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Let K be a finite field extension of Qp and let GK be its absolute Galois group. We construct the universal
family of filtered (ϕ, N )-modules, or (more generally) the universal family of (ϕ, N )-modules with a
Hodge–Pink lattice, and study its geometric properties. Building on this, we construct the universal family
of semistable GK -representations in Qp-algebras. All these universal families are parametrized by moduli
spaces which are Artin stacks in schemes or in adic spaces locally of finite type over Qp in the sense of
Huber. This has conjectural applications to the p-adic local Langlands program.
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1. Introduction

Let K be a finite field extension of Qp. The emerging p-adic local Langlands program wants to relate
on the one hand certain continuous representations of the absolute Galois group GK = Gal(K/K ) of
K on n-dimensional L-vector spaces for another p-adic field L , and on the other hand topologically
irreducible admissible representations of GLn(K ) on finite-dimensional L-Banach spaces in the sense
of [Schneider and Teitelbaum 2006]. One fundamental difference to the case where L is an `-adic field
with ` 6= p is that the `-adic local Langlands correspondence is a bijection of merely discrete sets. In
the p-adic case the representations vary in families. So one may even speculate about a continuous or
analytic correspondence. At present not even a conjectural formulation of the p-adic local Langlands
correspondence purely in local terms is known. One of the main tools in the p-adic Langlands program is
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to consider families of representations that admit a dense set of points, where the representations “come
from a global set-up”, as in [Caraiani et al. 2016] for example. Hence a good understanding of these
arithmetic families of p-adic Galois representations of GK seems to be crucial. This understanding is our
aim in the present article: we develop notions of p-adic families of p-adic Hodge structures (such as
filtered (ϕ, N )-modules) and p-adic Galois representations and study the relation between these two.

The study of such families was begun in [Kisin 2006; 2008; Pappas and Rapoport 2009] and in
[Hellmann 2013], where a universal family of filtered ϕ-modules was constructed and, building on this, a
universal family of crystalline representations with Hodge–Tate weights in {0, 1}. The approach is based
on Kisin’s integral p-adic Hodge theory cf. [Kisin 2006].

In the present article we generalize these results in two directions. First we consider more general
families of p-adic Hodge-structure, namely families of (ϕ, N )-modules together with a so called Hodge–
Pink lattice. The inspiration to work with Hodge–Pink lattices instead of filtrations is taken from the
analogous theory over function fields; see [Pink 1997; Genestier and Lafforgue 2011; Hartl 2011]. It
was already applied to Kisin’s integral p-adic Hodge theory by Genestier and Lafforgue [2012] in the
absolute case for ϕ-modules over Qp.

Second we generalize [Hellmann 2013] to the case of semistable representations. In doing so we
correct some mistakes made in [loc. cit.]. The generalization to families with more general Hodge–Tate
weights than those in [loc. cit.] (where the weights are assumed to be in {0, 1}) gives another good reason
to work with families of Hodge–Pink lattices: Kisin’s theory does not describe GK -stable Zp-lattices
in a crystalline (or semistable) GK -representation but all GK∞-stable Zp-lattices, where K∞ is a certain
Kummer extension of K appearing in [Kisin 2006]. The (ϕ, N )-modules with a Hodge–Pink lattice
correspond to certain GK∞ representations and we describe their moduli space (or stack). This stack
turns out to be a vector bundle over a space of filtered (ϕ, N )-modules. The original space of filtered
(ϕ, N )-modules (corresponding to GK rather than GK∞-representations) can be recovered as a section
defined by a certain transversality condition in this vector bundle. Moreover, we consider (following
[Pappas and Rapoport 2009]) a stack of integral p-adic Hodge-structures and a period morphism to the
moduli stack of (ϕ, N )-modules with a Hodge–Pink lattice and describe its image. Once again, this only
works using the more general framework of Hodge–Pink lattices.

The introduction of Hodge–Pink lattices rather than filtrations shows new and interesting phenomena:
similarly to the case of filtrations one can define weights of a Hodge–Pink lattice. However, these weights
can jump within a family! Whereas for families of GK -representations the Hodge–Tate weights should
vary continuously. On the Galois side there is an explanation of this behavior as follows: there is no
notion of Hodge–Tate weights for representations of GK∞ , but only for representations of GK .

We can define a notion of weak admissibility for (ϕ, N )-modules with Hodge–Pink lattice and show that
being weakly admissible is an open condition in the set-up of adic spaces generalizing the corresponding
result for filtered ϕ-modules in [Hellmann 2013]. Following the method of [Kisin 2006; Hellmann
2013] we further cut out an open subspace over which an integral structure for the (ϕ, N )-modules with
Hodge–Pink lattice exists and an open subspace over which a family of GK∞ =Gal(K/K∞)-representation
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exists. If we restrict ourselves to the subspace of filtered (ϕ, N )-modules one can promote this family of
GK∞-representations to the universal family of semistable GK -representations.

We describe our results in more detail. Let K be a finite extension of Qp with absolute Galois group
GK and maximal unramified subextension K0. Let Frobp be the p-Frobenius on K0. We consider families
of (ϕ, N )-modules over Qp-schemes X, that is finite locally free OX ⊗Qp K0-modules D together with a
ϕ := id⊗Frobp-linear automorphism 8 and a linear monodromy operator N : D→ D satisfying the
usual relation N8= p8N. Choosing locally on X a basis of D and considering 8 ∈ GLd(OX ⊗Qp K0)

and N ∈ Matd×d(OX ⊗Qp K0) as matrices, the condition N8 = p8N cuts out a closed subscheme
PK0,d ⊂ ResK0/Qp GLd ×Qp ResK0/Qp Matd×d . We can describe the geometry of this scheme as follows.

Theorem 3.2. The scheme PK0,d is equidimensional of dimension [K0 : Qp] d2. It is reduced, Cohen–
Macaulay and generically smooth over Qp. Its irreducible components are indexed by the possible Jordan
types of the (necessarily nilpotent) monodromy operator N.

Further we consider families of (ϕ, N )-modules D with a filtration F • on D⊗K0 K and more generally
families of (ϕ, N )-modules with a Hodge–Pink lattice q; see Definition 2.5 for the precise definitions.
Given a cocharacter µ of the algebraic group ResK/Qp GLd,K (or more precisely a cocharacter of the
Weil restriction of the diagonal torus which is dominant with respect to the Weil restriction of the upper
triangular matrices) we define the notions of a filtration F • and a Hodge–Pink lattice with constant Hodge
polygon equal to µ, and the notion of boundedness by µ for a Hodge–Pink lattice q. Associated with µ is
a reflex field Eµ which is a finite extension of Qp.

Theorem 3.6. (a) The stack Hϕ,N ,�µ parametrizing rank d families of (ϕ, N )-modules with Hodge–
Pink lattice bounded by µ on the category of Eµ-schemes is an Artin stack. It is equidimensional
and generically smooth. Its dimension can be explicitly described in terms of the cocharacter µ and
its irreducible components are indexed by the possible Jordan types of the (nilpotent) monodromy
operator.

(b) The stack Hϕ,N ,µ parametrizing rank d families of (ϕ, N )-modules with Hodge–Pink lattice with
constant Hodge polygon equal to µ, is an open and dense substack of Hϕ,N ,�µ. Further it is reduced
and Cohen–Macaulay. It admits a canonical map to the stack Dϕ,N ,µ of filtered (ϕ, N )-modules with
filtration of type µ. This map is representable by a vector bundle.

If we restrict ourselves to the case of vanishing monodromy, i.e., the case N = 0, we cut out a single
irreducible component Hϕ,�µ ⊂Hϕ,N ,�µ and similarly for the other stacks in the theorem. Following
[Hellmann 2013] we consider the above stacks also as stacks on the category of adic spaces locally of
finite type over Qp, i.e., we consider the adification H ad

ϕ,N ,�µ, etc. Passing from Qp-schemes to adic
spaces allows us to generalize Kisin’s comparison between filtered (ϕ, N )-modules and vector bundles on
the open unit disc (together with certain additional structures). To do so we need to fix a uniformizer π
of K as well as its minimal polynomial E(u) over K0.
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Theorem 4.6. For every adic space X locally of finite type over Qp there is a natural equivalence of
categories between the category of (ϕ, N )-modules with Hodge–Pink lattice over X and the category
of (ϕ, N∇)-modules over X, i.e., the category of vector bundles M on the product of X with the open
unit disc U over K0 together with a semilinear map 8M :M→M that is an isomorphism away from
X ×{E(u)= 0} ⊂ X ×U and a differential operator NM

∇
satisfying

NM
∇
◦8M ◦ϕ = p E(u)

E(0)
·8M ◦ϕ ◦ NM

∇
.

Theorem 4.9. The differential operator NM
∇

defines a canonical meromorphic connection on the vector
bundle M. The closed substack H ∇

ϕ,N ,µ ⊂H ad
ϕ,N ,µ where this connection is holomorphic coincides with

the zero section of the vector bundle H ad
ϕ,N ,µ→ Dad

ϕ,N ,µ.

It should be mentioned that the results of Kisin [2006] have a parallel story, earlier developed by Berger
[2002], using the cyclotomic extension K (εn, n ≥ 1) for a compatible system (εn) of pn-th root of unity,
instead of the Kummer extension K∞. The above results are very much inspired by [loc. cit.].

Similarly to the case of filtered ϕ-modules in [Hellmann 2013] there is a notion of weak admissibility for
families of (ϕ, N )-modules with Hodge–Pink lattice over an adic space. We show that weak admissibility
is an open condition.

Theorem 5.6. Let µ be a cocharacter as above. Then the groupoid

X 7→
{
(D,8, N , q) ∈Hϕ,N ,�µ(X) | D⊗ κ(x) is weakly admissible for all x ∈ X

}
is an open substack H ad,wa

ϕ,N ,�µ of H ad
ϕ,N ,�µ.

Following the construction in [Hellmann 2013] we construct an open substack H ad,int
ϕ,N ,�µ ⊂H ad,wa

ϕ,N ,�µ

where an integral model for the (ϕ, N∇)-module over the open unit disc exists. Here integral means with
respect to the ring of integers W in K0. Dealing with Hodge–Pink lattices instead of filtrations makes it
possible to generalize the period morphism of [Pappas and Rapoport 2009, §5] beyond the miniscule case.
That is, we consider a stack Ĉ�µ,N ,K in the category of formal schemes over SpfOEµ whose R-valued
points parameterize tuples (M,8, N ), where M is a finite locally free (R⊗Zp W )[[u]] module, 8 is a
semilinear morphism 8 :M→M which is an isomorphism away from E(u) = 0, whose behavior at
E(u) is controlled in terms of µ, and N is an endomorphism of M/uM satisfying N8= p8N ; see after
Remark 6.8 for the precise definition.

Given a p-adic formal scheme X over SpfOEµ we construct a period morphism

5(X ) : Ĉ�µ,N ,K (X )→H ad
ϕ,N ,�µ(X

ad)

and the substack H ad,int
ϕ,N ,�µ will serve as the image of this morphism in the following sense:

Corollary 6.10. Let X be an adic space locally of finite type over the reflex field Eµ of µ and let
f : X→H ad

ϕ,N ,�µ be a morphism defined by (D,8, N , q). Then f factors over H ad,int
ϕ,N ,�µ if and only if there

exists an fpqc-covering (Ui → X)i∈I and formal models Ui of Ui together with (Mi ,8i ) ∈ Ĉ�µ,N ,K (Ui )

such that 5(Ui )(Mi ,8i )= (D,8, N , q)|Ui .
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Finally we go back to Galois representations. We prove that there is a canonical open subspace
H red,ad,adm
ϕ,N ,�µ of the reduced space underlying H ad,int

ϕ,N ,�µ which carries a family of GK∞-representations. This
family is universal in a sense made precise in the body of the article. Roughly this means that a morphism
f : X→H ad,int

ϕ,N ,�µ defined by some (M,8, N ) over a formal model X of X factors over H ad,adm
ϕ,N ,�µ if and

only there exists a family of GK∞-representations E on X such that the ϕ-module of E , in the sense of
Fontaine, is (up to inverting p) given by the p-adic completion of (M,8)[1/u]. For a finite extension L
of Eµ, Kisin’s theory implies that we have an equality

H red,ad,adm
ϕ,N ,�µ (L)=H ad,int

ϕ,N ,�µ(L)=H ad,wa
ϕ,N ,�µ(L)

of L-valued points.
If we want to promote our family of GK∞-representations to a family of GK -representations, we have to

restrict ourselves to filtrations rather than Hodge–Pink lattices. The reason for that is that the meromorphic
connection ∇ in Theorem 4.9 above must be holomorphic in this case. In the framework of Berger’s work
[2002] with the cyclotomic tower, this is in some sense even more apparent: the connection ∇ comes
from the derivation of the 0-action.

Theorem 8.15. There is an open substack Dad,adm
ϕ,N ,µ ⊂ Dad

ϕ,N ,µ over which there exists a family E of
semistable GK -representations such that Dst(E)= (D,8, N ,F •) is the restriction of the universal family
of filtered (ϕ, N )-modules on Dad

ϕ,N ,µ to Dad,adm
ϕ,N ,µ .

This family is universal in the following sense: Let X be an adic space locally of finite type over the
reflex field Eµ of µ, and let E ′ be a family of semistable GK -representations on X with constant Hodge
polygon equal to µ. Then there is a unique morphism f : X→ Dad,adm

ϕ,N ,µ such that E ′ ∼= f ∗E as families of
GK -representations.

The corresponding result for crystalline GK -representations with constant Hodge polygon equal to µ,
whose moduli space is Dad,adm

ϕ,µ , is formulated and proved in Corollary 8.16. We finally briefly discuss how
these results relate to Kisin’s construction of potentially semistable deformation rings [Kisin 2008]. There
is a precise relation between our universal family and Kisin’s construction discussed in Proposition 8.17.
It should be mentioned however, that the spirit of our approach differs from Kisin’s: we study families
of p-adic Hodge-structures (i.e., semilinear algebra data) and then cut out a subspace defining a Galois
representation. Kisin starts with families of Galois representations (provided by deformation rings) and
then cuts out a crystalline locus. Moreover, his definition of a crystalline family differs from ours: Kisin
defines a family to be semistable if its base change to all finite-dimensional Qp-algebras is semistable. In
contrast we aim at giving a definition that is more in the spirit of Fontaine’s definition using period rings.
In fact, as we needed to correct some mistakes from the last section of [Hellmann 2013], we also changed
the definition of crystalline representations from [loc. cit.]: it seems to be a bit messy to deal with the
filtration on a sheafified version of Bcris, hence we rather use the ϕ-modules on the open unit disc as our
p-adic Hodge structures and define the notion of a semistable representation using the comparison of a
vector bundle on the open unit disc and a Galois representation after tensoring with (a relative version
of) B+cris; see Definition 8.2.
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Notations. Let K be a finite field extension of the p-adic numbers Qp and fix an algebraic closure K
of K. We write Cp for the p-adic completion of K and let GK =Gal(K/K ) be the absolute Galois group
of K. Let K̃ be the Galois closure of K inside K. Let K0 be the maximal unramified subfield of K
and W its ring of integers. Set f := [K0 : Qp], and let Frobp be the Frobenius automorphism of K0

which induces the p-power map on the residue field of K0. We fix once and for all a uniformizer π of K
and its minimal polynomial E(u)=mipoπ/K0

(u) ∈ W [u] over K0. It is an Eisenstein polynomial, and
K = K0[u]/(E(u)). We choose a compatible system πn of pn-th roots of π in K and write K∞ for the
field obtained from K by adjoining all πn .

2. Families of (ϕ, N)-modules with Hodge–Pink lattice

Let R be a Qp-algebra and consider the endomorphism ϕ := idR ⊗Frobp of R⊗Qp K0. For an R⊗Qp K0-
module M we set ϕ∗M := M ⊗R⊗Qp K0,ϕ R⊗Qp K0. Similar notation is applied to morphisms between
R⊗Qp K0-modules. We let ϕ∗ : M→ ϕ∗M be the ϕ-semilinear map with ϕ∗(m)= m⊗ 1.

We introduce the rings

B+R := lim
←−

i

(R⊗Qp K0[u])/(E(u)i ) and BR := B+R

[ 1
E(u)

]
.

In a certain sense B+
Qp

and BQp are the analogues of Fontaine’s rings B+dR and BdR in Kisin’s theory [2006]
of p-adic Galois representation. By Cohen’s structure theorem [Serre 1979, Theorem II.4.2] the ring
B+

Qp
= lim
←−

K0[u]/(E(u)i ) is isomorphic to K [[t]] under a map sending t to E(u)/E(0) (and by Hensel’s
lemma the lift of the residue field K to a subring of B+

Qp
is unique). The rings B+R and BR are relative

versions over R, and are isomorphic to (R⊗Qp K )[[t]] and (R⊗Qp K )[[t]][1/t], respectively. We extend ϕ
to R⊗Qp K0[u] by requiring that ϕ(u)= u p and we define ϕn(B+R) := lim

←− i
(R⊗Qp K0[u])/(ϕn(E(u))i ).

We may also identify ϕn(B+R) with

lim
←−
(R⊗Qp K (πn)[u])/(1− (u/πn))

i
= (R⊗Qp K (πn))[[1− (u/πn)]]

under the assignment E(u)/E(0) 7→ 1− (u/πn); compare [Kisin 2006, (1.1.1)]. We extend these rings
to sheaves of rings ϕn(B+X ) := ϕ

n(B+OX
) on Qp-schemes X or adic spaces X ∈Adlft

Qp
. Here Adlft

Qp
denotes

the category of adic spaces locally of finite type, see [Huber 1994] for example.

Remark 2.1. Note that ϕn(B+R) is not a subring of B+R . If X = Spa(R, R◦) is an affinoid adic space of
finite type over Qp one should think of ϕn(B+R) as the completion of the structure sheaf on X ×U along
the section defined by ϕn(E(u)) ∈ U. Here U denotes the open unit disc over K0.

Definition 2.2. (a) A ϕ-module (D,8) over R consists of a locally free R⊗Qp K0-module D of finite
rank, and an R⊗Qp K0-linear isomorphism 8 : ϕ∗D −→∼ D. A morphism α : (D,8)→ (D̃, 8̃) of
ϕ-modules is an R⊗Qp K0-homomorphism α : D→ D̃ with α ◦8= 8̃ ◦ϕ∗α.

(b) A (ϕ, N )-module (D,8, N ) over R consists of a ϕ-module (D,8) over R and an R⊗Qp K0-linear
endomorphism N : D→ D satisfying N ◦8= p ·8◦ϕ∗N. A morphism α : (D,8, N )→ (D̃, 8̃, Ñ )
of (ϕ, N )-modules is a morphism of ϕ-modules with α ◦ N = Ñ ◦α.
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The rank of D over R⊗Qp K0 is called the rank of (D,8) or (D,8, N ).

Every ϕ-module over R can be viewed as a (ϕ, N )-module with N = 0.

Lemma 2.3. (a) Every ϕ-module (D,8) over R is Zariski locally on Spec R free over R⊗Qp K0.

(b) The endomorphism N of a (ϕ, N )-module over R is automatically nilpotent.

Proof. (a) Let m ⊂ R be a maximal ideal. Then R/m⊗Qp K0 is a direct product of fields which are
transitively permuted by Gal(K0/Qp). The existence of the isomorphism 8 implies that D⊗R R/m is
free over R/m⊗Qp K0. Now the assertion follows by Nakayama’s lemma.

(b) By (a) we may locally on R write N as a matrix with entries in R⊗Qp K0. Set d := rk D. If the
entries of the d-th power N d lie in Rad(0)⊗Qp K0, where Rad(0)=

⋂
p⊂R prime p is the nil-radical, then

N is nilpotent. Thus we may check the assertion in L = Frac(R/p)alg for all primes p⊂ R. We replace
R by L . Then D =

∏
Vψ splits up into a direct product of d-dimensional L-vector spaces indexed by the

embeddings ψ : K0 ↪→ L . For every fixed embedding ψ the f -th power 8 f restricts to an endomorphism
8ψ of Vψ satisfying N8ψ = p f8ψN. If V (λ,8ψ) denotes the generalized eigenspace for some λ ∈ L×,
then N maps V (λ,8ψ) to V (p f λ,8ψ) and hence N is nilpotent, as there are only finitely many nonzero
eigenspaces. This implies that N d

= 0. �

Remark 2.4. If R is even a K0-algebra, we can decompose R⊗Qp K0 ∼=
∏

i∈Z/ f Z R where the i-th factor
is given by the map R⊗Qp K0→ R, a⊗ b 7→ a Frob−i

p (b) for a ∈ R, b ∈ K0. For a (ϕ, N )-module over
R we obtain corresponding decompositions D =

∏
i Di and ϕ∗D =

∏
i (ϕ
∗D)i with (ϕ∗D)i = Di−1, and

therefore also 8= (8i : Di−1 −→
∼ Di )i and N = (Ni : Di → Di )i with p8i ◦ Ni−1 = Ni ◦8i , because

(ϕ∗N )i = Ni−1. If we set

9i :=8i ◦ · · · ◦81 = (8 ◦ϕ
∗8 ◦ · · · ◦ϕ(i−1)∗8)i : D0 = (ϕ

i∗D)i −→∼ Di ,

then pi 9i ◦N0 = Ni ◦9i for all i , and 9 f = (8
f )0. There is an isomorphism of (ϕ, N )-modules over R

( idD0, 91, . . . , 9 f−1) :
(∏

i

D0,
(
(8 f )0, idD0, . . . , idD0

)
, (pi N0)i

)
−→∼

(∏
i

Di , (8i )i , (Ni )i

)
. (2-1)

Thus (D,8, N ) is uniquely determined by (D0, (8
f )0, N0) satisfying p f (8 f )0 ◦ N0 = N0 ◦ (8

f )0.
Further note that under this isomorphism 8 f on (D,8, N ) corresponds to

(
(8 f )0, . . . , (8

f )0
)

on the
left-hand side.

Definition 2.5. (a) A K -filtered (ϕ, N )-module (D,8, N ,F •) over R consists of a (ϕ, N )-module
(D,8, N ) over R together with a decreasing separated and exhaustive Z-filtration F • on DK := D⊗K0 K
by R⊗Qp K -submodules such that gri

F DK :=F i DK /F i+1 DK is locally free as an R-module for all i . A
morphism α : (D,8, N ,F •)→ (D̃, 8̃, Ñ , F̃ •

) is a morphism of (ϕ, N )-modules with (α⊗ id)(F i DK )⊂

F̃ i D̃K .

(b) A (ϕ, N )-module with Hodge–Pink lattice (D,8, N , q) over R consists of a (ϕ, N )-module (D,8, N )
over R together with a B+R -lattice q⊂D⊗R⊗K0 BR . This means that q is a finitely generated B+R -submodule,
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which is a direct summand as R-module satisfying BR · q = D⊗R⊗K0 BR . We call q the Hodge–Pink
lattice of (D,8, N , q). A morphism α : (D,8, N , q)→ (D̃, 8̃, Ñ , q̃) is a morphism of (ϕ, N )-modules
with (α⊗ id)(q)⊂ q̃.

