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Relative crystalline representations and
p-divisible groups in the small ramification case

Tong Liu and Yong Suk Moon

Let k be a perfect field of characteristic p > 2, and let K be a finite totally ramified extension over
W (k) [11—7] of ramification degree e. Let Ry be a relative base ring over W (k) (t,il, ..., X satisfying some

m

mild conditions, and let R = Ry ®w ), Ox. We show that if e < p — 1, then every crystalline representation

of nf‘(Spec R[%]) with Hodge—Tate weights in [0, 1] arises from a p-divisible group over R.

1. Introduction

Let k be a perfect field of characteristic p > 2, and let W (k) be its ring of Witt vectors. Let K be a
finite totally ramified extension over W(k)[%] with ramification degree e, and denote by Ok its ring
of integers. If G is a p-divisible group over Ok, then it is well-known that its Tate module 7,(G) is
a crystalline Gal(K /K )-representation with Hodge—Tate weights in [0, 1]. Conversely, Kisin [2006]

showed the following result.

Theorem 1.1 [Kisin 2006, Corollary 2.2.6]. Let T be a crystalline Gal(K /K)-representation finite free
over Z, whose Hodge—Tate weights lie in [0, 1]. Then there exists a p-divisible group G over Ok such
that T,(G) =T as Gal(K / K)-representations.

The result in Theorem 1.1 for the case e < p — 1 was first proved in [Laffaille 1980], in which the
low ramification assumption is used to directly associate certain modules equipped with filtration and
Frobenius endomorphism to p-divisible groups. This was one of the starting points of p-adic Hodge
theory, to classify crystalline representations by weakly admissible filtered ¢-modules and establish their
connections to algebraic geometric objects.

The goal of this paper is to study the statement analogous to Theorem 1.1 in the relative case. When
we work over a relative base ring, the situation becomes much more complicated, and it is unknown how
to characterize crystalline representations by linear algebraic data. For example, [Hartl 2013] shows that
a naive generalization of weakly admissible modules is not sufficient. In this paper, we obtain a partial
result towards this direction for crystalline representations of Hodge—Tate weights in [0, 1].

Let Ry be a base ring over W(k)(tlil, R tjfl) given as in Section 2A, and let R = Ry ®w ) Ok.
Let Gg be the étale fundamental group of Spec(R[%]). For representations of Gg, the condition of
being crystalline is well-defined by [Brinon 2008; Kim 2015]. If G is a p-divisible group over R, its
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Tate module T,(GR) is a crystalline Gg-representation with Hodge—Tate weights in [0, 1] (see [Kim
2015]). Conversely, when the ramification index e is small, we prove that crystalline representations of
Hodge-Tate weights in [0, 1] can be associated with the linear algebraic data called Kisin modules of
height 1, and show the following:

Theorem 1.2. Suppose e < p — 1. Let T be a crystalline Gg-representation finite free over Z, whose
Hodge—Tate weights lie in [0, 1]. Then there exists a p-divisible group G over R such that T,(Gr) =T

as Gr-representations.

As an immediate corollary using the results in [Moon 2020], we obtain the following result on the geom-
etry of the locus of crystalline Gg-representations with Hodge—Tate weights in [0, 1]. For a fixed absolutely
irreducible [ ,-representation Vy of Gg, there exists a universal deformation ring which parametrizes the
deformations of Vj [de Smit and Lenstra 1997]. By [Moon 2020, Theorem 5.7], we deduce:

Corollary 1.3. Suppose R has Krull dimension 2 and e < p — 1. Then the locus of crystalline rep-
resentations of Ggr with Hodge—Tate weights in [0, 1] cuts out a closed subscheme of the universal

deformation space.

We give a more precise statement of Corollary 1.3 in Section 6. The assumption that R has Krull
dimension 2 appears in [Moon 2020, Theorem 5.7], since the construction of Barsotti—Tate deformation
ring in [Moon 2020, Section 5] uses the result in [de Smit and Lenstra 1997] and relies on the assumption.

We now explain the major ingredients for the proof of Theorem 1.2. Firstly, Kim [2015] generalized
the Breuil-Kisin classification in the relative setting, and showed that the category of p-divisible groups
over R is anti-equivalent to the category of Kisin modules of height 1 over Ro[[u]. Using the classification,
we reduce our problem to constructing desired Kisin modules. Secondly, Brinon and Trihan [2008]
proved the generalization of Theorem 1.1 for the case when the base is a complete discrete valuation
ring whose residue field has a finite p-basis. To construct appropriate Kisin modules, we use their result
together with the fact that the p-adic completion of Ry () is an example of such a ring. We remark that
our construction of Kisin modules relies on the assumption that the ramification index is small.

1A. Notations. We will reserve ¢ for various Frobenius. To be more precise, let A be an W (k)-algebra
on which the arithmetic Frobenius ¢ on W (k) extends, and M an A-module. We denote p4 : A — A
for such an extension. Let ¢y : M — M be a ¢p4-semilinear map. This is equivalent to having an
A-linear map 1 ® gy : 93 M — M, where ¢} M denotes A ®,, 4 M. We always drop the subscripts A
and M from g if no confusion arises. Let f : A — B be a ring map compatible with Frobenius, that is,
fowa=epo f. Then gy naturally extends to @u, : Mp — Mp for Mp := B ®4 M. It is easy to check
that p; Mp = B®a @M and 1 @ ppr, 1 9z Mp — Mp isequal to B ®4 (1 ® ¢u).

2. Relative p-adic Hodge theory and étale ¢-modules

2A. Base ring and crystalline period ring in the relative case. We follow the same notations as in the
Introduction. We recall the assumptions on the base rings and the construction of crystalline period ring
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in relative p-adic Hodge theory in [Kim 2015] (see also [Brinon 2008]), together with an additional
assumption which will be needed later. Let Ry be a ring obtained from W(k)(tlil, ..., t=1) by a finite
number of iterations of the following operations:

» p-adic completion of an étale extension;
» p-adic completion of a localization;
o completion with respect to an ideal containing p.

We suppose that Ry is an integral domain separated and complete with respect to some ideal J C Ry
containing p, such that Ry/J is finitely generated over some field k" (see [Kim 2015, Section 2.2.2]). We
further assume that Ry/p Ry is a unique factorization domain.

