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semistable p-adic Galois representations

Urs Hartl and Eugen Hellmann

Let K be a finite field extension of Q,, and let ¥k be its absolute Galois group. We construct the universal
family of filtered (¢, N)-modules, or (more generally) the universal family of (¢, N)-modules with a
Hodge—Pink lattice, and study its geometric properties. Building on this, we construct the universal family
of semistable ¢k -representations in (,-algebras. All these universal families are parametrized by moduli
spaces which are Artin stacks in schemes or in adic spaces locally of finite type over Q,, in the sense of
Huber. This has conjectural applications to the p-adic local Langlands program.
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1. Introduction

Let K be a finite field extension of Q,. The emerging p-adic local Langlands program wants to relate
on the one hand certain continuous representations of the absolute Galois group ¥, = Gal(K /K) of
K on n-dimensional L-vector spaces for another p-adic field L, and on the other hand topologically
irreducible admissible representations of GL, (K) on finite-dimensional L-Banach spaces in the sense
of [Schneider and Teitelbaum 2006]. One fundamental difference to the case where L is an £-adic field
with £ # p is that the £-adic local Langlands correspondence is a bijection of merely discrete sets. In
the p-adic case the representations vary in families. So one may even speculate about a continuous or
analytic correspondence. At present not even a conjectural formulation of the p-adic local Langlands
correspondence purely in local terms is known. One of the main tools in the p-adic Langlands program is
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to consider families of representations that admit a dense set of points, where the representations “come
from a global set-up”, as in [Caraiani et al. 2016] for example. Hence a good understanding of these
arithmetic families of p-adic Galois representations of ¥k seems to be crucial. This understanding is our
aim in the present article: we develop notions of p-adic families of p-adic Hodge structures (such as
filtered (¢, N)-modules) and p-adic Galois representations and study the relation between these two.

The study of such families was begun in [Kisin 2006; 2008; Pappas and Rapoport 2009] and in
[Hellmann 2013], where a universal family of filtered ¢p-modules was constructed and, building on this, a
universal family of crystalline representations with Hodge—Tate weights in {0, 1}. The approach is based
on Kisin’s integral p-adic Hodge theory cf. [Kisin 2006].

In the present article we generalize these results in two directions. First we consider more general
families of p-adic Hodge-structure, namely families of (¢, N)-modules together with a so called Hodge—
Pink lattice. The inspiration to work with Hodge—Pink lattices instead of filtrations is taken from the
analogous theory over function fields; see [Pink 1997; Genestier and Lafforgue 2011; Hartl 2011]. It
was already applied to Kisin’s integral p-adic Hodge theory by Genestier and Lafforgue [2012] in the
absolute case for ¢-modules over Q.

Second we generalize [Hellmann 2013] to the case of semistable representations. In doing so we
correct some mistakes made in [loc. cit.]. The generalization to families with more general Hodge—Tate
weights than those in [loc. cit.] (where the weights are assumed to be in {0, 1}) gives another good reason
to work with families of Hodge—Pink lattices: Kisin’s theory does not describe ¥ -stable Z ,-lattices
in a crystalline (or semistable) ¥k -representation but all ¥x_ -stable Z ,-lattices, where K is a certain
Kummer extension of K appearing in [Kisin 2006]. The (¢, N)-modules with a Hodge—Pink lattice
correspond to certain ¥k_ representations and we describe their moduli space (or stack). This stack
turns out to be a vector bundle over a space of filtered (¢, N)-modules. The original space of filtered
(¢, N)-modules (corresponding to ¥k rather than ¥x_ -representations) can be recovered as a section
defined by a certain transversality condition in this vector bundle. Moreover, we consider (following
[Pappas and Rapoport 2009]) a stack of integral p-adic Hodge-structures and a period morphism to the
moduli stack of (¢, N)-modules with a Hodge—Pink lattice and describe its image. Once again, this only
works using the more general framework of Hodge—Pink lattices.

The introduction of Hodge—Pink lattices rather than filtrations shows new and interesting phenomena:
similarly to the case of filtrations one can define weights of a Hodge—Pink lattice. However, these weights
can jump within a family! Whereas for families of ¥k -representations the Hodge—Tate weights should
vary continuously. On the Galois side there is an explanation of this behavior as follows: there is no
notion of Hodge—Tate weights for representations of ¢x_, but only for representations of ¥ .

We can define a notion of weak admissibility for (¢, N)-modules with Hodge—Pink lattice and show that
being weakly admissible is an open condition in the set-up of adic spaces generalizing the corresponding
result for filtered ¢-modules in [Hellmann 2013]. Following the method of [Kisin 2006; Hellmann
2013] we further cut out an open subspace over which an integral structure for the (¢, N)-modules with
Hodge—Pink lattice exists and an open subspace over which a family of %x_ = Gal(K / K «)-representation
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exists. If we restrict ourselves to the subspace of filtered (¢, N)-modules one can promote this family of
9k . -representations to the universal family of semistable ¥k -representations.

We describe our results in more detail. Let K be a finite extension of @, with absolute Galois group
¢k and maximal unramified subextension K. Let Frob,, be the p-Frobenius on K. We consider families
of (¢, N)-modules over QQ,-schemes X, that is finite locally free Ox ®q, Ko-modules D together with a
¢ := id ® Frob,-linear automorphism & and a linear monodromy operator N : D — D satisfying the
usual relation N® = p®N. Choosing locally on X a basis of D and considering ® € GL;(Ox ®q, Ko)
and N € Maty,;(Ox ®aq, Ky) as matrices, the condition N® = p®N cuts out a closed subscheme
Pxk,.a C Resg, /Q, GL, Xq, Resk, /Q, Mat, 4. We can describe the geometry of this scheme as follows.

Theorem 3.2. The scheme Py, 4 is equidimensional of dimension [Ky : Q] d> It is reduced, Cohen—
Macaulay and generically smooth over Q. Its irreducible components are indexed by the possible Jordan
types of the (necessarily nilpotent) monodromy operator N.

Further we consider families of (¢, N)-modules D with a filtration 7* on D ®k, K and more generally
families of (¢, N)-modules with a Hodge—Pink lattice q; see Definition 2.5 for the precise definitions.
Given a cocharacter u of the algebraic group Resg @, GL4 x (or more precisely a cocharacter of the
Weil restriction of the diagonal torus which is dominant with respect to the Weil restriction of the upper
triangular matrices) we define the notions of a filtration F* and a Hodge—Pink lattice with constant Hodge
polygon equal to ., and the notion of boundedness by p for a Hodge—Pink lattice q. Associated with w is
areflex field E,, which is a finite extension of Q,,.

Theorem 3.6. (a) The stack 7, y <, parametrizing rank d families of (¢, N)-modules with Hodge—
Pink lattice bounded by  on the category of E,-schemes is an Artin stack. It is equidimensional
and generically smooth. Its dimension can be explicitly described in terms of the cocharacter u and
its irreducible components are indexed by the possible Jordan types of the (nilpotent) monodromy

operator.

(b) The stack 7, n ., parametrizing rank d families of (¢, N)-modules with Hodge—Pink lattice with
constant Hodge polygon equal to i, is an open and dense substack of 7, . <,.. Further it is reduced
and Cohen—Macaulay. It admits a canonical map to the stack P, n . of filtered (¢, N)-modules with
filtration of type . This map is representable by a vector bundle.

If we restrict ourselves to the case of vanishing monodromy, i.e., the case N = 0, we cut out a single
irreducible component J7, <, C J, y <, and similarly for the other stacks in the theorem. Following
[Hellmann 2013] we consider the above stacks also as stacks on the category of adic spaces locally of
finite type over Q,, i.e., we consider the adification L%’j;‘}v, <> etc. Passing from @,-schemes to adic
spaces allows us to generalize Kisin’s comparison between filtered (¢, N)-modules and vector bundles on
the open unit disc (together with certain additional structures). To do so we need to fix a uniformizer

of K as well as its minimal polynomial E(u) over Kg.
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Theorem 4.6. For every adic space X locally of finite type over Q,, there is a natural equivalence of
categories between the category of (¢, N)-modules with Hodge—Pink lattice over X and the category
of (¢, Nv)-modules over X, i.e., the category of vector bundles M on the product of X with the open
unit disc U over K together with a semilinear map ® rq : M — M that is an isomorphism away from
X x {E(u) =0} C X x U and a differential operator Né/‘ satisfying

Né\AOCDMogz):p#-CDMO(poNéVl.

0)
Theorem 4.9. The differential operator Né/‘ defines a canonical meromorphic connection on the vector

bundle M. The closed substack j‘/j[v’ "

: ad ad
the zero section of the vector bundle %,N,u — gw,N,u‘

C jfjpa‘ﬁv .. Where this connection is holomorphic coincides with

It should be mentioned that the results of Kisin [2006] have a parallel story, earlier developed by Berger
[2002], using the cyclotomic extension K (¢,, n > 1) for a compatible system (g,) of p"-th root of unity,
instead of the Kummer extension K. The above results are very much inspired by [loc. cit.].

Similarly to the case of filtered ¢-modules in [Hellmann 2013] there is a notion of weak admissibility for
families of (¢, N)-modules with Hodge—Pink lattice over an adic space. We show that weak admissibility
is an open condition.

Theorem 5.6. Let  be a cocharacter as above. Then the groupoid
X+ {(D, D, N, q) €y n<u(X) | D®k(x) is weakly admissible for all x € X}

. d
is an open substack ,'\"2 , of %a‘}v <

Following the construction in [Hellmann 2013] we construct an open substack (%fpa’(}\’,if;t e %a‘}vwﬁa B
where an integral model for the (¢, Nv)-module over the open unit disc exists. Here integral means with
respect to the ring of integers W in K. Dealing with Hodge—Pink lattices instead of filtrations makes it
possible to generalize the period morphism of [Pappas and Rapoport 2009, §5] beyond the miniscule case.
That is, we consider a stack Eﬁ u.N.k in the category of formal schemes over Spf O, whose R-valued
points parameterize tuples (9, ®, N), where 90 is a finite locally free (R ®z, W)[[u]l module, @ is a
semilinear morphism ® : 9 — 91 which is an isomorphism away from E (1) = 0, whose behavior at
E(u) is controlled in terms of x, and N is an endomorphism of 2t/udN satisfying N® = pDPN; see after
Remark 6.8 for the precise definition.

Given a p-adic formal scheme X over Spf Of, we construct a period morphism

M(X) : Capn k (X) = 2%, (X)

and the substack %’jpa‘j\’,i‘i . Will serve as the image of this morphism in the following sense:

Corollary 6.10. Let X be an adic space locally of finite type over the reflex field E, of n and let
f:X— %?oa,(}\’,fu be a morphism defined by (D, ®, N, q). Then f factors over %ﬁ%\}l’nﬁtu ifandAonly if there
exists an fpqc-covering (U; — X)ic and formal models U; of U; together with (MM;, ®;) € C<,. v,k (U;)

such that TTU;) (M, &) = (D, @, N, 9|y,
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Finally we go back to Galois representations. We prove that there is a canonical open subspace
%ﬁ?ﬁ’ﬁl’fdm of the reduced space underlying %’f}vm; ,. Which carries a family of % _ -representations. This
family is universal in a sense made precise in the body of the article. Roughly this means that a morphism
f:X— %’ﬁ(}\’,‘g . defined by some (21, @, N) over a formal model X' of X factors over %a(;vai"; if and
only there exists a family of ¥k_ -representations £ on X such that the ¢-module of &, in the sense of
Fontaine, is (up to inverting p) given by the p-adic completion of (9%, ®)[1/u]. For a finite extension L

of E,, Kisin’s theory implies that we have an equality

Ao (D)= AN (L) = A%, (L)
of L-valued points.

If we want to promote our family of ¥k_ -representations to a family of ¥k -representations, we have to
restrict ourselves to filtrations rather than Hodge—Pink lattices. The reason for that is that the meromorphic
connection V in Theorem 4.9 above must be holomorphic in this case. In the framework of Berger’s work
[2002] with the cyclotomic tower, this is in some sense even more apparent: the connection V comes

from the derivation of the I"-action.

ad,adm ad
@%N,u C ‘@w,N,u
semistable Gy -representations such that Dg(E) = (D, ®, N, F*) is the restriction of the universal family

of filtered (¢, N)-modules on @;‘}N’ 10 @;%?iin .

This family is universal in the following sense: Let X be an adic space locally of finite type over the

Theorem 8.15. There is an open substack over which there exists a family £ of

reflex field E,, of u, and let £ be a family of semistable 9k -representations on X with constant Hodge
polygon equal to . Then there is a unique morphism f : X — @;fi}\z,‘iin such that &' = f*& as families of
Yx -representations.

The corresponding result for crystalline ¥k -representations with constant Hodge polygon equal to u,
whose moduli space is @;filfdm, is formulated and proved in Corollary 8.16. We finally briefly discuss how
these results relate to Kisin’s construction of potentially semistable deformation rings [Kisin 2008]. There
is a precise relation between our universal family and Kisin’s construction discussed in Proposition 8.17.
It should be mentioned however, that the spirit of our approach differs from Kisin’s: we study families
of p-adic Hodge-structures (i.e., semilinear algebra data) and then cut out a subspace defining a Galois
representation. Kisin starts with families of Galois representations (provided by deformation rings) and
then cuts out a crystalline locus. Moreover, his definition of a crystalline family differs from ours: Kisin
defines a family to be semistable if its base change to all finite-dimensional Q ,-algebras is semistable. In
contrast we aim at giving a definition that is more in the spirit of Fontaine’s definition using period rings.
In fact, as we needed to correct some mistakes from the last section of [Hellmann 2013], we also changed
the definition of crystalline representations from [loc. cit.]: it seems to be a bit messy to deal with the
filtration on a sheafified version of B, hence we rather use the ¢-modules on the open unit disc as our
p-adic Hodge structures and define the notion of a semistable representation using the comparison of a
vector bundle on the open unit disc and a Galois representation after tensoring with (a relative version
of) B

;is; see Definition 8.2.
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Notations. Let K be a finite field extension of the p-adic numbers Q,, and fix an algebraic closure K
of K. We write C,, for the p-adic completion of K and let ¥x = Gal(K /K) be the absolute Galois group
of K. Let K be the Galois closure of K inside K. Let Ky be the maximal unramified subfield of K
and W its ring of integers. Set f :=[K( : Q,], and let Frob, be the Frobenius automorphism of K
which induces the p-power map on the residue field of Ky. We fix once and for all a uniformizer = of K
and its minimal polynomial E(u) = mipo, () € W[u] over Ko. It is an Eisenstein polynomial, and
K = Ko[u]/(E(u)). We choose a compatible system m,, of p”-th roots of 7 in K and write K, for the
field obtained from K by adjoining all 7,,.

2. Families of (¢, N)-modules with Hodge-Pink lattice

Let R be a Q,-algebra and consider the endomorphism ¢ := idg ® Frob, of R ®a, Ko. Foran R®q, Ko-
module M we set oM =M ® R®0,Ko.w R ®a, Ko. Similar notation is applied to morphisms between
R ®q, Ko-modules. We let 9™ : M — ¢*M be the ¢-semilinear map with ¢*(m) =m ® 1.

We introduce the rings

Bj :=lim(R ®a, Ko[u))/(E)') and B ﬂ*[ﬁ]'

In a certain sense Bap and Bg, are the analogues of Fontaine’s rings B:{R and Bgr in Kisin’s theory [2006]

i

of p-adic Galois representation. By Cohen’s structure theorem [Serre 1979, Theorem 11.4.2] the ring
Bap = 1(31 Ko[u]/(E(u)i) is isomorphic to K[[¢]] under a map sending ¢ to E(u)/E(0) (and by Hensel’s
lemma the lift of the residue field K to a subring of Bap is unique). The rings BJIQ and By are relative
versions over R, and are isomorphic to (R ®q, K)[[]l and (R ®q, K)[#]I[1/7], respectively. We extend ¢
to R ®q, Kolu] by requiring that ¢ (u) = u” and we define ¢" ([EBJIQ) = lim (R ®q, Kolul)/(¢"(E(u))").
We may also identify ¢" ([B%J,g) with -

lim(R ®q, K (x)[u]) /(1 = (/7)) = (R ®a, K (T))[1 = (/7]

under the assignment E(u)/E(0) — 1 — (u/m,); compare [Kisin 2006, (1.1.1)]. We extend these rings
to sheaves of rings ¢" (B;) = (p"([EBgX) on Q,-schemes X or adic spaces X € Adgp. Here Adgp denotes
the category of adic spaces locally of finite type, see [Huber 1994] for example.

Remark 2.1. Note that ¢” (B;) is not a subring of BJIQ. If X = Spa(R, R°) is an affinoid adic space of
finite type over Q,, one should think of (p"([EB;) as the completion of the structure sheaf on X x U along
the section defined by ¢" (E (1)) € U. Here U denotes the open unit disc over K.

Definition 2.2. (a) A g-module (D, ®) over R consists of a locally free R ®q, Ko-module D of finite
rank, and an R ®q, Ko-linear isomorphism ® : *D => D. A morphism a : (D, ®) — (D, ®) of
@-modules is an R ®q, Ko-homomorphism « : D — D with @ o ® = ® o p* .

(b) A (¢, N)-module (D, ®, N) over R consists of a ¢-module (D, ®) over R and an R ®aq, Ko-linear
endomorphism N : D — D satisfying No® = p-®o¢*N. A morphisma : (D, ®, N) - (D, ®, N)
of (¢, N)-modules is a morphism of ¢-modules with x o N = Noa.
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The rank of D over R ®q, Ko is called the rank of (D, ®) or (D, ®, N).
Every ¢-module over R can be viewed as a (¢, N)-module with N = 0.
Lemma 2.3. (a) Every gp-module (D, ®) over R is Zariski locally on Spec R free over R ®q, Ko.
(b) The endomorphism N of a (¢, N)-module over R is automatically nilpotent.

Proof. (a) Let m C R be a maximal ideal. Then R/m ®q, Ko is a direct product of fields which are
transitively permuted by Gal(K(/Q,). The existence of the isomorphism & implies that D ® g R/m is
free over R/m ®q, Ko. Now the assertion follows by Nakayama’s lemma.

(b) By (a) we may locally on R write N as a matrix with entries in R ®q, Ko. Set d :=1k D. If the
entries of the d-th power N lie in Rad(0) ®a, Ko, where Rad(0) = [, g prime P 18 the nil-radical, then
N is nilpotent. Thus we may check the assertion in L = Frac(R/p)?# for all primes p C R. We replace
R by L. Then D =[] Vy, splits up into a direct product of d-dimensional L-vector spaces indexed by the
embeddings ¥ : Ko < L. For every fixed embedding v the f-th power ®/ restricts to an endomorphism
®y, of Vy satisfying NPy, = p! ®y N. If V(A, @y ) denotes the generalized eigenspace for some A € L™,
then N maps V (A, ®y) to V( pf A, @y ) and hence N is nilpotent, as there are only finitely many nonzero
eigenspaces. This implies that N¢ = 0. ]

Remark 2.4. If R is even a K-algebra, we can decompose R ®q, Ko =[[;c7,r7 R where the i-th factor
is given by the map R®q, Ko > R, a®b+>a Frob;’ (b) fora € R, b € Ky. For a (¢, N)-module over
R we obtain corresponding decompositions D = [[; D; and ¢*D = [[,(¢*D); with (¢p*D); = D;_;, and
therefore also ® = (®; : D;_; = D;); and N = (N; : D; — D;); with p ®; o N;_; = N; o ®;, because
(p*N); = N;_;. If we set

U :=®;0---0P; =(Pog*Po---0p ' V*D); : Dy = (¢"*D); = Dj,
then p' W; 0 Ng = N; o ; for all i, and W= (®/)o. There is an isomorphism of (¢, N)-modules over R

(idpy, 1. Wm0 ([T Po (@0 idpye .. idpy). (N0 ) = (T D (@i (Vo). 2-)

Thus (D, ®, N) is uniquely determined by (Do, (®)g, No) satisfying pf(CIJf)O o Ny = Ny o (®7),.
Further note that under this isomorphism ®/ on (D, ®, N) corresponds to ((be )0y - .oy (®F )0) on the
left-hand side.

Definition 2.5. (a) A K-filtered (¢, N)-module (D, ®, N, F*) over R consists of a (¢, N)-module
(D, @, N) over R together with a decreasing separated and exhaustive Z-filtration 7* on Dg := D ®k, K
by R®q, K-submodules such that grif Dy := F! Dk /F' ! Dy is locally free as an R-module for all i. A
morphisma : (D, ®, N, F*) — (D, ®, N, F") is a morphism of (¢, N)-modules with (¢ ® id)(F' Dg) C
F'Dk.

(b) A (¢, N)-module with Hodge—Pink lattice (D, ®, N, q) over R consists of a (¢, N)-module (D, ®, N)
over R together with a B;—lattice q C D®prgk,Br. This means that q is a finitely generated [EBJlg—submodule,
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which is a direct summand as R-module satisfying Bg - ¢ = D Qrgx, Br. We call q the Hodge—Pink
lattice of (D, ®, N, q). A morphism o : (D, ®, N, q) — (5, 513, IV, q) is a morphism of (¢, N)-modules
with (@ ® id)(q) C g.

Remark 2.6. Note that the graded pieces grif Dk in (a) are R ®q, K-modules that are locally on
Spec(R ®q,, K) free, but not necessarily of the same rank. Hence they are not locally on Spec R free as
R ®q, K-modules. However, they are locally on Spec R free as R-modules.

For every (¢, N)-module with Hodge—Pink lattice (D, ®, N, q) over R we also consider the tautological
B};—lattice p:= D Qrek, B;ﬁ.

Lemma 2.7. Let ¢ C D Qrgx, Br be a [E’B'Ig-submodule. Then q is a B}f—lattice if and only if E(u)"p C
q C E(u)™™yp for all n, m > 0 and for any (some) such n, m the quotients E(u)™"p/q and q/E(u)"p are
finite locally free R-modules.

If this is the case then étale locally on Spec R the B;-module q is free of the same rank as .

Proof. The assertion E(u)"p C q C E(u)~"p for all n, m > 0 is equivalent to Br - g = D Qrgk, Br
when q is finitely generated. Consider such n,m. If q is a B;—lattice, hence a direct summand of
D Qrgk, Br there is an R-linear section s of the projection pr : D ®rgx, Br — (D Qrex, Br)/4.
The composition of this section with the inclusion E(u)™"p/q — (D Q@rek, Br)/q factors through
E(u)™™p: Indeed, for x € E(u) "p/q the condition pr(s(x)) = x means that there exists x” € q such that
sX)=x+x"€e Ew)™p+q=E@u)"p.

Hence we see that the inclusion E(u)™"p/q — (D ®rgk, Br)/q realizes E(u)~"p/q as a direct
summand of the R-module E (u)~"p/E (u)"p which is locally free by Lemma 2.3(a). This shows that
Ew)™p/Ew)"p = (E(u) "p/q) @ (q/E(u)"p) and both E(u) ™p/q and q/E (u)"p are finite locally
free R-modules.

Conversely any isomorphism E(u)™"p/EW)"*p = (Ew)™"p/q) ® (q/Eu)"p) together with the
decomposition D Qrgk, Br = (Eu)"p) & (E(u)™"p/EW)"p) & (D Qrgk, Br)/E ) "p realizes q
as a direct summand of D ®rgk, Br. Indeed, we have the following direct sum decompositions of

R-modules:

I=(Ew)"p®@/EW)"p),
DQrok,Br = (Ew)"p)®(q/Eu)"p)B(E )" p/)®(D®rek,Br)/EW)™"p.

Since E(u)"p is finitely generated over B}F and q/E (u)"p is finitely generated over R, also q is finitely
generated over [E’E;g, hence a [E[%Jlg—lattice.