Remark 2.6. Note that the graded pieces gri
F DK in (a) are R ⊗Qp K -modules that are locally on

Spec(R⊗Qp K ) free, but not necessarily of the same rank. Hence they are not locally on Spec R free as
R⊗Qp K -modules. However, they are locally on Spec R free as R-modules.

For every (ϕ, N )-module with Hodge–Pink lattice (D,8, N , q) over R we also consider the tautological
B+R -lattice p := D⊗R⊗K0 B+R .

Lemma 2.7. Let q⊂ D⊗R⊗K0 BR be a B+R -submodule. Then q is a B+R -lattice if and only if E(u)np⊂
q⊂ E(u)−mp for all n,m� 0 and for any (some) such n,m the quotients E(u)−mp/q and q/E(u)np are
finite locally free R-modules.

If this is the case then étale locally on Spec R the B+R -module q is free of the same rank as p.

Proof. The assertion E(u)np ⊂ q ⊂ E(u)−mp for all n,m � 0 is equivalent to BR · q = D⊗R⊗K0 BR

when q is finitely generated. Consider such n,m. If q is a B+R -lattice, hence a direct summand of
D ⊗R⊗K0 BR there is an R-linear section s of the projection pr : D ⊗R⊗K0 BR � (D ⊗R⊗K0 BR)/q.
The composition of this section with the inclusion E(u)−mp/q ↪→ (D ⊗R⊗K0 BR)/q factors through
E(u)−mp: Indeed, for x ∈ E(u)−mp/q the condition pr(s(x))= x means that there exists x ′ ∈ q such that
s(x)= x + x ′ ∈ E(u)−mp+ q= E(u)−mp.

Hence we see that the inclusion E(u)−mp/q ↪→ (D ⊗R⊗K0 BR)/q realizes E(u)−mp/q as a direct
summand of the R-module E(u)−mp/E(u)np which is locally free by Lemma 2.3(a). This shows that
E(u)−mp/E(u)np ∼= (E(u)−mp/q)⊕ (q/E(u)np) and both E(u)−mp/q and q/E(u)np are finite locally
free R-modules.

Conversely any isomorphism E(u)−mp/E(u)np ∼= (E(u)−mp/q) ⊕ (q/E(u)np) together with the
decomposition D⊗R⊗K0 BR ∼= (E(u)np)⊕ (E(u)−mp/E(u)np)⊕ (D⊗R⊗K0 BR)/E(u)−mp realizes q

as a direct summand of D ⊗R⊗K0 BR . Indeed, we have the following direct sum decompositions of
R-modules:

q∼= (E(u)np)⊕(q/E(u)np),

D⊗R⊗K0BR ∼= (E(u)np)⊕(q/E(u)np)⊕(E(u)−mp/q)⊕(D⊗R⊗K0BR)/E(u)−mp.

Since E(u)np is finitely generated over B+R and q/E(u)np is finitely generated over R, also q is finitely
generated over B+R , hence a B+R -lattice.

To prove the local freeness of q we may work locally on R and assume by Lemma 2.3(a) that p is free
over B+R , say of rank d , and q/E(u)np and E(u)−mp/q are free over R. There is a noetherian subring R̃
of R and a short exact sequence

0→ Q̃→ P̃→ Ñ → 0 (2-2)
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of B+
R̃

-modules which are free R̃-modules, such that the tensor product of (2-2) with R over R̃ is
isomorphic to

0→ q/E(u)np→ E(u)−mp/E(u)np→ E(u)−mp/q→ 0. (2-3)

Indeed, we can take R̃ as the finitely generated Qp-algebra containing all the coefficients appearing in
matrix representations of the maps in (2-3) and the action of K0[u]/(E(u))m+n . Note that, since P̃ is free
over R̃, it is contained in P̃⊗R̃ R ∼= E(u)−mp/E(u)np, and since the latter is annihilated by E(u)m+n , the
same is true for P̃, Q̃ and Ñ. Let p̃ be a free B+

R̃
-module of rank d and fix an isomorphism p̃⊗B+

R̃
B+R
∼= p.

This isomorphism obviously induces an isomorphism

E(u)−m p̃⊗B+
R̃

(
B+

R̃
/(E(u))m+n)

−→∼ P̃.

Let the B+
R̃

-module q̃ be defined by the exact sequence

0→ q̃→ E(u)−m p̃→ Ñ → 0. (2-4)

Since B+
R̃
∼= (R̃⊗Qp K )[[t]] is noetherian, q̃ is finitely generated. Consider a maximal ideal m⊂B+

R̃
. Since

t ∈m, it maps to a maximal ideal n of R̃. Since n is finitely generated, B+
R̃
⊗R̃ R̃/n ∼= (R̃/n⊗Qp K )[[t]]

and this is a direct product of discrete valuation rings. Thus q̃⊗R̃ R̃/n is locally free of rank d by the
elementary divisor theorem. Since this holds for all m, [EGA IV3 1966, Theorem 11.3.10] implies that
q̃ is a projective B+

R̃
-module and by [EGA I 1971, Proposition 10.10.8.6] it is locally on Spec R̃⊗Qp K

free over B+
R̃

. Let {ψ : K ↪→Qp} be the set of all Qp-homomorphisms and let K̃ be the compositum of
all ψ(K ) inside Qp. Then R̃→ R̃⊗Qp K̃ is finite étale and the pullback of q̃ under this base change is
locally on Spec R̃⊗Qp K̃ ⊗Qp K free over B+

R̃⊗Qp K̃
. Since

Spec R̃⊗Qp K̃ ⊗Qp K =
∐
ψ

Spec R̃⊗Qp K̃,

the pullback of q̃ is already locally on Spec R̃⊗Qp K̃ free over B+
R̃⊗Qp K̃

.

To finish the proof it remains to show that q̃⊗B+
R̃

B+R
∼= q. Tensoring (2-4) with B+R over B+

R̃
we obtain

the top row in the diagram

0 // Tor
B+

R̃
1 (Ñ ,B+R)

// q̃⊗B+
R̃

B+R
//

����

E(u)−mp // Ñ ⊗B+
R̃

B+R
//

∼=

��

0

0 // q // E(u)−mp // E(u)−mp/q // 0

Abbreviate ` := m+ n. Since the functor Ñ ⊗B+
R̃
• equals the composition of the functors (B+

R̃
/t`)⊗B+

R̃
•

followed by Ñ ⊗B+
R̃
/t` •, the Tor1-module on the left can be computed from a change of rings spectral

sequence [Rotman 2009, Theorem 10.71] and its associated 5-term sequence of low degrees, see [Rotman
2009, Theorem 10.31],

· · · → Tor
B+

R̃
1 (B+

R̃
/t`,B+R)⊗B+

R̃
/t` Ñ → Tor

B+
R̃

1 (Ñ ,B+R) → Tor
B+

R̃
/t`

1 (Ñ ,B+R/t`) → 0.
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The right term in this sequence is zero because TorB+
R̃
/t`

1 (Ñ ,B+R/t`)= TorR̃
1 (Ñ , R) and Ñ is flat over R̃.

The left term is zero because t` is a nonzero-divisor both in B+
R̃

and B+R . This shows that TorB+
R̃1 (Ñ ,B+R)=0

and proves the lemma. �

Remark 2.8. (1) Let R = L be a field and let (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice
over L . The Hodge–Pink lattice q gives rise to a K -filtration F •q as follows. Consider the natural projection

p� p/E(u)p= D⊗R⊗K0 B+R/(E(u))

= D⊗R⊗K0 R⊗Qp K = DK

and let F i
qDK be the image of p∩ E(u)iq in DK for all i ∈ Z, that is

F i
qDK :=

(
p∩ E(u)iq

)/(
E(u)p∩ E(u)iq

)
.

Since L is a field (D,8, N ,F •q) is a K -filtered (ϕ, N )-module over L . Note that this functor does not
exist for general R, because gri

Fq
DK will not be locally free over R in general. This is related to the

fact that the Hodge polygon of F •q is locally constant on R whereas the Hodge polygon of q is only
semicontinuous; see Remark 2.12 below.

(2) However, for general R consider the category of (ϕ, N )-modules with Hodge–Pink lattice (D,8, N , q)
over R, such that p ⊂ q ⊂ E(u)−1p. This category is equivalent to the category of K -filtered (ϕ, N )-
modules (D,8, N ,F •) over R with F0 DK = DK and F2

= 0. Namely, defining F •q as in (1) we obtain

gri
Fq

DK ∼=


E(u)−1p/q for i = 0,

q/p for i = 1,
0 for i 6= 0, 1,

and so (D,8, N ,F •q) is a K -filtered (ϕ, N )-module by Lemma 2.7. Conversely, q equals the preimage
of F1

q DK under the morphism E(u)−1p
·E(u)
−−→ p� DK and this defines the inverse functor.

(3) Now let (D,8, N ,F •) be a K -filtered (ϕ, N )-module over R. Using that B+R = (R⊗Qp K )[[t]] is an
R⊗Qp K -algebra, we can define the Hodge–Pink lattice

q := q(F •) :=
∑
i∈Z

E(u)−i (F i DK )⊗R⊗K B+R .

It satisfies F •q = F •. Using Lemma 2.7 one easily finds that q(F •) is indeed a B+R -lattice.

Example 2.9. The K -filtered (ϕ, N )-modules over R=Qp which correspond to the cyclotomic character
χcyc : GK → Z

×

p are Dst(χcyc) = (K0,8 = p−1, N = 0,F •) with F−1
= K ) F0

= (0) and its dual
D∗st(χcyc)= (K0,8= p, N = 0,F •) with F1

= K )F2
= (0). For both there exists a unique Hodge–Pink

lattice which induces the filtration. On Dst(χcyc) it is q= E(u)p and on D∗st(χcyc) it is q= E(u)−1p.

We want to introduce Hodge weights and Hodge polygons. Let d > 0, let B ⊂ GLd be the Borel
subgroup of upper triangular matrices and let T ⊂ B be the maximal torus consisting of the diagonal
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matrices. Let G̃ := ResK/Qp GLd,K , B̃ = ResK/Qp B and T̃ := ResK/Qp T be the Weil restrictions. We
consider cocharacters

µ : Gm,Qp
→ T̃Qp

(2-5)

which are dominant with respect to the Borel B̃ of G̃. In other words on Qp-valued points the cocharacter

µ :Q×p →
∏

ψ :K→Qp

T (Qp) ,

where ψ runs over all Qp-homomorphisms ψ : K →Qp, is given by cocharacters

µψ : x 7→ diag(xµψ,1, . . . , xµψ,d )

for some integers µψ, j ∈ Z with µψ, j ≥ µψ, j+1. We define the reflex field Eµ of µ as the fixed field
in Qp of {σ ∈ GQp : µσψ, j = µψ, j for all j, ψ}. It is a finite extension of Qp which is contained in
the compositum K̃ of all ψ(K ) inside Qp. For each j the locally constant function ψ 7→ µψ, j on
Spec K̃ ⊗Qp K ∼=

∐
ψ :K→K̃ Spec K̃ descends to a Z-valued function µ j on Spec Eµ⊗Qp K, because µ j

is constant on the fibers of Spec K̃ ⊗Qp K → Spec Eµ⊗Qp K. In particular, the cocharacter µ is defined
over Eµ. If R is an Eµ-algebra we also view µ j as a locally constant Z-valued function on Spec R⊗Qp K.

Construction 2.10. Let D = (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice of rank d over a
field extension L of Qp. By Lemma 2.3(a) the L ⊗Qp K0-module D is free. Since L ⊗Qp K is a product
of fields, B+L = (L ⊗Qp K )[[t]] is a product of discrete valuation rings and q is a free B+L -module of
rank d. We choose bases of D and q. Then the inclusion q ⊂ D⊗L⊗K0 BL is given by an element γ
of GLd(BL)= G̃

(
L((t))

)
. By the Cartan decomposition for G̃ there is a uniquely determined dominant

cocharacter µL :Gm,L→ T̃L over L with γ ∈ G̃
(
L[[t]]

)
µL(t)−1G̃

(
L[[t]]

)
. This cocharacter is independent

of the chosen bases. If L contains K̃ , it is defined over K̃ because T̃ splits over K̃ . In this case we view
it as an element of X∗(TK̃ )dom and denote it by µD(Spec L). It has the following explicit description.
Under the decomposition L ⊗Qp K =

∏
ψ :K→K̃ L we have γ ∈

∏
ψ GLd

(
L[[t]]

)
µψ(t)−1 GLd

(
L[[t]]

)
,

as G̃
(
L((t))

)
=
∏
ψ GLd

(
L((t))

)
, and µL = (µψ)ψ . The t−µψ,1, . . . , t−µψ,d are the elementary divisors

of the ψ-component qψ of q with respect to p. That is, there is an L[[t]]-basis (vψ,1, . . . , vψ,d) of the
ψ-component pψ of p such that (t−µψ,1 vψ,1, . . . , t−µψ,d vψ,d) is an L[[t]]-basis of qψ .

Let (D,8, N ,F •q) be the K -filtered (ϕ, N )-module associated with D by Remark 2.8 (1). Then
F i
qDK ,ψ = 〈vψ, j : i −µψ, j ≤ 0〉L and

dimL gri
Fq

DK ,ψ = #{ j : i −µψ, j = 0}.

More generally, for a K -filtered (ϕ, N )-module (D,8, N ,F •) over a field extension L of K̃ we consider
the decomposition DK =

∏
ψ DK ,ψ and define the integers µψ,1 ≥ · · · ≥ µψ,d by the formula

dimL gri
F DK ,ψ = #{ j : µψ, j = i}.

We define the cocharacter µ(D,8,N ,F•)(Spec L) := (µψ)ψ and view it as an element of X∗(TK̃ )dom.
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Definition 2.11. (a) Let R be a K̃ -algebra and consider the decomposition R ⊗Qp K =
∏
ψ :K ↪→K̃ R.

Let D be a (ϕ, N )-module with Hodge–Pink lattice (respectively a K -filtered (ϕ, N )-module) of
rank d over R. For every point s ∈ Spec R we consider the base change s∗D of D to κ(s). We call
the cocharacter µD(s) := µs∗D(Spec κ(s)) from Construction 2.10 the Hodge polygon of D at s and
we consider µD as a function µD : Spec R→ X∗(TK̃ )dom. The integers −µψ, j (s) are called the
Hodge weights of D at s.

Now let µ :Q×p → T̃ (Qp) be a dominant cocharacter as in (2-5), let Eµ denote the reflex field of µ, and
let R be an Eµ-algebra.

(b) Let D be a (ϕ, N )-module with Hodge–Pink lattice (respectively a K -filtered (ϕ, N )-module) of
rank d over R. We say that D has constant Hodge polygon equal to µ if µD(s)= µ for every point
s ∈ Spec(R⊗Eµ K̃ ).

(c) Let D = (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice over Spec R. We say that D has
Hodge polygon bounded by µ if∧ j

B+R
q⊂ E(u)−µ1−···−µ j ·

∧ j
B+R

p

for all j = 1, . . . , d with equality for j = d , where the µi are the Z-valued functions on Spec R⊗Qp K
determined by µ; see the discussion before Construction 2.10.

Equivalently the condition of being bounded by µ can be described as follows: Over K̃ the cocharacter
µ is described by a decreasing sequence of integers µψ,1 ≥ · · · ≥ µψ,d for every Qp-embedding ψ :
K ↪→Qp. Let R′ = R⊗Eµ K̃ , then R′⊗Qp K ∼=

∏
ψ :K→K̃ R′ψ with each R′ψ = R′ under the isomorphism

a⊗b 7→ (aψ(b))ψ , where ψ : K→ R′ is given via the embedding into the second factor of R′= R⊗Eµ K̃ .
Especially we view R′ψ as a K -algebra via ψ . Under this isomorphism D ⊗R⊗K0 BR′ =: pR′[1/t]
decomposes into a product

∏
ψ pR′[1/t]ψ , where pR′[1/t]ψ is a free R′ψ [[t]][1/t]-module and the B+R′-

lattice pR′ ⊂ pR′[1/t] decomposes into a product of R′ψ [[t]]-lattices pR′,ψ ⊂ pR′[1/t]ψ .
Further, under the isomorphism D⊗R⊗K0 BR′ ∼=

∏
ψ pR′[1/t]ψ the Hodge–Pink lattice qR′ = q⊗R R′

decomposes into a product qR′ =
∏
ψ qR′,ψ , where qR′,ψ is an R′ψ [[t]]-lattice in pR′[1/t]ψ . Then the

condition of being bounded by µ is equivalent to∧ j
B+R′

qR′,ψ ⊂ E(u)−µψ,1−···−µψ, j ·
∧ j

B+R′
pR′,ψ (2-6)

for all ψ and all j = 1, . . . , d with equality for j = d .
Note that by Cramer’s rule (e.g., [Bourbaki 1970, III.8.6, Formulas (21) and (22)]) the condition of

Definition 2.11 (c), respectively (2-6) is equivalent to∧ j
B+R

p⊂ E(u)µd− j+1+···+µd ·
∧ j

B+R
q ,

respectively ∧ j
B+R′

pR′,ψ ⊂ E(u)µψ,d− j+1+···+µψ,d ·
∧ j

B+R′
qR′,ψ (2-7)

for all j = 1, . . . , d with equality for j = d .
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Remark 2.12. The Hodge polygon of a K -filtered (ϕ, N )-module (D,8, N ,F •) is locally constant on R,
because gri

F DK ,ψ is locally free over R as a direct summand of the locally free R-module gri
F DK .

In contrast, the Hodge polygon of a (ϕ, N )-module D with Hodge–Pink lattice over R is not locally
constant in general. Nevertheless, for any cocharacter µ as in (2-5) the set of points s ∈ Spec R such that
µD(s)� µ in the Bruhat order, is closed in Spec R. This is a consequence of the next:

Proposition 2.13. Let µ ∈ X∗(TK̃ )dom be a dominant cocharacter with reflex field Eµ and let R be an
Eµ-algebra. Let D = (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice of rank d over R.

(a) The condition that D has Hodge polygon bounded by µ is representable by a finitely presented closed
immersion (Spec R)�µ ↪→ Spec R.

(b) If R is reduced then D has Hodge polygon bounded by µ if and only if for all points s ∈Spec R⊗Eµ K̃
we haveµD(s)�µ in the Bruhat order, that is, for allψ the vectorµψ−µD(s)ψ ∈Zd is a nonnegative
linear combination of the positive coroots α̌ j = (. . . , 0, 1,−1, 0, . . .) having the “1” as the j-th
entry.

(c) Let µ′ be another dominant cocharacter such that µ′ � µ in the Bruhat order. Let Eµ′ denote its
reflex field and let E = EµEµ′ ⊂ K̃ be the composite field. Assume that R is an E-algebra, then
(Spec R)�µ′ ↪→ (Spec R)�µ as closed subschemes of Spec R.

Proof. (a) By Lemma 2.7 we find a large positive integer n such that E(u)np ⊂ q ⊂ E(u)−np. This
implies

∧jq ⊂ E(u)− jn∧jp for all j and
∧dp ⊂ E(u)−dn∧dq. Viewing µ j : Spec R ⊗Qp K → Z as

locally constant function as in the discussion before Construction 2.10, we consider the modules over
B+R
∼= (R⊗Qp K )[[t]]

M0 := E(u)−dn∧dq
/

E(u)µ1+···+µd ·
∧dq,

M j := E(u)− jn∧jp
/

E(u)−µ1−···−µ j ·
∧jp for 1≤ j ≤ d.

(2-8)

As R-modules they are finite locally free. Then D has Hodge polygon bounded by µ if and only if for all
j = 1, . . . , d all generators of

∧jq are mapped to zero in M j and all generators of
∧dp are mapped to

zero in M0. Since M := M0⊕ · · ·⊕Md is finite locally free over R, this condition is represented by a
finitely presented closed immersion into Spec R by [EGA I 1971, Lemma 9.7.9.1].

(b) If R is reduced then also the étale R-algebra R′ := R⊗Eµ K̃ is reduced and R ↪→ R′ ↪→
∏

s∈Spec R′ κ(s)
is injective. Therefore also M ↪→ M⊗R

(∏
s∈Spec R′ κ(s)

)
is injective. So D has Hodge polygon bounded

by µ if and only if this holds for the pullbacks s∗D to Spec κ(s) at all points s ∈ Spec R′. By definition
of µ′ := µD(s) there is a κ(s)[[t]]-basis (vψ,1, . . . , vψ,d) of the ψ-component (s∗p)ψ of s∗p such that
(t−µ

′

ψ,1 vψ,1, . . . , t−µ
′

ψ,d vψ,d) is a κ(s)[[t]]-basis of (s∗q)ψ . Therefore condition (2-6) holds if and only if
µψ,1+ · · · +µψ, j ≥ µ

′

ψ,1+ · · · +µ
′

ψ, j for all ψ and j with equality for j = d. One easily checks that
this is equivalent to µ′ � µ.

(c) Again µ′�µ implies µψ,1+· · ·+µψ, j ≥µ
′

ψ,1+· · ·+µ
′

ψ, j for all ψ and j with equality for j = d . We
viewµ j , µ

′

j as locally constant Z-valued functions on Spec E⊗Qp K. Thenµ1+ · · ·+µ j ≥ µ
′

1+ · · ·+µ
′

j
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for all j with equality for j = d . In terms of (2-8) the R-modules M j for µ are quotients of the R-modules
M ′j for µ′ with M ′0 = M0. Therefore (Spec R)�µ′ ↪→ Spec R factors through (Spec R)�µ. �

Remark 2.14. The reader should note that µ′ � µ does not imply a relation between Eµ′ and Eµ
as can be seen from the following example. Let d = 2 and [K : Qp] = 2 and {ψ : K ↪→ K̃ } =
Gal(K/Qp)= {ψ1, ψ2}. Consider the three cocharacters µ,µ′, µ′′ given by µψ1 = (2, 0), µψ2 = (2, 0)
and µ′ψ1

= (2, 0), µ′ψ2
= (1, 1) and µ′′ψ1

= (1, 1), µ′′ψ2
= (1, 1). Then µ′′ � µ′ � µ. On the other hand

we find Eµ = Eµ′′ =Qp and Eµ′ = K̃ = K.

Remark 2.15. In Definition 2.11 (a) we assumed that R is a K̃ -algebra to obtain a well defined Hodge
polygon µD(s) ∈ X∗(T̃K̃ ). In Definition 2.11 (b) we can lower the ground field over which R is defined
to Eµ because Gal(K̃/Eµ) fixes µ. The ground field cannot be lowered further, as one sees from the
following:

Proposition 2.16. Let D be a (ϕ, N )-module with Hodge–Pink lattice (or a K -filtered (ϕ, N )-module) of
rank d over a field L such that µD(s) = µ for all points s ∈ Spec L ⊗Qp K̃ . Then there is a canonical
inclusion of the reflex field Eµ ↪→ L.