Ro/pRo has a finite p-basis given by {t1, ..., t,,} in the sense of [de Jong 1995, Definition 1.1.1]. The
Witt vector Frobenius on W (k) extends (not necessarily uniquely) to Ry, and we fix such a Frobenius
endomorphism ¢ : Ry — Rp. Let Q Ro := lim 2Ry pm);w k) be the module of p-adically continuous
Kiéhler differentials. By [Brinon 2008, Proposition 2.0.2], Q Ry = EB:": 1 Ro - dt;. We work over the base
ring R given by R := Ry ®w k) Ok.

Let R denote the union of finite R-subalgebras R’ of a fixed separable closure of Frac(R) such that
R’[%] is étale over R[%]. Then Spec E[%] is a pro-universal ?overing of Spec R[%], and R is the
integral closure of R in R[%] Let Gg := Gal(R[%]/R[%]) = Jr]et(Spec R[%]) By a representation of
Gr, we always mean a finite continuous representation.

The crystalline period ring Beis(R) is constructed as follows. Let R’ = hm R / pR There exists a
natural W (k)-linear surjective map 6 : W (R") — R which lifts the pI‘OJeCtIOIl onto the first factor. Here, R
denotes the p-adic completion of R. Let Oro : Ro®w k) W(R") — R be the Ry-linear extension of 6. Define
the integral crystalline period ring A.is(R) to be the p-adic completion of the divided power envelope of
Ro ®w ) W (R") with respect to ker(0g,). Choose compatibly €, € Rsuchthateg=1, ¢, = 65 1 with
€1 # 1, and let € = (€,),>0 € R’. Then 7 :=1og [€] € Acris(R). Define Bris(R) = Acris(R)[1]. Beris(R) is
equipped naturally with Gg-action and Frobenius endomorphism, and Bis(R) ® Ro[ 5] R[%] is equipped
with a natural filtration by R[ ] submodules. Furthermore, we have a natural integrable connection
Vi Byis(R) = Beis(R) ®g, Q R, such that Frobenius is horizontal and Griffiths transversality is satisfied.

For a Gg-representation V over Q,, let D¢is(V) := Homg, (V, Beis(R)). The natural morphism

Qcris * Deris(V) ®RO[H Bis(R) — vy ®@p Beiis(R)

is injective. We say V is crystalline if a5 is an isomorphism. When V is crystalline, then D;s(V)
is a finite projective Ro[%]—module, and Dg;s(V) ® Ro[}] R[%] has the filtration induced by that on
Bis(R) ® Ro[1] R[%] We define the Hodge—Tate weights similarly as in the classical p-adic Hodge
theory. Frobenius and connection on B;s(R) induce those structures on Ds(V); for the Frobenius
endomorphism on Deis(V), 1 ® ¢ : ¢*Deyis(V) — Dgis(V) is an isomorphism, and the connection
Vi Dgis(V) = Deris(V) @R, Q R, 1s integrable and topologically quasinilpotent. Furthermore, Griffiths
transversality is satisfied and ¢ is horizontal. For a Gg-representation 7" which is free over Z,,, we say it
is crystalline if T[%] is crystalline.
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Suppose Sy is another relative base ring over W(k)(tlil, ..., t21) satisfying the above conditions and
equipped with a choice of Frobenius, and let b : Ry — Sy be a ¢-equivariant W(k)(tlil, e t,fl)—algebra
map. We also denote b: R = RoQwx) Ok — S := So®@w k) Ok the map induced Ok -linearly. By choosing
a common geometric point, this induces a map of Galois groups Gs — Gg, and also a map of crystalline
period rings Beis(R) — Beis(S) compatible with all structures. If V is a crystalline representation of Gg
with certain Hodge—Tate weights, then via these maps V is also a crystalline representation of Gg with
the same Hodge—Tate weights, and the construction of Ds(V) is compatible with the base change.

We will consider the following base change maps in later sections. Let Or,, be the p-adic completion of
Ro,(p), and let by, : Ry — Oy, be the natural ¢-equivariant map. This induces by, : R— O :=0r,Qwx)Ok.
Note that L=0y, [%] is an example of a complete discrete valuation field with a residue field having a finite
p-basis, studied in [Brinon and Trihan 2008]. On the other hand, for each maximal ideal q € mSpecRy,
let ﬁo\,q be the g-adic completion of R 4. By the structure theorem of complete regular local rings, we
have IE = Oqlls1, - . ., 111 where Oy is a Cohen ring with the maximal ideal (p) and / > 0 is an integer
(EE):, is understood to be Oy when [ = 0). We consider the natural -equivariant morphism bg : Ry — I?Eq,
which induces by : R — Ry := ﬁ(l\q ®ww) Ok.

2B. Etale p-modules. We study étale p-modules and associated Galois representations. Most of the
material in this section is a review of [Kim 2015, Section 7], and the underlying geometry is based on
perfectoid spaces as in [Scholze 2012].

Let Ry be a relative base ring over W(k)(tlil, e, tjfl) and let R = Ry ®wx) Ok as above. Choose
a uniformizer @ € Ok. For integers n > 0, we choose compatibly @, € K such that wy = & and
w}f L1 = D, and let K, be the p-adic completion of UnzO K (w,). Then K is a perfectoid field
and (ﬁ [%], I/? ) is a perfectoid affinoid K .-algebra. Let K f;o denote the tilt of K, as defined in [Scholze
2012], and let @ := () € Koo

Let G := Ry[l#]] equipped with the Frobenius extending that on Ry by ¢(u) = u”. Let E ;goo =G6/p6,
and let £;_be the u-adic completion of lim, E} . Let Eg,, = E}_[+]and Eg, =E}_[1]. By [Scholze
2012, Proposition 5.9], (E Roos E ;FOO) is a perfectoid affinoid K go—algebra, and we have the natural injective
map (EROO, E;m) — (Rb[%], Rb) given by u — w.