To prove the local freeness of q we may work locally on R and assume by Lemma 2.3(a) that p is free
over B;, say of rank d, and q/E (u)"p and E (1) "p/q are free over R. There is a noetherian subring R
of R and a short exact sequence

0—-Q0—->P—>N—->0 (2-2)
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of B%—modules which are free R-modules, such that the tensor product of (2-2) with R over R is
isomorphic to
0—a/Ew)"p— E@)™"p/Ew)"p > Ew)™"p/q — 0. (2-3)

Indeed, we can take R as the finitely generated Q,-algebra containing all the coefficients appearing in
matrix representations of the maps in (2-3) and the action of Ko[u]/(E (1))™*". Note that, since P is free
over ﬁ, it is contained in P ® 7 R=ZEu)™p/Eu)"p, and since the latter is annihilated by E (u)"*", the
same is true for P, @ and N. Let p be a free B;;-module of rank d and fix an isomorphism p ®B% B}F =p.
This isomorphism obviously induces an isomorphism

E@)™"p ®p: (BE/(E@)™*") = P.
Let the B};——module q be defined by the exact sequence
0—>§4— Ew)™"p— N — 0. (2-4)

Since B+ (R ®aq, K) 2]l is noetherian, q is finitely generated. Consider a maximal ideal m C [E’BJr Since
rem, 1t maps to a maximal ideal n of R. Since n is finitely generated, B; QFr R/n = (R/n ®@p K]
and this is a direct product of discrete valuation rings. Thus q ® 3 R/n is locally free of rank d by the
elementary divisor theorem. Since this holds for all m, [EGAIV3 1966, Theorem 11.3.10] implies that
q is a projective B;;-module and by [EGAT1 1971, Proposition 10.10.8.6] it is locally on Spec R ®a, K
free over B%. Let {y : K — Q p} be the set of all @ ,-homomorphisms and let K be the compositum of
all ¥ (K) inside Q p- Then R—R ®aq, K is finite étale and the pullback of g under this base change is

~ ~ N _
locally on Spec R ®q, K ®q, K free over B Rea, k' Since

Spec ﬁ@@p K ®a, K = ]_[ Spec ﬁ@@p E,
14
the pullback of q is already locally on Spec R ®aq, K free over B; %0, K"
To finish the proof it remains to show that q @+ B; =q. Tensorlné (2-4) with B;g over B}% we obtain
R

the top row in the diagram

0—>T0r1R(N B*)—>q®B+B — E(u)~ ’”p—>N®B+B —0

I

0 q Eu)™p — Ew)™p/q—0

Abbreviate £ := m +n. Since the functor N ®B+ equals the composition of the functors ([BJr i) ®B+
followed by N Qp+ Lt e the Tor;-module on the left can be computed from a change of rings spectral
sequence [Rotman 2009 Theorem 10.71] and its associated 5-term sequence of low degrees, see [Rotman
2009, Theorem 10.31],

BL ~ B ~
RN TorlR(Bg/te,B;)@)BE/,zN — TorlR(N,B;g) — Tor1 (N B /t ) — 0.
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The right term in this sequence is zero because Tor{BE/ i (ﬁ , B; /1Y) = Tor? (ﬁ , R) and N is flat over R.
The left term is zero because ¢ is a nonzero-divisor both in B and Bj;. This shows that TorPx (N, B}) =0
and proves the lemma. U

Remark 2.8. (1) Let R = L be a field and let (D, @, N, q) be a (¢, N)-module with Hodge—Pink lattice
over L. The Hodge—Pink lattice q gives rise to a K -filtration F; as follows. Consider the natural projection

p = p/E)p =D Qrek, B/(EW))
=D Qrek, R ®@p K = Dg

and let F{ Dg be the image of p N E(u)'q in D for all i € Z, that is

FiDk == (pNEw) q)/(E@p N Ew) q).

Since L is a field (D, @, N, .7-";') is a K -filtered (¢, N)-module over L. Note that this functor does not
exist for general R, because gr’fq Dg will not be locally free over R in general. This is related to the
fact that the Hodge polygon of 3 is locally constant on R whereas the Hodge polygon of ¢ is only
semicontinuous; see Remark 2.12 below.

(2) However, for general R consider the category of (¢, N)-modules with Hodge—Pink lattice (D, ®, N, q)
over R, such that p C q C E(u)~'p. This category is equivalent to the category of K-filtered (¢, N)-
modules (D, ®, N, F*) over R with F'Dg = Dk and F2 =0. Namely, defining ]-"& as in (1) we obtain

Ew) 'p/q fori=0,
gl Dk =1 q/p  fori=1,
0 fori #0, 1,
and so (D, @, N, F) is a K-filtered (¢, N)-module by Lemma 2.7. Conversely, q equals the preimage
of .7-"q1 Dy under the morphism E (1)~ 'p RIAON p — Dk and this defines the inverse functor.
(3) Now let (D, ®, N, F*) be a K-filtered (¢, N)-module over R. Using that Bt = (R ®a, K1 is an
R ®q, K-algebra, we can define the Hodge-Pink lattice

q:=q(F) =Y Ew) " (F Dg) ®rex BY.
ieZ

It satisfies /3 = F°. Using Lemma 2.7 one easily finds that q(#*) is indeed a B;—lattice.

Example 2.9. The K -filtered (¢, N)-modules over R = @, which correspond to the cyclotomic character
Xeye 1 9k — Z,, are Dg(xeye) = (Ko, ® = p~ ', N =0, F*) with F~! = K 2 7% = (0) and its dual
D (Xeye) = (Ko, ®=p, N =0, F*) with Fl=K 2 F? = (0). For both there exists a unique Hodge—Pink
lattice which induces the filtration. On Dy (xcyc) it is g = E(u)p and on DJ(xcye) itis q=E (u)_lp.

We want to introduce Hodge weights and Hodge polygons. Let d > 0, let B C GL,; be the Borel
subgroup of upper triangular matrices and let 7 C B be the maximal torus consisting of the diagonal
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matrices. Let G := Res K/Q, GLy k., B = Res k/a, B and T := Res k@, T be the Weil restrictions. We
consider cocharacters

~

nw: Gm’@p - Tg (2-5)

p

which are dominant with respect to the Borel B of G. In other words on Q p-valued points the cocharacter

,u:@;—> 1_[ T(Qp),
V:K—Q,

where ¥ runs over all Q,-homomorphisms ¢ : K — Q p» 1s given by cocharacters
Wyt x > diag(xfvt, L xPvd)

for some integers py, j € Z with wy ; > y, j+1. We define the reflex field E, of i as the fixed field
in Q, of {0 € Y0, : Moy.j = My.; forall j, ¢} Itis a finite extension of @, which is contained in
the compositum K of all ¥(K) inside @,. For each j the locally constant function ¥ > ty, ; on
Spec K ®a, K = 11 v:K— & Spec K descends to a Z-valued function wj on Spec E, ®q, K, because
is constant on the fibers of Spec K ®q, K — Spec E;, ®q, K. In particular, the cocharacter  is defined
over E),. If R is an E,-algebra we also view u; as a locally constant Z-valued function on Spec R ®q, K

Construction 2.10. Let D = (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice of rank d over a
field extension L of Q,. By Lemma 2.3(a) the L ®q, Ko-module D is free. Since L ®q, K is a product
of fields, BZ = (L ®q, K)Il[z] 1s a product of discrete valuation rings and q is a free BZ—module of
rank d. We choose bases of D and q. Then the inclusion ¢ C D ® gk, BL is given by an element y
of GL;(B.) = N(L((t))) By the Cartan decomposition for G there is a uniquely determined dominant
cocharacter iy, : Gy 1 — TL over L with y € G(L [[t]]),u ()~ 1G(L [It]]) This cocharacter is independent
of the chosen bases. If L contains K, it is defined over K because T splits over K. In this case we view
it as an element of X.(7T%)dom and denote it by up(Spec L). It has the following explicit description.
Under the decomposition L ®qg, K = [],.x_ g L we have y € [],, GL4 (LIeT) ey (1)~ GLy (L),

as G(L((t))) = ]_[I/, GL, (L((t))), and wy = (wy)y. The t7Hv1 . t7Hvd are the elementary divisors
of the y¥-component qy of q with respect to p. That is, there is an L[[¢]]-basis (vy,1, ..., vy,q) of the
Y-component py, of p such that (r7#%1 vy 1, ..., t7*d vy 4) is an L[[t]]-basis of qy.

Let (D, @, N, .7-"&) be the K-filtered (¢, N)-module associated with D by Remark 2.8 (1). Then
]:(;DKJ/’ = (UI/,J i — My, j = 0)7 and

dim;, gr"quK,,’b =#j:i— 1y, =0}

More generally, for a K -filtered (¢, N)-module (D, ®, N, F*) over a field extension L of K we consider
the decomposition Dg = ]_[1/, Dk  and define the integers fty 1 > -+ - > [ty ¢ by the formula

dim;y, gr; Dg .y =#j:py, =1}

We define the cocharacter w(p o v, 7+)(Spec L) := (i )y and view it as an element of X, (7% )dom-
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Definition 2.11. (a) Let R be a K -algebra and consider the decomposition R ®q, K = ]_[I',,: xR
Let D be a (¢, N)-module with Hodge—Pink lattice (respectively a K -filtered (¢, N)-module) of
rank d over R. For every point s € Spec R we consider the base change s*D of D to «(s). We call
the cocharacter pp(s) := psxp(Speck (s)) from Construction 2.10 the Hodge polygon of D at s and
we consider pp as a function up : Spec R — Xy (Tg)dom- The integers —puy ;(s) are called the
Hodge weights of D at s.

Now let 1 : @; — f(@ p) be a dominant cocharacter as in (2-5), let E,, denote the reflex field of u, and
let R be an E, -algebra.

(b) Let D be a (¢, N)-module with Hodge—Pink lattice (respectively a K -filtered (¢, N)-module) of
rank d over R. We say that D has constant Hodge polygon equal to u if pup(s) = p for every point
s € Spec(R ®g, E).

(¢c) Let D= (D, d, N, q) be a (p, N)-module with Hodge—Pink lattice over Spec R. We say that D has
Hodge polygon bounded by . if

/\{é;q C E(u)y M1 '/\él%JRrp

forall j=1, ..., d with equality for j =d, where the y1; are the Z-valued functions on Spec R®q, K

determined by u; see the discussion before Construction 2.10.

Equivalently the condition of being bounded by 1 can be described as follows: Over K the cocharacter
w is described by a decreasing sequence of integers fiy, 1 > -+ > [y g for every Q,-embedding v :
K — @p. Let "= R®g, K, then R'®q, K = nw:K—u? Rm/// with each R:p = R’ under the isomorphisT
a®br> (ay(b))y, where ¥ : K — R'is given via the embedding into the second factor of R' = R®g, K.
Especially we view R"p as a K-algebra via ¥. Under this isomorphism D ®grgx, B =: pr/[1/1]
decomposes into a product ]_[1/, pr(1/t]y, where pr/[1/t]y is a free pr [#1I[1/¢]-module and the B, -
lattice pg' C pg'[1/¢] decomposes into a product of R{b [z -1attices pg y C pr[1/1]y.

Further, under the isomorphism D Qrgx, Br = ]_[W pr[1/t]y the Hodge—Pink lattice qp = q ®g R’
decomposes into a product qg = ]_[1!, qr,y, Where qgr y is an R:p [[z[I-1attice in pg/[1/¢]y. Then the
condition of being bounded by u is equivalent to

N, Grp © E@ 000 NG pp (2-6)

for all ¢y and all j =1, ..., d with equality for j =d.
Note that by Cramer’s rule (e.g., [Bourbaki 1970, II1.8.6, Formulas (21) and (22)]) the condition of
Definition 2.11 (c), respectively (2-6) is equivalent to
/\{é;p C E(u)ytd-i1ttia, /\.[/B}gq ’
respectively

Ny Py C B sttt N qpe 2-7)

forall j =1,...,d with equality for j =d.
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Remark 2.12. The Hodge polygon of a K -filtered (¢, N)-module (D, ®, N, F*) is locally constant on R,
because griT Dk y is locally free over R as a direct summand of the locally free R-module gréC Dg.

In contrast, the Hodge polygon of a (¢, N)-module D with Hodge—Pink lattice over R is not locally
constant in general. Nevertheless, for any cocharacter w as in (2-5) the set of points s € Spec R such that
wp(s) < p in the Bruhat order, is closed in Spec R. This is a consequence of the next:

Proposition 2.13. Let u € X, (T%)dom be a dominant cocharacter with reflex field E,, and let R be an
E,-algebra. Let D = (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice of rank d over R.

(a) The condition that D has Hodge polygon bounded by . is representable by a finitely presented closed
immersion (Spec R)<, — Spec R.

(b) If R is reduced then D has Hodge polygon bounded by  if and only if for all points s € Spec RQE, K
we have | p(s) X w in the Bruhat order, that is, for all \ the vector py—pup(s)y € 7%isa nonnegative
linear combination of the positive coroots &j =(...,0,1,-1,0,...) having the “1” as the j-th
entry.

(c) Let u' be another dominant cocharacter such that (' < p in the Bruhat order. Let E,/ denote its
reflex field and let E = E E,/ C K be the composite field. Assume that R is an E-algebra, then
(Spec R)<,» = (Spec R)<,, as closed subschemes of Spec R.

Proof. (a) By Lemma 2.7 we find a large positive integer n such that E(u)"p C q C E(u)"p. This
implies /\'q C E(u) ™" Np for all j and \'p C Ew)~"N\'q. Viewing nj:Spec R®q, K — 7 as
locally constant function as in the discussion before Construction 2.10, we consider the modules over
B} = (R ®a, K)[1]

Mo := Ew) ™" \q / E@y"+ 1. N, (2-8)
Mj:=E@ ™ "Np/E@™ = 7# . Np  forl<j<d
As R-modules they are finite locally free. Then D has Hodge polygon bounded by w if and only if for all
j=1,...,d all generators of /\'q are mapped to zero in M; and all generators of /\dp are mapped to

zero in My. Since M := My @ - - - @ M, is finite locally free over R, this condition is represented by a
finitely presented closed immersion into Spec R by [EGAT 1971, Lemma 9.7.9.1].

(b) If R is reduced then also the étale R-algebra R := RQ®E, K isreduced and R — R’ <> Hsespec r K (8)
is injective. Therefore also M < M ®g ([T;cspec & € (5)) is injective. So D has Hodge polygon bounded
by  if and only if this holds for the pullbacks s*D to Spec k (s) at all points s € Spec R’. By definition
of u' := up(s) there is a « (s)[[]l-basis (vy 1, ..., vy q) of the Y-component (s*p)y of s*p such that
(f"gﬁl ULy v ns M Vy,q) is a k (s)[[¢]]-basis of (s*q),. Therefore condition (2-6) holds if and only if
My 1+t iy = /“Li//,l +-t M:p,j for all ¢ and j with equality for j = d. One easily checks that
this is equivalent to i’ < .

(c) Again ' < pimplies py 14+ -+py,j > py |+ -+u, ; forall  and j with equality for j =d. We
view M’J as locally constant Z-valued functions on Spec EQq, K. Then uq + -+ +p; > p) +-- -+ ,u/J
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for all j with equality for j =d. In terms of (2-8) the R-modules M for  are quotients of the R-modules
M} for " with M = M. Therefore (Spec R)<, < Spec R factors through (Spec R)~<,,. O

Remark 2.14. The reader should note that u’ < p does not imply a relation between E,/ and E,
as can be seen from the following example. Let d =2 and [K : Q,] = 2 and {¢ : K — E} =
Gal(K/Q,) = {1, ¥»}. Consider the three cocharacters ., ', u” given by py, = (2,0), wy, =(2,0)
and ,uim =(2,0), '““:ﬁz =(1,1) and ,u% =(1,1), ;%2 = (1, 1). Then u” < i/ < . On the other hand
we find £, =E,» =Q, and E,, = K =K.

Remark 2.15. In Definition 2.11 (a) we assumed that R is a K -algebra to obtain a well defined Hodge
polygon up(s) € X *(fg). In Definition 2.11 (b) we can lower the ground field over which R is defined
to E,, because Gal(K /E,) fixes p. The ground field cannot be lowered further, as one sees from the
following:

Proposition 2.16. Let D be a (¢, N)-module with Hodge—Pink lattice (or a K -filtered (¢, N)-module) of
rank d over a field L such that jup(s) = p for all points s € Spec L ®q, K. Then there is a canonical
inclusion of the reflex field E,, <~ L.

Proof. Since every K-filtered (¢, N)-module arises from a (¢, N)-module with Hodge—Pink lattice as in
Remark 2.8 (3), it suffices to treat the case where D is a (¢, N)-module with Hodge—Pink lattice. We

consider the decomposition L=L ®a, K= I1 k (s) and for each s we denote by o : L <> Kk (s)

seSpec L
and B : K < k (s) the induced inclusions. Let ;L G — TL be the cocharacter over L associ-
ated with D in Construction 2.10. The assumption of the proposition means that o(ur) = Bs(u)
for all s. The Galois group G := Gal(E ,Q,) acts on L. The Galois group Gal(k(s)/as(L)) can
be identified with the decomposition group G, := {0 € G : o(s) = s} under the monomorphism
Gal(k(s)/as(L)) — G, T+ ,Bs_l o Tlﬂs(l?) o ;. Since g is defined over L, each t € Gal(k (s) /o5 (L))
satisfies (ot (1)) = a5 (1er), and hence (,83_1 o 1:|/33(1;) o Bs) (i) = . By definition of the reflex field E,
this implies that ,Bs_l o t|ﬂ_v(1’;) ofs € Gal(E/EM) and 7|g,(g,) = 1d. So B,(E,) C as(L) and we get an
inclusion o' B, : E,, < L. To see that this is independent of s choose a 0 € G with o (s) = §. Then
o =0 oag and Bz = o o B. [l

3. Moduli spaces for (¢, N)-modules with Hodge—Pink lattice

We will introduce and study moduli spaces for the objects introduced in Section 2. Proposition 2.16
suggests to work over the reflex field.

Definition 3.1. Let u be a cocharacter as in (2-5) and let E,, be its reflex field. We define fpqc-stacks
Do.N.u» HpN,<u> and H, y , on the category of E,,-schemes. For an affine E,,-scheme Spec R:

(a) The groupoid Z, y,.(Spec R) consists of K-filtered (¢, N)-modules (D,®, N, F*) over R of rank d
with constant Hodge polygon equal to u.

(b) The groupoid 7, v <, (Spec R) consists of (¢, N)-modules with Hodge—Pink lattice (D, ®, N, q)
over R of rank d with Hodge polygon bounded by .
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(¢) The groupoid %, v, . (Spec R) consists of (¢, N)-modules with Hodge—Pink lattice (D, ®, N, q) over
R of rank d with Hodge polygon bounded by @ and constant equal to j.

Let Zy 0 C Dy N, (vesp. Hy < C Ay N <> 4y, C Hy N, ) be the closed substack on which N is zero.
It classifies ¢-modules with K -filtration (resp. Hodge—Pink lattices) and the corresponding condition on
the Hodge polygon.

We are going to show that these stacks are Artin stacks of finite type over E,,.

Locally on Spec R we may choose an isomorphism D = (R ®q, Ko)? by Lemma 2.3(a). Then ® and
N correspond to matrices ® € GL4(R ®q, Ko) = (Resk,/a, GL4 k) (R) and N € Matyxqa(R ®q, Ko) =
(Resg,/a » Mat;«4)(R). The relation ® ¢*N = p N ® is represented by a closed subscheme

Pk,.a C (Resk,/a, GLa k) Xspec@, (Resk,/a, Matixaq).

Theorem 3.2. (a) The Q,-scheme Pk, 4 is reduced, Cohen—Macaulay, generically smooth and equidi-
mensional of dimension fd>. In the notation of Remark 2.4 the matrix (®/)o has no multiple eigenvalues

at the generic points of the irreducible components of Pk, 4.

(b) The generic points of Pk, q4 are in bijection with the partitions d =k + - - - 4k, for integers m and 1 <
ky <--- <ky. To such a partition corresponds the generic point at which the suitably ordered eigenvalues
Moy hg of (@) satisfy pPhi = Aj ifand onlyif j =i+ 1 andi ¢ {ki, ki +ka, ..., ki1 +- - +kn).
Equivalently to such a partition corresponds the generic point at which the nilpotent endomorphism Ny,

in the notation of Remark 2.4, has Jordan canonical form with m Jordan blocks of size ky, . . ., kp.
For the proof we will need the following lemma.

Lemma3.3. Letry, ..., 1, be integers withry + - +r, >n. Then' Y i_, r? — Z?;ll ririy1 > 1, except

for the case whenry =---=r, = 1.

Proof. We multiply the inequality by 2 and write it as rl2 + Z?z_ll (ri —rit1)? +r? > 2. There are the
following three critical cases:

(@) Y ;(ri —rip1)? =0,
(b) >, (ri —riz)* =1,
(©) X (ri —rig1)* =2.

In case (a) we have ry = --- =r,. Since r; = --- = r, = 1 was excluded and r; < O contradicts
r+---+r, >n, Wehaverlz—i—r,% > 2.

In case (b) there is exactly one index 1 <i <n withrj=---=r; #riy1=---=ryand |r; —rip1| = 1.
If r; # 0 # r,, then rl2 + Z:’;ll (ri —rig1)? + r,% > 2. On the other hand, if r; = &1 and r, = 0, then
> ,rw==%i<n. Andif ry =0and r, = £1, then ) r, = £(n — i) < n. Both are contradictions.

In case (c) there are exactly two indices 1 <i < j <n withr; =---=r;andri;1 =---=r; and
rijy1=---=rp,aswellas [ri—ri11|=1=|r;—r;q1|. If inadditionr; =r, =0then ), r; =£(j —i) <n,

which is a contradiction. Therefore rl2 + r,f > (0 and rl2 + Zl'.’:ll (ri — ri+1)2 + r,f > 2 as desired. U
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Proof of Theorem 3.2. We break the proof into several steps.

1. By [EGA 1V, 1965, Proposition 6.5.3, Corollaires 6.3.5(ii), 6.1.2; EGA IV4 1967, Proposition 17.7.1]
the statement may be checked after the finite étale base change Spec Ky — Spec Q,. We will use
throughout that after this base change, Remark 2.4 allows to decompose & = (®;); and N = (N;); such
that p ®; o N; = Njy1 0 D;.

2. We first prove that all irreducible components of P, 4 have dimension greater or equal to fd?. Sending
(®, N) to the entries of the matrices ®;, N; embeds Pg, 4 xa, Ko into affine space Ai’; & as a locally
closed subscheme cut out by the fd? equations p ®; o N; = N; ;o ®; fori =0, ..., f — 1. Therefore the
codimension of Pk, 4 Xq@, Ko in A%(]; @ is less or equal to fd? by Krull’s principal ideal theorem [Eisenbud
1995, Theorem 10.2], and all irreducible components of Pk, 4 have dimension greater or equal to f d? by
[Eisenbud 1995, Corollary 13.4].

3. We next prove the assertion on the generic points. Let y = (®, N) be the generic point of an irreducible
component Y of Pk, 4. After passing to an algebraic closure L of x(y) we may use Remark 2.4 to find
a base change matrix S € GL4(L ®q, Ko) such that S™'® ¢($) = ((®/)o, 1dg, ..., 1ds) and (®/)g is a
block diagonal matrix in Jordan canonical form

7 pi 1 ' Nip -+ Niy
(d)f)oz with J; = 1 and No=
Jr Pi Nyp oo+ Npp

Note that a priori some of the p; can be equal. Let s; be the size of the Jordan block J;. Then N;; is an
s; x s j-matrix. The condition pf(QJf)o o Ny = Nyo (&) is equivalent to pri Nij = N;jJj forall i, j.
It yields N;; = (0) for plpi#p ;. By renumbering the J; we may assume that N;; # (0) implies i < j.
We set N;j = (n,(ija

)u=1...s,', V=l When p/ p; = pj it follows from

f e pf

14 1‘12,1 p ’?Z,s_,- 0 nip -+ nig—
/s ¥ = p! Ui = p)Nij = Nij(Jj = pj) =

AR U AR N 0
o - 0 M1 wor Msjsi—1

hat p o=,

The assertion of the theorem says that s = 1 and that all p; are pairwise different.

forall i, v>2and nﬁjg =0 whenever ;t—v > min{0, s; —s;}. We set s :=max{s;}.