Proof. Since every K -filtered (ϕ, N )-module arises from a (ϕ, N )-module with Hodge–Pink lattice as in
Remark 2.8 (3), it suffices to treat the case where D is a (ϕ, N )-module with Hodge–Pink lattice. We
consider the decomposition L̃ := L ⊗Qp K̃ =

∏
s∈Spec L̃ κ(s) and for each s we denote by αs : L ↪→ κ(s)

and βs : K̃ ↪→ κ(s) the induced inclusions. Let µL : Gm,L → T̃L be the cocharacter over L associ-
ated with D in Construction 2.10. The assumption of the proposition means that αs(µL) = βs(µ)

for all s. The Galois group G := Gal(K̃ ,Qp) acts on L̃ . The Galois group Gal(κ(s)/αs(L)) can
be identified with the decomposition group Gs := {σ ∈ G : σ(s) = s} under the monomorphism
Gal(κ(s)/αs(L)) ↪→ G, τ 7→ β−1

s ◦ τ |βs(K̃ ) ◦βs . Since µL is defined over L , each τ ∈ Gal(κ(s)/αs(L))
satisfies τ(αs(µL))= αs(µL), and hence (β−1

s ◦ τ |βs(K̃ ) ◦βs)(µ)= µ. By definition of the reflex field Eµ
this implies that β−1

s ◦ τ |βs(K̃ ) ◦βs ∈ Gal(K̃/Eµ) and τ |βs(Eµ) = id. So βs(Eµ)⊂ αs(L) and we get an
inclusion α−1

s βs : Eµ ↪→ L . To see that this is independent of s choose a σ ∈ G with σ(s) = s̃. Then
αs̃ = σ ◦αs and βs̃ = σ ◦βs . �

3. Moduli spaces for (ϕ, N)-modules with Hodge–Pink lattice

We will introduce and study moduli spaces for the objects introduced in Section 2. Proposition 2.16
suggests to work over the reflex field.

Definition 3.1. Let µ be a cocharacter as in (2-5) and let Eµ be its reflex field. We define fpqc-stacks
Dϕ,N ,µ, Hϕ,N ,�µ, and Hϕ,N ,µ on the category of Eµ-schemes. For an affine Eµ-scheme Spec R:

(a) The groupoid Dϕ,N,µ(Spec R) consists of K-filtered (ϕ,N)-modules (D,8,N,F •) over R of rank d
with constant Hodge polygon equal to µ.

(b) The groupoid Hϕ,N,�µ(Spec R) consists of (ϕ, N )-modules with Hodge–Pink lattice (D,8,N ,q)
over R of rank d with Hodge polygon bounded by µ.
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(c) The groupoid Hϕ,N,µ(Spec R) consists of (ϕ, N )-modules with Hodge–Pink lattice (D,8,N ,q) over
R of rank d with Hodge polygon bounded by µ and constant equal to µ.

Let Dϕ,µ ⊂Dϕ,N ,µ (resp. Hϕ,�µ ⊂Hϕ,N ,�µ, Hϕ,µ ⊂Hϕ,N ,µ) be the closed substack on which N is zero.
It classifies ϕ-modules with K -filtration (resp. Hodge–Pink lattices) and the corresponding condition on
the Hodge polygon.

We are going to show that these stacks are Artin stacks of finite type over Eµ.
Locally on Spec R we may choose an isomorphism D ∼= (R⊗Qp K0)

d by Lemma 2.3(a). Then 8 and
N correspond to matrices 8 ∈GLd(R⊗Qp K0)= (ResK0/Qp GLd,K0)(R) and N ∈Matd×d(R⊗Qp K0)=

(ResK0/Qp Matd×d)(R). The relation 8ϕ∗N = p N 8 is represented by a closed subscheme

PK0,d ⊂ (ResK0/Qp GLd,K0)×Spec Qp (ResK0/Qp Matd×d).

Theorem 3.2. (a) The Qp-scheme PK0,d is reduced, Cohen–Macaulay, generically smooth and equidi-
mensional of dimension f d2. In the notation of Remark 2.4 the matrix (8 f )0 has no multiple eigenvalues
at the generic points of the irreducible components of PK0,d .

(b) The generic points of PK0,d are in bijection with the partitions d = k1+· · ·+km for integers m and 1≤
k1 ≤ · · · ≤ km . To such a partition corresponds the generic point at which the suitably ordered eigenvalues
λ1, . . . , λd of (8 f )0 satisfy p f λi = λ j if and only if j = i + 1 and i /∈ {k1, k1+ k2, . . . , k1+ · · · + km}.
Equivalently to such a partition corresponds the generic point at which the nilpotent endomorphism N0,
in the notation of Remark 2.4, has Jordan canonical form with m Jordan blocks of size k1, . . . , km .

For the proof we will need the following lemma.

Lemma 3.3. Let r1, . . . , rn be integers with r1+ · · ·+ rn ≥ n. Then
∑n

i=1 r2
i −

∑n−1
i=1 ri ri+1 > 1, except

for the case when r1 = · · · = rn = 1.

Proof. We multiply the inequality by 2 and write it as r2
1 +

∑n−1
i=1 (ri − ri+1)

2
+ r2

n > 2. There are the
following three critical cases:

(a)
∑

i (ri − ri+1)
2
= 0,

(b)
∑

i (ri − ri+1)
2
= 1,

(c)
∑

i (ri − ri+1)
2
= 2.

In case (a) we have r1 = · · · = rn . Since r1 = · · · = rn = 1 was excluded and r1 ≤ 0 contradicts
r1+ · · ·+ rn ≥ n, we have r2

1 + r2
n > 2.

In case (b) there is exactly one index 1≤ i < n with r1 = · · · = ri 6= ri+1 = · · · = rn and |ri −ri+1| = 1.
If r1 6= 0 6= rn then r2

1 +
∑n−1

i=1 (ri − ri+1)
2
+ r2

n > 2. On the other hand, if r1 = ±1 and rn = 0, then∑
ν rν =±i < n. And if r1 = 0 and rn =±1, then

∑
ν rν =±(n− i) < n. Both are contradictions.

In case (c) there are exactly two indices 1 ≤ i < j < n with r1 = · · · = ri and ri+1 = · · · = r j and
r j+1=· · ·= rn , as well as |ri−ri+1|= 1=|r j−r j+1|. If in addition r1= rn= 0 then

∑
i ri =±( j−i)< n,

which is a contradiction. Therefore r2
1 + r2

n > 0 and r2
1 +

∑n+1
i=1 (ri − ri+1)

2
+ r2

n > 2 as desired. �
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Proof of Theorem 3.2. We break the proof into several steps.

1. By [EGA IV2 1965, Proposition 6.5.3, Corollaires 6.3.5(ii), 6.1.2; EGA IV4 1967, Proposition 17.7.1]
the statement may be checked after the finite étale base change Spec K0 → Spec Qp. We will use
throughout that after this base change, Remark 2.4 allows to decompose 8= (8i )i and N = (Ni )i such
that p8i ◦ Ni = Ni+1 ◦8i .

2. We first prove that all irreducible components of PK0,d have dimension greater or equal to f d2. Sending
(8, N ) to the entries of the matrices 8i , Ni embeds PK0,d ×Qp K0 into affine space A

2 f d2

K0
as a locally

closed subscheme cut out by the f d2 equations p8i ◦Ni = Ni+1 ◦8i for i = 0, . . . , f −1. Therefore the
codimension of PK0,d×Qp K0 in A

2 f d2

K0
is less or equal to f d2 by Krull’s principal ideal theorem [Eisenbud

1995, Theorem 10.2], and all irreducible components of PK0,d have dimension greater or equal to f d2 by
[Eisenbud 1995, Corollary 13.4].

3. We next prove the assertion on the generic points. Let y = (8, N ) be the generic point of an irreducible
component Y of PK0,d . After passing to an algebraic closure L of κ(y) we may use Remark 2.4 to find
a base change matrix S ∈ GLd(L ⊗Qp K0) such that S−18ϕ(S)=

(
(8 f )0, Idd , . . . , Idd

)
and (8 f )0 is a

block diagonal matrix in Jordan canonical form

(8 f )0 =

J1
. . .

Jr

 with Ji =

ρi 1
. . .. . . 1

ρi

 and N0 =

N11 · · · N1r
...

...

Nr1 · · · Nrr


Note that a priori some of the ρi can be equal. Let si be the size of the Jordan block Ji . Then Ni j is an
si × s j -matrix. The condition p f (8 f )0 ◦ N0 = N0 ◦ (8

f )0 is equivalent to p f Ji Ni j = Ni j J j for all i, j.
It yields Ni j = (0) for p f ρi 6= ρ j . By renumbering the Ji we may assume that Ni j 6= (0) implies i < j.
We set Ni j =

(
n(i j)
µ,ν

)
µ=1...si , ν=1...s j

. When p f ρi = ρ j it follows from


p f n2,1 · · · p f n2,s j
...

...

p f nsi ,1 · · · p f nsi ,s j

0 · · · 0

= p f (Ji − ρi )Ni j = Ni j (J j − ρ j ) =

0 n1,1 · · · n1,s j−1
...

...
...

0 nsi ,1 · · · nsi ,s j−1



that p f n(i j)
µ,ν=n(i j)

µ−1,ν−1 for allµ, ν≥2 and n(i j)
µ,ν=0 wheneverµ−ν >min{0, si−s j }. We set s :=max{si }.

The assertion of the theorem says that s = 1 and that all ρi are pairwise different.
First assume that s > 1. We exhibit a morphism Spec L[z, z−1

]→ PK0,d which sends the point {z = 1}
to y and the generic point Spec L(z) to a point at which the maximal size of the Jordan blocks is strictly
less than s. Since y was a generic point of PK0,d this is impossible. The morphism Spec L[z, z−1

]→ PK0,d
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is given by matrices S̃, (8̃ f )0 and Ñ0 as follows. We set S̃ := S. For all i with si = s we set
ρi 1

. . .
. . .

ρi 1
zρi


and for all i with si < s we set J̃i := Ji . When p f ρi 6= ρ j we set Ñi j := (0). To define Ñi j when
p f ρi = ρ j , and hence i < j, we distinguish the following cases:

(a) If si , s j < s we set Ñi j = Ni j .

(b) If si = s > s j we set Ñi j = Ni j .

(c) If si < s = s j we set Ñi j =
(
ñ(i j)
µ,ν

)
µ,ν

with ñ(i j)
µ,s j := n(i j)

µ,s j for all µ, with ñ(i j)
µ,ν := 0 whenever

µ > ν+ si − s j + 1, and with

ñ(i j)
µ,ν := n(i j)

µ,ν + (1− z)p(s j−1−ν) f
· ρ j · n

(i j)
µ−ν+s j−1, s j

for ν < s j and µ≤ ν+ si − s j + 1.

(d) If si = s j = s we set Ñi j =
(
ñ(i j)
µ,ν

)
µ,ν

with ñ(i j)
µ,s := n(i j)

µ,s for all µ, with ñ(i j)
µ,ν := 0 whenever µ > ν,

and with ñ(i j)
µ,ν := n(i j)

µ,ν + (1− z)p(s−1−ν) f
· ρ j · n

(i j)
µ−ν+s−1, s for all µ≤ ν < s.

We have to check that p f J̃i Ñi j = Ñi j J̃ j for all i, j with p f ρi = ρ j . In case (a) this is obvious and in
case (b) it follows from the fact that the bottom row of Ni j is zero. For case (c) we compute

p f ( J̃i−ρi )Ñi j =


p f ñ2,1 · · · p f ñ2,s j
...

...

p f ñsi ,1 · · · p f ñsi ,s j

0 · · · 0

=
0 ñ1,1 · · · ñ1,s j−2 ñ1,s j−1+(z−1)ρ j ñ1,s j
...

...
...

...

0 ñsi ,1 · · · ñsi ,s j−2 ñsi ,s j−1+(z−1)ρ j ñsi ,s j


= Ñi j ( J̃ j−ρ j ).

Finally for case (d) we compute

p f ( J̃i−ρi )Ñi j =


p f ñ2,1 · · · p f ñ2,s−1 p f ñ2,s
...

...
...

p f ñs,1 · · · p f ñs,s−1 p f ñs,s

0 · · · 0 (z−1)p fρi ñs,s



=

0 ñ1,1 · · · ñ1,s−2 ñ1,s−1+(z−1)ρ j ñ1,s
...

...
...

...

0 ñs,1 · · · ñs,s−2 ñs,s−1+(z−1)ρ j ñs,s


= Ñi j ( J̃ j−ρ j ).

Altogether this defines the desired morphism Spec L[z, z−1
] → PK0,d .
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So we have shown that s = 1 at the generic point y and that (8 f )0 is a diagonal matrix. We still have
to show that all diagonal entries are pairwise different. For this purpose we rewrite (8 f )0 and N0 as

(8 f )0 =

λ1 Idr1

. . .

λn Idrn

 and N0 =

 M11 · · · M1n
...

...

Mn1 · · · Mnn


We denote the multiplicity of the eigenvalue λi by ri ≥ 1. Then Mi j is an ri×r j -matrix. By renumbering
the λi we may assume that there are indices 0= l0 < l1 < · · ·< lm = d such that p fλi = λ j if and only if
j = i + 1 and i /∈ {l1, . . . , lm}.

We compute dim Y = trdegQp
κ(y)= trdegQp

L as follows. The eigenvalues λl1, . . . , λlm contribute at
most the summand m to trdegQp

L .
The matrix S ∈ GLd(L ⊗Qp K0) is determined only up to multiplication on the right with an element

of the ϕ-centralizer

C(L) :=
{

S ∈GLd(L⊗Qp K0) : S
(
(8 f )0, Idd , . . . , Idd

)
=
(
(8 f )0, Idd , . . . , Idd

)
ϕ(S)

}
of
(
(8 f )0, Idd , . . . , Idd

)
. Writing S = (S0, . . . , S f−1) this condition implies that Si

!
= (ϕ(S))i := Si−1

for i = 1, . . . , f − 1 and S0(8
f )0

!
= (8 f )0(ϕ(S))0 := (8 f )0S f−1 = (8

f )0S0. Therefore C has dimen-
sion

∑
i r2

i and the entries of S ∈ (ResK0/Qp GLd,K0)/C contribute at most the summand f d2
−
∑

i r2
i

to trdegQp
L .

The condition p f (8 f )0 ◦ N0 = N0 ◦ (8
f )0 is equivalent to p fλi Mi j = λ j Mi j for all i, j. This implies

that there is no condition on Mi j when j = i + 1 and i /∈ {l1, . . . , lm}, and that all other Mi j are zero. So
the entries of the Mi j contribute at most the summand

∑
i /∈{l1,...,lm}

ri ri+1 to trdegQp
L .

Adding all summands and comparing with our estimate in part 2 above, we obtain

f d2
≤ dim Y = trdegQp

κ(y)≤ m+ f d2
−

n∑
i=1

r2
i +

∑
i /∈{l1,...,lm}

ri ri+1

= f d2
+

m−1∑
ν=0

(
1−

lν+1∑
i=1+lν

r2
i +

lν+1−1∑
i=1+lν

ri ri+1

)
.

By Lemma 3.3 the parentheses are zero when all ri = 1, and negative otherwise. So we have proved that
r1 = · · · = rn = 1. In other words, all diagonal entries of (8 f )0 are pairwise different. Let kν := lν − lν−1

for ν = 1, . . . ,m. Then the generic point y corresponds to the partition d = k1 + · · · + km under the
description of the generic points in the theorem. As we have noticed above the 1×1 matrices Mi j vanish
at y unless j = i + 1 and i /∈ {l1, . . . , lm} and in the latter case we must have Mi j (y) 6= 0. This implies
the claim on the Jordan type of N0 at the generic points of the irreducible components.

Moreover, it follows that dim Y = f d2 for all irreducible components Y of PK0,d . By [Eisenbud 1995,
Proposition 18.13] this also implies that PK0,d ×Qp K0 is Cohen–Macaulay.
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4. It remains to show that PK0,d is generically smooth over Qp. From this it follows that it is reduced, be-
cause it is Cohen–Macaulay. Let again y be the generic point of an irreducible component of PK0,d×Qp K0

and let L be an algebraic closure of κ(y). As above, Remark 2.4 allows us to change the basis over L and
assume that 8= ((8 f

0 ), id, . . . , id) and N = (pi N0)i with (8 f )0= diag(λ1, . . . , λd) and λi 6= λ j for all
i 6= j. We write F (0) := (8 f )0 and N (0)

0 := N0 = (ni j )i j . The condition N (0)
0 F (0) = p f F (0)N (0)

0 implies
that ni j = 0 if p f λi 6=λ j . And conversely ni j 6= 0 if p f λi =λ j by our explicit description of N0 at y above.

We claim that for every n ≥ 1, any deformation (F (n−1),N (n−1)
0 )∈ PK0,d(L[ε]/ε

n) of (F (0), N (0)
0 ) can

be lifted further to (F (n), N (n)
0 ) ∈ PK0,d(L[ε]/ε

n+1). This implies that PK0,d is smooth at y, as it follows
that any tangent vector OPK0,d ,y→ L[ε]/ε2 comes from a map OPK0,d ,y→ L[[ε]] and hence the image of

Spec
(⊕

i≥0
(mi

PK0,d ,y
/mi+1

PK0,d ,y
)
)
→ Spec

(
Sym•(mPK0,d ,y/m

2
PK0,d ,y

)
)

contains any tangent vector. This means that the tangent cone at y equals the tangent space, and
hence by [Mumford 1999, III, §4 Definition 2 and Corollary 1] PK0,d is smooth at y. Let us take
any deformation (F̃, Ñ0) ∈ GLd(L[ε]/εn+1)×Matd×d(L[ε]/εn+1) of (F (n−1), N (n−1)

0 ). Then we have
Ñ0 F̃ − p f F̃ Ñ0 ∈ ε

nMatd×d(L). Changing (F̃, Ñ0) to (F (n), N (n)
0 ) = (F̃ + εn F ′, Ñ0 + ε

n N ′0) with
F ′, N ′0 ∈Matd×d(L) we find

N (n)
0 F (n)− p f F (n)N (n)

0 = (Ñ0 F̃ − p f F̃ Ñ0)+ ε
n(N (0)

0 F ′+ N ′0 F (0)− p f (F ′N (0)
0 + F (0)N ′0))

and hence it suffices to show that the map h :Matd×d(L)×Matd×d(L)→Matd×d(L) given by

h : (F ′, N ′0) 7→ (N ′0 F (0)− p f F (0)N ′0)+ (N
(0)
0 F ′− p f F ′N (0)

0 )

is surjective. For this purpose let N ′0 = (bi j )i j and F ′ = diag(a1, . . . , ad). Then we find that

hi j (F ′, N ′0) := h(F ′, N ′0)i j = (λ j − p f λi )bi j + a j ni j − p f ai ni j .

Whenever λ j − p f λi ∈ L× and hence ni j = 0 we obtain the surjectivity of hi j . By permuting the indices
we may assume that ni j 6= 0 implies j = i + 1. Treating every Jordan block of N (0)

0 separately we may
further assume that ni,i+1 6= 0 for all i . It then follows that we have

hi,i+1(F ′, N ′0)= (ai+1− p f ai )ni,i+1

which suffices to see that the map h is surjective. �

Remark 3.4. The scheme PK0,d is in general not normal. For example if K =Qp and d = 2 then PQp,2

has two generic points. This was already proven in [Kisin 2009, Lemma A.3]. In one of the generic
points8 has eigenvalues λ, pλ and N 6= 0. In the other8 has eigenvalues λ1, λ2 with λ j 6= pλi for all i, j
and N = 0. Both irreducible components meet in the codimension one point where λ2 = pλ1 and N = 0.

Let 1 denote the set of simple roots (defined over Qp) of G̃ := ResK/Qp GLd,K with respect to the
Borel subgroup B̃ and denote by 1µ ⊂1 the set of all simple roots α such that 〈α,µ〉 = 0. Here 〈−, −〉
is the canonical pairing between characters and cocharacters. We write Pµ for the parabolic subgroup
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of G̃ containing B̃ and corresponding to 1µ ⊂1. This parabolic subgroup is defined over Eµ, and the
quotient by this parabolic is a projective Eµ-variety

FlagK ,d,µ = G̃ Eµ/Pµ (3-1)

representing the functor

R 7→
{
filtrations F • of R⊗Qp K⊕d with constant Hodge polygon equal to µ

}
Thus Dϕ,N ,µ and Dϕ,µ are isomorphic to the stack quotients

Dϕ,N ,µ ∼= (PK0,d ×Spec Qp FlagK ,d,µ)
/
(ResK0/Qp GLd,K0)Eµ,

Dϕ,µ ∼= (ResK0/Qp GLd,K0 ×Spec Qp FlagK ,d,µ)
/
(ResK0/Qp GLd,K0)Eµ,

(3-2)

where g ∈ (ResK0/Qp GLd,K0)Eµ acts on (8, N ,F •) ∈ PK0,d ×Spec Qp FlagK ,d,µ by

(8, N ,F •) 7→
(
g−18ϕ(g), g−1 Ng, g−1F •

)
.

We next describe the moduli space for the Hodge–Pink lattice q. Fix integers m=max{µψ,1 |ψ :K→ K̃ }
and n = max{−µψ,d | ψ : K → K̃ }. Then by Cramer’s rule we have E(u)np ⊂ q ⊂ E(u)−mp. So q is
determined by the epimorphism

pr : R⊗Qp (K [t]/tm+n)⊕d
−→∼ E(u)−mp/E(u)np� E(u)−mp/q (3-3)

which is induced by choosing an isomorphism D∼= (R⊗Qp K0)
d locally on R. The quotient E(u)−mp/q is

a finite locally free R-module and of finite presentation over R⊗Qp K [t]/tm+n by Lemma 2.7. Therefore it
is an R-valued point of Grothendieck’s Quot-scheme QuotOd | K [t]/tm+n |Qp ; see [Grothendieck 1962, n◦221,
Theorem 3.1] or [Altman and Kleiman 1980, Theorem 2.6]. This Quot-scheme is projective over Qp. The
boundedness byµ is represented by a closed subscheme QK ,d,�µ of QuotOd | K [t]/tm+n |Qp ×Spec Qp Spec Eµ
according to Proposition 2.13(a). Thus Hϕ,N ,�µ and Hϕ,�µ are isomorphic to the stack quotients

Hϕ,N ,�µ ∼= (PK0,d ×Spec Qp QK ,d,�µ)
/
(ResK0/Qp GLd,K0)Eµ,

Hϕ,�µ
∼= (ResK0/Qp GLd,K0 ×Spec Qp QK ,d,�µ)

/
(ResK0/Qp GLd,K0)Eµ,

where g ∈ (ResK0/Qp GLd,K0)Eµ acts on (8, N , pr) ∈ PK0,d ×Spec Qp QK ,d,�µ with pr from (3-3) by

(8, N , pr) 7→
(
g−18ϕ(g), g−1 Ng, pr ◦ (g⊗Qp idQp[t]/tm+n )

)
.