Let -

R =W(E; )®

wier.s Ok @-1)

By [Scholze 2012, Remark 5.19], (ﬁoo[%], Eoo) is a perfectoid affinoid K ,-algebra whose tilt is
(E Roys E ;goo). Furthermore, it is shown in [Kim 2015] that we have a natural injective map

([} Rx) = (R[5 %)

p p

whose tilt is (EROO’ E;Fw) — (Eb[%], Rb). For g,;m = nlét(Spec ﬁw[%]), we then have a continuous
map of Galois groups Gz — Gg, which is a closed embedding by [Gabber and Ramero 2003, Proposi-
tion 5.4.54]. By the almost purity theorem in [Scholze 2012], 1?"[ 1 ] can be canonically identified with the

2
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@ -adic completion of the affine ring of a pro-universal covering of Spec E R..» and letting Gz be the Ga-
lois group corresponding to the pro-universal covering, there exists a canonical isomorphism Gz, =Gg_ .

Lemma 2.1. Consider the map of Galois groups Go, — Gr induced by choosing a common geometric
point for the base change map by, : R — O, in Section 2A. Then the images of Go, and G inside Gg
generate the group Gp.

Proof. E ;Oc has a finite p-basis given by {t1, ..., t,,, u}. Note that for any element of g € Gg, there exists
an element 4 € Gp, whose image in G induces the same actions on tl1 /p e, t,,I/ p
>3 =+

Roo =WI(ER ) @y g) g
assertion follows. O

, @ /P Since
Ok, the actions of g and & are the same on the elements of Ro. Hence, the

Now, let O¢ be the p-adic completion of & [%] Note that ¢ on & extends naturally to Og.

Definition 2.2. An étale (¢, Og)-module is a pair (M, @) where M is a finitely generated Og-module
and g : M — M is a g-semilinear endomorphism such that 1 ® ¢ : * M — M is an isomorphism.
We say that an étale (¢, Og)-module is projective (resp. torsion) if the underlying Og-module M is

projective (resp. p-power torsion).

Let Modp, denote the category of étale (¢, Og)-modules whose morphisms are Og-module maps
compatible with Frobenius. Let Modf(’;g and Modgrg respectively denote the full subcategories of projective
and torsion objects. Note that we have a natural notion of a subquotient, direct sum, and tensor product
for étale (¢, Og)-modules, and duality is defined for projective and torsion objects.

Lemma 2.3. Let M € Modt(grg be a torsion étale p-module annihilated by p. Then M is a projective
O¢/ pOg-module.

Proof. This follows from essentially the same proof as in [Andreatta 2006, Lemma 7.10]. O

We consider W (R’[X]) as an O¢-algebra via mapping u to the Teichmiiller lift [z] of &, and let O
be the integral closure of Og in W(Eb[%]). Let @gr be its p-adic completion. Since Og¢ is normal, we
have Auto, (OF) = Gk, = nf‘(Spec E;gm), and by [Gabber and Ramero 2003, Proposition 5.4.54] and
the almost purity theorem, we have Gg Reo =g Ere =g R This induces G gx—action on @gr The following

is proved in [Kim 2015].

Lemma 2.4 [Kim 2015, Lemmas 7.5 and 7.6]. We have (@gr)gﬁoc = O¢ and the same holds modulo p".
Furthermore, there exists a unique Gg_-equivariant ring endomorphism ¢ on @gr lifting the p-th power
map on @gr/ (p) and extending ¢ on Og. The inclusion @gr — W(I?b[%]) is p-equivariant where the
latter ring is given the Witt vector Frobenius.

Let Repzp (Gg,,) be the category of Z ,-representations of Gg_, and let Repgp (k) and Reptzopr(g R.)
respectively denote the full subcategories of free and torsion objects. For M e Modp, and T € Replp Gr.)
we define T (M) 1= (M ®o, @gr)‘pzl and M(T) := (T ®z, @gr)gﬁoo. For a torsion étale ¢-module
Me Modt(‘g’rs, we define its length to be the length of M ®¢, (O¢)(p) as an (Og)(,)-module.



2778 Tong Liu and Yong Suk Moon

Proposition 2.5 [Kim 2015, Proposition 7.7]. The assignments T (-) and M(-) are exact equivalences
(inverse of each other) of ®-categories between Modp, and Repzp (ngo). Moreover, T(-) and M(-)
restrict to rank-preserving equivalence of categories between Mod%rs and Rep%rp (Gg,) and length-
preserving equivalence of categories between Modt(grg and Reptz‘); (Gg.,)- In both cases, T (-) and M(-)

commute with taking duals.

Proof. This is [Kim 2015, Proposition 7.7]. We remark here for some additional details. Note that Eg_
is a normal domain and nf‘(Spec Er.) =0g_ - Given Lemma 2.3, the assertion therefore follows from
the usual dévissage and [Katz 1973, Lemma 4.1.1]. Note that both functors 7(-) and M(-) are a priori
left exact by definition, and exactness can be proved by the same argument as in the proof of [Andreatta
2006, Theorem 7.11]. O

Suppose Sy is another relative base ring over W(k)(tlil, ey tmil) as in Section 2A equipped with
e

a choice of Frobenius, and suppose b : Ry — Sp be a ¢-equivariant W(k)(tlil, NP

)-algebra map
which is injective. Let b : R = Ry Qwx) Ok < S := So Qwk) Ok be the induced injective map. By
choosing a common geometric point we have an injective map R < S, and this induces an embedding
Roo > Soo by the constructions given in (2-1). Hence, the corresponding map of Galois groups Gs — Gr
restricts to G5 — G . Let &5 = Sol[u]] and let O¢ s be the p-adic completion of 65[%]. Let Mg(-)
be the functor for the base ring S constructed similarly as above. Let T € Reprz’rp (Gg,)- Then T is also a
gs. -representation via the map 5.~ 9% and we have the natural isomorphism M(T) ®o, O¢ s =

M (T) as étale (¢, O¢, 5)-modules by the definition of the functors M(-) and T (-) and by Proposition 2.5.

3. Relative Breuil-Kisin classification

We now explain the classification of p-divisible groups over Spec R via Kisin modules, which is proved
in [Kisin 2006] when R = Ok and generalized in [Kim 2015] for the relative case. Denote by E(u) the
Eisenstein polynomial for the extension K over W(k)[%], and let & = Ro[[u] as above.
Definition 3.1. Denote by Kis' (&) the category of pairs (9, gsi) where

» M is a finitely generated projective G-module;

o oo : M — M is a p-semilinear map such that coker(1 ® ¢oy) is annihilated by E (u).

