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Relative crystalline representations and
p-divisible groups in the small ramification case

Tong Liu and Yong Suk Moon

Let k be a perfect field of characteristic p > 2, and let K be a finite totally ramified extension over
W (k)

[ 1
p

]
of ramification degree e. Let R0 be a relative base ring over W (k)〈t±1

1 , . . . , t±1
m 〉 satisfying some

mild conditions, and let R= R0⊗W (k)OK . We show that if e< p−1, then every crystalline representation
of π ét

1

(
Spec R

[ 1
p

])
with Hodge–Tate weights in [0, 1] arises from a p-divisible group over R.

1. Introduction

Let k be a perfect field of characteristic p > 2, and let W (k) be its ring of Witt vectors. Let K be a
finite totally ramified extension over W (k)

[ 1
p

]
with ramification degree e, and denote by OK its ring

of integers. If G is a p-divisible group over OK , then it is well-known that its Tate module Tp(G) is
a crystalline Gal(K/K )-representation with Hodge–Tate weights in [0, 1]. Conversely, Kisin [2006]
showed the following result.

Theorem 1.1 [Kisin 2006, Corollary 2.2.6]. Let T be a crystalline Gal(K/K )-representation finite free
over Zp whose Hodge–Tate weights lie in [0, 1]. Then there exists a p-divisible group G over OK such
that Tp(G)∼= T as Gal(K/K )-representations.

The result in Theorem 1.1 for the case e ≤ p− 1 was first proved in [Laffaille 1980], in which the
low ramification assumption is used to directly associate certain modules equipped with filtration and
Frobenius endomorphism to p-divisible groups. This was one of the starting points of p-adic Hodge
theory, to classify crystalline representations by weakly admissible filtered ϕ-modules and establish their
connections to algebraic geometric objects.

The goal of this paper is to study the statement analogous to Theorem 1.1 in the relative case. When
we work over a relative base ring, the situation becomes much more complicated, and it is unknown how
to characterize crystalline representations by linear algebraic data. For example, [Hartl 2013] shows that
a naive generalization of weakly admissible modules is not sufficient. In this paper, we obtain a partial
result towards this direction for crystalline representations of Hodge–Tate weights in [0, 1].

Let R0 be a base ring over W (k)〈t±1
1 , . . . , t±1

m 〉 given as in Section 2A, and let R = R0 ⊗W (k) OK .
Let GR be the étale fundamental group of Spec

(
R
[ 1

p

])
. For representations of GR , the condition of

being crystalline is well-defined by [Brinon 2008; Kim 2015]. If G R is a p-divisible group over R, its
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Tate module Tp(G R) is a crystalline GR-representation with Hodge–Tate weights in [0, 1] (see [Kim
2015]). Conversely, when the ramification index e is small, we prove that crystalline representations of
Hodge–Tate weights in [0, 1] can be associated with the linear algebraic data called Kisin modules of
height 1, and show the following:

Theorem 1.2. Suppose e < p− 1. Let T be a crystalline GR-representation finite free over Zp whose
Hodge–Tate weights lie in [0, 1]. Then there exists a p-divisible group G R over R such that Tp(G R)∼= T
as GR-representations.

As an immediate corollary using the results in [Moon 2020], we obtain the following result on the geom-
etry of the locus of crystalline GR-representations with Hodge–Tate weights in [0, 1]. For a fixed absolutely
irreducible Fp-representation V0 of GR , there exists a universal deformation ring which parametrizes the
deformations of V0 [de Smit and Lenstra 1997]. By [Moon 2020, Theorem 5.7], we deduce:

Corollary 1.3. Suppose R has Krull dimension 2 and e < p − 1. Then the locus of crystalline rep-
resentations of GR with Hodge–Tate weights in [0, 1] cuts out a closed subscheme of the universal
deformation space.

We give a more precise statement of Corollary 1.3 in Section 6. The assumption that R has Krull
dimension 2 appears in [Moon 2020, Theorem 5.7], since the construction of Barsotti–Tate deformation
ring in [Moon 2020, Section 5] uses the result in [de Smit and Lenstra 1997] and relies on the assumption.

We now explain the major ingredients for the proof of Theorem 1.2. Firstly, Kim [2015] generalized
the Breuil–Kisin classification in the relative setting, and showed that the category of p-divisible groups
over R is anti-equivalent to the category of Kisin modules of height 1 over R0[[u]]. Using the classification,
we reduce our problem to constructing desired Kisin modules. Secondly, Brinon and Trihan [2008]
proved the generalization of Theorem 1.1 for the case when the base is a complete discrete valuation
ring whose residue field has a finite p-basis. To construct appropriate Kisin modules, we use their result
together with the fact that the p-adic completion of R0,(p) is an example of such a ring. We remark that
our construction of Kisin modules relies on the assumption that the ramification index is small.

1A. Notations. We will reserve ϕ for various Frobenius. To be more precise, let A be an W (k)-algebra
on which the arithmetic Frobenius ϕ on W (k) extends, and M an A-module. We denote ϕA : A→ A
for such an extension. Let ϕM : M → M be a ϕA-semilinear map. This is equivalent to having an
A-linear map 1⊗ ϕM : ϕ

∗

A M→ M, where ϕ∗A M denotes A⊗ϕA,A M. We always drop the subscripts A
and M from ϕ if no confusion arises. Let f : A→ B be a ring map compatible with Frobenius, that is,
f ◦ϕA = ϕB ◦ f . Then ϕM naturally extends to ϕMB : MB→ MB for MB := B⊗A M. It is easy to check
that ϕ∗B MB = B⊗A ϕ

∗

A M and 1⊗ϕMB : ϕ
∗

B MB→ MB is equal to B⊗A (1⊗ϕM).

2. Relative p-adic Hodge theory and étale ϕ-modules

2A. Base ring and crystalline period ring in the relative case. We follow the same notations as in the
Introduction. We recall the assumptions on the base rings and the construction of crystalline period ring
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in relative p-adic Hodge theory in [Kim 2015] (see also [Brinon 2008]), together with an additional
assumption which will be needed later. Let R0 be a ring obtained from W (k)〈t±1

1 , . . . , t±1
m 〉 by a finite

number of iterations of the following operations:

• p-adic completion of an étale extension;
• p-adic completion of a localization;
• completion with respect to an ideal containing p.

We suppose that R0 is an integral domain separated and complete with respect to some ideal J ⊂ R0

containing p, such that R0/J is finitely generated over some field k ′ (see [Kim 2015, Section 2.2.2]). We
further assume that R0/pR0 is a unique factorization domain.

R0/pR0 has a finite p-basis given by {t1, . . . , tm} in the sense of [de Jong 1995, Definition 1.1.1]. The
Witt vector Frobenius on W (k) extends (not necessarily uniquely) to R0, and we fix such a Frobenius
endomorphism ϕ : R0 → R0. Let �̂R0 := lim

←−−n �(R0/pn)/W (k) be the module of p-adically continuous
Kähler differentials. By [Brinon 2008, Proposition 2.0.2], �̂R0

∼=
⊕m

i=1 R0 · dti . We work over the base
ring R given by R := R0⊗W (k)OK .