Let QK ,d,µ be the complement in QK ,d,�µ of the image of⋃
µ′≺µ

QK ,d,�µ′ ×Spec Eµ′ Spec K̃

under the finite étale projection QK ,d,�µ ×Spec Eµ Spec K̃ → QK ,d,�µ. Here the union is taken over
all dominant cocharacters µ′ : Gm,Qp

→ T̃Qp
which are strictly less than µ in the Bruhat order; see

Proposition 2.13(b). Since there are only finitely many such µ′ the scheme QK ,d,µ is an open subscheme
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of QK ,d,�µ and quasiprojective over Eµ. By Proposition 2.13(a) the stacks Hϕ,N ,µ ⊂ Hϕ,N ,�µ and
Hϕ,µ ⊂Hϕ,�µ are therefore open substacks and isomorphic to the stack quotients

Hϕ,N ,µ ∼= (PK0,d ×Spec Qp QK ,d,µ)
/
(ResK0/Qp GLd,K0)Eµ,

Hϕ,µ
∼= (ResK0/Qp GLd,K0 ×Spec Qp QK ,d,µ)

/
(ResK0/Qp GLd,K0)Eµ .

There is another description of QK ,d,�µ in terms of the affine Grassmannian. Consider the infinite-
dimensional affine group schemes L+GLd and L+G̃ over Qp, and the sheaves LGLd and LG̃ for the
fpqc-topology on Qp whose sections over a Qp-algebra R are given by

L+GLd(R)= GLd(R[[t]]),

L+G̃(R)= G̃(R[[t]])= GLd(R⊗Qp K [[t]])= GLd(B
+

R),

LGLd(R)= GLd
(
R[[t]]

[1
t

])
,

LG̃(R)= G̃
(
R[[t]]

[1
t

])
= GLd

(
R⊗Qp K [[t]]

[ 1
t

])
= GLd(BR).

L+GLd and L+G̃ are called the group of positive loops, and LGLd and LG̃ are called the loop group of
GLd (resp. G̃). The affine Grassmannian of GLd (resp. G̃) is the quotient sheaf for the fppf-topology
on Qp

GrGLd := LGLd /L+GLd (resp. GrG̃ := LG̃/L+G̃).

They are ind-schemes over Qp which are ind-projective; see [Beilinson and Drinfeld 2005, §4.5; Beauville
and Laszlo 1994; Laszlo and Sorger 1997; Hartl and Viehmann 2011].

We set GrGLd ,K̃ := GrGLd ×Spec Qp Spec K̃ . Then there are morphisms

QK ,d,�µ→ GrG̃ ×Spec Qp Spec Eµ =: GrG̃,Eµ,

QK ,d,�µ ×Spec Eµ Spec K̃ →
∏

ψ :K→K̃

GrGLd ,K̃ ,
(3-4)

which are defined as follows. Let q⊂ (BQK ,d,�µ)
⊕d be the universal Hodge–Pink lattice over QK ,d,�µ. Then

by Lemma 2.7 there is an étale covering f :Spec R→QK ,d,�µ such that f ∗q is free over B+R . With respect
to a basis of f ∗q the equality BR · f ∗q= D⊗R⊗K0 BR corresponds to a matrix A ∈ GLd(BR)= LG̃(R).
The image of A in GrG̃(R) is independent of the basis and by étale descend defines the first factor of the
map QK ,d,�µ→ GrG̃ ×Spec Qp Spec Eµ. The base change of this map along the finite étale morphism
Spec K̃ → Spec Eµ defines the second map in (3-4), using the splitting G̃ ×Qp K̃ =

∏
ψ GLd,K̃ which

induces similar splittings for L+G̃, LG̃, and GrG̃ .
The boundedness by µ is represented by closed ind-subschemes

Gr�µ
G̃,Eµ

and Gr�µ
G̃,Eµ
×Spec Eµ Spec K̃ =

∏
ψ

Gr�µψ
GLd ,K̃

of GrG̃,Eµ and
∏
ψ GrGLd ,K̃ , respectively, through which the maps (3-4) factor. Conversely the universal

matrix A over LG̃ defines a B+
LG̃

-lattice q = A · (B+
LG̃
)d . Its restriction to Gr�µ

G̃,Eµ
has Hodge polygon
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bounded by µ and corresponds to the inverses of the maps (3-4). This yields canonical isomorphisms
QK ,d,�µ ∼= Gr�µ

G̃,Eµ
and QK ,d,�µ ×Spec Eµ Spec K̃ ∼=

∏
ψ Gr�µψ

GLd ,K̃
. These isomorphisms restrict to iso-

morphisms of open subschemes QK ,d,µ ∼= Grµ
G̃,Eµ

and QK ,d,µ ×Spec Eµ Spec K̃ ∼=
∏
ψ Grµψ

GLd ,K̃
.

In view of [Hartl and Viehmann 2011, §4], especially Lemma 4.3, the boundedness byµ on
∏
ψ Gr�µψGLd ,K̃

can be phrased in terms of Weyl module representations of GLd,K̃ . In this formulation it was proved by
Varshavsky [2004, Proposition A.9] that GrµψGLd ,K̃ is reduced. Therefore this locally closed subscheme
is determined by its underlying set of points. Reasoning with the elementary divisor theorem as in
Construction 2.10 shows that Grµψ

GLd ,K̃
is equal to the locally closed Schubert cell

L+GLd,K̃ ·µψ(t)
−1
· L+GLd,K̃

/
L+GLd,K̃

and is a homogeneous space under L+GLd,K̃ . This description descends to QK ,d,µ and shows that the
latter is reduced and isomorphic to the locally closed Schubert cell L+G̃ Eµ ·µ(t)

−1
· L+G̃ Eµ

/
L+G̃ Eµ

which is a homogeneous space under L+G̃ Eµ := L+G̃×Spec Qp Spec Eµ.
These homogeneous spaces can be described more explicitly. Set

SGLd ,µψ := L+GLd,K̃ ∩µψ(t)
−1
· L+GLd,K̃ · µψ(t)⊂ L+GLd,K̃ ,

SG̃,µ := L+G̃ Eµ ∩µ(t)
−1
· L+G̃ Eµ ·µ(t)⊂ L+G̃ Eµ .

These are closed subgroup schemes and the homogeneous spaces are isomorphic to the quotients

L+GLd,K̃ /SGLd ,µψ −→
∼ L+GLd,K̃ ·µψ(t)

−1
· L+GLd,K̃

/
L+GLd,K̃ ,

L+G̃ Eµ/SG̃,µ −→
∼ L+G̃ Eµ ·µ(t)

−1
· L+G̃ Eµ

/
L+G̃ Eµ

∼= QK ,d,µ.

Consider the closed normal subgroup L++G̃ Eµ(R) := {A∈ L+G̃ Eµ(R) : A≡1 mod t}. Then the parabolic
subgroup Pµ from (3-1) equals

Pµ = SG̃,µ · L
++G̃ Eµ

/
L++G̃ Eµ ⊂ L+G̃ Eµ

/
L++G̃ Eµ = G̃ Eµ

and this yields a morphism

QK ,d,µ = L+G̃ Eµ/SG̃,µ � L+G̃ Eµ/SG̃,µ · L
++G̃ Eµ = G̃ Eµ/Pµ = FlagK ,d,µ, (3-5)

with fibers isomorphic to SG̃,µ · L
++G̃ Eµ/SG̃,µ. The latter is an affine space because we may consider

the base change from Eµ to K̃ and the decomposition(
SG̃,µ · L

++G̃ Eµ/SG̃,µ
)
×Spec Eµ Spec K̃ =

∏
ψ

(
SGLd ,µψ · L

++GLd,K̃ /SGLd ,µψ

)
.

Each component is an affine space whose R-valued points are in bijection with the matrices
1

a21 1
...

. . .
. . .

ad1 · · · ad,d−1 1


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where ai j ∈
⊕µψ, j−µψ,i−1

k=1 tk R. The Galois group Gal(K̃/Eµ) canonically identifies the components with
the same values for µψ . Therefore SG̃,µ · L

++G̃ Eµ/SG̃,µ is an affine space.
We show that QK ,d,µ is a geometric vector bundle over FlagK ,d,µ by exhibiting its zero section. The

projection L+G̃ Eµ � G̃ Eµ has a section given on R-valued points by the map G̃ Eµ(R)→ L+G̃ Eµ(R)=
G̃ Eµ(R[[t]]) induced from the natural inclusion R ↪→ R[[t]]. Since L+Pµ ⊂ SG̃,µ by definition of Pµ, this
section induces a section

FlagK ,d,µ → L+G̃ Eµ/L+Pµ → L+G̃ Eµ/SG̃,µ = QK ,d,µ.

This is the zero section of the geometric vector bundle QK ,d,µ over FlagK ,d,µ. Using lattices the section
coincides (on L-valued points for a field L) with the map F • 7→ q(F •) defined in Remark 2.8 (3) and the
projection QK ,d,µ→ FlagK ,d,µ coincides with the map q 7→ F •q from Remark 2.8 (1). Let us summarize.

Proposition 3.5. (a) QK ,d,�µ is projective over Eµ of dimension
∑

ψ, j (d + 1− 2 j)µψ, j and contains
QK ,d,µ as a dense open subscheme. Both schemes are irreducible.

(b) QK ,d,µ is smooth over Eµ and isomorphic to the homogeneous space L+G̃ Eµ/SG̃,µ which is a
geometric vector bundle over FlagK ,d,µ.

Proof. Everything was proved above, except the formula for the dimension and the density of QK ,d,µ

which follow from [Beilinson and Drinfeld 2005, 4.5.8, 4.5.12]. The irreducibility of QK ,d,�µ is a
consequence of the density statement. �

Theorem 3.6. (a) The moduli stacks Dϕ,N ,µ, Dϕ,µ, Hϕ,N ,�µ, Hϕ,�µ, Hϕ,N ,µ and Hϕ,µ are noetherian
Artin stacks of finite type over Eµ.

(b) The stack Hϕ,N ,µ is a dense open substack of Hϕ,N ,�µ and projects onto Dϕ,N ,µ. The morphism
Hϕ,N ,µ→ Dϕ,N ,µ has a section and is relatively representable by a vector bundle.

(c) The stack Hϕ,µ is a dense open substack of Hϕ,�µ and projects onto Dϕ,µ. The morphism of stacks
Hϕ,µ→ Dϕ,µ has a section and is relatively representable by a vector bundle.

(d) The stacks Hϕ,�µ, Hϕ,µ are irreducible of dimension
∑

ψ, j (d+1−2 j)µψ, j , and Dϕ,µ is irreducible
of dimension

∑
ψ #{(i, j) : µψ,i > µψ, j }. The stacks Hϕ,µ and Dϕ,µ are smooth over Eµ.

(e) The stacks Hϕ,N ,�µ, Hϕ,N ,µ are equidimensional of dimension
∑

ψ, j (d + 1− 2 j)µψ, j , and Dϕ,N ,µ

is equidimensional of dimension
∑

ψ #{(i, j) : µψ,i > µψ, j }. The stacks Hϕ,N ,µ and Dϕ,N ,µ are
reduced, Cohen–Macaulay and generically smooth over Eµ. The irreducible components of Hϕ,N ,�µ,
Hϕ,N ,µ and Dϕ,N ,µ are indexed by the possible Jordan types of the nilpotent endomorphism N.

Proof. (a) The stacks are quotients of noetherian schemes of finite type over Eµ by the action of the smooth
group scheme (ResK0/Qp GLd,K0)Eµ and hence are noetherian Artin stacks of finite type by [Laumon and
Moret-Bailly 2000, 4.6.1, 4.7.1, 4.14].

(b) and (c) follow from the corresponding statements for QK ,d,µ in Proposition 3.5.
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(d) The covering spaces

ResK0/Qp GLd,K0 ×Spec Qp QK ,d,�µ,

ResK0/Qp GLd,K0 ×Spec Qp QK ,d,µ,

ResK0/Qp GLd,K0 ×Spec Qp FlagK ,d,µ

of these stacks are irreducible because ResK0/Qp GLd,K0 is geometrically irreducible. This implies
the irreducibility of the stacks. The formulas for the dimension follow from [Laumon and Moret-
Bailly 2000, pp. 98f] and Proposition 3.5, respectively the well known dimension formula for partial
flag varieties. The smoothness follows from the smoothness of ResK0/Qp GLd,K0 ×Spec Qp QK ,d,µ and
ResK0/Qp GLd,K0 ×Spec Qp FlagK ,d,µ by [Laumon and Moret-Bailly 2000, 4.14].

(e) As in (d) these results are direct consequences of the corresponding results on the covering spaces, which
follow from Theorem 3.2. We only need to convince ourselves that the action of (ResK0/Qp GLd,K0)Eµ

does not identify irreducible components of PK0,d . However this follows from the fact that the Jordan
canonical forms of the nilpotent endomorphism N at two distinct generic points y1 and y2 of PK0,d are
distinct by the description in Theorem 3.2. �

Remark 3.7. These stacks are not separated. Namely, let D, D′ be two (ϕ, N )-modules with Hodge–Pink
lattice (respectively two K -filtered (ϕ, N )-modules) over R. Then Isom(D, D′) is representable by an
algebraic space, separated and of finite type over R; see [Laumon and Moret-Bailly 2000, Lemme 4.2].
The above stacks are separated over Eµ if and only if all these algebraic spaces Isom(D, D′) are proper.
This is not the case in general. For example let R be a discrete valuation ring with fraction field L , let
D = D′ = R⊗Qp K d

0 with 8= id and N = 0. Then every element f ∈ L is an automorphism of D⊗R L ,
compatible with 8 and N. However, it extends to an automorphism of D only if f ∈ R

×

.

4. Vector bundles on the open unit disc

Kisin [2006] related K -filtered (ϕ, N )-modules over Qp to vector bundles on the open unit disc. This was
generalized in [Hellmann 2013, §5] to families of K -filtered ϕ-modules with Hodge–Tate weights 0 and
−1. In this section we generalize it to arbitrary families of (ϕ, N )-modules with Hodge–Pink lattice. For
this purpose we work in the category Adlft

Qp
of adic spaces locally of finite type over Spa(Qp,Zp); see

[Huber 1993; 1994; 1996; Hellmann 2013, §2.2]. Since the stacks Dϕ,µ, Dϕ,N ,µ, Hϕ,�µ, Hϕ,N ,�µ, Hϕ,µ

and Hϕ,N ,µ are quotients of quasiprojective schemes over Eµ they give rise to stacks on Adlft
Eµ which we

denote by H ad
ϕ,N ,µ, etc.

For 0≤ r < 1 we write B[0,r ] for the closed disc of radius r over K0 in the category of adic spaces and
denote by

U= lim
−→
r→1

B[0,r ]

the open unit disc. This is an open subspace of the closed unit disc (which is not identified with the set
of all points x in the closed unit disc with |x |< 1 in the adic setting). In the following we will always
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write u for the coordinate function on B[0,r ] and U, i.e., we view

B[0,r ] := 0(B[0,r ],OB[0,r ])

and B[0,1) := 0(U,OU) as subrings of K0[[u]].
Let X ∈ Adlft

Qp
be an adic space over Qp and write

B
[0,r ]
X =OX ⊗̂Qp B[0,r ] = prX,∗OX×B[0,r ]

B
[0,1)
X =OX ⊗̂Qp B[0,1) = prX,∗OX×U

for the sheafified versions of the rings B[0,r ] and B[0,1) where prX is the projection onto X. These are
sheaves of topological OX -algebras on X.

We introduce the function

λ :=
∏
n≥0

ϕn(E(u)/E(0)) ∈ B[0,1). (4-1)

and the differential operator N∇ := −uλ(d/du) : B[0,1)→ B[0,1). For any adic space X ∈ Adlft
Qp

we view
λ as a section of B

[0,1)
X and N∇ as a differential operator on B

[0,1)
X . The Frobenius ϕ on OX ⊗Qp K0[u]

extends to a Frobenius endomorphism of B
[0,1)
X again denoted by ϕ by means of ϕ(u) = u p. These

operators satisfy the relation

N∇ ϕ = p E(u)
E(0)

·ϕ N∇ . (4-2)

Definition 4.1. A (ϕ, N∇)-module (M,8M, NM
∇
) over an adic space X ∈ Adlft

Qp
consists of a locally

free sheaf M of finite rank on X ×Qp U, a differential operator NM
∇
:M→M[1/λ] over N∇ , that

is NM
∇
( f m) = −uλ(d f/du) · m + f · NM

∇
(m) for all sections f of OX×Qp U and m of M, and an

OX×Qp U-linear isomorphism 8M : (ϕ
∗M)[1/E(u)] −→∼ M[1/E(u)], satisfying

NM
∇
◦8M ◦ϕ = p E(u)

E(0)
·8M ◦ϕ ◦ NM

∇
.

A morphism α : (M,8M, NM
∇
)→ (N ,8N , NN

∇
) between (ϕ, N∇)-modules over X is a morphism

α :M→N of sheaves satisfying α ◦8M =8N ◦ϕ
∗(α) and NN

∇
◦α = α ◦ NM

∇
.

Remark 4.2. (1) Note that it is not clear whether a (ϕ, N∇)-module M is locally on X free over X ×U

and hence it is not clear whether prX,∗M is locally on X a free B
[0,1)
X -module. However it follows from

[Kedlaya et al. 2014, Proposition 2.1.15] that prX,∗M is a finitely presented B
[0,1)
X -module.

(2) The differential operator NM
∇

can be equivalently described as a connection

∇M :M→M⊗ u−1�1
X×U/X [1/λ]

when we set ∇M(m) := −(1/λ)NM
∇
(m)⊗ du/u. Then NM

∇
is recovered as the composition of ∇M

followed by the map u−1�1
X×U/X [1/λ] →M, du 7→ −uλ.
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Let X ∈Adlft
Qp

be an adic space. We will show that the category of (ϕ, N∇)-modules over X is equivalent
to the category of (ϕ, N )-modules with Hodge–Pink lattice over X by defining two mutually quasi-inverse
functors M and D.

To define M let D = (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice over X. We denote
by pr : X ×Qp U→ X ×Qp K0 the projection and set (D,8D) := pr∗(D,8). Then

prX,∗(D,8D)= (D,8)⊗(OX⊗K0) B
[0,1)
X .

We choose a B+OX
-automorphism ηD of p := D⊗OX⊗K0 B+OX

and we let ι0 :D ↪→ D⊗OX⊗K0 B+OX
be the

embedding obtained as the composition of the natural inclusion D⊗OX⊗K0 B
[0,1)
X ↪→ D⊗OX⊗K0 B+OX

composed with the automorphism ηD . Here we follow Kisin [2006, §1.2] and choose

ηD : D⊗OX⊗K0 B+OX
−→∼ D⊗OX⊗K0 B+OX

, d0⊗ f 7→
∑

i

N i (d0)⊗
(−1)i

i !
log
(

1− E(u)
E(0)

)i
· f. (4-3)

Remark 4.3. (1) Actually, Kisin introduces a formal variable `u over B
[0,1)
X which formally acts like log u.

He extends ϕ to B
[0,1)
X [`u] via ϕ(`u)= p `u , extends N∇ to a derivation on B

[0,1)
X [`u] via N∇(`u)=−λ,

and defines N as the B
[0,1)
X -linear derivation on B

[0,1)
X [`u] that acts as the differentiation of the formal

variable `u . Under the 8-equivariant identification

D[`u]
N=0
:=

{ <∞∑
i=0

di`
i
u : di ∈ D with N

(∑
i

di`
i
u

)
= 0

}
∼=
←− D,

<∞∑
i=0

(−1)i

i !
N i (d0)`

i
u←− d0,

Kisin’s map ι0 :D[`u]
N=0
⊗OX⊗K0B

[0,1)
X ↪→p ,

∑
i di`

i
u⊗ f 7→

∑
i di⊗ f ·(log(u/π))i corresponds to our ι0,

because we identify E(u)/E(0) with 1− (u/π).

(2) Instead of the above ηD one could also choose ηD = idp. This would lead to a few changes which we
will comment on in Remark 4.11. Note that our ηD from (4-3) is different from idp if N 6= 0.

For all n ≥ 0 we now consider the map

prX,∗D
[ 1
λ

]
8
− j
D
−→ prX,∗ ϕ

j∗
(
D
[ 1
λ

])
=== prX,∗D

[ 1
λ

]
⊗

B
[0,1)
X , ϕ j B

[0,1)
X

ϕ j∗ι0
−−→ p

[ 1
E(u)

]
⊗B+OX

ϕ j (B+OX
),

where we write ϕ j∗ι0 for ι0⊗ id. We set

prX,∗M :=
{

m ∈ prX,∗D
[ 1
λ

]
: ϕ j∗ι0 ◦8

− j
D (m) ∈ q⊗B+OX

ϕ j (B+OX
) for all j ≥ 0

}
. (4-4)

and we let M be the induced sheaf on X ×Qp U. Since λ = (E(u)/E(0))ϕ(λ) the isomorphism 8D

induces an isomorphism 8M : (ϕ
∗M)[1/E(u)] −→∼ M[1/E(u)].

We want to show that D and M are locally free sheaves of finite rank on X ×Qp U. For D this follows
from D|X×B[0,r ] = D⊗(OX⊗K0)OX×B[0,r ] . We work on a covering of X by affinoids Y = Spa(A, A+). Let
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h ∈ Z be such that q ⊂ E(u)−hp on Y and let n be maximal such that ϕn(E(u)) is not a unit in B[0,r ],
that is, such that r pn

≥ |π |. Then M|Y×B[0,r ] is defined by the exact sequence

0→M|Y×B[0,r ]→λ−hD|Y×B[0,r ]

⊕n
j=0 ϕ

j∗ι0◦8
− j
D

−−−−−−−−→

n⊕
j=0

(E(u)−hp/q)⊗B+A ,ϕ
j ϕ

j (B+A)→0.

The A ⊗Qp K0[u]-module E(u)−hp/q is locally free over A, say of rank k. The endomorphism ϕ :

K0[u] → K0[u] makes the target K0[u] into a free module of rank p over the source K0[u]. There-
fore (E(u)−hp/q)⊗B+A , ϕ

j ϕ j (B+A) is locally free over A of rank p j k. Since the affinoid algebra A is
noetherian and B[0,r ] is a principal ideal domain by [Lazard 1962, Corollary of Proposition 4] also
0(Y × B[0,r ],OY×B[0,r ]) = A⊗̂Qp B[0,r ] is noetherian. So 0(Y × B[0,r ],M) is finitely generated over
A⊗̂Qp B[0,r ] and flat over A. The residue field of each maximal ideal m ⊂ A⊗̂Qp B[0,r ] is finite over
Qp by [Bosch et al. 1984, Corollary 6.1.2/3]. Therefore n = m ∩ A is a maximal ideal of A. By the
elementary divisor theorem A/n⊗A 0(Y ×B[0,r ],M) is free over the product of principal ideal domains
A/n⊗Qp B[0,r ]. Therefore 0(Y ×B[0,r ],M) is locally free of rank d over A⊗̂Qp B[0,r ] by [EGA IV3 1966,
Theorem 11.3.10]. This shows that M is a locally free sheaf of rank d on X ×Qp U.

We equip M with a differential operator NM
∇

over N∇ . On λ−hD = D⊗(OX⊗K0) λ
−hB

[0,1)
X we have

the differential operator ND
∇
:= N ⊗ λ+ idD ⊗N∇

λ−hD N⊗λ+ idD ⊗N∇
−−−−−−−−→ λ−hD, d ⊗ λ−h f 7→ N (d)⊗ λ1−h f + d ⊗

(
huλ−h f dλ

du
− uλ1−h d f

du

)
(4-5)

with d ∈ D and f ∈B
[0,1)
X . Its image lies in λ−hD. If E(u)np⊂ q⊂ E(u)−hp then λnD ⊂M⊂ λ−hD.

