1 and s such that as + b is
congruent to as+ t+ c modulo s. However, the two permutations are of course not equal. Thus changing
the cycle representation of w conjugates wmin by an element of Nλ. In particular the Nλ-conjugacy class
[wmin

] depends only on w and not its cycle representation.
On the other hand, if we fix a v ∈ Nλ, and a cycle representation of w, then conjugating this cycle

representation by v gives a cycle representation of vwv−1. Then if we compute wmin and (vwv−1)min

using these cycle representations it is easy to see that (vwv−1)min
= vwminv−1. In particular [wmin

]

depends only on the Nλ-conjugacy class of w.

Lemma 6.7. For any w ∈ Sn , wmin is Nλ-minimal.

Proof. Suppose for a contradiction that wmin is not Nλ-minimal, and let K be the kernel of the map
Nλ,wmin→Aut(O(wmin)). Choose an element k of K other than the identity. By definition k preserves ev-
ery orbit in O(w) and acts nontrivially on at least one such orbit x=(x1 . . . xr ); we have an s such that kxi=

xi+s for all i . Let k ′ denote the permutation that sends xi to xi+s for all i and fixes all other elements. Then
k ′ lies in Nλ, since k does and k ′ is a product of cycles of k. Moreover it is clear that k ′ commutes withwmin.
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Our construction of wmin from w implies that the wmin-cycle x is contained in a w-cycle x ′ of the form
(x1 . . . xr ′) for some multiple r ′ of r , and that the cycles (xr+1 . . . x2r ), etc. are cycles of wmin. Let k ′′

be the permutation that takes xi to xi+s for all 1≤ i ≤ r ′; then it is clear that k ′′ centralizes w. We will
show that in fact k ′′ lies in Nλ; this gives a contradiction as then we have an element of Nλ,w that acts by
a shift of length s on the cycle x ′, meaning that in passing from w to wmin the cycle x ′ should decompose
into cycles of length dividing s, and not cycles of length r as we have supposed.

To show that k ′′ lies in Nλ it suffices to show that for all i , xi+s and xi lie in the same Nλ-orbit. For 1≤
i≤r−s this is clear since k ′ lies in Nλ. On the other hand, since x ′ decomposes into cycles of length r in the
cycle decomposition ofwmin, there is an element of Nλ that carries xi to xi+r for all i . The claim follows. �

The association w 7→ [wmin
] defines an equivalence relation ∼ on Sn , such that w ∼ v if, and only if,

[wmin
] = [vmin

]. It is clear that each equivalence class for ∼ is a union of Nλ-orbits. We will show that in
fact each equivalence class has cardinality equal to #Nλ. We begin by fixing an Nλ-minimal w. Then we
have an injection Nλ,w→ Aut(O(w)). We will say two orbits x, x ′ in O(w) are Nλ,w-equivalent if there
is an element of Nλ,w that takes x to x ′. We then have:

Lemma 6.8. Suppose w is Nλ-minimal, and let v be a permutation of O(w) such that for all x ∈ O(w),
vx is Nλ,w-equivalent to x. Then there is a unique element ṽ of Nλ,w whose image in Aut(O(w)) is v. In
particular, Nλ,w is a product of symmetric groups.

Proof. Uniqueness is clear from the definition of Nλ-minimality. For existence, fix an orbit x ∈ O(w).
Then there is an element v′x of Nλ,w that takes x to vx . We can then define ṽ to be the bijection on
{1, 2, . . . , n} that agrees with v′x on x for all orbits x . Note that for all 1≤ i ≤ n, we have ṽ(i)= v′x(i)
for x the w-orbit containing i ; since v′x is in Nλ we have λi = λv′x (i) = λṽ(i), so ṽ lies in Nλ. �

We now fix a particular Nλ-minimal w, and a particular cycle representation of w. Since w is
Nλ-minimal we may (and do) choose this cycle representation so that it is preserved by the action of Nλ,w.
Then given any v ∈ Nλ,w, define w̃(v) to be the permutation constructed as follows: for orbit of v on O(w),
choose an x representing that orbit. The orbit x then corresponds to a term (x1 . . . xr ) in our chosen cycle
representation of w. Let w̃(v)x be the permutation (x1 . . . xr vx1 . . . vxr . . . v

d−1x1 . . . v
d−1xr ), where d is

the order of the v-orbit of x . Let w̃(v) be the product, over a set of representatives x for the orbits of v on
O(w), of w̃(v)x . Note that as a permutation, w̃(v) is independent of our choices of representatives x but
does depend on our choice of cycle representation ofw. On the other hand, our initial choice of cycle repre-
sentation of w, together with the choices of representatives x , gives rise to a cycle representation of w̃(v).

Lemma 6.9. Let u be an element of Nλ. Then u conjugates w̃(v) to w̃(v′) if , and only if , u normalizes w
and conjugates v to v′. Moreover, we have w̃(v)min

= w.

Proof. First assume that u normalizes w. Then u actually fixes our chosen cycle representation of w,
since w is Nλ-minimal. It is then easy to see from the construction that w̃(uvu−1)= uw̃(v)u−1.