Let R denote the union of finite R-subalgebras R′ of a fixed separable closure of Frac(R) such that
R′
[ 1

p

]
is étale over R

[ 1
p

]
. Then Spec R

[ 1
p

]
is a pro-universal covering of Spec R

[ 1
p

]
, and R is the

integral closure of R in R
[ 1

p

]
. Let GR := Gal

(
R
[ 1

p

]
/R
[ 1

p

])
= π ét

1

(
Spec R

[ 1
p

])
. By a representation of

GR , we always mean a finite continuous representation.
The crystalline period ring Bcris(R) is constructed as follows. Let R[ = lim

←−−ϕ
R/pR. There exists a

natural W (k)-linear surjective map θ :W (R[)→ R̂ which lifts the projection onto the first factor. Here, R̂
denotes the p-adic completion of R. Let θR0 : R0⊗W (k)W (R[)→ R̂ be the R0-linear extension of θ . Define
the integral crystalline period ring Acris(R) to be the p-adic completion of the divided power envelope of
R0⊗W (k) W (R[) with respect to ker(θR0). Choose compatibly εn ∈ R such that ε0 = 1, εn = ε

p
n+1 with

ε1 6= 1, and let ε̃ = (εn)n≥0 ∈ R[. Then τ := log [ε̃] ∈ Acris(R). Define Bcris(R)= Acris(R)
[ 1
τ

]
. Bcris(R) is

equipped naturally with GR-action and Frobenius endomorphism, and Bcris(R)⊗R0[
1
p ]

R
[ 1

p

]
is equipped

with a natural filtration by R
[ 1

p

]
-submodules. Furthermore, we have a natural integrable connection

∇ : Bcris(R)→ Bcris(R)⊗R0 �̂R0 such that Frobenius is horizontal and Griffiths transversality is satisfied.
For a GR-representation V over Qp, let Dcris(V ) := HomGR (V, Bcris(R)). The natural morphism

αcris : Dcris(V )⊗R0[
1
p ]

Bcris(R)→ V∨⊗Qp Bcris(R)

is injective. We say V is crystalline if αcris is an isomorphism. When V is crystalline, then Dcris(V )
is a finite projective R0

[ 1
p

]
-module, and Dcris(V )⊗R0[

1
p ]

R
[ 1

p

]
has the filtration induced by that on

Bcris(R)⊗R0[
1
p ]

R
[ 1

p

]
. We define the Hodge–Tate weights similarly as in the classical p-adic Hodge

theory. Frobenius and connection on Bcris(R) induce those structures on Dcris(V ); for the Frobenius
endomorphism on Dcris(V ), 1 ⊗ ϕ : ϕ∗Dcris(V ) → Dcris(V ) is an isomorphism, and the connection
∇ : Dcris(V )→ Dcris(V )⊗R0 �̂R0 is integrable and topologically quasinilpotent. Furthermore, Griffiths
transversality is satisfied and ϕ is horizontal. For a GR-representation T which is free over Zp, we say it
is crystalline if T

[ 1
p

]
is crystalline.
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Suppose S0 is another relative base ring over W (k)〈t±1
1 , . . . , t±1

m 〉 satisfying the above conditions and
equipped with a choice of Frobenius, and let b : R0→ S0 be a ϕ-equivariant W (k)〈t±1

1 , . . . , t±1
m 〉-algebra

map. We also denote b : R= R0⊗W (k)OK→ S := S0⊗W (k)OK the map induced OK -linearly. By choosing
a common geometric point, this induces a map of Galois groups GS→ GR , and also a map of crystalline
period rings Bcris(R)→ Bcris(S) compatible with all structures. If V is a crystalline representation of GR

with certain Hodge–Tate weights, then via these maps V is also a crystalline representation of GS with
the same Hodge–Tate weights, and the construction of Dcris(V ) is compatible with the base change.

We will consider the following base change maps in later sections. Let OL0 be the p-adic completion of
R0,(p), and let bL : R0→OL0 be the natural ϕ-equivariant map. This induces bL : R→OL :=OL0⊗W (k)OK .
Note that L=OL

[ 1
p

]
is an example of a complete discrete valuation field with a residue field having a finite

p-basis, studied in [Brinon and Trihan 2008]. On the other hand, for each maximal ideal q ∈mSpecR0,
let R̂0,q be the q-adic completion of R0,q. By the structure theorem of complete regular local rings, we
have R̂0,q ∼=Oq[[s1, . . . , sl]] where Oq is a Cohen ring with the maximal ideal (p) and l ≥ 0 is an integer
(R̂0,q is understood to be Oq when l = 0). We consider the natural ϕ-equivariant morphism bq : R0→ R̂0,q,
which induces bq : R→ Rq := R̂0,q⊗W (k)OK .

2B. Étale ϕ-modules. We study étale ϕ-modules and associated Galois representations. Most of the
material in this section is a review of [Kim 2015, Section 7], and the underlying geometry is based on
perfectoid spaces as in [Scholze 2012].

Let R0 be a relative base ring over W (k)〈t±1
1 , . . . , t±1

m 〉 and let R = R0⊗W (k)OK as above. Choose
a uniformizer $ ∈ OK . For integers n ≥ 0, we choose compatibly $n ∈ K such that $0 = $ and
$

p
n+1 = $n , and let K∞ be the p-adic completion of

⋃
n≥0 K ($n). Then K∞ is a perfectoid field

and
(
R̂
[ 1

p

]
, R̂

)
is a perfectoid affinoid K∞-algebra. Let K [

∞ denote the tilt of K∞ as defined in [Scholze
2012], and let $ := ($n) ∈ K [

∞.
Let S := R0[[u]] equipped with the Frobenius extending that on R0 by ϕ(u)= u p. Let E+R∞ =S/pS,

and let Ẽ+R∞ be the u-adic completion of lim
−−→ϕ

E+R∞ . Let ER∞ = E+R∞
[ 1

u

]
and ẼR∞ = Ẽ+R∞

[ 1
u

]
. By [Scholze

2012, Proposition 5.9], (ẼR∞, Ẽ+R∞) is a perfectoid affinoid K [
∞-algebra, and we have the natural injective

map (ẼR∞, Ẽ+R∞) ↪→
(
R[
[ 1
$

]
, R[

)
given by u 7→$ .

Let

R̃∞ :=W (Ẽ+R∞)⊗W (K [◦
∞),θ

OK∞ . (2-1)

By [Scholze 2012, Remark 5.19],
(
R̃∞

[ 1
p

]
, R̃∞

)
is a perfectoid affinoid K∞-algebra whose tilt is

(ẼR∞, Ẽ+R∞). Furthermore, it is shown in [Kim 2015] that we have a natural injective map(
R̃∞

[ 1
p

]
, R̃∞

)
↪→

(
R̂
[ 1

p

]
, R̂

)
whose tilt is (ẼR∞, Ẽ+R∞) ↪→

(
R[
[ 1
$

]
, R[

)
. For GR̃∞ := π

ét
1

(
Spec R̃∞

[ 1
p

])
, we then have a continuous

map of Galois groups GR̃∞→ GR , which is a closed embedding by [Gabber and Ramero 2003, Proposi-
tion 5.4.54]. By the almost purity theorem in [Scholze 2012], R[

[ 1
$

]
can be canonically identified with the



Relative crystalline representations and p-divisible groups in the small ramification case 2777

$ -adic completion of the affine ring of a pro-universal covering of Spec ẼR∞ , and letting GẼR∞
be the Ga-

lois group corresponding to the pro-universal covering, there exists a canonical isomorphism GẼR∞
∼= GR̃∞ .

