

Algebra & Number Theory

Volume 14
2020
No. 3

**Third Galois cohomology group of function fields
of curves over number fields**

Venapally Suresh

Third Galois cohomology group of function fields of curves over number fields

Venapally Suresh

Let K be a number field or a p -adic field and F the function field of a curve over K . Let ℓ be a prime. Suppose that K contains a primitive ℓ -th root of unity. If $\ell = 2$ and K is a number field, then assume that K is totally imaginary. In this article we show that every element in $H^3(F, \mu_\ell^{\otimes 3})$ is a symbol. This leads to the finite generation of the Chow group of zero-cycles on a quadric fibration of a curve over a totally imaginary number field.

1. Introduction

Let F be a field and ℓ a prime not equal to the characteristic of F . For $n \geq 1$, let $H^n(F, \mu_\ell^{\otimes n})$ be the n -th Galois cohomology group with coefficients in $\mu_\ell^{\otimes n}$. We have $F^*/F^{*\ell} \simeq H^1(F, \mu_\ell)$. For $a \in F^*$, let $(a) \in H^1(F, \mu_\ell)$ denote the image of the class of a in $F^*/F^{*\ell}$. Let $a_1, \dots, a_n \in F^*$. The cup product $(a_1) \cdots (a_n) \in H^n(F, \mu_\ell^{\otimes n})$ is called a *symbol*. A theorem of Voevodsky [2003] asserts that every element in $H^n(F, \mu_\ell^{\otimes n})$ is a sum of symbols. Let $\alpha \in H^n(F, \mu_\ell^{\otimes n})$. The *symbol length* of α is defined as the smallest m such that α is a sum of m symbols in $H^n(F, \mu_\ell^{\otimes n})$.

Let K be a p -adic field. Then it is well-known that every element in $H^2(K, \mu_\ell^{\otimes 2})$ is a symbol and $H^n(K, \mu_\ell^{\otimes n}) = 0$ for all $n \geq 3$. Let F be the function of a curve over K . Suppose that K contains a primitive ℓ -th root of unity. If $\ell \neq p$, then it was proved in [Suresh 2010] (see [Brussel and Tengan 2014]) that the symbol length of every element in $H^2(F, \mu_\ell^{\otimes 2})$ is at most 2. If $p \neq \ell$, then it was proved in [Parimala and Suresh 2010] (see [Parimala and Suresh 2016]) that every element in $H^3(F, \mu_\ell^{\otimes 3})$ is a symbol. If $\ell = p$, then it was proved in [Parimala and Suresh 2014] that for every central simple algebra A over F , the index of A divides the square of the period of A . In particular if $p = 2$, then the symbol length of every element in $H^2(F, \mu_2^{\otimes 2})$ is at most 2. Since $u(F) = 8$ [Heath-Brown 2010; Leep 2013] (see [Parimala and Suresh 2014]), it follows that every element in $H^3(F, \mu_2^{\otimes 3})$ is a symbol.

If F is the function field of a curve over a global field of positive characteristic p , $\ell \neq p$ and F contains a primitive ℓ -th root of unity, then it was proved in [Parimala and Suresh 2016] that every element in $H^3(F, \mu_\ell^{\otimes 3})$ is a symbol.

Let K be a number field. A consequence of class field theory is that every element in $H^n(K, \mu_\ell^{\otimes n})$ is a symbol. A classical lemma of Tate states that given finitely many elements $\alpha_1, \dots, \alpha_r \in H^2(K, \mu_\ell^{\otimes 2})$, there

exist $a, b_i \in K^*$ such that $\alpha_i = (a) \cdot (b_i)$. Let F be the function field of a curve over K . Suresh [2004] proved a higher dimensional version of this lemma over F : given finitely many elements $\alpha_1, \dots, \alpha_r \in H^3(F, \mu_2^{\otimes 3})$, there exists $f \in F^*$ such that $\alpha_i = (f) \cdot \beta_i$ for some $\beta_i \in H^2(F, \mu_2^{\otimes 2})$. In particular if there exists an integer N such that the symbol length of every element in $H^2(F, \mu_2^{\otimes 2})$ is bounded by N , then the symbol length of every element in $H^3(F, \mu_2^{\otimes 3})$ is bounded by N . In [Lieblich et al. 2014], it was proved that such an integer N exists under the hypothesis that a conjecture of Colliot-Thélène on the Hasse principle for the existence of 0-cycles of degree 1 holds. However, unconditionally the existence of such N is still open.

In this paper we prove the following (see [Corollary 7.8](#)):

Theorem 1.1. *Let K be a global field or a local field and F the function field of a curve over K . Let ℓ be a prime not equal to $\text{char}(K)$. Suppose that K contains a primitive ℓ -th root of unity and one of the following holds:*

- (i) $\ell \neq 2$.
- (ii) K is a local field.
- (iii) K is a totally imaginary number field.

Then every element in $H^3(F, \mu_\ell^{\otimes 3})$ is a symbol.

The above theorem for K a p -adic field and $\ell \neq p$ is proved in [Parimala and Suresh 2010] (see [Parimala and Suresh 2016]). Our method in this paper is uniform, it covers both global and local fields at the same time and we do not exclude the case $\ell = p$.

We have the following (see [Corollary 8.3](#)):

Corollary 1.2. *Let K be a totally imaginary number field and F the function field of a curve over K . Let q be a quadratic form over F and $\lambda \in F^*$. If the dimension of q is at least 5, then $q \otimes \langle 1, -\lambda \rangle$ is isotropic.*

Let L be a field of characteristic not equal to 2 and $u(L)$ be the u -invariant of L . By a theorem of Pfister if $u(L) \leq 2^n$ for some n , then every element in $H^n(L, \mu_2^{\otimes n})$ is a symbol. Let K be a totally imaginary number field. Then it is well-known that $u(K)$ is 4. Let F be a function field over K of transcendence degree n . It is a wide open question whether $u(F) = 2^{n+2}$. The finiteness of $u(F)$ is not known even for $n = 1$. In the perspective of Pfister's theorem, the conclusion from (iii) of [Theorem 1.1](#) strengthens the expectations that $u(F)$ is 8 for function fields of curves over totally imaginary number fields.

In a related direction Colliot-Thélène raised the question whether every element of $H^{n+2}(F, \mu_\ell^{\otimes(n+2)})$ is a symbol if F is a function field of transcendence degree n over a totally imaginary number field. Our main theorem gives an affirmative answer to this question for function fields of curves.

For a smooth integral variety X over a field k , let $\text{CH}_0(X)$ be the Chow group of 0-cycles modulo rational equivalence. If k is a number field and X a smooth projective geometrically integral curve, the Mordell–Weil theorem implies that $\text{CH}_0(X)$ is finitely generated.

Let C be a smooth projective geometrically integral curve over a field k . Let $X \rightarrow C$ be an (admissible) quadric fibration (see [Colliot-Thélène and Skorobogatov 1993]). Let $\text{CH}_0(X/C)$ be the kernel of the natural homomorphism $\text{CH}_0(X) \rightarrow \text{CH}_0(C)$. If $\text{char}(k) \neq 2$, Colliot-Thélène and Skorobogatov identified

$\mathrm{CH}_0(X/C)$ with a certain subquotient of $k(C)^*$ [Colliot-Thélène and Skorobogatov 1993]. From this identification it follows that $\mathrm{CH}_0(X/C)$ is a 2-torsion group. Thus $\mathrm{CH}_0(X/C)$ is finitely generated if and only if it is finite. Suppose that k is a number field. If $\dim(X) \leq 2$, then the finiteness of $\mathrm{CH}_0(X/C)$ is a result of Gros [1987]. If $\dim(X) = 3$, then it was proved in [Colliot-Thélène and Skorobogatov 1993; Parimala and Suresh 1995] that $\mathrm{CH}_0(X/C)$ is finite. Thus for $\dim(X) \leq 3$, $\mathrm{CH}_0(X)$ is finitely generated. As a consequence of [Corollary 1.2](#), we prove the following conjecture of Colliot-Thélène and Skorobogatov (see [Theorem 8.4](#)).

Theorem 1.3. *Let K be a totally imaginary number field, C a smooth projective geometrically integral curve over K . Let $X \rightarrow C$ be an admissible quadric fibration. If $\dim(X) \geq 4$, then $\mathrm{CH}_0(X/C) = 0$. In particular $\mathrm{CH}_0(X)$ is finitely generated.*

Let K be a global field of positive characteristic p or a local field with the characteristic of the residue field p . Let F be the function field of a curve over K and ℓ a prime not equal to p . Let us recall that the main ingredient in the proof of the fact that every element in $H^3(F, \mu_\ell^{\otimes 3})$ is a symbol [Parimala and Suresh 2010], is a certain local-global principle for divisibility of an element of $H^3(F, \mu_\ell^{\otimes 3})$ by a symbol in $H^2(F, \mu_\ell^{\otimes 2})$ [Parimala and Suresh 2010; 2016]. In fact it was proved that for a given $\zeta \in H^3(F, \mu_\ell^{\otimes 3})$ and a symbol $\alpha \in H^2(F, \mu_\ell^{\otimes 2})$ if for every discrete valuation v of F there exists $f_v \in F^*$ such that $\zeta - \alpha \cdot (f_v)$ is unramified at v , then there exists $f \in F^*$ such that $\zeta = \alpha \cdot (f)$. In the proof of this local-global principle, the existence of residue homomorphisms on $H^2(F, \mu_\ell^{\otimes 2})$ and $H^3(F, \mu_\ell^{\otimes 3})$ is used. However note that if K is a global field or a p -adic field with $\ell = p$, then there is no “residue homomorphism” on $H^2(F, \mu_\ell^{\otimes 2})$ which can be used to describe the unramified Brauer group.

We now briefly explain the main ingredients of our result. Let K be a global field or a local field and F the function field of a curve over K . Let ℓ be a prime not equal to characteristic of K . Suppose that K contains a primitive ℓ -th root of unity. Let v be a discrete valuation on F and $\kappa(v)$ the residue field at v . Then Kato [1986, Section 1] defined a residue homomorphism $H^3(F, \mu_\ell^{\otimes 3}) \rightarrow {}_\ell\mathrm{Br}(\kappa(v))$. Let $\zeta \in H^3(F, \mu_\ell^{\otimes 3})$ and $\alpha = [a, b] \in H^2(F, \mu_\ell^{\otimes 2})$. First we show that if there is a regular proper model \mathcal{X} of F such that the triple $(\zeta, \alpha, \mathcal{X})$ satisfies certain assumptions, then there is a local global principle for the divisibility of ζ by α (see [Theorem 6.5](#)). One of the key assumptions is that $a \in F^*$ has some “nice” properties at closed points of \mathcal{X} which are on the support of the prime ℓ and in the ramification of ζ or α (see [Assumptions 5.1](#) and [6.3](#)). These assumptions on a enable us to work in spite of the absence of a residue homomorphisms on $H^2(F, \mu_\ell^{\otimes 2})$ for discrete valuations with residue fields of characteristic ℓ and also enable us to blow up the given model so that there are no chilly loops (as defined by Saltman).

Let $\zeta \in H^3(F, \mu_\ell^{\otimes 3})$. First we choose a regular proper model \mathcal{X} of F where the ramification of ζ and the support of ℓ is a union of regular curves with normal crossings on \mathcal{X} . For each irreducible curve C on \mathcal{X} which is in the union of the ramification of ζ and support of ℓ , let β_C be the residue of ζ at C . Since the residue field $\kappa(C)$ at C is either a global field or a local field, β_C is a cyclic algebra. Using the class field theory and weak approximation, we write $\beta_C = [a_C, b_C]$ with some conditions on a_C and b_C at finitely many closed points of the model. Then we lift these a_C and b_C to $a, b \in F^*$ which satisfy

some “nice” conditions and let $\alpha = [a, b]$. By the choice of a and b , α is unramified at all irreducible curves in the support of ℓ and also unramified at some predetermined finitely many closed points of the model. Suppose that $\ell \neq 2$ or K is a local field or K is a global field without real places. Then we show that there exists a sequence of blow-ups \mathcal{Y} of \mathcal{X} such that $\alpha = [a, b] \in H^2(F, \mu_\ell^{\otimes 2})$ and \mathcal{Y} satisfies the assumption of [Section 6](#). Thus, by the local global principle for the divisibility, there exists $f \in F^*$ such that $\zeta - \alpha \cdot (f)$ is unramified on \mathcal{X} . Then, using a result of Kato [\[1986\]](#), we arrive at the proof of [Theorem 7.7](#).

2. Preliminaries

Lemma 2.1 [\[Colliot-Thélène 1999, Proposition 4.1.2\(i\)\]](#). *Let K be a field with a discrete valuation v and κ the residue field at v . Let m be the maximal ideal of the valuation ring R at v . Suppose that $\text{char}(K) = 0$ and $\text{char}(\kappa) = \ell > 0$. Suppose that K contains a primitive ℓ -th root of unity ρ . Then $\ell = x(\rho - 1)^{\ell-1}$ for some unit x at v with $x \equiv -1$ modulo m . In particular $v(\rho - 1) = v(\ell)/(\ell - 1)$.*

Proof. The congruence $x \equiv -1$ modulo m holds according to the proof of [\[Colliot-Thélène 1999, Proposition 4.1.2\(i\)\]](#). \square

Lemma 2.2. *Suppose R is a discrete valuation ring with field of fractions K and residue field κ . Suppose that $\text{char}(K) = 0$, $\text{char}(\kappa) = \ell > 0$ and K contains a primitive ℓ -th root of unity ρ . Let $u \in R$ and $\bar{u} \in \kappa$ the image of u . If $1 - u(\rho - 1)^\ell \in R^\ell$, then $X^\ell - X + \bar{u}$ has a root in κ . The converse is true if R is complete.*

Proof. Let m be the maximal ideal of R . Suppose that $u \in m$. Then $\bar{u} = 0$ and $X^\ell - X$ has a root in κ .

Suppose that $u \in R$ is a unit. Suppose $1 - u(\rho - 1)^\ell \in R^\ell$. Let $z \in R$ with $z^\ell = 1 - u(\rho - 1)^\ell \in R$. Since $\rho - 1 \in m$, $1 - u(\rho - 1)^\ell$ is a unit in R and hence z is a unit in R with $z^\ell \equiv 1$ modulo m . Since $\text{char}(\kappa) = \ell$, $z \equiv 1$ modulo m . Thus $z = 1 + d$ for some $d \in m$. Since $z^\ell = (1 + d)^\ell = 1 + \ell d + \cdots + d^\ell$, all the nontrivial binomial coefficients are divisible by ℓ and $d \in m$, we have $z^\ell = 1 + \ell dy + d^\ell$ for some unit $y \in R$ with $y \equiv 1$ modulo m . Since $z^\ell = 1 - u(\rho - 1)^\ell$, we have $\ell dy + d^\ell = -u(\rho - 1)^\ell$.

We claim that $v(d) = v(\rho - 1)$. Suppose that $v(\ell d) = v(d^\ell)$. Then $v(\ell) + v(d) = \ell v(d)$ and hence $v(d) = v(\ell)/(\ell - 1) = v(\rho - 1)$ ([Lemma 2.1](#)). Suppose that $v(\ell d) < v(d^\ell)$. Then $v(\ell dy + d^\ell) = v(\ell d) = v(\ell) + v(d)$. Since $\ell dy + d^\ell = -u(\rho - 1)^\ell$, $v(\ell) + v(d) = \ell v(\rho - 1)$ and hence $v(d) = \ell v(\rho - 1) - v(\ell) = \ell v(\ell)/(\ell - 1) - v(\ell) = v(\ell)/(\ell - 1) = v(\rho - 1)$. Suppose that $v(\ell dy) > v(d^\ell)$. Then $\ell v(\rho - 1) = v(d^\ell) = \ell v(d)$ and hence $v(d) = v(\rho - 1)$.

Since $v(d) = v(\rho - 1)$, we have $d = w(\rho - 1)$ for some unit $w \in R$. By [Lemma 2.1](#), we have $\ell = x(\rho - 1)^{\ell-1}$ with $x \equiv -1$ modulo m . Thus

$$-u(\rho - 1)^\ell = \ell dy + d^\ell = xyw(\rho - 1)^\ell + w^\ell(\rho - 1)^\ell$$

and hence

$$-u = w^\ell + xyw.$$

Since $x \equiv -1$ modulo m and $y \equiv 1$ modulo m , we have $\bar{w}^\ell - \bar{w} + \bar{u} = 0$. In particular $X^\ell - X + \bar{u}$ has a root in κ .

Suppose R is complete and $X^\ell - X + \bar{u}$ has a root in κ . Since $\text{char}(\kappa) = \ell$, $X^\ell - X + \bar{u}$ has ℓ distinct roots in κ . Since R is complete, $X^\ell - X + u$ has a root w in R . Let $d = w(\rho - 1) \in R$. Then, as above, we have $(1 + d)^\ell = 1 + \ell dy + d^\ell$ for some $y \in R$ with $y \equiv 1$ modulo m_R . By [Lemma 2.1](#), we have $\ell = x(\rho - 1)^{\ell-1}$ for some $x \in R$ with $x \equiv -1$ modulo m_R . Since $w^\ell = w - u$ and $d = w(\rho - 1)$, we have

$$\begin{aligned} (1 + d)^\ell &= 1 + \ell dy + d^\ell = 1 + \ell w(\rho - 1)y + w^\ell(\rho - 1)^\ell \\ &= 1 + \ell w(\rho - 1)y + w(\rho - 1)^\ell - u(\rho - 1)^\ell \\ &= 1 + xyw(\rho - 1)^\ell + w(\rho - 1)^\ell - u(\rho - 1)^\ell \\ &= 1 + w(\rho - 1)^\ell(xy + 1) - u(\rho - 1)^\ell. \end{aligned}$$

Since $xy + 1 \equiv 0$ modulo m , we have $(1 + d)^\ell = 1 - u(\rho - 1)^\ell$ modulo $(\rho - 1)^\ell m$ and hence $1 - u(\rho - 1)^\ell \in R^{*\ell}$ (see [\[Epp 1973, Section 0.3\]](#)). \square

Let R be a regular domain with field of fractions K and let L/K be a finite separable extension. Let S be the integral closure of R in L . We say that L/K is *unramified* at a prime ideal P of R , if S_P/PS_P is a separable algebra over the field R_P/PR_P , where $S_P = S \otimes_R R_P$ is the same as the integral closure of the local ring R_P in L . We say that L/K is *unramified* on R if it is unramified at every prime ideal of R . If L/K is unramified at a prime ideal P of R , the separable R_P/PR_P -algebra S_P/PS_P is called the *residue field* of L at P . Note that S_P/PS_P is a product of separable field extensions of R_P/PR_P . If R is a regular local ring, then L/K is unramified at R if and only if the discriminant of L/K is a unit in R (see [\[Milne 1980, Exercise 3.9, page 24\]](#)). Thus in particular, L/K is unramified on R if and only if L/K is unramified at all height one prime ideals of R . If L is a product of fields L_i with $K \subset L_i$, then we say that L/K is *unramified* on R if each L_i/K is unramified on R .