Conversely, assume u conjugates w̃(v) to w̃(v′). Let x = (x1 . . . xr ) be a cycle in our chosen represen-
tation of w, such that the induced cycle of w̃(v) is (x1 . . . xr vx1 . . . vxr . . . v

d−1x1 . . . v
d−1xr ). Since u
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conjugates w̃(v) to w̃(v′)the cycle (ux1 . . . uxr uvx1 . . . uvxr . . . uvd−1x1 . . . uvd−1xr ) is a cycle of w̃(v′).
This cycle contains a cycle (y1 . . . yr ′) of our chosen representation of w. Thus, by construction of w̃(v′),
there is an s ∈ Z/drZ such that the sequence

ux1, . . . uxr , uvx1, . . . uvxr , . . . uvd−1x1, . . . uvd−1xr

coincides with the cyclic shift by s of the sequence

y1, . . . yr ′, vy1, . . . vyr ′, . . . v
d ′−1 y1, . . . v

d ′−1 yr ′,

where dr = d ′r ′.
Since u and v both lie in Nλ, it follows that for all 1 ≤ i ≤ r , and all integers j, xi lies in the same

Nλ-orbit as yi+s+ jr ′ , where the indices are taken modulo r . Let a = (r, r ′). Then for all i , xi lies in the
same Nλ-orbit as xi+a . Thus the permutation that takes xi to xi+a for all i and fixes all other elements lies
in Nλ. This permutation clearly normalizes w and fixes all orbits of w, so must be the identity since w is
Nλ-minimal. Thus a = r , so r divides r ′. Similar reasoning shows that r ′ divides r , so in fact r equals r ′.

Now for all 1≤ i ≤ r , xi is in the same Nλ-orbit as yi+s ; there is thus an element of Nλ,w that carries
the cycle (x1 . . . xr ) of w to the cycle (y1 . . . yr ). Since we chose our cycle representation of w to be
Nλ,w-stable, there is also an element of Nλ,w that takes xi to yi for all i . There is thus an element of
Nλ,w that takes xi to xi+s for all i , and fixes all other elements of {1, . . . , n}. Since w is minimal, this is
impossible unless r divides s.

We have thus established that u takes the cycle x = (x1 . . . xr ) of w to the cycle (ve y1, . . . , v
e yr )

for some e, which is also a cycle of w. Since x was arbitrary, u preserves the cycles of w and thus
normalizes w. But now we have w̃(uvu−1)= uw̃(v)u−1

= w̃(v′), and it is easy to see that this implies
that uvu−1

= v′.
For the final claim, let x = (x1 . . . xr ) be a cycle in our chosen representation of w, contained in

the cycle (x1 . . . xrvx1 . . . vxr . . . v
d−1x1 . . . v

d−1xr ) of w̃(v). The subgroup of Nλ,w preserving the
latter cycle acts on it by cyclic shifts, and minimality of w implies that r divides the length of any
of these shifts. On the other hand it is clear that the permutation that agrees with v on the set
{x1, . . . , xr , vx1, . . . , vxr , . . . , v

d−1x1, . . . v
d−1xr } and is the identity elsewhere induces a shift of length r

on this cycle. Our construction of w̃(v)min thus demands that we break this cycle of w̃(v) into cycles of
length r . Doing this for all cycles of w̃(v) recovers w. �

We now show:

Lemma 6.10. Suppose w is Nλ-minimal and w′ ∼ w. Then there exists v ∈ Nλ(w) such that w′ is
Nλ-conjugate to w̃(v).

Proof. We first construct a cycle representation of w′ such that the induced cycle representation of (w′)min

is Nλ,(w′)min-invariant. To do this, first fix any orbit of w′ and choose a representation of the corresponding
cycle; we then obtain representations of one or more cycles in (w′)min, all of which are Nλ-conjugate. We
then proceed inductively: for each orbit x of w′, choose a cycle representation arbitrarily and consider
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the resulting cycles of (w′)min. If these cycles are not Nλ-conjugate to other cycles of (w′)min that have
already been constructed, there is nothing further to do and we may proceed to the next orbit of w′. If they
are conjugate to cycles we have already constructed, it need not be the case that the corresponding cycle
representations are Nλ-conjugate to those already extant (they may differ by a cyclic shift). However,
adjusting our choice of cycle representation of x by a suitable shift we may arrange that this holds.
Proceeding inductively we arrive at a (w′)min and an Nλ,(w′)min-invariant cycle representation of it.

Now for each cycle x of w′, our chosen decompositions give x = (x1 . . . xrs) in w′, for some integers r, s
such that the corresponding cycles of (w′)min are (x1 . . . xr ), (xr+1 . . . x2r ), etc. Let v′x be the permutation
that takes xi to xi+r for all i (indices modulo rs); then v′x lies in Nλ. Taking v′ to be the product over the
orbits x of the v′x we obtain an element of Nλ,(w′)min such that

w′ = (̃w′)min(v′).

Now if w′ ∼ w then there exists a u ∈ Nλ such that u(w′)minu−1
= w; taking v = uv′u−1 we find that

uw′u−1
= w̃(v). �

Corollary 6.11. Supposew is Nλ-minimal. The number ofw′ such thatw′∼w is equal to the order of Nλ.

Proof. The previous lemmas show that the set of such w′ is the union of the Nλ-conjugacy classes of w̃(v),
as v runs over a set of representatives for the conjugacy classes in Nλ,w. For each such v the size of its
Nλ-conjugacy class is equal to #Nλ/#Nλ,v. For each v, the index of Nλ,w in Nλ,v is equal to the size of
the Nλ,w-conjugacy class Cv of v. Thus the total number of such w′ is the sum

#Nλ
∑
v

#Cv
#Nλ,w

which is clearly equal to #Nλ. �

We now relate the equivalence ∼ to Mλ. Specifically, we observe:

Proposition 6.12. Suppose that w ∼ w′. Then λ is trivial on Tw
q if , and only if , λ is trivial on Tw′

q .

Proof. It suffices to show this in the case where w′ = wmin (for some chosen cycle representation of w),
as we can deduce any other case from this one and Nλ-conjugacy.