The morphisms are G-module maps compatible with Frobenius.

Note that for (91, gon) € Kis' (&), 1® @on : * M — Mt is injective since M is finite projective over &
and coker(1 ® poy) is killed by E (u). Consider the composite G - &S/uG = Ry % Ryo.

Definition 3.2. A Kisin module of height 1 is a tuple (9, ¢on, Var) such that:
o (M, pon) € Kis'(S).

e Let NV := M Qg Ry equipped with the Frobenius ¢oy @ ¢g,. Then Vop : N — N ®g, QRO is a
topologically quasinilpotent integrable connection commuting with Frobenius.
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Here, Voy being topologically quasinilpotent means that the induced connection on A//pN is nilpotent.
Denote by Kis' (&, V) the category of Kisin modules of height 1 whose morphisms are G-module maps
compatible with Frobenius and connection.

The following theorem classifying the p-divisible groups is proved in [Kim 2015].

Theorem 3.3 [Kim 2015, Corollary 6.7 and Remark 6.9]. There exists an exact anti-equivalence of
categories
O™ : { p-divisible groups over Spec R} — Kis' (6, V).

Let So be another base ring satisfying the condition as in Section 2A and equipped with a Frobenius,
and let b : Ry — Sy be a p-equivariant map. Then the formation of " commutes with the base change
R — §:= 80 ®wk) Ok induced Ok-linearly from b.

Note that if (I, pop) € Kis' (&), then (M ®s O¢, pm ® @o,) is a projective étale (¢, Og)-module
since 1 ® g9y is injective and its cokernel is killed by E(x) which is a unit in O¢. If G is a p-divisible
group over R, its Tate module is given by 7,,(Gr) := Homz(Q,/Z,, Gr xR R), which is a finite free
Z p-representation of Gg. By [Kim 2015, Corollary 8.2], we have a natural Gz -equivariant isomorphism
TV (Gr) Qs Og) = T,(GR), where TV (IM*(Gr) @g O¢) denotes the dual of T (IMM*(Gr) Qg Of).

4. Construction of Kisin modules

In this section, we will assume e < p — 1 from Proposition 4.3. We denote &,, := &/ p" & for positive
integers n > 1. Let T be a crystalline Gg-representation which is free over Z,, of rank d with Hodge-Tate
weights in [0, 1]. Let M := MY (T) be the associated étale (¢, Og)-module, where MY (T') denotes the
dual of M(T). For each integer n > 1, denote M,, = M/p" M. Note that M,, = MY (T /p"T). On the
other hand, consider the map by, : R — O as in Section 2A. T is also a crystalline Gy, -representation
with Hodge-Tate weights in [0, 1], so by [Brinon and Trihan 2008, Theorem 6.10], there exists a p-
divisible group Gp, over Oy, such that T,(Gp,) = T as Gp, -representations. Let (Mo, , VgﬁoL) =
M (Go,) € Kisl(GoL, V) be the associated Kisin module over S, . Denote Moy, , = Mo, /p" Mo, .
The map between the Galois groups Go, — G restricts to Gp, o, = G . Hence, we have the natural
isomorphism M®o, O¢ 0, =Mo, Qeo, O¢. 0, of étale (¢, O¢ o, )-modules. Let Mo, := MQo, O¢. 0,
and Mo, , := Mo, /p" Mo, .
For each n > 1, we define
M, =M, N im@b,,,

where the intersection is taken as G-submodules of M, ,,. The Frobenius endomorphisms on M,, and
Mo, » Induce a Frobenius endomorphism on 91,. Since the Frobenius on M, , is injective, we have
the injective &-module morphism

1®¢:6Q®pe M, — M,

for each n.
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Lemma 4.1. I, is a finitely generated S,,-module. Furthermore, we have @-equivariant isomorphisms
M, ®s Og =M, and M, s 6OL = fIROL,n-

Proof. We first prove that 91, is finite over &,,. Note that Mo, , is free over Sy, , of rank d, and choose
a basis {eyq, ..., eq} of Mo, ,. On the other hand, since M,, is projective over Gn[%] of rank d, there
exists a nonzero divisor g € G,, such that ./\/ln[é] is free of rank d over Gn[%][é] Since M,, is finite
over 6,,[%], we can choose a basis { fi, ..., f4} of M,z[é] over GH[%][é] such that letting 91 to be the
&,,-submodule of ./\/l,,[é] generated by f1, ..., f4, we have M,, C ‘ﬁ[%] as G, [%]—modules. It suffices
to show that 9, C # -N as G,,-modules for some integer 7 > 1. We have

(fl""’fd)t=A'(el""7ed)t5

where A is an invertible d x d matrix with entries in G, , [%] [é] Consider the intersection 2t [%] NMo, .n

as submodules of Mo, ;][ ] For an element x = by fi+- - +ba fa € N[ ] with by, ..., ba € S, [; ],
we have x € Mo, , if and only if

(b1,....bg)-A=(cy,...,cq)

for some ¢y, ..., cq € S, ». Then (by, ..., by) =(ci, ..., cq) A", which implies that [1] N9, , C
l,l -N as &,-modules for some integer 4 > 1. Since 9N, C ‘ﬁ[l] NIMo, ., this shows the first statement.
u u ’

We have

M, @6 Op =M, [ 1] 2 My 1 Mo, = M,

and hence the first isomorphism. On the other hand, since & — G, is flat and M, , is finite free over
S0, .n, we have

M, ®e So, = My ®s So,) N (Mo, .» ®s So,) = Mo, N (Mo, »®s So,)
= (mtOL,n Qe, Gn[%]) NMo, n s, S0,.n) = Mo, n
by G,[1]N G0, .n =6, O
Lemma 4.2. The cokernel of the S-module map 1 ® ¢ : G ®, & M, — M, is killed by E(u).