We have the following (see [\[Epp 1973, Proposition 1.4\]](#)):

Proposition 2.3. *Suppose R is a discrete valuation ring with field of fractions K and residue field κ . Suppose that $\text{char}(K) = 0$, $\text{char}(\kappa) = \ell > 0$ and K contains a primitive ℓ -th root of unity ρ . Let $u \in R$ and $L = K[X]/(X^\ell - (1 - u(\rho - 1)^\ell))$. Let S be the integral closure of R in L . Then L/K is unramified on R and:*

- If $X^\ell - X + \bar{u}$ is irreducible in $\kappa[X]$, then S has a unique maximal ideal, it is generated by the maximal ideal m_R of R , and $S/m_R S \simeq \kappa[X]/(X^\ell - X + \bar{u})$, where \bar{u} is the image of u in κ .
- If $X^\ell - X + \bar{u}$ is reducible in $\kappa[X]$, then $m_R S$ is the product of ℓ distinct maximal ideals of S and again $S/m_R S \simeq \kappa[X]/(X^\ell - X + \bar{u})$.

Proof. Without loss of generality we assume that R is complete. If L is not a field, which happens if and only if $X^\ell - X - \bar{u}$ is reducible in $\kappa[X]$ by [Lemma 2.2](#), then the result is clearly true. So we further assume that L is a field and $X^\ell - X - \bar{u}$ is irreducible in $\kappa[X]$. Then S is a complete discrete valuation ring. Let m_R be the maximal ideal of R and m_S the maximal ideal of S . Since $1 - u(\rho - 1)^\ell \in S^\ell$, by

Lemma 2.2. $X^\ell - X - \bar{u}$ has a root in S/m_S . Since $[S/m_S : \kappa] \leq \ell$, $S/m_S \simeq \kappa[X]/(X^\ell - x + \bar{u})$ and hence the ramification index of S over R is 1 and $m_S = m_R S$. It follows that L/K unramified on R . \square

Corollary 2.4. Suppose that A is a regular local ring of dimension two with field of fractions F , maximal ideal m and residue field κ . Suppose that $\text{char}(F) = 0$, $\text{char}(\kappa) = \ell > 0$ and F contains a primitive ℓ -th root of unity ρ . Let $u \in A$ and $L = F[X]/(X^\ell - (1 - u(\rho - 1)^\ell))$. Suppose that L is a field. Let S be the integral closure of A in L . Then L/F is unramified on A and $S/mS \simeq \kappa[X]/(X^\ell - X + \bar{u})$, where \bar{u} is the image of u in κ .

Proof. Since $\text{char}(\kappa) = \ell$ and $\rho^\ell = 1$, $1 - \rho$ is in the maximal ideal of A and hence $1 - u(\rho - 1)^\ell$ is a unit in A . Let P be a prime ideal of A of height one. Suppose $\text{char}(A/P) \neq \ell$. Since $1 - u(\rho - 1)^\ell$ is a unit in A , L/F is unramified at P . If $\text{char}(A/P) = \ell$, then by [Proposition 2.3](#), L/F is unramified at P . Thus L/F is unramified on A .

Let $m = (\pi, \delta)$ be the maximal ideal of A . Since L/F is unramified on A , $S/\pi S$ is a regular semilocal ring (see [\[Milne 1980, Proposition 3.17, page 27\]](#)). Suppose that $\text{char}(A/(\pi)) \neq \ell$. Since $1 - u(\rho - 1)^\ell$ is a unit at π , L/F is unramified at π and $S \otimes_A A_{(\pi)}/(\pi) \simeq (A_{(\pi)}/(\pi))[X]/(X^\ell - (1 - \bar{u}(\bar{\rho} - 1)^\ell))$, where $\bar{}$ denotes the image modulo (π) . Hence by [Proposition 2.3](#), $S/(\pi, \delta)S = \kappa[X]/(X^\ell - X + \bar{u})$. Suppose that $\text{char}(A/(\pi)) = \ell$. Then, by [Proposition 2.3](#), the field of fractions of $S/\pi S$ is the field of fractions of $(A/(\pi))[X]/(X^\ell - X + \bar{u})$. Since u is a unit in $A/(\pi)$, $A/(\pi)[X]/(X^\ell - X + \bar{u})$ is a regular local ring and hence $S/\pi S \simeq A/(\pi)[X]/(X^\ell - X + \bar{u})$. Hence $S/(\pi, \delta)S = \kappa[X]/(X^\ell - X + \bar{u})$. \square

Let K be a field and ℓ a prime. Then every nontrivial element in $H^1(K, \mathbb{Z}/\ell)$ is represented by a pair (L, σ) , where L/K is a cyclic field extension of degree ℓ and σ a generator of $\text{Gal}(L/K)$.

Suppose $\ell \neq \text{char}(K)$ and K contains a primitive ℓ -th root of unity. Fix a primitive ℓ -th root of unity $\rho \in K$. Let L/K be a cyclic extension of degree ℓ . Then, by Kummer theory, we have $L = K(\sqrt[\ell]{a})$ for some $a \in K^*$ and $\sigma \in \text{Gal}(L/K)$ given by $\sigma(\sqrt[\ell]{a}) = \rho \sqrt[\ell]{a}$ is a generator of $\text{Gal}(L/K)$. Thus we have an isomorphism $K^*/K^{*\ell} \rightarrow H^1(K, \mathbb{Z}/\ell\mathbb{Z})$ given by sending the class of a in $K^*/K^{*\ell}$ to the pair (L, σ) , where $L = K[X]/(X^\ell - a)$ and $\sigma(\sqrt[\ell]{a}) = \rho \sqrt[\ell]{a}$. Let $a \in K^*$. If the image of the class of a in $H^1(F, \mathbb{Z}/\ell\mathbb{Z})$ is (L, σ) and i is coprime to ℓ , then the image of a^i is (L, σ^i) . In particular $(L, \sigma)^i = (L, \sigma^i)$ for all i coprime to ℓ .

Suppose $\text{char}(K) = \ell$ and L/K is a cyclic extension of degree ℓ . Then, by Artin–Schreier theory, $L = K[X]/(X^\ell - X + a)$ for some $a \in K$. The element $\sigma \in \text{Gal}(L/K)$ given by $\sigma(x) = x + 1$, where $x \in L$ is the image of X in L , is a generator of $\text{Gal}(L/K)$. Let $\wp : K \rightarrow K$ be the Artin–Schreier map $\wp(b) = b^\ell - b$. We have an isomorphism $K/\wp(K) \rightarrow H^1(K, \mathbb{Z}/\ell\mathbb{Z})$ given by sending the class of a to the pair (L, σ) , where $L = K[X]/(X^\ell - X + a)$ and $\sigma(x) = x + 1$. We note that if the image the class of a is (L, σ) , then the image of the class of ia is (L, σ^i) for all $1 \leq i \leq \ell - 1$.

In either case ($\text{char}(K) \neq \ell$ or $\text{char}(K) = \ell$), for $a \in K^*$ (or K), the pair (L, σ) is denoted by $[a]$. Sometimes, by abuse of notation, we also denote the cyclic extension L by $[a]$.

Let R be a regular ring of dimension at most 2 with field of fractions K and ℓ a prime. If ℓ is not equal to $\text{char}(K)$, then assume that K contains a primitive ℓ -th root of unity ρ . Suppose $L = [a]$ is a cyclic extension

of K of degree ℓ . Let P be a prime ideal of R , $\kappa(P) = R_P/PR_P$ and S_P the integral closure of R_P in L . Suppose $\text{char}(\kappa(P)) \neq \ell$. Then $L = K[X]/(X^\ell - a)$ and hence $S_P/PS_P \simeq \kappa(P)[X]/(X^\ell - \bar{a})$ where \bar{a} is the image of a in $\kappa(P)$. Suppose $\text{char}(\kappa(P)) = \ell$, $\text{char}(K) \neq \ell$ and $a = 1 - u(\rho - 1)^\ell$ for some $u \in R_P$. Then, by (Proposition 2.3 and Corollary 2.4), $S_P/PS_P \simeq \kappa(P)[X]/(X^\ell - X + \bar{u})$. Suppose $\text{char}(\kappa(P)) = \text{char}(K) = \ell$ and $a \in R_P$. Then $L = K[X]/(X^\ell - X + a)$ and hence $S_P/PS_P \simeq \kappa(P)[X]/(X^\ell - X + \bar{a})$. Thus, in either case, S_P/PS_P is either a cyclic field extension of degree ℓ over $\kappa(P)$ or the split extension of degree ℓ over $\kappa(P)$ and we denote these S_P/PS_P by $[a(P)]$. If $P = (\pi)$ for some $\pi \in R$, then we also denote $[a(P)]$ by $[a(\pi)]$. If P induces a discrete valuation v on K , then we also denote $[a(P)]$ by $[a(v)]$. For an element $b \in R$, we also denote the image of b in R/P by $b(P)$. If $b \in R$ and $c \in R/P$, we write $b = c \in R/P$ for $b \equiv c$ modulo P .

Lemma 2.5. *Let A be a semilocal regular ring of dimension at most two with field of fractions F . Let ℓ be a prime not equal to the characteristic of F . Suppose that F contains a primitive ℓ -th root of unity. For each maximal ideal m of A , let $[u_m]$ be a cyclic extension of A/m of degree ℓ . Then there exists $a \in A$ such that:*

- *[a] is unramified on A with residue field $[u_m]$ at each maximal ideal m of A .*
- *If $\ell = 2$ and A/m is finite for all maximal ideals m of A , then a can be chosen to be a sum of two squares in A .*

Proof. Let $\rho \in F$ be a primitive ℓ -th root of unity. Let m be a maximal ideal of A . If $\text{char}(A/m) \neq \ell$, then let $b_m = (1 - u_m/(\rho - 1)^\ell) \in A/m$. If $\text{char}(A/m) = \ell$, then let $b_m = u_m \in A/m$. Choose $b \in A$ with $b = b_m \in A/m$ for all maximal ideals m of A and $a = 1 - b(\rho - 1)^\ell$. Let m be a maximal ideal of A . Suppose that $\text{char}(A/m) \neq \ell$. Then, by the choice of a and b , we have $a = 1 - b_m(\rho - 1)^\ell = u_m \in A/m$. Thus $[a]$ is unramified on A_m with the residue field $[u_m]$ at m . Suppose that $\text{char}(A/m) = \ell$. Then, by (Proposition 2.3 and Corollary 2.4), $[a]$ is unramified on A_m with the residue field $[\bar{b}]$. Since $b = b_m = u_m \in A/m$, the residue field of $[a]$ at m is $[u_m]$.

Suppose $\ell = 2$ and A/m is a finite field for all maximal ideals m of A . Let m be a maximal ideal of A . Suppose that $\text{char}(A/m) \neq 2$. Since every element of A/m is a sum of two squares in A/m [Scharlau 1985, page 39, 3.7], there exist $x_m, y_m \in A/m$ such that $x_m^2 + y_m^2 = 1 - 4u_m$. Suppose that $\text{char}(A/m) = 2$. Since A/m is a finite field, every element in A/m is a square. Let $y_m \in A/m$ be such that $y_m^2 = u_m$. Let $x, y \in A$ be such that for every maximal ideal m of A :

- If $\text{char}(A/m) \neq 2$, then $x = \frac{1}{4}(x_m - 1) \in A/m$ and $y = \frac{1}{2}y_m \in A/m$.
- If $\text{char}(A/m) = 2$, then $x = 0 \in A/m$ and $y = y_m \in A/m$.

Let $a = (1 + 4x)^2 + (2y)^2 \in A$. Let m be a maximal ideal of A . Suppose $\text{char}(A/m) \neq 2$. Then $a = x_m^2 + y_m^2 = u_m \in A/m$ and hence $[a]$ is unramified on A_m with residue field at m equal to $[u_m]$. Suppose that $\text{char}(A/m) = 2$. Then $\frac{1}{4}(1 - a) = u_m \in A/m$ and hence $[a]$ is unramified on A_m with residue field $[u_m]$ (Proposition 2.3 and Corollary 2.4). \square

Lemma 2.6. *Let R be a semilocal regular domain of dimension 1 and K its field of fractions. Let ℓ be a prime not equal to $\text{char}(K)$. Suppose that K contains a primitive ℓ -th root of unity ρ . Let $L = K(\sqrt[\ell]{u})$ for some $u \in R$. Let $m_1, \dots, m_r, m_{r+1}, \dots, m_n$ be the maximal ideals of R . Suppose that $\text{char}(\kappa(m_j)) = \ell$ and L/K is unramified at m_j for all $r+1 \leq j \leq n$. Then there exists $v \in R$ such that $L = K(\sqrt[\ell]{v})$, $v \equiv u$ modulo m_i for all $1 \leq i \leq r$ and $(1-v)/(\rho-1)^\ell \in R_{m_j}$ for all $r+1 \leq j \leq n$.*

Proof. For a maximal ideal m of R , let K_m denote the field of fractions of the completion of R at m .

Let $r+1 \leq j \leq n$. Since $\text{char}(\kappa(m_j)) = \ell$ and L/K unramified at m_j , the residue field of L at m_j is $\kappa(m_j)[X]/(X^\ell - X + \bar{w}_j)$ for some $w_j \in R_{m_j}$. Since the residue field of $K[X]/(X^\ell - (1-w_j(\rho-1)^\ell))$ is isomorphic to $\kappa(m_j)[X]/(X^\ell - X + \bar{w}_j)$ (Proposition 2.3 and Corollary 2.4),

$$L \otimes K_{m_j} \simeq K_{m_j}[X]/(X^\ell - (1-w_j(\rho-1)^\ell)).$$

Since $\text{char}(K) \neq \ell$ and $L = K(\sqrt[\ell]{u})$, there exists $\theta_j \in K_{m_j}$ such that $u\theta_j^\ell = 1 - w_j(\rho-1)^\ell$. Let N be an integer larger than the sum of the valuations of u and $(\rho-1)^\ell$ at all m_i . By the weak approximation, there exists $\theta \in K$ such that $\theta \equiv 1$ modulo m_i for $1 \leq i \leq r$ and $\theta\theta_j^{-1} \equiv 1$ modulo m_j^{N+1} for $r+1 \leq j \leq n$.

Let $v = u\theta^\ell$. Let $1 \leq i \leq r$. Since $\theta \equiv 1$ modulo m_i , $v \equiv u$ modulo m_i . Let $r+1 \leq j \leq n$. Let $\pi_j \in R$ be a generator of the ideal m_j . Then $\theta^\ell\theta_j^{-\ell} = 1 + a_j\pi_j^{N+1}$ for some $a_j \in \hat{R}_{m_j}$. Since $u\theta_j^\ell = 1 - w_j(\rho-1)^\ell \in R_{m_j}$ is a unit and N is bigger than the sum of the valuations of u and $(\rho-1)^\ell$, we have $\theta_j^\ell a_j\pi_j^{N+1} = b_j(\rho-1)^\ell$ for some $b_j \in \hat{R}_{m_j}$. Hence

$$v = u\theta^\ell = u\theta_j^\ell + ub_j(\rho-1)^\ell = 1 - w_j(\rho-1)^\ell + ub_j(\rho-1)^\ell = 1 - c_j(\rho-1)^\ell$$

for some $c_j \in \hat{R}_{m_j}$. Since $c_j = (1-v)/(\rho-1)^\ell \in K \cap \hat{R}_{m_j} = R_{m_j}$, v has the required properties. \square

The following is a generalization of a result of Saltman [2008, Proposition 0.3].

Lemma 2.7. *Let A be a UFD. For $1 \leq i \leq n$, let $I_i = (a_i) \subset A$ with $\text{gcd}(a_i, a_j) = 1$ for all $i \neq j$. For each $i < j$, let $I_{ij} = I_i + I_j$. Suppose that the ideals I_{ij} are comaximal. Then*

$$A \rightarrow \bigoplus_i A/I_i \rightarrow \bigoplus_{i < j} A/I_{ij}$$

is exact, where for $i < j$, the map from $A/I_i \oplus A/I_j \rightarrow A/I_{ij}$ is given by $(x, y) \mapsto x - y$.