First assume that s > 1. We exhibit a morphism Spec L]z, 71— Pk,.q which sends the point {z = 1}
to y and the generic point Spec L(z) to a point at which the maximal size of the Jordan blocks is strictly
less than s. Since y was a generic point of Pk, 4 this is impossible. The morphism Spec L[z, 71— Px,.d
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is given by matrices §, (5f )o and ﬁo as follows. We set S := S. For all i with s; =5 we set
pi 1

pi 1
2pPi

and for all i with 5; < s we set Z := J;. When pf,o,- # p; we set ﬁ,-j := (0). To define ﬁij when
plpi=p ;» and hence i < j, we distinguish the following cases:

(a) If s;,5; < s we set ﬁij = N;jj.
(b) If s; =5 > Sj we set ﬁij = Nij-

() If s; <5 =s; we set Nij = (ﬁ,&”&)w with ﬁ}ij = nﬁjfj for all p, with ﬁ,&”g := 0 whenever
w>v+s; —s;+ 1, and with
~(ij ij 1 i)
nx{g = nﬁgg‘f'(l _Z)p(S] V)f'pj 'n;,z]fv+sj71,xj
forv<s;jand u <v+s; —s;+ 1
(d) If s; =s; = s we set ﬁ,-j = (ﬁ,&”g)u , With fz,(j]s) = n;(ijs) for all ., with ﬁﬁjg := 0 whenever u > v,
~(i]) . @) '

and with 71,0, :=n,, + (1 —z)pb-I=w/ “pj -nSQHFLS forall u <v <s.

We have to check that pfj; ﬁij = ﬁ[j.?} for all i, j with p/p; = pj- In case (a) this is obvious and in
case (b) it follows from the fact that the bottom row of N;; is zero. For case (c) we compute

Ii Ii
p N1 - pingg; ~ ~ ~ ~
' Y 0 niy - nis;—2 Nig—1+@—Dpjngs;

P! Ji—p)N;j = : K = : :
pfns,-,l pfns,-,s- ~ ~ ~ ~
0 0 ! 0 LT B ns,’,sl,‘—z nsi,sj-—l'i'(z_l)pjnsi,sj-
= Nij(Jj—p)).
Finally for case (d) we compute
pfﬁ2,l Tt p'fﬁls—l pfﬁ2,s

fcT N : : :
p’ (Ji—pi)N;j = 8 . .
ans,l s pfns,s—l pfns,s

0 0 (z—l)pf,o,- ﬁs,s
0 nyy - N2 Ais—1+@=Dpjng,
0 ﬁs,l ﬁs,s—Z ﬁs,s—l“‘(Z—l),Oj ﬁs,s

=Nij(Jj—p)).

Altogether this defines the desired morphism Spec L[z, 71— Px,.a.
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So we have shown that s = 1 at the generic point y and that (®/) is a diagonal matrix. We still have
to show that all diagonal entries are pairwise different. For this purpose we rewrite (®/)y and Ny as

A 1d,, My - My,
(@)= and  No=|[ : :
)\n Idrn Mnl T Mnn

We denote the multiplicity of the eigenvalue A; by r; > 1. Then M;; is an r; xr j-matrix. By renumbering
the A; we may assume that there are indices 0 =1ly </ < --- <[, = d such that pfki = A; if and only if
j=i+landi ¢ {l;,...,In}.

We compute dim Y = trdeg@p k(y) = trdeg@p L as follows. The eigenvalues 4;,, ..., A;, contribute at
most the summand m to trdegg, L.

The matrix § € GL4(L ®q, Ko) is determined only up to multiplication on the right with an element

of the ¢-centralizer
C(L):={S € GLy(L®q, Ko) : S((®7)0,1dy, ..., 1dg) = ((®7)0,1dg, ... 1dg)9(S)}

of ((®/)o,1dg, ...,1d;). Writing S = (So, ..., Sy_1) this condition implies that S; = (@(8));i == Si_i
fori=1,..., f—1and So(® )y = (D )o(p(S))o 1= (®7)0S -1 = (®/)0So. Therefore C has dimen-

sion Zi rl.2 and the entries of § € (Resg, /Q, GLy k,)/C contribute at most the summand f -y rl.2

1
to trdeg@p L.
The condition p/ (®/)g0 Ny = Ny o (&) is equivalent to p/A; M;; = A;M;; for all i, j. This implies
that there is no condition on M;; when j =i+ 1andi ¢ {l;,...,[,}, and that all other M;; are zero. So