Let Sλ be the set of Nλ-orbits on {1, . . . , n}, and f : {1, . . . , n}→ Sλ the map that sends an element to
its Nλ-orbit. There exists a map g : Sλ→ Z such that on the diagonal matrix t with entries t1, . . . , tn , we
have λ(t)=

∏
i tg( f (i))

i .
An element of Tw

q is a diagonal matrix whose entries ti satisfy tw(i) = tq
i for all i . In particular, for

each i , ti is a (qdi−1)-st root of unity, where di is the size of the w-orbit of i . In particular, λ is trivial
on Tw

q if, and only if, for all i the sum

6i =

di−1∑
j=0

q j g( f (w j (i)))

is divisible by qdi − 1.
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In wmin the w-orbit of i breaks up as a union of Nλ-conjugate orbits, each of size r . In particular for
each j, the elements w j (i) and w j+r (i) lie in the same Nλ-orbit, so g(w j (i))= g(w j+r (i)). This means
that the sum 6i can be rewritten as

6i = (1+ qr
+ · · ·+ qdi−r )

r−1∑
j=0

q j g( f (w j (i))).

In particular 6i is divisible by qdi − 1 if, and only if, the sum

r−1∑
j=0

q j g( f (w j (i)))

is divisible by qr
− 1. But this is precisely the condition for λ to be trivial on wmin. �

From this it follows that the quotient Mλ/#Nλ counts the number of Nλ-minimal orbits of w in Sn such
that λ is trivial on Tw

q . In particular this quotient is an integer. This completes the proof of Lemma 6.5
and hence of Theorem 6.2.

7. Deformation theory

In this section we examine the local deformation theory of a representation ρ : G F → GLn(k). As in
previous sections, let I (`)F denote the prime to ` part of the inertia group of F, and fix a topological
generator σ̃ of IF/I (`)F and a Frobenius element F̃r in WF/I (`)F .

We first recall some results of Clozel, Harris and Taylor:

Proposition 7.1 [Clozel et al. 2008, Lemmas 2.4.11–2.4.13]. Let τ be an irreducible representation
of I (`)F over k, and let Gτ be the subgroup of G F that preserves τ under conjugation. Then

(1) τ lifts uniquely to a representation τ of I (`)F over W (k),

(2) τ extends uniquely to a representation of IF ∩Gτ of determinant prime to `,

(3) τ extends (nonuniquely) to a representation of Gτ .

If we fix a representation τ of Gτ as in part (3), we obtain an action of Gτ/I (`)F on HomI (`)F
(τ, ρ) for any

G F -module ρ. Moreover, we have a direct sum decomposition of G F -modules,

ρ ∼=
⊕
[τ ]

IndG F
Gτ
[HomI (`)F

(τ, ρ)⊗ τ ],

where τ runs over G F -conjugacy classes of irreducible representations of I (`)F over k.

Fix, for each G F -conjugacy class of τ , a τ as in the proposition. Suppose we are given a representation
ρA : G F → GLn(A). We then obtain a direct sum decomposition

ρA =
⊕
[τ ]

IndG F
Gτ
[HomI (`)F

(τ, ρA)⊗ τ ].
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It is clear that HomI (`)F
(τ, ρA) is a free A-module for all τ , and that the collection of Gτ -representations

HomI (`)F
(τ, ρ)A determines the representation ρA up to isomorphism.

Definition 7.2. A pseudoframing of a continuous representation ρA : G F → GLn(A) is a choice, for
each τ , of basis for each HomI (`)F

(τ, ρA). A pseudoframed deformation of a continuous representation
ρ : G F → GLn(k) (together with a chosen pseudoframing) is a lift ρA : G F → GLn(A) of ρ, together
with a pseudoframing of ρA that lifts the chosen pseudoframing of ρ.

Fix a ρ and a pseudoframing of ρ, and, for each τ , let ρτ be the Gτ -representation HomI (`)F
(τ, ρ).

Let R�ρ be the completed tensor product ⊗̂
[τ ]

R�
ρτ

of the universal framed deformation rings of the ρτ . Over each such ring we have the universal framed
deformation ρ�τ of ρτ .

Using these, we construct a representation

ρ� :=
⊕
[τ ]

IndG F
Gτ
[ρ�τ ⊗ τ ]

that has a natural pseudoframing induced by the universal framings of the representations ρ�τ . One easily
verifies that the pair R�ρ, ρ

� is a universal object for pseudoframed deformations of ρ.
For each τ , the formal group G�

ρτ
acts on Spf R�

ρτ
by “change of frame”. Let G�ρ be the product of

the G�
ρτ

. Then G�ρ acts on Spf R�ρ by “change of pseudoframing”.
For computational purposes it is often easier to work with R�ρ rather than R�

ρ , as R�ρ can be made
quite explicit. The two rings are related in a natural way: one has a ring R�,�

ρ that is universal for triples
consisting of a deformation ρ of ρ, a framing of ρ lifting that of ρ, and a pseudoframing of ρ lifting that
of ρ. Then Spf R�,�

ρ is a (split) G�ρ -torsor over Spf R�
ρ and a (split) G�

ρ -torsor over Spf R�ρ .
We immediately deduce:

Corollary 7.3. The ring R�
ρ is a reduced, `-torsion free local complete intersection.

Proof. The construction above shows that it suffices to prove the same claim with R�
ρ replaced by R�ρ .

But the latter is a completed tensor product of rings of the form R�
ρτ

, and each of these is isomorphic to
the completion of a ring of the form Rq,n (with q and n depending on τ ) at a maximal ideal. The result
thus follows from the results of Section 4. �

Moreover, we may canonically identify both the G�
ρ -invariant elements of R�

ρ and the G�ρ -invariant
elements of R�ρ with the G�

ρ ×G�ρ -invariant elements of R�,�
ρ . In particular these spaces of invariants are

naturally isomorphic.
Given a choice of framing of ρ�, we get a map R�

ρ → R�ρ . When restricted to G�
ρ -invariants this map

is the isomorphism of (R�
ρ )

G�
ρ with (R�ρ)

G�ρ constructed above. Summarizing, we have:
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Lemma 7.4. For any choice of framing of ρ�, the induced map: R�
ρ → R�ρ identifies the G�

ρ -invariant
elements of R�

ρ with the G�ρ -invariant elements of R�ρ . (In particular the image of this set of invariant
elements is saturated in R�ρ .)