Proof. Let x € M,,. There exists a unique y; € Og ®y 0, M, = G ®, s M, such that (1®¢)(y1) = E(u)x.
On the other hand, there exists a unique y, € G, Qp,80, Mo, n such that (1 ® ¢)(y2) = E(u)x. Then
we have y; = y; € (€ Qp,6 My) N (S0, Qp,60, Mo, ,n)-

Since O,/ pOy, has a finite p-basis given by t1, ..., 1, € Ro/pRo which also gives a p-basis of
Ro/pRo, the natural map & ®y ¢ Mo, ,n = So, Qp,60, Mo, 18 an isomorphism. Hence

y1€(6 ®<p,6 M) N (G ®<p,6 EIn(’)L,n) =6 ®<p,6 M, N EIn(’)L,n) =6 ®<p,6 m,

since ¢ : & — G is flat by [Brinon 2008, Lemma 7.1.8]. This proves the assertion. O
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For any finite &-module 91 equipped with a g-semilinear endomorphism ¢ : 91 — 91, say 1 has
E (u)-height <1 if there exists an G-module map ¥ : M — ¢*N = G ®, e N such that the composite

e N2 Y g

is E(u) -1dy+. By Lemma 4.2, 901, has E (u)-height < 1.

For each maximal ideal q € mSpecR,, consider by : R — Ry as in Section 2A. By choosing a
common geometric point, we have the induced map of Galois groups Gg, — Ggr Wwhich restricts to
g Row OR.oo» and T is a crystalline Gg -representation with Hodge-Tate weights in [0, 1]. Denote
Sy := Roqllull.

Proposition 4.3. Assume e < p — 1. For each integer n > 1, M, is projective over S, of rank d.

Proof. Let q be a maximal ideal of Ry, and let 0, := M, ®s & equipped with the induced Frobenius
endomorphism. Then we have the induced S4-linear map v : N, — S, ®yp.6, N, such that the composite

1
Gq ®(/),Gq mn @) mn L Gq ®¢56q mn

is E(u) - Id. For the isomorphism I?Q\q = Oqlls1, ..., 5] as above, let us consider the projection
Sy — G4/(p, 51, ..., 8) = kgllull, where kq :== Oy /(p). Denote N, =N, ®@, kqllull equipped with the
induced Frobenius. Then we have the induced kg[[u]]-linear map v : n, — kqllue]l ®g iy l1u1 M, such that
the composite

— 1 J— —
kq [u] ®(p,kq [ul Ny % N, l) kq [u] ®ga,kq[[u]] N,

is u® - 1d. Since kg[[u] is a principal ideal domain, M, is a direct sum of its free part and u-torsion part
n, = ‘Ytn,free @ ‘J_Tn,tor as kq[[u]l-modules. Furthermore, ¢ maps ‘Ytn,tor into ‘Yln,tor, and hence the above
maps induce

kq Mul ®(p,kq Tud mn,tor _(p) SJ’tn,tor L kq Mzl ®g0,kq[[u]] s:nn,tor

whose composite is u€ - Id.
We claim that ‘.Ttn’[or = 0. Suppose otherwise. Then ‘Ytn,tor = 5’:1 kql[ull/(u®) for some integers
a; > 1, and kql[ull ®q k,u] ‘J_In,tor = le kqllull/(uP“). By taking the appropriate wedge product and

letting a = ay + - - - 4+ a;, the above maps induce the map of kq[[u]-modules
kgllue]/ ) 2% kqllull/ ) L kqllull/u?®)

whose composite is equal to u®.1d. Let (1 ®@)(1) = f(u) €kgllull/m?), and ¥ (1) = h(u) € kqllull/(ur?).
Then uP® | u®h(u), so u'?~1% | h(u). On the other hand, f(u)h(u) = u in kql[u]l/(P?). This implies
uP=ha | yeb Bute < p —1and a > b, so we get a contradiction. Hence, ‘Ttn,tor =0 and N, is free over
kql[u]l of rank d, since by Lemma 4.1 N, [%] = (M, ®s &) ®s, kqllull which is projective over kq (1))
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of rank d. Let by, ..., by € M, be a lift of a basis elements of I,,. By Nakayama’s lemma, we have a
surjection of &4 y-modules
d
f:@Gq,n ce; N,

i=1
given by e; — b;. Since ‘ﬁn[%] =M, ®s G, is projective over Gq,n[i] of rank d, f is also injective.
Thus, 91, = M, ®s G, is projective over S , of rank d. Since this holds for every q € mSpec Ry, it
proves the assertion. O

Lemma 4.4. Assume e < p— 1. Let Mt and W be finite u-torsion free S-modules equipped with Frobenius
endomorphisms such that ‘ﬁ[ﬂ and W [%] are torsion étale -modules. Suppose that Nt and N have
E (u)-height < 1 and ‘ﬁ[%] = ’T(/[%] as étale p-modules. Then N =M.

Proof. Consider 9t and 91" as &-submodules of 91 [%] Let £ be the cokernel of the embedding 91— N+
of &-modules. Note that G ®, e N+ ) =6 ®y,e N+ 6 ®y,e N since ¢ : & — & is flat. Thus,
M+ has E(u)-height < 1, and £ has E (u)-height < 1. Since 2[%] =0, we deduce similarly as in the
proof of Proposition 4.3 that £ = 0. So 91 =91+ 9. Similarly, 97 = 91 + 9. O

It is clear that both p9),,; and 9, are u-torsion free, have E (u)-height < 1 and

PP [ 4] = pMor = My =0, [ 2],

We conclude the following:

Proposition 4.5. Assume e < p — 1. For each n > 1, we have a g-equivariant isomorphism
P, =9,
By Lemma 4.2, Proposition 4.3 and 4.5, if we suppose e < p — 1 and define the G-module

M := lim 9N,

n
then M € Kis! (6). Note that we have a g-equivariant isomorphism M @s S, = M, by Lemma 4.1.

Remark 4.6. Analogous statements hold when T is a crystalline Gg-representation with Hodge—Tate
weights in [0, r] for the case er < p — 1, since [Brinon and Trihan 2008] constructs more generally a
functor from crystalline representations with Hodge—Tate weights in [0, r] to Kisin modules of height r
when the base is a complete discrete valuation field whose residue field has a finite p-basis.