the entries of the M;; contribute at most the summand ), ¢yt Ti Tik1 1O trdeg@p L.

~~~~~ m

Adding all summands and comparing with our estimate in part 2 above, we obtain

n
fd*> <dimY =trdeg@pic(y) §m+fd2—Zri2+ Z FiFigl
i=1 i1l

m—1 Lyy1—1
= fdz—l—Z(l - Z rl-z—i— Z T ri+1).

V=0 i=1+, i=14,
By Lemma 3.3 the parentheses are zero when all r; = 1, and negative otherwise. So we have proved that
ry =---=ry, = 1. In other words, all diagonal entries of (®/) are pairwise different. Let k,, :=1, — [,
for v=1,...,m. Then the generic point y corresponds to the partition d = k; + - - - + k;,, under the
description of the generic points in the theorem. As we have noticed above the 1x 1 matrices M;; vanish
at yunless j=i+1andi ¢{l,...,1,} and in the latter case we must have M;;(y) # 0. This implies
the claim on the Jordan type of Ny at the generic points of the irreducible components.

Moreover, it follows that dimY = f d? for all irreducible components Y of Pk, 4. By [Eisenbud 1995,

Proposition 18.13] this also implies that Pg, 4 xa, Ko is Cohen—Macaulay.
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4. It remains to show that Pg, 4 is generically smooth over Q,. From this it follows that it is reduced, be-
cause it is Cohen-Macaulay. Let again y be the generic point of an irreducible component of Pk, 4 X @, Ko
and let L be an algebraic closure of « (y). As above, Remark 2.4 allows us to change the basis over L and
assume that & = ((®]), id, ..., id) and N = (p No); with (®/) = diag(ry, . .., Aqg) and A; # A; for all
i # j. We write F© := (®/)( and Néo) := No = (n;j);j- The condition NéO)F(O) = pfF(O)NéO) implies
thatn;; =0if plai #A j- And conversely n;; # 0 if plai=x j by our explicit description of Ny at y above.

We claim that for every n > 1, any deformation (F"~D, Né"_l)) € Pk,.a(L[e]/e") of (FO, N(go)) can
be lifted further to (F™, Né")) € PKO,d(L[e]/e”“). This implies that Pk, 4 is smooth at y, as it follows
that any tangent vector Opy , v = L[e]/ g2 comes from a map O Pky.a.y —> L[]l and hence the image of

Spec(@izo(m’IPKO_d’y/mg((l)‘d,y)) — Spec (Sym-(mpkoyd’y/m%;KO’d’y))

contains any tangent vector. This means that the tangent cone at y equals the tangent space, and
hence by [Mumford 1999, III, §4 Definition 2 and Corollary 1] Pk, s is smooth at y. Let us take
any deformation (F, No) € GLy(L[e]/e™™") x Matyxa(L[e]/e"") of (F®=D, N(()"_l)). Then we have
NoF — p/ FNy € ¢"Matyxq(L). Changing (F, No) to (F™, N") = (F + &"F’, Ny + £"N}) with
F’, N € Maty,4(L) we find

NPF® — pf FOND = (NoF — p! FNo) + 6" (NSO F + NyF© — p/ (F'N + FONp))
and hence it suffices to show that the map % : Matyx (L) X Maty (L) — Matg«g(L) given by
h:(F', Ny (NgFQ — p" FONY) + (N F = p/ F'NY)
is surjective. For this purpose let Né = (b;j)ij and F' =diag(ay, ..., aq). Then we find that
hij(F', Ng) := h(F', Ng)ij = (\j — p’ 2)bij +ajnij — p’ ai nj.

Whenever A ; — pfx; € L* and hence n; ;=0 we obtain the surjectivity of 4;;. By permuting the indices
we may assume that n;; # 0 implies j =i + 1. Treating every Jordan block of N(go) separately we may
further assume that n; ;41 # 0 for all i. It then follows that we have

hiiv1(F', NY) = (@iv1 — p’ ai)ni iz
which suffices to see that the map # is surjective. O
Remark 3.4. The scheme Pk, 4 is in general not normal. For example if K = @, and d = 2 then Pg, 2
has two generic points. This was already proven in [Kisin 2009, Lemma A.3]. In one of the generic

points ® has eigenvalues A, pA and N # 0. In the other ® has eigenvalues A1, A, with A ; # pA; forall i, j
and N = 0. Both irreducible components meet in the codimension one point where A, = pi; and N = 0.

Let A denote the set of simple roots (defined over Q p) of G = Res K/Q, GL, x with respect to the
Borel subgroup B and denote by A, C A the set of all simple roots « such that (&, ) =0. Here (—, —)
is the canonical pairing between characters and cocharacters. We write P,, for the parabolic subgroup
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of G containing B and corresponding to A, C A. This parabolic subgroup is defined over E,,, and the
quotient by this parabolic is a projective E,-variety
Flagg ;. = GE, /P (3-1)

representing the functor
R+ {filtrations F* of R ®q, K®' with constant Hodge polygon equal to 4}
Thus Z, v, and 2, , are isomorphic to the stack quotients

Do.N.u = (Pkyd Xspeca, Flagg 4,) / (Resk,/a, GL4 k) E, , (3-2)
Do = (Resgy/a, GLa.k, Xspec, Flagg 4,) / Resky/a, GLa.k)E, »

where g € (Resk,/a, GL4 k) E, acts on (&, N, F*) € Pk a Xspec@, FlagK’d’M by
(@, N, F) > (g7 ' P o), g 'Ng, g7 ' F*).

We next describe the moduli space for the Hodge—Pink lattice q. Fix integers m =max{y, 1| : K — K }
and n =max{—pyq |V : K — I?}. Then by Cramer’s rule we have E(u)"p C q C E(u)™™p. So q is
determined by the epimorphism

pr:R®aq, (K[11/t" ™% = E)™p/Ew)"p — Ew)"p/q (3-3)

which is induced by choosing an isomorphism D = (R®q, Ko)9 locally on R. The quotient E (1) ™p/q is
a finite locally free R-module and of finite presentation over R ®a, K]/ "t by Lemma 2.7. Therefore it
is an R-valued point of Grothendieck’s Quot-scheme Quotoa | k(,)/m+n | @, see [Grothendieck 1962, n°221,
Theorem 3.1] or [Altman and Kleiman 1980, Theorem 2.6]. This Quot-scheme is projective over Q. The
boundedness by . is represented by a closed subscheme Q< of Quotoa | giy/m+n| @, XSpec@, Spec £,
according to Proposition 2.13(a). Thus /%, y <, and J, <, are isomorphic to the stack quotients

Hg N<u = (Poa Xspec0, Qk.d,<p) | Reskya, GLa ko)E, »
Hy,<u = (Resk,ja, GLa,ky Xspec0, Qk.d.<p) | Reskysa, GLa ky)E,

where g € (Resk,/a, GL4.k,)E, acts on (&, N, pr) € Pk, a Xspecq, Qk.d.<u With pr from (3-3) by

(®, N, pr)— (g7 '@ (g), §7'Ng, pro(g®a, ida,m)).

Let Qg 4, be the complement in Qg 4 <, of the image of

U QK,d,ﬁu’ XSpec E,/ Spec K

W<p
under the finite étale projection Qg 4 <, Xspec E, Spec K — Qk.4,<u- Here the union is taken over
all dominant cocharacters i’ : G, g, ~ T@p which are strictly less than p in the Bruhat order; see
Proposition 2.13(b). Since there are only finitely many such ' the scheme Qk 4., is an open subscheme
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of Q. 4,<, and quasiprojective over E,. By Proposition 2.13(a) the stacks %, y , C J, n <, and
Hy,u C Hp, <, are therefore open substacks and isomorphic to the stack quotients

Hg Ny = (Prod Xspecn, Ok.d.p) | Reskyja, GLa ko)E,
Hpu = (Resgyya, GLa,k, Xspeca, Qk.d.p) /| Reskyja, GLa ky)E,-

There is another description of Qk 4 <, in terms of the affine Grassmannian. Consider the infinite-
dimensional affine group schemes L*GL, and LG over Q p» and the sheaves LGL; and LG for the
fpgc-topology on @, whose sections over a Q,-algebra R are given by

L"GL4(R) = GL4(R[[t1),
L*G(R) = G(R[[1]) = GL4(R ®q, K[[t])) = GL4(B}).
LGL4(R) = GLy(RI[1[1]).
LG(R) = G(RIN[}]) = GL4(R ®q, K[11[1]) = GL4(Bg).

L*GL, and L*G are called the group of positive loops, and LGL, and LG are called the loop group of
GL, (resp. (~3). The affine Grassmannian of GL,; (resp. (~3) is the quotient sheaf for the fppf-topology
on Q,

Grgr, := LGLy /LY¥GLy;  (resp. Grg:=LG/L*G).

They are ind-schemes over Q,, which are ind-projective; see [Beilinson and Drinfeld 2005, §4.5; Beauville
and Laszlo 1994; Laszlo and Sorger 1997; Hartl and Viehmann 2011].
We set Grg, g := GroL, Xspec@, Spec K. Then there are morphisms

Qk.d,<u — Grg X Spec @, Spec £, =: Grg’EM,

Ok.d.<p XSpecE, Spec[? — l_[ Grgp, & 3-4)

v:K—>K
which are defined as follows. Let q C (Bo,. dﬂ)@d be the universal Hodge—Pink lattice over Qg 4, <,.. Then
by Lemma 2.7 there is an étale covering f : Spec R — Qg 4 <, such that f*qis free over B;ﬁ. With respect
to a basis of f*q the equality Br - f*q = D ®rgk, Br corresponds to a matrix A € GL;(Bgr) = LG(R).
The image of A in Grg(R) is independent of the basis and by étale descend defines the first factor of the
map Ok d,<u —> Grg Xspecq, Spec Ey,. The base change of this map along the finite étale morphism
Spec K — Spec E, defines the second map in (3-4), using the splitting G xg, K = ]_[ll, GL, g which
induces similar splittings for L*G, LG, and Grg.
The boundedness by u is represented by closed ind-subschemes

<u =u z _ l_[ =Ky
Gr G.E, and Gr G.E, X Spec E,, Spec K = GrGLd’ 7
14

of Grg, E, and ]_[w GrgL, > respectively, through which the maps (3-4) factor. Conversely the universal
=u

G.E, has Hodge polygon

matrix A over LG defines a Bta—lattice g=A- (Bza)d . Its restriction to Gr
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bounded by u and corresponds to the inverses of the maps (3-4). This yields canonical isomorphisms

~ < S o~ =< . . . .
Okd<u = Gr(:;"E and Qk.d,<u XspecE, Spec K = ]_[W GrGI’j‘”E . These isomorphisms restrict to iso-
- L - d >
1y
GL4. K"
=uy

In view of [Hartl and Viehmann 2011, §4], especially Lemma 4.3, the boundedness by 1« on ]_[,// GrgL, §

morphisms of open subschemes Qk 4., = Grg E and Ok 4. XspecE, Spec K = ]_[w Gr
sEp

can be phrased in terms of Weyl module representations of GL; z. In this formulation it was proved by
Varshavsky [2004, Proposition A.9] that Gré{ ,.& 1s reduced. Therefore this locally closed subscheme
is determined by its underlying set of points. Reasoning with the elementary divisor theorem as in
Construction 2.10 shows that Grgid’ # 1s equal to the locally closed Schubert cell

LYGL, g -uy(® ™' LTGL, ¢ /LTGL, ¢
and is a homogeneous space under L*GL, . This description descends to Q 4., and shows that the
latter is reduced and isomorphic to the locally closed Schubert cell L*G B, (o)t LtG £,/ L*G E,
which is a homogeneous space under LG E, = LG X Spec @), Spec E .
These homogeneous spaces can be described more explicitly. Set
SGLygy =L GLy g Ny ()™ LTGL, g - uy (1) C LYGL, ,
Sg,. =L Gg, nu@®) ™" - L*Gg, - u(t) C LTGp,.
These are closed subgroup schemes and the homogeneous spaces are isomorphic to the quotients
L*GL, % /Sy, => LTGL, g -y~ -LTGL, g / LTGL, £,
L*Gg,/Sg, = L™Gg, - n®) " -LYGg, | L"GE, = Ok.an.
Consider the closed normal subgroup LY+G E,(R):={A¢€ LG E,(R):A=1modt}. Then the parabolic
subgroup P, from (3-1) equals
P.=Sgz, L™Gg, /L™ Gy, c LYGg, | L™ Gg, = Gp,
and this yields a morphism
Qk.au=L"Gr,/Sz,, —~ LG, /S5, - L™ Gg, = Gg, /P, = Flagg 4 .. (3-5)

with fibers isomorphic to Sz , - LG E,/SG - The latter is an affine space because we may consider
the base change from E, to K and the decomposition

(Sz.. L GE,/Sz.,) Xspec, Spec K = [ [(SaLyuy - LT GLy & /SaLyuy)-
v

Each component is an affine space whose R-valued points are in bijection with the matrices
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where a;; € @,’21’ ~Hvi=l kR The Galois group Gal(E /E ) canonically identifies the components with

the same values for uy. Therefore Sz , - LT*G E,/Sg., 1s an affine space.

We show that Ok 4., 1s a geometric vector bundle over Flagg , , by exhibiting its zero section. The
projection LTG E, — G, has a section given on R-valued points by the map Gg, (R) — L*TG E,(R) =
G g, (RI21D induced from the natural inclusion R < R[[¢]]. Since L+P,L C Sz, u by definition of P, this
section induces a section

Flagg 4, — L*Gg, /LT P, — L+GEM/SG’H = Ok.dp-

This is the zero section of the geometric vector bundle Qk 4, over Flagg , ,. Using lattices the section
coincides (on L-valued points for a field L) with the map F* + q(F*) defined in Remark 2.8 (3) and the
projection QO a,u — Flagg 4, coincides with the map q — F3 from Remark 2.8 (1). Let us summarize.

Proposition 3.5. (a) Qk 4 <, is projective over E,, of dimension Zw,j(d +1—=2j)py,; and contains
Ok d,.. as a dense open subscheme. Both schemes are irreducible.

(b) Qk.a,. is smooth over E, and isomorphic to the homogeneous space LtG E,/SG., which is a

geometric vector bundle over Flagy ;.

Proof. Everything was proved above, except the formula for the dimension and the density of Qk 4 .
which follow from [Beilinson and Drinfeld 2005, 4.5.8, 4.5.12]. The irreducibility of Qk 4,<, is a
consequence of the density statement. (Il

Theorem 3.6. (a) The moduli stacks Dy N, s Do, > Hp N, <> Ko, <> Hp N, and H;, , are noetherian
Artin stacks of finite type over E,,.

(b) The stack 7, N, is a dense open substack of 7, n <, and projects onto Py .. The morphism

Hy N.u —> Dy, N, has a section and is relatively representable by a vector bundle.

(¢) The stack 7, , is a dense open substack of 7, <,, and projects onto 2, ;.. The morphism of stacks
Hy.u —> Dy, has a section and is relatively representable by a vector bundle.

(d) The stacks H#y <., 7, are irreducible of dimension Zw,j(d +1-=2j) )y, j, and Py, is irreducible
of dimension Z]// #(, J): mwy,i > Wy, ;). The stacks 7, , and D, are smooth over E,,.

(e) The stacks #y N <u, Hy N, are equidimensional of dimension Zw,j(d +1 =2y, j, and Dy N .
is equidimensional of dimension Zw #H(, J) : py,i > Wy, ;). The stacks Ay N, and Dy N, are
reduced, Cohen—Macaulay and generically smooth over E,,. The irreducible components of 7, n <y,

Hy N and Dy N, are indexed by the possible Jordan types of the nilpotent endomorphism N.

Proof. (a) The stacks are quotients of noetherian schemes of finite type over E,, by the action of the smooth
group scheme (Resk,/a, GL4 k,) g, and hence are noetherian Artin stacks of finite type by [Laumon and
Moret-Bailly 2000, 4.6.1, 4.7.1, 4.14].

(b) and (c) follow from the corresponding statements for Qk 4 , in Proposition 3.5.
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(d) The covering spaces

Resk,/a, GLa.ky Xspecw, OK.d.<u
Resk,/a, GLa.ky Xspec@, OK.d.us

RCSKO/@I, GLd,KO XSpec Q, FlagK‘d’M

of these stacks are irreducible because Resk,/q, GLq k, is geometrically irreducible. This implies
the irreducibility of the stacks. The formulas for the dimension follow from [Laumon and Moret-
Bailly 2000, pp. 98f] and Proposition 3.5, respectively the well known dimension formula for partial
flag varieties. The smoothness follows from the smoothness of Resg, /Q, GL4 Kk, Xspec Q, Ok.d.u and
Resk,/a, GL4, k, Xspec Q, Flagg 4. M by [Laumon and Moret-Bailly 2000, 4.14].

(e) Asin (d) these results are direct consequences of the corresponding results on the covering spaces, which
follow from Theorem 3.2. We only need to convince ourselves that the action of (Resk,/a, GLa4 k) E,
does not identify irreducible components of Pk, ;. However this follows from the fact that the Jordan
canonical forms of the nilpotent endomorphism N at two distinct generic points y; and y, of Pk, 4 are
distinct by the description in Theorem 3.2. (Il

Remark 3.7. These stacks are not separated. Namely, let D, D" be two (¢, N)-modules with Hodge—Pink
lattice (respectively two K -filtered (¢, N)-modules) over R. Then Isom(D, D’) is representable by an
algebraic space, separated and of finite type over R; see [Laumon and Moret-Bailly 2000, Lemme 4.2].
The above stacks are separated over E,, if and only if all these algebraic spaces Isom(D, D') are proper.
This is not the case in general. For example let R be a discrete valuation ring with fraction field L, let
D=D'=R®q, Kg with @ = id and N = 0. Then every element f € L is an automorphism of D ®g L,
compatible with ® and N. However, it extends to an automorphism of D only if f € R".

4. Vector bundles on the open unit disc

Kisin [2006] related K -filtered (¢, N)-modules over Q,, to vector bundles on the open unit disc. This was
generalized in [Hellmann 2013, §5] to families of K-filtered ¢-modules with Hodge-Tate weights 0 and
—1. In this section we generalize it to arbitrary families of (¢, N)-modules with Hodge—Pink lattice. For
this purpose we work in the category Adgp of adic spaces locally of finite type over Spa(Q,, Z,); see
[Huber 1993; 1994; 1996; Hellmann 2013, §2.2]. Since the stacks Zy ., Do N, 1> Hp,<u> Ho N, <> Hp
and %, n , are quotients of quasiprojective schemes over E, they give rise to stacks on Adgtu which we
denote by %af]‘v’ 0 ete.

For 0 <r < 1 we write By, for the closed disc of radius r over K in the category of adic spaces and
denote by

U= h_r)n B[oy ]
r—1

the open unit disc. This is an open subspace of the closed unit disc (which is not identified with the set
of all points x in the closed unit disc with |x| < 1 in the adic setting). In the following we will always
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write u for the coordinate function on By ) and U, i.e., we view
0,r] ._
B! :=T B0, Oy,

and BI%D := " (U, Op) as subrings of Ko[[u].
Let X € Adg}p be an adic space over Q, and write

0, o~
%g( ] _ OX®@pB[O,r] =pry., OXX[B[O,,]
0,1 =
By = O0x®q,B") =pry , Oxxu
for the sheafified versions of the rings BI"1 and BI*" where pry is the projection onto X. These are

sheaves of topological Ox-algebras on X.
We introduce the function

A= ]_[ ¢"(E(u)/E(0)) € B®D, (4-1)
n>0
and the differential operator Ny := —uA(d/du) : Bjo,1) — Bjo,1). For any adic space X e Adgp we view

A as a section of %E?’l) and Ny as a differential operator on ,935?’1) . The Frobenius ¢ on Ox ®q, Kolu]

extends to a Frobenius endomorphism of %g?’l) again denoted by ¢ by means of ¢(#) = u”. These
operators satisfy the relation

E) .
E(0)

Nvo=p ¢ Ny. (4-2)

Definition 4.1. A (¢, Ny)-module (M, ® ,,, Né\/‘) over an adic space X € Ad}gp consists of a locally
free sheaf M of finite rank on X xgq, U, a differential operator Né‘/t : M — M[1/A] over Ny, that
is NYU(fm) = —ur(df/du) -m + f - Ny (m) for all sections f of Oxxg,u and m of M, and an
OXXQP[U-Iinear isomorphism ® x4 : (@* M)[1/E ()] = M[1/E(u)], satisfying

E(u)

. M
E(0) Priopo NG .

N$/l e} CDM ocp=p
A morphism o : (M, g, Né"t) — (N, Dy, Né\/) between (¢, Ny)-modules over X is a morphism
a : M — N of sheaves satisfying o o ® ry = ® s 0 ¢* () and Né\/ooz =ao N

Remark 4.2. (1) Note that it is not clear whether a (¢, Nv)-module M is locally on X free over X x U
and hence it is not clear whether pry , M is locally on X a free %E?’ D_module. However it follows from
[Kedlaya et al. 2014, Proposition 2.1.15] that pry , M is a finitely presented 935?’1) -module.

(2) The differential operator Névl can be equivalently described as a connection
Vam:iM—> Mu™'Qy , x[1/4]

when we set V,,(m) := —(1 /)»)Né\/‘ (m) ® du/u. Then Né/' is recovered as the composition of V,,
followed by the map u‘lﬁ}(XU/x[l/A] — M, du— —uAh.
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Let X € Adgp be an adic space. We will show that the category of (¢, Ny)-modules over X is equivalent
to the category of (¢, N)-modules with Hodge—Pink lattice over X by defining two mutually quasi-inverse
functors M and D.

To define M let D = (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice over X. We denote
by pr: X xq,U— X xq, Ko the projection and set (D, ®p) := pr*(D, ®). Then

0,1
pry (D, ®p) = (D, ®) @oyaky By -

We choose a ng—automorphism np of p:=D ®o,ek, [B%X and we let 1o : D = D Qoy ek, ng be the
embedding obtained as the composition of the natural inclusion D Qo gk, %g?’l) — D ok, [B;gx
composed with the automorphism 7 p. Here we follow Kisin [2006, §1.2] and choose

: ~ i (=1 E@)\'
np: D ®oyek, Bo, => D ®osek, Bo,, do® fr> Z N'(do) ® Tlog(l - m) f (4-3)

Remark 4.3. (1) Actually, Kisin introduces a formal variable ¢, over %’E?’ Y which formally acts like log u.
He extends ¢ to %Eg’l)[ﬁu] via ¢(¢,) = p €,, extends Ny to a derivation on %E?’l)[éu] via Ny (£,) = —A,
and defines N as the %E?’])—linear derivation on @E?’l)[ﬁu] that acts as the differentiation of the formal
variable £,,. Under the ®-equivariant identification

<00 <0 .
. . ~ —1)! . .
DI, N0 = { Y "ditl,:d; € D with N(E diz;) = o} &b, Y (I#Nz (do)e, <— do,
i=0 i i=0

Kisin’s map tq: D[EM]N:()@OX@KOQE?J) —>p,y; diZ;®fI—> > di®f-(log(u/7r))i corresponds to our (g,
because we identify E(u)/E(0) with 1 — (u/m).

(2) Instead of the above np one could also choose np = idy. This would lead to a few changes which we
will comment on in Remark 4.11. Note that our p from (4-3) is different from id, if N # 0.

For all n > 0 we now consider the map

1

17 o7 ; 1 0.1) ¢* j
prx,*D[x] — Pry . W*(D[X]) = Prx,*D[X] Q@ o0 i B L0 p[—] ®gy, ¢’ (BS,).

1
X E(u)
where we write /%1 for 19 ® id. We set
1 . g ; .
pry M= {m €pry . D[X] @7 190 @5’ (m) € q By, @’ (ng) forall j >0 } (4-4)

and we let M be the induced sheaf on X xq, U. Since 2 = (E(u)/E(0))¢(2) the isomorphism ®p
induces an isomorphism @ : (p* M)[1/E(u)] = M[1/E(u)].

We want to show that D and M are locally free sheaves of finite rank on X xg, U. For D this follows
from D|x xpy,, = D ®©xoko) OxxBp,,- We work on a covering of X by affinoids ¥ = Spa(A, A™). Let
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h € Z be such that q C E(u)™"p on Y and let n be maximal such that ¢ (E (1)) is not a unit in Bro.r>
that is, such that r?" > |r|. Then M|yxp,,,, is defined by the exact sequence

" @i*igod “ - .
Bizo 9000 @(E(u) hp/q)@m,w ¢’ B4)— 0.

Jj=0

—h
0_>M|Y><B[Q,,-] _>)\' D|Y><B[Q,,-]

The A ®q, Ko[u]-module E(u)"p/q is locally free over A, say of rank k. The endomorphism ¢ :
Kolu] — Kp[u] makes the target Ko[u] into a free module of rank p over the source Ko[u]. There-
fore (E(u)_hp/q) ®BX,W' (pj(Bj) is locally free over A of rank p/k. Since the affinoid algebra A is
noetherian and By, is a principal ideal domain by [Lazard 1962, Corollary of Proposition 4] also
L'(Y x Bo,r}, OyxBy,,) = A@@,,B[o,r] is noetherian. So I'(Y x Bjo,,}, M) is finitely generated over
A@@,,B[o,r] and flat over A. The residue field of each maximal ideal m C A®@],B[O,r] is finite over
Q, by [Bosch et al. 1984, Corollary 6.1.2/3]. Therefore n = m N A is a maximal ideal of A. By the
elementary divisor theorem A/n®4 I'(Y x Byo 1, M) is free over the product of principal ideal domains
A/n®q, Bjo,,1. Therefore I'(Y x Byo,r}, M) is locally free of rank d over A@)@pB[o,r] by [EGAIV3 1966,
Theorem 11.3.10]. This shows that M is a locally free sheaf of rank d on X xqg, U.

We equip M with a differential operator Né\" over Ny. On A™"D = D ® 0,0k, )Fhe%’gg’l) we have
the differential operator N VD =N®A+ idp Ny

ahp NN, 5 —hpy g a ™ frs N(@) @A f+d ® (huk_hfj—;‘ — u,\‘—hfl—f;) (4-5)
with d € D and f € #{". Its image lies in A™"D. If E(u)"p C q C E(u)™"p then A"D c M C »7"D.
Thus NP(M) C A7™"D C A™"7" M and we let N3 be the restriction of NZ to M. The equation
Né‘/‘ oD 00 =p(Em)/E)) - Pprjopo Né/’ is satisfied because it is satisfied on D by (4-2). Therefore
we have constructed a (¢, Ny)-module M(D, ®, N, q) := (M, Dy, Né/l) over X. Note that in terms
of Kisin’s description of D= Dre, N :0®(@X® Ko) %’E?’ D the differential operator N. é\/‘ is given as idp Q Ny.

Example 4.4. The (¢, N)-modules with Hodge—Pink lattice from Example 2.9, corresponding to the
cyclotomic character, give rise to the following (¢, Ny)-modules of rank 1 over X = Spa(Q,, Z,).
For D = (Ko, ® = p~', N = 0,q = E(u)p) we obtain D = (#"", &p = p~!, Ny) and M =
)»935?’”. On the basis vector A of M the actions of ®p and Ny are given by ®p(p(1)) = p~lo(L) =
(E(0)/pE(u)) A and Ny (1) = —u(dAr/du) A. So we find M(D) = (A", @ v = (E(0)/pE ), N&)
with Né"l (f)=Nv(f)—u(dr/du) f. Similarly for D= (Ko, ®=p, N=0, q=E(u)"'p) we obtain D =
(B>, op = p, Ny) and M =1~ 2D which leads to M(D) = (8", @ = (pE(u)/E(0)), N&)
with NJU(f) = Ny (f) +u(dr/du) f.

To define the quasi-inverse functor D let (M, ® ., Né"l) be a (¢, Ny)-module over X. We denote by
e: X Xq, Ko — X xg, U the isomorphism x — (x, 0) onto the closed subspace defined by u = 0. Let
(D, ®,N) :=e*(M, O, Né"’). Itis a (¢, N)-module over X because N is clearly Ox ®q, Ko-linear
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and ¢*(E(u)/E(0)) =1 implies N o ® = p - ® o ¢*N. By [Pappas and Rapoport 2009, Proposition 5.2]
there is a unique O Xx@p[u-linear isomorphism

17 ~ 1
fipf*D[x]—)M[x] (4-6)
satisfying £ o pr* ® = ® 4 o ¢*£ and e*& = idp. In particular the composition pr* ® o (p*£&)~! =
£' o @, induces an isomorphism ¢*M @ B, => D ® ek, By, = p of B, -modules. We set
q:=npo(£®ids, ) '(M®B ). Then D(M, ®pq, NG') := (D, @, N, q) is a (¢, N)-module with
Hodge—Pink lattice over X by Lemma 2.7 and the following lemma.
Lemma 4.5. Locally on a covering of X by affinoids Y = Spa(A, A™) there exist integers h, n with

EW)"®p(9* M) C M C E )" ® r(¢* M) such that the quotients
E)™"®pm@*M)/M  and  M/E )" ® pi(@* M)

are finite locally free over A.

Proof. We may assume that X = Y = Spa(A, A™) is affinoid. Then the existence of 4 and n follows
from the finiteness of M and ¢* M. Let m C A be a maximal ideal and set L = A/m. Let 7| <r < 1
and set M := F(Y xq, Bo,r, M) and (p*/\/l =T'(Y xq, Bjo,,1, 9*M). Then M/E )" ®p(p* M) =
ME ()" D py (go*/\/l) Consider the exact sequence

0— Ew)"y oM DM M—)M/E(u)”¢M(¢*M)—>O

in which the first map is injective because E(u) is a nonzero-divisor in A@@I,B[o,,]. We tensor the
sequence with L over A to obtain the exact sequence of L ®q, Bjo,,;-modules

0T — L@y Ew)'o"M 22 [ 9, M — L@ (M/Ew)" ®p(p*M)) — 0

with T = Torf (L, M/E(u)"®pq ((p*/\/l)). Since L®q, Ko is a product of fields, L ®a, Bjo,/ is a product
of principal ideal domains by [Lazard 1962, Corollary of Proposition 4]. Since E (u)"*" annihilates
L ®a M/Eu)" ®p(¢* M) the latter is a torsion module over L ®q, Byo, . It follows that id, @D 4 is