Thus ND
∇
(M) ⊂ λ−hD ⊂ λ−h−nM and we let NM

∇
be the restriction of ND

∇
to M. The equation

NM
∇
◦8M ◦ϕ = p(E(u)/E(0)) ·8M ◦ϕ ◦NM

∇
is satisfied because it is satisfied on D by (4-2). Therefore

we have constructed a (ϕ, N∇)-module M(D,8, N , q) := (M,8M, NM
∇
) over X. Note that in terms

of Kisin’s description of D∼=D[`u]
N=0
⊗(OX⊗K0)B

[0,1)
X the differential operator NM

∇
is given as idD ⊗N∇ .

Example 4.4. The (ϕ, N )-modules with Hodge–Pink lattice from Example 2.9, corresponding to the
cyclotomic character, give rise to the following (ϕ, N∇)-modules of rank 1 over X = Spa(Qp,Zp).
For D = (K0,8 = p−1, N = 0, q = E(u)p) we obtain D = (B

[0,1)
X ,8D = p−1, N∇) and M =

λB
[0,1)
X . On the basis vector λ of M the actions of 8D and N∇ are given by 8D(ϕ(λ)) = p−1ϕ(λ) =

(E(0)/pE(u)) λ and N∇(λ)=−u(dλ/du) λ. So we find M(D)∼= (B[0,1)X ,8M = (E(0)/pE(u)), NM
∇
)

with NM
∇
( f )= N∇( f )−u(dλ/du) f . Similarly for D= (K0,8= p, N =0, q= E(u)−1p)we obtain D=

(B
[0,1)
X ,8D = p, N∇) and M= λ−1B

[0,1)
X which leads to M(D)∼= (B[0,1)X ,8M= (pE(u)/E(0)), NM

∇
)

with NM
∇
( f )= N∇( f )+ u(dλ/du) f .

To define the quasi-inverse functor D let (M,8M, NM
∇
) be a (ϕ, N∇)-module over X. We denote by

e : X ×Qp K0→ X ×Qp U the isomorphism x 7→ (x, 0) onto the closed subspace defined by u = 0. Let
(D,8,N ) := e∗(M,8M,NM

∇
). It is a (ϕ, N )-module over X because N is clearly OX ⊗Qp K0-linear
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and e∗(E(u)/E(0))= 1 implies N ◦8= p ·8 ◦ϕ∗N. By [Pappas and Rapoport 2009, Proposition 5.2]
there is a unique OX×Qp U-linear isomorphism

ξ : pr∗D
[ 1
λ

]
−→∼ M

[ 1
λ

]
(4-6)

satisfying ξ ◦ pr∗8 = 8M ◦ ϕ
∗ξ and e∗ξ = idD. In particular the composition pr∗8 ◦ (ϕ∗ξ)−1

=

ξ−1
◦8M induces an isomorphism ϕ∗M⊗ B+OX

−→∼ D ⊗(OX⊗K0) B+OX
= p of B+OX

-modules. We set
q := ηD ◦ (ξ ⊗ idBOX

)−1(M⊗B+OX
). Then D(M,8M, NM

∇
) := (D,8, N , q) is a (ϕ, N )-module with

Hodge–Pink lattice over X by Lemma 2.7 and the following lemma.

Lemma 4.5. Locally on a covering of X by affinoids Y = Spa(A, A+) there exist integers h, n with
E(u)n8M(ϕ

∗M)⊂M⊂ E(u)−h8M(ϕ
∗M) such that the quotients

E(u)−h8M(ϕ
∗M)/M and M/E(u)n8M(ϕ

∗M)

are finite locally free over A.

Proof. We may assume that X = Y = Spa(A, A+) is affinoid. Then the existence of h and n follows
from the finiteness of M and ϕ∗M. Let m⊂ A be a maximal ideal and set L = A/m. Let |π |< r < 1
and set M̃ := 0(Y ×Qp B[0,r ],M) and ϕ̃∗M := 0(Y ×Qp B[0,r ], ϕ

∗M). Then M/E(u)n8M(ϕ
∗M) ∼=

M̃E(u)n8M(ϕ̃∗M). Consider the exact sequence

0→ E(u)nϕ̃∗M 8M
−−→ M̃→M/E(u)n8M(ϕ

∗M)→ 0

in which the first map is injective because E(u) is a nonzero-divisor in A⊗̂Qp B[0,r ]. We tensor the
sequence with L over A to obtain the exact sequence of L ⊗Qp B[0,r ]-modules

0→ T → L ⊗A E(u)nϕ̃∗M idL ⊗8M
−−−−→ L ⊗A M̃→ L ⊗A

(
M/E(u)n8M(ϕ

∗M)
)
→ 0

with T =TorA
1
(
L , M/E(u)n8M(ϕ

∗M)
)
. Since L⊗Qp K0 is a product of fields, L⊗Qp B[0,r ] is a product

of principal ideal domains by [Lazard 1962, Corollary of Proposition 4]. Since E(u)n+h annihilates
L ⊗A M/E(u)n8M(ϕ

∗M) the latter is a torsion module over L ⊗Qp B[0,r ]. It follows that idL ⊗8M is
a morphism of free modules of the same rank over a product of principal ideal domains whose cokernel
is a torsion module. It is a direct consequence of the classification of finitely generated modules over a
principal ideal domain that the map idL ⊗8M then has to be injective. It follows that

0= T = TorA
1
(
L , M/E(u)n8M(ϕ

∗M)
)
= TorAm

1

(
(Am/mAm), (M/E(u)n8M(ϕ

∗M))m
)
.

Since (M/E(u)n8M(ϕ
∗M))m is finite over the noetherian local ring Am it is locally free by the local

criterion of flatness [Eisenbud 1995, Theorem 6.8]. It follows that M/E(u)n8M(ϕ
∗M) is locally free

as an A-module. Finally, the two last objects in the short exact sequence

0→E(u)−h8M(ϕ
∗M)/M ·E(u)n+h

−−−−→M/E(u)n+hM→M/E(u)n8M(ϕ
∗M)→ 0

are flat and hence so is the first (all its higher Tor-terms have to vanish). As E(u)−h8M(ϕ
∗M)/M is

also finite as an A-module it follows that it is finite and locally free over A. �
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Theorem 4.6. For every adic space X ∈ Adlft
Qp

the functors M and D constructed above are mutually
quasi-inverse equivalences between the category of (ϕ, N )-modules with Hodge–Pink lattice over X and
the category of (ϕ, N∇)-modules over X.

Proof. We must show that the functors are mutually quasi-inverse. To prove one direction let (D,8, N , q)
be a (ϕ, N )-module with Hodge–Pink lattice over X and let (M,8M, NM

∇
) =M(D,8, N , q). By

construction e∗M= D, and under this equality e∗8M corresponds to 8. Since e∗λ= 1, formula (4-5)
shows that e∗NM

∇
corresponds to N on D. By the uniqueness of the map ξ from (4-6), its inverse ξ−1 equals

the inclusion M ↪→ D[1/λ], by which we defined M. This shows that ηD ◦ (ξ ⊗ idBOX
)−1(M⊗B+OX

)

equals q and that D ◦M= id.
Conversely let (M,8M,NM

∇
) be a (ϕ,N∇)-module over X and let (D,8,N ,q)= D(M,8M,NM

∇
).

Via the isomorphism ξ from (4-6), M is a ϕ-submodule of pr∗D[1/λ]. By construction of q and

M(D(M,8M, NM
∇
))⊂ pr∗D[1/λ],

the latter submodule coincides with M modulo all powers of E(u). Since both submodules have a
Frobenius which is an isomorphism outside V(E(u)) they are equal on all of X ×Qp U. It remains to
show that NM

∇
is compatible with N pr∗D

∇
under the isomorphism ξ : pr∗D[1/λ] −→∼ M[1/λ]. We follow

[Kisin 2006, Lemma 1.2.12(3)] and let σ := ξ ◦ N pr∗D
∇
− NM

∇
◦ ξ . Then σ : pr∗D[1/λ] →M[1/λ] is

OX×Qp U-linear and it suffices to show that σ(D)= 0. By (4-5) both N pr∗D
∇

and NM
∇

reduce to N modulo u.
Therefore σ(D)⊂ uM[1/λ]. One checks that σ ◦8pr∗D ◦ϕ= p(E(u)/E(0)) ·8M◦ϕ◦σ and this implies

σ(D)= σ ◦8pr∗D(ϕ
∗D)= p E(u)

E(0)
·8M ◦ϕ

∗

(
uM

[ 1
λ

])
⊂ u pM

[ 1
λ

]
.

By induction σ(D)⊂ u piM[1/λ] for all i and hence σ(D)= 0. This shows that also M◦D is isomorphic
to the identity and proves the theorem. �

Corollary 4.7. The stack H ad
ϕ,N ,�µ is isomorphic to the stack whose groupoid of X-valued points for

X ∈ Adlft
Eµ consists of (ϕ, N∇)-modules (M,8M, NM

∇
) over X satisfying∧ j

OX×U
M⊂ E(u)−µ1−···−µ j ·

∧ j
OX×U

8M(ϕ
∗M)

with equality for j = rkM. Here µi is viewed as a Z-valued function on X ×Qp K.

Proof. This follows from the definition of the functor D, in particular the definition of the Hodge–Pink
lattice. �

Definition 4.8. We define substacks H ∇

ϕ,N ,µ⊂H ad
ϕ,N ,µ, H ∇

ϕ,N ,�µ⊂H ad
ϕ,N ,�µ, H ∇

ϕ,µ⊂H ad
ϕ,µ and H ∇

ϕ,�µ⊂

H ad
ϕ,�µ. For an adic space X ∈Adlft

Eµ the groupoid H ∇

ϕ,N ,µ(X) consists of those (D, ϕ, N , q)∈H ad
ϕ,N ,µ(X)

for which the associated (ϕ, N∇)-module (M,8M, NM
∇
) satisfies NM

∇
(M) ⊂ M. The groupoids

H ∇

ϕ,N ,�µ(X), H ∇
ϕ,µ(X) and H ∇

ϕ,�µ(X) are defined by the same condition. (Note that on the latter two
N = 0, but NM

∇
6= 0.)
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Theorem 4.9. The substacks H ∇

ϕ,N ,µ⊂H ad
ϕ,N ,µ, H ∇

ϕ,N ,�µ⊂H ad
ϕ,N ,�µ, H ∇

ϕ,µ⊂H ad
ϕ,µ and H ∇

ϕ,�µ⊂H ad
ϕ,�µ

are Zariski closed substacks. The substack H ∇

ϕ,N ,µ coincides with the image of the zero section of the
vector bundle H ad

ϕ,N ,µ→ Dad
ϕ,N ,µ.

Remark 4.10. We can consider a family of (ϕ, N∇)-modules over Dad
ϕ,N ,µ. We pull back the canonical

family of (ϕ, N∇)-modules on H ad
ϕ,N ,µ along the zero section. Then for x ∈ Dad

ϕ,N ,µ(Qp) the fiber of this
family at x coincides with the (ϕ, N∇)-module that Kisin [2006] associates with the filtered (ϕ, N )-module
defined by x .

Remark 4.11. If instead of the isomorphism ηD from (4-3) we choose ηD = idp as in Remark 4.3 (2),
the above results remain valid, except that H ∇

ϕ,N ,µ coincides with the image of a different section. This
section is obtained by composing the zero section with the inverse

η−1
D : d ⊗ f 7→

∑
i N i (d)⊗ (1/ i !) log

(
1− (E(u)/E(0))

)i
· f

of the automorphism ηD . It sends a filtration F • to η−1
D

(∑
i∈Z E(u)−i (F i DK )⊗R⊗K B+R

)
. Note that both

sections coincide on the closed substack Dad
ϕ,µ where N = 0.

Proof of Theorem 4.9. To prove that the substacks are closed let D ∈ H ad
ϕ,N ,�µ(X) for an adic space

X ∈ Adlft
Eµ and let (M,8M, NM

∇
) =M(D) be the associated (ϕ, N∇)-module over X. Locally on X

there is an integer h with NM
∇
(M)⊂ λ−hM by Lemma 2.7 and the construction of NM

∇
. The quotients(

λ−hM/M
)
⊗
(
B
[0,1)
X /(ϕn(E(u))h)

)
are finite locally free as OX -modules for all n ≥ 0. Now the

condition NM
∇
(M)⊂M is equivalent to the vanishing of the images under NM

∇
of a set of generators

of M in
(
λ−hM/M

)
⊗
(
B
[0,1)
X /(ϕn(E(u))h)

)
for each n ≥ 0. Due to [EGA I 1971, Lemma 9.7.9.1] the

latter is represented by a Zariski closed subspace of X.
We show that the closed substack H ∇

ϕ,N ,µ of H ad
ϕ,N ,µ coincides with the image of the zero section.

Since ND
∇

on D := D⊗OX⊗K0 B[0,1)OX
induces the differential operator idD ⊗N∇ on p := D⊗OX⊗K0 B+OX

under the map i0= ηD ◦ inclusion :D ↪→ p from (4-3), it follows directly that the image of the zero section
is contained in H ∇

ϕ,N ,µ. To prove the converse we may work on the coverings X := (PK0,d×Qp QK ,d,µ)
ad

of H ad
ϕ,N ,µ and (PK0,d ×Qp FlagK ,d,µ)

ad of Dad
ϕ,N ,µ because the zero section and H ∇

ϕ,N ,µ are both invariant
under the action of (ResK0/Qp GLd,K0)Eµ . We first claim that both have the same underlying topological
space. By [Bosch et al. 1984, Corollary 6.1.2/3] this can be checked on L-valued points of X for finite
extensions L of Eµ. For those it was proved by Kisin [2006, Lemma 1.2.12(4)] that the universal
Hodge–Pink lattice q at L lies in the image of the zero section if the pullback M to L of the universal
(ϕ, N∇)-module on X has holomorphic NM

∇
. From this our claim follows.

To prove equality as closed subspaces of X we look at a closed point x ∈ X and its complete local
ring ÔX,x . Let mx ⊂ ÔX,x be the maximal ideal, let I ⊂ ÔX,x be the ideal defining H ∇

ϕ,N ,µ, and set
Rn := ÔX,x/(m

n
x + I ). Then Rn is a finite-dimensional Qp-vector space by [Bosch et al. 1984, Corollary

6.1.2/3]. We consider the universal DRn
= (D,8, N , q) over Rn by restriction of scalars from Rn to Qp

as a (ϕ, N )-module D̃ with Hodge–Pink lattice over Qp of rank (dimQp Rn)(rkRn⊗K0 D)= dimK0 D. It is
equipped with a ring homomorphism Rn→End(D̃). Since NM

∇
is holomorphic on M(DRn

), Kisin [2006,
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Lemma 1.2.12(4)] tells us again that q= q(F •) for the filtration F • = F •q from Remark 2.8. This shows
that the ideal J defining the zero section in X vanishes in Rn . Since this holds for all n, the ideals I and
J are equal in ÔX,x . As x was arbitrary, they coincide on all of X and this proves the theorem. �

5. Weak admissibility

Similar to the case of filtrations, one can define a notion of weak admissibility for (ϕ, N )-modules with
Hodge–Pink lattice and develop a Harder–Narasimhan formalism. Compare also [Hellmann 2011, §2] for
the following. Recall that f = [K0 :Qp] and e = [K : K0].

Definition 5.1. Let L be a field with a valuation vL : L → 0L ∪ {0} in the sense of [Huber 1993, §2,
Definition] and set 0Q

L := 0L ⊗Z Q.

(i) Let D = (D,8, N ) be a (ϕ, N )-module over L . Then define

tN (D) := vL(detL 8
f )1/ f 2

∈ 0Q
L .

If L ⊃ K0 we are in the situation of Remark 2.4 and have tN (D)= vL(detL(8
f )0)

1/ f .

(ii) Let D = (D,8, N ,F •) be a K -filtered (ϕ, N )-module over L . Then

tH (D) :=
1

e f

∑
i∈Z

i dimL(F i DK /F i+1 DK ) ∈Q.

(iii) Let D = (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice of rank d over L . Then we set

tH (D) :=
1

e f
(
dimL(q/tnp)− dimL(p/tnp)

)
=

1
e f

dimL(q/tnp) − n rk D ∈Q

for n�0, which is independent of n whenever tnp⊂q. If L is an extension of K̃ and (µψ)ψ =µD(Spec L)
is the Hodge polygon of D (see Definition 2.11) then tH (D) := (1/(e f ))

∑
ψ µψ,1+ · · ·+µψ,d . If the

ψ-component qψ satisfies
∧dqψ = t−hψ

∧dpψ then tH (D) = (1/(e f ))
∑

ψ hψ . Moreover tH (D) =
tH (D,8, N ,F •q).

(iv) Let D be a (ϕ, N )-module with Hodge–Pink lattice (or a K -filtered (ϕ, N )-module) over L . Then
its slope is defined to be

λ(D) := (vL(p)tH (D) · tN (D)−1)1/d ∈ 0Q
L .

Definition 5.2. (i) A (ϕ, N )-module with Hodge–Pink lattice D = (D,8, N , q) over a field L endowed
with a valuation is called semistable if λ(D′)≥ λ(D) for all D′=

(
D′,8|ϕ∗D′, N |D′, q∩D′⊗L⊗Qp K0 BL

)
where D′ ⊂ D is a free L ⊗Qp K0-submodule stable under 8 and N.

(ii) A K -filtered (ϕ, N )-module D = (D,8, N ,F •) over L is called semistable if λ(D′)≥ λ(D) for all
D′ =

(
D′,8|ϕ∗D′, N |D′,F • ∩ D′K

)
where D′ ⊂ D is a free L ⊗Qp K0-submodule stable under 8 and N.

(iii) A (ϕ, N )-module with Hodge–Pink lattice (or a K -filtered (ϕ, N )-module) is called weakly admissible
if it is semistable of slope 1.



1086 Urs Hartl and Eugen Hellmann

Lemma 5.3. Let (D,8, N ,F •) be a K -filtered (ϕ, N )-module over a valued field L and let (D,8, N , q)
denote the (ϕ, N )-module with Hodge–Pink lattice associated to (D,8, N ,F •) by the zero section
F • 7→ q= q(F •) of Remark 2.8 (3). Then (D,8, N ,F •) is weakly admissible if and only if (D,8, N , q) is.

Proof. It is obvious from the definitions that tH (D,8, N ,F •)= tH (D,8, N , q(F •)). Further we have to
test on the same subobjects D′ ⊂ D. Hence the claim follows from the fact

q(F • ∩ D′K )= q(F •)∩ D′⊗L⊗Qp K0 BL ,

which is obvious from the description of q(−) in Remark 2.8 (3) by choosing an L ⊗Qp K -basis of DK

adapted to the submodules F i D′K and F i DK . �

Proposition 5.4. Let (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice defined over some valued
field L. Then there is a unique Harder–Narasimhan filtration

0= D0 ⊂ D1 ⊂ · · · ⊂ Dr = D

of (D,8, N , q), by free L⊗Qp K0-submodules stable under 8 and N such that the subquotients Di/Di−1

with their induced Hodge–Pink lattice are semistable of slope λi ∈ 0L ⊗Q and λ1 < λ2 < · · ·< λr .

Proof. This is the usual Harder–Narasimhan formalism; see [Fargues and Fontaine 2018, 5.5.1] for a
fairly general exposition. See also [Hellmann 2011, Proposition 2.19]. �

Corollary 5.5. Let (D,8, N , q) be a (ϕ, N )-module with Hodge–Pink lattice over L and let L ′ be an
extension of L with valuation vL ′ extending the valuation vL . Then (D,8, N , q) is weakly admissible if
and only if (D′,8′, N ′, q′)= (D⊗L L ′,8⊗ id, N ⊗ id, q⊗L L ′) is weakly admissible.

Proof. This is similar to [Hellmann 2011, Corollary 2.22].
If (D′,8′, N ′, q′) is weakly admissible, then every (8, N )-stable subobject D1⊂ D defines a (8′, N ′)-

stable subobject D′1 = D1⊗L L ′ of D′ such that

λ(D1,8|ϕ∗D1,N |D1,q∩ D1⊗L⊗K0 BL)= λ(D′1,8
′
|ϕ∗D′1,N ′|D′1,q

′
∩ D′1⊗L ′⊗K0 BL ′).

It follows that (D,8, N , q) is weakly admissible, as (D′,8′, N ′, q′) is.
Now assume that (D,8, N , q) is weakly admissible. We may reduce to the case where L ′ is finitely

generated over L and Aut(L ′/L) is large enough. As in the proof of [Hellmann 2011, Corollary 2.22]
one shows that the action of Aut(L ′/L) preserves the slope of 8′-stable subobjects of D′. Hence the
Harder–Narasimhan filtration of D′ descends to D. As D is weakly admissible, this filtration can only
have one step. �

Theorem 5.6. Let µ be a cocharacter as in (2-5) with reflex field Eµ. Then the groupoid

X 7→
{
(D,8, N , q) ∈Hϕ,N ,�µ(X) | D⊗ κ(x) is weakly admissible for all x ∈ X

}
is an open substack H ad,wa

ϕ,N ,�µ of H ad
ϕ,N ,�µ on the category of adic spaces locally of finite type over Eµ.
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Proof. This is similar to the proof of [Hellmann 2013, Theorem 4.1].
It follows from Corollary 5.5 that H ad,wa

ϕ,N ,�µ is indeed a stack, i.e., weak admissibility may be checked
over an fpqc-covering. Hence it suffices to show that the weakly admissible locus is open in

Xµ := PK0,d ×Qp QK ,d,�µ.

Let us denote by Zi the projective PK0,d-scheme whose S-valued points are given by pairs (x,U )
with x = (g, N ) ∈ PK0,d(S) ⊂ (ResK0/Qp GLd,K0) × (ResK0/Qp Matd×d) and an OS ⊗ K0-subspace
U ⊂OS⊗K⊕d

0 which is locally on S free of rank i , a direct summand as OS-module, and stable under the
action of 8g = g ·ϕ and N. This is a closed subscheme of the product PK0,d ×Qp QuotOd | K0 |Qp (where
QuotOd | K0 |Qp is Grothendieck’s Quot-scheme which is projective over Qp; see [Grothendieck 1962,
n◦221, Theorem 3.1] or [Altman and Kleiman 1980, Theorem 2.6]), cut out by the invariance conditions
under 8g and N. Further write fi ∈ 0(Zi ,OZi ) for the global section defined by

fi (g,U )= det(g ·ϕ) f
|U = det

(
g ·ϕ(g) · · ·ϕ f−1(g)

) f
|U ,

where f = [K0 : Qp], and where the determinant is the determinant as OZi -modules. Write U for the
pullback of the universal (8, N )-invariant subspace on Zi to the product Zi × QK ,d,�µ, write q for the
pullback of the universal B+-lattice on QK ,d,�µ to Zi × QK ,d,�µ, and write p= (B+)⊕d for the pullback
of the tautological B+-lattice D⊗B+ on PK0,d to Zi × QK ,d,�µ. Fix integers n, h with tnp⊂ q⊂ t−hp

and consider the complex of finite locally free sheaves on Zi × QK ,d,�µ

P• : P1 := t−hp/tnp
δ
→ t−hp/q⊕

(
D/U ⊗ t−hB+/tnB+

)
=: P0

given by the canonical projection D � D/U in the second summand. Let T1 be the functor from the
category of quasicoherent sheaves on Zi × QK ,d,�µ to itself defined by

T1 : M 7→ ker
(
δ⊗ idM : P1⊗M→ P0⊗M

)
.