To study connections for 9, we first consider the following general situation. Let Ao be a k-algebra

which is an integral domain. Consider n-variables xi, ..., x,, and denote x = (x1, ..., x,)" and x!P1 :=
(xF', ..., x)". An Artin-Schreier system of equations in n variables over Ay is given by
x=Bx"+C, (4-1)

where B = (b;j)1<i,j<n € Myuxn(Ap) is an n x n matrix with entries in Ag and C = (¢;)1<i<n € Myx1(Ap).
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Let
n n
Ay = Aolxy, ..., xn]/(xl —c1— Zbuxip, cees Xp—Cp — mexip),
i=1 i=1

which is the Ag-algebra parametrizing the solutions of (4-1). Ag — A; is étale by [Vasiu 2013,
Theorem 2.4.1(a)].

Lemma 4.7. There exists a nonzero element f € Ay which depends only on B (and not on C) such that
A [%] is finite étale over Ao[%].

Proof. We induct on n. Suppose n = 1. If det B # 0, then (4-1) is equivalent to
xf] = B_lxl - B¢,
so the assertion holds with f = detB. If det B =10, then B =0 and A; = Ay, so the assertion holds

trivially.
For n > 2, if det B # 0, then (4-1) is equivalent to

xP'=Bx - B~ !C.

Hence, with f =det B, A [%] is finite étale over Ao[%]. Suppose det B = 0. Denote by B the i-th
row of B. Then up to renumbering the index for x;’s, we have

n

3 6B =0

i=1

for some nonzero f; € Ag depending only on B and some e; € Ao[%] with e, = 1. From (4-1), we get

n—1 n—1
Xp = — E ejXj +Cp + E ciej.
i=1 i=1

Hence, denoting x’ = (x1, ..., x,_1), (4-1) is equivalent to an Artin-Schreier system of equations in
n — 1 variables over Ao[%]

x/ — B/)_C/[p] + C/

where B’ € M(n_l)x(,,_l)(Ao[%]) and C' € M(,—1)x1 (Ao[%]). Note that B’ depends only on B and not
on C. Hence, the assertion follows by induction. O

Let N := M ®e,, Ro equipped with the Frobenius ¢op ® @g,. From [Kim 2015, Equations (6.1), (6.2)
and Remark 3.13], we have the Ry-submodule Fil'! A/ ¢ N associated with 91 € Kisl(G) such that
pN CFil' v, N'/Fil' \V is projective over Ry/(p), and (1®¢)(¢*Fil' V') = p as Ro-modules (see [Kim
2015, Definitions 3.4 and 3.6] for the frame (Ro, pRo, Ro/(p), ¢r, ¥R,/ P)). Fix an Ry-direct factor
N c N which lifts Fil' N/ pN € N/ pN, and let

N = Ro®,.x, <N+ %N‘) C Ro[ﬂ ®qp, ko N -
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Let Spf(A, p) — Spf(Ryp, p) be an étale morphism. Note that A is equipped with a unique Frobenius
lifting that on Ry, and Q = A@Roﬁ Ro = @;"zl A - dt;. For a connection

Van: A/(P") ®ry N = (A/(p") ®r, N) ®4 Qs
on A/(p") ®r, N, we say that the Frobenius is horizontal if the following diagram commutes:

©*(Van)

A/(PY AN —— AJ(p") @A N ®4 Q4

1®¢ (1®(ﬂ)®id§A

Van —~
AJ(PY) ®UN —— 5 AJ(P") @A N ®4 24

Here, ¢* (V4 ) is given by choosing an arbitrary lift of V4 ,, on A/(p”“) ®a N, and ¢*(V4 ,) does not
depend on the choice of such a lift (see [Vasiu 2013, Section 3.1.1, Equation (9)]).

Proposition 4.8. There exists f € Ry with f ¢ pRy such that the following holds:

Let Sy be the p-adic completion of Ro[%] equipped with the induced Frobenius, and let G = Sp[[u].
Let Mg = M Rg G5 equipped with the induced Frobenius, so Mg € Kis'(Sg). Then there exists a
topologically quasinilpotent integrable connection

Vans 1 (80 @p,55 Ms) — (S0 ®p,65 Ms) s, Qs,

such that ¢ is horizontal, and thus (Ms, Van,) € Kis' (&g, V). Furthermore, we can choose Vo, so that
Ms Qe; So, equipped with the induced Frobenius and connection is isomorphic to (Mo, , Van,, ) as
Kisin modules over S, .

Proof. Without loss of generality, we may pass to a Zariski open set of Spf(Ry, p) if necessary so
that Al and N/N'! are free over Ry. Fix an Ry-basis of N adapted to the direct factor N'l. Let
Spf(A, p) — Spf(Ryp, p) be an étale morphism. Consider a connection

Vai:A/(p)Qr, N = (A/(p) ®ry N) @4 Qa4

such that the Frobenius is horizontal. By [Vasiu 2013, Section 3.2, Basic Theorem] and its proof, the
set of such connections V4 1 corresponds to the set of solutions over A/(p) of an Artin—Schreier system
of equations

x= B)_C[p] +C

for x = (x1,..., Xgm)', Where B € Mamxam(Ro/(p)) and Ci € Mamx1(Ro/(p)). When A = Oy, it has
a solution given by ngLo. Since Or,/(p) = Frac(Ro/(p)) and Ro/(p) is a unique factorization domain,
the solution lies in (Rg/( p))[%] for some nonzero f € Ry/(p) depending only on B by Lemma 4.7 and
its proof. Let f € Ry be a lift of f, and let Sy be the p-adic completion of Ro[%].
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For n > 1, suppose we are given a connection
Vo 2 S0/(P") @ry N = (So/(p") @&, N) ®s5, Qs

such that the Frobenius is horizontal and inducing Voy, (mod p") via the natural map So — Or,. By
[Vasiu 2013, Section 3.2, Basic Theorem] and its proof, for the choice of a basis of A/ as above, the set
of connections

Vst : S0/ (P" D) @ry N = (So/ (p"™) @&, N) @5, R,

such that the Frobenius is horizontal and lifting Vg, ,, corresponds to the set of solutions over So/(p) of
an Artin—Schreier system of equations

x=Bx"+Cyyp,

where B is the same matrix as above and C,,11 € Mgmx1(So/(p)). The solution over Oy, /(p) given by
Von,, lies in So/(p) by Lemma 4.7 and its proof. This proves the assertion. 0

Proposition 4.9. Let Sy be a ring as given in Proposition 4.8, and let S = So @ w ) Ok. Then there exists
a p-divisible group Gs over S such that T,(Gs) = T as Gs-representations.