a morphism of free modules of the same rank over a product of principal ideal domains whose cokernel
is a torsion module. It is a direct consequence of the classification of finitely generated modules over a
principal ideal domain that the map id; ® ® 4 then has to be injective. It follows that

0=T =Tor{ (L, M/Eu)"®m(p*M)) = Tor;™ ((Am/MmAw), (M/E@)"®p(0* M))m).

Since (M/E (u)" @ r(¢*M))y, is finite over the noetherian local ring Ay, it is locally free by the local
criterion of flatness [Eisenbud 1995, Theorem 6.8]. It follows that M /E (u)" ® r(p* M) is locally free
as an A-module. Finally, the two last objects in the short exact sequence

-E(u)”*h
—_

0— E@u) " ®p(p* M)/ M MJE@)" ™" M — M/E@)" ®p(p* M) — 0

are flat and hence so is the first (all its higher Tor-terms have to vanish). As E (1) " ® y(¢* M)/ M is
also finite as an A-module it follows that it is finite and locally free over A. U
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Theorem 4.6. For every adic space X € Adgp the functors M and D constructed above are mutually

quasi-inverse equivalences between the category of (¢, N)-modules with Hodge—Pink lattice over X and
the category of (¢, Nv)-modules over X.

Proof. We must show that the functors are mutually quasi-inverse. To prove one direction let (D, ®, N, q)
be a (¢, N)-module with Hodge—Pink lattice over X and let (M, ® 4, Né‘/‘) = M(D,d,N,q). By
construction e* M = D, and under this equality e*® 5 corresponds to ®. Since ¢*A = 1, formula (4-5)
shows that e*NéV‘ corresponds to N on D. By the uniqueness of the map & from (4-6), its inverse & ! equals
the inclusion M < D[1/A], by which we defined M. This shows that np o (¢ ® idBoX)_l MeBS)
equals q and that D o M = id.

Conversely let (M, ® 4, Né‘/‘) be a (¢, Nv)-module over X and let (D, ®,N,q) = D(M, Dy, Né/l).
Via the isomorphism & from (4-6), M is a ¢-submodule of pr* D[1/A]. By construction of q and

M(D(M, @ pq, NG C pr*D[1/A],

the latter submodule coincides with M modulo all powers of E(u). Since both submodules have a
Frobenius which is an isomorphism outside V(E(u)) they are equal on all of X XQ, U. It remains to
show that Né‘/t is compatible with Ngr*D under the isomorphism & : pr*D[1/A] => M[1/1]. We follow
[Kisin 2006, Lemma 1.2.12(3)] and let 6 := £ o Ngr*D — N'o&. Then o : pr*D[1/A] — M[1/A] is
@ XXQI)[U—linear and it suffices to show that o (D) =0. By (4-5) both N@r*D and Né/‘ reduce to N modulo u.
Therefore o (D) C uM[1/X]. One checks that 0 o ®p«pop = p(E(u)/E(0))- P rio@oo and this implies
£ ev (o[ ]) cua 5]

By induction o (D) C u”i/\/l[l/)\] for all i and hence o (D) = 0. This shows that also M o D is isomorphic
to the identity and proves the theorem. U

o(D)=o0o0 chr*D((p*D) =p

Corollary 4.7. The stack %a"}\,’ PRA isomorphic to the stack whose groupoid of X-valued points for

X e Adllf-tu consists of (¢, Nv)-modules (M, P pq, Né\") over X satisfying

DM CE@ ™= T N @ (g™ M)

Oxxu

with equality for j =1k M. Here u; is viewed as a Z-valued function on X xq, K.

Proof. This follows from the definition of the functor D, in particular the definition of the Hodge—Pink
lattice. ]

e v ad v ad % ad v
Definition 4.8. We define substacks 7" W C X . A,y <, CH\N < Hy ), CHG and AL, C

%aé - Foran adic space X € Adg‘ﬂ the groupoid %‘jN’ M (X) consists of those (D, ¢, N, q) € %Et(}‘v, M(X )

for which the associated (¢, Ny)-module (M, @, Né’l) satisfies Né\/‘ (M) € M. The groupoids

L%’jZN, (X, A, (X) and A, (X) are defined by the same condition. (Note that on the latter two

N =0, but Ny' £0.)
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v ad \% ad v ad \% ad
Theorem 4.9. The substacks %,N,u - c%‘fp,N’M, c%’fp’NéM C %‘;}’N’ﬁﬂ, %,u C %,M and %,ﬁu C %,j,u,
are Zariski closed substacks. The substack %VN u coincides with the image of the zero section of the

ad ad
vector bundle %,N,u — gw,N,u'

Remark 4.10. We can consider a family of (¢, Nv)-modules over QZ?N, .- We pull back the canonical
family of (¢, Ny)-modules on %ﬁ(}v, u along the zero section. Then for x € @;?N’ u(@ p) the fiber of this
family at x coincides with the (¢, Nv)-module that Kisin [2006] associates with the filtered (¢, N)-module
defined by x.

Remark 4.11. If instead of the isomorphism np from (4-3) we choose np = id, as in Remark 4.3 (2),
the above results remain valid, except that t%’j/fN’ ., coincides with the image of a different section. This
section is obtained by composing the zero section with the inverse

n;l d® f> Y, N(d)®(1/il)log(1 — (E(u)/E(O)))i - f

of the automorphism 7p. It sends a filtration F* to nél (Yiez E@)™(F Dk) ®rgk By). Note that both
sections coincide on the closed substack QS?M where N = 0.

Proof of Theorem 4.9. To prove that the substacks are closed let D € %a"}v’ < (X) for an adic space
X e Adg‘u and let (M, ® 4, Né/l) = M(D) be the associated (¢, Nv)-module over X. Locally on X
there is an integer 7 with Né\/‘ (M) C A7 M by Lemma 2.7 and the construction of N&*. The quotients
(X‘hM/M) ® (%’E?’l)/(go” (E(u))h)) are finite locally free as Ox-modules for all » > 0. Now the
condition Né\/‘ (M) C M is equivalent to the vanishing of the images under Né‘/t of a set of generators
of M in (A" M/M) & (B /(9™ (E(u))")) for each n > 0. Due to [EGAT 1971, Lemma 9.7.9.1] the
latter is represented by a Zariski closed subspace of X.

We show that the closed substack %YN, , of %“‘}\, .. coincides with the image of the zero section.
Since Né) on D := D ®oyxk, %’&1) induces the differential operator idp @ Ny on p := D Qo ek, [B%J(gx
under the map iy = np oinclusion : D < p from (4-3), it follows directly that the image of the zero section
is contained in %YN, u To prove the converse we may work on the coverings X := (Px,.4 xXq, Ok.d, ,l)&‘d
of A2 , and (Pk,q xq, Flagg 4 ,)* of 3%, because the zero section and .7, , are both invariant
under the action of (Resk,/a, GL4 k,)E,. We first claim that both have the same underlying topological
space. By [Bosch et al. 1984, Corollary 6.1.2/3] this can be checked on L-valued points of X for finite
extensions L of E,. For those it was proved by Kisin [2006, Lemma 1.2.12(4)] that the universal
Hodge—Pink lattice q at L lies in the image of the zero section if the pullback M to L of the universal
(¢, Nv)-module on X has holomorphic Né\". From this our claim follows.

To prove equality as closed subspaces of X we look at a closed point x € X and its complete local
ring @X,x. Let m, C 6X,x be the maximal ideal, let I C 6x,x be the ideal defining %YN,M’ and set
R, := Ox /(m} +1I). Then R, is a finite-dimensional Q ,-vector space by [Bosch et al. 1984, Corollary
6.1.2/3]. We consider the universal D R, = (D, @, N, q) over R, by restriction of scalars from R, to Q,
as a (¢, N)-module 1_3 with Hodge-Pink lattice over Q, of rank (dimg, R,)(tkg,gk, D) =dimg, D. Itis
equipped with a ring homomorphism R, — End(é). Since Né\’t is holomorphic on M(Dp ), Kisin [2006,
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Lemma 1.2.12(4)] tells us again that q = q(F*) for the filtration F7* = ]—"C'I from Remark 2.8. This shows
that the ideal J defining the zero section in X vanishes in R,. Since this holds for all », the ideals / and
J are equal in /@X,x. As x was arbitrary, they coincide on all of X and this proves the theorem. U

5. Weak admissibility

Similar to the case of filtrations, one can define a notion of weak admissibility for (¢, N)-modules with
Hodge—Pink lattice and develop a Harder—Narasimhan formalism. Compare also [Hellmann 2011, §2] for
the following. Recall that f =[K(:@Q,] and e = [K : Ko].

Definition 5.1. Let L be a field with a valuation vy : L — I'; U {0} in the sense of [Huber 1993, §2,
Definition] and set I‘? =T ®zQ.
(i) Let D= (D, ®, N) be a (¢, N)-module over L. Then define

ty(D) := vy (det, /)" e TQ,

If L D K we are in the situation of Remark 2.4 and have ¢y (D) = vz (det, (®7)o) /.
(i) Let D= (D, ®, N, F*) be a K -filtered (¢, N)-module over L. Then

th(D) = % ZidimL(f"DK/f"“DK) Q.
ieZ

(iii) Let D= (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice of rank d over L. Then we set
1/, . 1 ..
tu(D) = g(dlmL(q/t"p) —dim (p/1"p)) = of dimg (q/1"p) — ntk D € Q

for n >> 0, which is independent of n whenever t"p C q. If L is an extension of K and (y )y =mp(Spec L)
is the Hodge polygon of D (see Definition 2.11) then t5 (D) := (1/(ef)) ZI/, Wy + -+ oy q. 1f the
Y-component ¢y, satisfies /\dq,/, =t /\de then t5(D) = (1/(ef)) }_ hy. Moreover 14 (D) =
tH(D1¢’N7‘Fq.)'

(iv) Let D be a (¢, N)-module with Hodge—Pink lattice (or a K-filtered (¢, N)-module) over L. Then

its slope is defined to be
MD) = (p)"® -ty (D)"HV TP,

Definition 5.2. (i) A (¢, N)-module with Hodge—Pink lattice D = (D, ®, N, q) over a field L endowed
with a valuation is called semistable if A(D") > A(D) for all D' = (D', ®|g+p, N|p/, gN D’ ®L®q, Ko BL)
where D' C D is a free L ®q@, Ko-submodule stable under ¢ and N.

(ii) A K-filtered (¢, N)-module D = (D, ®, N, F*) over L is called semistable if A(D") > A(D) for all
D'= (D, ®|gp, Nlp, F°N D’K) where D’ C D is a free L ®q, Ko-submodule stable under @ and N.

(iii) A (¢, N)-module with Hodge—Pink lattice (or a K -filtered (¢, N)-module) is called weakly admissible
if it is semistable of slope 1.
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Lemma 5.3. Let (D, ®, N, F*) be a K -filtered (¢, N)-module over a valued field L and let (D, ®, N, q)
denote the (¢, N)-module with Hodge—Pink lattice associated to (D, ®, N, F*) by the zero section
F* = q=q(F*) of Remark 2.8 (3). Then (D, ®, N, F*) is weakly admissible if and only if (D, ®, N, q) is.

Proof. 1t is obvious from the definitions that ty (D, ®, N, F*) =ty (D, ®, N, q(F*)). Further we have to
test on the same subobjects D’ C D. Hence the claim follows from the fact

q(F N D) =q(F)ND’ ®Loq, ko BL,

which is obvious from the description of ¢(—) in Remark 2.8 (3) by choosing an L ®q, K -basis of Dk
adapted to the submodules F D} and F ‘Dg. (]

Proposition 5.4. Let (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice defined over some valued
field L. Then there is a unique Harder—Narasimhan filtration

O=DycDycCc---CcD,=D

of (D, ®, N, q), by free L ®q, Ko-submodules stable under ® and N such that the subquotients D; / D;
with their induced Hodge—Pink lattice are semistable of slope ; e T @ Qand A < p < -+ < A,

Proof. This is the usual Harder—Narasimhan formalism; see [Fargues and Fontaine 2018, 5.5.1] for a
fairly general exposition. See also [Hellmann 2011, Proposition 2.19]. ]

Corollary 5.5. Let (D, ®, N, q) be a (¢, N)-module with Hodge—Pink lattice over L and let L' be an
extension of L with valuation vy extending the valuation vy. Then (D, ®, N, q) is weakly admissible if
and only if (D', ®',N',¢)=(DQ, L', ®® id, N® id, q® L') is weakly admissible.

Proof. This is similar to [Hellmann 2011, Corollary 2.22].
If (D', ®', N, q') is weakly admissible, then every (®, N)-stable subobject Dy C D defines a (&', N')-
stable subobject D} = Dy ® L’ of D’ such that

A(D1, ®lg+p,, Nlp,, 4N D1 ®rgk, Br) =A(D, ¥'lyp;, N'lp;, a' N D} ®rgk, Br).

It follows that (D, ®, N, q) is weakly admissible, as (D', ®', N, ¢') is.

Now assume that (D, ®, N, q) is weakly admissible. We may reduce to the case where L’ is finitely
generated over L and Aut(L’/L) is large enough. As in the proof of [Hellmann 2011, Corollary 2.22]
one shows that the action of Aut(L’/L) preserves the slope of ®’-stable subobjects of D’. Hence the
Harder—Narasimhan filtration of D" descends to D. As D is weakly admissible, this filtration can only
have one step. O

Theorem 5.6. Let 1 be a cocharacter as in (2-5) with reflex field E,.. Then the groupoid
X~ {(D, D, N, q) €, N <u(X) | DRk (x) is weakly admissible for all x € X}

is an open substack (%fpa(}\’,wj M of %a‘}v < on the category of adic spaces locally of finite type over E,,.



The universal family of semistable p-adic Galois representations 1087

Proof. This is similar to the proof of [Hellmann 2013, Theorem 4.1].
ad,wa

It follows from Corollary 5.5 that Ay N < is indeed a stack, i.e., weak admissibility may be checked
over an fpqc-covering. Hence it sufﬁces to show that the weakly admissible locus is open in

Xy = Pxya X, Ok.d=<u-

Let us denote by Z; the projective Pk, s-scheme whose S-valued points are given by pairs (x, U)
with x = (g, N) € Pk,4(S) C (Resky/a, GLa k,) x (Resk,/q, Matixq) and an Og ® Ko-subspace
UCOs®K gad which is locally on S free of rank i, a direct summand as Og-module, and stable under the
action of ®, = g-¢ and N. This is a closed subscheme of the product Pk,.¢ X, Quotpi| g, | @, (Where
Quotpa| g, @, is Grothendieck’s Quot-scheme which is projective over Q,; see [Grothendieck 1962,
n°221, Theorem 3.1] or [Altman and Kleiman 1980, Theorem 2.6]), cut out by the invariance conditions
under ®, and N. Further write f; € I'(Z;, Oz,) for the global section defined by

filg, U) =det(g- ) |y = det(g- 9(8) - " (©) Iu,

where f =[Kp:Q,], and where the determinant is the determinant as Oz,-modules. Write U for the
pullback of the universal (®, N)-invariant subspace on Z; to the product Z; x Qk 4 <., write q for the
pullback of the universal B*-lattice on Qg 4.<, t0 Z; X Qk 4.<u, and write p = (BT)® for the pullback
of the tautological BT-lattice D ® B* on Pk, 4 to Z; x Qk.4.<,- Fix integers n, h with t"p C q C t™"p
and consider the complex of finite locally free sheaves on Z; x Qk 4, <u

P Pri=1""p/t"p S t7hp/q@ (D/U @ T'BY/1"BY) = Py

given by the canonical projection D — D/U in the second summand. Let 7} be the functor from the
category of quasicoherent sheaves on Z; X Qk 4 <, to itself defined by

Ti:M>ker(6Qidy : PLOM — PyQ M).

If M = «(y) for a point y = (gy, Ny, Uy, qy) € Z; X Qk.a,<u then T1(k(y)) = (q, Np;y[1/tD/t"piy,

where we write p; , 1= Uy ®(y)0k, B;’(y). We consider the function

hi:Zi x Qg a,<u — Q,

| . . 1
o dimen Tk () = ni =111 (Uy. 8, (14@9) o, Nloy, 0y i 7 ]). (5-)

We write Z; ad and Q¢ K.d.<y for the adic spaces associated to the varieties Z; and Qk q4,<,. Similarly we

V=

write had for the function on the adic spaces Z; ad . gad K.d.<y, defined by the same formula as in (5-1). By
semicontinuity [EGAIII, 1963, Théoreme 7.6.9], the sets

Yim=1{y € Z}x Q% 4, | hi(y) = m}
are closed and hence proper over X/ ad P;‘(do 7 X, Qu K.d.<p- We write
P Yim — de

for the canonical, proper projection.
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If we write X C Xﬁd for the open subset of all (D, ®, N, q) such that A(D, ®, N, q) = 1, then

> 2
Xo~ X3t =XoN | Jprim ({y € Yim [vy(f0) > vy (2)/ ")), (5-2)
i,m
where the union runs over 1 <i <d —1 and m € Z. Indeed, let x = (D, ®, N, q) be an L-valued point
of Xo, then any proper (&, N)-stable subspace of D’ C D defines (for some 1 <i < d — 1) a point
y= (D', q) of Z; x Qk.a,<, mapping to x. This subspace violates the weak admissibility condition if
and only if

-2 2 / ’ 27
vy, (fi) = in(D, ¢|¢*D/)f > vy (p)f tn (D', @,9N(D'®By(v))) vy (p)f h,(y)’
and hence (5-2) follows. On the other hand the union

U bt ({5 € Yim [ v3(f) > vy ()7 ™))

i,m

is a finite union, because Y; ,, = & form > hi and Y; ,, = Zl'f‘d X Q%i,d,ﬁu for m < —ni. Therefore the
union is closed by properness of the map pr; ,, and the definition of the topology on an adic space. The
theorem follows from this. [l

We define the subgroupoid c%’fpﬂ‘za C #7%, as follows. Given an adic space X and (D, @, N, q) €
%foad we say that (D, ®, N, q) € %’ﬁdﬁ’za if and only if (D, ®, N, q) ® «(x) is weakly admissible for

TS

: : ad,wa ad ad,wa ad  yad,wa ad
all points x € X. We define the subgroupoids 7 \" C % . A5, C AL D, N, C Dy, and

9;‘1,;“’3 C @Sdﬂ in the same manner.

: ad, wa ad ad, wa ad ad, wa ad ad, wa ad
Corollary 5.7. The subgroupoids 7, " C A <> g Ny CHgn o Hggi CHpps Zony CLp.N

and dehwa C .@;dﬂ are open substacks.

Proof. This follows by pulling back %’j;(}\,wg . C j‘/jpa"}v’ -, along the morphisms %’;ﬁdﬁ i %’?2(11\/, “u

ad ad ad ad ad ad ad ad :
%JVJL — %,N,j,u’ t%’jNL — %’N’jdw .@w’N,Md—> %’N’ﬁﬂ and Zp,% — %,N,ﬁu’ respectively. Here
. a a ad a . g 1
we use the fact that the zero sections Do N ™ HpN < and 7, — H N <y PrEServe weak admissibility
by Lemma 5.3. (I

Remark 5.8. Note that the projection

. ad ad
pr.%’N’/L — Qw,,\,’#
does not preserve weak admissibility. We always have pr‘l(.@;fjl’vva) C %a(;vw: and hence especially

any section of the vector bundle 7%, ~— 23

N p.N ., MAps the weakly admissible locus to the weakly

admissible locus.
Indeed, let D = (D, @, N, q) be a point of %}T%,u over a field L whose image (D, @, N, }—5) in
@;?N’ .. s weakly admissible. Let D' C D be an L ®q, Ko-submodule which is stable under ® and N,

and set p’ := D' ® gk, B} . Then q' := qNp’[1/¢] satisfies g’ Np’ C t'qNp and ]-"(;,D’K C ]-"éDK N D%.
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This implies
t (D', @ly<pr, Nlp, q') =ty (D', @lyspr, Nlpr, Fo) <t (D', @lgpr, Nlpr, Fy N D)
with equality for D’ = D, and
UL(p)lH(D/sq)|¢*D”N|D’vq,) > UL(p)lH(D/sq>|<p*D”N‘D’v]:aﬂD/K) > ZN(D/, <D|¢*D’)

with equality for D’ = D, because (D, ®, N, F3) is weakly admissible. Therefore also D is weakly
admissible. This proves that pr~! (@;?;VVTZ) C %a(;ij . However, in general this inclusion is strict as can
be seen from the following example.

Example 5.9. Let K = Ko=Q,,d =2 and = (2, 0). We consider points D = (D, ®, N, F*) in @;?N,u
over a field L with ® = pId, and N = 0. The filtration is of the form D = F'D > F!'D = 7’D =
(z) -L D> F3D = (0) for some (Z) € D. None of these points is weakly admissible, because the subspace
D = (Z) -L C D has ty(D') = v (p) and F2D' = D', whence t(D') =2 and A(D') = v (p) < 1.
The preimage of such a point in ji’j;f‘}v’ .. is given by a Hodge—Pink lattice q with p C q C t~2p with
Hodge weights 0 and —2. This means that q = p + (zix:) . t‘sz for some (ﬁ:) € D. If the vectors

(%) and (’;:) are linearly dependent over L then D = (D, ®, N, q) is not weakly admissible, because
the subspace D' = (ﬁ) L CDhasty(D)=vi(p)and q :=qN D' ®; B, =¢t72D' ®; B}, whence
ty(D') =2 and A(D") = v.(p) < 1.

On the other hand, if the vectors () and (Z:) are linearly independent over L then D = (D, ®, N, q)
is weakly admissible, because then q’ C t~!'D’ ®; BZF for any subspace D' = (Z) - L C D, whence
in(D") = vr(p), tg(D') < 1 and A(D') > 1. Indeed, () -t~ € g’ would imply that (}) - 172 =
(ﬁﬁﬁ:) . t_z/- (c+1td) = C(Z) A4 (c’(i‘)) +c(Zi))t‘l mod p for ¢, ¢’ € L. This implies (Z) = c(Z) and
/() +¢(%) = 0 contradicting the linear independence.

Thus the weakly admissible locus %’jﬁ%wa in the fiber of J7, n , over the point (&, N) = (pIdy, 0) in
_@ad,wa

Pg, » equals the complement of the zero section, while this fiber in 0N 1t

is empty; see also Lemma 5.3.

We end this section by remarking that the weakly admissible locus is determined by the rigid analytic
points, i.e., those points of an adic space whose residue field is a finite extension of Q,,.

Lemma 5.10. Let X be an adic space locally of finite type over E, and let f : X — %‘f}véu be a

morphism defined by a (¢, N)-module with Hodge—Pink lattice D. Then f factors over %’fi\,wg . ifand

only if D ® k (x) is weakly admissible for all rigid analytic points x € X.

Proof. One implication is obvious and the other one is an easy application of the maximum modulus
principle. It is proven along the same lines as [Hellmann 2013, Proposition 4.3]. ]

Remark 5.11. The analogous statements for the stacks 2% ¢ ad  pdwa — ypad APV C

d ad,wa d d d e.2H 9.2 TN, ©,N, i’
a )kl pal ad,wa a . . .
jfjp, o .9% N C ‘Qw, N and .@(p’ o C 9(,:, , are also true and are a direct consequence of their construction.
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6. The étale locus

Let us denote by By, ) the closed annulus over K of inner radius r and outer radius s for some r, s €
[0, 1) N p@. For an adic space X € Adg we write
0.1 0.1
D =pry, OF |, C BV =pry , Oxxu,
[r,s] + [r,s]
MX = er,* OXXB[,W] C C%X = er,* OXXB[;‘,.S] °

The Frobenius ¢ on %E?’l) restricts to a ring homomorphism ¢ on sz}go’l). For this section we adapt the
notation from [Hellmann 2013] and write r; = /7" Then @ restricts to a homomorphism

Q: %’g’” — %g"“].

Definition 6.1. A ¢-module of finite height over 4240’1) is an %)EO’I)—module Ot which is locally on X
free of finite rank over &%)[(0’1) together with an injective morphism @ : ¢*90t — 91 of ,;z%)go’l)—modules
such that coker @ is killed by some power of E(u) € W[u]l C ﬂ)[(o’l).

Inspired by Example 4.4 we define the (¢, Nv)-module %E?’l)(l) over X to be
(", dai = PE@)/E0), N3
with Né‘/’(f) = Nv(f)+u(dXr/du) f. For an integer n € Z we set
By (n) = B V(D = (B (PEW)/EO)", N

with NM(f) Nv(f)+nu(dir/du) f. Given a (¢, Ny)-module (M, ® ) on X we write (M, D) (n)
for the twist M ® #0D %[ )(n) Note that p/E(0) € W™ since E(u) is an Eisenstein polynomial. Thus
forn > 0 we have an obvious integral model <7 [0. ])(n) for 29D (n) which is a g-module of finite
height over 42% ‘D (by forgetting the Ny-action). Further we write Al%D () = Hspa(@,,2,)(n) for the
W lu]l-module of rank 1 with basis e on which @ acts via ®(e) = (E(u)/(pE(0)))"e.

Definition 6.2. Take (M, ® 4, Né’l) to be a (¢, Nv)-module over an adic space X € Ad}gp.

(i) The module M is called étale if there exists an fpqc-covering (U; — X), an integer n > 0 and
@-modules (91;, Poy,) of finite height over %IB?’U such that

(M, Dr) ()|, = (M, Do) ® o) By

(ii) Let x € X; then M is called étale at x if there exists an integer n > 0 and a (k (x)™ ®z, W)llul-lattice
M C M(n) ® k(x) such that

E(u)hm C (I)M(n)(w*m) cMm
for some integer 2 > 0.

Theorem 6.3. Let X be an adic space locally of finite type over Q,, and let (M, ®) be a (¢, Nyv)-module.

Then the subset '
X"™ = {x € X | M is étale at x}

is open and the restriction M|xin is étale.
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This is similar to the proof of [Hellmann 2013, Theorem 7.6]. However, we need to make a few
generalizations as we cannot rely on a reduced universal case. Given an affinoid algebra A and r, s €
[0, )N p@ we write

B! = I(Spa(d. A°). 4l 1o)) = ABa, B = Aw(T/s. r/T).

AT =T (Spa(A, A%), gl 40) = A°®z, AU = A (T /s, 1/ T).

The following is the analogue of [Hellmann 2013, Theorem 6.9] in the nonreduced case.

Theorem 6.4. Let X be an adic space locally of finite type over Q, and let N be a family of free ¢-modules
of rank d over %g’”]. Assume that there exists x € X and an e;z%)gr’m ® K (x)°-lattice Ny C N ® k(x) such

that ® induces an isomorphism

P - (p*(Nx ®kQ7}[(r,r2] %)[(r»rl]) = NX ®(Q7)[(r,r2] ﬂ/)[(rurz]' (6-1)

Then there exists an open neighborhood U C X of x and a locally free Ml[]r’m-submodule N C N of rank d
such that

N ®K(x)o = NX9
q>((p*N|U><B[r,r1]) = N|UXB[’1v"2J’
N ®$27[[]r,r2] %5,72] =N|U

Proof. We may assume that X = Spa(A, A°) is affinoid and we may choose a Banach norm | - || and a
Z ,-subalgebra AT ={x € A | |lx|| <1} C A° such that A= A"[1/p] and X = Spa(A, AT) =Spa(A, A°).

Choose a basis e, of N, and denote by Dy € GL, (,;zf)[(r’rzj ® K (x)°) the matrix of ® in this basis. After
shrinking X if necessary we may lift the matrix Dy to a matrix D with coefficients in I'(X, ;zf)[(r’”]).
Localizing further we may assume that D is invertible over I'(X, 42%)[(”2]), as we only need to ensure
that the inverse of its determinant has coefficients a; € A™, i.e., ||a;|| < 1 for some Banach norm || - ||
corresponding to A1, Let us write f € A, (T /s, r/T) for this determinant and write f = f* + f~ with

Fegalf endT)l r=Ta() eals)

i>0

We claim that o;, B; € Ay, for all i. But as «;, B; 2%, () this is clear for all but finitely many i. Moreover
for all i > 0 we have «;(x), B;(x) € k(x)y,. Hence after localization on X we may assume that all
coefficients are integral.

Fixing a basis b of N we denote by S € GLd(BZ’r]) the matrix of & in this basis. Further we denote
by V alift of the change of basis matrix from the basis e, to the basis b mod x. From now on the proof is
the same as the proof of [Hellmann 2013, Theorem 6.9]. (|
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Proposition 6.5. Let X = Spa (A, A™) be an affinoid adic space of finite type over Q,,. Let r > || with
r € p® and set r; = r'/?'. Let M, be a free vector bundle on X x Bio,,] together with an injection

q> . (p*(Mr|XXB[0,r1]) - Mr

with cokernel supported at the point defined by E (u). Assume that there is a free AK’Q] =A™ (T/ry,r/T)
submodule

N, CN, =M, ®B[O,r2] BK’rZ]
A
of rank d, containing a basis of N, such that
[rrlyy _ [r1,r2]
®(¢* (N, ®Al[4r.r2] A ) =N, ®AE;-,r2] AAI 2l

Then fpgc-locally on X there exists a free AE?’FZ]-submodule M, C M, of rank d, containing a basis of M,
such that

D : 0" (M, ® oy A > M, (6-2)
A
is injective with cokernel killed by some power of E (u).

Proof. This is the generalization of [Hellmann 2013, Proposition 7.7] to our context. We also write M,
for the global sections of the vector bundle. Write M| = M, N N, C N,. This is an AT(T/rp)-module.
Further we set

M, =Im(M)® 0 AL — A N M] [ %] CN,.
A

Then M, is a finitely generated A* (T /r;)-module as the ring is noetherian. First we need to make some
modification in order to assure that M, is flat. Let ) = Spf W (T /r,) denote the formal model of By ,,j and
let Y = Spf W(T /ra, r/T) denote the formal model of By, ,,). Note that M,[1/p] = M, and hence M,