8. The rings Rν

Let ρ :WF/I (`)F → GLn(k) be a representation. Then we have a corresponding map x : Rq,n→ k, with
kernel m. It follows easily from the universal property of the pair (Rq,n, ρF,n) that the completion (Rq,n)m

is isomorphic to R�ρ , and that this isomorphism is induced by the base change of ρF,n to (Rq,n)m. In other
words, Rq,n is a global object that interpolates the formal deformation rings R�ρ for ρ trivial on I (`)F .

We would like to construct similar objects for ρ whose restriction to I (`)F is nontrivial. Let us define:

Definition 8.1. An `-inertial type is a representation ν of I (`)F over k that extends to a representation of WF .

Note that (as I (`)F is a profinite group of pro-order prime to `), such a representation lifts uniquely to a
representation of I (`)F over W (k), and this lift also extends to a representation of WF . We will thus consider
an `-inertial type ν as a representation over W (k) rather than over k whenever it is convenient to do so.

Now fix an `-inertial type ν, and for each irreducible representation τ of I (`)F over k, let nτ be the
multiplicity of τ in ν (note that nτ depends only on the WF -conjugacy class of τ .) Let Wτ be the subgroup
of WF that fixes τ under conjugation, let Fτ be the fixed field of Wτ , and let qτ denote the cardinality of
the residue field of Fτ .

We define Rν to be the tensor product,

Rν :=
⊗
τ

Rqτ ,nτ ,

where τ runs over a set of representatives for the WF -conjugacy classes of irreducible representations
appearing in ν. For each τ we have a representation ρFτ ,nτ over Rqτ ,nτ , which we regard as a representation
over Rν in the obvious way.

Define the representation ρν :WF → GLn(Rν) as follows:

ρν :=
⊕
τ

IndWF
Wτ
ρFτ ,nτ ⊗ τ,

where τ runs over a set of representative for the WF -conjugacy classes of irreducible representations
appearing in ν, and for each such τ , we have chosen an extension τ of τ to a representation WF →

GLn(W (k)) as in Proposition 7.1. Note that ρν inherits a pseudoframing from the natural framings of the
ρFτ ,nτ , and that the restriction of ρν to I (`)F is given by ν.

For a map x : Rν → k, the specialization (ρν)x is a pseudoframed representation WF → GLn(k),
whose restriction to I (`)F is given by ν. This defines a bijection between k-points of Spec Rν and such
pseudoframed representations. Moreover, it follows directly from the constructions of Rν and R�(ρν)x
that the completion of Rν at the maximal ideal corresponding to x is naturally isomorphic to R�(ρν)x , in a
manner compatible with the universal family on the latter.
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Moreover, the universal property for each Rqτ ,nτ immediately yields:

Proposition 8.2. For any finitely generated, `-adically separated W (k)-algebra A, and any pseudoframed,
`-adically continuous representation ρ :WF→GLn(A) whose restriction to I (`)F is isomorphic to ν, there
is a unique map: Rν→ A such that ρ is the base change of ρν .

For each τ , the group GLnτ acts on Rqτ ,nτ . Let Gν be the product of the GLnτ ; then Gν acts on Spec Rν
by “changing the pseudoframe”.

9. Maps from Z[L,π] to Rν

Now fix a pair (L , π), where L is a Levi subgroup of GLn(F) and π is an irreducible supercuspidal
k-representation of L . The mod ` semisimple local Langlands correspondence of Vignéras [2001] attaches
to π a semisimple k-representation ρ of WF . Let ν be the restriction of ρ to I (`)F . Then ν lifts uniquely to
a W (k)-representation ν of I (`)F , and we have:

Proposition 9.1. The irreducible K-representations of GLn(F) that are objects of RepW (k)(GLn(F))[L ,π ]
correspond, via local Langlands, to the K-representations of WF whose restriction to I (`)F is isomor-
phic to ν.

Proof. This is an easy consequence of the compatibility of Vigneras’ mod ` correspondence with reduction
mod `. �

This proposition shows that for any K-point x of Spec Rν , the representation ρx corresponds, via
local Langlands (and Frobenius semisimplification if necessary) to an irreducible K-representation 5x in
RepW (k)(GLn(F))[L ,π ], and hence to a K-point of Spec Z[L ,π ]. It is a natural question to ask whether this
map is induced by a map Z[L ,π ]→ Rν . Indeed, we conjecture:

Conjecture 9.2 (weak local Langlands in families). There is a map Z[L ,π ]→ Rν such that the induced
map on K-points takes a point x of Spec Rν to the K-point of Z[L ,π ] that gives the action of Z[L ,π ] on the
representation 5x corresponding to ρx by local Langlands. (We will say such a map is compatible with
local Langlands.)

Since Rν is reduced and `-torsion free, such a map is unique if it exists. Note also that the image of
any element of Z[L ,π ] under such a map is invariant under the action of Gν , and so any such map must
factor through the subalgebra Rinv

ν of Gν-invariant elements of Rν . We further conjecture:

Conjecture 9.3 (strong local Langlands in families). There is an isomorphism Z[L ,π ] ∼= Rinv
ν such that

the composition
Z[L ,π ]→ Rinv

ν → Rν

is compatible with local Langlands.

If one completes at a maximal ideal of Rν , corresponding to a representation ρ of WF over k, and
uses Lemma 7.4 to relate the invariant elements of R�

ρ and R�ρ , one recovers Conjectures 7.5 and 7.6
of [Helm 2016b]. In particular (see Theorem 7.9 of [Helm 2016b]), Conjecture 9.2 above implies the
“local Langlands in families” conjecture [Emerton and Helm 2014, Conjecture 1.1.3].
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These conjectures should be viewed as relating “congruences” between admissible representations
(which are in some sense encoded in the structure of Z[L ,π ]) with “congruences” between representations
of WF (encoded in Rν). Since inverting ` destroys information about such congruences, one expects such
conjectures to be relatively straightforward with ` inverted. We will show that this is indeed the case.