Proof. Proof by induction on n . The case $n = 2$ is in [Saltman 2008, Lemma 0.2]. Assume that $n \geq 3$. Suppose $(x_i) \in A/I_i$ maps to zero in $\bigoplus A/I_{ij}$. By induction, there exists $b \in A$ such that $b = x_i \in A/I_i$ for $1 \leq i \leq n-1$. We claim that $I_1 \cap \dots \cap I_{n-1} + I_n = (I_1 + I_n) \cap \dots \cap (I_{n-1} + I_n)$. Since both sides contain I_n , it is enough to prove the equality modulo I_n . Since $\text{gcd}(a_i, a_j) = 1$ for all $i \neq j$, we have $I_1 \cap \dots \cap I_{n-1} = Aa_1 \dots a_{n-1}$ and hence $I_1 \cap \dots \cap I_{n-1} + I_n/I_n = (A/I_n)\bar{a}_1 \dots \bar{a}_{n-1}$. Since I_{ij} are comaximal, $I_{in}/I_n = (A/I_n)\bar{a}_i$ are comaximal for $1 \leq i \leq n-1$ and hence $(A/I_n)\bar{a}_1 \dots \bar{a}_{n-1} = (A/I_n)\bar{a}_1 \cap \dots \cap (A/I_n)\bar{a}_{n-1}$. Let $b_1 \in A/(I_1 \cap \dots \cap I_{n-1})$ be the image of b . Then, by the case $n = 2$, there exists $a \in A$ such that $a = b_1 \in A/I_1 \cap \dots \cap I_{n-1}$ and $a = x_n \in A/I_n$. Thus a has the required properties. \square

3. Central simple algebras

Let K be a field, L/K a cyclic extension of degree n with $\sigma \in \text{Gal}(L/K)$ a generator and $b \in K^*$. Let (L, σ, b) denote the cyclic algebra $L \oplus Lx \oplus \cdots \oplus Lx^{n-1}$ with relations $x^n = b$, $x\lambda = \sigma(\lambda)x$ for all $\lambda \in L$. Then (L, σ, b) is a central simple algebra over K and represents an element in the n -torsion subgroup ${}_n\text{Br}(K)$ of the Brauer group $\text{Br}(K)$ [Albert 1939, Theorem 18, page 98]. Suppose that n is coprime to $\text{char}(K)$ and K contains a primitive n -th root of unity. Then $L = K(\sqrt[n]{a})$ for some $a \in K^*$. Fix a primitive n -th root of unity ρ in K . Let σ be the generator of $\text{Gal}(L/K)$ given by $\sigma(\sqrt[n]{a}) = \rho \sqrt[n]{a}$. Then, the cyclic algebra (L, σ, b) is denoted by $[a, b]$. Suppose that n is prime and equal to $\text{char}(K)$. Then, $L = K[X]/(X^n - X + a)$ for some $a \in K$. If σ is the generator of $\text{Gal}(L/K)$ given by $\sigma(x) = x + 1$, then the cyclic algebra (L, σ, b) is also denoted by $[a, b]$.

For any Galois module M over K , let $H^n(K, M)$ denote the Galois cohomology of K with coefficients in M . Let ℓ be a prime. Let $\mathbb{Z}/\ell(i)$ be the Galois modules over K as in [Kato 1986, Section 0]. We have canonical isomorphisms $H^1(K, \mathbb{Z}/\ell) \simeq \text{Hom}_{\text{cont}}(\text{Gal}(K^{\text{ab}}/K), \mathbb{Z}/\ell)$ and ${}_{\ell}\text{Br}(K) \simeq H^2(K, \mathbb{Z}/\ell(1))$, where K^{ab} is the maximal abelian extension of K [Kato 1986, Section 0].

Suppose A is a regular domain with field of fractions F . We say that an element $\alpha \in H^2(F, \mathbb{Z}/\ell(1))$ is *unramified* on A if α is represented by a central simple algebra over F which comes from an Azumaya algebra over A . If it is not unramified, then we say that α is *ramified* on A . Suppose P is a prime ideal of A and $\alpha \in H^2(F, \mathbb{Z}/\ell(1))$. We say that α is *unramified* at P if α is unramified on A_P . If α is not unramified at P , then we say that α is *ramified* at P . Suppose that α is unramified at P . Let \mathcal{A} be an Azumaya algebra over A_P with the class of $\mathcal{A} \otimes_{A_P} F$ equal to α . The algebra $\bar{\alpha} = \mathcal{A} \otimes_{A_P} (A_P/PA_P)$ is called the *specialization* of α at P . Since A_P is a regular local ring, the class of $\bar{\alpha}$ is independent of the choice of \mathcal{A} . Let $a, b \in F$ and $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$. If the cyclic extension $[a]$ is unramified at P and b is a unit at P , then α is unramified at P and the specialization of α at P is $[a(P), b(P)]$, where $[a(P)]$ is the residue field of $[a]$ at P and $b(P)$ is the image of b in A_P/PA_P .

Suppose that R is a discrete valuation ring with field of fractions K and residue field κ . Let ℓ be a prime not equal to $\text{char}(K)$. Suppose that $\text{char}(\kappa) \neq \ell$ or $\text{char}(\kappa) = \ell$ with $\kappa = \kappa^{\ell}$. Then there is a *residue homomorphism* $\partial : H^2(K, \mathbb{Z}/\ell(1)) \rightarrow H^1(\kappa, \mathbb{Z}/\ell)$ [Kato 1986, Section 1]. Further a class $\alpha \in H^2(K, \mathbb{Z}/\ell(1))$ is unramified at R if and only if $\partial(\alpha) = 0$. Let $a, b \in K^*$. If $[a]$ is unramified at R , then $\partial([a, b]) = [a(v)]^{v(b)}$, where v is the discrete valuation on K . In particular if $[a]$ is unramified on R and ℓ divides $v(b)$, then $[a, b]$ is unramified on R .

Lemma 3.1 ([Auslander and Goldman 1960, Proposition 7.4], see [Lieblich et al. 2014, Lemma 3.1]). *Let A be a regular ring of dimension 2 and F its field of fractions. Let ℓ be a prime not equal to $\text{char}(F)$ and $\alpha \in H^2(F, \mathbb{Z}/\ell(1))$. If α is unramified at all height one prime ideals of A , then α is unramified on A .*

Lemma 3.2. *Let R be a complete discrete valuation ring with field of fractions K and residue field κ . Let ℓ be a prime not equal to $\text{char}(\kappa)$. Let D be a central simple algebra of index ℓ over K . Suppose that D is ramified at R . If L/K is the unramified extension of K with residue field equal to the residue of D at R , then $D \otimes L$ is a split algebra.*

Proof. We have $D = D_0 \otimes (L, \sigma, \pi)$ for some generator of $\text{Gal}(L/K)$, π a parameter in R and D_0 unramified at R (see [Parimala et al. 2018, Lemma 4.1]). Further $\ell = \text{ind}(D) = \text{ind}(D_0 \otimes L)[L : K]$ (see [loc. cit., Lemma 4.2]). Since D is ramified at R , $[L : K] = \ell$ and hence $D_0 \otimes L = 0$. Hence $D_0 = (L, \sigma, u)$ for some $u \in K$ and $D = (L, \sigma, u\pi)$. Thus $D \otimes L$ is a split algebra. \square

Lemma 3.3. *Let A be a complete regular local ring of dimension 2 with field of fractions F and residue field κ . Suppose that κ is a finite field. Let $m = (\pi, \delta)$ be the maximal ideal of A . Let ℓ be a prime not equal to $\text{char}(F)$ and $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$ for some $a, b \in F^*$. Suppose that:*

- If $\text{char}(\kappa) = \ell$, then the cyclic extension $[a)$ is unramified on A .
- α is unramified on A except possibly at δ .
- The specialization of α at π is unramified on $A/(\pi)$.

Then $\alpha = 0$.

Proof. Suppose that $\text{char}(\kappa) \neq \ell$. Then, it follows from [Reddy and Suresh 2013, Proposition 3.4] that $\alpha = 0$ (see [Parimala et al. 2018, Corollary 5.5]).

Suppose that $\text{char}(\kappa) = \ell$. Since F is the field of fractions of A , without loss of generality, we assume that $b \in A$ and not divisible by θ^ℓ for any prime $\theta \in A$. Write $b = v\delta^n\theta_1^{n_1} \cdots \theta_r^{n_r}$ for some distinct primes $\theta_i \in A$ with $(\delta) \neq (\theta_i)$ for all i , $1 \leq n_i \leq \ell - 1$, $0 \leq n \leq \ell - 1$ and $v \in A$ a unit. Since κ is a finite field, A is complete and $[a)$ is unramified on A , we have $[a, v) = 0$ and hence $\alpha = [a, b) = [a, \delta^n\theta_1^{n_1} \cdots \theta_r^{n_r})$.

Since $[a)$ is unramified on A , for any prime $\theta \in A$, $[a, \theta)$ is unramified on A except possibly at θ . Let $1 \leq j \leq r$. Since $\alpha = [a, b) = [a, \delta^n) \prod [a, \theta_i^{n_i})$, $[a, \delta^n)$ and $[a, \theta_i^{n_i})$ are unramified at θ_j for all $i \neq j$, $[a, \theta_j^{n_j})$ is unramified at θ_j and hence $[a, \theta_j^{n_j})$ is unramified on A (see Lemma 3.1). Since κ is a finite field and A is complete, $[a, \theta_j^{n_j}) = 0$. Thus, we have $\alpha = [a, \delta^n)$.

If $n = 0$, then $\alpha = 0$. Suppose $1 \leq n \leq \ell - 1$. Let $\bar{\alpha}$ be the specialization of α at π . Since $\alpha = [a, \delta^n)$ and $[a)$ is unramified at π , we have $\bar{\alpha} = [a(\pi), \bar{\delta}^n)$, where $[a(\pi))$ is the residue field of $[a)$ at π and $\bar{\delta}$ is the image of δ in $A_P/(\pi)$. Since $\bar{\alpha}$ is unramified on $A/(\pi)$, A is complete and κ is a finite field, $\bar{\alpha} = [a(\pi), \bar{\delta}^n) = 0$. Since $\partial(\bar{\alpha}) = [a(m)]^n = 1$ and n is coprime to ℓ , $[a(m)] = 0$. Since A is complete, $[a)$ is trivial and hence $\alpha = 0$. \square

We now recall the chilly, cool, hot and cold points and the chilly loops associated to a central simple algebra, due to Saltman [2007; 2008]. Let \mathcal{X} be a regular integral excellent scheme of dimension 2 and F its field of fractions. Let ℓ be a prime which is not equal to $\text{char}(F)$. Suppose that F contains a primitive ℓ -th root of unity. Let $\alpha \in H^2(F, \mathbb{Z}/\ell(1))$. Suppose that $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_n\}$ for some regular irreducible curves D_i on \mathcal{X} with normal crossings. Suppose $P \in D_i \cap D_j$ is a closed point. Let A_P be the local ring at P . Let $\pi_i, \pi_j \in A_P$ be primes defining D_i and D_j at P respectively. Suppose that $\text{char}(\kappa(P)) \neq \ell$. Suppose that $\alpha = \alpha_0 + (u, \pi_i) + (v, \pi_j)$ for some α_0 unramified at P , u, v units at P . We say that P is a *chilly point* of α if $u(P)$ and $v(P)$ generate the same nontrivial subgroup of $\kappa(P)^*/\kappa(P)^{\ell}$, a *cool point* of α if $u(P), v(P) \in \kappa(P)^{\ell}$, a *hot point* of α if $u(P)$ and $v(P)$ generate

different subgroup of $\kappa(P)^*/\kappa(P)^{*^\ell}$. We say that P is a *cold point* of α if $\alpha = \alpha_0 + (u\pi_i, v\pi_j^s)$ for some α_0 unramified at P , u, v units at P and s coprime to ℓ .

Let Γ be a graph with vertices D_i 's and edges as chilly points, i.e., two distinct vertices D_i and D_j have an edge between them if there is a chilly point in $D_i \cap D_j$. A loop in this graph is called a *chilly loop* on \mathcal{X} . Let $\mathcal{X}[\frac{1}{\ell}]$ be the open subscheme of \mathcal{X} obtained by inverting ℓ . Since, by the definition of chilly point, $\text{char}(\kappa(P)) \neq \ell$ for any chilly point P , we have the following

Proposition 3.4 [Saltman 2007, Corollary 2.9]. *There exists a sequence of blow-ups $\mathcal{X}' \rightarrow \mathcal{X}$ centered at closed points $P \in \mathcal{X}[\frac{1}{\ell}]$ such that α has no chilly loops on \mathcal{X}' .*

Let K be a global field and ℓ a prime. Let $\beta \in {}_\ell\text{Br}(K)$. Let v be a discrete valuation of K , K_v the completion of K at v and $\kappa(v)$ the residue field at v . Since K_v is a local field, the invariant map gives an isomorphism $\partial_v : {}_\ell\text{Br}(K_v) = H^2(K_v, \mathbb{Z}/\ell(1)) \rightarrow H^1(\kappa(v), \mathbb{Z}/\ell)$.

Proposition 3.5. *Let K be a global field and ℓ a prime. If ℓ is not equal to $\text{char}(K)$, then assume that K contains a primitive ℓ -th root of unity ρ . Let $\beta \in {}_\ell\text{Br}(K)$. Let S be a finite set of discrete valuations of K containing all the discrete valuations v of K with $\partial_v(\beta) \neq 0$. Let S' be a finite set of discrete valuations of K with $S \cap S' = \emptyset$. Let $a \in K^*$ and for each $v \in S'$, let $n_v \geq 2$ be an integer. Suppose that for every $v \in S$, $[a]$ is unramified at v with $\partial_v(\beta) = [a(v)]$. Further assume that if $\ell = 2$, then $\beta \otimes K_v(\sqrt{a}) = 0$ for all real places v of K . Then there exists $b \in K^*$ such that:*

- $\beta = [a, b]$.
- If $v \in S$, then $v(b) = 1$.
- If $v \in S'$, then $v(b-1) \geq n_v$.

Proof. Let $L = [a]$. Let $v \in S$. If $\partial_v(\beta) = 0$, then $\beta \otimes K_v = 0$ [Cassels and Fröhlich 1967, page 131]. Suppose that $\partial_v(\beta) \neq 0$. Then $[a(v)]$ is a field extension of $\kappa(v)$ of degree ℓ and hence $L \otimes_K K_v$ is a degree ℓ field extension of K_v . Thus $\beta \otimes_K (L \otimes_K K_v) = 0$ [loc. cit., page 131]. Suppose v is a real place of K . Then, by the assumption on a , $\beta \otimes_K (L \otimes_K K_v) = 0$. Thus $\beta \otimes L = 0$ [loc. cit., page 187] and hence there exists $c \in K^*$ such that $\beta = [a, c]$ [Albert 1939, page 94].

Let R be the semilocal ring at the discrete valuations in $S \cup S'$. Replacing c by $c\theta^\ell$ for some $\theta \in K^*$, we assume that $c \in R$. For $v \in S \cup S'$, let $\pi_v \in R$ be a parameter at v . Let $v \in S$. Since $[a]$ is unramified at v , $\partial_v(\beta) = \partial_v([a, c]) = [a(v)]^{v(c)}$. Suppose $[a(v)]$ is nontrivial. Since, by the hypothesis, $\partial_v(\beta) = [a(v)]$, $v(c) - 1$ is divisible by ℓ . Since $[L : K] = \ell$, $\pi_v^{v(c)-1}$ is a norm from $L \otimes_K K_v/K_v$. Suppose that $[a(v)]$ is trivial. Then $L \otimes_K K_v$ is the split extension and hence every element of K_v is a norm from $L \otimes_K K_v/K_v$. Thus for each $v \in S$, there exists $x_v \in L \otimes_K K_v$ with norm $\pi_v^{v(c)-1}$. Let $v \in S'$. Then $\partial_v(\beta) = 0$ and we have $\beta \otimes K_v = [a, c] \otimes K_v = 0$ [Cassels and Fröhlich 1967, page 131]. Hence c is a norm from $L \otimes_K K_v$. For each $v \in S'$, $x_v \in L \otimes_K K_v$ with norm c . Let $z \in L$ be sufficiently close to x_v such that $v(N_{L \otimes_K K_v}(z) - \pi_v^{v(c)-1}) \geq v(c)$ for all $v \in S$ and $v(N_{L \otimes_K K_v}(z) - c) \geq v(c) + n_v$ for all $v \in S'$.

Let d be the norm of z and $b = cd^{-1}$. Then $\beta = [a, cd^{-1}] = [a, b]$. Let $v \in S$. Since $v(d - \pi_v^{v(c)-1}) \geq v(c)$, we have $v(d) = v(c) - 1$ and hence $v(b) = v(cd^{-1}) = 1$. Let $v \in S'$. Since $v(d - c) \geq v(c) + n_v \geq 2$, $v(d) = v(c)$ and $v(b - 1) = v(cd^{-1} - 1) \geq n_v$. \square

4. A complex of Kato

Let K be a complete discrete valued field with residue field κ . Let ℓ be a prime not equal to characteristic of K . If $\ell = \text{char}(\kappa)$, then assume that $[\kappa : \kappa^\ell] \leq \ell$. Then, there is a residue homomorphism $\partial : H^3(K, \mathbb{Z}/\ell(2)) \rightarrow H^2(\kappa, \mathbb{Z}/\ell(1))$ [Kato 1986, Section 1]. We say that an element $\zeta \in H^3(K, \mathbb{Z}/\ell(2))$ is *unramified* at the discrete valuation of F if $\partial(\zeta) = 0$.