is rig-flat. By [Bosch and Liitkebohmert 1993, Theorem 4.1] there exists a blow-up X of Spf(A) such
that the strict transform M »of M, in X x Y is flat over X. We write M, % (resp. N, 3) for the pullback
of M, (resp. N,) to the generic fiber of X x Y (resp. to X x V). If we set 1\71; = M, NN, 7 then one
easily finds
i, = (1,8 oy 5" 0 M;[%].

It follows that M, is stable under ®. Further, as M, is flat, it has no p-power torsion and hence we
find that the formation (M, %, N, 7) > M, commutes with base change Spf O — X for any finite flat
Z p-algebra O; compare the proof of [Hellmann 2013, Proposition 7.7]. Especially this pullback is free
over O®z, W(T/r,) and the cokernel of ® is annihilated by E (u)* for some k,, > 0 depending only on
the Hodge polygon p (for an arbitrary finite flat Z,-algebra O this follows by forgetting the O-structure
and only considering the Z ,-structure).

It follows that the restriction of M » to the reduced special fiber X, o of X is locally free over X, o x Al
and hence, as in the proof of [Hellmann 2013, Proposition 7.7] we may locally lift a basis and find that M -
is locally on X free over X' x .
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It is only left to show that E (u)*+ coker ® = 0 over X. To do so we may localize and assume that X is
affine. By abuse of language we denote it again by Spf AT and write N = E (u)** coker ®. If I denotes
the ideal of nilpotent elements in AT, we need to show that the multiplication / ® 4+ N — N is the zero
map. Indeed, if IN =0, then N does not change if we pull back the situation to the reduced ring A1 /1.
However, for A/I Nakayama’s lemma implies that E (u)** coker ® vanishes if it vanishes after all possible
pullbacks Spf O < X. We already remarked above that in the case AT = © a finite flat Z p-algebra the
cokernel is killed by E (u)*».

We now show that I N = 0. For some k > 0 we know that ¥ ® 4+ N — N is the zero map, as /I is
nilpotent. Then N = N /I¥ and the multiplication map I*~'® 4+ N — N factors over I*~!1/I*@,+ N - N
and this is a map of finitely generated A*/I¥-modules which vanishes after pulling back to a quotient
AT /I¥ — O onto the ring of integers in some finite extension L of Q p- This can be seen as follows.
The map on this pullback is induced by the pullback of the multiplication to a quotient of A™ which is
finite flat over Z,, and where N is known to vanish by the above. It follows that 1 =l®a+ N — N is the
zero map and by descending induction we find that / acts trivially on N. ]

Proof of Theorem 6.3. Fix some r > || and redefine

MlxxB,,, ® K (x) contains an AV @ ke (x)° lattice N,
X™={xeX such that ® induces an isomorphism
" (Nx ® o Ay ") 25 Ne® iy aty !

By Theorem 6.4 this subset is open and we need to show that the restriction M| yin is étale. Then it
follows directly that X" coincides with the characterization in the theorem, as the notion of being étale
at points may be checked fpqc-locally by [Hellmann 2013, Proposition 6.14].

However Proposition 6.5 provides (locally on X™™) an integral model 9t ,,; over X x By, ,,}. Now
we can glue Mo ,) and *Mo ,,) over X x By, ,, along the isomorphism ®. Hence we can extend
Mo,r,] to a model My ,; over X x Byo, ). Proceeding by induction we get a model 91 on X x U and
[Hellmann 2013, Proposition 6.5] guarantees that 91 is locally in X free over szf)[(o’l) (it is assumed N is
free in [loc. cit.]. However, its proof only uses the fact that the restriction of N to an annulus X x [B%[” /0]
is free. This is always true after localizing on X; see [Liitkebohmert 1977]). Hence it is the desired
étale model. O

Corollary 6.6. Let 1 be a cocharacter as in (2-5) with reflex field E,,. Then there is an open sub-
stack %ﬁ‘j{,{nﬁt e %ﬁ‘}w <y Such that f : X — %ﬁ(}v, -, Jactors over %a’c}\’,l,n; . [f and only if the family
(M, @ g, NYY) defined by f and M is étale.

Proof. Let M (D) be the universal (¢, Ny)-module over P By Theorem 6.3 the set it

o.N,=p” No=p =
{x e %ﬁt}vx u' M (D) is étale at x} is open and above it M (D) is étale. If f factors over ij; A’,{“ﬁ M then

(M, Dy, Né\/‘) is the pullback of the universal M (D) and hence is étale. Conversely if (M, ® 4, Né/‘)

is étale, then it is étale at all points and f factors over L%’j;s\’,m; ,.» because the notion of being étale at

points may be checked fpqc-locally by [Hellmann 2013, Proposition 6.14]. ]
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Pr(:([i)g:ition 6.7. Let L be a finite extension of E,,, then %ﬁ’,{i L(L)= %fpai\,wg ,.(L) and hence %a‘?\,m; . C
KN =

Proof. We show that being weakly admissible translates into being pure of slope zero over the Robba ring
(in the sense of [Kedlaya 2008]) under the equivalence of categories from Theorem 4.6. However, the
proof is the same as in [Kisin 2006, Theorem 1.3.8]. One easily verifies that the functor M preserves the
slope and that the slope filtration on the base change of M (D, ®, N, ) to the Robba ring extends to all
of M(D, ®, N, q). Compare [Kisin 2006, Proposition 1.3.7].

As in [Hellmann 2013, Theorem 7.6 (ii)] the second part is now a consequence of the fact that
%’jpa(}vwg . C %‘j;‘}v’ ~,, 1s the maximal open subspace whose rigid analytic points are exactly the weakly
admissible ones, see Lemma 5.10. O

Pappas and Rapoport [2009, 5.b] defined a period morphism from a stack of integral data to a stack of
filtered p-modules as follows. Let d > 0 and let & Gm’@p — f@p be a cocharacter as in (2-5). Pappas
and Rapoport [2009, 3.d] defined an fpqc-stack C,, k on the category Nilp,  of schemes over the ring
of integers O, of E, on which p is locally nilpotent. If R is an O, -algebra, we set Rw = R®z, W
and denote by ¢ : Ry (1)) — Rw(u)) the ring homomorphism that is the identity on R, the p-Frobenius
on W and that maps u to u”. Now the R-valued points of the stack /C\M, k are given by a subset

Cox(R) C {9, ®:@*M[1/u] = IM[1/ul},

where M is an Ry [[u]l = (R ®z, W) [#]-module that is fpqc-locally on Spec R free as an Ry [u]]-module
of rank d. This subset is cut out by a condition prescribing the relative position of @ (¢*9%) with respect
to 9 at the locus E(#) = 0 in terms of the cocharacter p; see [Pappas and Rapoport 2009, 3.c,d] for the
precise definition.

If u is minuscule they defined a period map

M(X) : Cpuk (X) > 220, (X78);

see [Pappas and Rapoport 2009, (5.37)]. Note that 5ﬂ, k 1s a substack of a{, k of [loc. cit.] if and only

if u is minuscule. Moreover, the period morphism of [loc. cit.] maps the closed substack ai, k to the

d
s

If u is not miniscule we cannot hope for a period map with target @;(,i/w‘ However, if we replace the

corresponding closed substack 7, of their target 74, -

target by %‘f‘iﬁ ,.» then we can again define a period map as follows (note that 92;% = %‘f‘iﬁ 1 s
miniscule). Let R be a p-adically complete O, -algebra topologically of finite type over O, and let

(M, d) ’C\M, k (Spf R). The construction of Section 4 associates to
(M, Pprg) = (I, P) @ Ry [[ull ‘%g%al()R[l/p],R)’ (6-3)

a g-module with Hodge—Pink lattice over Spa(R[1/p], R). Given a formal scheme X locally topologically

of finite type over O, this yields a period functor

n?

M(X) : Cux (X) > %, (X7E), (6-4)
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where X"€ denotes the generic fiber of the formal scheme X’ in the sense of rigid geometry (or in the sense
of adic spaces). We point out that we cannot define a period map mapping to @;‘L if  is not miniscule,
as the family of vector bundles on the open unit disc defined by (6-3) is not necessarily associated to a
filtered p-module: the monodromy operator Né"l is not necessarily holomorphic. When X = Spf Oy, for
a finite field extension L of E,, it was shown by Genestier and Lafforgue [2012, Théoreme 0.6] that
TI(Spf O1) ®z, Q,, is fully faithful, and surjective onto t%’j;"df’za(L) = %‘fc;’i;t(L).

Remark 6.8. From the point of view of Galois representations it is not surprising that we cannot define a
general period morphism using filtered ¢-modules. If R is finite over Og,,, then the points of 6% k(R)
correspond to ¥k, -representations rather than to ¥k -representations. This also explains why the target of

. . d . P d . .
the period map is ;< instead of %“ N.<y: the ¥k -representation does not see the monodromy.

If we want to take the monodromy into account we have to consider a stack ’C\,L, N.k Whose X-valued
points are given by (I, &, N) with (M, ) € Z,’\M’K(X) and N : M /udN — M/udN satisfying

No®n)=p-d(n)oN. (6-5)

Here (M(n), @(n)) = M, ®) Qwug A%V () is the twist of (9, @) with the object A%V () defined
before Definition 6.2 and 7 >> 0 is some integer such that ® (1) (¢*9%) C 99t and ® denotes the reduction
of ® modulo «. Note that given i we may choose an n like that for all ()T, @) € /C\,L, x (X) and the map ®
(and hence the equation (6-5)) makes sense after this twist. Further the condition defined by (6-5) is
independent of the chosen .

Remark 6.9. (i) Using (2-7) we observe that if j1y 4 > O for all ¢, and if L is a finite extension of E,,,
a Spf O -valued point of the stack ’C\M, N.k gives rise to an object of the category Mod‘/”éN in the sense
of [Kisin 2006, (1.3.12)]. We only use the twist in order to define the stack in the general case (i.e., if
D (™M) is not contained in YM). Kisin’s definition takes place in the generic fiber. However, we can
not use this as a good definition as our stack is defined for p-power torsion objects.

(ii) Note that we do not know much about the stack /C\M, ~.x and its definition is rather ad hoc. Especially
we doubt that it is flat over Spf Z,. This means that there is no reason to expect that we can reconstruct
Kisin’s semistable deformation rings [2008] by using a similar construction to that in [Pappas and Rapoport
20009, §4].

In this general case described above we obtain a similar period morphism

Cun .k (X) > Y <, (XT). (6-6)

As in [Hellmann 2013, Theorem 7.8] the above allows us to determine the image of the period morphism.
Recall that a valued field (L, vz) over Q, is called of p-adic type if it is complete, topologically finitely
generated over Q,, and if for all fi, ..., f,, € L the closure of Q,[fi ..., fi] inside L is a Tate algebra,
i.e., the quotient of some Q,(T1, ..., Ty).
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Corollary 6.10. The substack %’i%{g IS the image of the period morphism (6-6) in the following sense:

(i) If X is a p-adic formal scheme and (M, ®, N) €Cpu n k (X), then TL(X) (M, @, N) € 3™ (A1),

(ii) Let L be a field of p-adic type over E, and (D, ®, N,q) € H, N <, (L). Then there exists
ON, d,N) e /C\M,N,K(Spf L") such that TI(Spf LT)(9N, &, N) = (D, ®, N, q) if and only if

[0,1)
M(D) =M ®L:’V[[u]] %L .

is étale, if and only if Spa(L, L) — %’fﬁ(}v, _, factors over ji’jpas\’,l’ri -

(iii) Let X € Adgtu andlet f: X — c%fpa"}véﬂ be a morphism defined by (D, ®, N, q). Then f factors

over ji‘j;(}\’,i’nﬁtﬂ if and only if there exists a fpgc-covering (U; — X);c; and formal models U; of U;

together with (M;, ®;, N) € C,,.n.x Uy) such that TIU;)(ON;, ®;, N) = (D, ®, N, q)|v..
Remark 6.11. If we consider the period morphism without monodromy, then we obtain a similar

characterization of the stack %ddjﬁlt C %‘Idﬁ .. as the image of the period morphism (6-4).

7. Sheaves of period rings and the admissible locus

We recall the definition of some sheafified period rings from [Hellmann 2013]. In doing so we will
also correct mistakes in [loc. cit.] (in particular the proofs of Corollary 8.8, the definition of a family of
crystalline representations, and the proof of Proposition 8.24 in [Hellmann 2013]).

Let R = 1(31 Oc,/pOc, be the inverse limit with transition maps given by the p-th power. Given a
reduced p-adically complete Z ,-algebra A" topologically of finite type, we define

AT®z,W(R) = lim AT®z, W;(R),
<«

where the completed tensor product on the right-hand side means completion with respect to the canonical
topology on the truncated Witt vectors W; (R) and the discrete topology on A*/p' AT,
If X is a reduced adic space locally of finite type over Q,, then there are sheaves O}@W(R) and
Ox®W (R) whose sections over an affinoid open U = Spa(A, A1) C X are given by
I'(U, O3®@W(R)) = AT®z,W(R),
LW, OxBW(R) = (4782, W(R)[ 5 |
In the same fashion we can define sheaves of topological rings O;@W(Frac R) and Ox@W (Frac R).
Let Al%D = W[u] and let A denote the p-adic completion of W(«)). Further let B = A[1/p]. We
fix an element 7” = (1,), € R with mp = 7. Depending on this element there are embeddings of
Al-D A and B into W (Frac R)[1 /p] sending u to the Teichmiiller representative [7"] € W(R) of =".
We write A for the ring of integers in the completion B of the maximal unramified extension of B inside
W (Frac R)[1/p]. Finally we set Al0D — AN W(R) C W(Frac R). All these rings come along with a
Frobenius endomorphism ¢ which is induced by the canonical Frobenius on W (Frac R). Note that all
these rings have a canonical topology induced from the one on W (Frac R).
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Remark 7.1. We warn (and apologize to) the reader that the notations used in this paragraph do often
not agree with the notations that are nowadays standard in p-adic Hodge theory. However, we often refer
to [Hellmann 2013] and it seems to cause less confusion using the notations used there.

We define sheafified versions of these rings as follows; compare [Hellmann 2013, 8.1]. Let X be a
reduced adic space locally of finite type over Q,. We define the sheaves <7y, T x, %)[(0,1) and o/ [}?’1)
by specifying their sections on open affinoids U = Spa(A, A") C X: we define I'(U, @), ['(U, 7x),
r'u, @40’1)) and I"'(U, % E?’l)) to be the closures (with respect to the natural, i.e., (p, [7°])-adic, topology)
of At ®z, A, AT ®z, A, At ®z, A"V and At @z, AlD in T(U, OF®W (Frac R)), respectively.

Further we consider the rational analogues %y, @X, %’E?’l) and ,9’375?’1) of these sheaves given by

inverting p in @y, A x, 4240’1) and & [)?’1), respectively.
Finally we recall the construction of the sheaf Ox® Byis from [loc. cit., 8.1]. For a reduced adic

space X the map 6 : W(R) — Oc, given by [(x, xUp xUrt )] — x extends to an (’);—linear map
Ox : OF®W(R) = 0% ®0¢,,

where the completed tensor product denotes the p-adic completion. We define O;@Acris to be the p-adic
completion of the divided power envelope of O;@W(R) with respect to the kernel of 0. We claim that
O;@Acris equals the p-adic completion of the tensor product (9; ®z, Acris- Namely, the kernel of 6x
is generated by the kernel of 6. The latter in turn is generated by p — [ pb], where pb = (x,)n € R with
xo = p and [ - ] denotes the Teichmiiller lift. Therefore, the divided power envelope is constructed by
adjoining (p — [p°])"/n! for all n € N, and this proves our claim. Finally we set

Ox®BL = (0} ®Aeis)[1/p],

cris —

0X®Bcris = (OX®B+ )[l/l],

cris
Ox®BS = (Ox®BL,)eu],

cris

Ox® By = (Ox® Beris ) [ €4 ].

Here t = log[(1, €1, €2, ...)] € Bs 1s the period of the cyclotomic character (where (g;) is a compatible
system of p'-th roots of unity) and £, is an indeterminate thought of as a formal logarithm of [r"].

Remark 7.2. The indeterminate £, considered here is the same indeterminate as in section 2.2.(b) and
we identify both indeterminates. That is, the inclusion B> ¢ BCJ;S given by u > [7"] will be extended
to BI>V[¢,] < B by means of ¢, > £, and similarly for the sheafified versions.
Lemma 7.3. Let Y = Spa(B, B™) be an reduced adic space that is finite over X = Spa(A, A™). Then we
have canonical isomorphisms
By = By ®oy Oy, «93;0’1) = 935?’1) ®oy O,
Oy®Bg = (Ox®B,) ®o, Oy, Oy 8 Beris = (Ox®Buris) ®0y O,

cris cris

Oy®BJ = (0x®B) ®0, Oy, Oy @By = (Ox®Bgy) ®o, Oy.
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Proof. This is a direct consequence of the construction (and the fact that we do not have to complete
tensor products with finitely generated modules). (Il

We can consider these sheaves also on nonreduced spaces by locally embedding X into a reduced

space Y and restricting the corresponding sheaves from Y to X, i.e., by applying — ® 0, Ox. Thanks to

+

the above lemma, the sheaves like OX@Bcris

then do not depend on the choice of an embedding. With
this definition the claim of Lemma 7.3 also holds true for nonreduced adic spaces.

Remark 7.4. For nonreduced spaces we make this slightly involved definition for the following reason:
the construction of rings like A involves a p-adic completion. But the rings of integral elements A™
for an adic space Spa(A, A™) (i.e., the power bounded elements in A) are not p-adically complete: their
p-adic completion would kill the nilpotent elements!

On Ox® B there is a canonical Frobenius ¢ induced by the Frobenius on O;@W(R). This endo-
morphism extends to a morphism
Q- 0X®Bst - 0X®Bst,

where ¢ (£,) = pl,. Further N =d/d{, defines an endomorphism of Ox® By which satisfies N @ = peN.

Finally the continuous ¥k -action on O;@W(R ) extends to Ox ® Beis and we further extend this action
to Ox® By by means of y - £, = £, +c(y)t, where ¢ : ¥x — Z,, is defined by y (,) = 7, - (£,)°" for
alln > 0.

Lemma 7.5. Let Y = Spa(A, A™) be an adic space locally of finite type over Q,,.
(a) Let g € T (Y, Oy®BL. ). Then g € T'(Y,Oy) C T'(Y, Oy®B.

cris cris

) if and only if for every quotient

A — A’ onto a finite-dimensional Q,-algebra A’ the element

Y4 A=A QBT

cris

g®1el(Y, Oy®B

cris
actually liesin A’ C A’ ®q, B:;is.

(b) Let g € I'(Y, Q’Zy). Theng e I'(Y,Oy) CI'(Y, @y) if and only if for every quotient A — A’ onto a
finite-dimensional Q ,-algebra A’ the element

g®1eT(Spa(A’, A™), By ®4 A) = A' @0, B

~

actually lies in A" C A’ ®q, B.

(c) Assume that A is reduced. Let g € T'(Y, ,sz?[YO’l)). Then g e ' (Y, M}Eo’l)) c I, ,52{759’1)) if and only
if for every rigid analytic point y € Y the element g(y) == g Q4+ k(y)* € K(y)+®zp&[0’1) actually
lies in K(y)+®sz[O’l) C K(y)—"_@ZP&[O’]).

Note that the identifications

I(Spa(A', AD), (By)®4 A) = A' ®q, B and T(Y,0y®B;}

cris

Y@ A=A QBT

cris

used in the formulation of the lemma are a direct consequence of Lemma 7.3 and the remark following it.
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Proof. (a) Clearly the condition is necessary. We now show that it is sufficient. Let us choose a closed
immersion Y = Spa(A, AT) < X = Spa(C, C™") with C a reduced Tate ring topologically of finite type
over Q,. Then C — A and our definitions imply that A@B;s is the quotient of C @B;is by the kernel of
C — A. We choose elements b; € Acis with bg = 1 whose images bi in Aris / PAcris form an [ ,-basis of
Acris/ pAcis- Recall that we remarked after the definition of I'(X, (’)X®Acris) that it equals the p-adic

completion C +®Zp Acris of C* ®7z, Acris. We start with the following:

Claim. For every element ¢ € C*®z ,Acris there are uniquely determined elements a; € C * fori € I such
that for every n e Nthe set {i € [ :a; ¢ p"C*}is finiteand c =Y, _; a; ® b; in C+®Z],Ams.

iel
To establish the claim one proves by induction that for every n there are elements a; , € C* for all i € I,
only finitely many of which are nonzero, such thatc — )", _, a;» ® b; € p"C +<§>zp Acris and such that
Qipn — Ain—1 € p"‘1C+. Namely, for n = 0 one can take a; o = O for all i € /. In the induction step
from n to n + 1 one considers an element ¢’ € C+®ZI,ACHS with ¢ — Y, _, ain ® b; = p"c. Then the
image of ¢’ in C+®Z],Acris/(p) =C"/pC" ®F, Acris/ PAcris can be written as ), @; ® b; with uniquely
determined elements @; € C*/pC™ which are zero for all but finitely many i. After choosing lifts o; € CT,
the elements a; ,+1 := a; , + p"o; satisfy the assertion. Now taking a; as the limit of a; , for n — oo
establishes the existence of the a; € C™.

To prove the uniqueness, we must show that Y ., a; ® b; = 0 implies a; = 0 for all i. It suffices

iel
to show that ¢; € p"C™ for all n and i. This follows by induction on n, trivially starting with n = 0.
If it holds for some n, we can write a; = p"a/ for al € C*. Then p" -, a/ @b =) ;a;  b; =0,
and hence ), a; ® b; = 0, because C+®Z,,Acris has no p-torsion by [Bourbaki 1961, Chapitre III, §5,
no. 2, Théoréme 1(v)] as C* and A, are flat over Z,. Considering the images a; of a! in C*/pC™, the
equation ) _; @, ®b; =0in C+®ZpAcris/(p) =C*/pC" ®F, Aciis/ pAcris implies that a; =0in C*/pC™,
whence a, € pC* and a; € p"T'C* as desired. This establishes our claim.

Furthermore we note that this claim (and in particular the uniqueness part) also applies if we replace C*

by a finite free Z,-algebra (that is not necessarily reduced).

We lift g to an element g € C @)@p Aqis[1/p]. After multiplying with a power of p we can assume
that § € C*®7 ,Acris. By the claim we obtain uniquely determined elements a; € C * forall i € I with
g=),a;®b;inC +®ZPACﬁS. We show that a; € ker(C — A) for all i # 0 which obviously implies
gel(Y,0f) =A™

As C is noetherian the latter may be checked at completions am of C with respect to maximal ideals m
of C. If the point defined by m is not in Spa(A, A*) C Spa(C, C*) this claim is obvious. Otherwise we
consider the surjections C —» A — A/m" A = A’ onto the finite-dimensional Q ,-algebra A’, and let A"
denote the image of C* in A”. Then A’" is a finite Z ,-algebra and we write @; € A'" for the image of a;.
By what we noted above the expansion g =) a, ® b; € A’ +®Z,, Agis = A" ®z, Acris 1s unique and by
assumption lies in A’ C A" ®z, Acis- It follows that @; = 0 for all i # 0. We have shown that g; for
i # 0 vanishes in A’ = A/m”" for all n and the a; for i # 0 vanish in Ay,.
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(b), (c) We denote the residue field of W by k and let k” be either & for proving (c) or F, for proving
(b). We view the residue field k(u))*P = A / p& of A as a k’ (u)-vector space. We denote the integral
closure of k'[[u]] in k(u))*P by k[[u]*P. It is a free k'[[u]-module: we can write k((u))**P as union of finite
extensions E; of k’(u)), where E; C E; 41, then k[[u]*P is the increasing union of the rings of integers O,
which are free, and O, is a direct summand of Op,,,. Choosing the basis successively yields a basis
for k[[u]J5¢P.

We choose a k'[[u]l-basis (g:)ic; of k[[u]*P with o = 1 and we lift the g; to elements g; € Al®D with
go=1

We first prove (c) and use kK’ = k. The image of g in

L, %) /(p) = (AT pAT ®F, k) @ k[u]*P

can be written as ), 3% @; j o®u’ g; with uniquely determined elements @; ;o € A*/pA* ®f, k which
are nonzero only for finitely many i but possibly for all j > 0. After choosing lifts o; jo € A" ®z, W, the
image of (1/p)-(g— Zi’j i ;.0 Qulg) inT(Y, sz?g?’l))/(p) can likewise be written as Zi’j a1 Qu’ g
with uniquely determined elements @; ;| € AT /pAT ®r, k. Note for this that I"(Y, o 59’])) has no
p-torsion by [Bourbaki 1961, Chapitre III, §5, no. 2, Théoréme 1(v)], because AD and A+ are flat
over Z,. Continuing in this way, we obtain elements «; ; := Z/fio Qi jk p" e At ®z, W such that
for every n > 1 the equality g = Zi’j ;i ® ujg,- holds in I'(Y, ,d?gﬁ)’l))/(p"), although the sum does in
general not converge in I'(Y, I E?’l)).

The elements «; ; are uniquely determined by g because the equality g = Zi,j o ® ulg; in
T(Y, o 59’1)) /(p™) shows that the images of o; j in A™ ®z, W/(p") are uniquely determined for every n.
The uniqueness of the «; ; then follows from the fact that A™* ®z, W is p-adically separated. We conclude
that the element g lies in I'(Y, ,sz%}o’l)) if and only if «; ; =0 whenever i #0 or j <0.

Now g® 1 € k(y)" ®z, Al implies that ; j ® 1 =0 in k (y) " ®z, W whenever i # 0 or j <0. If
this holds for every rigid analytic point y, then «; ; = 0 whenever i # 0 or j <0, because A ®z, W is
reduced. This implies g € I'(Y, gf)go’l) ).

(b) Again the condition is necessary and we show that it is sufficient. Let us choose a closed immersion
Y =Spa(A, AT)— X =Spa(C, C*) with C areduced Tate ring topologically of finite type over Q. Then
again our definitions imply that I"(Y, Py) is the quotient of I'(X, PBx) by the kernel of the epimorphism
C — A. We lift g to an element g € C @gp@. After multiplying with a power of p we can assume that
geC +®z,,&, where the complete tensor product denotes completion with respect to the (p, u)-adic
topology.

We use the elements g; € AlLD « A with go = 1 from the proof of (c) above (with k" =[F,), whose
residues g; € k[[ull*® C k(u)** modulo p form an [, [[u]-basis of k[[u]*P, and hence also an [, (u)-
basis of k(u)*P. Then the image of g in C+(§)Zp&/(p) = C"/pC" ®¢, kl[u]*P can be written as
> ®ijo® u’ g; with uniquely determined elements &; ;0 € C™/pC* which are zero for all but finitely
many i and for j < 0. After choosing lifts «; j o € CT, the image of (1/p) - (g — Zi’j o j0@ulg)
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in C +®ZP&/ (p) can likewise be written as Zi’ j aij1® u’/g; with uniquely determined elements
a;j1 € Ct/pC*. Note for this that C+®Zp& has no p-torsion by [Bourbaki 1961, Chapitre III,
§5, no. 2, Théoreme 1(v)], because A and C™ are flat over Z,. Continuing in this way, we obtain
elements o; j := Y oo @i jx pPX € C such that for every n > 1 the equality g = Zi’j o j ® u’ g; holds