If M = κ(y) for a point y = (gy, Ny,Uy, qy) ∈ Zi × QK ,d,�µ then T1(κ(y)) = (qy ∩ pi,y[1/t])/tnpi,y ,
where we write pi,y :=Uy ⊗κ(y)⊗K0 B+κ(y). We consider the function

hi : Zi × QK ,d,�µ→Q,

y 7→ 1
e f

dimκ(y) T1(κ(y)) − ni = tH

(
Uy, gy( id⊗ϕ)|Uy , N |Uy , qy ∩ pi,y

[ 1
t

])
. (5-1)

We write Z ad
i and Qad

K ,d,�µ for the adic spaces associated to the varieties Zi and QK ,d,�µ. Similarly we
write had

i for the function on the adic spaces Z ad
i × Qad

K ,d,�µ defined by the same formula as in (5-1). By
semicontinuity [EGA III2 1963, Théorème 7.6.9], the sets

Yi,m = {y ∈ Z ad
i × Qad

K ,d,�µ | hi (y)≥ m}

are closed and hence proper over X ad
µ = Pad

K0,d ×Qp Qad
K ,d,≤µ. We write

pri,m : Yi,m→ X ad
µ

for the canonical, proper projection.
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If we write X0 ⊂ X ad
µ for the open subset of all (D,8, N , q) such that λ(D,8, N , q)= 1, then

X0 r Xwa
µ = X0 ∩

⋃
i,m

pri,m
({

y ∈ Yi,m | vy( fi ) > vy(p) f 2m}), (5-2)

where the union runs over 1≤ i ≤ d − 1 and m ∈ Z. Indeed, let x = (D,8, N , q) be an L-valued point
of X0, then any proper (8, N )-stable subspace of D′ ⊂ D defines (for some 1 ≤ i ≤ d − 1) a point
y = (D′, q) of Zi × QK ,d,≤µ mapping to x . This subspace violates the weak admissibility condition if
and only if

vy( fi )= tN (D′,8|ϕ∗D′)
f 2
> vy(p) f 2 tH (D′,8,q∩(D′⊗Bκ(x))) = vy(p) f 2hi (y),

and hence (5-2) follows. On the other hand the union⋃
i,m

pri,m
({

y ∈ Yi,m | vy( fi ) > vy(p) f 2m})
is a finite union, because Yi,m = ∅ for m > hi and Yi,m = Z ad

i × Qad
K ,d,�µ for m ≤ −ni . Therefore the

union is closed by properness of the map pri,m and the definition of the topology on an adic space. The
theorem follows from this. �

We define the subgroupoid H ad,wa
ϕ,�µ ⊂H ad

ϕ,�µ as follows. Given an adic space X and (D,8, N , q) ∈
H ad
ϕ,�µ, we say that (D,8, N , q) ∈H ad,wa

ϕ,�µ if and only if (D,8, N , q)⊗ κ(x) is weakly admissible for
all points x ∈ X. We define the subgroupoids H ad,wa

ϕ,N ,µ ⊂H ad
ϕ,N ,µ, H ad,wa

ϕ,µ ⊂H ad
ϕ,µ, Dad,wa

ϕ,N ,µ ⊂ Dad
ϕ,N ,µ and

Dad,wa
ϕ,µ ⊂ Dad

ϕ,µ in the same manner.

Corollary 5.7. The subgroupoids H ad,wa
ϕ,�µ ⊂H ad

ϕ,�µ, H ad,wa
ϕ,N ,µ⊂H ad

ϕ,N ,µ, H ad,wa
ϕ,µ ⊂H ad

ϕ,µ, Dad,wa
ϕ,N ,µ⊂Dad

ϕ,N ,µ

and Dad,wa
ϕ,µ ⊂ Dad

ϕ,µ are open substacks.

Proof. This follows by pulling back H ad,wa
ϕ,N ,�µ ⊂ H ad

ϕ,N ,�µ along the morphisms H ad
ϕ,�µ → H ad

ϕ,N ,�µ,
H ad
ϕ,N ,µ→H ad

ϕ,N ,�µ, H ad
ϕ,µ→H ad

ϕ,N ,�µ, Dad
ϕ,N ,µ→H ad

ϕ,N ,�µ and Dad
ϕ,µ→H ad

ϕ,N ,�µ, respectively. Here
we use the fact that the zero sections Dad

ϕ,N ,µ→H ad
ϕ,N ,�µ and Dad

ϕ,µ→H ad
ϕ,N ,�µ preserve weak admissibility

by Lemma 5.3. �

Remark 5.8. Note that the projection

pr :H ad
ϕ,N ,µ→ Dad

ϕ,N ,µ

does not preserve weak admissibility. We always have pr−1(Dad,wa
ϕ,N ,µ) ⊂ H ad,wa

ϕ,N ,µ and hence especially
any section of the vector bundle H ad

ϕ,N ,µ→Dad
ϕ,N ,µ maps the weakly admissible locus to the weakly

admissible locus.
Indeed, let D = (D,8, N , q) be a point of H ad

ϕ,N ,µ over a field L whose image (D,8, N ,F •q) in
Dad
ϕ,N ,µ is weakly admissible. Let D′ ⊂ D be an L ⊗Qp K0-submodule which is stable under 8 and N,

and set p′ := D′⊗L⊗K0 B+L . Then q′ := q∩p′[1/t] satisfies t iq′∩p′ ⊂ t iq∩p and F i
q′D
′

K ⊂ F i
qDK ∩ D′K .
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This implies

tH (D′,8|ϕ∗D′, N |D′, q′)= tH (D′,8|ϕ∗D′, N |D′,F •q′)≤ tH (D′,8|ϕ∗D′, N |D′,F •q ∩ D′K )

with equality for D′ = D, and

vL(p)tH (D′,8|ϕ∗D′ ,N |D′ ,q
′)
≥ vL(p)tH (D′,8|ϕ∗D′ ,N |D′ ,F•q∩D′K ) ≥ tN (D′,8|ϕ∗D′)

with equality for D′ = D, because (D,8, N ,F •q) is weakly admissible. Therefore also D is weakly
admissible. This proves that pr−1(Dad,wa

ϕ,N ,µ)⊂H ad,wa
ϕ,N ,µ. However, in general this inclusion is strict as can

be seen from the following example.

Example 5.9. Let K = K0=Qp, d = 2 and µ= (2, 0). We consider points D= (D,8, N ,F •) in Dad
ϕ,N ,µ

over a field L with 8 = p Id2 and N = 0. The filtration is of the form D = F0 D ⊃ F1 D = F2 D =( u
v

)
· L ⊃ F3 D = (0) for some

( u
v

)
∈ D. None of these points is weakly admissible, because the subspace

D′ =
( u
v

)
· L ⊂ D has tN (D′)= vL(p) and F2 D′ = D′, whence tH (D′)= 2 and λ(D′)= vL(p) < 1.

The preimage of such a point in H ad
ϕ,N ,µ is given by a Hodge–Pink lattice q with p⊂ q⊂ t−2p with

Hodge weights 0 and −2. This means that q = p+
( u+tu′
v+tv′

)
· t−2B+L for some

(u′
v′

)
∈ D. If the vectors( u

v

)
and

( u′
v′

)
are linearly dependent over L then D = (D,8, N , q) is not weakly admissible, because

the subspace D′ =
( u
v

)
· L ⊂ D has tN (D′) = vL(p) and q′ := q∩ D′⊗L BL = t−2 D′⊗L B+L , whence

tH (D′)= 2 and λ(D′)= vL(p) < 1.
On the other hand, if the vectors

( u
v

)
and

( u′
v′

)
are linearly independent over L then D = (D,8, N , q)

is weakly admissible, because then q′ ⊂ t−1 D′ ⊗L B+L for any subspace D′ =
(a

b

)
· L ⊂ D, whence

tN (D′) = vL(p), tH (D′) ≤ 1 and λ(D′) ≥ 1. Indeed,
(a

b

)
· t−2

∈ q′ would imply that
(a

b

)
· t−2

≡( u+tu′
v+tv′

)
· t−2
· (c+ tc′)≡ c

( u
v

)
· t−2
+
(
c′
(u
v

)
+c
( u′
v′

))
t−1 mod p for c, c′ ∈ L . This implies

(a
b

)
= c

(u
v

)
and

c′
( u
v

)
+ c

( u′
v′

)
= 0 contradicting the linear independence.

Thus the weakly admissible locus H ad,wa
ϕ,µ in the fiber of Hϕ,N ,µ over the point (8, N )= (p Id2, 0) in

PQp,2 equals the complement of the zero section, while this fiber in Dad,wa
ϕ,N ,µ is empty; see also Lemma 5.3.

We end this section by remarking that the weakly admissible locus is determined by the rigid analytic
points, i.e., those points of an adic space whose residue field is a finite extension of Qp.

Lemma 5.10. Let X be an adic space locally of finite type over Eµ and let f : X → H ad
ϕ,N ,�µ be a

morphism defined by a (ϕ, N )-module with Hodge–Pink lattice D. Then f factors over H ad,wa
ϕ,N ,�µ if and

only if D⊗ κ(x) is weakly admissible for all rigid analytic points x ∈ X.

Proof. One implication is obvious and the other one is an easy application of the maximum modulus
principle. It is proven along the same lines as [Hellmann 2013, Proposition 4.3]. �

Remark 5.11. The analogous statements for the stacks H ad,wa
ϕ,�µ ⊂H ad

ϕ,�µ, H ad,wa
ϕ,N ,µ ⊂H ad

ϕ,N ,µ, H ad,wa
ϕ,µ ⊂

H ad
ϕ,µ, Dad,wa

ϕ,N ,µ⊂Dad
ϕ,N ,µ and Dad,wa

ϕ,µ ⊂Dad
ϕ,µ are also true and are a direct consequence of their construction.
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6. The étale locus

Let us denote by B[r,s] the closed annulus over K0 of inner radius r and outer radius s for some r, s ∈
[0, 1)∩ pQ. For an adic space X ∈ Adlft

Qp
we write

A
[0,1)
X = prX,∗O

+

X×U ⊂B
[0,1)
X = prX,∗OX×U,

A
[r,s]
X = prX,∗O

+

X×B[r,s]
⊂B

[r,s]
X = prX,∗OX×B[r,s] .

The Frobenius ϕ on B
[0,1)
X restricts to a ring homomorphism ϕ on A

[0,1)
X . For this section we adapt the

notation from [Hellmann 2013] and write ri = r1/pi
. Then ϕ restricts to a homomorphism

ϕ :B
[r,s]
X →B

[r1,s1]
X .

Definition 6.1. A ϕ-module of finite height over A
[0,1)
X is an A

[0,1)
X -module M which is locally on X

free of finite rank over A
[0,1)
X together with an injective morphism 8 : ϕ∗M→M of A

[0,1)
X -modules

such that coker8 is killed by some power of E(u) ∈W [[u]]⊂ A
[0,1)
X .

Inspired by Example 4.4 we define the (ϕ, N∇)-module B
[0,1)
X (1) over X to be

(B
[0,1)
X ,8M = pE(u)/E(0), NM

∇
)

with NM
∇
( f )= N∇( f )+ u(dλ/du) f . For an integer n ∈ Z we set

B
[0,1)
X (n) :=B

[0,1)
X (1)⊗n

= (B
[0,1)
X , (pE(u)/E(0))n, NM

∇
)

with NM
∇
( f )= N∇( f )+nu(dλ/du) f . Given a (ϕ, N∇)-module (M,8M) on X we write (M,8M)(n)

for the twist M⊗
B
[0,1)
X

B
[0,1)
X (n). Note that p/E(0) ∈W

×

since E(u) is an Eisenstein polynomial. Thus

for n ≥ 0 we have an obvious integral model A
[0,1)
X (n) for B[0,1)(n) which is a ϕ-module of finite

height over A
[0,1)
X (by forgetting the N∇-action). Further we write A[0,1)(n) = ASpa(Qp,Zp)(n) for the

W [[u]]-module of rank 1 with basis e on which 8 acts via 8(e)= (E(u)/(pE(0)))ne.

Definition 6.2. Take (M,8M, NM
∇
) to be a (ϕ, N∇)-module over an adic space X ∈ Adlft

Qp
.

(i) The module M is called étale if there exists an fpqc-covering (Ui → X), an integer n ≥ 0 and
ϕ-modules (Mi ,8Mi ) of finite height over A

[0,1)
Ui

such that

(M,8M)(n)|Ui = (Mi ,8Mi )⊗A
[0,1)

Ui
B
[0,1)
Ui

.

(ii) Let x ∈ X; then M is called étale at x if there exists an integer n ≥ 0 and a (κ(x)+⊗Zp W )[[u]]-lattice
M⊂M(n)⊗ κ(x) such that

E(u)hM⊂8M(n)(ϕ
∗M)⊂M

for some integer h ≥ 0.

Theorem 6.3. Let X be an adic space locally of finite type over Qp and let (M,8) be a (ϕ, N∇)-module.
Then the subset

X int
= {x ∈ X |M is étale at x}

is open and the restriction M|X int is étale.
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This is similar to the proof of [Hellmann 2013, Theorem 7.6]. However, we need to make a few
generalizations as we cannot rely on a reduced universal case. Given an affinoid algebra A and r, s ∈
[0, 1)∩ pQ we write

B
[r,s]
A = 0(Spa(A, A◦),B[r,s]Spa(A,A◦))= A⊗̂Qp B[r,s] = AW 〈T/s, r/T 〉,

A
[r,s]
A = 0(Spa(A, A◦),A [r,s]Spa(A,A◦))= A◦⊗̂Zp A[r,s] = A◦W 〈T/s, r/T 〉.

The following is the analogue of [Hellmann 2013, Theorem 6.9] in the nonreduced case.

Theorem 6.4. Let X be an adic space locally of finite type over Qp and let N be a family of free ϕ-modules
of rank d over B

[r,r2]
X . Assume that there exists x ∈ X and an A

[r,r2]
X ⊗ κ(x)◦-lattice Nx ⊂N ⊗ κ(x) such

that 8 induces an isomorphism

8 : ϕ∗(Nx ⊗A
[r,r2]
X

A
[r,r1]
X )−→∼ Nx ⊗A

[r,r2]
X

A
[r1,r2]
X . (6-1)

Then there exists an open neighborhood U ⊂ X of x and a locally free A
[r,r2]

U -submodule N ⊂N of rank d
such that

N ⊗ κ(x)◦ = Nx ,

8(ϕ∗N |U×B[r,r1]
)= N |U×B[r1,r2]

,

N ⊗
A
[r,r2]

U
B
[r,r2]
U =N |U .

Proof. We may assume that X = Spa(A, A◦) is affinoid and we may choose a Banach norm ‖ · ‖ and a
Zp-subalgebra A+= {x ∈ A | ‖x‖≤ 1} ⊂ A◦ such that A= A+[1/p] and X = Spa(A, A+)= Spa(A, A◦).

Choose a basis ex of Nx and denote by D0 ∈ GLd(A
[r,r2]
X ⊗ κ(x)◦) the matrix of 8 in this basis. After

shrinking X if necessary we may lift the matrix D0 to a matrix D with coefficients in 0(X,A [r,r2]
X ).

Localizing further we may assume that D is invertible over 0(X,A [r,r2]
X ), as we only need to ensure

that the inverse of its determinant has coefficients ai ∈ A+, i.e., ‖ai‖ ≤ 1 for some Banach norm ‖ · ‖
corresponding to A+. Let us write f ∈ Aw〈T/s, r/T 〉 for this determinant and write f = f ++ f − with

f + =
∑
i≥0

αi

(T
s

)i
∈ Aw

〈 T
s

〉
, f − =

∑
i≥0

βi

( r
T

)i
∈ Aw

〈 r
T

〉
.

We claim that αi , βi ∈ A◦W for all i . But as αi , βi
i→∞
−−→ 0 this is clear for all but finitely many i . Moreover

for all i ≥ 0 we have αi (x), βi (x) ∈ k(x)◦W . Hence after localization on X we may assume that all
coefficients are integral.

Fixing a basis b of N we denote by S ∈ GLd(B
[r,r ]
A ) the matrix of 8 in this basis. Further we denote

by V a lift of the change of basis matrix from the basis ex to the basis b mod x . From now on the proof is
the same as the proof of [Hellmann 2013, Theorem 6.9]. �
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Proposition 6.5. Let X = Spa (A, A+) be an affinoid adic space of finite type over Qp. Let r > |π | with
r ∈ pQ and set ri = r1/pi

. Let Mr be a free vector bundle on X ×B[0,r2] together with an injection

8 : ϕ∗(Mr |X×B[0,r1]
)→Mr

with cokernel supported at the point defined by E(u). Assume that there is a free A
[r,r2]
A = A+〈T/r2, r/T 〉

submodule
Nr ⊂Nr :=Mr ⊗B

[0,r2]
A

B
[r,r2]
A

of rank d, containing a basis of Nr such that

8(ϕ∗(Nr ⊗A
[r,r2]
A

A
[r,r1]
A ))= Nr ⊗A

[r,r2]
A

A
[r1,r2]
A .

Then fpqc-locally on X there exists a free A
[0,r2]
A -submodule Mr ⊂Mr of rank d , containing a basis of Mr

such that
8 : ϕ∗(Mr ⊗A

[0,r2]
A

A
[0,r1]
A )→ Mr (6-2)

is injective with cokernel killed by some power of E(u).

Proof. This is the generalization of [Hellmann 2013, Proposition 7.7] to our context. We also write Mr

for the global sections of the vector bundle. Write M ′r =Mr ∩ Nr ⊂Nr . This is an A+〈T/r2〉-module.
Further we set

Mr = Im(M ′r⊗̂A
[0,r2]
A

A
[r,r2]
A →Nr )∩M ′r

[ 1
p

]
⊂Nr .

Then Mr is a finitely generated A+〈T/r2〉-module as the ring is noetherian. First we need to make some
modification in order to assure that Mr is flat. Let Y=Spf W 〈T/r2〉 denote the formal model of B[0,r2] and
let Y ′ = Spf W 〈T/r2, r/T 〉 denote the formal model of B[r,r2]. Note that Mr [1/p] =Mr and hence Mr

is rig-flat. By [Bosch and Lütkebohmert 1993, Theorem 4.1] there exists a blow-up X̃ of Spf(A) such
that the strict transform M̃r of Mr in X̃ ×Y is flat over X̃ . We write Mr,X̃ (resp. Nr,X̃ ) for the pullback
of Mr (resp. Nr ) to the generic fiber of X̃ ×Y (resp. to X̃ ×Y ′). If we set M̃ ′r =Mr,X̃ ∩ Nr,X̃ then one
easily finds

M̃r = (M̃
′

r ⊗A
[0,r2]
X̃

A
[r,r2]

X̃ )∩ M̃ ′r
[ 1

p

]
.

It follows that M̃r is stable under 8. Further, as M̃r is flat, it has no p-power torsion and hence we
find that the formation (Mr,X̃ , Nr,X̃ ) 7→ M̃r commutes with base change SpfO ↪→ X̃ for any finite flat
Zp-algebra O; compare the proof of [Hellmann 2013, Proposition 7.7]. Especially this pullback is free
over O⊗Zp W 〈T/r2〉 and the cokernel of 8 is annihilated by E(u)kµ for some kµ� 0 depending only on
the Hodge polygon µ (for an arbitrary finite flat Zp-algebra O this follows by forgetting the O-structure
and only considering the Zp-structure).

It follows that the restriction of M̃r to the reduced special fiber X̃ 0 of X̃ is locally free over X̃ 0×A1

and hence, as in the proof of [Hellmann 2013, Proposition 7.7] we may locally lift a basis and find that M̃r

is locally on X̃ free over X̃ ×Y .
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It is only left to show that E(u)kµ coker8= 0 over X̃ . To do so we may localize and assume that X̃ is
affine. By abuse of language we denote it again by Spf A+ and write N = E(u)kµ coker8. If I denotes
the ideal of nilpotent elements in A+, we need to show that the multiplication I ⊗A+ N → N is the zero
map. Indeed, if I N = 0, then N does not change if we pull back the situation to the reduced ring A+/I.
However, for A/I Nakayama’s lemma implies that E(u)kµ coker8 vanishes if it vanishes after all possible
pullbacks Spf O ↪→ X̃ . We already remarked above that in the case A+ =O a finite flat Zp-algebra the
cokernel is killed by E(u)kµ .

We now show that I N = 0. For some k � 0 we know that I k
⊗A+ N → N is the zero map, as I is

nilpotent. Then N = N/I k and the multiplication map I k−1
⊗A+ N→ N factors over I k−1/I k

⊗A+ N→ N
and this is a map of finitely generated A+/I k-modules which vanishes after pulling back to a quotient
A+/I k

→ OL onto the ring of integers in some finite extension L of Qp. This can be seen as follows.
The map on this pullback is induced by the pullback of the multiplication to a quotient of A+ which is
finite flat over Zp, and where N is known to vanish by the above. It follows that I k−1

⊗A+ N → N is the
zero map and by descending induction we find that I acts trivially on N. �

Proof of Theorem 6.3. Fix some r > |π | and redefine

X int
=

x ∈ X

∣∣∣∣∣
M|X×B[r,r2]

⊗ κ(x) contains an A
[r,r2]
X ⊗ κ(x)◦ lattice Nx

such that 8 induces an isomorphism
ϕ∗(Nx ⊗A

[r,r2]
X

A
[r,r1]
X )−→∼ Nx ⊗A

[r,r2]
X

A
[r1,r2]
X

 .
By Theorem 6.4 this subset is open and we need to show that the restriction M|X int is étale. Then it
follows directly that X int coincides with the characterization in the theorem, as the notion of being étale
at points may be checked fpqc-locally by [Hellmann 2013, Proposition 6.14].

However Proposition 6.5 provides (locally on X int) an integral model M[0,r2] over X ×B[0,r2]. Now
we can glue M[0,r2] and ϕ∗M[0,r2] over X ×B[r2,r3] along the isomorphism 8. Hence we can extend
M[0,r2] to a model M[0,r3] over X ×B[0,r3]. Proceeding by induction we get a model M on X ×U and
[Hellmann 2013, Proposition 6.5] guarantees that M is locally in X free over A

[0,1)
X (it is assumed N is

free in [loc. cit.]. However, its proof only uses the fact that the restriction of N to an annulus X×B
[r,r1/p2

]

is free. This is always true after localizing on X; see [Lütkebohmert 1977]). Hence it is the desired
étale model. �

Corollary 6.6. Let µ be a cocharacter as in (2-5) with reflex field Eµ. Then there is an open sub-
stack H ad,int

ϕ,N ,�µ ⊂H ad
ϕ,N ,�µ such that f : X →H ad

ϕ,N ,�µ factors over H ad,int
ϕ,N ,�µ if and only if the family

(M,8M, NM
∇
) defined by f and M is étale.