Lemma 2.1. Consider the map of Galois groups GOL → GR induced by choosing a common geometric
point for the base change map bL : R→ OL in Section 2A. Then the images of GOL and GR̃∞ inside GR

generate the group GR .

Proof. E+R∞ has a finite p-basis given by {t1, . . . , tm, u}. Note that for any element of g ∈ GR , there exists
an element h ∈ GOL whose image in GR induces the same actions on t1/p∞

1 , . . . , t1/p∞
m ,$ 1/p∞ . Since

R̃∞ =W (Ẽ+R∞)⊗W (K [◦
∞),θ

OK∞ , the actions of g and h are the same on the elements of R̃∞. Hence, the
assertion follows. �

Now, let OE be the p-adic completion of S
[ 1

u

]
. Note that ϕ on S extends naturally to OE .

Definition 2.2. An étale (ϕ,OE)-module is a pair (M, ϕM) where M is a finitely generated OE -module
and ϕM :M→M is a ϕ-semilinear endomorphism such that 1⊗ϕM : ϕ∗M→M is an isomorphism.
We say that an étale (ϕ,OE)-module is projective (resp. torsion) if the underlying OE -module M is
projective (resp. p-power torsion).

Let ModOE denote the category of étale (ϕ,OE)-modules whose morphisms are OE -module maps
compatible with Frobenius. Let Modpr

OE
and Modtor

OE
respectively denote the full subcategories of projective

and torsion objects. Note that we have a natural notion of a subquotient, direct sum, and tensor product
for étale (ϕ,OE)-modules, and duality is defined for projective and torsion objects.

Lemma 2.3. Let M ∈ Modtor
OE

be a torsion étale ϕ-module annihilated by p. Then M is a projective
OE/pOE -module.

Proof. This follows from essentially the same proof as in [Andreatta 2006, Lemma 7.10]. �

We consider W
(
R[
[ 1
$

])
as an OE -algebra via mapping u to the Teichmüller lift [$ ] of $ , and let Our

E
be the integral closure of OE in W

(
R[
[ 1
$

])
. Let Ôur

E be its p-adic completion. Since OE is normal, we
have AutOE (Our

E )
∼= GER∞

:= π ét
1 (Spec ER∞), and by [Gabber and Ramero 2003, Proposition 5.4.54] and

the almost purity theorem, we have GER∞
∼= GẼR∞

∼= GR̃∞ . This induces GR̃∞-action on Ôur
E . The following

is proved in [Kim 2015].

Lemma 2.4 [Kim 2015, Lemmas 7.5 and 7.6]. We have (Ôur
E )

GR̃∞ =OE and the same holds modulo pn .
Furthermore, there exists a unique GR̃∞-equivariant ring endomorphism ϕ on Ôur

E lifting the p-th power
map on Ôur

E /(p) and extending ϕ on OE . The inclusion Ôur
E ↪→ W

(
R[
[ 1
$

])
is ϕ-equivariant where the

latter ring is given the Witt vector Frobenius.

Let RepZp
(GR̃∞) be the category of Zp-representations of GR̃∞ , and let Reppr

Zp
(GR̃∞) and Reptor

Zp
(GR̃∞)

respectively denote the full subcategories of free and torsion objects. For M∈ModOE and T ∈RepZp
(GR̃∞),

we define T (M) := (M⊗OE Ôur
E )

ϕ=1 and M(T ) := (T ⊗Zp Ôur
E )

GR̃∞ . For a torsion étale ϕ-module
M ∈Modtor

OE
, we define its length to be the length of M⊗OE (OE)(p) as an (OE)(p)-module.
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Proposition 2.5 [Kim 2015, Proposition 7.7]. The assignments T (·) and M(·) are exact equivalences
(inverse of each other) of ⊗-categories between ModOE and RepZp

(GR̃∞). Moreover, T ( ·) and M(·)

restrict to rank-preserving equivalence of categories between Modpr
OE

and Reppr
Zp
(GR̃∞) and length-

preserving equivalence of categories between Modtor
OE

and Reptor
Zp
(GR̃∞). In both cases, T (·) and M(·)

commute with taking duals.

Proof. This is [Kim 2015, Proposition 7.7]. We remark here for some additional details. Note that ER∞

is a normal domain and π ét
1 (Spec ER∞)

∼= GR̃∞ . Given Lemma 2.3, the assertion therefore follows from
the usual dévissage and [Katz 1973, Lemma 4.1.1]. Note that both functors T (·) and M(·) are a priori
left exact by definition, and exactness can be proved by the same argument as in the proof of [Andreatta
2006, Theorem 7.11]. �

Suppose S0 is another relative base ring over W (k)〈t±1
1 , . . . , t±1

m 〉 as in Section 2A equipped with
a choice of Frobenius, and suppose b : R0 ↪→ S0 be a ϕ-equivariant W (k)〈t±1

1 , . . . , t±1
m 〉-algebra map

which is injective. Let b : R = R0 ⊗W (k) OK ↪→ S := S0 ⊗W (k) OK be the induced injective map. By
choosing a common geometric point we have an injective map R ↪→ S, and this induces an embedding
R̃∞ ↪→ S̃∞ by the constructions given in (2-1). Hence, the corresponding map of Galois groups GS→ GR

restricts to GS̃∞→ GR̃∞ . Let SS = S0[[u]] and let OE,S be the p-adic completion of SS
[ 1

u

]
. Let MS(·)

be the functor for the base ring S constructed similarly as above. Let T ∈ Reppr
Zp
(GR̃∞). Then T is also a

GS̃∞-representation via the map GS̃∞→ GR̃∞ , and we have the natural isomorphism M(T )⊗OE OE,S ∼=

MS(T ) as étale (ϕ,OE,S)-modules by the definition of the functors M(·) and T (·) and by Proposition 2.5.

3. Relative Breuil–Kisin classification

We now explain the classification of p-divisible groups over Spec R via Kisin modules, which is proved
in [Kisin 2006] when R =OK and generalized in [Kim 2015] for the relative case. Denote by E(u) the
Eisenstein polynomial for the extension K over W (k)

[ 1
p

]
, and let S= R0[[u]] as above.

Definition 3.1. Denote by Kis1(S) the category of pairs (M, ϕM) where

• M is a finitely generated projective S-module;

• ϕM :M→M is a ϕ-semilinear map such that coker(1⊗ϕM) is annihilated by E(u).

The morphisms are S-module maps compatible with Frobenius.

Note that for (M, ϕM) ∈Kis1(S), 1⊗ϕM : ϕ∗M→M is injective since M is finite projective over S
and coker(1⊗ϕM) is killed by E(u). Consider the composite S�S/uS= R0

ϕ
→ R0.