in C*@Zl,&/ (p™), although the sum does in general not converge in C*@Zl,&. The elements «; ; are
uniquely determined by g by reasoning like in (c) above. We conclude that the element g lies in C™ if
and only if o; ; = 0 whenever (i, j) # (0, 0).

As C is noetherian the latter may be checked at completions C of C with respect to maximal ideals m
of C. If the point defined by m is not in Spa(A, A*) C Spa(C, C*) this claim is obvious. Otherwise we
consider the surjections C - A — A/m" A = A’ onto the finite-dimensional Q ,-algebra A". Then our
assumptions imply that the image of a; ; in A’ vanishes for (i, j) # (0, 0) by a similar reasoning as above
for A’ in place of C*. We have shown that the image of a; ; in C., lie in the kernel of Cy — Ay, for all
maximal ideals of C and all (i, j) #~ (0, 0). The claim follows from this. [l

Remark 7.6. Assume that in the situation of Lemma 7.5 the ring A is reduced. We remark that it is then
enough to check the conditions for surjections A — «(y) for all rigid analytic points y € Y. We only need
to argue (in the situation of the proof above) that g(y) € k (y)* C K(y)+®zpB implies that a; (y) =0 in
Kk (y)T for all i # 0 for B = Ay, respectively B = A. Here we write g(y) = 1® g € K(y)+®zpB and so
on. If this holds for every rigid analytic point y € Y, then a; = 0 for all i # 0, because Y is reduced. This
implies g € T'(Y, O)).

Remark 7.7. It is also possible to define Z-filtrations Fil' (Ox ® Beyis) and Fil' (Ox ® Bg;) on Ox ® Beyis and
Ox® By, respectively. The most natural procedure seems to be the following: given i € Z and an adic space
X =Spa(A, A1), asection f € I'(X, Ox®Beris) lies in T' (X, Fil' (Ox®Beris)), if f ®1 € Fil' Beris ®q, B
for all surjections A — B of A onto finite-dimensional Q ,-algebras B. Here Fil' B is the usual filtration
on B;s induced by restricting the ¢-adic filtration on Fontaine’s ring Bgr to Bs. This construction
obviously globalizes and defines a filtration of the sheaf Ox®Byis. A similar construction also applies to
the filtration on Ox® By. However some issues with this filtration seem to be a bit involved, in particular
dealing with families. One main reason is, that OX@B:;S is much better behaved than Oy ® Beyis, but
Fil® Bris does not give back B;is. Hence we will not consider this filtration on Ox & Beyis explicitly.
Proposition 7.8. Let X be an adic space locally of finite type over Q. The canonical inclusions induce
equalities

)CD:id ®=id, N=0 _

By 4=0x,  (Ox®B]

cris = Ox, (OX(@B:{) Ox.

Moreover one has

(Ox®BL )% = (0x®BF)’ = Ox ®aq, Ko.

cris

Proof. It is clear that in all cases Oy injects onto the sheaves of invariants, and that Ox ®q, Ko injects
into ((QX@Bcris)%( . Let us prove the converse. Let U = Spa(A, AT) C X be an affinoid open and
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let f e'(U, @X) be a section that is invariant under ®. Then for each quotient A — A’ with A" a
finite-dimensional Q,-algebra the element f ® 1 € I'(U, @X) R4 A=A Qg ) B is invariant under ®
and hence f® 1€ A’ C A’ ®q, B. Now Lemma 7.5 implies f € I'(U, Ox). The other claims are proven
using the same argument. ]

Definition 7.9. Let ¢ denote a compact topological group. A family of -representations on an adic
space X consists of a vector bundle £ on X together with an Ox-linear action of the group ¢4 on £ which
is continuous for the topologies on the sections I'(—, £). This definition extends to the category of stacks
on Adg .

Definition 7.10. Let X be an adic space locally of finite type over Q,,.

(1) A g-module over ofx is an /x-module M which is locally on X free of finite rank over «7x together
with an isomorphism @ : p*M = M.

(i) A @-module over Byx is an Bx-module M which is locally on X free of finite rank over £y together

with an isomorphism @ : p*M = M.

(iii) A g-module M over Xy is called étale if it is locally on X of the form N ® ., #x for a p-module N
over .

The following theorem summarizes results of [Hellmann 2013] which are needed in the sequel.

Theorem 7.11. Let X be a reduced adic space locally of finite type over Q, and let (N, ®) be an étale
@-module of rank d over By.
(i) The set

XMM = (x € X | dimy (o) (NV @z Bx) @k(x)® 4 =d} C X

is an open subspace and

V= (W@ dn*

is a family of 9. -representations on X*I™,

(i) If f : Y — X is a morphism in Ad™ and if (Ny, ®y) denotes the pullback of (N, ®) along f, then
Yadm — ffl(Xadm) and
Ny ® By)®=9 = (flyum)*V

as families of 9k __-representations on Y™,

(iii) If (N, D) is a -module of finite height over JZ/)[(O’ Dasin Definition 6.1 and (N, ®)= (N, D)® 0. Bx,
X
then
U = xxdm _ {x € X | K¢+ Hom‘%[(o.n@K(x)’q)(m®K(x), &{g?al) Qk(x))=d}

and
~ 0’1 ~
%Om_dl[]().l)’q)(f”ilU’ Qf%} )) ®Zp @[) = %Omggu’cp(f):)th] ®f‘?7L[/O'1) @U, %U)

as families of x__-representations on U = XM,
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Proof. This is a summary of [Hellmann 2013, Propositions 8.20, 8.22, 8.23 and Corollary 8.21]. ]

Given a cocharacter p as in (2-5), the stack J%, y <, is the stack quotient of Pk, 4 X spec Q, Ok.d.p

by the action of the reductive group (Resk,/a, GLa k,)E,. Let us denote by %’;f’ef,’ ~,, the quotient of the

reduced subscheme underlying Pk, 4 Xspec Q, Ok.d.<u by the induced action of (Resg, /@, GLa k) E, -
Recall that Pk, ¢ Xspec Q, Ok.d.pu is reduced, hence this modification will not be necessary if we restrict
to the case where the Hodge type is fixed by .

%red, ad,adm

d,ad,int
[ e
¢,N,2u

Corollary 7.12. There is an open substack SN <

red,ad,adm
on %,N’fﬂ such that

- and a family € of Gk _-representations

£ =MD, & N, q)® 00 Zx) =",

where (D, ®, N, q) denotes the restriction of the universal family on %’;ie;\l,”agu. This subspace is maximal

in the following sense: If X is a reduced adic space and if D' is a (¢, N)-module with Hodge—Pink
lattice over X with Hodge polygon bounded by v, then the induced map f : X — #°4 factors over

o.N. 2
L%f;eﬁ’fl’fdm if and only if X = X®™ with respect to the family

M(D') ® o.n B.
X
In this case there is a canonical isomorphism of Yk -representations
FE=MD)® 00 B

If L is a finite extension of E,,, then %’fﬁ’ﬁl’fdm(L) = e%’;ief\i,”g’jm(L)

Proof. Let us write X <), = (Pk.a Xspec@, OK.d.< M)red’ad for the moment. Further we denote the pullback
of the universal family of vector bundles on the open unit disc to X<, by (M, &, Né/l) =M(D, P, N, q).

Locally on X 2‘; there exists a ¢-module of finite height 91 inside (M, ®), at least after a Tate twist. It
dm

follows that M@ o.n #x is €tale and we may apply the above theorem. Then X%" C X<, is invariant
X

=<
under the action of (Resg, /Q, GLy4 k() E, and hence its quotient by this group is an open substack

%”wr e;\l,’ id;’fdm C jf(pr e;\i,’zfﬂ. Further

(M ®%[O.l) %Xadm)q): id
Xﬂdm M

adm

is a (Resg, /Q, GLy k) £, -equivariant vector bundle with 9k _-action on X -

red,ad,adm
%,N il
The second statement is local on X and hence, after locally choosing a basis of D, we can locally lift

the morphism f : X — %’J’e[(\i,’ﬁu to a morphism f’: X — X, such that the pullback of (D, ®, N, q) on

X <, along f’ is isomorphic to D". Now the claim follows from Theorem 7.11 (ii). ]

Hence it defines a family
of ¥k _ -representations on

8. The universal semistable representation

In this section we want to construct a semistable ¥k -representation out of the ¥k _ -representation on
%red,ad,adm :%pred,ad,adm

o N.<1L DN < - First of all we need

from Corollary 7.12. This will be possible only on a part of
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to restrict to the open subspace where the Hodge polygon is constant. This can be seen as follows. Let £
be a family of ¥k -representations on an adic space X. It follows from [Berger and Colmez 2008, §4.1]
that the (generalized) Hodge—Tate weights vary continuously on X. Namely, they are the eigenvalues of
Sen’s operator ®se, constructed in [Berger and Colmez 2008, before Remark 4.1.3]. The characteristic
polynomial of ®ge, has coefficients in Ox ®¢q, K. However, with any reasonable definition of a semistable
family £ the Hodge—Tate weights of £ ® « (x) should be integers for all x € X and hence the Hodge—Tate
weights and the Hodge polygon are locally constant on X.

Secondly, Kisin [2006, Theorem 0.1 and Corollary 1.3.15] showed that the universal étale (¢, Nv)-
module M on %a’(}(,i’“ﬁt ,, from Corollary 6.6 can come from a semistable ¥k -representation only if
the connection V has logarithmic singularities, which is equivalent to Né/‘ being holomorphic; see
Remark 4.2 (2). Therefore we have to restrict further to the closed subspace %YN, M %ﬁ‘;\’,ﬁm of %‘f%ﬂm
which is isomorphic to @;fi,\?ifl. Here @;‘f‘,’fifl C @;?N’ . is the admissible locus with respect to the family

defined in Remark 4.10.

Lemma 8.1. Let £ be a family of 9k _ -representations over a reduced adic space X locally of finite type
over Q. Let My and M, be two p-modules of finite height over ﬂ)[(o’l) such that ¢ and 9 __-equivariant

isomorphisms
M @, o0 7 11/p1 = E @0, 7y V11/p] (8-1)

exist fori = 1,2. Then M [1/p] = M,[1/p] as sz)[(o’l)[l/p]-submodules of € oy ﬁ[;()’l)[l/p]. In
particular they are isomorphic as p-modules.

Proof. The case X = SpaQ,, was proven by Kisin [2006, Proposition 2.1.12].

If X =Spa(A, A™) for a finite free Z ,-algebra A" and A = A*[1/p], then this implies that 9t;[1/p]
and 9, [1/p] agree as "Afs[géic),lv,,, Z,,)[l / p]-submodules (even without the A-action).

For general X we may work locally and assume that 9J1; = (d}[(o’ 1))". The isomorphisms (8-1) yield a ma-
trix M e GL,, (I" (X, d?[}? D [1/p])) and we must show that M € GL,, (I" (X, 427)[(0’ D [1/pD). It suffices to show
that every entry g of M and M~! lies in I'(X, ,52%)[(0’1)[1 /p]). Multiplying the entry g by a power of p we
can assume that it lies in I" (X, sz?[}?’l)). By Lemma 7.5 (¢) we must check that g(x) € K(X)*@zlA[O’l) for
every rigid analytic point x € X. Since « (x) is a finite-dimensional Q,-algebra, this was proved above. [

Definition 8.2. Let £ be a family of ¥ -representations of rank d on an adic space X locally of finite

type over Q,. Denote by X the reduced subspace underlying X and by £ the restriction of £ to X.

(1) The family £ is said to be crystalline with negative Hodge Tate weights if fpqc-locally on X there is a
¢-module O of finite height over 4240’1) and a ¢ and ¥k _ -equivariant isomorphism

ﬁ@dw.l) Jg’l)[é]gé’_@oyd’?[}gl)[%] (8-2)
X

and a (¢, Ny)-module M over %’E?’l) deforming M 0D %’?’D as a g-module such that (8-2) extends
to a (9%, ¢) equivariant isomorphism "

T ®0x = E®p, BL.®0y.

cris cris

M® o B
A
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(i1) The family £ is said to be semistable with negative Hodge Tate weights if fpqc-locally on X there is a
¢-module M of finite height over 42%}(0’1) and a ¢ and ¥k_ -equivariant isomorphism

- ~ 17~ 5 ~ 1

93?@%[0.1),@%[;’1)[;]:£®@X,Q%[£’l)[g] (8-3)
and a (¢, Nv)-module M over %’E?’l) deforming M 0D %’?’1) as a ¢-module such that (8-3) extends
to a (%, ¢, N) equivariant isomorphism !

M® o0 BI®0x = £®0, Bf®0y. (8-4)

(iii)) We say that £ is crystalline (resp. semistable) if some twist of £ with a power of the cyclotomic
character is crystalline with negative Hodge—Tate weights (resp. semistable with negative Hodge—Tate
weights).

Remark 8.3. The definition of being crystalline or semistable is slightly involved. We did not define it

+

in the usual way using only period ring B_; ®Oy, as our method requires that we have a comparison

isomorphism for the integral models on the open unit disc as in (8-2). Working only with B;iséox it is
not clear to us whether this is automatically true.

Lemma 8.4. Let X be an adic space locally of finite type over Q, and let £ be a family of crystalline
(resp. semistable) Yk -representations with negative Hodge—Tate weights on X. Assume that the objects

9 and M in the above definition exist globally on X. Then the following holds true:
(i) If X = Spa(A, A™) for some finite-dimensional Qp-algebra A, then I'(X, £) is crystalline (resp.
semistable) as a Yk -representation on a finite dimensional Q ,-vector space and D(M) = D;i5s(I' (X, £))

(resp. = Dy(I'(X, £))) as filtered p-modules (resp. as filtered (¢, N)-modules), compatible with the

canonical A-action on both sides.

(ii) If Y — X is any morphism of adic spaces locally of finite type, and if Ey denotes the Yx -representation
on Y obtained by base changing &, then Ey is crystalline (resp. semistable).

(ii1) Assume that £ is crystalline (resp. semistable) with negative Hodge—Tate weights. The family M
is uniquely determined as a (¢, Nv)-module and in fact as a submodule of € @, B:;is®(’)x (resp. of
£ ®oy B ®Ox)

Proof. (1) This follows from (the covariant formulation of) [Kisin 2006, Proposition 2.1.5], the proof of
which implies that the morphisms in [loc. cit., (2.1.6)] are isomorphisms. The fact that the morphism is
compatible with the A-action follows from functoriality.

(i1) This is obvious.

(iii)) We only prove the crystalline case. The semi-stable case is proved along the same lines. Assume
that X = Spa(A, A™) is affinoid and that there are two %g?’l)—modules M and M, as in the definition.
We set D; = D(M;) and consider the morphisms

cris cris

D; — D; ®o, BT @OX — M; ®(%§),1) B:;S@OX =EQoy, BT @Ox.
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As these morphisms are compatible with the ¥k -action (which is of course trivial on D;) we obtain
a morphism

a;: D; — (£ ®p, B ®0x)%.

cris

Now both sides are locally on X free as Oy ®a, Kp-modules. To see this on the right-hand side
use the equality
M, ®!~/3§?*” Bl ®0x = £ ®o0, Bl ®0x

cris cris

and apply Proposition 7.8. Now the construction of this map is functorial and for each quotient A — A’
onto a finite-dimensional Q ,-algebra A’ the induced map

aix D@y A = (ERp, BE.SOx) K @4 A'=((E®4A) R0, BL.S0x)%.

cris cris
is an isomorphism. It follows that « is an isomorphism for i = 1, 2 and hence D = D| = D, is uniquely
determined as a ¢-submodule of £ @, BCJ;S®O x. In particular we have shown that M;[1/A] is uniquely
determined as a submodule of £ ®p, B.is®0x.

It remains to prove that the two filtrations on D = D| = D, are the same. Assume this is not the case.
Then there exists a surjection A — A’ onto a finite-dimensional Q,-algebra A" such that the filtrations
on D®4 A’ induced by D; and D, do not agree. Replacing A by A’ we may assume that A’ is a finite
dimensional Q,-algebra. However, in this case (i) implies that M = M (as submodules of £ ®q, B;is)
and hence the filtrations on D; and D, coincide. O
Remark 8.5. Let £ be a crystalline representation with negative Hodge—Tate weights. Then fpqc-locally
on X we have associated a (¢, Nyv)-module M over %’E?’l) as in Definition 8.2. By the uniqueness result
established in the previous lemma and fpqc descent this (¢, Nv)-module in fact descends to X. The same

remark applies to semistable representations as well.
Using this remark we can make the following definition:

Definition 8.6. Let X be an adic space locally of finite type over @, and let £ be a family of ¥k -
representations on X.

(i) Assume that £ is crystalline with negative Hodge—Tate weights and let M as in Definition 8.2. Then
define Dis(E) = D(M).

(i) Assume that £ is semistable with negative Hodge—Tate weights and let M as in Definition 8.2. Then
define Dy (£) = D(M).

(iii) Assume that £ is crystalline and that its twist £(i) is crystalline with negative Hodge—Tate weights
for some i € Z. Then define D¢is(£) = Dcris(E(@{))(—i).

(iv) Assume that £ is semistable and that its twist £(i) is semistable with negative Hodge—Tate weights
for some i € Z. Then define Dy (E) = Dy (E(i))(—i).

Remark 8.7. Obviously the last two parts of the definition are independent of the choice of i such that
£(i) has negative Hodge—Tate weights.
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The above defines a functor from the category of crystalline representations on X to the category of
filtered p-modules over X. Moreover it is a direct consequence of the definition that for every morphism
f Y — X and any family of crystalline ¥k -representations on X we have

Dcris(f*g) = f*Dcris(g)-
The same remark applies to the semistable case as well.

Definition 8.8. Let i be a cocharacter as in (2-5), let E,, be its reflex field, and let X be an adic space
locally of finite type over E,,. We say that a crystalline (resp. semistable) ¢k -representation £ over X has
constant Hodge polygon equal to p if the K -filtered p-module D.i5(E) (resp. Ds(E)) over X has this
property.

It is obvious from the definition that Dy defines a functor from the category of semistable representations
with constant Hodge polygon o over an adic space X to the category of K -filtered (¢, N)-modules over
X with constant Hodge polygon p and similarly for crystalline representations.

Remark 8.9. Let £ be a crystalline (resp. semistable) representation over X with negative Hodge—Tate
weights and let M be as in Definition 8.2. We write D = D¢s(£) = D(M). Then

D ®0yea, k0 By [1/AZM® un 2y V[1/1]
and hence, as A is invertible in B, we obtain a (¥, ¢)-equivariant isomorphism
De1is (€) ®0x@q, Ko Ox® Buis = £ @0y Ox® Beis.
Similarly, if £ is semistable, we obtain a (¥, ¢, N)-equivariant isomorphism
Dy(&) ®0ox@aq, ko Ox®By = € ®oy Ox® By

Using twists by the cyclotomic character, we find that the same holds true also for crystalline (resp.
semistable) representations with arbitrary Hodge—Tate weights.

Moreover, if we had defined (the correct) filtration on Ox & By, these morphisms would also respect
filtrations. However, as we will not explicitly make use of this, we did not carefully define the filtrations.

Lemma 8.10. Let £ be a family of Gk -representations on an adic space X locally of finite type over Q.
Then & is crystalline if and only it is semistable and the monodromy N on Dy (E) vanishes. In this case
we have Dy (E) = Dyis(€) as subobjects of € @y (OX®Bst).

Proof. We may assume that £ has negative Hodge—Tate weights and that there exists some M as in
Definition 8.2.

Assume that £ is semistable with vanishing monodromy. As the isomorphism (8-4) is equivariant for
the action of N the claim follows after taking N = 0 on both sides.

Conversely, let us assume that £ is crystalline. Then obviously £ is semistable and using the definition
of Dy we see immediately that N =0 on Dgy(E). U
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Remark 8.11. In [Kisin 2008], techniques from [Kisin 2006] are used to construct what are called
(potentially) semistable deformation rings. Fix a continuous representation p : Gy — GL,(F) with F a
finite extension of [, as well as a set of labeled Hodge—Tate weights

k={kii=1,...,n1:K=Q,)

Given these data, Kisin constructs a quotient R'g of the universal framed deformation ring! R; of p such
that a point
Spec L — Spec R;

with L a finite extension of @Q,, factors over Spec R'g if and only if the corresponding Galois representation
is semistable? with labeled Hodge—Tate weights k. As the defining condition for ng is only formulated
for points, the ring R}g is reduced by definition (once it is known to exist). Kisin moreover shows that for
every finite-dimensional Q,-algebra A a morphism

Spec A — Spec R

factors over Spec R% if and only if the corresponding representation p : Gg — GL,(A) is semistable.
Our construction differs from Kisin’s strategy in the following way: Kisin starts with a family of Galois
representations on integral level and cuts out the locus in the generic fiber where the representations are
semistable. In contrast to this we start with a family of p-adic Hodge structures in characteristic zero and
cut out the locus where this family of p-adic Hodge structures comes from a Galois representation.
On the other hand after having constructed a universal family in our case, we can compare the outcome

of this construction to Kisin’s deformation space again. This is done in Proposition 8.17 below.

Lemma 8.12. Let X be an adic space locally of finite type over Q, and let £, £ and &, be families of
semistable representations.

(1) Assume that £ has negative Hodge—Tate weights. Then there is a canonical isomorphism
£ = (M(Du(£)) ® 4o (Ox®B;))P=i4N=0,
(ii) One has & = & if and only if Dy (E1) = Dy (&).
Proof. (i) Let us write M = M(Dg(£)). Then by definition fpqc-locally on X we obtain an isomorphism
M® o B ®0x = £ ®o, B ®0Ox.

Then locally on X the claim follows by applying the invariants on both sides and using Proposition 7.8.
The construction of this morphism is obviously compatible with the descent data and hence descends to X.

(ii) After twisting with powers of the cyclotomic character, we may assume that £ and &, have negative
Hodge-Tate weights. Then second part is a direct consequence of the first. O

INote that our notations here differ from Kisin’s.
2There is a similar version with crystalline instead of semistable.
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Proposition 8.13. Let X be a reduced adic space locally of finite type over E,, andlet D=(D, ®, N, F*)e
;n,\?d/in (X). Then there is a family of semistable representations € on X such that Dg(£) = (D, ®, N, F*).
Moreover, £ is canonically identified with the subrepresentation

(M(Dx(€)) ® 4 0. ((’)X®B ))go:id,N:o

of M(Ds(£)) ® o (Ox®BY).

Proof. After twisting with powers of the cyclotomic character and after changing p accordingly, we
may assume that the Hodge—Tate weights defined by u are negative. Let us write 9t for the choice
of a ¢-module of finite height over 427)[(0’1) and a family € of ¥x_ -representations such that there is a
(¢, 9k )-equivariant isomorphism

E®oy Ty [1/p] ZM® o )

Such a module exists fpqc locally on X by definition of the admissible locus and Theorem 7.11 (iii).
This isomorphism extends to an isomorphism

EQoy (0X®B ) EMQ 0. ((’)x®B )

that is still equivariant for the actions of ¢ and ¥k_. According to the definition of a semistable
representation we have to prove that the ¥x_ action on £ extends to an action of ¥k and that the above
isomorphism is equivariant for ¥x. As £ embeds into the left-hand side, it is enough to show that it is
stabilized by the %k -action on the right-hand side. After localization we may assume that X = Spa(A, A™)
is affinoid and that £ is the trivial vector bundle on X. After choosing a basis of £ let g € ¥k and denote
by M € Mat, ., (I'(X, Ox @B:{ )) the matrix of the g-action with respect to this basis. We have to show
that this matrix has entries in A. However, M ® 4 « (x) has entries in « (x) for all classical points x € X by
[Kisin 2006, Proposition 2.1.5] (note that the proof of that proposition implies that the arrows in (2.1.6) of
[loc. cit.] are isomorphisms). It now follows from Lemma 7.5 (a) (and the remark following that lemma)
that M has entries in A.

This proves the existence of £ fpqc-locally on X. In order to finish the proof, we just notice that our
construction defines descend data on £ that are compatible with the isomorphisms

DSt(g) - (D’ ch Na ]:.)
and the descend data on the latter. Hence both £ as well as the isomorphism descent. O

d
Recall that the stack 7%\ |

the action of the group (Resk,,q » GL4 k) E, and consider the open subspace X adm X int — X .. This

is the quotient of the adic space X, associated to Pk, x Flagg 4, by

subset is stable under the action of (Resg, /@, GLa k) E, and we write @dd “dm for the quotient of X adm
by this action.

Proposition 8.14. Let u be a cocharacter as in (2-5) and let E,, be its reflex field. Let X be a reduced
adic space locally of finite type over E, and let £ be a family of semistable 9 -representations on X with
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constant Hodge polygon equal to (. Then the morphism

ad
X = Dy N

induced by the K -filtered (¢, N)-module Dy (E) factors over 9;‘};\??; .

Proof. By Definition 8.2, there is (locally on X) an d)go’l)—module 901 such that M Q 10D %’E?’U = M(D),
X

where D = Dg(€) is the filtered (¢, N)-module on X defining the morphism X — .@;?N, .. Moreover by

definition

M®, o0y [1/p] =€ ®oy 7y 11/p]

equivariant for the action of ¢ and %k_ . In particular this implies that f* factors over the admissible locus.
]

Theorem 8.15. There is a family E'™ of semistable Yy -representations on @;‘}ﬁf‘f such that Dy () =
(D, @, N, F*) is the universal family of filtered (¢, N)-modules on @;ﬁiﬁfl;]. This family is universal in the
following sense: Let X be an adic space locally of finite type over E,, and let £ be a family of semistable
Yk -representations on X with constant Hodge polygon equal to p. Then there is a unique morphism
f:X— @;ﬁiﬁfﬂf such that &' = f*& as families of G -representations.

Proof. The existence of the family £ follows by applying Proposition 8.13 to the family (9, ®) of
@-modules of finite height over «71%D on

Y = (Pk,.q x Flagg 4 ,)""*".

As the construction is obviously functorial, this vector bundle is equivariant for the action of the group
gad,adm

. N,
Further the isomorphism Dy (€) = (D, ®, N, F*) on Y is by construction equivariant under the action of

ad,adm