First, note that any map
Z[L ,π ]⊗K→ Rν ⊗K

that is compatible with local Langlands is Galois equivariant, and hence descends to a map

Z[L ,π ]
[1
`

]
→ Rν

[1
`

]
compatible with local Langlands. It thus suffices to show:

Theorem 9.4. There is a map Z[L ,π ]⊗K→ Rν ⊗K compatible with local Langlands (and therefore a
corresponding map over K). Moreover, the image of this map is Rinv

ν ⊗K.

To prove this, we first work on the level of connected components. We have an isomorphism

Z[L ,π ]⊗K ∼=
∏
M,π̃

Z̃(M,π̃),

by Theorem 3.5, where (M, π̃) varies over the inertial equivalence classes of pairs that reduce modulo ` to
(L , π). Thus the connected components of Spec Z[L ,π ]⊗K are in bijection with the pairs (M, π̃). Via local
Langlands, these correspond to representations of IF . More precisely, let5 be an admissible representation
of G, let ρ : WF → GLn(K) correspond to 5 via local Langlands, and let ρ̃ : WF → GLn(K) be the
representation of WF corresponding to π̃ via local Langlands. Then 5 belongs to the block corresponding
to (M, π̃) if and only if the restriction of ρss to IF coincides with the restriction of ρ̃ to IF .

On the other hand, it is an easy consequence of Proposition 4.11 that as x varies over K-points of
Spec Rν , the restriction of ρss

ν,x to IF is constant on connected components of Spec Rν ⊗K. We can
thus let Rρ̃ν be the direct factor of Rν ⊗K corresponding to the union of the connected components of
Spec Rν⊗K on which the restriction of ρss

ν,x to IF is isomorphic to the restriction of ρ̃ to IF . We will see
later that Spec Rρ̃ν is in fact connected.

It then suffices to construct, for each (M, π̃), an isomorphism

Z̃(M,π̃)→ (Rρ̃ν )
inv

compatible with local Langlands. Since (M, π̃) is only well-defined up to inertial equivalence, we may
assume that π̃ has the form

π̃ ∼=
⊗

i

π̃
⊗ri
i ,

where the π̃i are pairwise inertially inequivalent representations of GLni (F). Unwinding the Bernstein–
Deligne description of Z̃(M,π̃), we obtain an isomorphism

Z̃(M,π̃) ∼=
⊗

i

K[X±1
i,1 , . . . , X±1

i,ri
]

Sri ,



2638 David Helm

where the symmetric group Sri acts by permuting the elements X i,1, . . . , X i,ri .
For each i , and any α ∈ K, let χi,α denote the unramified character of GLni (F) that takes the value α

on any element of GLni (F) with determinant $F . An irreducible 5 in RepK(M, π̃) has supercuspidal
support (M, π̃ ′) for some π̃ ′ of the form

π̃ ′ ∼=
⊗

i

ri⊗
j=1

π̃i ⊗χi,αi, j

for suitable αi, j . Then the d-th elementary symmetric function in X i,1, . . . , X i,ri , considered as an element
of Z̃(M,π̃), acts on 5 via the d-th elementary symmetric function in the α

f ′i
i,1, . . . , α

f ′i
i,ri

, where f ′i is the
order of the group of unramified characters χ such that π̃i ⊗χ is isomorphic to π̃i .

For each i , the irreducible representation ρ̃i of WF corresponding to π̃i via local Langlands decomposes,
when restricted to IF , as a direct sum of distinct irreducible representations of IF , all of which are
WF -conjugate. Fix an irreducible representation τ̃i of IF contained in ρ̃i , and let Wi be the normalizer
of τ̃i in WF . Then there is a unique way of extending τ̃i to a representation of Wi such that the induction
of the resulting extension to WF is isomorphic to ρ̃i . (Note that this implies that Wi has index f ′i in WF .)

This choice of extension of τ̃i to Wi gives rise to an action of Wi on the space HomIF (τ̃i , ρν). The
quotient of this space that lives over Rρ̃ν is a free Rρ̃ν -module of rank ri , with an unramified action of Wi .

Let F̃ri be a Frobenius element of Wi , and let Pi (x)=
∑ri

j=0 ai, j X j be the characteristic polynomial
of F̃ri on HomIF (τ̃i , ρν) (over Rρ̃ν ). Consider the map Z̃(M,π̃) → Rρ̃ν that sends the d-th elementary
symmetric function in X i,1, . . . , X i,ri to the element (−1)dai,ri−d of Rρ̃ν . One verifies easily that this map
is compatible with local Langlands.

It remains to show that (Rρ̃ν )inv is generated by the images of these elements. Given a polynomial Pi

of degree ri , with coefficients in a ring R, we can associate to it the unramified R-representation Mi (Pi )

of Wi on which F̃ri acts via the companion matrix of Pi . The representation ρ({Pi }) given by

ρ({Pi })=
⊕

i

IndWF
Wi

Mi (Pi )⊗ τ̃i

is then an R-point of Spec Rρ̃ν . In this way we obtain a natural map

Rρ̃ν →
⊗

i

K[Yi,1, . . . , Yi,ri ]

that in particular takes the element (−1)dai,ri−d of Rρ̃ν to Yi,d . On the other hand, it is easy to see that
for every y in (Spec Rρ̃ν )(K), there is a point x in (Spec Rρ̃ν )(K) arising from a collection of polynomials
{Pi (x)} such that y is in the closure of the Gν-orbit of x . It follows that the map

Rρ̃ν →
⊗

i

K[Yi,1, . . . , Yi,ri ]

is injective on (Rρ̃ν )inv. Therefore ((Rν)ρ̃)inv is generated by the elements ai,ri−d , completing the proof.
It is not hard to go slightly further, and show:
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Theorem 9.5. The image of Z[L ,π ] in Rν
[ 1
`

]
under the map of Theorem 9.4 lies in the normalization of Rν .