Proof. Let G be the p-divisible group over S given by (Mg, Vax,) in Proposition 4.8. Since MsR@s,So, =
Mo, as Kisin modules, we have T,(Gs) =T as Go, -representations. On the other hand, M5 @s; O¢ s =
M@0, O¢ s as étale p-modules. Hence, T,(Gs) =T as Gg ,-representations. Since G5, and Go,
generate the Galois group Gg by Lemma 2.1, we have T),(Gs) = T as Gg-representations. g

5. Proof of the main theorem

In this section, we finish the proof of Theorem 1.2. We begin by recalling the following well-known
lemma about p-divisible groups.

Lemma 5.1. Let R| be an integral domain over W (k) such that Frac(R) has characteristic 0. Then
via the Tate module functor T, (-), the category of p-divisible groups over R; [i] is equivalent to the
category of finite free Z ,-representations of Gg, = nlét(SpeC R [%]) Furthermore, such an equivalence is
functorial in the following sense:

Let Ry — Ry be a map of integral domains over W (k) such that Frac(R) and Frac(R;) have character-

istic 0. Let Gg, be a p-divisible group over Ry. Then T,(Gg,) = T,(GR, Xg, R2) as Gg,-representations.
We first consider the case when R is a formal power series ring of dimension 2.

Proposition 5.2. Suppose Ry = O[s]| for a Cohen ring O, and e < p — 1. Let T be a crystalline
Gr-representation which is finite free over Z,, and has Hodge—Tate weights in [0, 1]. Then there exists a
p-divisible group G g over R such that T,(Gr) =T as Gr-representations.

Proof. Let G be a p-divisible group over R [%] given by Lemma 5.1 such that 7,(G) = T as Gg-
representations. It suffices to show that G extends to a p-divisible group G over R.
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By [Brinon and Trihan 2008, Theorem 6.10], there exists a p-divisible group G, over O extending
G x R[S L. For each integer n > 1, let A,, be the Hopf algebra over R[%][%] for the finite flat group
scheme (G x R[4 R[%] [%])[ p"1, and let B, be the Hopf algebra over O, for the finite flat group scheme
Go,[p"]. Identify A, ® R[L5] L = B, ®p, L as Hopf algebras over L. Note that the p-adic completion
of R[1] is isomorphic to O;. By [Beauville and Laszlo 1995, Main Theorem] and its proof, the R|[1]-
subalgebra C, := A, N B, C B, ®p, L is finite flat over R[%] Moreover, C, is equipped with the Hopf
algebra structure induced from (A,, B;,) such that C, R[] R[%][%] = A, and C, ®g[1] Op = B,.

Hence, the datum of finite flat group schemes

(0 e &[] ] Goutom)

s
descends to a finite flat group scheme over R[%] (up to a unique isomorphism by [Beauville and Laszlo
1995, Main Theorem]).

Thus, we obtain a system of finite flat group schemes (Gy ,),>1 over U := Spec R \ pt extending
(GLp"Dn>1. Here, pt denotes the closed point given by the maximal ideal of R. The natural induced
sequence of finite flat group schemes

X
0— Gy — Gyl -2 Gy, —0

is exact by fpqc descent. So (Gy ,)n>1 is a p-divisible group over U extending G. Since e < p — 1,
Gy extends to a p-divisible group G g over R by [Vasiu and Zink 2010, Theorem 3]. O

Remark 5.3. As illustrated in the above proof, this special case can be shown without using Kisin
modules. However, the purity result for p-divisible groups [Vasiu and Zink 2010, Theorem 3] is proved
only when R is regular local of Krull dimension 2 with low ramification (see [Vasiu and Zink 2010,
Section 5.1]). So we use the construction of Kisin modules to show Theorem 1.2 for more general R
with arbitrary dimensions.

Now, let Ry be a general ring satisfying the assumptions in Section 2A, and let R = Ry Qw ) Ok
with e < p— 1. Let T be a crystalline Gr-representation free over Z, with Hodge—Tate weights in [0, 1].
Denote by Me(7T) the G-module in Kis' (&) constructed from T as in Section 4. Let f € Ry be an

element as in Proposition 4.8, and let Sy be the p-adic completion of RO[L] as in Proposition 4.9. Let

f € Ry/pRy be the image of f in the projection Ry — Ro/(p). Note that i%p f is aunitin Ry/pRy, then
f is a unit in Ry since Ry is p-adically complete. So for such a case, So = Ro and Theorem 1.2 follows
from Proposition 4.9. Now consider the case when f is not a unit in Ry/(p). Since Ry/(p) is a UFD,
there exist prime elements 5y, ..., 5; of Rg/(p) dividing f. Let sq,...,s; € Ry be any preimages of
Si, ..., 8 respectively.

Foreachi =1,...,[, consider the prime ideal p; = (p, s;) C Rp and let Rg) = 1?0,\,9,. be the p;-adic
completion of Ry p,. Note that R(()i) is a formal power series ring over a Cohen ring with Krull dimension 2.
We consider the natural p-equivariant map b; : Ry — Rg), which induces b; : R — R := R(()i) Qww) Ok .
On the other hand, let k. be a field extension of Frac(Ry/pRp) which is a composite of the fields
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Frac(R(i)/ (p)) fori=1,...,[, and let kpenc = 11rn k. be its direct perfection. By the universal property
of p-adic Witt vectors, there exists a unique ¢- equlvarlant map b, : Ry — W(kperf) Moreover, for each
i=1,...,1[, wehave a unique p-equivariant embedding R(()') — W(kl?er ) whose composite with b; is equal
to b.. We claim that So/(p) N ﬂﬁzl (R(()i)/(p)) = Ro/(p) inside k?erf. To see the claim, let x be a nonzero

element of Sy/(p) = (RO/(p))[%] such that it also lies in m§:1 (R(()i)/(p)). We can write x = (]_[f q sl"’) -a

for some integers n; and some a € Ry/(p) which is not in the ideal (51, ..., §;) of Ro/(p). Suppose
ny < 0. Then (1/5")x lies in the maximal ideal of R{"/(p). But (1/5")x = (1‘[522 5/") - a is a unit in
R(l)/(p) which is a contradiction. So n; > 0, and similarly n; > 0 foreachi =1,...,[. Sox € Ry/(p),

which proves the claim. This implies that the natural embedding Ry — So N ﬂ; | R(l)

W(kferf) is bijective.
By Proposition 5.2, there exists a p-divisible group G; over R® such that T,(G;)) =T as Ggo-

as subrings of

representations. We have

M (T) ®s O¢) ®0; O gy =M (Gi) B ) Of gi>

as étale (¢, Og gi)-modules. Applying Lemma 4.4, we can deduce that Mg (T) @s S i = M (G;)
compatibly with Frobenius.