Definition 3.2. A Kisin module of height 1 is a tuple (M, ϕM,∇M) such that:

• (M, ϕM) ∈ Kis1(S).

• Let N :=M⊗S,ϕ R0 equipped with the Frobenius ϕM ⊗ ϕR0 . Then ∇M : N → N ⊗R0 �̂R0 is a
topologically quasinilpotent integrable connection commuting with Frobenius.



Relative crystalline representations and p-divisible groups in the small ramification case 2779

Here, ∇M being topologically quasinilpotent means that the induced connection on N/pN is nilpotent.
Denote by Kis1(S,∇) the category of Kisin modules of height 1 whose morphisms are S-module maps
compatible with Frobenius and connection.

The following theorem classifying the p-divisible groups is proved in [Kim 2015].

Theorem 3.3 [Kim 2015, Corollary 6.7 and Remark 6.9]. There exists an exact anti-equivalence of
categories

M∗ : {p-divisible groups over Spec R} → Kis1(S,∇).

Let S0 be another base ring satisfying the condition as in Section 2A and equipped with a Frobenius,
and let b : R0→ S0 be a ϕ-equivariant map. Then the formation of M∗ commutes with the base change
R→ S := S0⊗W (k)OK induced OK -linearly from b.

Note that if (M, ϕM) ∈ Kis1(S), then (M⊗S OE , ϕM⊗ ϕOE ) is a projective étale (ϕ,OE)-module
since 1⊗ϕM is injective and its cokernel is killed by E(u) which is a unit in OE . If G R is a p-divisible
group over R, its Tate module is given by Tp(G R) := HomR(Qp/Zp,G R ×R R), which is a finite free
Zp-representation of GR . By [Kim 2015, Corollary 8.2], we have a natural GR̃∞-equivariant isomorphism
T∨(M∗(G R)⊗S OE)∼= Tp(G R), where T∨(M∗(G R)⊗S OE) denotes the dual of T (M∗(G R)⊗S OE).

4. Construction of Kisin modules

In this section, we will assume e < p− 1 from Proposition 4.3. We denote Sn :=S/pnS for positive
integers n ≥ 1. Let T be a crystalline GR-representation which is free over Zp of rank d with Hodge–Tate
weights in [0, 1]. Let M :=M∨(T ) be the associated étale (ϕ,OE)-module, where M∨(T ) denotes the
dual of M(T ). For each integer n ≥ 1, denote Mn =M/pnM. Note that Mn ∼=M∨(T/pnT ). On the
other hand, consider the map bL : R→OL as in Section 2A. T is also a crystalline GOL -representation
with Hodge–Tate weights in [0, 1], so by [Brinon and Trihan 2008, Theorem 6.10], there exists a p-
divisible group GOL over OL such that Tp(GOL )

∼= T as GOL -representations. Let (MOL ,∇MOL
) :=

M∗(GOL ) ∈ Kis1(SOL ,∇) be the associated Kisin module over SOL . Denote MOL ,n =MOL/pnMOL .
The map between the Galois groups GOL → GR restricts to GÕL ,∞

→ GR̃∞ . Hence, we have the natural
isomorphism M⊗OEOE,OL

∼=MOL⊗SOL
OE,OL of étale (ϕ,OE,OL )-modules. Let MOL :=M⊗OEOE,OL

and MOL ,n :=MOL/pnMOL .
For each n ≥ 1, we define

Mn :=Mn ∩MOL ,n,

where the intersection is taken as S-submodules of MOL ,n . The Frobenius endomorphisms on Mn and
MOL ,n induce a Frobenius endomorphism on Mn . Since the Frobenius on MOL ,n is injective, we have
the injective S-module morphism

1⊗ϕ :S⊗ϕ,SMn→Mn

for each n.
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Lemma 4.1. Mn is a finitely generated Sn-module. Furthermore, we have ϕ-equivariant isomorphisms

Mn ⊗S OE ∼=Mn and Mn ⊗SSOL
∼=MOL ,n.

Proof. We first prove that Mn is finite over Sn . Note that MOL ,n is free over SOL ,n of rank d , and choose
a basis {e1, . . . , ed} of MOL ,n . On the other hand, since Mn is projective over Sn

[ 1
u

]
of rank d, there

exists a nonzero divisor g ∈Sn such that Mn
[ 1

g

]
is free of rank d over Sn

[ 1
u

][ 1
g

]
. Since Mn is finite

over Sn
[ 1

u

]
, we can choose a basis { f1, . . . , fd} of Mn

[ 1
g

]
over Sn

[ 1
u

][ 1
g

]
such that letting N to be the

Sn-submodule of Mn
[ 1

g

]
generated by f1, . . . , fd , we have Mn ⊂N

[ 1
u

]
as Sn

[ 1
u

]
-modules. It suffices

to show that Mn ⊂
1

uh ·N as Sn-modules for some integer h ≥ 1. We have

( f1, . . . , fd)
t
= A · (e1, . . . , ed)

t ,

where A is an invertible d×d matrix with entries in SOL ,n
[ 1

u

][ 1
g

]
. Consider the intersection N

[ 1
u

]
∩MOL ,n

as submodules of MOL ,n
[ 1

u

][ 1
g

]
. For an element x = b1 f1+· · ·+bd fd ∈N

[ 1
u

]
with b1, . . . , bd ∈Sn

[ 1
u

]
,

we have x ∈MOL ,n if and only if

(b1, . . . , bd) · A = (c1, . . . , cd)

for some c1, . . . , cd ∈SOL ,n . Then (b1, . . . , bd)= (c1, . . . , cd)A−1, which implies that N
[ 1

u

]
∩MOL ,n ⊂

1
uh ·N as Sn-modules for some integer h ≥ 1. Since Mn ⊂N

[ 1
u

]
∩MOL ,n , this shows the first statement.

We have

Mn ⊗S OE ∼=Mn

[1
u

]
∼=Mn ∩MOL ,n =Mn

and hence the first isomorphism. On the other hand, since S→SOL is flat and MOL ,n is finite free over
SOL ,n , we have

Mn ⊗SSOL
∼= (Mn ⊗SSOL )∩ (MOL ,n ⊗SSOL )=MOL ,n ∩ (MOL ,n ⊗SSOL )

∼=

(
MOL ,n ⊗Sn Sn

[1
u

])
∩ (MOL ,n ⊗Sn SOL ,n)

∼=MOL ,n

by Sn
[ 1

u

]
∩SOL ,n =Sn . �

Lemma 4.2. The cokernel of the S-module map 1⊗ϕ :S⊗ϕ,SMn→Mn is killed by E(u).