Proof. Fix an element x of Z[L ,π ], and let y be its image in Rν
[ 1
`

]
. Let A be a discrete valuation ring

that is a W (k)-algebra, with field of fractions K of characteristic zero, and fix a map Rν → A. This
corresponds to a pseudoframed representation ρA of WF . Let 5K denote the admissible K -representation
corresponding to ρA ⊗A K via local Langlands. Since ρA ⊗A K admits an A-lattice, so does 5K . In
particular the action of x on 5K is via an element of A, so y maps to an element of A under the
map Rν

[ 1
`

]
→ K. Since this is true for every A and every map Rν → A, y lives in the normalization

of Rν as claimed. �

10. Main results

The main objective of this section (and, indeed, the paper) is to show the following:

Theorem 10.1. Suppose that Conjecture 9.2 holds for all GLm(F), m ≤ n, and Conjecture 9.3 holds for
m < n. Then

(1) the map Eq,n
[ 1
`

]
→ Bq,n

[ 1
`

]
of Section 6 induces an isomorphism of Eq,n with Bq,n , and

(2) Conjecture 9.3 holds for GLn(F).

We begin by proving the first claim, using the weak conjecture for GLn in depth zero. Let Z0
n be the

product of the depth zero blocks of RepW (K )(G). The weak conjecture then gives rise to a map Z0
n→ Sq,n

compatible with the local Langlands correspondence. The subalgebra of Z0
n consisting of elements that

are constant on inertial equivalence classes is isomorphic to Eq,n , by Proposition 3.10. By compatibility
with local Langlands together with Propositions 4.11 and 5.3 the image of Eq,n in Sq,n is contained in
Bq,n , and the induced map Eq,n

[ 1
`

]
→ Bq,n

[ 1
`

]
is the map considered in Section 6. It thus follows from

Corollary 6.3 that the map Eq,n→ Bq,n is an isomorphism.
We now turn to the second claim. Fix a mod ` supercuspidal inertial equivalence class [L , π],

corresponding to an `-inertial type ν, and note that we have tensor factorizations

Z[L ,π ] ∼=
⊗

i

Z[L i ,πi ], Rν ∼=
⊗
τ

Rqτ ,nτ ,

where the [L i , πi ] are simple blocks. The former factorization is compatible with parabolic induction and
the latter arises from the direct sum decomposition

ρν =
⊕
τ

IndWF
Wτ
ρFτ ,nτ ⊗ τ.

Since simple blocks correspond to types ν with only one nτ nonzero, these factorizations are compatible,
in the sense that if we have maps Z[L i ,πi ]→ Rνi for each i that are compatible with local Langlands, then
their tensor product gives a map Z[L ,π ]→ Rν compatible with local Langlands. Thus both Conjecture 9.2
and Conjecture 9.3 reduce to the corresponding conjectures on simple blocks. We thus henceforth assume
that [L , π] is of the form [Ln, πn] with πn ∼= π

⊗n
1 for a supercuspidal representation π1. Following

Section 3 we set Zn = Z[Ln,πn]. The corresponding Rνn is then isomorphic to Rqτ ,n for some fixed τ .
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We first consider the case in which n is not qτ -relevant. Let ν be the maximal qτ -relevant partition
of n. We have a commutative diagram

Zn //

��

Rinv
qτ ,n

��⊗
i Zνi

//
⊗

i Rinv
qτ ,νi

in which the horizontal maps are those arising from the weak conjecture, the left-hand vertical map is
Indν , and the right-hand vertical map is induced by the map Spec⊗i Rqτ ,νi → Rqτ ,n that takes a collection
(Fri , σi ) of matrices with Fri σi Fr−1

i = σ
qτ
i to the pair

(⊕
i Fri ,

⊕
i σi
)
.

The horizontal maps are isomorphisms after inverting `, and our hypotheses imply that the lower
horizontal map is an isomorphism integrally. Moreover the left-hand vertical map is injective with
saturated image by Theorem 3.9 and the discussion in the paragraph following it. It follows immediately
that the top horizontal map must also be an isomorphism.

We now assume that n is qτ -relevant (that is, it lies in {1, eqτ , `eqτ , . . . }). Let m be the largest element
of this set that is strictly less than n. Set j = n

m .
We have a subalgebra Eq f ′ ,n,1 of Zm and compatibility with local Langlands shows that q f ′

= qτ .
Thus the map Zn→ Rqτ ,n induces a map Eqτ ,n,1→ Rqτ ,n . Reasoning as in the depth zero setting we see
that the image of this map is contained in Bqτ ,n,1. It seems likely that the resulting map Eqτ ,n,1→ Bqτ ,n,1

is the one considered in Section 6, but we do not prove this here. Instead we use the fact that we have
shown these two rings to be abstractly isomorphic, together with the following lemma:

Lemma 10.2. Let E be a finite rank, reduced, `-torsion free W (k)-algebra, and let f : E → E be an
injection. Then f is an isomorphism.

Proof. Clearly f is an isomorphism after inverting `. On the other hand, the hypotheses guarantee that
E
[1
`

]
is a product of finite extensions of K, and f is a K-linear automorphism of this product. In particular

there is some power of f that is the identity. �

We thus conclude that the map Zn→ Rqτ ,n coming from the weak conjecture induces an isomorphism
of Eqτ ,n,1 with Bqτ ,n,1.