Let D = Dcris(T[%]), and denote M = Me(T) and V' = M ®e , Ro. Let V: D — D g, g, be
the connection given by the functor Deys(-).

Proposition 5.4. There exists a natural g-equivariant embedding
h:N < D

of Ro-modules. Furthermore, if we consider N as an Ry-submodule of D via h, then YV maps N into
N ®g, §R0- Hence, M is a Kisin module of height 1.

Proof. By [Kim 2015, Corollaries 5.3 and 6.7], there exists a natural ¢-equivariant embedding
hi : N = D ®gqp RS

for each i =1, ..., such that the connections given by 91" (G;) and D are compatible, and there exists
a natural g-equivariant embedding 4. : N — D ®g, . W(kferf). Moreover, by Proposition 4.9, there
exists a natural g-equivariant embedding s : N'— D ®g, So such that the connections given by 9*(Gs)
and D are compatible. Since the construction of those natural maps is compatible with ¢-equivariant
base changes (see [Kim 2015, Section 5.5]), we deduce that the maps 41, ..., h; and hg are compatible
with one another, in the sense that their composites with the embedding into D ®g, 5, W(kferf) are all
equal to h.. Hence, we obtain a p-equivariant embedding

O (T 3 (g LI | BTN O Mg Py 3

sinceDisﬂatoverRo[},]and So[ ]ﬂﬂl 1R(’)[ ]= Ro[%]-
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Now, identify Qg, = @' Ro-dt;. Then V maps N to N ®k, (D_, Ro[%] -dt;). On the other hand,
by Propositions 4.8, 5.2, and the compatibility of Ds(-) with respect to ¢-compatible base changes, we
have that V maps A into N ®r, (D'}, So-d;) and also into N'®, (D'} RY.dtj) foreachi=1,...,1.
Since N is flat over Rg and Sy N ﬂﬁzl R(()’) = Ry, V maps NV into N g, (@’7:1 Ry - dtj). a

Theorem 5.5. There exists a p-divisible group G g over R such that T,(Gr) = T as Gg-representations.

Proof. By Proposition 5.4, we have 9t € Kis!(¢, V). Furthermore, M ®¢ Sp, = Mp, as Kisin
modules over G, , since the Frobenius and connection structure on 9t agree with those on D. Thus, if
G is the p-divisible group corresponding to 9, then T),(Ggr) = T as Go, -representations as well as
g R -representations. The assertion follows from Lemma 2.1. O

6. Barsotti-Tate deformation ring

As an application of Theorem 5.5, we study the geometry of the locus of crystalline representations with
Hodge—Tate weights in [0, 1] by using the results in [Moon 2020]. Note that in [Moon 2020, Section 2], Ry
is assumed to satisfy the additional conditions that W(k)(tlil, e, tjl) — Ry has geometrically regular
fibers or Ry has Krull dimension less than 2, and that k — Ry/p Ry is geometrically integral. These
assumptions are only used to have the crystalline period ring as in [Brinon 2008]. However, the additional
conditions are not necessary by [Kim 2015, Section 4], and the results in [Moon 2020] hold in our setting.

Denote by C the category of topological local Z ,-algebras A satisfying the following conditions:

e The natural map Z, — A/my is surjective, where m, denotes the maximal ideal of A.

o The map from A to the projective limit of its discrete artinian quotients is a topological isomorphism.
By the first condition, the residue field of A is [F,,. The second condition is equivalent to that A is complete
and its topology is given by a collection of open ideals a C A for which A/a is artinian. Morphisms in C
are continuous Z ,-algebra morphisms.

For A € C, we mean by an A-representation of Gg a finite free A-module equipped with a continuous
A-linear Gr-action. Fix an [,-representation V, of Gg which is absolutely irreducible. For A € C, a
deformation of Vy in A is defined to be an isomorphism class of A-representations of V of Gy satisfying
V ®aF, =V as F,[Gr]-modules. Denote by Def(Vp, A) the set of such deformations. A morphism
f:A— A’ inC induces a map f; : Def(Vp, A) — Def(Vj, A’) sending the class of an A-representation V
to the class of V ®4, s A’. The following theorem on universal deformation ring is proved in [de Smit and
Lenstra 1997].

Theorem 6.1 [de Smit and Lenstra 1997, Theorem 2.3]. There exists a universal deformation ring
Auniv € C and a deformation Vi, € Def(Vy, Auniv) such that for all A € C, we have a bijection

Home (Auniv, A) => Def(Vp, A) (6-1)
given by f = f*(Vuniv)-

We deduce that when R has dimension 2 and e is small, the locus of crystalline representations with
Hodge—Tate weights in [0, 1] cuts out a closed subscheme of Spec Apiy in the following sense.
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Theorem 6.2. Suppose that e < p — 1 and that the Krull dimension of R is 2. Then there exists a closed
ideal agT C Auniv Such that the following holds:
For any finite flat 7 ,-algebra A equipped with the p-adic topology and any continuous Z ,-algebra

map [ : Auiyv — A, the induced representation Vyniy @ A, f A[%] of Gr is crystalline with Hodge—Tate
weights in [0, 1] if and only if f factors through the quotient Aypiy/0aBT.

Proof. This follows directly from Theorem 5.5 and [Moon 2020, Theorem 5.7]. Note that [Moon 2020,
Theorem 5.7] assumes the Krull dimension of R is 2. The assumption was necessary in the argument
of [Moon 2020, Section 5] to construct Barsotti—Tate deformation ring using the result in [de Smit and
Lenstra 1997]. O
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