Let \mathcal{X} be a two-dimensional regular integral excellent Noetherian scheme quasiprojective over some affine scheme and F the function field of \mathcal{X} . For $x \in \mathcal{X}$, let F_x be the field of fractions of the completion \hat{A}_x of the local ring A_x at x on \mathcal{X} and $\kappa(x)$ the residue field at x . Let $x \in \mathcal{X}$ and C be the closure of $\{x\}$ in \mathcal{X} . Then, we also denote F_x by F_C . If the dimension of C is one, then C defines a discrete valuation v_C (or v_x) on F . Let $\mathcal{X}_{(i)}$ be the set of points of \mathcal{X} with the dimension of the closure of $\{x\}$ equal to i . Let ℓ be a prime not equal to $\text{char}(F)$. Suppose that F contains a primitive ℓ -th root of unity. If $P \in \mathcal{X}_{(0)}$ is a closed point of \mathcal{X} with $\text{char}(\kappa(P)) = \ell$, then we assume $\kappa(P) = \kappa(P)^\ell$. Let $x \in \mathcal{X}_{(1)}$. We have a *residue homomorphism*

$$\partial_x : H^3(F, \mathbb{Z}/\ell(2)) \rightarrow H^2(\kappa(x), \mathbb{Z}/\ell(1))$$

[Kato 1986, Section 1]. We say that an element $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$ is *unramified* at x (or C) if ζ is unramified at v_x . Further if $P \in \mathcal{X}_{(0)}$ is in the closure of $\{x\}$, then we have a *residue homomorphism*

$$\partial_P : H^2(\kappa(x), \mathbb{Z}/\ell(1)) \rightarrow H^1(\kappa(P), \mathbb{Z}/\ell)$$

[Kato 1986, Section 1]. For $x \in \mathcal{X}_{(1)}$, if C is the closure of $\{x\}$, we also denote ∂_x by ∂_C . An element $\alpha \in H^2(\kappa(x), \mathbb{Z}/\ell(1)) \simeq {}_\ell \text{Br}(\kappa(x))$ is unramified at P if and only if $\partial_P(\alpha) = 0$. We use the additive notation for the group operations on $H^2(F, \mathbb{Z}/\ell(1))$ and $H^3(F, \mathbb{Z}/\ell(2))$ and multiplicative notation for the group operation on $H^1(F, \mathbb{Z}/\ell)$.

Proposition 4.1 [Kato 1986, Proposition 1.7]. *Then*

$$H^3(F, \mathbb{Z}/\ell(2)) \xrightarrow{\partial} \bigoplus_{x \in \mathcal{X}_{(1)}} H^2(\kappa(x), \mathbb{Z}/\ell(1)) \xrightarrow{\partial} \bigoplus_{P \in \mathcal{X}_{(0)}} H^1(\kappa(P), \mathbb{Z}/\ell).$$

is a complex, where the maps are given by the residue homomorphism.

Lemma 4.2 [Kato 1980, Section 3.2, Lemma 3; 1986, Lemma 1.4(3)]. *Let $x \in \mathcal{X}_{(1)}$ and v_x be the discrete valuation on F at x . Then $\partial_x : H^3(F_x, \mathbb{Z}/\ell(2)) \rightarrow H^2(\kappa(x), \mathbb{Z}/\ell(1))$ is an isomorphism. Further if $\alpha \in H^2(F, \mathbb{Z}/\ell(1))$ is unramified at x and $f \in F^*$, then $\partial_x(\alpha \cdot (f)) = \bar{\alpha}^{v_x(f)}$.*

The following is a consequence of Proposition 4.1.

Corollary 4.3. *Let C_1 and C_2 be two irreducible regular curves in \mathcal{X} intersecting at a closed point P . Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$. Suppose that ζ is unramified at all codimension one points of \mathcal{X} passing through P except possibly at C_1 and C_2 . Then*

$$\partial_P(\partial_{C_1}(\zeta)) = \partial_P(\partial_{C_2}(\zeta))^{-1}.$$

Corollary 4.4. *Let C be an irreducible curve on \mathcal{X} and $P \in C$ with C regular at P . Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$. Suppose that ζ is unramified at all codimension one points of \mathcal{X} passing through P except possibly at C . If $\kappa(P)$ is finite, then $\zeta \otimes F_P = 0$. In particular if $\kappa(P)$ is finite, then ζ is unramified at every discrete valuation of F centered at P .*

Proof. Since C is regular at P , there exists an irreducible curve C' passing through P and intersecting C transversely at P . Then, by Corollary 4.3, we have $\partial_P(\partial_C(\zeta)) = \partial_P(\partial_{C'}(\zeta))^{\ell-1}$. Since, by assumption, $\partial_{C'}(\zeta) = 0$, we have $\partial_P(\partial_C(\zeta)) = 1$.

Let $\pi \in A_P$ be a prime defining C at P . Since C is regular at P , $A_P/(\pi)$ is a discrete valued ring with residue field $\kappa(P)$ and $\kappa(C)$ is the field of fractions of $A_P/(\pi)$. Further π remains a regular prime in \hat{A}_P and $\hat{A}_P/(\pi)$ is the completion of $A_P/(\pi)$. In particular the field of fractions of $\hat{A}_P/(\pi)$ is the completion $\kappa(C)_P$ of the field $\kappa(C)$ at the discrete valuation given by the discrete valuation ring $A_P/(\pi)$. Let \tilde{v} be the discrete valuation on F_P given by the height one prime ideal (π) of \hat{A} and v the discrete valuation of F given by the height one prime ideal (π) of A . Then the restriction of \tilde{v} to F is v and the residue field $\kappa(\tilde{v})$ at \tilde{v} is $\kappa(C)_P$.

Since $\partial_P(\partial_C(\zeta)) = 1$, we have $\partial_C(\zeta) \otimes \kappa(C)_P = 0$ [Kato 1986, Lemma 1.4(3)]. Hence

$$\partial_{\tilde{v}}(\zeta \otimes F_P) = \partial_C(\zeta) \otimes \kappa(C)_P = 0.$$

Let $F_{P,\tilde{v}}$ be the completion of F_P at \tilde{v} . Since $\partial_{\tilde{v}} : H^3(F_{P,\tilde{v}}, \mathbb{Z}/\ell(2)) \rightarrow H^2(\kappa(C)_P, \mathbb{Z}/\ell(2))$ is an isomorphism [loc. cit., Lemma 1.4(3)], $\zeta \otimes F_{P,\tilde{v}} = 0$.

Let v' be a discrete valuation of F_P given by a height one prime ideal of \hat{A} not equal to (π) . Then, by the assumption on ζ , $\partial_{v'}(\zeta \otimes F_P) = 0$ and hence $\zeta \otimes F_{P,v'} = 0$ [loc. cit., Lemma 1.4(3)], where $F_{P,v'}$ is the completion of F_P at v' . Hence, by [Saito 1987, Theorem 5.3], $\zeta \otimes F_P = 0$. \square

5. A local global principle

Let \mathcal{X} , F and ℓ be as in Section 4. Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$. Let $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$. In this section we show that under some additional assumptions on \mathcal{X} , ζ and α , there exists $f \in F^*$ such that $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at all the discrete valuations of $\kappa(x)$ centered at closed points of $\{\overline{x}\}$ for all $x \in \mathcal{X}_{(1)}$ (see Theorem 5.7).

For the rest of this section, we assume the following.

Assumptions 5.1. Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies the following conditions:

- (A1) $\text{ram}_{\mathcal{X}}(\zeta) = \{C_1, \dots, C_r\}$, the C_i are regular irreducible curves with normal crossings.
- (A2) $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_n\}$, the D_j are regular curves with normal crossings and $C_i \neq D_j$ for all i, j .

By reindexing, we have $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_m, \dots, D_n\}$, with $\text{char}(\kappa(D_i)) = \ell$ for $1 \leq i \leq m$ and $\text{char}(\kappa(D_j)) \neq \ell$ for $m+1 \leq j \leq n$:

- (A3) $D_i \cap D_j = \emptyset$ for all $1 \leq i \leq m$ and $m+1 \leq j \leq n$.
- (A4) If $P \in D_i \cap D_j$ for some $m+1 \leq i < j \leq n$, then $\text{char}(\kappa(P)) \neq \ell$.
- (A5) There are no chilly loops (see [Section 3](#)) for α on \mathcal{X} .
- (A6) $\partial_{C_i}(\zeta)$ is the specialization of α at C_i for all i .
- (A7) $C_i \cap D_j = \emptyset$ for all i and $1 \leq j \leq m$.
- (A8) If $P \in C_i \cap D_s$ for some i and s , then $P \in C_i \cap C_j$ for some $i \neq j$.
- (A9) For every $i \neq j$, through any point of $C_i \cap C_j$ there is at most one D_t .
- (A10) In the representation $\alpha = [a, b]$ the element a can be chosen such that if $P \in \mathcal{X}_{(0)}$ with $\text{char}(\kappa(P)) = \ell$ and $P \in D_i$ for some i , then $(1-a)/(\rho-1)^\ell \in A_P$.
- (A11) If $P \in C_i \cap C_j \cap D_t$ for some $i < j$ and for some t , then D_t is given by a regular prime $u\pi_i^{\ell-1} + v\pi_j$ at P , for some prime π_i (resp. π_j) defining C_i (resp. C_j) at P and units u, v at P .

Let \mathcal{P} be a finite set of closed points of \mathcal{X} containing $C_i \cap C_j$, $D_i \cap D_j$ for all $i \neq j$, $C_i \cap D_j$ for all i, j and at least one point from each C_i and D_j . Let A be the regular semilocal ring at \mathcal{P} on \mathcal{X} . For every $P \in \mathcal{P}$, let M_P be the maximal ideal of A at P . For $1 \leq i \leq r$ and $1 \leq j \leq n$, let $\pi_i \in A$ be a prime defining C_i on A and $\delta_j \in A$ a prime defining D_j on A .

Lemma 5.2. *For $1 \leq j \leq n$, let $n_j = \ell v_{D_j}(\ell) + 1$. Then there exists a unit $u \in A$ such that $u \prod \pi_i$ is an ℓ -th power modulo $\delta_j^{n_j}$ for all $1 \leq j \leq n$. In particular $u \prod \pi_i \in F_{D_j}^\ell$ for all j .*

Proof. Let $\pi = \prod_1^r \pi_i$ and $\delta = \prod_1^m \delta_j^{n_j}$. Since, by the assumption (A7), $C_i \cap D_j = \emptyset$ for all i and $1 \leq j \leq m$, the ideals $A\pi$ and $A\delta$ are comaximal in A . In particular the image of π in $A/(\delta)$ is a unit. Let $P \in \mathcal{P} \setminus ((\bigcup_1^r C_i) \cup (\bigcup_1^m D_j))$. Then π is a unit at P and the ideals $(\pi), (\delta), m_P$ are comaximal. By the Chinese remainder theorem, there exists $u_1 \in A$ be such that $u_1 = \pi \in A/(\delta)$, $u_1 = 1 \in A/(\pi)$ and $u_1 = \pi \in A/M_P$ for all $P \in \mathcal{P} \setminus ((\bigcup_1^r C_i) \cup (\bigcup_1^m D_j))$. Since the image of π in $A/(\delta)$ is a unit, u_1 is a unit in A . Let $\pi' = u_1^{-1}\pi$.

Let $m+1 \leq s \leq n$ and a_s be the image of π' in $A/(\delta_s)$. We claim that $a_s = w_s b_s^\ell$ for some $w_s, b_s \in A/(\delta_s)$ with w_s a unit in $A/(\delta_s)$ and $w_s(P) = 1$ for all $P \in D_s \cap D_{s'}$, $s \neq s'$. Let M be a maximal ideal of $A/(\delta_s)$. Then $M = M_P/(\delta_s)$ for some $P \in D_s \cap \mathcal{P}$. Suppose $P \notin C_i$ for all i . Then π' is a unit at P and hence a_s is a unit at M . Suppose $P \in C_i$ for some i . Then $P \in C_i \cap D_s$. Thus, by the assumption (A8), there exists $j \neq i$ such that $P \in C_i \cap C_j$. Suppose $i < j$. Then, by the assumption (A11), $\delta_s = v_i \pi_i^{\ell-1} + v_j \pi_j$ for some units v_i and v_j at P . Hence

$$a_s \equiv u_1^{-1} \left(\prod_{t \neq i, j} \pi_t \right) \pi_i \pi_j = u_1^{-1} \left(\prod_{t \neq i, j} \pi_t \right) \pi_i \left(-\frac{v_i}{v_j} \pi_i^{\ell-1} \right) = u_1^{-1} \left(\prod_{t \neq i, j} \pi_t \right) \left(-\frac{v_i}{v_j} \right) \pi_i^\ell \pmod{\delta_s}.$$

Since π_t , $t \neq i, j$, is a unit at P (assumption (A1)), $a_s \equiv w_P \pi_j^\ell$ modulo δ_s , for some $w_P \in A/(\delta_s)$ a unit at P . Suppose $i > j$. Then $\delta_s = v_j \pi_j + v_i \pi_i^{\ell-1}$ for some units v_i and v_j at P . Hence, as above, $a_s \equiv w_P \pi_i^\ell$ modulo δ_s , for some $w_P \in A/(\delta_s)$ a unit at P . Hence at every maximal ideal of $A/(\delta_s)$, a_s is a product of a unit and an ℓ -th power. Since D_s is a regular curve on \mathcal{X} , $A/(\delta_s)$ is a semilocal regular ring and hence $A/(\delta_s)$ is an UFD. In particular $a_s = w_s b_s^\ell$ for some $w_s, b_s \in A/(\delta_s)$ with w_s a unit.

Let $P \in D_s \cap D_{s'}$ for some $s' \neq s$. Since $m+1 \leq s \leq n$, by the assumption (A3), $P \notin D_i$ for all $1 \leq i \leq m$. By the assumptions (A8) and (A9), $P \notin C_i$ for all i . Thus, by the choice of u_1 , $\pi'(P) = 1$. In particular $a_s(P) = 1$ and hence $w_s(P) = b_s(P)^{-\ell}$. Let $\tilde{w}_s \in A/(\delta_s)$ be a unit such that $\tilde{w}_s(P) = b_s(P)$ for all $P \in D_s \cap D_{s'}$, $s \neq s'$. Since $a_s = w_s \tilde{w}_s^\ell (\tilde{w}_s^{-1} b_s)^\ell$ and $w_s \tilde{w}_s^\ell(P) = 1$, replacing w_s by $w_s \tilde{w}_s^\ell$ and b_s by $\tilde{w}_s^{-1} b_s$, we assume that $a_s = w_s b_s^\ell$ with $w_s(P) = 1$ for all $P \in D_s \cap D_{s'}$, $s \neq s'$. Since $m+1 \leq s \leq n$, by the assumption (A3), $(\delta_s, \delta) = A$. Hence, by Lemma 2.7, there exists $w \in A$ such that $w = 1 \in \kappa(P)$ for all $P \in \mathcal{P} \setminus (\bigcup_1^n D_i)$, $w = 1 \in A/(\delta)$ and $w = w_s \in A/(\delta_s)$. Since $w_s \in A/(\delta_s)$ is a unit, w is a unit in A .

Let $u = w^{-1} u_1^{-1}$. Since u_1 and w are units in A , $u \in A$ is a unit. We have $u \prod \pi_i = w^{-1} \pi' \equiv w_s^{-1} a_s = b_s^\ell$ modulo δ_s for $m+1 \leq s \leq n$ and $u \prod \pi_i = w^{-1} \pi' = w_\delta^{-\ell} \in A/(\delta)$. Since $\nu_{D_j}(\ell) = 0$ for $m+1 \leq j \leq n$ (assumption (A2)), $u \prod \pi_i$ is an ℓ -th power in $A/(\delta_j^{n_j})$ for $1 \leq j \leq n$. Since $n_j = \ell \nu_{D_j}(\delta_j) + 1$, $u \prod \pi_i \in F_{D_j}^\ell$ for all j (see [Epp 1973, Section 0.3]). \square

Let $u \in A$ be a unit as in Lemma 5.2 and $\pi = u \prod_1^r \pi_i \in A$. Then $\text{div}_{\mathcal{X}}(\pi) = \sum C_i + \sum_1^d t_s E_s$ for some irreducible curves E_s with $E_s \cap \mathcal{P} = \emptyset$. In particular $C_i \neq E_s$, $D_j \neq E_s$ for all i, j and s . Let \mathcal{P}' be a finite set of points of \mathcal{X} containing \mathcal{P} , $C_i \cap E_s$, $D_j \cap E_s$ for all i, j and s and at least one point from each E_s . Let A' be the semilocal ring at \mathcal{P}' . For $1 \leq i \leq n$, let $\delta'_i \in A'$ be a prime defining D_i on A' . Note that $\delta_i A \cap A' = \delta'_i A'$ for all i .

Lemma 5.3. *There exists $v \in A'$ such that:*

- *v is a unit and $F(\sqrt[\ell]{v})/F$ is unramified at all the points $P \in \mathcal{P}'$ except possible at the points P in $D_i \cap D_j$ for all $i \neq j$ with $\text{char}(\kappa(P)) \neq \ell$.*
- *If $\text{char}(\kappa(D_j)) \neq \ell$, then the extension $F(\sqrt[\ell]{v})/F$ is unramified at D_j with the residue field of $F(\sqrt[\ell]{v})$ at D_j equal to $\partial_{D_j}(\alpha)$.*
- *If $\text{char}(\kappa(D_j)) = \ell$, then $F_{D_j}(\sqrt[\ell]{v}) \simeq F_{D_j}(\sqrt[\ell]{a})$. In particular $\alpha \otimes F_{D_j}(\sqrt[\ell]{v})$ is trivial.*

Proof. For $1 \leq i \leq n$, we show that there exists $u_i \in A'/(\delta'_i) \subset \kappa(D_i)$ which patch to get an element in A' having the required properties.

Let $1 \leq i \leq m$. Then $\text{char}(\kappa(D_i)) = \ell$. By the assumption (A10), $(a-1)/(\rho-1)^\ell \in A_P$ for all $P \in D_i$. In particular $(a-1)/(\rho-1)^\ell$ is regular at D_i and the image of $(a-1)/(\rho-1)^\ell$ in $\kappa(D_i)$ is in $A'/(\delta'_i)$. Let u_i be the image of $(1-a)/(\rho-1)^\ell$ in $A'/(\delta'_i)$.

Let $m+1 \leq i \leq n$. Then $\text{char}(\kappa(D_i)) \neq \ell$. If $\text{char}(\kappa(P)) = \ell$ for all $P \in D_i$, then let $w_i \in \kappa(D_i)$ be such that $\partial_{D_i}(\alpha) = [w_i]$.