Now consider the commutative diagram

K //

��

K ′

��

Zn //

��

Rinv
qτ ,n

��

Z⊗ j
m // (Rinv

qτ ,m)
⊗ j

in which the horizontal maps are induced by the weak conjecture, the lower left vertical map is Indm,n ,
the lower right vertical map is the one taking a collection of pairs (Fri , σi ) to their direct sum, and K
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and K ′ are the kernels of the lower left and lower right vertical maps, respectively. As in the previous
case, all horizontal maps become isomorphisms after inverting ` and the bottom horizontal map is an
isomorphism integrally.

By Proposition 3.13 K is contained in the subalgebra Eqτ ,n,1[2
±1
n,n] of Zn , and the image of this

subalgebra in Rqτ ,n is saturated. It follows that the map from K to K ′ is an isomorphism: if x is an
element of K ′, then for some a, the product `ax is in the image of K. But then `ax is in the image of
Eqτ ,n,1[2

±1
n,n], so x is as well. On the other hand, the image of K in Eqτ ,n,1 is saturated (as K is the

kernel of a map of rings that have no `-torsion), so x must lie in the image of K.
Let r be an element of Rinv

qτ ,n , and let r ′ be its image in (Rinv
qτ ,m)

⊗ j . There is then an element y of Z⊗ j
m

whose image under the bottom horizontal map is r ′. Since the map Zn→ Rinv
qτ ,n is an isomorphism after

inverting `, there exists a such that `a y is in the image of Indm,n .
By Theorem 3.12, there exist ỹ in Zn and x in Eqτ ,n,1[2

±1
n,n] such that Indm,n(x)= `b(Indm,n(ỹ)− y).

Let s be the image of ỹ in Rinv
qτ ,n . The image of `b(s − r) in (Rinv

qτ ,m)
⊗ j coincides with the image of

Indm,n(x). Thus `b(s− r) lies in the image of Eqτ ,n,1[2
±1
n,n]. Since this image is saturated, the element

s− r also lives in this image. Thus the map Zn→ Rinv
qτ ,n is surjective, so it is an isomorphism.

We have thus completed the proof of Theorem 10.1. In [Helm and Moss 2018] we show that the
strong conjecture for GLn−1 implies the weak conjecture for GLn . Together with Theorem 10.1 and the
fact that the strong conjecture for GL1 is an easy consequence of local class field theory, we obtain an
unconditional proof both of the strong conjecture, and of the existence of an isomorphism Eq,n ∼= Bq,n .
We refer the reader to the final section of [Helm and Moss 2018] for the details.

Remark 10.3. The isomorphism of Eq,n with Bq,n is an interesting result in finite group theory in its
own right. We are aware of no proof other than the one presented here; it is an interesting question to find
a purely group-theoretic proof of this result.

11. Affine Curtis homomorphisms

Having established both Conjectures 9.2 and 9.3 we now turn to an interesting consequence of Conjecture
9.2. Fix a w in Sn (which we identify with the Weyl group of G). The conjugacy class of w gives rise to
a conjugacy class of nonsplit, unramified tori in G; we let Tw denote a representative of this conjugacy
class. In particular we have Tw ∼=

∏
wi

ResFi/F Gm , where the product is over the cycles wi of w and
Fi/F is unramified of degree equal to the length of wi . Let d be the order of w in Sn .

Let X be the character group of Tw, and let T L
w denote the algebraic group Hom(X ′,Gm)o Z/dZ

(regarded as an algebraic group over W (k)), where the action of 1 ∈ Z/dZ on X ′ is via w−1. Then T L
w

is the L-group of Tw. Moreover, if we identify GLn (over W (k)) with the L-group of G in such a way
that X ′ becomes identified with the character group of the diagonal torus in GLn , then we have a natural
L-homomorphism from T L

w to GLn that takes Hom(X ′,Gm) to the diagonal torus and takes 1 ∈ Z/nZ

to w−1. This allows us to transfer a Langlands parameter ρw : WF → T L
w (K) for Tw to a Langlands

parameter ρ :WF → GLn(K) for G.
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It will be useful to understand the interaction between this transfer and the block decompositions for
RepW (k)(Tw) and RepW (k)(G). Note that

Tw = Tw(F)= Hom(X, (Fur)×)F̃r,

where F̃r is a fixed Frobenius element of WF , and its action on X is via w. Let T (`)
w denote the subgroup

Hom(X, (O×Fur)
(`))F̃r of Tw, where (O×Fur)

(`) denotes the elements of pro-order prime to ` in O×Fur. Then
T (`)
w is profinite, of pro-order prime to `, and the quotient Tw/T (`)

w is a discrete group. Indeed, explicitly,
one has

Tw/T (`)
w
∼=

∏
wi

F×i /(O
×

Fi
)(`) ∼=

∏
wi

(Z ·$ × F×q i ),

where $ is a uniformizer of F (hence also of Fi .)
The blocks of RepW (k)(Tw) are thus given by characters χ (`) : T (`)

w →W (k)×. Choose an extension χ
of χ (`) to a character Tw→W (k)×. Then “twisting by χ” induces an equivalence of categories between
the block of RepW (k)(Tw) corresponding to the trivial character of T (`)

w and the block corresponding
to χ (`). Denote the centers of these blocks by Zw,1 and Zw,χ (`) , respectively; our choice of χ then gives
an isomorphism of Zw,1 with Zw,χ (`) .

On the other side of the Langlands correspondence, the local Langlands correspondence for tori
associates to χ a Langlands parameter ν̃w :WF → T L

w (K); the restriction νw of ν̃w to I (`)F depends only
on χ (`). Consider the functor that associates to a W (k)-algebra R the set of parameters WF → T L

w (R)
whose restriction to I (`)F is equal to νw. This functor is easily seen to be representable by a finite type
affine scheme Spec Rwν , and there is a universal Langlands parameter ρw,ν :WF → T L

w (R
w
ν ). Note that

the torus Hom(X ′,Gm)⊆ T L
w acts on Spec Rwν by conjugation; let (Rwν )

inv be the subring of Rwν invariant
under this action.