Proof. Let M(D) be the universal (ϕ, N∇)-module over H ad
ϕ,N ,�µ. By Theorem 6.3 the set H ad,int

ϕ,N ,�µ :=

{x ∈H ad
ϕ,N ,�µ :M(D) is étale at x} is open and above it M(D) is étale. If f factors over H ad,int

ϕ,N ,�µ then
(M,8M, NM

∇
) is the pullback of the universal M(D) and hence is étale. Conversely if (M,8M, NM

∇
)

is étale, then it is étale at all points and f factors over H ad,int
ϕ,N ,�µ, because the notion of being étale at

points may be checked fpqc-locally by [Hellmann 2013, Proposition 6.14]. �
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Proposition 6.7. Let L be a finite extension of Eµ, then H ad,int
ϕ,N ,�µ(L)=H ad,wa

ϕ,N ,�µ(L) and hence H ad,int
ϕ,N ,�µ⊂

H ad,wa
ϕ,N ,�µ.

Proof. We show that being weakly admissible translates into being pure of slope zero over the Robba ring
(in the sense of [Kedlaya 2008]) under the equivalence of categories from Theorem 4.6. However, the
proof is the same as in [Kisin 2006, Theorem 1.3.8]. One easily verifies that the functor M preserves the
slope and that the slope filtration on the base change of M(D,8, N , q) to the Robba ring extends to all
of M(D,8, N , q). Compare [Kisin 2006, Proposition 1.3.7].

As in [Hellmann 2013, Theorem 7.6 (ii)] the second part is now a consequence of the fact that
H ad,wa
ϕ,N ,�µ ⊂H ad

ϕ,N ,�µ is the maximal open subspace whose rigid analytic points are exactly the weakly
admissible ones, see Lemma 5.10. �

Pappas and Rapoport [2009, 5.b] defined a period morphism from a stack of integral data to a stack of
filtered ϕ-modules as follows. Let d > 0 and let µ : Gm,Qp

→ T̃Qp
be a cocharacter as in (2-5). Pappas

and Rapoport [2009, 3.d] defined an fpqc-stack Ĉµ,K on the category NilOEµ
of schemes over the ring

of integers OEµ of Eµ on which p is locally nilpotent. If R is an OEµ-algebra, we set RW = R⊗Zp W
and denote by ϕ : RW ((u))→ RW ((u)) the ring homomorphism that is the identity on R, the p-Frobenius
on W and that maps u to u p. Now the R-valued points of the stack Ĉµ,K are given by a subset

Ĉµ,K (R)⊂ {M, 8 : ϕ∗M[1/u] −→∼ M[1/u]},

where M is an RW [[u]]= (R⊗Zp W )[[u]]-module that is fpqc-locally on Spec R free as an RW [[u]]-module
of rank d . This subset is cut out by a condition prescribing the relative position of 8(ϕ∗M) with respect
to M at the locus E(u)= 0 in terms of the cocharacter µ; see [Pappas and Rapoport 2009, 3.c,d] for the
precise definition.

If µ is minuscule they defined a period map

5(X ) : Ĉµ,K (X )→ Dad
ϕ,µ(X

rig);

see [Pappas and Rapoport 2009, (5.37)]. Note that Ĉµ,K is a substack of Ĉd,K of [loc. cit.] if and only
if µ is minuscule. Moreover, the period morphism of [loc. cit.] maps the closed substack Ĉµ,K to the
corresponding closed substack Dad

ϕ,µ of their target Dd,K .
If µ is not miniscule we cannot hope for a period map with target Dad

ϕ,µ. However, if we replace the
target by H ad

ϕ,�µ, then we can again define a period map as follows (note that Dad
ϕ,µ = H ad

ϕ,�µ if µ is
miniscule). Let R be a p-adically complete OEµ-algebra topologically of finite type over OEµ and let
(M,8) ∈ Ĉµ,K (Spf R). The construction of Section 4 associates to

(M,8M)= (M,8)⊗RW [[u]] B
[0,1)
Spa(R[1/p],R), (6-3)

a ϕ-module with Hodge–Pink lattice over Spa(R[1/p],R). Given a formal scheme X locally topologically
of finite type over OEµ , this yields a period functor

5(X ) : Ĉµ,K (X )→H ad
ϕ,�µ(X

rig), (6-4)
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where X rig denotes the generic fiber of the formal scheme X in the sense of rigid geometry (or in the sense
of adic spaces). We point out that we cannot define a period map mapping to Dad

ϕ,µ if µ is not miniscule,
as the family of vector bundles on the open unit disc defined by (6-3) is not necessarily associated to a
filtered ϕ-module: the monodromy operator NM

∇
is not necessarily holomorphic. When X = SpfOL for

a finite field extension L of Eµ, it was shown by Genestier and Lafforgue [2012, Théorème 0.6] that
5(SpfOL)⊗Zp Qp is fully faithful, and surjective onto H ad,wa

ϕ,�µ (L)=H ad,int
ϕ,�µ (L).

Remark 6.8. From the point of view of Galois representations it is not surprising that we cannot define a
general period morphism using filtered ϕ-modules. If R is finite over OEµ , then the points of Ĉµ,K (R)
correspond to GK∞-representations rather than to GK -representations. This also explains why the target of
the period map is H ad

ϕ,�µ instead of H ad
ϕ,N ,�µ: the GK∞-representation does not see the monodromy.

If we want to take the monodromy into account we have to consider a stack Ĉµ,N ,K whose X -valued
points are given by (M,8, N ) with (M,8) ∈ Ĉµ,K (X ) and N :M/uM→M/uM satisfying

N ◦8(n)= p ·8(n) ◦ N . (6-5)

Here (M(n),8(n))= (M,8)⊗W [[u]] A[0,1)(n) is the twist of (M,8) with the object A[0,1)(n) defined
before Definition 6.2 and n� 0 is some integer such that 8(n)(ϕ∗M)⊂M and 8 denotes the reduction
of 8 modulo u. Note that given µ we may choose an n like that for all (M,8)∈ Ĉµ,K (X ) and the map 8
(and hence the equation (6-5)) makes sense after this twist. Further the condition defined by (6-5) is
independent of the chosen n.

Remark 6.9. (i) Using (2-7) we observe that if µψ,d ≥ 0 for all ψ , and if L is a finite extension of Eµ,
a SpfOL -valued point of the stack Ĉµ,N ,K gives rise to an object of the category Modϕ,N/S in the sense
of [Kisin 2006, (1.3.12)]. We only use the twist in order to define the stack in the general case (i.e., if
8(ϕ∗M) is not contained in M). Kisin’s definition takes place in the generic fiber. However, we can
not use this as a good definition as our stack is defined for p-power torsion objects.

(ii) Note that we do not know much about the stack Ĉµ,N ,K and its definition is rather ad hoc. Especially
we doubt that it is flat over Spf Zp. This means that there is no reason to expect that we can reconstruct
Kisin’s semistable deformation rings [2008] by using a similar construction to that in [Pappas and Rapoport
2009, §4].

In this general case described above we obtain a similar period morphism

Ĉµ,N ,K (X )→H ad
ϕ,N ,�µ(X

rig). (6-6)

As in [Hellmann 2013, Theorem 7.8] the above allows us to determine the image of the period morphism.
Recall that a valued field (L , vL) over Qp is called of p-adic type if it is complete, topologically finitely
generated over Qp and if for all f1, . . . , fm ∈ L the closure of Qp[ f1 . . . , fm] inside L is a Tate algebra,
i.e., the quotient of some Qp〈T1, . . . , Tm′〉.
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Corollary 6.10. The substack H ad,int
ϕ,N ,�µ is the image of the period morphism (6-6) in the following sense:

(i) If X is a p-adic formal scheme and (M,8, N )∈ Ĉµ,N ,K (X), then5(X )(M,8, N )∈H ad,int
ϕ,N ,�µ(X

rig).

(ii) Let L be a field of p-adic type over Eµ and (D,8, N , q) ∈ Hϕ,N ,�µ(L). Then there exists
(M,8, N ) ∈ Ĉµ,N ,K (Spf L+) such that 5(Spf L+)(M,8, N )= (D,8, N , q) if and only if

M(D)=M⊗L+W [[u]] B
[0,1)
L .

is étale, if and only if Spa(L , L+)→H ad
ϕ,N ,�µ factors over H ad,int

ϕ,N ,�µ.

(iii) Let X ∈ Adlft
Eµ and let f : X →H ad

ϕ,N ,�µ be a morphism defined by (D,8, N , q). Then f factors
over H ad,int

ϕ,N ,�µ if and only if there exists a fpqc-covering (Ui → X)i∈I and formal models Ui of Ui

together with (Mi ,8i , N ) ∈ Ĉµ,N ,K (Ui ) such that 5(Ui )(Mi ,8i , N )= (D,8, N , q)|Ui .

Remark 6.11. If we consider the period morphism without monodromy, then we obtain a similar
characterization of the stack H ad,int

ϕ,�µ ⊂H ad
ϕ,�µ as the image of the period morphism (6-4).

7. Sheaves of period rings and the admissible locus

We recall the definition of some sheafified period rings from [Hellmann 2013]. In doing so we will
also correct mistakes in [loc. cit.] (in particular the proofs of Corollary 8.8, the definition of a family of
crystalline representations, and the proof of Proposition 8.24 in [Hellmann 2013]).

Let R = lim
←−

OCp/pOCp be the inverse limit with transition maps given by the p-th power. Given a
reduced p-adically complete Zp-algebra A+ topologically of finite type, we define

A+⊗̂Zp W (R)= lim
←− i

A+⊗̂Zp Wi (R),

where the completed tensor product on the right-hand side means completion with respect to the canonical
topology on the truncated Witt vectors Wi (R) and the discrete topology on A+/pi A+.

If X is a reduced adic space locally of finite type over Qp, then there are sheaves O+X ⊗̂W (R) and
OX ⊗̂W (R) whose sections over an affinoid open U = Spa(A, A+)⊂ X are given by

0(U,O+X ⊗̂W (R))= A+⊗̂Zp W (R),

0(U,OX ⊗̂W (R))=
(

A+⊗̂Zp W (R)
)[ 1

p

]
.

In the same fashion we can define sheaves of topological rings O+X ⊗̂W (Frac R) and OX ⊗̂W (Frac R).
Let A[0,1) = W [[u]] and let A denote the p-adic completion of W ((u)). Further let B = A[1/p]. We

fix an element π [ = (πn)n ∈ R with π0 = π . Depending on this element there are embeddings of
A[0,1), A and B into W (Frac R)[1/p] sending u to the Teichmüller representative [π [] ∈ W (R) of π [.
We write Ã for the ring of integers in the completion B̃ of the maximal unramified extension of B inside
W (Frac R)[1/p]. Finally we set Ã[0,1) = Ã ∩W (R) ⊂ W (Frac R). All these rings come along with a
Frobenius endomorphism ϕ which is induced by the canonical Frobenius on W (Frac R). Note that all
these rings have a canonical topology induced from the one on W (Frac R).
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Remark 7.1. We warn (and apologize to) the reader that the notations used in this paragraph do often
not agree with the notations that are nowadays standard in p-adic Hodge theory. However, we often refer
to [Hellmann 2013] and it seems to cause less confusion using the notations used there.

We define sheafified versions of these rings as follows; compare [Hellmann 2013, 8.1]. Let X be a
reduced adic space locally of finite type over Qp. We define the sheaves AX , Ã X , A

[0,1)
X and Ã

[0,1)
X

by specifying their sections on open affinoids U = Spa(A, A+)⊂ X : we define 0(U,AX ), 0(U, Ã X ),
0(U,A [0,1)X ) and 0(U, Ã [0,1)X ) to be the closures (with respect to the natural, i.e., (p, [π [])-adic, topology)
of A+⊗Zp A, A+⊗Zp Ã, A+⊗Zp A[0,1) and A+⊗Zp Ã[0,1) in 0(U,O+X ⊗̂W (Frac R)), respectively.

Further we consider the rational analogues BX , B̃X , B
[0,1)
X and B̃

[0,1)
X of these sheaves given by

inverting p in AX , Ã X , A
[0,1)
X and Ã

[0,1)
X , respectively.

Finally we recall the construction of the sheaf OX ⊗̂Bcris from [loc. cit., 8.1]. For a reduced adic
space X the map θ :W (R)→OCp given by [(x, x1/p, x1/p2

, . . . )] 7→ x extends to an O+X -linear map

θX :O+X ⊗̂W (R)→O+X ⊗̂OCp ,

where the completed tensor product denotes the p-adic completion. We define O+X ⊗̂Acris to be the p-adic
completion of the divided power envelope of O+X ⊗̂W (R) with respect to the kernel of θX . We claim that
O+X ⊗̂Acris equals the p-adic completion of the tensor product O+X ⊗Zp Acris. Namely, the kernel of θX

is generated by the kernel of θ . The latter in turn is generated by p− [p[], where p[ = (xn)n ∈ R with
x0 = p and [ · ] denotes the Teichmüller lift. Therefore, the divided power envelope is constructed by
adjoining (p− [p[])n/n! for all n ∈ N, and this proves our claim. Finally we set

OX ⊗̂B+cris =
(
O+X ⊗̂Acris

)
[1/p],

OX ⊗̂Bcris =
(
OX ⊗̂B+cris

)
[1/t],

OX ⊗̂B+st =
(
OX ⊗̂B+cris

)
[`u],

OX ⊗̂Bst =
(
OX ⊗̂Bcris

)
[`u].

Here t = log[(1, ε1, ε2, . . . )] ∈ Bcris is the period of the cyclotomic character (where (εi ) is a compatible
system of pi -th roots of unity) and `u is an indeterminate thought of as a formal logarithm of [π [].

Remark 7.2. The indeterminate `u considered here is the same indeterminate as in section 2.2.(b) and
we identify both indeterminates. That is, the inclusion B[0,1) ⊂ B+cris given by u 7→ [π [] will be extended
to B[0,1)[`u] ↪→ B+st by means of `u 7→ `u and similarly for the sheafified versions.

Lemma 7.3. Let Y = Spa(B, B+) be an reduced adic space that is finite over X = Spa(A, A+). Then we
have canonical isomorphisms

B̃Y ∼= B̃X ⊗OX OY , B
[0,1)
Y
∼=B

[0,1)
X ⊗OX OY ,

OY ⊗̂B+cris
∼= (OX ⊗̂B+cris)⊗OX OY , OY ⊗̂Bcris ∼= (OX ⊗̂Bcris)⊗OX OY ,

OY ⊗̂B+st
∼= (OX ⊗̂B+st )⊗OX OY , OY ⊗̂Bst ∼= (OX ⊗̂Bst)⊗OX OY .
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Proof. This is a direct consequence of the construction (and the fact that we do not have to complete
tensor products with finitely generated modules). �

We can consider these sheaves also on nonreduced spaces by locally embedding X into a reduced
space Y and restricting the corresponding sheaves from Y to X, i.e., by applying −⊗OY OX . Thanks to
the above lemma, the sheaves like OX ⊗̂B+cris then do not depend on the choice of an embedding. With
this definition the claim of Lemma 7.3 also holds true for nonreduced adic spaces.

Remark 7.4. For nonreduced spaces we make this slightly involved definition for the following reason:
the construction of rings like Acris involves a p-adic completion. But the rings of integral elements A+

for an adic space Spa(A, A+) (i.e., the power bounded elements in A) are not p-adically complete: their
p-adic completion would kill the nilpotent elements!

On OX ⊗̂Bcris there is a canonical Frobenius ϕ induced by the Frobenius on O+X ⊗̂W (R). This endo-
morphism extends to a morphism

ϕ :OX ⊗̂Bst→OX ⊗̂Bst,

where ϕ(`u)= p`u . Further N = d/d`u defines an endomorphism of OX ⊗̂Bst which satisfies Nϕ= pϕN.
Finally the continuous GK -action on O+X ⊗̂W (R) extends to OX ⊗̂Bcris and we further extend this action

to OX ⊗̂Bst by means of γ · `u = `u + c(γ )t , where c : GK → Zp is defined by γ (πn)= πn · (εn)
c(γ ) for

all n ≥ 0.

Lemma 7.5. Let Y = Spa(A, A+) be an adic space locally of finite type over Qp.

(a) Let g ∈ 0(Y,OY ⊗̂B+cris). Then g ∈ 0(Y,OY ) ⊂ 0(Y,OY ⊗̂B+cris) if and only if for every quotient
A � A′ onto a finite-dimensional Qp-algebra A′ the element

g⊗ 1 ∈ 0(Y,OY ⊗̂B+cris)⊗A A′ ∼= A′⊗ B+cris

actually lies in A′ ⊂ A′⊗Qp B+cris.

(b) Let g ∈ 0(Y, B̃Y ). Then g ∈ 0(Y,OY )⊂ 0(Y, B̃Y ) if and only if for every quotient A � A′ onto a
finite-dimensional Qp-algebra A′ the element

g⊗ 1 ∈ 0(Spa(A′, A′+), B̃Y ⊗A A′)∼= A′⊗Qp B̃

actually lies in A′ ⊂ A′⊗Qp B̃.

(c) Assume that A is reduced. Let g ∈ 0(Y, Ã [0,1)Y ). Then g ∈ 0(Y,A [0,1)Y )⊂ 0(Y, Ã [0,1)Y ) if and only
if for every rigid analytic point y ∈ Y the element g(y) := g⊗A+ κ(y)+ ∈ κ(y)+⊗̂Zp Ã[0,1) actually
lies in κ(y)+⊗̂Zp A[0,1) ⊂ κ(y)+⊗̂Zp Ã[0,1).

Note that the identifications

0(Spa(A′, A′+), (B̃Y )⊗A A′)∼= A′⊗Qp B̃ and 0(Y,OY ⊗̂B+cris)⊗A A′ ∼= A′⊗ B+cris

used in the formulation of the lemma are a direct consequence of Lemma 7.3 and the remark following it.
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Proof. (a) Clearly the condition is necessary. We now show that it is sufficient. Let us choose a closed
immersion Y = Spa(A, A+) ↪→ X = Spa(C,C+) with C a reduced Tate ring topologically of finite type
over Qp. Then C � A and our definitions imply that A⊗̂B+cris is the quotient of C⊗̂B+cris by the kernel of
C→ A. We choose elements bi ∈ Acris with b0 = 1 whose images b̄i in Acris/p Acris form an Fp-basis of
Acris/p Acris. Recall that we remarked after the definition of 0(X,OX ⊗̂Acris) that it equals the p-adic
completion C+⊗̂Zp Acris of C+⊗Zp Acris. We start with the following:

Claim. For every element c ∈ C+⊗̂Zp Acris there are uniquely determined elements ai ∈ C+ for i ∈ I such
that for every n ∈ N the set {i ∈ I : ai /∈ pnC+} is finite and c =

∑
i∈I ai ⊗ bi in C+⊗̂Zp Acris.

To establish the claim one proves by induction that for every n there are elements ai,n ∈ C+ for all i ∈ I,
only finitely many of which are nonzero, such that c−

∑
i∈I ai,n ⊗ bi ∈ pnC+⊗̂Zp Acris and such that

ai,n − ai,n−1 ∈ pn−1C+. Namely, for n = 0 one can take ai,0 = 0 for all i ∈ I. In the induction step
from n to n + 1 one considers an element c′ ∈ C+⊗̂Zp Acris with c−

∑
i∈I ai,n ⊗ bi = pnc′. Then the

image of c′ in C+⊗̂Zp Acris/(p)= C+/pC+⊗Fp Acris/p Acris can be written as
∑

i αi ⊗ b̄i with uniquely
determined elements αi ∈C+/pC+ which are zero for all but finitely many i . After choosing lifts αi ∈C+,
the elements ai,n+1 := ai,n + pnαi satisfy the assertion. Now taking ai as the limit of ai,n for n→∞
establishes the existence of the ai ∈ C+.

To prove the uniqueness, we must show that
∑

i∈I ai ⊗ bi = 0 implies ai = 0 for all i . It suffices
to show that ai ∈ pnC+ for all n and i . This follows by induction on n, trivially starting with n = 0.
If it holds for some n, we can write ai = pna′i for a′i ∈ C+. Then pn

·
∑

i a′i ⊗ bi =
∑

i ai ⊗ bi = 0,
and hence

∑
i a′i ⊗ bi = 0, because C+⊗̂Zp Acris has no p-torsion by [Bourbaki 1961, Chapitre III, §5,

no. 2, Théorème 1(v)] as C+ and Acris are flat over Zp. Considering the images a′i of a′i in C+/pC+, the
equation

∑
i a′i⊗ b̄i = 0 in C+⊗̂Zp Acris/(p)=C+/pC+⊗Fp Acris/p Acris implies that a′i = 0 in C+/pC+,

whence a′i ∈ pC+ and ai ∈ pn+1C+ as desired. This establishes our claim.
Furthermore we note that this claim (and in particular the uniqueness part) also applies if we replace C+

by a finite free Zp-algebra (that is not necessarily reduced).

We lift g to an element g̃ ∈ C⊗̂Qp Acris[1/p]. After multiplying with a power of p we can assume
that g̃ ∈ C+⊗̂Zp Acris. By the claim we obtain uniquely determined elements ai ∈ C+ for all i ∈ I with
g̃ =

∑
i ai ⊗ bi in C+⊗̂Zp Acris. We show that ai ∈ ker(C → A) for all i 6= 0 which obviously implies

g ∈ 0(Y,O+Y )= A+.

As C is noetherian the latter may be checked at completions Ĉm of C with respect to maximal ideals m
of C . If the point defined by m is not in Spa(A, A+)⊂ Spa(C,C+) this claim is obvious. Otherwise we
consider the surjections C � A � A/mn A = A′ onto the finite-dimensional Qp-algebra A′, and let A′+

denote the image of C+ in A′. Then A′+ is a finite Zp-algebra and we write ai ∈ A′+ for the image of ai .
By what we noted above the expansion g =

∑
ai ⊗ bi ∈ A′+⊗̂Zp Acris = A′+⊗Zp Acris is unique and by

assumption lies in A′+ ⊂ A′+⊗Zp Acris. It follows that ai = 0 for all i 6= 0. We have shown that ai for
i 6= 0 vanishes in A′ = A/mn for all n and the ai for i 6= 0 vanish in Am.
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(b), (c) We denote the residue field of W by k and let k ′ be either k for proving (c) or Fp for proving
(b). We view the residue field k((u))sep

= Ã/pÃ of Ã as a k ′((u))-vector space. We denote the integral
closure of k ′[[u]] in k((u))sep by k[[u]]sep. It is a free k ′[[u]]-module: we can write k((u))sep as union of finite
extensions Ei of k ′((u)), where Ei ⊂ Ei+1, then k[[u]]sep is the increasing union of the rings of integers OEi

which are free, and OEi is a direct summand of OEi+1 . Choosing the basis successively yields a basis
for k[[u]]sep.

We choose a k ′[[u]]-basis (gi )i∈I of k[[u]]sep with g0 = 1 and we lift the gi to elements gi ∈ Ã[0,1) with
g0 = 1.