Suppose there exists $P \in D_i$ with $\text{char}(\kappa(P)) \neq \ell$. By [Saltman 2008, Proposition 7.10], there exists $w_i \in \kappa(D_i)^*$ such that:

- $\partial_{D_i}(\alpha) = \kappa(D_i)(\sqrt[\ell]{w_i})$.
- w_i is defined at all $P \in \mathcal{P}' \cap D_i$ with $\text{char}(\kappa(P)) \neq \ell$.
- w_i is a unit at all $P \in (\mathcal{P}' \cap D_i) \setminus (\bigcup_{j \neq i} D_j)$ with $\text{char}(\kappa(P)) \neq \ell$.
- $w_i(P) = w_j(P)$ for all $P \in D_i \cap D_j$, $i \neq j$ with P a chilly point or a cold point.

Let $P \in D_i \cap D_j$ for some $i \neq j$. Then, by assumptions (A3) and (A4), $\text{char}(\kappa(P)) \neq \ell$. Suppose P is neither a chilly point nor a cold point. Since α is a symbol, there are no hot points [Saltman 2007, Theorem 2.5]. Hence P is a cool point. Since $\partial_{D_i}(\alpha) = \kappa(D_i)(\sqrt[\ell]{w_i})$, by the definition of a cool point, it follows that $w_i \in \kappa(D_i)_P^{*\ell}$. Write $w_i = w_i' P$ for some $w_i' \in \kappa(D_i)_P^*$. Let $w_i' \in \kappa(D_i)^*$ be such that w_i' is close to $w_i' P$ for all cool points $P \in D_i$ and w_i' is close to 1 for all other $P \in D_i \cap \mathcal{P}'$. Then, replacing w_i by $w_i w_i'^{-\ell}$, we assume that $w_i(P) = w_j(P)$ at all $P \in D_i \cap D_j$ with $\text{char}(\kappa(P)) \neq \ell$.

Let $P \in \mathcal{P}' \cap D_i$. Suppose $\text{char}(\kappa(P)) = \ell$. Then, by the assumptions (A10), $[a]$ is unramified at P (see Proposition 2.3). Since $\alpha = [a, b]$, $\partial_{D_i}(\alpha) = [a(D_i)]^{v_{D_i}(b)}$. In particular $\partial_{D_i}(\alpha) = \kappa(D_i)(\sqrt[\ell]{w_i})$ is unramified at P . Thus, by Lemma 2.6, we assume that $(1 - w_i)/(\rho - 1)^\ell$ is regular at all $P \in \mathcal{P}' \cap D_i \setminus (\bigcap_{j \neq i} D_j)$ with $\text{char}(\kappa(P)) = \ell$. Since $\text{char}(\kappa(D_i)) \neq \ell$, by assumptions (A3) and (A4), if $P \in D_i \cap D_j$ for some $j \neq i$, then $\text{char}(\kappa(P)) \neq \ell$. Thus $(1 - w_i)/(\rho - 1)^\ell \in A' / (\delta_i)$. Let $u_i = (1 - w_i)/(\rho - 1)^\ell \in A' / (\delta'_i)$.

Let $P \in D_i \cap D_j$ for some $i \neq j$. Suppose $\text{char}(\kappa(P)) = \ell$. Then, by the assumption (A3) and (A4), $1 \leq i, j \leq m$ and hence by the choice of u_i , we have $u_i(P) = u_j(P) \in \kappa(P)$. Suppose $\text{char}(\kappa(P)) \neq \ell$. Then, $m + 1 \leq i, j \leq n$ and hence by the choice of w_i , we have $u_i(P) = u_j(P)$. Thus, by Lemma 2.7, there exists $u' \in A'$ such that $u' = u_i$ modulo (δ'_i) for all i . By the Chinese remainder theorem, we get $v' \in A'$ such that $v' = u' \in A' / (\prod \delta'_i)$ and $v' = 0 \in \kappa(P)$ for all $P \in \mathcal{P}'$ with $P \notin D_i$ for all i .

We now show that $v = 1 - (\rho - 1)^\ell v'$ has all the required properties.

Let $P \in \mathcal{P}'$. Suppose $\text{char}(\kappa(P)) = \ell$. Then $\rho - 1 \in M_P$. Since $v' \in A'$, v is a unit at P and $F(\sqrt[\ell]{v})$ is unramified at P (Corollary 2.4). Suppose $\text{char}(\kappa(P)) \neq \ell$. Suppose that $P \notin D_i$ for all i . Then, by the choice of v' , $v' \in M_P$ and hence v is a unit at P and $F(\sqrt[\ell]{v})/F$ is unramified at P . Suppose that $P \in D_i$ for some i . Since $\text{char}(\kappa(P)) \neq \ell$, $\text{char}(\kappa(D_i)) \neq \ell$. Thus, by the choice of v' , we have $v' = u' = u_i = (1 - w_i)/(\rho - 1)^\ell \in A' / (\delta'_i)$. Hence $v = w_i \in A' / (\delta'_i)$. Suppose $P \notin D_j$ for all $j \neq i$. Then, by the choice w_i is a unit at P and hence v is a unit at P . In particular $F(\sqrt[\ell]{v})/F$ is unramified at P . Thus v is a unit and $F(\sqrt[\ell]{v})/F$ is unramified at all $P \in \mathcal{P}'$ except possibly at $P \in D_i \cap D_j$ with $\text{char}(\kappa(P)) \neq \ell$.

Suppose $\text{char}(\kappa(D_i)) \neq \ell$. Then, by the choice of v , we have $v = 1 - (\rho - 1)^\ell v' = 1 - (\rho - 1)^\ell u_i = w_i \in A' / (\delta'_i) \subset \kappa(D_i)$. Since $w_i \neq 0$, v is a unit at δ_i and $F(\sqrt[\ell]{v})$ is unramified at D_i with residue field $\kappa(D_i)(\sqrt[\ell]{w_i}) = \partial_{D_i}(\alpha)$.

Suppose that $\text{char}(\kappa(D_i)) = \ell$. Since $v = 1 - (\rho - 1)^\ell v'$ and $v' = u_i = w_i \in A' / (\delta'_i)$, $F(\sqrt[\ell]{v})$ is unramified at D_i with residue field equal to $\kappa(D_i)[X]/(X^\ell - X + w_i)$ (Proposition 2.3). Since w_i is

the image of $(1 - a)/(\rho - 1)^\ell$ in $A'/(D_i)$, the residue field of $F(\sqrt[\ell]{a})$ at δ'_i is $\kappa(D_i)[X]/(X^\ell - X + w_i)$ (Proposition 2.3). Hence $F_{D_i}(\sqrt[\ell]{v}) \simeq F_{D_i}(\sqrt[\ell]{a})$. Since $\alpha = [a, b]$, $\alpha \otimes F_{\delta'_i}(\sqrt[\ell]{v})$ is trivial. \square

Remark 5.4. If ℓ is a unit in A' , then the extension $F(\sqrt[\ell]{v})/F$ given in the above lemma is the lift of the residues of α which is in the sense of [Saltman 2008, Proposition 7.11].

Let $v \in A'$ be as in Lemma 5.3. Let V_1, \dots, V_q be the irreducible curves in \mathcal{X} where $F(\sqrt[\ell]{v\pi})$ is ramified. Since $\pi \in F_{D_j}^\ell$ Lemma 5.2 and $F(\sqrt[\ell]{v})$ is unramified at D_j Lemma 5.3 for all j , $V_i \neq D_j$ for all i and j . Let $\mathcal{P}'' = \mathcal{P} \cup (\cup(D_i \cap E_s)) \cup (\cup(D_i \cap V_j))$. After reindexing E_s , we assume that there exists $d_1 \leq d$ such that $E_s \cap \mathcal{P}'' \neq \emptyset$ for $1 \leq s \leq d_1$ and $E_s \cap \mathcal{P}'' = \emptyset$ for $d_1 + 1 \leq s \leq d$.

Lemma 5.5. *There exists $h \in F^*$ which is a norm from the extension $F(\sqrt[\ell]{v\pi})$ such that*

$$\text{div}_{\mathcal{X}}(h) = - \sum_1^{d_1} t_i E_i + \sum r_i E'_i,$$

where $E'_j \cap \mathcal{P}'' = \emptyset$ for all j .

Proof. Let A'' be the regular semilocal ring at \mathcal{P}'' . Let $L = F(\sqrt[\ell]{v\pi})$ and T be the integral closure of A'' in L .

Let $1 \leq s \leq d_1$ and $P \in \mathcal{P}'' \cap E_s$. Since $E_s \cap \mathcal{P} = \emptyset$, $P \in D_i \cap E_s$ for some i . Since v is a unit at all $P \in (\mathcal{P}' \setminus \mathcal{P})$ Lemma 5.3 and $D_i \cap E_s \subset \mathcal{P}'$, v is a unit at P and hence v is a unit at E_s .

Let e_s and f_s be the ramification index and the residue degree of L/F at E_s respectively. Suppose that $e_s = \ell$. Then there is a unique curve \tilde{E}_s in T lying over E_s and let $t'_s = t_s$. Suppose that $e_s = 1$. Since $\text{div}_{\mathcal{X}}(\pi) = \sum C_i + \sum_1^d t_s E_s$ and v is a unit at E_s , ℓ divides t_s . Suppose that $f_s = 1$. Let $t'_s = t_s/\ell$ and $\tilde{E}_s = t'_s \sum E_{s,i}$, where $E_{s,i}$ are the irreducible divisors in T which lie over E_s . Suppose that $f_s = \ell$. Then there is a unique curve \tilde{E}_s in T lying over E_s and let $t'_s = t_s$.

Let $\tilde{E} = - \sum t'_s \tilde{E}_s$. Then the pushforward of \tilde{E} from T to A'' is $- \sum_1^d t_s E_s$. We claim that \tilde{E} is a principal divisor on T . Since T is normal it is enough to check this at every maximal ideal of T . Let M be a maximal ideal of T . Then $M \cap A'' = M_P$ for some $P \in \mathcal{P}''$. Suppose $P \notin E_s$ for all $1 \leq s \leq d_1$. Then \tilde{E} is trivial at M . Suppose that $P \in E_s$ for some s with $1 \leq s \leq d_1$. Then, as we have seen above, $P \in D_i \cap E_s$ for some i . Since $D_i \cap C_j \in \mathcal{P}$ for all i and j and $\mathcal{P} \cap E_s = \emptyset$, $P \notin C_i$ for all i . Hence $\text{div}_{A_P}(\pi) = \sum_{P \in E_i} t_i E_i$. Since v is a unit at P Lemma 5.3, $\text{div}_{A_P}(v\pi) = \text{div}_{A_P}(\pi)$ and hence $\tilde{E} = -\text{div}(\sqrt[\ell]{v\pi})$ at M . In particular \tilde{E} is principal at M . Hence $\tilde{E} = \text{div}_T(g)$ for some $g \in L$. Let $h = N_{L/F}(g)$. Since the pushforward of \tilde{E} from T to A'' is $- \sum_1^d t_s E_s$, $\text{div}_{A''}(h) = - \sum_1^{d_1} t_i E_i$ and hence h has the required properties. \square

Lemma 5.6. *Let $h \in F^*$ be as in Lemma 5.5 with $\text{div}_{\mathcal{X}}(h) = - \sum_1^{d_1} t_i E_i + \sum r_j E'_j$. Then α is unramified at E'_j . Further, if r_j is coprime to ℓ for some j , then the specialization of α at E'_j is unramified at every discrete valuation of $\kappa(E'_j)$ which is centered on E'_j .*

Proof. Since $E'_j \cap \mathcal{P}'' = \emptyset$ and $D_i \cap \mathcal{P}'' \neq \emptyset$ for all i , $E'_j \neq D_i$ for all i . Hence, by the assumption (A2), α is unramified at E'_j .

Let P be a closed point of E'_j for some j with r_j coprime to ℓ . Let $L = F(\sqrt[\ell]{v\pi})$ and B_P be the integral closure of A_P in L . We first show that there exists an Azumaya algebra \mathcal{A}_P over B_P such that $\alpha \otimes_F L$ is the class of $\mathcal{A}_P \otimes_{B_P} L$.

Suppose $P \notin D_i$ for all i . Then α is unramified at P (assumption (A2)). Hence there exists an Azumaya algebra \mathcal{A}'_P over A_P such that α is the class of $\mathcal{A}'_P \otimes_{A_P} F$ (see [Lemma 3.1](#)). Let $\mathcal{A}_P = \mathcal{A}'_P \otimes_{A_P} B_Q$. Then $\alpha \otimes_F L$ is the class of $\mathcal{A}_P \otimes_{B_P} L$.

Suppose $P \in D_i$ for some i . Since $E'_j \cap \mathcal{P}'' = \emptyset$ ([Lemma 5.5](#)), $P \notin \mathcal{P}''$. Since $\cup(V_{i'} \cap D_i) \subset \mathcal{P}''$, $P \notin \cup V_{i'}$ for all i' and hence L is unramified at P . Hence B_P is a regular semilocal domain. Let $Q \subset B_P$ be a height one prime ideal and $Q_0 = Q \cap A_P$. Then Q is a height one prime ideal of A_P . If α is unramified at Q_0 , then $\alpha \otimes_F L$ is unramified at Q . Suppose that α is ramified at Q_0 . Since $P \notin D_j$ for $j \neq i$, Q_0 is the prime ideal corresponding to D_i . Since $\pi \in F_{D_i}^\ell$ ([Lemma 5.2](#)), $F_{D_i}(\sqrt[\ell]{v\pi}) = F_{D_i}(\sqrt[\ell]{v})$. Suppose that $\text{char}(\kappa(D_i)) \neq \ell$. Since L/F is unramified at D_i with residue field equal to $\partial_{D_i}(\alpha)$ ([Lemma 5.3](#)), $\alpha \otimes_F L$ is unramified at Q (see [[Parimala et al. 2018, Lemma 4.1](#)]). Suppose that $\text{char}(\kappa(D_i)) = \ell$. Since $\alpha \otimes F_{D_i}(\sqrt[\ell]{v})$ is trivial ([Lemma 5.3](#)), $\alpha \otimes_F L$ is unramified at Q . Since B_P is a regular semilocal ring of dimension two, $\alpha \otimes F(\sqrt[\ell]{v\pi})$ is unramified at B_P (see [Lemma 3.1](#)). Hence there exists an Azumaya algebra \mathcal{A}_P over B_P such that $\alpha \otimes_F L$ is the class of $\mathcal{A}_P \otimes_{B_P} L$.

Let $\beta \in H^2(\kappa(E'_j), \mathbb{Z}/\ell(1))$ be the specialization of α at E'_j . Suppose that r_j is coprime to ℓ . Let v be a discrete valuation of $\kappa(E'_j)$ centered on a closed point P of E'_j . Let $Q_0 \subset A_P$ be the prime ideal defining E_j at P . Let $Q \subset B_P$ be a height one prime ideal of B_P lying over Q_0 . Since E'_j is in the support of h , r_j is coprime to ℓ and h is a norm from L , the valuation on F given by Q_0 is either ramified or splits in L . Hence $A_P/Q_0 \subseteq B_P/Q \subset \kappa(E'_j)$. Thus β is the class of $\mathcal{A}_P \otimes_{B_P/Q} \kappa(E'_j)$. Since B_P/Q is integral over A_P/Q_0 , the ring of integers at v contains B_P/Q . In particular β is unramified at v . \square

Theorem 5.7. *Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 5.1](#). Then there exists $f \in K^*$ such that for every $x \in \mathcal{X}_{(1)}$, $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(x)$ centered on the closure of $\{x\}$.*

Proof. We use the same notation as above and let $h \in F^*$ be as in [Lemma 5.5](#). We claim that $f = h\pi$ has the required properties, i.e., $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(x)$ for all $x \in \mathcal{X}_{(1)}$.

Let $x \in \mathcal{X}_{(1)}$ and D be the closure of $\{x\}$. Suppose $D = C_i$ for some i . Then h is a unit at C_i ([Lemma 5.5](#)), α is unramified at C_i (assumption (A2)) and π is a parameter at C_i , we have $\partial_{C_i}(\alpha \cdot (f))$ is the specialization of α at C_i ([Lemma 4.2](#)). Hence, by the assumption (A6), $\partial_{C_i}(\zeta - \alpha \cdot (f)) = 0$.

Suppose that $D = D_j$ for some j . By the assumption (A2), $\partial_{D_j}(\zeta) = 0$ and α is ramified at D_j . If $\text{char}(\kappa(D_j)) = \ell$, then by the choice $\alpha \otimes F_{D_j}(\sqrt[\ell]{v}) = 0$ ([Lemma 5.3](#)). Suppose that $\text{char}(\kappa(D_j)) \neq \ell$. Since $F_{D_j}(\sqrt[\ell]{v})$ is unramified with residue field equal to $\partial_{D_j}(\alpha)$ ([Lemma 5.3](#)), we have $\alpha \otimes F_{D_j}(\sqrt[\ell]{v}) = 0$ ([Lemma 3.2](#)). In particular, in either case, $\alpha \cdot (g) = 0 \in H^3(F_{D_j}(\sqrt[\ell]{v}), \mathbb{Z}/\ell(2))$. Since $\pi \in F_{D_i}^\ell$ ([Lemma 5.2](#)), $L \otimes F_{D_j} = F_{D_j}(\sqrt[\ell]{v})$ and $\alpha \cdot (\pi) = 0 \in H^3(F_{D_j}, \mathbb{Z}/\ell(2))$. Thus $\alpha \cdot (h) = \text{cor}_{L/F}(\alpha \cdot (g)) = 0 \in H^3(F_{D_j}, \mathbb{Z}/\ell(2))$ and $\partial_{D_j}(\alpha \cdot (h)) = 0$. Hence $\partial_{D_j}(\zeta - \alpha \cdot (f)) = 0$.