We then have the following proposition, which can be seen as an analogue of Conjecture 9.3 for the
nonsplit torus Tw:

Proposition 11.1. There is a unique isomorphism

Lw : Zw,χ (`)→ (Rwν )
inv

which is compatible with the local Langlands correspondence for tori, in the sense that for any Langlands
parameter ρ :WF → T L

w (K), corresponding to a character χρ of Tw, and any z ∈ Zw,χ (`) , the value of χρ
at z is equal to the value of Lw at the point of Spec(Rwν ) corresponding to ρ.

Proof. Any parameter WF → T L
w (R) of type νw differs from ν̃w by a parameter WF → T L

w (R) that
is trivial on I (`)F . Thus “twisting by νw” induces an isomorphism of Spec Rwν with Spec Rw1 , where 1
is the trivial character of I (`)F . On K-points, this isomorphism is compatible with the local Langlands
correspondence for tori and the “twisting by χ” isomorphism of Zw,1 with Zw,χ (`) . We can thus reduce
to the case where χ (`) and νw are the trivial character.
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In this case we can be very explicit: on the one hand, we have isomorphisms

Zw,1 =W (k)[Tw/T (`)
w ]
∼=W (k)[Hom(X, (Fur)×/(O×Fur)

(`))F̃r
],

where F̃r acts on X via w and on O×Fur in the usual way. Let $ be a uniformizer of F corresponding to
our Frobenius element F̃r. We then have a canonical isomorphism

(Fur)×/(O×Fur)
(`) ∼= Z ·$ × F×q ,

where F̃r acts trivially on the first factor and by q-th powers on the second. We thus obtain an isomorphism

Zw,1 ∼=W (k)[Hom(X,Z)w]⊗W (k)[Hom(X/(qw− 1)X, F×q )].

On the other side of the Langlands correspondence, fix a generator σ̃ of IF/PF . Then a Langlands
parameter WF→ T L

w trivial on I (`)F is determined by the images of F̃r and σ̃ ; these form a pair of diagonal
matrices F and σ such that Fw−1σ(Fw−1)−1

= σ q. Since F and σ commute, this condition is equivalent
to the condition σw

−1
= σ q. Thus Spec Rw1 decomposes as a product,

Spec Rw1 ∼= Spec W (k)[X ′]×Spec W (k)[X ′/(q −w)X ′],

where the first factor parametrizes F and the second parametrizes σ . The conjugation action of t ∈
Hom(X ′,Gm) on this product fixes the second factor and acts by multiplication by tw

−1
−1 on the first.

We thus obtain a product decomposition

Spec(Rw1 )
inv ∼= Spec W (k)[X ′/(1−w)X ′]×Spec W (k)[X ′/(q −w)X ′].

On the first factor, the isomorphism of Zw,1 with (Rw1 )
inv is induced by the isomorphism Hom(X,Z)w∼=

X ′/(w−1)X ′. On the second factor we have to work a bit harder. Note that qw−1 divides qr
−1, where r

is a multiple of the order of w. Thus Hom(X/(qw−1)X, F×q ) is isomorphic to Hom(X/(qw−1)X, F×qr ).
Our choice of s gives rise to a system of generators for F×qr for all r , compatible with respect to norm
maps; we can thus identify Hom(X/(qw− 1)X, F×qr ) with the kernel of qw−1

− 1 on X ′/(qr
− 1)X ′, via

the isomorphism

X ′/(qr
− 1)X ′ ∼= Hom(X/(qr

− 1)X,Z/(qr
− 1)Z).

Finally, multiplication by 1+ qw−1
+ · · ·+ qr−1w1−r identifies this kernel with X ′/(qw−1

− 1)X ′. The
resulting isomorphism of Hom(X/(qw− 1)X, F×q ) with X ′/(qw−1

− 1)X ′ is independent of r , and gives
the desired map from the second factor of Zw,1 to the second factor of (Rw1 )

inv. One checks easily that
the resulting isomorphism is compatible with local Langlands. �

The L-homomorphism of T L
w into GLn takes Langlands parameters for Tw to Langlands parame-

ters for G. If the former has type νw, then so does the latter (where we regard νw as an `-inertial
type by embedding it in GLn(W (k)) by identifying Hom(X ′,Gm) with the diagonal matrices.) Thus
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this L-homomorphism induces a map Rν → Rwν that takes Rinv
ν to (Rwν )

inv. Combining this with
Proposition 11.1 and Conjecture 9.2, we obtain a map

eZn→ Zw,χ (`),

where e is the idempotent of Zn corresponding to the `-inertial type ν. On K-points this map takes a point
of Spec Zw,χ (`) corresponding to a character with Langlands parameter ρ to the point of Spec eZn corre-
sponding to the Langlands parameter obtained by composing ρ with the L-homomorphism of T L

w into GLn .
On the other hand, if we fix a generic character 9 of the unipotent radical U of G, and let 0 be the

module c-IndG
U 9, then it follows from results in [Helm 2016b] that the natural map eZn→EndW (k)[G](0)

is an isomorphism. We can thus view the map eZn→ Zw,χ (`) as the affine group analogue of a Curtis
homomorphism. Since the Curtis homomorphisms have such a nice interpretation via Deligne–Lusztig
theory, it is natural to ask if a similar phenomenon is at play here:

Question 11.2. Does there exist an adjoint pair of functors

iw : Db(RepW (k)(Tw))→ Db(RepW (k)(G)),

rw : Db(RepW (k)(G))→ Db(RepW (k)(F))

such that rw(0) is a shift of the induction c-IndTw
e 1, and the induced homomorphism

Zn→ Zw

is the product over suitable idempotents of the “affine Curtis homomorphisms” constructed above?
Moreover, is there a natural geometric construction of such an adjoint pair?
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