Proof. Let x ∈Mn . There exists a unique y1 ∈OE⊗ϕ,OE Mn ∼=S⊗ϕ,SMn such that (1⊗ϕ)(y1)= E(u)x .
On the other hand, there exists a unique y2 ∈SOL ⊗ϕ,SOL

MOL ,n such that (1⊗ϕ)(y2)= E(u)x . Then
we have y1 = y2 ∈ (S⊗ϕ,S Mn)∩ (SOL ⊗ϕ,SOL

MOL ,n).
Since OL0/pOL0 has a finite p-basis given by t1, . . . , tm ∈ R0/pR0 which also gives a p-basis of

R0/pR0, the natural map S⊗ϕ,SMOL ,n→SOL ⊗ϕ,SOL
MOL ,n is an isomorphism. Hence

y1 ∈ (S⊗ϕ,S Mn)∩ (S⊗ϕ,SMOL ,n)
∼=S⊗ϕ,S (Mn ∩MOL ,n)=S⊗ϕ,SMn

since ϕ :S→S is flat by [Brinon 2008, Lemma 7.1.8]. This proves the assertion. �
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For any finite S-module N equipped with a ϕ-semilinear endomorphism ϕ : N→ N, say N has
E(u)-height ≤ 1 if there exists an S-module map ψ :N→ ϕ∗N=S⊗ϕ,SN such that the composite

ϕ∗N
1⊗ϕ
−→N

ψ
→ ϕ∗N

is E(u) · Idϕ∗N. By Lemma 4.2, Mn has E(u)-height ≤ 1.
For each maximal ideal q ∈ mSpecR0, consider bq : R → Rq as in Section 2A. By choosing a

common geometric point, we have the induced map of Galois groups GRq → GR which restricts to
GR̃q,∞

→ GR̃,∞, and T is a crystalline GRq-representation with Hodge–Tate weights in [0, 1]. Denote
Sq := R̂0,q[[u]].

Proposition 4.3. Assume e < p− 1. For each integer n ≥ 1, Mn is projective over Sn of rank d.

Proof. Let q be a maximal ideal of R0, and let Nn :=Mn ⊗SSq equipped with the induced Frobenius
endomorphism. Then we have the induced Sq-linear map ψ :Nn→Sq⊗ϕ,SqNn such that the composite

Sq⊗ϕ,Sq Nn
1⊗ϕ
−→Nn

ψ
→Sq⊗ϕ,Sq Nn

is E(u) · Id. For the isomorphism R̂0,q ∼= Oq[[s1, . . . , sl]] as above, let us consider the projection
Sq→Sq/(p, s1, . . . , sl)∼= kq[[u]], where kq :=Oq/(p). Denote Nn =Nn⊗Sq kq[[u]] equipped with the
induced Frobenius. Then we have the induced kq[[u]]-linear map ψ :Nn→ kq[[u]]⊗ϕ,kq[[u]]Nn such that
the composite

kq[[u]]⊗ϕ,kq[[u]]Nn
1⊗ϕ
−→Nn

ψ
→ kq[[u]]⊗ϕ,kq[[u]]Nn

is ue
· Id. Since kq[[u]] is a principal ideal domain, Nn is a direct sum of its free part and u-torsion part

Nn ∼=Nn,free⊕Nn,tor as kq[[u]]-modules. Furthermore, ϕ maps Nn,tor into Nn,tor, and hence the above
maps induce

kq[[u]]⊗ϕ,kq[[u]]Nn,tor
1⊗ϕ
−→Nn,tor

ψ
→ kq[[u]]⊗ϕ,kq[[u]]Nn,tor

whose composite is ue
· Id.

We claim that Nn,tor = 0. Suppose otherwise. Then Nn,tor ∼=
⊕b

i=1 kq[[u]]/(uai ) for some integers
ai ≥ 1, and kq[[u]] ⊗ϕ,kq[[u]]Nn,tor ∼=

⊕b
i=1 kq[[u]]/(u pai ). By taking the appropriate wedge product and

letting a = a1+ · · ·+ ab, the above maps induce the map of kq[[u]]-modules

kq[[u]]/(u pa)
1⊗ϕ
−→ kq[[u]]/(ua)

ψ
→ kq[[u]]/(u pa)

whose composite is equal to ueb
·Id. Let (1⊗ϕ)(1)= f (u)∈ kq[[u]]/(ua), and ψ(1)= h(u)∈ kq[[u]]/(u pa).

Then u pa
| uah(u), so u(p−1)a

| h(u). On the other hand, f (u)h(u)= ueb in kq[[u]]/(u pa). This implies
u(p−1)a

| ueb. But e < p− 1 and a ≥ b, so we get a contradiction. Hence, Nn,tor = 0 and Nn is free over
kq[[u]] of rank d , since by Lemma 4.1 Nn

[ 1
u

]
∼= (Mn ⊗SSq)⊗Sq kq[[u]] which is projective over kq((u))
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of rank d. Let b1, . . . , bd ∈Nn be a lift of a basis elements of Nn . By Nakayama’s lemma, we have a
surjection of Sq,n-modules

f :
d⊕

i=1

Sq,n · ei �Nn

given by ei 7→ bi . Since Nn
[ 1

u

]
∼=Mn ⊗SSq is projective over Sq,n

[ 1
u

]
of rank d, f is also injective.

Thus, Nn =Mn ⊗S Sq is projective over Sq,n of rank d. Since this holds for every q ∈ mSpec R0, it
proves the assertion. �

Lemma 4.4. Assume e< p−1. Let N and N′ be finite u-torsion free S-modules equipped with Frobenius
endomorphisms such that N

[ 1
u

]
and N′

[ 1
u

]
are torsion étale ϕ-modules. Suppose that N and N′ have

E(u)-height ≤ 1 and N
[ 1

u

]
=N′

[ 1
u

]
as étale ϕ-modules. Then N=N′.

Proof. Consider N and N′ as S-submodules of N
[ 1

u

]
. Let L be the cokernel of the embedding N ↪→N+N′

of S-modules. Note that S⊗ϕ,S (N+N′) ∼= S⊗ϕ,S N+S⊗ϕ,S N′ since ϕ : S→ S is flat. Thus,
N+N′ has E(u)-height ≤ 1, and L has E(u)-height ≤ 1. Since L

[ 1
u

]
= 0, we deduce similarly as in the

proof of Proposition 4.3 that L= 0. So N=N+N′. Similarly, N′ =N+N′. �

It is clear that both pMn+1 and Mn are u-torsion free, have E(u)-height ≤ 1 and

pMn+1

[1
u

]
= pMn+1 ∼=Mn =Mn

[1
u

]
.

We conclude the following:

Proposition 4.5. Assume e < p− 1. For each n ≥ 1, we have a ϕ-equivariant isomorphism

pMn+1 ∼=Mn.

By Lemma 4.2, Proposition 4.3 and 4.5, if we suppose e < p− 1 and define the S-module

M := lim
←−−

n
Mn,

then M ∈ Kis1(S). Note that we have a ϕ-equivariant isomorphism M⊗SSOL
∼=MOL by Lemma 4.1.

Remark 4.6. Analogous statements hold when T is a crystalline GR-representation with Hodge–Tate
weights in [0, r ] for the case er < p− 1, since [Brinon and Trihan 2008] constructs more generally a
functor from crystalline representations with Hodge–Tate weights in [0, r ] to Kisin modules of height r
when the base is a complete discrete valuation field whose residue field has a finite p-basis.