Suppose $D \neq C_i$ and D_j for all i and j . Then $\partial_D(\zeta) = 0$ and α is unramified at D . If $v_D(f)$ is a multiple of ℓ , then $\partial_D(\alpha \cdot (f)) = 0$. Suppose that $v_D(f)$ is coprime to ℓ . Since $\text{div}_{\mathcal{X}}(\pi) =$

$\sum C_i + \sum_1^d t_i E_i$ (Lemma 5.2), $\text{div}_{\mathcal{X}}(h) = -\sum_1^{d_1} t_s E_s + \sum r_i E'_i$ (Lemma 5.5) and $f = h\pi$, we have $\text{div}_{\mathcal{X}}(f) = \sum C_i + \sum_{d_1+1}^d t_s E_s + \sum r_i E'_i$. Since $v_D(f)$ is coprime to ℓ and $D \neq C_i$ for all i , $D = E_s$ for some $d_1+1 \leq s \leq d$ or $D = E'_i$ for some i .

If $D = E'_i$, then by Lemma 5.6, the specialization $\bar{\alpha}$ of α at D is unramified at every discrete valuation of $\kappa(D)$ centered on D . Suppose $D = E_s$ for some $d_1+1 \leq s \leq d$. Then by the choice of d_1 , $E_s \cap \mathcal{P}'' = \emptyset$ and hence $E_s \cap D_j = \emptyset$ for all j . Let $P \in E_s$. Then α is unramified at P (assumption (A2)) and hence $\bar{\alpha}$ is unramified at P . In particular $\bar{\alpha}$ is unramified at every discrete valuation of $\kappa(E_s)$ centered at P . Since α is unramified at E_s , $\partial_{E_s}(\alpha \cdot (f)) = \bar{\alpha}^{v_{E_s}(f)}$ (Lemma 4.2). Since $\bar{\alpha}$ is unramified at every discrete valuation of $\kappa(E_s)$ centered on E_s , $\partial_{E_s}(\alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(E_s)$ centered on E_s . Hence f has the required property. \square

6. Divisibility of elements in H^3 by symbols in H^2

Let K be a global field or a local field and F the function field of a curve over K . If K is a number field or a local field, let R be the ring of integers in K . If K is a global field of positive characteristic, let R be the field of constants of K . Let \mathcal{X} be a regular proper model of F over $\text{Spec}(R)$. Let ℓ be a prime not equal to $\text{char}(K)$. Suppose that K contains a primitive ℓ -th root of unity ρ . Then for any $P \in \mathcal{X}_{(0)}$, $\kappa(P)$ is a finite field. Hence if $\text{char}(\kappa(P)) = \ell$, then $\kappa(P) = \kappa(P)^\ell$.

Thus we have a complex (see Proposition 4.1)

$$0 \rightarrow H^3(F, \mathbb{Z}/\ell(2)) \xrightarrow{\partial} \bigoplus_{x \in \mathcal{X}_{(1)}} H^2(\kappa(x), \mathbb{Z}/\ell(1)) \xrightarrow{\partial} \bigoplus_{P \in \mathcal{X}_{(0)}} H^1(\kappa(P), \mathbb{Z}/\ell).$$

Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$ and $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$. In this section we prove (see Theorem 6.5) a certain local global principle for divisibility of ζ by α if $(\mathcal{X}, \zeta, \alpha)$ satisfies certain assumptions (see Assumptions 6.3).

For a sequence of blow-ups $\eta : \mathcal{Y} \rightarrow \mathcal{X}$ and for an irreducible curve C in \mathcal{X} , we denote the strict transform of C in \mathcal{Y} by C itself.

We begin with the following:

Lemma 6.1. *Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (A1) of Assumptions 5.1. Let $\mathcal{Y} \rightarrow \mathcal{X}$ be a sequence of blow-ups centered on closed points of \mathcal{X} which are not in $C_i \cap C_j$ for all $i \neq j$. Let $1 \leq I \leq 11$ with $I \neq 3, 5, 7$. If $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (AI) of Assumptions 5.1, then $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (AI).*

Proof. Let Q be a closed point of \mathcal{X} which is not in $C_i \cap C_j$ for $i \neq j$ and $\eta : \mathcal{Y} \rightarrow \mathcal{X}$ a simple blow-up at Q . It is enough to prove the lemma for $(\mathcal{Y}, \zeta, \alpha)$.

Let E be the exceptional curve in \mathcal{Y} . Since $Q \notin C_i \cap C_j$ for $i \neq j$ and $(\mathcal{X}, \zeta, \alpha)$ satisfies (A1) of Assumptions 5.1, by Corollary 4.4, ζ is unramified at E .

Let $1 \leq I \leq 11$ with $I \neq 3, 5, 7$. Suppose further $I \neq 4, 10$. Since the exceptional curve E is not in $\text{ram}_{\mathcal{Y}}(\zeta)$, if $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (AI) of Assumptions 5.1, then $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the same assumption.

Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (A4) of [Assumptions 5.1](#). Suppose $\text{char}(\kappa(Q)) = \ell$. Then $\text{char}(\kappa(E)) = \ell$ and hence $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (A4) of [Assumptions 5.1](#). Suppose $\text{char}(\kappa(Q)) \neq \ell$. Then $\text{char}(\kappa(P)) \neq \ell$ for all $P \in E$ and hence $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (A4) of [Assumptions 5.1](#).

Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (A10) of [Assumptions 5.1](#). If $\text{char}(\kappa(Q)) \neq \ell$, then $\text{char}(\kappa(P)) \neq \ell$ for all $P \in E$ and hence $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (A10) of [Assumptions 5.1](#). Suppose that $\text{char}(\kappa(Q)) = \ell$. If $Q \notin D_i$ for any i , then α is unramified at Q and hence α is unramified at E . In particular $E \notin \text{ram}_{\mathcal{Y}}(\alpha)$ and hence $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (A10) of [Assumptions 5.1](#). Suppose $Q \in D_i$ for some i . Since $(\mathcal{X}, \zeta, \alpha)$ satisfies (A10) of [Assumptions 5.1](#), $(1-a)/(\rho-1)^\ell \in A_Q$. Let $P \in E$. Since $A_Q \subset A_P$, $(1-a)/(\rho-1)^\ell \in A_P$. Hence $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the assumption (A10) of [Assumptions 5.1](#). \square

Lemma 6.2. *Let $\mathcal{Y} \rightarrow \mathcal{X}$ be a sequence of blow-ups centered on closed points Q of \mathcal{X} with $\text{char}(\kappa(Q)) \neq \ell$. Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfy the assumptions (A1) and (A2). If $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (A3) or (A7) of [Assumptions 5.1](#), then $(\mathcal{Y}, \zeta, \alpha)$ also satisfies the same assumption.*

Proof. Let Q be a closed point of \mathcal{X} with $\text{char}(\kappa(Q)) \neq \ell$ and E the exceptional curve in \mathcal{Y} . Since $\text{char}(\kappa(E)) \neq \ell$ and for any closed point P of E $\text{char}(\kappa(P)) \neq \ell$, the lemma follows. \square

Assumptions 6.3. Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies the following:

- (B1) $\text{ram}_{\mathcal{X}}(\zeta) = \{C_1, \dots, C_r\}$, the C_i are irreducible regular curves with normal crossings.
- (B2) $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_n\}$ with the D_j irreducible curves such that $C_i \neq D_j$ for all i and j .
- (B3) If $D_s \cap C_i \cap C_j \neq \emptyset$ for some $s, i \neq j$, then $\text{char}(\kappa(D_s)) \neq \ell$.
- (B4) If $P \in D_j$ for some $1 \leq j \leq n$ with $\text{char}(\kappa(P)) = \ell$, then $(1-a)/(\rho-1)^\ell \in A_P$.
- (B5) $\partial_{C_i}(\zeta)$ is the specialization of α at C_i for all i .
- (B6) If $\ell = 2$, then $\zeta \otimes F \otimes K_v$ is trivial for all real places v of K .
- (B7) If $\ell = 2$, then a is a sum of two squares in F .
- (B8) For $1 \leq i < j \leq r$, through any point of $C_i \cap C_j$ there passes at most one D_s and if $P \in D_s \cap C_i \cap C_j$, then D_s is defined by $u\pi_i^{\ell-1} + v\pi_j$ at P for some units u and v at P and π_i, π_j primes defining C_i and C_j at P .

Lemma 6.4. *Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#). Let $\mathcal{Y} \rightarrow \mathcal{X}$ be a sequence of blow-ups centered on closed points of \mathcal{X} which are not in $C_i \cap C_j$ for $i \neq j$. Then $(\mathcal{Y}, \zeta, \alpha)$ also satisfies [Assumptions 6.3](#).*

Proof. Let Q be a closed point of \mathcal{X} which is not in $C_i \cap C_j$ for $i \neq j$ and $\eta : \mathcal{Y} \rightarrow \mathcal{X}$ a simple blow-up at Q . It is enough to show that $(\mathcal{Y}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#).

Since (B1), (B4), (B5) and (B8) are restatements of (A1), (A10), (A6) and (A9), (A11), by [Lemma 6.1](#), $(\mathcal{Y}, \zeta, \alpha)$ satisfies (B1), (B4), (B5) and (B8). Let E be the exceptional curve in \mathcal{Y} . Since $Q \notin C_i \cap C_j$

for $i \neq j$, by [Corollary 4.4](#), ζ is unramified at E . Hence $\text{ram}_{\mathcal{Y}}(\zeta) = \{C_1, \dots, C_r\}$. Since $\text{ram}_{\mathcal{Y}}(\alpha) \subset \{D_1, \dots, D_n, E\}$, $(\mathcal{Y}, \zeta, \alpha)$ satisfies (B2). Since $E \cap C_i \cap C_j = \emptyset$ for all $i \neq j$, $(\mathcal{Y}, \zeta, \alpha)$ satisfies (B3).

Since (B6) and (B7) do not depend on the model, $(\mathcal{Y}, \zeta, \alpha)$ satisfies all [Assumptions 6.3](#). \square

Theorem 6.5. *Let K, F and \mathcal{X} be as above. Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$ and $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$. Suppose that F contains a primitive ℓ -th root of unity. If $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#), then there exists $f \in F^*$ such that $\zeta = \alpha \cdot (f)$.*

Proof. Suppose $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#). First we show that there exists a sequence of blow-ups $\eta : \mathcal{Y} \rightarrow \mathcal{X}$ such that $(\mathcal{Y}, \zeta, \alpha)$ satisfies [Assumptions 5.1](#).

Let $P \in \mathcal{X}_{(0)}$. Suppose $P \in D_s$ for some s and D_s is not regular at P or $P \in D_s \cap D_t$ for some $s \neq t$. Then, by the assumption (B8), $P \notin C_i \cap C_j$ for all $i \neq j$. Thus, there exists a sequence of blow-ups $\mathcal{X}' \rightarrow \mathcal{X}$ at closed points which are not in $C_i \cap C_j$ for all $i \neq j$ such that $\text{ram}_{\mathcal{X}'}(\alpha)$ is a union of regular with normal crossings. By [Lemma 6.4](#), \mathcal{X}' also satisfies [Assumptions 6.3](#). Thus, replacing \mathcal{X} by \mathcal{X}' we assume that $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#), D_i 's are regular with normal crossings and D_s, C_i have normal crossings at all $P \notin C_j$ for all $j \neq i$. In particular $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumptions (A1) and (A2) of [Assumptions 5.1](#).

Suppose there exists $i \neq j$ and $P \in D_i \cap D_j$ such that $\text{char}(\kappa(D_i)) \neq \ell$, $\text{char}(\kappa(D_j)) \neq \ell$ and $\text{char}(\kappa(P)) = \ell$. Let $\mathcal{X}' \rightarrow \mathcal{X}$ be the blow-up at P and E the exceptional curve in \mathcal{X}' . Then $\text{char}(\kappa(E)) = \text{char}(\kappa(P)) = \ell$ and $D_i \cap D_j \cap E = \emptyset$ in \mathcal{X}' . By the assumption (B8), $P \notin C_{i'} \cap C_{j'}$ for all $i' \neq j'$ and hence \mathcal{X}' satisfies [Assumptions 6.3](#) (see [Lemma 6.4](#)) and assumptions (A1) and (A2) of [Assumptions 5.1](#) (see [Lemma 6.1](#)). Thus replacing \mathcal{X} by a sequence of blow-ups at closed points in $D_i \cap D_j$ for $i \neq j$, we assume that \mathcal{X} satisfies [Assumptions 6.3](#) and assumptions (A1), (A2) and (A4) of [Assumptions 5.1](#).

Since $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumptions (B4), (B5) and (B8) of [Assumptions 6.3](#), $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumptions (A6), (A9), (A10) and (A11) of [Assumptions 5.1](#).

Suppose $P \in C_i \cap D_s$ for some i, s and $P \notin C_j$ for all $j \neq i$. Since ζ is unramified at P except at C_i , $\partial_{C_i}(\zeta)$ is zero over $\kappa(C_i)_P$ ([Corollary 4.4](#)). By the assumption (B5), we have $\partial_{C_i}(\zeta) = \bar{\alpha}$. Since $P \notin C_j$ for all $j \neq i$, C_i and D_s have normal crossings at P and $P \notin D_{s'}$ for all $s' \neq s$. Thus, by [Lemma 3.3](#), $\alpha \otimes F_P = 0$. Let $\mathcal{X}' \rightarrow \mathcal{X}$ be the blow-up at P and E the exceptional curve in \mathcal{X}' . Since $\alpha \otimes F_P = 0$ and $F_P \subset F_E$, α is unramified at E and hence $\text{ram}_{\mathcal{X}'}(\alpha) = \{D_1, \dots, D_n\}$. Since $\zeta \otimes F_P = 0$, $\text{ram}_{\mathcal{X}'}(\zeta) = \{C_1, \dots, C_r\}$. Note that $C_i \cap D_s = \emptyset$ in \mathcal{X}' . Hence $(\mathcal{X}', \zeta, \alpha)$ satisfies assumption (A8) of [Assumptions 5.1](#). Since $P \notin C_j$ for all $j \neq i$, $(\mathcal{X}', \zeta, \alpha)$ satisfies [Assumptions 6.3, 6.4, 5.1](#), except possibly (A3), (A5) and (A7), and [6.1](#). Thus, replacing \mathcal{X} by \mathcal{X}' we assume that $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#) and [5.1](#) except possibly (A3), (A5) and (A7).

Let $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_m, D_{m+1}, \dots, D_n\}$ with $\text{char}(\kappa(D_s)) = \ell$ for $1 \leq s \leq m$ and $\text{char}(\kappa(D_t)) \neq \ell$ for $m+1 \leq t \leq n$. Suppose $D_s \cap D_t \neq \emptyset$ for some $1 \leq s \leq m$ and $m+1 \leq t \leq n$. Let $P \in D_s \cap D_t$. Then $\text{char}(\kappa(P)) = \ell$ and hence $(a-1)/(\rho-1)^\ell \in A_P$ (assumption (B4)). In particular $[a]$ is unramified at P (see [Proposition 2.3](#)). Since α is ramified at D_t , $v_{D_t}(b)$ is coprime to ℓ and hence there exists i such that $v_{D_s}(b) + i v_{D_t}(b)$ is divisible by ℓ . Let $\mathcal{X}_1 \rightarrow \mathcal{X}$ be the blow-up at P and E_1 the exceptional curve in \mathcal{X}_1 .

We have $v_{E_1}(b) = v_{D_s}(b) + v_{D_t}(b)$. Let Q_1 be the point in $E_1 \cap D_t$ and $\mathcal{X}_2 \rightarrow \mathcal{X}_1$ be the blow-up at Q_1 . Let E_2 be the exceptional curve in \mathcal{X}_2 . We have $v_{E_2}(b) = v_{E_1}(b) + v_{D_t}(b) = v_{D_s}(b) + 2v_{D_t}(b)$. Continue this process i times and get $\mathcal{X}_i \rightarrow \mathcal{X}_{i-1}$ and E_i the exceptional curve in \mathcal{X}_i . Then $v_{E_i}(b) = v_{D_t}(b) + i v_D(b)$ is divisible by ℓ . Since $[a]$ is unramified at P , α is unramified at E_i . Since $\text{char}(\kappa(E_j)) = \ell$ for all j , $E_{i-1} \cap D_t = \emptyset$ in \mathcal{X}_i and E_i is not in $\text{ram}_{\mathcal{X}_i}(\alpha)$. Since $P \notin C_i \cap C_j$ for all $i \neq j$ (assumption (B4)), \mathcal{X}_i satisfies [Assumptions 6.3](#) (see [Lemma 6.4](#)). Thus, replacing \mathcal{X} by \mathcal{X}_i , we assume that $D_s \cap D_t = \emptyset$ for all $1 \leq s \leq m$ and $m+1 \leq t \leq n$ and \mathcal{X} satisfies [Assumptions 6.3](#). Thus \mathcal{X} satisfies all the assumptions of [Assumptions 5.1](#) except possibly (A5) and (A7) (see [Lemma 6.1](#)).

Suppose $C_i \cap D_t \neq \emptyset$ for some i and t . Since $(\mathcal{X}, \zeta, \alpha)$ satisfies (A8) and (A9) of [Assumptions 5.1](#), there exists $j \neq i$ such that $C_i \cap C_j \cap D_t \neq \emptyset$. Since $(\mathcal{X}, \zeta, \alpha)$ satisfies the assumption (B3) of [Assumptions 6.3](#), $\text{char}(\kappa(D_t)) \neq \ell$. Hence $C_i \cap D_t = \emptyset$ for all i and $1 \leq t \leq m$. In particular $(\mathcal{X}, \zeta, \alpha)$ satisfies (A7) of [Assumptions 5.1](#) and hence $(\mathcal{X}, \zeta, \alpha)$ satisfies all the assumptions of [Assumptions 5.1](#) except possibly (A5).

Let $P \in \mathcal{X}_{(0)}$. Suppose that P is a chilly point for α . Then $P \in D_s \cap D_t$ for some $D_s, D_t \in \text{ram}_{\mathcal{X}}(\alpha)$ with $D_s \neq D_t$ with $\text{char}(\kappa(P)) \neq \ell$. In particular $P \notin C_i \cap C_j$ for all $i \neq j$ (assumption (B8)). Since there is a sequence of blow-ups $\mathcal{Y} \rightarrow \mathcal{X}$ centered on chilly points of α on \mathcal{X} with no chilly loops on \mathcal{Y} ([Proposition 3.4](#)), by [Lemmas 6.1](#) and [6.2](#), replacing \mathcal{X} by \mathcal{Y} we assume that $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#) and [5.1](#).