(Resk,y/a, GL4, k) E, and hence descends to Do Ny -

Now let X be as above. The K -filtered (¢, N)-module Dy (') defines a morphism f : X — 9;‘,11\,’ u
This map factors over 9;(,11’\?331 by Proposition 8.14 as factoring over an open subspace may be check on
the reduced space underlying X. Further we have isomorphisms Dy (") = f*Dg () = Dy (f*E). Now

the claim follows from Lemma 8.12. |

(Resk,/a, GL4 k) E, and hence defines the desired family of semistable ¢k -representations on

Corollary 8.16. There is a family £ of crystalline Yy -representations on @;filfdm such that D¢is(E) =
(D, ®, F°) is the universal family of filtered o-modules on .@zf‘l’f‘dm. This family is universal in the following
sense: Let X be an adic space locally of finite type over E, and let £ be a family of crystalline 9 -
representations on X with constant Hodge polygon . Then there is a unique morphism f : X — @;%adm

such that &' = f*E as families of Yk -representations.

Proof. This is a direct consequence of the discussion of the semistable case in Theorem 8.15 and
Lemma 8.10. [l
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Let us compare this result to the construction of the universal semistable deformation rings as in [Kisin
2008]. Fix a continuous representation

p Gk = GL,(F)

with [ a finite extension of Q, and write R; for the universal framed deformation ring of . Further

we write ng for the quotient of R; constructed in [Kisin 2008, Theorem 2.5.5]. Moreover let us write
éad, adm ad,adm

oN .1 for the stack over 2

N 1 parametrizing trivializations of the universal semistable representation

constructed in Theorem 8.15, i.e., for the stack that assigns to f : § — @;‘f‘;\?dlin the set of isomor-
phisms 0§ = f *£univ - Note that _@;dl\?d;f actually is representable by an adic space locally of finite

type over Q,, (resp. over the reflex field of ). We write é;fi]’;‘iin’Jr for the open subspace where the

canonical representation

PV 2 G — GL(N(F59™, £)) > GL, (D(F44™, 0))

factors over

GL, (D(Z5, 01)) € GLo(T(Z5550. 0)).

Note that this really defines an open subspace as the group G is topologically finitely generated (and
hence we only need to check for finitely many elements of ¥x whether the corresponding matrix has

bounded entries).
éad, adm,+

Having fixed 0 we can cut out an open subspace o N1

(p) by demanding that the composition

Gk — GLy(D(Z55T, 07)) = GLy(T(Z25", 0T /07 ))

is equal to p. Here O™+ C O™ denotes the ideal of topologically nilpotent elements. More precisely, given
any affinoid open subset U = Spa(A, A1) C @;dl\?d; o+
on the reduced special fiber Spec AT /ATT of Spf A (where A™" C AT is the ideal of topologically

nilpotent elements), namely

we have a canonical family of Gk -representations

Gx — GL,(AT) = GL,(A*T/ATT).

We let U (p) C U denote the tube over the Zariski closed subset of Spec A™/A™* where this composition
is equal to 5 (or the base change of p to AT/A™T). This construction is obviously compatible with
localization on the generic fiber (i.e., with replacing Spf A™ by an affine open subset of an admissible
blow up) and hence the pieces U (p) glue together to give @;d,\‘;‘d;n ().

v . sadadm4 < . )
univ to 2439 F (5) induces by construction a morphism to (Spf R)%.

Moreover the restriction of p o N

Proposition 8.17. The canonical morphism

7o (B) — (Spf R;)™ (8-5)

induces an isomorphism

Ty ()= Spr R
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Proof. Tt follows from [Kisin 2008, Theorem 2.5.5] and the reducedness of the source that the morphism
factors over (Spf ng)ad and is a bijection on L-valued points. Now [Kisin 2008, Theorem 2.5.5] again and
the functorial description of the left-hand side show that the morphism is an isomorphism on A-valued
point for all finite dimensional (0 ,-algebras A. As the left-hand side is known to be representable we find
that the morphism

f @ad adm, +(p) — (Spf Rk)ad

is a smooth and bijective map of adic spaces locally of finite type over Q,. Especially it is étale and hence
locally given by the composition of an open embedding with a finite étale morphism. As f is bijective on
L-valued points, the finite étale morphism has to be of degree 1, i.e., an isomorphism. We deduce that f
is an open embedding. We conclude that f is an isomorphism by constructing a continuous section to f.

Indeed, Kisin’s construction [2008, (2.5)] consists of two steps: first he constructs a quotient A of R
where the restriction of the universal ¥k representation to ¥x__ is defined by a ¢-module 907 over Aw [[u]],
that is by a &7, (0.1 ; A)ad -module of finite height. Let us write X = (Spf A)2 and & for the restriction of the uni-

(Sp
versal ¥k -representation to X. Then ng is the quotient of A, defined by the condition that the isomorphism

~[0,1) l] ~ ~[o,1>[1]
m@{d)[(o_l)%x |:p _5®@X%X >
extends to a (¥, ¢, N)-equivariant isomorphism
S)ﬁ@%[(o,l) (B ®@p B:{) =¢£ oy B ®@P B

for every map R}g — B to a finite dimensional Q,-algebra. Using Lemma 7.5 (a) and the matrices of the
action of g € ¥k (resp. of ¢ and N) in some chosen basis, we deduce that hence the induced isomorphism

m@ /0 (OX®B )_5®@XOX®B

is equivariant for the actions of (4%, ¢, N). In particular the family of Galois representations on (Spf ng)ad
is semistable according to our definition.
Hence we obtain a canonical morphism

kyad ad,adm
(Spf R%)™ — g2ddm,

As & comes with a trivialization of an Gg -stable O -lattice inside £ this morphism canonically lifts to
@‘ad,adm,-i—

@.N.p
be an open embedding it is enough to conclude. U

(p) and defines a morphism that is set-theoretically a section to f. As f already is known to

Remark 8.18. We note that Kisin’s description of the semistable deformation rings is a priori quite
different: a family of Galois representations over some affinoid algebra A is crystalline (resp. semistable)
in Kisin’s sense if it is crystalline (resp. semistable) after the base change to each quotient of A that is
finite-dimensional as a @ ,-vector space. On the other hand we have aimed at giving a definition of a
family of crystalline representations in the spirit of Fontaine (though we did not do this using filtered
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@-modules, but rather p-modules on the open unit disc). As it is not so obvious how these definitions
directly relate to each other we construct the morphism (8-5) in a slightly complicated manner.

Note that our construction has the advantage that we no longer need to fix a framing of an integral
structure inside the Galois representation. After this paper was written, Wang-Erickson [2018] extended
the results of Kisin in a direct way to families that do not longer fix a framing. For such families a similar
comparison with our construction should hold true. However, it seems that one cannot recover the main
result of [Wang-Erickson 2018] from our construction that takes place purely in the generic fiber.

We finally comment on the relation of our construction with the work of Berger and Colmez [2008].
They studied families of p-adic representations parametrized by p-adic Banach algebras. They proved for
example that in such a family the locus of point-wise crystalline (resp. semistable) representations of fixed
Hodge-Tate weight is a closed subspace, and there exist a family of filtered ¢-modules (resp. filtered
(¢, N)-modules) that specializes to the filtered (¢, N)-modules at each point. We deduce from the
comparison with Kisin’s construction that our families have the same property.

Corollary 8.19. Let X be a reduced adic space locally of finite type over Q, and let £ be a family of
Yk -representations on X. We assume that (fpqc-locally on X) there exists a Y -stable O;-lattice in €.
Then & is a semistable family if and only if € ® k (x) is semistable for all x € X.

Proof. The subspace (Spf R:§)ad C (SpfR ﬁ)ad is the Zariski-closure of all classical points at which the
universal Galois representation on (Spf R,;)a‘cl is semistable with Hodge—Tate weight k. The result hence
follows from the fact that by assumption we may (locally in the fpqc-topology) construct a morphism
X — (SpfR ﬁ)ad such that the pullback of the universal representation on (Spf R/;)ad agrees with the
Yk -stable (’); lattice in €. O

We remark that the existence of an integral lattice is always assumed in [Berger and Colmez 2008]. In
fact we do not know whether it automatically exists or whether this is a true condition. As our definition (in
particular the definition of the completed sheaves of period rings) differs, the relation of our construction
with theirs is less clear in the nonreduced case. However, the universal case is reduced.

9. The morphism to the adjoint quotient

As in [Hellmann 2011, §4] we consider the adjoint quotient A /&4, where A C GLy g, is the diagonal torus
and G, is the finite Weyl group of GL;. Under the morphism ¢ : A — Aé;l X@, Gm,q, which maps an
element g of A to the coefficients cy, .. ., ¢q of its characteristic polynomial x, = X dyc X414 .4y,
the adjoint quotient A/&, is isomorphic to Afé;l XQ, Gm,@p = Spec Q,[cy, ..., cq, ccjl]. Recall from
[Hellmann 2011, §4] that there is a morphism

ReSKo/@p GLd,K() —> A/@d (9-1)

which is invariant under ¢-conjugation on the source. It is defined on R-valued points by sending b €
(Resk,/a, GL4 k) (R) =GL4(R®q, Ko) to the characteristic polynomial of (b-) =b-p)--- D (D),
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where f = [Ko : Qp]. This characteristic polynomial actually has coefficients in R, because it is
invariant under ¢, as can be seen from the formula ¢ (b - go)f =b"1.(b- (p)f . (pf(b) =b1.(b- (p)f -b.
Since Resk,/a, GL4 k, acts on itself by p-conjugation via (g, b) g 'be(g) and (g7 'bp(g) p)/ =
g ' (b-¢) - g the map (9-1) is invariant under ¢-conjugation.

Let n be a cocharacter as in (2-5), let E,, be its reflex field, and set (A/S4)g, == A/S4 Xq, E,. By
projecting to Resg,/a, GL4 x, we may extend f to morphisms

~

o
Pkyd X0, Okd.<p — (A/S1)E,

| H

Aoy N, <y ————— (A/GD)E,

We further obtain morphisms to (A/S4)g, from the locally closed substacks ) <, 75 N s 4, s
Dy, N.ju» and 9, ,, which we likewise denote by . Here we view %, y , and %, ,, as substacks of %, n ,
via the zero section from Remark 2.8 (3). We also consider the adification of these morphisms.

Theorem 9.1. Let i be a cocharacter as in (2-5), let E,, be its reflex field and let x € (A/Gd)%dﬂ. Then
there exists an open subscheme X of @~ '(x) such that the weakly admissible locus in the fiber over x is

given by

&—1 (x wa _ Xad'

Proof. This is similar to the proof of [Hellmann 2011, Theorem 4.1]. Let

)d—l

x=(c1,...,cq) €Ek(x X k(x)*

and let v, denote the (multiplicative) valuation on « (x). First note that
ca = dete(oeq, ko (0 @) = dete o (b - )

and hence @' (x)"® = @ unless

1 )
ve(eq) ™ vy (pyef I (D) = 1.

In the following we will assume that this condition is satisfied. We now revert to the notation of the
proof of Theorem 5.6. In particular we consider the projective Pk, s-schemes Z;, the global sections
fi € I'(Z;, Ogz,), the functions h;, the closed subsets

Yim={y € Z}x Q¥ s -, | hi(y) = m)}
and the proper projections pr; ,,, : Yim = Pky.a X, Ok d.<u- This time
~_ 2
Si,m = {y = (gy’ Nya Uy, qy) € Yi,m X(Pko.dXQk,d,fu)a l(x) | Uy(fi(gya Uy)) > Uy(p)f m}

is a union of connected components of Yi X (Pe, sx Q.4 <) @~ !(x); hence a closed subscheme and not just
a closed adic subspace. This can be seen as follows: Let Ay, ..., A4 denote the zeros of the polynomial

X4 X 4o eg 1 X e
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Then every possible value of the f; is a product of some of the A; and hence f; can take only finitely
many values. As in the proof of Theorem 5.6

o™ =a ')~ (e Sim),
i,m
where the union runs over 1 <i <d —1 and m € Z. So &' (x)" is an open subscheme of a '), O

Corollary 9.2. Let x € (A/ 6d)j‘9d and consider the 2-fiber product

-1 ad,wa
a ()"t — %’N’ﬁﬂ

la
x —— (A/W)¥

Then there exists an Artin stack in schemes U over the field k (x) which is an open substack of o~ (x),
such that o= (x)** = A2, The same is true for 7y <p, Hp N .ju> Hop. s Do Noys and Dy .

Proof. This is an immediate consequence of Theorem 9.1 and the proof of Corollary 5.7. ]

We also determine the image of the weakly admissible locus in the adjoint quotient.

. ad,wa ad,wa ad,wa ad, wa ad,wa ad,wa
Theorem 9.3. The image of %’N’ﬁﬂ (and %,ﬁﬂ , %’N’ﬂ, %‘jp’“ R gw,N,w and ‘@wt ) under the

morphism(s) o is equal to the affinoid subdomain

: >y (g at -ty avi—i)

{c:(cl,...,cd)e(A/Gd)‘fﬂ ve(e) <ve(p) with equality fori:d}, (9-2)

where v, is the (multiplicative) valuation of the adic point ¢ with v.(p) < 1.

Remark 9.4. (1) The subset described in (9-2) is really an affinoid subdomain. Indeed the adjoint
quotient (A/ Gd)%ju is (admissibly) covered by the (admissible) open affinoid rigid spaces (or adic spaces)

Xy ={e=(c1,....ca) € (A/SDE, | veci) < p¥, forall i and v (vg) = —p"}

and the subspace (9-2) is easily seen to be a Laurent subdomain of each of these X, for M > 0.

(2) The morphisms o forget the Hodge—Pink lattice q (or the K -filtration F*) and in general their fibers
contain infinitely many weakly admissible points.

(3) Like in [Hellmann 2011, Proposition 5.2] the affinoid subdomain of Theorem 9.3 can be described
as the closed Newton stratum of the coweight (—2 3" pya > -+ = =13 uy.1) of A. By this we
mean that the Q,-valued points (i.e., the rigid analytic points) of (9-2) coincide with the points of the
corresponding Newton stratum in the sense of [Kottwitz 2006]. In [Hellmann 2011] the claim is made for
all points of the corresponding Berkovich space. In the set up of adic spaces we cannot rely on Kottwitz’s
definition of a Newton stratum for all points of the adic space, as the valuations are not necessarily rank
one valuations, i.e., the value group is not necessarily a subgroup of the real numbers. Especially the
Newton strata do not cover the adic space (A/ Sy)™,
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(4) For .@gfll’twa the description of the image in our Theorem 9.3 has previously been obtained by Fontaine
and Rapoport [2005, Théorém 1] and Breuil and Schneider [2007, Proposition 3.2] on the level of
L-valued points where in [Fontaine and Rapoport 2005] L is a complete discretely valued extension of
E,, with algebraically closed residue field. In [Breuil and Schneider 2007] L is a finite extension of E,
and in addition all Hodge—Tate weights are assumed to be pairwise different. Moreover, our affinoid
subdomain (9-2) equals Gd\T’E from [Breuil and Schneider 2007, Corollary 2.5], where £ is associated
with the cocharacter f;: = (—,u —O,1,...,d— 1)) dom € X*(T). Actually, both [Fontaine and Rapoport
2005; Breuil and Schneider 2007] even prove that over an L-valued point ¢ in the image there is an
L-valued point in @~ !(c¢)*. This also follows from our Theorem 9.1, which shows that &@~!(c)“* is
Zariski-open in a scheme covered by affine spaces, see (3-2), because the L-valued points (for any infinite
field L) lie dense in such schemes. In this way our theorem provides a new proof for [Fontaine and
Rapoport 2005, Théorem 1] and generalizes [Breuil and Schneider 2007, Proposition 3.2]; see Section 10
for more details.

Before we prove the theorem we note the following:

Lemma 9.5. Setl; .= % Zw(ﬂw,d + -+ wy.ay1—i)- Thenl; equals the number l; defined in [Hellmann
2011, Formula (5.2) on p. 988]. If D = (D, ®, N, q) is a (¢, N)-module with Hodge—Pink lattice over a
field L > E,, whose Hodge polygon is bounded by j and if D' = (D/, ®@|yp, Nlp, qND' Qrgk, [E'BL) cD
for afree L ®aq, Ko-submodule D' C D of rank i which is stable under ® and N, then ty (D') > [;.

Proof. The number /; in [Hellmann 2011, (5.2)] was defined as follows. Write {{ty 1, ..., Uy} =
{xy 1, ... xyr} with xy ; > xy j41. Let ny j ;= max{k : uyx > xy ;}. In particular ny , = d and
My ; = Xy j- For 0 <i <d let my ;j(i) := max{0,ny ; +i —d}. So my ;(0) = 0 for all j and
my (i) =i. It follows that ny, ; > d —i if and only if ty 4—; > xy, ;. Now [; was defined in [Hellmann
2011, (5.2)] as

r—1

li = % > ( D Gy =Xy jrmy, () +xw,rmw,r(i)>-
A

We compute

r—1
1 . .
liy1=1li= of Z (Z(xw,j —xy 1) (my i +1) —my ;@) +x¢r,r>-
A=

The difference my, j(i +1) —my j(@)is 1 if ny ; +i —d > 0, that is if xy ; < @y 4—;. Otherwise
the dilfference my, (i +1) —my (i) is 0. Therefore ;1| —1; = % Z'// My.d—i and [y = 0 implies that
li= 7 oy (tya+ -+ by avi—i)-

To prove the second assertion let s € Spec L ®, K be a point and let i’ = 1 p (s) be the Hodge polygon
of D ats. Then py g+ -+ ty d+1—i < :“:p,d +-. '+M:p,d+1—i for all v and all i by Proposition 2.13(b).
We let py, be the y-component of s*p := 5D ®, 50k, B:(S) and p:p be the y-component of s*p’ :=
s*D" Q50K [EB:(S). By definition of the Hodge polygon, see Construction 2.10, we can choose a
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Kk (s)[z]-basis (vy 1, ..., vy q) of py such that (f“:%l Uy ds e s tHva vy.a) 1s a k(s)[[t]]-basis of the
Y-component gy, of s*q. Since

. 1 .
dim, ()@ (Pﬁp[;] Ny 15 .-y Ulﬂ,n)l((s)((t))) >n+i—d

for all n, we can find a «(s)[[¢]-basis (UI’N, R v{N) of pﬁll with v"m. € (Vy 1y -y Vyrdt jmi Ve ()] -
Namely, for each j we let "D’j be an element of

(p;b N (U1, -s vl/f,d+j—i)x(s)[[z]])/(vfp,1v SRR v://,j—l>K(S)[U]]
which generates a nonzero saturated « (s)[[¢]l-submodule, and we let v://’j € p:/, MUy 15 - ey Uyrndt j—i (o)1
be a lift of 17;0’ j Then (vl’// [rees U://, j) is linearly independent over « (s)((#)) and generates a saturated
K (s)[[#]]-submodule of pi//. Using this basis we see that t~#v.d+j—i . v{b’j €qy N p:/,[l/t]. This implies that
(D) = o 3y Wy g Wy gy = i m

Proof of Theorem 9.3. We consider the embedding of &, , into 7, , via the zero section. Under
this section .@;‘hwa is contained in jfj‘?\,w;‘ o %’jﬁ‘éza, %a(}\,wj %ﬁ‘,‘;‘iwa, and 9;%}?2 by Lemma 5.3 or
Remark 5.8. Conversely they are all contained in %a(;vwi .- Moreover, these inclusions are compatible
with the morphisms « to (A/&,)E, -

We first claim that the affinoid subdomain is contained in the image of the weakly admissible locus
for all these stacks. By the above it suffices to prove the claim for 9;%‘”3. In this case the claim follows
from [Hellmann 2011, Theorem 5.5 and Proposition 5.2] using Lemma 9.5. Note that in [loc. cit.] only
Berkovich’s analytic points are treated, but the given argument works verbatim also for adic points.

Conversely let ¢ = (¢y, ..., cg) be an L-valued point of (A/ Gd)‘}i which lies in the image of the
weakly admissible locus of one of these stacks. By the above it lies in the image of %a%wg u- So let
D e %a(;vw; (L) for a field extension L'/L, such that D maps to c. By extending the field L’ further
we may assume that Ky C L’ and that Xqo X9 iy = ]—[;{:1 (X — A;) splits into linear factors
with A; € L’. We claim that vL/(]_[jel Aj) < v (p)/l for all subsets I C {1, ..., d} of cardinality i. By
Lemma 9.5 this implies that ¢ lies in our affinoid subdomain.

To prove the claim we use Remark 2.4. Then X¢ +c; X¢~! 4. .. 4¢, is the characteristic polynomial of
the L’-endomorphism (®7)g of Dy and 15 (D) = vy (det, (7)) '/. We write (®/)g in Jordan canonical
form and observe that Ny maps the generalized eigenspace of (®/), with eigenvalue A j into the one with
eigenvalue p~/ A j-If 1 C{l,...,d} is asubset with cardinality i this allows us to find an i-dimensional
L’-subspace D6 C Dy which is stable under (® )y and Ny such that the eigenvalues of (®/)p on Dy are of
the form (p™/x; : j € I) for suitable n; € Z~o. We let D’ C D be the (¢, N)-submodule corresponding

to D, C Do under Remark 2.4. Then
vy(]'[x ,-) < vu<1'[ P j) = v/ (det, (7)ol py) = tw (D) < v (p)/ ") < vy (p)"
jel jel

by the weak admissibility of D and by Lemma 9.5. This proves the theorem. ]
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10. Applications

Let us mention two conjectural applications of our constructions to the p-adic local Langlands program.

Breuil’s conjecture on the locally analytic socle. Breuil [2015; 2016] formulated a conjecture on the
locally analytic principal series representations that embed into the p-isotypical part of completed
cohomology (or some p-adically completed space of automorphic forms) for some fixed global Galois
representation p which is associated to an automorphic representation. The automorphic representation
to which p is associated defines a locally algebraic representation inside completed cohomology, i.e., a
representation that appears in the conjecture of Breuil and Schneider; see below. The conjectured existence
of more locally analytic principal series representations is the representation-theoretic formulation of the
existence of companion points on eigenvarieties, i.e., the existence of (overconvergent) p-adic automorphic
forms (of finite slope) such that the associated Galois representation is in fact automorphic.

These additional locally analytic representations that should conjecturally embed into completed
cohomology are described by combinatorial data: the relative position of the de Rham filtration and a flag
of ¢-stable subspaces inside Dg(p), i.e., they are described completely by local data. In fact one can
formulate a conjecture for all (potentially) semistable local Galois representations (not just the restrictions
of global Galois representations) by replacing the completed cohomology by the candidate for the p-adic
local Langlands correspondence as in [Caraiani et al. 2016].

In [Breuil et al. 2019], Breuil, Schraen and the second author established a link between the existence
of these locally analytic principal series representations and the degenerations of certain structures from
p-adic Hodge theory (and the theory of (¢, I')-modules) in rigid analytic families. The degenerations
predicted by Breuil’s conjecture can be constructed using precisely the universal families of semistable
representations defined in the present article.

The Breuil-Schneider conjecture. This second application is rather a speculation than a true application.
As mentioned in the introduction the p-adic local Langlands program wants to relate on the one hand
certain continuous representations of ¥, on n-dimensional L-vector spaces for another p-adic field L, and
on the other hand topologically irreducible admissible representations of GL, (K) on finite-dimensional
L-Banach spaces. We want to explain in which sense both kinds of representations vary in families.

On the side of GL,, (K )-representations, when all Hodge—Tate weights are pairwise different, a Banach—
Hecke algebra B which is the completion of the usual spherical Hecke algebra for a certain norm was
constructed in [Breuil and Schneider 2007; Schneider and Teitelbaum 2006]. This Banach—Hecke
algebra is an affinoid algebra over the Galois closure K of K /Qp, whose associated affinoid space
Spa B is contained in a split n-dimensional torus A. Moreover, the algebra 5 acts on a universal infinite-
dimensional locally algebraic Banach representation of GL, (K). Breuil and Schneider also conjectured
that the specialization of the universal Banach representation at any L-valued point of Spa B admits an
(in general many) invariant norm(s) and proved this in some cases. Further cases were established by
Sorensen [2013] and more recently many new cases were proved by Caraiani, Emerton, Gee, Geraghty,
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Paskitinas and Shin [Caraiani et al. 2016]. One might hope that the completions with respect to these
norms produce the searched for irreducible admissible finite-dimensional L-Banach representations.
If on the Galois side one restricts to semistable or crystalline representations of ¥k then we provide

in this article the moduli spaces @zdﬁd/? for those. Sending a semistable ¥k -representation to the
characteristic polynomial of its associated Frobenius defines a morphism « from deﬁd:l to the adjoint

quotient (A/ S,)™ which contains (an image of) the affinoid domain Spa B of Breuil and Schneider.
In Section 9 we proved that the fibers of this morphism « are Artin stacks in schemes (Corollary 9.2) and
we determined the image of «. If all Hodge—Tate weights are pairwise different, Breuil and Schneider
[2007, Proposition 3.2] proved that the image equals Spa B. Our Theorem 9.3 generalizes this to arbitrary
Hodge-Tate weights. So one may now ask whether there is a relation between the fiber of the morphism
o over an L-valued point of Spa B and the set of invariant norms on the specialization of the universal
Banach representation at this point.

The reader should note that by the condition of [Hellmann 2013] that the Hodge—Tate weights lie in
{0, 1} together with the condition of [Breuil and Schneider 2007; Schneider and Teitelbaum 2006] that
they are pairwise different, one was limited to GL, for which the p-adic local Langlands program is
established when K = Q,; see [Colmez 2010; Paskunas 2013; Colmez et al. 2014]. So for the application
to GL,, when n > 2 our generalization in the present article is essential.
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