To study connections for M, we first consider the following general situation. Let A0 be a k-algebra
which is an integral domain. Consider n-variables x1, . . . , xn , and denote x = (x1, . . . , xn)

t and x [p] :=
(x p

1 , . . . , x p
n )

t. An Artin–Schreier system of equations in n variables over A0 is given by

x = Bx [p]+C, (4-1)

where B = (bi j )1≤i, j≤n ∈ Mn×n(A0) is an n×n matrix with entries in A0 and C = (ci )1≤i≤n ∈ Mn×1(A0).
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Let

A1 := A0[x1, . . . , xn]/
(

x1− c1−

n∑
i=1

b1i x
p
i , . . . , xn − cn −

n∑
i=1

bni x
p
i

)
,

which is the A0-algebra parametrizing the solutions of (4-1). A0 → A1 is étale by [Vasiu 2013,
Theorem 2.4.1(a)].

Lemma 4.7. There exists a nonzero element f ∈ A0 which depends only on B (and not on C) such that
A1
[ 1

f

]
is finite étale over A0

[ 1
f

]
.

Proof. We induct on n. Suppose n = 1. If det B 6= 0, then (4-1) is equivalent to

x p
1 = B−1x1− B−1C,

so the assertion holds with f = det B. If det B = 0, then B = 0 and A1 ∼= A0, so the assertion holds
trivially.

For n ≥ 2, if det B 6= 0, then (4-1) is equivalent to

x [p] = B−1x − B−1C.

Hence, with f = det B, A1
[ 1

f

]
is finite étale over A0

[ 1
f

]
. Suppose det B = 0. Denote by B(i) the i-th

row of B. Then up to renumbering the index for xi ’s, we have
n∑

i=1

ei B(i) = 0

for some nonzero f1 ∈ A0 depending only on B and some ei ∈ A0
[ 1

f1

]
with en = 1. From (4-1), we get

xn =−

n−1∑
i=1

ei xi + cn +

n−1∑
i=1

ci ei .

Hence, denoting x ′ = (x1, . . . , xn−1)
t, (4-1) is equivalent to an Artin–Schreier system of equations in

n− 1 variables over A0
[ 1

f1

]
x ′ = B ′x ′[p]+C ′

where B ′ ∈ M(n−1)×(n−1)
(

A0
[ 1

f1

])
and C ′ ∈ M(n−1)×1

(
A0
[ 1

f1

])
. Note that B ′ depends only on B and not

on C . Hence, the assertion follows by induction. �

Let N :=M⊗S,ϕ R0 equipped with the Frobenius ϕM⊗ϕR0 . From [Kim 2015, Equations (6.1), (6.2)
and Remark 3.13], we have the R0-submodule Fil1N ⊂ N associated with M ∈ Kis1(S) such that
pN ⊂ Fil1N , N/Fil1N is projective over R0/(p), and (1⊗ϕ)(ϕ∗Fil1N )= pN as R0-modules (see [Kim
2015, Definitions 3.4 and 3.6] for the frame (R0, pR0, R0/(p), ϕR0, ϕR0/p)). Fix an R0-direct factor
N 1
⊂N which lifts Fil1N/pN ⊂N/pN , and let

Ñ := R0⊗ϕ,R0

(
N + 1

p
N 1
)
⊂ R0

[ 1
p

]
⊗ϕ,R0 N .
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Let Spf(A, p)→ Spf(R0, p) be an étale morphism. Note that A is equipped with a unique Frobenius
lifting that on R0, and �̂A ∼= A⊗̂R0�̂R0

∼=
⊕m

i=1 A · dti . For a connection

∇A,n : A/(pn)⊗R0 N → (A/(pn)⊗R0 N )⊗A �̂A

on A/(pn)⊗R0 N , we say that the Frobenius is horizontal if the following diagram commutes:

A/(pn)⊗A Ñ

1⊗ϕ

��

ϕ∗(∇A,n)
// A/(pn)⊗A Ñ ⊗A �̂A

(1⊗ϕ)⊗id�̂A

��

A/(pn)⊗A N
∇A,n

// A/(pn)⊗A N ⊗A �̂A

Here, ϕ∗(∇A,n) is given by choosing an arbitrary lift of ∇A,n on A/(pn+1)⊗A N , and ϕ∗(∇A,n) does not
depend on the choice of such a lift (see [Vasiu 2013, Section 3.1.1, Equation (9)]).

Proposition 4.8. There exists f̃ ∈ R0 with f̃ /∈ pR0 such that the following holds:
Let S0 be the p-adic completion of R0

[ 1
f̃

]
equipped with the induced Frobenius, and let SS = S0[[u]].

Let MS = M⊗S SS equipped with the induced Frobenius, so MS ∈ Kis1(SS). Then there exists a
topologically quasinilpotent integrable connection

∇MS : (S0⊗ϕ,SS MS)→ (S0⊗ϕ,SS MS)⊗S0 �̂S0

such that ϕ is horizontal, and thus (MS,∇MS ) ∈ Kis1(SS,∇). Furthermore, we can choose ∇MS so that
MS ⊗SS SOL equipped with the induced Frobenius and connection is isomorphic to (MOL ,∇MOL

) as
Kisin modules over SOL .

Proof. Without loss of generality, we may pass to a Zariski open set of Spf(R0, p) if necessary so
that N 1 and N/N 1 are free over R0. Fix an R0-basis of N adapted to the direct factor N 1. Let
Spf(A, p)→ Spf(R0, p) be an étale morphism. Consider a connection

∇A,1 : A/(p)⊗R0 N → (A/(p)⊗R0 N )⊗A �̂A

such that the Frobenius is horizontal. By [Vasiu 2013, Section 3.2, Basic Theorem] and its proof, the
set of such connections ∇A,1 corresponds to the set of solutions over A/(p) of an Artin–Schreier system
of equations

x = Bx [p]+C1

for x = (x1, . . . , xdm)
t , where B ∈ Mdm×dm(R0/(p)) and C1 ∈ Mdm×1(R0/(p)). When A =OL0 , it has

a solution given by ∇ML0
. Since OL0/(p)∼= Frac(R0/(p)) and R0/(p) is a unique factorization domain,

the solution lies in (R0/(p))
[ 1

f

]
for some nonzero f ∈ R0/(p) depending only on B by Lemma 4.7 and

its proof. Let f̃ ∈ R0 be a lift of f , and let S0 be the p-adic completion of R0
[ 1

f̃

]
.
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For n ≥ 1, suppose we are given a connection

∇S0,n : S0/(pn)⊗R0 N → (S0/(pn)⊗R0 N )⊗S0 �̂S0

such that the Frobenius is horizontal and inducing ∇ML0
(mod pn) via the natural map S0→ OL0 . By

[Vasiu 2013, Section 3.2, Basic Theorem] and its proof, for the choice of a basis of N as above, the set
of connections

∇S0,n+1 : S0/(pn+1)⊗R0 N → (S0/(pn+1)⊗R0 N )⊗S0 �̂S0

such that the Frobenius is horizontal and lifting ∇S0,n corresponds to the set of solutions over S0/(p) of
an Artin–Schreier system of equations

x = Bx [p]+Cn+1,

where B is the same matrix as above and Cn+1 ∈ Mdm×1(S0/(p)). The solution over OL0/(p) given by
∇ML0

lies in S0/(p) by Lemma 4.7 and its proof. This proves the assertion. �

Proposition 4.9. Let S0 be a ring as given in Proposition 4.8, and let S = S0⊗W (k)OK . Then there exists
a p-divisible group GS over S such that Tp(GS)∼= T as GS-representations.