Thus, by [Theorem 5.7](#), there exists $f \in F^*$ such that for every $x \in \mathcal{X}_{(1)}$, $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(x)$ centered at a closed point of the closure $\overline{\{x\}}$ of $\{x\}$. Since $\kappa(x)$ is a global field or a local field, every discrete valuation of $\kappa(x)$ is centered on a closed point of $\overline{\{x\}}$. Hence $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(x)$.

For place v of K , let K_v be the completion of K at v and $F_v = F \otimes_K K_v$.

Let v be a real place of K . Since a is a sum of two squares in F , a is a norm from the extension $F_v(\sqrt{-1})$. Let $\tilde{a} \in F_v(\sqrt{-1})$ with norm equal to a . Since $H^2(F_v(\sqrt{-1}), \mathbb{Z}/2(1)) = 0$ [[Serre 1997](#), page 80] and $\text{cor}_{F_v(\sqrt{-1})/F_v}[\tilde{a}, b] = [a, b] \otimes F_v$, $\alpha = [a, b] = 0 \in H^2(F_v, \mathbb{Z}/2(1))$. Since, by assumption $\zeta \otimes F_v = 0$,

$$\zeta - \alpha \cdot (f) = 0 \in H^3(F_v, \mathbb{Z}/2(2)).$$

Let $x \in \mathcal{X}_{(1)}$. Since $\zeta - \alpha \cdot (f) = 0 \in H^3(F_v, \mathbb{Z}/2(2))$ for all real places v of K , it follows that $\partial_x(\zeta - \alpha \cdot (f)) = 0 \in H^2(\kappa(x)_{v'}, \mathbb{Z}/2(1))$ for all real places v' of $\kappa(x)$. Since $\partial_x(\zeta - \alpha \cdot (f))$ is unramified at every discrete valuation of $\kappa(x)$, $\partial_x(\zeta - \alpha \cdot (f)) = 0$ [[Cassels and Fröhlich 1967](#), page 130]. Hence $\zeta - \alpha \cdot (f)$ is unramified on \mathcal{X} .

Let v be a finite place of K . Since $\zeta - \alpha \cdot (f)$ is unramified on \mathcal{X} ,

$$(\zeta - \alpha \cdot (f)) \otimes_F F_v = 0 \in H^3(F_v, \mathbb{Z}/\ell(2))$$

[[Kato 1986](#), Corollary page 145]. Hence $\zeta = \alpha \cdot (f)$ [[loc. cit.](#), Theorem 0.8(2)]. \square

7. Main theorem

In this section we prove our main result [Theorem 7.7](#). Let K be a global field or a local field and F the function field of a curve over K . Let ℓ be a prime not equal to $\text{char}(K)$. Suppose that F contains a primitive ℓ -th root of unity ρ . If K is a number field or a local field, let R be the ring of integers in K . If K is a global field of positive characteristic, let R be the field of constants of K .

To prove our main result [Theorem 7.7](#), we first show [Proposition 7.6](#) that given $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$ with $\zeta \otimes_F (F \otimes_K K_v) = 0$ for all real places v of K , there exist $\alpha = [a, b] \in H^2(F, \mathbb{Z}/\ell(1))$ and a regular proper model \mathcal{X} of F over R such that the triple $(\mathcal{X}, \zeta, \alpha)$ satisfies [Assumptions 6.3](#).

Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$ be such that $\zeta \otimes_F (F \otimes_K K_v) = 0$ for all real places v of K . Choose a regular proper model \mathcal{X} of F over R [[Saltman 1997](#), page 38] such that:

- $\text{ram}_{\mathcal{X}}(\zeta) \cup \text{supp}_{\mathcal{X}}(\ell) \subset \{C_1, \dots, C_{r_1}, \dots, C_r\}$, where the C_i are irreducible regular curves with normal crossings.
- For $i \neq j$, C_i and C_j intersect at most at one closed point.
- $C_i \cap C_j = \emptyset$ if $i, j \leq r_1$ or $i, j > r_1$.

For $x \in \mathcal{X}_{(1)}$, let $\beta_x = \partial_x(\zeta)$. Let $\mathcal{P}_0 \subset \cup C_i$ be a finite set of closed points of \mathcal{X} containing $C_i \cap C_j$ for $1 \leq i < j \leq r$, and at least one closed point from each C_i . Let A be the regular semilocal ring at the points of \mathcal{P}_0 . Let $Q \in C_i$ be a closed point. Since C_i is regular on \mathcal{X} , Q gives a discrete valuation v_Q^i on $\kappa(C_i)$.

Lemma 7.1. *There exists $a \in A$ such that:*

- $(a - 1)/(\rho - 1)^\ell \in A$ and $[a]$ is unramified on A .
- For $1 \leq i \leq r_1$ and $P \in C_i \cap \mathcal{P}_0$, $\partial_P(\beta_{x_i}) = [a(P)]$.
- For $r_1 + 1 \leq i \leq r$ and $P \in C_i \cap \mathcal{P}_0$, $\partial_P(\beta_{x_i}) = [a(P)]^{-1}$.
- If $P \in \mathcal{P}_0$ and $P \notin C_i \cap C_j$ for all $i \neq j$, then $[a(P)]$ is the trivial extension.
- If $\ell = 2$, then a is a sum of two squares in A .

Proof. Let $P \in \mathcal{P}_0$. Suppose $P \in C_i \cap C_j$ for some $i < j$. Then, by the choice of \mathcal{X} , the pair (i, j) is uniquely determined by P . Let $u_P \in \kappa(P)$ be such that $\partial_P(\partial_{x_i}(\zeta)) = [u_P]$. If $P \notin C_i \cap C_j$ for all $i \neq j$, let $u_P \in \kappa(P)$ the trivial extension.

Then, by [Lemma 2.5](#), there exists $a \in A$ such that for every $P \in \mathcal{P}_0$, the cyclic extension $[a]$ over F is unramified on A with the residue field $[a(P)]$ of $[a]$ at P is $[u_P]$. Further if $\ell = 2$, choose a to be a sum of two squares in A ([Lemma 2.5](#)). From the proof of [Lemma 2.5](#), we have $(a - 1)/(\rho - 1)^\ell \in A$.

Let $P \in \mathcal{P}_0$. Suppose that $P \in C_i$ for some i and $P \notin C_j$ for all $i \neq j$. Then $\partial_P(\partial_{x_i}(\zeta)) = 1$ ([Corollary 4.3](#)) and by the choice of a and u_P , we have $[a(P)] = [u_P] = 1$. Suppose that $P \in C_i \cap C_j$ for some $i \neq j$. Suppose $i < j$. Then by the choice of a and u_P we have $\partial_P(\partial_{x_i}(\zeta)) = [u_P] = [a(P)]$. Suppose $i > j$. Then by the choice of a and u_P we have $\partial_P(\partial_{x_j}(\zeta)) = [u_P] = [a(P)]$. Since $\partial_P(\partial_{x_i}(\zeta)) = \partial_P(\partial_{x_j}(\zeta))^{-1}$ ([Corollary 4.3](#)), we have $\partial_P(\partial_{x_i}(\zeta)) = [a(P)]^{-1}$. Thus a has the required properties. \square

Let $a \in A$ be as in [Lemma 7.1](#). Let L_1, \dots, L_d be the irreducible curves in \mathcal{X} which are in the ramification of $[a]$ or $v_{L_i}((a-1)/(\rho-1)^\ell) < 0$.

Lemma 7.2. *Then $L_i \cap \mathcal{P}_0 = \emptyset$ for all i . In particular $L_i \neq C_j$ for all i, j and $\text{char}(\kappa(L_i)) \neq \ell$.*

Proof. By the choice of a , $[a]$ is unramified on A and $(a-1)/(\rho-1)^\ell \in A$ ([Lemma 7.1](#)). Hence $\mathcal{P}_0 \cap L_i = \emptyset$ for all i . Since \mathcal{P}_0 contains at least one point from each C_j , $L_i \neq C_j$ for all i and j . Since $\text{supp}_{\mathcal{X}}(\ell) \subset \{C_1, \dots, C_r\}$, $\text{char}(\kappa(L_i)) \neq \ell$ for all i . \square

Let $\mathcal{P}_1 \subset \bigcup_j L_j$ be a finite set of closed points of \mathcal{X} consisting of $L_i \cap L_j$ for $i \neq j$, $L_i \cap C_j$, one point from each L_i . Since $L_i \cap \mathcal{P}_0 = \emptyset$ for all i ([Lemma 7.2](#)), $\mathcal{P}_0 \cap \mathcal{P}_1 = \emptyset$.

Let $\mathcal{P} = \mathcal{P}_0 \cup \mathcal{P}_1$ and B be the semilocal ring at \mathcal{P} on \mathcal{X} . For each i and j , let $\pi_i \in B$ be a prime defining C_i and $\delta_j \in B$ a prime defining L_j .

Lemma 7.3. *For each $P \in C_i \cap \mathcal{P}_1$, let n_i^P be a positive integer. Then for each i , $1 \leq i \leq r$, there exists $b_i \in B/(\pi_i) \subset \kappa(C_i)$ such that:*

- $\partial_{C_i}(\zeta) = [a(C_i), b_i]$.
- $v_P^i(b_i) = 1$ for all $P \in C_i \cap \mathcal{P}_0$, $1 \leq i \leq r_1$.
- $v_P^i(b_i) = \ell - 1$ for all $P \in C_i \cap \mathcal{P}_0$, $r_1 + 1 \leq i \leq r$.
- $v_P^i(b_i - 1) \geq n_i^P$ for all $P \in \mathcal{P}_1 \cap C_i$ for all i .

Proof. Let $1 \leq i \leq r$. Let $\beta_{x_i} = \partial_{x_i}(\zeta) \in H^2(\kappa(C_i), \mathbb{Z}/\ell(1))$ and $a_i = a(C_i)$.

Suppose $1 \leq i \leq r_1$. By [Lemma 7.1](#), $\partial_P(\beta_{x_i}) = [a_i(P)]$ for all $P \in C_i \cap \mathcal{P}_0$. If $P \notin \mathcal{P}_0$, then $\partial_P(\beta_{x_i}) = 0$ for all i ([Corollary 4.3](#)). By the assumption, $\beta_{x_i} \otimes \kappa(C_i)_v = 0$ for all real places v of $\kappa(C_i)$. Thus, by [Proposition 3.5](#), there exists $b_i \in \kappa(C_i)^*$ such that $\beta_{x_i} = [a_i, b_i]$, with $v_P^i(b_i) = 1$ for all $P \in C_i \cap \mathcal{P}_0$ and $v_P^i(b_i - 1) \geq n_i^P$ for all $P \in C_i \cap \mathcal{P}_1$. In particular b_i is regular at all $P \in C_i \cap \mathcal{P}$ and hence $b_i \in B/(\pi_i)$.

Suppose $r_1 + 1 \leq i \leq r$. Let $P \in C_i \cap \mathcal{P}_0$. Since $\partial_P(\beta_{x_i}) = [a(P)]^{-1}$ for all $P \in C_i \cap \mathcal{P}_0$ ([Lemma 7.1](#)), $\partial_P(\beta_{x_i}^{-1}) = [a(P)]$. Thus, as above, by [Proposition 3.5](#), there exists $c_i \in B/(\pi_i)$ such that $\beta_{x_i}^{-1} = [a_i, c_i]$, with $v_P^i(c_i) = 1$ for all $P \in C_i \cap \mathcal{P}_0$ and $v_P^i(c_i - 1) \geq n_i^P$ for all $P \in C_i \cap \mathcal{P}_1$. Let $b_i = c_i^{\ell-1} \in B/(\pi_i)$. Then $\beta_{x_i} = [a_i, b_i]$. Let $P \in C_i \cap \mathcal{P}_1$. Since $c_i \in B/(\pi_i)$ and $v_P^i(c_i - 1) \geq n_i^P$, it follows that $v_P^i(b_i - 1) \geq n_i^P$. Thus b_i has the required properties. \square

Let $\delta = \prod \delta_j \in B$. For $1 \leq i \leq r$, let $\bar{\delta}(i) \in B/(\pi_i)$ be the image of δ . Let d be an integer greater than $v_P^i(\bar{\delta}(i)) + 1$ for all i and $P \in C_i \cap \mathcal{P}$.

Lemma 7.4. *Let $b_i \in B/(\pi_i)$ be as in [Lemma 7.3](#) for $n_i^P = d$ for all $P \in C_i \cap \mathcal{P}$. Then there exists $b \in B$ such that:*

- $b = b_i$ modulo π_i for all i .
- $b = 1$ modulo δ_j for all j .
- b is a unit at all $P \in \mathcal{P}_1$.

Proof. For $1 \leq i \leq r$, let $I_i = (\pi_i) \subset B$ and $I_{r+1} = (\delta) \subset B$. Clearly the $\gcd(\pi_i, \pi_j) = 1$ and $\gcd(\pi_i, \delta) = 1$ for all $1 \leq i < j \leq r$. For $1 \leq i < j \leq r$, $I_{ij} = I_i + I_j$ is either maximal ideal or equal to B . For $1 \leq i \leq r$, we have $I_{i(r+1)} = (\pi_i, \delta)$. Since $L_s \cap \mathcal{P}_0 = \emptyset$ for all s , $(\delta_s, \pi_i, \pi_j) = A$ for all $1 \leq i < j \leq r$ and for all s . Thus the ideals I_{ij} , $1 \leq i < j \leq r+1$, are coprime. Let $b_{r+1} = 1 \in B/(I_{r+1})$.

Let $1 \leq i < j \leq r$. Suppose $(\pi_i, \pi_j) \neq B$. Then (π_i, π_j) is a maximal ideal of B corresponding to a point $P \in C_i \cap C_j$. Since $P \in \mathcal{P}_0$, by the choice of b_i and b_j (see [Lemma 7.4](#)), we have $v_P^i(b_i) = 1$, $v_P^j(b_j) = \ell - 1$ and hence $b_i = b_j = 0 \in B/(\pi_i, \pi_j) = B/I_{ij}$.

Suppose $I_{i(r+1)} \neq B$ for some $1 \leq i \leq r$. Then we claim that $b_i = 1 \in B/I_{i(r+1)}$. For each $P \in L_j \cap C_i$, let M_P be the maximal ideal of B at P . Since \mathcal{X} is regular and C_i is regular on \mathcal{X} , we have $M_P = (\pi_i, \pi_{i,P})$ for some $\pi_{i,P} \in M_P$ and the image of $\pi_{i,P}$ in $B/(\pi_i)$ is a parameter at the discrete valuation v_P^i . Since $d > v_P^i(\delta(i))$, we have $(\pi_i, \prod \pi_{i,P}^d) \subset (\pi_i, \delta) = I_{i(r+1)}$. Since $B/(\pi_i, \prod \pi_{i,P}^d) \simeq \prod_P B/(\pi_i, \pi_{i,P}^d)$ and $v_P^i(b_i - 1) \geq d$, we have $b_i = 1 \in B/(\pi_i, \prod \pi_{i,P}^d)$. Since $B/I_i + I_{r+1}$ is a quotient of $B/I_i + (\prod_P \pi_{i,P})^d$, it follows that $b_i = b_{r+1} = 1 \in B/I_i + I_{r+1} = B/I_{i(r+1)}$.

Thus, by [Lemma 2.7](#), there exists $b \in B$ such that $b = b_i \in B/(\pi_i)$ for all i and $b = 1 \in B/I_{r+1}$. Since $I_{r+1} = (\delta) \subset (\delta_j)$ and $b = 1 \in B/(\delta)$, we have $b = 1 \in B/(\delta_j)$ for all j . Let $P \in \mathcal{P}_1$. Then $P \in L_j$ for some j . Since $b = 1 \in B/(\delta_j)$, b is a unit at P . Thus b has all the required properties. \square

Lemma 7.5. *Let a be as in [Lemma 7.1](#) and b as in [Lemma 7.4](#) and $\alpha = [a, b]$. Then α is unramified at all C_i, L_j and at all $Q \in \mathcal{P}_1$. Further $\partial_{C_i}(\zeta)$ is the specialization of α at C_i for all $1 \leq i \leq r$.*

Proof. Since $[a]$ is unramified at C_i ([Lemma 7.1](#)) and b is a unit at C_i for all i ([Lemma 7.4](#)), α is unramified at C_i and the specialization of α at C_i is $[a(C_i), b_i] = \partial_{C_i}(\zeta)$ ([Lemmas 7.3 and 7.4](#)). Since $\text{char}(\kappa(L_j)) \neq \ell$ ([Lemma 7.2](#)) and $b = 1$ modulo δ_j ([Lemma 7.4](#)), b is an ℓ -th power in F_{L_j} and hence $\alpha \otimes F_{L_j} = 0$. In particular α is unramified at L_j .

Let $Q \in \mathcal{P}_1$. Then b is a unit at Q ([Lemma 7.4](#)). Let x be a dimension one point of $\text{Spec}(B_Q)$. Then b is a unit at x . If $[a]$ is unramified at x , then α is unramified at x . Suppose $[a]$ is ramified at x . Then, by the choice of the L_j , x is the generic point of L_j for some j and hence α is unramified at x . Thus α is unramified at Q (see [Lemma 3.1](#)). \square

Proposition 7.6. *The triple $(\mathcal{X}, \zeta, [a, b])$ satisfies [Assumptions 6.3](#).*

Proof. By the choice of \mathcal{X} , (B1) of [Assumptions 6.3](#) is satisfied. Let $\text{ram}_{\mathcal{X}}(\alpha) = \{D_1, \dots, D_n\}$. Since α is unramified at all C_i ([Lemma 7.5](#)), (B2) of [Assumptions 6.3](#) is satisfied. Since $\text{supp}_{\mathcal{X}}(\ell) \subset \{C_1, \dots, C_r\}$ and $D_i \neq C_j$ for all i and j , $\text{char}(\kappa(D_i)) \neq \ell$ for all i and hence (B3) of [Assumptions 6.3](#) is satisfied.

Let $P \in D_j$ some j with $\text{char}(\kappa(P)) = \ell$. Since $\text{supp}_{\mathcal{X}}(\ell) \subset \{C_1, \dots, C_r\}$, $P \in C_i$ for some i . Since α is unramified at all $Q \in \mathcal{P}_1$ ([Lemma 7.5](#)), $P \notin \mathcal{P}_1$. Since $C_i \cap L_s \subset \mathcal{P}_1$ for all s , $P \notin L_s$ for all s and hence $(a - 1)/(\rho - 1)^\ell \in A_P$. Thus (B4) of [Assumptions 6.3](#) is satisfied.

Since $\partial_{C_i}(\zeta)$ is the specialization of α at C_i ([Lemma 7.5](#)), (B5) of [Assumptions 6.3](#) is satisfied.

By the assumption on ζ , (B6) of [Assumptions 6.3](#) is satisfied. If $\ell = 2$, then, by the choice of a ([Lemma 7.1](#)), (B7) of [Assumptions 6.3](#) is satisfied.

Let $P \in C_i \cap C_j$ for some $i < j$. Then, by the choice of b_i and b_j (Lemma 7.3), we have $b_i = \bar{u}_j \bar{\pi}_j$ for some unit u_j at P and $b_j = \bar{u}_i \bar{\pi}_i^{\ell-1}$ for some unit u_i at P . Since $b = b_i$ modulo π_i and $b = b_j$ modulo π_j , we have $b = v_i \pi_i^{\ell-1} + v_j \pi_j$ for some units v_i, v_j at P . In particular b is a regular prime at P . Since $[a]$ is unramified at P (Lemma 7.1) and b being a prime at P , α is unramified at P except possibly at b . Thus there is at most one D_s with $P \in D_s$ and such a D_s is defined by $b = v_i \pi_i^{\ell-1} + v_j \pi_j$ for some units v_i, v_j at P . In particular (B8) of Assumptions 6.3 is satisfied. \square

Theorem 7.7. *Let K be a global field or a local field and F the function field of a curve over K . Let ℓ be a prime not equal to the characteristic of K . Suppose that K contains a primitive ℓ -th root of unity. Let $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$. Suppose that $\zeta \otimes_F (F \otimes_K K_v)$ is trivial for all real places v of K . Then there exist $a, b, f \in F^*$ such that $\zeta = [a, b] \cdot (f)$.*

Proof. By Proposition 7.6, there exist $a, b \in F^*$ and regular proper model \mathcal{X} of F such that the triple $(\mathcal{X}, \zeta, \alpha)$ satisfy the Assumptions 6.3. Thus, by Theorem 6.5, there exists $f \in F^*$ such that $\zeta = \alpha \cdot (f) = [a, b] \cdot (f)$. \square

Corollary 7.8. *Let K be a global field or a local field and F the function field of a curve over K . Let ℓ be a prime not equal to the characteristic of K . Suppose that K contains a primitive ℓ -th root of unity. Suppose that either $\ell \neq 2$ or K has no real places. Then for every element $\zeta \in H^3(F, \mathbb{Z}/\ell(2))$, there exist $a, b, c \in F^*$ such that $\zeta = [a, b] \cdot (c)$.*

8. Applications

In this section we give some applications of our main result to quadratic forms and Chow group of zero-cycles.

Let K be a field of characteristic not equal to 2. Let $W(K)$ denote the Witt group of quadratic forms over K and $I(K)$ the fundamental ideal of $W(K)$ consisting of classes of even dimensional forms [Scharlau 1985, Chapter 2]. For $n \geq 1$, let $I^n(K)$ denote the n -th power of $I(K)$. For $a_1, \dots, a_n \in F^*$, let $\langle\langle a_1, \dots, a_n \rangle\rangle$ denote the n -fold Pfister form $\langle 1, -a_1 \rangle \otimes \dots \otimes \langle 1, -a_n \rangle$ [loc. cit., Chapter 4].

Theorem 8.1. *Let k be a totally imaginary number field and F the function field of a curve over k . Then every element in $I^3(F)$ is represented by a 3-fold Pfister form. In particular if the class of a quadratic form q is in $I^3(F)$ and dimension of q is at least 9, then q is isotropic.*

Proof. Since every element in $H^3(F, \mathbb{Z}/2(3))$ is a symbol (Corollary 7.8) and $cd_2(F) \leq 3$, it follows from [Arason et al. 1986, Theorem 2] that every element in $I^3(F)$ is represented by a 3-fold Pfister form (see the proof of [Parimala and Suresh 1998, Theorem 4.1]). \square

Proposition 8.2. *Let F be a field of characteristic not equal to 2 with $cd_2(F) \leq 3$. Suppose that every element in $H^3(F, \mathbb{Z}/2(3))$ is a symbol. If q is a quadratic form over F of dimension at least 5 and $\lambda \in F^*$, then $q \otimes \langle 1, -\lambda \rangle$ is isotropic.*

Proof. Without loss of generality we assume that dimension of q is 5. By scaling we also assume that $q = \langle -a, -b, ab, c, d \rangle$ for some $a, b, c, d \in F^*$. Let $q' = \langle -a, -b, ab, c, d, -cd \rangle \otimes \langle 1, -\lambda \rangle$. Since

$\langle -a, -b, ab, c, d, -cd \rangle \in I^2(K)$ [Scharlau 1985, page 82], $q' \in I^3(F)$. Hence, by Theorem 8.1, q' is represented by 3-fold Pfister form. Since $q' \otimes F(\sqrt{\lambda}) = 0$, $q' = \langle 1, -\lambda \rangle \otimes \langle 1, \mu \rangle \otimes \langle 1, \mu' \rangle$ for some $\mu, \mu' \in F^*$ (see [Scharlau 1985, Theorem 5.2 on page 45, Corollary 1.5 on page 143 and Theorem 1.4 on page 144]). Since $H^4(F, \mathbb{Z}/2(4)) = 0$, $I^4(F) = 0$ [Arason et al. 1986, Corollary 2], we have $q' = -cd\langle 1, -\lambda \rangle \otimes \langle 1, \mu \rangle \otimes \langle 1, \mu' \rangle$.

Thus we have

$$\begin{aligned} \langle -a, -b, ab, c, d \rangle \otimes \langle 1, -\lambda \rangle &= -cd\langle 1, -\lambda \rangle \otimes \langle 1, \mu \rangle \otimes \langle 1, \mu' \rangle + cd\langle 1, -\lambda \rangle \\ &= -cd\langle 1 - \lambda \rangle \otimes \langle \mu, \mu', \mu\mu' \rangle. \end{aligned}$$

In particular $\langle -a, -b, ab, c, d \rangle \otimes \langle 1, -\lambda \rangle$ is isotropic [Scharlau 1985, page 34]. \square

Corollary 8.3. *Let K be a totally imaginary number field and F the function field a curve over K . Let q be a quadratic forms over F of dimension at least 5. Let $\lambda \in F^*$. Then the quadratic form $q \otimes \langle 1, -\lambda \rangle$ is isotropic.*

Proof. Since K is a totally imaginary number field and F is a function field of a curve over k , we have $H^4(F, \mathbb{Z}/2(4)) = 0$. Since every element in $H^3(F, \mathbb{Z}/2(3))$ is a symbol (Corollary 7.8), $q \otimes \langle 1, -\lambda \rangle$ is isotropic (Proposition 8.2). \square

The following was conjectured by Colliot-Thélène and Skorobogatov [1993].

Theorem 8.4. *Let k be a totally imaginary number field and C a smooth projective geometrically integral curve over K . Let $\eta : X \rightarrow C$ be an admissible quadric fibration. If $\dim(X) \geq 4$, then $\text{CH}_0(X)$ is a finitely generated abelian group.*

Proof. Let q be a quadratic form over $k(C)$ defining the generic fiber of $\eta : X \rightarrow C$. Let $N_q(k(C))$ be the subgroup of $k(C)^*$ generated by fg with $f, g \in k(C)^*$ represented by q . Let $\lambda \in k(C)^*$. Since $\dim(X) \geq 4$, the dimension of q is at least 5. Thus, by Corollary 8.3, $q \otimes \langle 1, -\lambda \rangle$ is isotropic. Hence λ is a product of two values of q . In particular $\lambda \in N_q(k(C))$ and $k(C)^* = N_q(k(C))$.

Let $\text{CH}_0(X/C)$ be the kernel of the induced homomorphism $\text{CH}_0(X) \rightarrow \text{CH}_0(C)$. Then, by [Colliot-Thélène and Skorobogatov 1993], $\text{CH}_0(X/C)$ is a subquotient of the group $k(C)^*/N_q(k(C))$ and hence $\text{CH}_0(X/C) = 0$. In particular $\text{CH}_0(X)$ is isomorphic to a subgroup of $\text{CH}_0(C)$. Since, by a theorem of Mordell–Weil, $\text{CH}_0(C)$ is finitely generated, $\text{CH}_0(X)$ is finitely generated. \square

Acknowledgments

I would like to thank the referee for the excellent review and comments on the paper which vastly improved the presentation and mathematics. The author is partially supported by National Science Foundation grants DMS-1463882 and DMS-1801951.

References

[Albert 1939] A. A. Albert, *Structure of algebras*, American Mathematical Society Colloquium Publications **24**, American Mathematical Society, New York, 1939. [MR](#) [Zbl](#) [JFM](#)

[Arason et al. 1986] J. K. Arason, R. Elman, and B. Jacob, “Fields of cohomological 2-dimension three”, *Math. Ann.* **274**:4 (1986), 649–657. [MR](#) [Zbl](#)

[Auslander and Goldman 1960] M. Auslander and O. Goldman, “The Brauer group of a commutative ring”, *Trans. Amer. Math. Soc.* **97** (1960), 367–409. [MR](#) [Zbl](#)

[Brussel and Tengan 2014] E. Brussel and E. Tengan, “Tame division algebras of prime period over function fields of p -adic curves”, *Israel J. Math.* **201**:1 (2014), 361–371. [MR](#) [Zbl](#)

[Cassels and Fröhlich 1967] J. W. S. Cassels and A. Fröhlich (editors), *Algebraic number theory*, Academic Press, London, 1967. [MR](#) [Zbl](#)

[Colliot-Thélène 1999] J.-L. Colliot-Thélène, “Cohomologie galoisienne des corps valués discrets henséliens, d’après K. Kato et S. Bloch”, pp. 120–163 in *Algebraic K -theory and its applications* (Trieste, 1997), edited by H. Bass et al., World Sci., River Edge, NJ, 1999. [MR](#) [Zbl](#)

[Colliot-Thélène and Skorobogatov 1993] J.-L. Colliot-Thélène and A. N. Skorobogatov, “Groupe de Chow des zéro-cycles sur les fibrés en quadriques”, *K-Theory* **7**:5 (1993), 477–500. [MR](#) [Zbl](#)

[Epp 1973] H. P. Epp, “Eliminating wild ramification”, *Invent. Math.* **19** (1973), 235–249. [MR](#) [Zbl](#)

[Gros 1987] M. Gros, “0-cycles de degré 0 sur les surfaces fibrées en coniques”, *J. Reine Angew. Math.* **373** (1987), 166–184. [MR](#) [Zbl](#)

[Heath-Brown 2010] D. R. Heath-Brown, “Zeros of systems of p -adic quadratic forms”, *Compos. Math.* **146**:2 (2010), 271–287. [MR](#) [Zbl](#)

[Kato 1980] K. Kato, “A generalization of local class field theory by using K -groups, II”, *J. Fac. Sci. Univ. Tokyo Sect. IA Math.* **27**:3 (1980), 603–683. [MR](#) [Zbl](#)

[Kato 1986] K. Kato, “A Hasse principle for two-dimensional global fields”, *J. Reine Angew. Math.* **366** (1986), 142–183. [MR](#) [Zbl](#)

[Leep 2013] D. B. Leep, “The u -invariant of p -adic function fields”, *J. Reine Angew. Math.* **679** (2013), 65–73. [MR](#) [Zbl](#)

[Lieblich et al. 2014] M. Lieblich, R. Parimala, and V. Suresh, “Colliot-Thelene’s conjecture and finiteness of u -invariants”, *Math. Ann.* **360**:1-2 (2014), 1–22. [MR](#) [Zbl](#)

[Milne 1980] J. S. Milne, *Étale cohomology*, Princeton Mathematical Series **33**, Princeton University Press, 1980. [MR](#) [Zbl](#)

[Parimala and Suresh 1995] R. Parimala and V. Suresh, “Zero-cycles on quadric fibrations: finiteness theorems and the cycle map”, *Invent. Math.* **122**:1 (1995), 83–117. [MR](#) [Zbl](#)

[Parimala and Suresh 1998] R. Parimala and V. Suresh, “Isotropy of quadratic forms over function fields of p -adic curves”, *Inst. Hautes Études Sci. Publ. Math.* **88** (1998), 129–150. [MR](#) [Zbl](#)

[Parimala and Suresh 2010] R. Parimala and V. Suresh, “The u -invariant of the function fields of p -adic curves”, *Ann. of Math.* (2) **172**:2 (2010), 1391–1405. [MR](#) [Zbl](#)

[Parimala and Suresh 2014] R. Parimala and V. Suresh, “Period-index and u -invariant questions for function fields over complete discretely valued fields”, *Invent. Math.* **197**:1 (2014), 215–235. [MR](#) [Zbl](#)

[Parimala and Suresh 2016] R. Parimala and V. Suresh, “Degree 3 cohomology of function fields of surfaces”, *Int. Math. Res. Not.* **2016**:14 (2016), 4341–4374. [MR](#) [Zbl](#)

[Parimala et al. 2018] R. Parimala, R. Preeti, and V. Suresh, “Local-global principle for reduced norms over function fields of p -adic curves”, *Compos. Math.* **154**:2 (2018), 410–458. [MR](#) [Zbl](#)

[Reddy and Suresh 2013] B. S. Reddy and V. Suresh, “Admissibility of groups over function fields of p -adic curves”, *Adv. Math.* **237** (2013), 316–330. [MR](#) [Zbl](#)

[Saito 1987] S. Saito, “Class field theory for two-dimensional local rings”, pp. 343–373 in *Galois representations and arithmetic algebraic geometry* (Kyoto, 1985/Tokyo, 1986), edited by Y. Ihara, Adv. Stud. Pure Math. **12**, North-Holland, Amsterdam, 1987. [MR](#) [Zbl](#)

[Saltman 1997] D. J. Saltman, “Division algebras over p -adic curves”, *J. Ramanujan Math. Soc.* **12**:1 (1997), 25–47. [MR](#) [Zbl](#)

[Saltman 2007] D. J. Saltman, “Cyclic algebras over p -adic curves”, *J. Algebra* **314**:2 (2007), 817–843. [MR](#) [Zbl](#)

[Saltman 2008] D. J. Saltman, “Division algebras over surfaces”, *J. Algebra* **320**:4 (2008), 1543–1585. [MR](#) [Zbl](#)

[Scharlau 1985] W. Scharlau, *Quadratic and Hermitian forms*, Grundlehren der Mathematischen Wissenschaften **270**, Springer, 1985. [MR](#) [Zbl](#)

[Serre 1997] J.-P. Serre, *Galois cohomology*, Springer, 1997. [MR](#) [Zbl](#)

[Suresh 2004] V. Suresh, “Galois cohomology in degree 3 of function fields of curves over number fields”, *J. Number Theory* **107**:1 (2004), 80–94. [MR](#) [Zbl](#)

[Suresh 2010] V. Suresh, “Bounding the symbol length in the Galois cohomology of function fields of p -adic curves”, *Comment. Math. Helv.* **85**:2 (2010), 337–346. [MR](#) [Zbl](#)

[Voevodsky 2003] V. Voevodsky, “Motivic cohomology with $\mathbf{Z}/2$ -coefficients”, *Publ. Math. Inst. Hautes Études Sci.* **98** (2003), 59–104. [MR](#) [Zbl](#)

Communicated by Jean-Louis Colliot-Thélène

Received 2018-12-08 Revised 2019-10-06 Accepted 2019-11-22

suresh.venapally@emory.edu

Department of Mathematics, Emory University, Atlanta, GA, United States

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology
Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California
Berkeley, USA

BOARD OF EDITORS

Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Richard E. Borcherds	University of California, Berkeley, USA	Raman Parimala	Emory University, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Jonathan Pila	University of Oxford, UK
J.-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Irena Peeva	Cornell University, USA
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Sergey Fomin	University of Michigan, USA	Christopher Skinner	Princeton University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Wee Teck Gan	National University of Singapore	J. Toby Stafford	University of Michigan, USA
Andrew Granville	Université de Montréal, Canada	Shunsuke Takagi	University of Tokyo, Japan
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Michel van den Bergh	Hasselt University, Belgium
Roger Heath-Brown	Oxford University, UK	Akshay Venkatesh	Institute for Advanced Study, USA
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Philippe Michel	École Polytechnique Fédérale de Lausanne	Melanie Matchett Wood	University of California, Berkeley, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2020 is US \$415/year for the electronic version, and \$620/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 14 No. 3 2020

The algebraic de Rham realization of the elliptic polylogarithm via the Poincaré bundle	545
JOHANNES SPRANG	
<i>a</i> -numbers of curves in Artin–Schreier covers	587
JEREMY BOOHER and BRYDEN CAIS	
On the locus of 2-dimensional crystalline representations with a given reduction modulo p	643
SANDRA ROZENSTAJN	
Third Galois cohomology group of function fields of curves over number fields	701
VENAPALLY SURESH	
On upper bounds of Manin type	731
SHO TANIMOTO	
Tubular approaches to Baker’s method for curves and varieties	763
SAMUEL LE FOURN	
Fano 4-folds with rational fibrations	787
CINZIA CASAGRANDE	