Proof. Let GS be the p-divisible group over S given by (MS,∇MS) in Proposition 4.8. SinceMS⊗SSSOL
∼=

MOL as Kisin modules, we have Tp(GS)∼= T as GOL -representations. On the other hand, MS⊗SS OE,S ∼=

M⊗OE OE,S as étale ϕ-modules. Hence, Tp(GS) ∼= T as GS̃,∞-representations. Since GS̃,∞ and GOL

generate the Galois group GS by Lemma 2.1, we have Tp(GS)∼= T as GS-representations. �

5. Proof of the main theorem

In this section, we finish the proof of Theorem 1.2. We begin by recalling the following well-known
lemma about p-divisible groups.

Lemma 5.1. Let R1 be an integral domain over W (k) such that Frac(R1) has characteristic 0. Then
via the Tate module functor Tp(·), the category of p-divisible groups over R1

[ 1
p

]
is equivalent to the

category of finite free Zp-representations of GR1 = π
ét
1

(
Spec R1

[ 1
p

])
. Furthermore, such an equivalence is

functorial in the following sense:
Let R1→ R2 be a map of integral domains over W (k) such that Frac(R1) and Frac(R2) have character-

istic 0. Let G R1 be a p-divisible group over R1. Then Tp(G R1)
∼= Tp(G R1 ×R1 R2) as GR2-representations.

We first consider the case when R is a formal power series ring of dimension 2.

Proposition 5.2. Suppose R0 = O[[s]] for a Cohen ring O, and e ≤ p − 1. Let T be a crystalline
GR-representation which is finite free over Zp and has Hodge–Tate weights in [0, 1]. Then there exists a
p-divisible group G R over R such that Tp(G R)∼= T as GR-representations.

Proof. Let G be a p-divisible group over R
[ 1

p

]
given by Lemma 5.1 such that Tp(G) ∼= T as GR-

representations. It suffices to show that G extends to a p-divisible group G R over R.
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By [Brinon and Trihan 2008, Theorem 6.10], there exists a p-divisible group GOL over OL extending
G ×R[ 1

p ]
L . For each integer n ≥ 1, let An be the Hopf algebra over R

[ 1
s

][ 1
p

]
for the finite flat group

scheme
(
G×R[ 1

p ]
R
[ 1

s

][ 1
p

])
[pn
], and let Bn be the Hopf algebra over OL for the finite flat group scheme

GOL [p
n
]. Identify An⊗R[ 1s ][ 1

p ]
L = Bn⊗OL L as Hopf algebras over L . Note that the p-adic completion

of R
[ 1

s

]
is isomorphic to OL . By [Beauville and Laszlo 1995, Main Theorem] and its proof, the R

[ 1
s

]
-

subalgebra Cn := An ∩ Bn ⊂ Bn ⊗OL L is finite flat over R
[ 1

s

]
. Moreover, Cn is equipped with the Hopf

algebra structure induced from (An, Bn) such that Cn ⊗R[ 1s ] R
[ 1

s

][ 1
p

]
∼= An and Cn ⊗R[ 1s ] OL ∼= Bn .

Hence, the datum of finite flat group schemes((
G×R[ 1

p ]
R
[1

s

][ 1
p

])
[pn
],GOL [p

n
]

)
descends to a finite flat group scheme over R

[1
s

]
(up to a unique isomorphism by [Beauville and Laszlo

1995, Main Theorem]).
Thus, we obtain a system of finite flat group schemes (GU,n)n≥1 over U := Spec R \ pt extending

(G[pn
])n≥1. Here, pt denotes the closed point given by the maximal ideal of R. The natural induced

sequence of finite flat group schemes

0→ GU,1→ GU,n+1
×p
−→ GU,n→ 0

is exact by fpqc descent. So (GU,n)n≥1 is a p-divisible group over U extending G. Since e ≤ p− 1,
GU extends to a p-divisible group G R over R by [Vasiu and Zink 2010, Theorem 3]. �

Remark 5.3. As illustrated in the above proof, this special case can be shown without using Kisin
modules. However, the purity result for p-divisible groups [Vasiu and Zink 2010, Theorem 3] is proved
only when R is regular local of Krull dimension 2 with low ramification (see [Vasiu and Zink 2010,
Section 5.1]). So we use the construction of Kisin modules to show Theorem 1.2 for more general R
with arbitrary dimensions.

Now, let R0 be a general ring satisfying the assumptions in Section 2A, and let R = R0 ⊗W (k) OK

with e < p− 1. Let T be a crystalline GR-representation free over Zp with Hodge–Tate weights in [0, 1].
Denote by MS(T ) the S-module in Kis1(S) constructed from T as in Section 4. Let f̃ ∈ R0 be an
element as in Proposition 4.8, and let S0 be the p-adic completion of R0

[ 1
f̃

]
as in Proposition 4.9. Let

f ∈ R0/pR0 be the image of f̃ in the projection R0→ R0/(p). Note that if f is a unit in R0/pR0, then
f̃ is a unit in R0 since R0 is p-adically complete. So for such a case, S0 = R0 and Theorem 1.2 follows
from Proposition 4.9. Now consider the case when f is not a unit in R0/(p). Since R0/(p) is a UFD,
there exist prime elements s1, . . . , sl of R0/(p) dividing f . Let s1, . . . , sl ∈ R0 be any preimages of
s1, . . . , sl respectively.

For each i = 1, . . . , l, consider the prime ideal pi = (p, si )⊂ R0 and let R(i)0 := R̂0,pi be the pi -adic
completion of R0,pi . Note that R(i)0 is a formal power series ring over a Cohen ring with Krull dimension 2.
We consider the natural ϕ-equivariant map bi : R0→ R(i)0 , which induces bi : R→ R(i) := R(i)0 ⊗W (k)OK .
On the other hand, let kc be a field extension of Frac(R0/pR0) which is a composite of the fields
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Frac(R(i)0 /(p)) for i = 1, . . . , l, and let kperf
c = lim

−−→ϕ
kc be its direct perfection. By the universal property

of p-adic Witt vectors, there exists a unique ϕ-equivariant map bc : R0→W (kperf
c ). Moreover, for each

i = 1, . . . , l, we have a unique ϕ-equivariant embedding R(i)0 →W (kperf
c ) whose composite with bi is equal

to bc. We claim that S0/(p)∩
⋂l

i=1(R
(i)
0 /(p))= R0/(p) inside kperf

c . To see the claim, let x be a nonzero
element of S0/(p)= (R0/(p))

[ 1
f

]
such that it also lies in

⋂l
i=1(R

(i)
0 /(p)). We can write x=

(∏l
i=1 s ni

i

)
·a

for some integers ni and some a ∈ R0/(p) which is not in the ideal (s1, . . . , sl) of R0/(p). Suppose
n1 < 0. Then (1/s n1

1 )x lies in the maximal ideal of R(1)0 /(p). But (1/s n1
1 )x =

(∏l
i=2 s ni

i

)
· a is a unit in

R(1)0 /(p), which is a contradiction. So n1 ≥ 0, and similarly ni ≥ 0 for each i = 1, . . . , l. So x ∈ R0/(p),
which proves the claim. This implies that the natural embedding R0→ S0 ∩

⋂l
i=1 R(i)0 as subrings of

W (kperf
c ) is bijective.

By Proposition 5.2, there exists a p-divisible group Gi over R(i) such that Tp(Gi ) ∼= T as GR(i)-
representations. We have

(MS(T )⊗S OE)⊗OE OE,R(i)
∼=M∗(Gi )⊗SR(i)

OE,R(i)

as étale (ϕ,OE,R(i))-modules. Applying Lemma 4.4, we can deduce that MS(T )⊗S SR(i)
∼=M∗(Gi )

compatibly with Frobenius.
Let D = Dcris

(
T
[ 1

p

])
, and denote M =MS(T ) and N =M⊗S,ϕ R0. Let ∇ : D→ D⊗R0 �̂R0 be

the connection given by the functor Dcris(·).

Proposition 5.4. There exists a natural ϕ-equivariant embedding

h :N ↪→ D

of R0-modules. Furthermore, if we consider N as an R0-submodule of D via h, then ∇ maps N into
N ⊗R0 �̂R0 . Hence, M is a Kisin module of height 1.

Proof. By [Kim 2015, Corollaries 5.3 and 6.7], there exists a natural ϕ-equivariant embedding

hi :N → D⊗R0,bi R(i)0

for each i = 1, . . . , l such that the connections given by M∗(Gi ) and D are compatible, and there exists
a natural ϕ-equivariant embedding hc : N → D ⊗R0,bc W (kperf

c ). Moreover, by Proposition 4.9, there
exists a natural ϕ-equivariant embedding hS :N → D⊗R0 S0 such that the connections given by M∗(GS)

and D are compatible. Since the construction of those natural maps is compatible with ϕ-equivariant
base changes (see [Kim 2015, Section 5.5]), we deduce that the maps h1, . . . , hl and hS are compatible
with one another, in the sense that their composites with the embedding into D⊗R0,bc W (kperf

c ) are all
equal to hc. Hence, we obtain a ϕ-equivariant embedding

h :N ↪→
(

D⊗R0[
1
p ]

S0

[ 1
p

])
∩

( l⋂
i=1

D⊗R0[
1
p ],bi

R(i)0

[ 1
p

])
∼= D⊗R0[

1
p ]

(
S0

[ 1
p

]
∩

l⋂
i=1

R(i)0

[ 1
p

])
= D,

since D is flat over R0
[ 1

p

]
and S0

[ 1
p

]
∩
⋂l

i=1 R(i)0

[ 1
p

]
= R0

[ 1
p

]
.
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Now, identify �̂R0 =
⊕m

j=1 R0 ·dt j . Then ∇ maps N to N ⊗R0

(⊕m
j=1 R0

[ 1
p

]
·dt j

)
. On the other hand,

by Propositions 4.8, 5.2, and the compatibility of Dcris( ·) with respect to ϕ-compatible base changes, we
have that ∇ maps N into N⊗R0

(⊕m
j=1 S0 ·dt j

)
and also into N⊗R0

(⊕m
j=1 R(i)0 ·dt j

)
for each i =1, . . . , l.

Since N is flat over R0 and S0 ∩
⋂l

i=1 R(i)0 = R0, ∇ maps N into N ⊗R0

(⊕m
j=1 R0 · dt j

)
. �

Theorem 5.5. There exists a p-divisible group G R over R such that Tp(G R)∼= T as GR-representations.

Proof. By Proposition 5.4, we have M ∈ Kis1(ϕ,∇). Furthermore, M ⊗S SOL
∼= MOL as Kisin

modules over SOL , since the Frobenius and connection structure on M agree with those on D. Thus, if
G R is the p-divisible group corresponding to M, then Tp(G R) ∼= T as GOL -representations as well as
GR̃∞-representations. The assertion follows from Lemma 2.1. �

6. Barsotti–Tate deformation ring

As an application of Theorem 5.5, we study the geometry of the locus of crystalline representations with
Hodge–Tate weights in [0, 1] by using the results in [Moon 2020]. Note that in [Moon 2020, Section 2], R0

is assumed to satisfy the additional conditions that W (k)〈t±1
1 , . . . , t±1

d 〉 → R0 has geometrically regular
fibers or R0 has Krull dimension less than 2, and that k → R0/pR0 is geometrically integral. These
assumptions are only used to have the crystalline period ring as in [Brinon 2008]. However, the additional
conditions are not necessary by [Kim 2015, Section 4], and the results in [Moon 2020] hold in our setting.

Denote by C the category of topological local Zp-algebras A satisfying the following conditions:
• The natural map Zp→ A/mA is surjective, where mA denotes the maximal ideal of A.
• The map from A to the projective limit of its discrete artinian quotients is a topological isomorphism.

By the first condition, the residue field of A is Fp. The second condition is equivalent to that A is complete
and its topology is given by a collection of open ideals a⊂ A for which A/a is artinian. Morphisms in C
are continuous Zp-algebra morphisms.

For A ∈ C, we mean by an A-representation of GR a finite free A-module equipped with a continuous
A-linear GR-action. Fix an Fp-representation V0 of GR which is absolutely irreducible. For A ∈ C, a
deformation of V0 in A is defined to be an isomorphism class of A-representations of V of GR satisfying
V ⊗A Fp ∼= V0 as Fp[GR]-modules. Denote by Def(V0, A) the set of such deformations. A morphism
f : A→ A′ in C induces a map f∗ :Def(V0, A)→Def(V0, A′) sending the class of an A-representation V
to the class of V ⊗A, f A′. The following theorem on universal deformation ring is proved in [de Smit and
Lenstra 1997].

Theorem 6.1 [de Smit and Lenstra 1997, Theorem 2.3]. There exists a universal deformation ring
Auniv ∈ C and a deformation Vuniv ∈ Def(V0, Auniv) such that for all A ∈ C, we have a bijection

HomC(Auniv, A) ∼=−→ Def(V0, A) (6-1)

given by f 7→ f∗(Vuniv).

We deduce that when R has dimension 2 and e is small, the locus of crystalline representations with
Hodge–Tate weights in [0, 1] cuts out a closed subscheme of Spec Auniv in the following sense.
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Theorem 6.2. Suppose that e < p− 1 and that the Krull dimension of R is 2. Then there exists a closed
ideal aBT ⊂ Auniv such that the following holds:

For any finite flat Zp-algebra A equipped with the p-adic topology and any continuous Zp-algebra
map f : Auniv→ A, the induced representation Vuniv⊗Auniv, f A

[ 1
p

]
of GR is crystalline with Hodge–Tate

weights in [0, 1] if and only if f factors through the quotient Auniv/aBT.

Proof. This follows directly from Theorem 5.5 and [Moon 2020, Theorem 5.7]. Note that [Moon 2020,
Theorem 5.7] assumes the Krull dimension of R is 2. The assumption was necessary in the argument
of [Moon 2020, Section 5] to construct Barsotti–Tate deformation ring using the result in [de Smit and
Lenstra 1997]. �
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