We first prove (c) and use k ′ = k. The image of g in

0(Y, Ã [0,1)Y )/(p)= (A+/p A+⊗Fp k)⊗k k[[u]]sep

can be written as
∑

i
∑
∞

j=0 αi, j,0⊗u j gi with uniquely determined elements αi, j,0 ∈ A+/p A+⊗Fp k which
are nonzero only for finitely many i but possibly for all j ≥ 0. After choosing lifts αi, j,0 ∈ A+⊗Zp W, the
image of (1/p) ·(g−

∑
i, j αi, j,0⊗u j gi ) in 0(Y, Ã [0,1)Y )/(p) can likewise be written as

∑
i, j αi, j,1⊗u j gi

with uniquely determined elements αi, j,1 ∈ A+/p A+ ⊗Fp k. Note for this that 0(Y, Ã [0,1)Y ) has no
p-torsion by [Bourbaki 1961, Chapitre III, §5, no. 2, Théorème 1(v)], because Ã[0,1) and A+ are flat
over Zp. Continuing in this way, we obtain elements αi, j :=

∑
∞

k=0 αi, j,k pk
∈ A+ ⊗Zp W such that

for every n ≥ 1 the equality g =
∑

i, j αi, j ⊗ u j gi holds in 0(Y, Ã [0,1)Y )/(pn), although the sum does in
general not converge in 0(Y, Ã [0,1)Y ).

The elements αi, j are uniquely determined by g because the equality g =
∑

i, j αi, j ⊗ u j gi in
0(Y, Ã [0,1)Y )/(pn) shows that the images of αi, j in A+⊗Zp W/(pn) are uniquely determined for every n.
The uniqueness of the αi, j then follows from the fact that A+⊗Zp W is p-adically separated. We conclude
that the element g lies in 0(Y,A [0,1)Y ) if and only if αi, j = 0 whenever i 6= 0 or j < 0.

Now g⊗ 1 ∈ κ(y)+⊗Zp A[0,1) implies that αi, j ⊗ 1= 0 in κ(y)+⊗Zp W whenever i 6= 0 or j < 0. If
this holds for every rigid analytic point y, then αi, j = 0 whenever i 6= 0 or j < 0, because A+⊗Zp W is
reduced. This implies g ∈ 0(Y,A [0,1)Y ).

(b) Again the condition is necessary and we show that it is sufficient. Let us choose a closed immersion
Y =Spa(A, A+) ↪→ X=Spa(C,C+)with C a reduced Tate ring topologically of finite type over Qp. Then
again our definitions imply that 0(Y, B̃Y ) is the quotient of 0(X, B̃X ) by the kernel of the epimorphism
C � A. We lift g to an element g̃ ∈ C⊗̂Qp B̃. After multiplying with a power of p we can assume that
g̃ ∈ C+⊗̂Zp Ã, where the complete tensor product denotes completion with respect to the (p, u)-adic
topology.

We use the elements gi ∈ Ã[0,1) ⊂ Ã with g0 = 1 from the proof of (c) above (with k ′ = Fp), whose
residues gi ∈ k[[u]]sep

⊂ k((u))sep modulo p form an Fp[[u]]-basis of k[[u]]sep, and hence also an Fp((u))-
basis of k((u))sep. Then the image of g̃ in C+⊗̂Zp Ã/(p) = C+/pC+ ⊗Fp k[[u]]sep can be written as∑

i, j αi, j,0⊗u j gi with uniquely determined elements αi, j,0 ∈C+/pC+ which are zero for all but finitely
many i and for j � 0. After choosing lifts αi, j,0 ∈ C+, the image of (1/p) · (g −

∑
i, j αi, j,0 ⊗ u j gi )
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in C+⊗̂Zp Ã/(p) can likewise be written as
∑

i, j αi, j,1 ⊗ u j gi with uniquely determined elements
αi, j,1 ∈ C+/pC+. Note for this that C+⊗̂Zp Ã has no p-torsion by [Bourbaki 1961, Chapitre III,
§5, no. 2, Théorème 1(v)], because Ã and C+ are flat over Zp. Continuing in this way, we obtain
elements αi, j :=

∑
∞

k=0 αi, j,k pk
∈ C+ such that for every n ≥ 1 the equality g =

∑
i, j αi, j ⊗ u j gi holds

in C+⊗̂Zp Ã/(pn), although the sum does in general not converge in C+⊗̂Zp Ã. The elements αi, j are
uniquely determined by g by reasoning like in (c) above. We conclude that the element g lies in C+ if
and only if αi, j = 0 whenever (i, j) 6= (0, 0).

As C is noetherian the latter may be checked at completions Ĉm of C with respect to maximal ideals m
of C . If the point defined by m is not in Spa(A, A+)⊂ Spa(C,C+) this claim is obvious. Otherwise we
consider the surjections C � A � A/mn A = A′ onto the finite-dimensional Qp-algebra A′. Then our
assumptions imply that the image of ai, j in A′ vanishes for (i, j) 6= (0, 0) by a similar reasoning as above
for A′+ in place of C+. We have shown that the image of ai, j in Ĉm lie in the kernel of Ĉm→ Âm for all
maximal ideals of C and all (i, j) 6= (0, 0). The claim follows from this. �

Remark 7.6. Assume that in the situation of Lemma 7.5 the ring A is reduced. We remark that it is then
enough to check the conditions for surjections A � κ(y) for all rigid analytic points y ∈ Y. We only need
to argue (in the situation of the proof above) that g(y) ∈ κ(y)+ ⊂ κ(y)+⊗̂Zp B implies that ai (y)= 0 in
κ(y)+ for all i 6= 0 for B = Acris, respectively B = Ã. Here we write g(y)= 1⊗ g ∈ κ(y)+⊗̂Zp B and so
on. If this holds for every rigid analytic point y ∈ Y, then ai = 0 for all i 6= 0, because Y is reduced. This
implies g ∈ 0(Y,O+Y ).

Remark 7.7. It is also possible to define Z-filtrations Fili (OX ⊗̂Bcris) and Fili (OX ⊗̂Bst) on OX ⊗̂Bcris and
OX ⊗̂Bst, respectively. The most natural procedure seems to be the following: given i ∈Z and an adic space
X = Spa(A, A+), a section f ∈0(X,OX ⊗̂Bcris) lies in 0(X,Fili (OX ⊗̂Bcris)), if f ⊗1∈ Fili Bcris⊗Qp B
for all surjections A � B of A onto finite-dimensional Qp-algebras B. Here Fili Bcris is the usual filtration
on Bcris induced by restricting the t-adic filtration on Fontaine’s ring BdR to Bcris. This construction
obviously globalizes and defines a filtration of the sheaf OX ⊗̂Bcris. A similar construction also applies to
the filtration on OX ⊗̂Bst. However some issues with this filtration seem to be a bit involved, in particular
dealing with families. One main reason is, that OX ⊗̂B+cris is much better behaved than OX ⊗̂Bcris, but
Fil0 Bcris does not give back B+cris. Hence we will not consider this filtration on OX ⊗̂Bcris explicitly.

Proposition 7.8. Let X be an adic space locally of finite type over Qp. The canonical inclusions induce
equalities

B̃8=id
X =OX ,

(
OX ⊗̂B+cris

)8=id
=OX ,

(
OX ⊗̂B+st

)8=id,N=0
=OX .

Moreover one has

(OX ⊗̂B+cris)
GK = (OX ⊗̂B+st )

GK =OX ⊗Qp K0.

Proof. It is clear that in all cases OX injects onto the sheaves of invariants, and that OX ⊗Qp K0 injects
into (OX ⊗̂Bcris)

GK . Let us prove the converse. Let U = Spa(A, A+) ⊂ X be an affinoid open and
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let f ∈ 0(U, B̃X ) be a section that is invariant under 8. Then for each quotient A � A′ with A′ a
finite-dimensional Qp-algebra the element f ⊗ 1 ∈ 0(U, B̃X )⊗A A′ = A′⊗Qp B̃ is invariant under 8
and hence f ⊗ 1 ∈ A′ ⊂ A′⊗Qp B̃. Now Lemma 7.5 implies f ∈ 0(U,OX ). The other claims are proven
using the same argument. �

Definition 7.9. Let G denote a compact topological group. A family of G -representations on an adic
space X consists of a vector bundle E on X together with an OX -linear action of the group G on E which
is continuous for the topologies on the sections 0(−, E). This definition extends to the category of stacks
on Adlft

Qp
.

Definition 7.10. Let X be an adic space locally of finite type over Qp.

(i) A ϕ-module over AX is an AX -module M which is locally on X free of finite rank over AX together
with an isomorphism 8 : ϕ∗M −→∼ M.

(ii) A ϕ-module over BX is an BX -module M which is locally on X free of finite rank over BX together
with an isomorphism 8 : ϕ∗M −→∼ M.

(iii) A ϕ-module M over BX is called étale if it is locally on X of the form N ⊗AX BX for a ϕ-module N
over AX .

The following theorem summarizes results of [Hellmann 2013] which are needed in the sequel.

Theorem 7.11. Let X be a reduced adic space locally of finite type over Qp and let (N ,8) be an étale
ϕ-module of rank d over BX .

(i) The set
X adm

= {x ∈ X | dimκ(x)((N ⊗BX B̃X )⊗ κ(x))8=id
= d} ⊂ X

is an open subspace and
V = (N ⊗ B̃X )

8=id

is a family of GK∞-representations on X adm.

(ii) If f : Y → X is a morphism in Adlft and if (NY ,8Y ) denotes the pullback of (N ,8) along f , then
Y adm

= f −1(X adm) and
(NY ⊗ B̃Y )

8=id
= ( f |Y adm)∗V

as families of GK∞-representations on Y adm.

(iii) If (M,8) is a ϕ-module of finite height over A
[0,1)
X as in Definition 6.1 and (N ,8)=(M,8)⊗

A
[0,1)
X

BX ,
then

U = X adm
= {x ∈ X | rkκ(x)+ Hom

A
[0,1)
X ⊗κ(x),8(M⊗ κ(x), Ã

[0,1)
X ⊗ κ(x))= d}

and
Hom

A
[0,1)

U ,8
(M|U , Ã

[0,1)
U )⊗Zp Qp =HomBU ,8(M|U ⊗A

[0,1)
U

BU , B̃U )

as families of GK∞-representations on U = X adm.
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Proof. This is a summary of [Hellmann 2013, Propositions 8.20, 8.22, 8.23 and Corollary 8.21]. �

Given a cocharacter µ as in (2-5), the stack Hϕ,N ,�µ is the stack quotient of PK0,d ×Spec Qp QK ,d,µ

by the action of the reductive group (ResK0/Qp GLd,K0)Eµ . Let us denote by H red
ϕ,N ,�µ the quotient of the

reduced subscheme underlying PK0,d ×Spec Qp QK ,d,�µ by the induced action of (ResK0/Qp GLd,K0)Eµ .
Recall that PK0,d ×Spec Qp QK ,d,µ is reduced, hence this modification will not be necessary if we restrict
to the case where the Hodge type is fixed by µ.

Corollary 7.12. There is an open substack H red,ad,adm
ϕ,N ,�µ ⊂H red,ad,int

ϕ,N ,�µ and a family E of GK∞-representations
on H red,ad,adm

ϕ,N ,�µ such that
E = (M(D,8, N , q)⊗

B
[0,1)
X

B̃X )
8= id,

where (D,8, N , q) denotes the restriction of the universal family on H red,ad
ϕ,N ,�µ. This subspace is maximal

in the following sense: If X is a reduced adic space and if D′ is a (ϕ, N )-module with Hodge–Pink
lattice over X with Hodge polygon bounded by µ, then the induced map f : X→H ad

ϕ,N ,�µ factors over
H red,ad,adm
ϕ,N ,�µ if and only if X = X adm with respect to the family

M(D′)⊗
B
[0,1)
X

B̃.

In this case there is a canonical isomorphism of GK∞-representations

f ∗E = (M(D′)⊗
B
[0,1)
X

B̃)8= id.

If L is a finite extension of Eµ, then H red,ad,adm
ϕ,N ,�µ (L)=H red,ad,int

ϕ,N ,�µ (L)

Proof. Let us write X�µ = (PK0,d×Spec Qp QK ,d,�µ)
red,ad for the moment. Further we denote the pullback

of the universal family of vector bundles on the open unit disc to X�µ by (M,8, NM
∇
)=M(D,8, N , q).

Locally on X int
�µ there exists a ϕ-module of finite height M inside (M,8), at least after a Tate twist. It

follows that M⊗
A
[0,1)
X

AX is étale and we may apply the above theorem. Then X adm
�µ ⊂ X�µ is invariant

under the action of (ResK0/Qp GLd,K0)Eµ and hence its quotient by this group is an open substack
H red,ad,adm
ϕ,N ,�µ ⊂H red,ad

ϕ,N ,�µ. Further

(M⊗
B
[0,1)
Xadm
µ

B̃X adm
µ
)8= id

is a (ResK0/Qp GLd,K0)Eµ-equivariant vector bundle with GK∞-action on X adm
�µ . Hence it defines a family

of GK∞-representations on H red,ad,adm
ϕ,N ,�µ .

The second statement is local on X and hence, after locally choosing a basis of D, we can locally lift
the morphism f : X→H red,ad

ϕ,N ,�µ to a morphism f ′ : X→ X�µ such that the pullback of (D,8, N , q) on
X�µ along f ′ is isomorphic to D′. Now the claim follows from Theorem 7.11 (ii). �

8. The universal semistable representation

In this section we want to construct a semistable GK -representation out of the GK∞-representation on
H red,ad,adm
ϕ,N ,�µ from Corollary 7.12. This will be possible only on a part of H red,ad,adm

ϕ,N ,�µ . First of all we need
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to restrict to the open subspace where the Hodge polygon is constant. This can be seen as follows. Let E
be a family of GK -representations on an adic space X. It follows from [Berger and Colmez 2008, §4.1]
that the (generalized) Hodge–Tate weights vary continuously on X. Namely, they are the eigenvalues of
Sen’s operator 2Sen constructed in [Berger and Colmez 2008, before Remark 4.1.3]. The characteristic
polynomial of2Sen has coefficients in OX⊗Qp K. However, with any reasonable definition of a semistable
family E the Hodge–Tate weights of E ⊗ κ(x) should be integers for all x ∈ X and hence the Hodge–Tate
weights and the Hodge polygon are locally constant on X.

Secondly, Kisin [2006, Theorem 0.1 and Corollary 1.3.15] showed that the universal étale (ϕ, N∇)-
module M on H ad,int

ϕ,N ,�µ from Corollary 6.6 can come from a semistable GK -representation only if
the connection ∇ has logarithmic singularities, which is equivalent to NM

∇
being holomorphic; see

Remark 4.2 (2). Therefore we have to restrict further to the closed subspace H ∇

ϕ,N ,µ∩H ad,adm
ϕ,N ,µ of H ad,adm

ϕ,N ,µ

which is isomorphic to Dad,adm
ϕ,N ,µ . Here Dad,adm

ϕ,N ,µ ⊂ Dad
ϕ,N ,µ is the admissible locus with respect to the family

defined in Remark 4.10.

Lemma 8.1. Let E be a family of GK∞-representations over a reduced adic space X locally of finite type
over Qp. Let M1 and M2 be two ϕ-modules of finite height over A

[0,1)
X such that ϕ and GK∞-equivariant

isomorphisms
Mi ⊗A

[0,1)
X

Ã
[0,1)
X [1/p] ∼= E ⊗OX Ã

[0,1)
X [1/p] (8-1)

exist for i = 1, 2. Then M1[1/p] = M2[1/p] as A
[0,1)
X [1/p]-submodules of E ⊗OX Ã

[0,1)
X [1/p]. In

particular they are isomorphic as ϕ-modules.

Proof. The case X = Spa Qp was proven by Kisin [2006, Proposition 2.1.12].
If X = Spa(A, A+) for a finite free Zp-algebra A+ and A = A+[1/p], then this implies that M1[1/p]

and M2[1/p] agree as A
[0,1)

Spa(Qp,Zp)
[1/p]-submodules (even without the A-action).

For general X we may work locally and assume that Mi ∼= (A
[0,1)
X )n . The isomorphisms (8-1) yield a ma-

trix M∈GLn(0(X, Ã
[0,1)
X [1/p])) and we must show that M ∈GLn(0(X,A

[0,1)
X [1/p])). It suffices to show

that every entry g of M and M−1 lies in 0(X,A [0,1)X [1/p]). Multiplying the entry g by a power of p we
can assume that it lies in 0(X, Ã [0,1)X ). By Lemma 7.5 (c) we must check that g(x) ∈ κ(x)+⊗̂Zp A[0,1) for
every rigid analytic point x ∈ X. Since κ(x) is a finite-dimensional Qp-algebra, this was proved above. �

Definition 8.2. Let E be a family of GK -representations of rank d on an adic space X locally of finite
type over Qp. Denote by X the reduced subspace underlying X and by E the restriction of E to X.

(i) The family E is said to be crystalline with negative Hodge Tate weights if fpqc-locally on X there is a
ϕ-module M of finite height over A

[0,1)
X

and a ϕ and GK∞-equivariant isomorphism

M⊗
A
[0,1)
X

Ã
[0,1)
X

[ 1
p

]
∼= E ⊗OX

Ã
[0,1)
X

[ 1
p

]
(8-2)

and a (ϕ, N∇)-module M over B
[0,1)
X deforming M⊗

A
[0,1)
X

B
[0,1)
X

as a ϕ-module such that (8-2) extends
to a (GK , ϕ) equivariant isomorphism

M⊗
B
[0,1)
X

B+cris⊗̂OX ∼= E ⊗OX B+cris⊗̂OX .
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(ii) The family E is said to be semistable with negative Hodge Tate weights if fpqc-locally on X there is a
ϕ-module M of finite height over A

[0,1)
X

and a ϕ and GK∞-equivariant isomorphism

M⊗
A
[0,1)
X

Ã
[0,1)
X

[ 1
p

]
∼= E ⊗OX

Ã
[0,1)
X

[ 1
p

]
(8-3)

and a (ϕ, N∇)-module M over B
[0,1)
X deforming M⊗

A
[0,1)
X

B
[0,1)
X

as a ϕ-module such that (8-3) extends
to a (GK , ϕ, N ) equivariant isomorphism

M⊗
B
[0,1)
X

B+st ⊗̂OX ∼= E ⊗OX B+st ⊗̂OX . (8-4)

(iii) We say that E is crystalline (resp. semistable) if some twist of E with a power of the cyclotomic
character is crystalline with negative Hodge–Tate weights (resp. semistable with negative Hodge–Tate
weights).

Remark 8.3. The definition of being crystalline or semistable is slightly involved. We did not define it
in the usual way using only period ring B+cris⊗̂OX , as our method requires that we have a comparison
isomorphism for the integral models on the open unit disc as in (8-2). Working only with B+cris⊗̂OX it is
not clear to us whether this is automatically true.

Lemma 8.4. Let X be an adic space locally of finite type over Qp and let E be a family of crystalline
(resp. semistable) GK -representations with negative Hodge–Tate weights on X. Assume that the objects
M and M in the above definition exist globally on X. Then the following holds true:

(i) If X = Spa(A, A+) for some finite-dimensional Qp-algebra A, then 0(X, E) is crystalline (resp.
semistable) as a GK -representation on a finite dimensional Qp-vector space and D(M)= Dcris(0(X, E))
(resp. = Dst(0(X, E))) as filtered ϕ-modules (resp. as filtered (ϕ, N )-modules), compatible with the
canonical A-action on both sides.

(ii) If Y→ X is any morphism of adic spaces locally of finite type, and if EY denotes the GK -representation
on Y obtained by base changing E , then EY is crystalline (resp. semistable).

(iii) Assume that E is crystalline (resp. semistable) with negative Hodge–Tate weights. The family M
is uniquely determined as a (ϕ, N∇)-module and in fact as a submodule of E ⊗OX B+cris⊗̂OX (resp. of
E ⊗OX B+st ⊗̂OX )

Proof. (i) This follows from (the covariant formulation of) [Kisin 2006, Proposition 2.1.5], the proof of
which implies that the morphisms in [loc. cit., (2.1.6)] are isomorphisms. The fact that the morphism is
compatible with the A-action follows from functoriality.

(ii) This is obvious.

(iii) We only prove the crystalline case. The semi-stable case is proved along the same lines. Assume
that X = Spa(A, A+) is affinoid and that there are two B

[0,1)
X -modules M1 and M2 as in the definition.

We set Di = D(Mi ) and consider the morphisms

Di → Di ⊗OX B+cris⊗̂OX →Mi ⊗B
[0,1)
X

B+cris⊗̂OX = E ⊗OX B+cris⊗̂OX .
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As these morphisms are compatible with the GK -action (which is of course trivial on Di ) we obtain
a morphism

αi : Di → (E ⊗OX B+cris⊗̂OX )
GK .

Now both sides are locally on X free as OX ⊗Qp K0-modules. To see this on the right-hand side
use the equality

Mi ⊗B
[0,1)
X

B+cris⊗̂OX = E ⊗OX B+cris⊗̂OX

and apply Proposition 7.8. Now the construction of this map is functorial and for each quotient A � A′

onto a finite-dimensional Qp-algebra A′ the induced map

αi,A′ : Di ⊗A A′→ (E ⊗OX B+cris⊗̂OX )
GK ⊗A A′ = ((E ⊗A A′)⊗OX B+cris⊗̂OX )

GK .

is an isomorphism. It follows that α is an isomorphism for i = 1, 2 and hence D = D1 = D2 is uniquely
determined as a ϕ-submodule of E⊗OX B+cris⊗̂OX . In particular we have shown that Mi [1/λ] is uniquely
determined as a submodule of E ⊗OX Bcris⊗̂OX .

It remains to prove that the two filtrations on D = D1 = D2 are the same. Assume this is not the case.
Then there exists a surjection A � A′ onto a finite-dimensional Qp-algebra A′ such that the filtrations
on D⊗A A′ induced by D1 and D2 do not agree. Replacing A by A′ we may assume that A′ is a finite
dimensional Qp-algebra. However, in this case (i) implies that M1 =M2 (as submodules of E⊗Qp B+cris)
and hence the filtrations on D1 and D2 coincide. �

Remark 8.5. Let E be a crystalline representation with negative Hodge–Tate weights. Then fpqc-locally
on X we have associated a (ϕ, N∇)-module M over B

[0,1)
X as in Definition 8.2. By the uniqueness result

established in the previous lemma and fpqc descent this (ϕ, N∇)-module in fact descends to X. The same
remark applies to semistable representations as well.

Using this remark we can make the following definition:

Definition 8.6. Let X be an adic space locally of finite type over Qp and let E be a family of GK -
representations on X.

(i) Assume that E is crystalline with negative Hodge–Tate weights and let M as in Definition 8.2. Then
define Dcris(E)= D(M).

(ii) Assume that E is semistable with negative Hodge–Tate weights and let M as in Definition 8.2. Then
define Dst(E)= D(M).

(iii) Assume that E is crystalline and that its twist E(i) is crystalline with negative Hodge–Tate weights
for some i ∈ Z. Then define Dcris(E)= Dcris(E(i))(−i).

(iv) Assume that E is semistable and that its twist E(i) is semistable with negative Hodge–Tate weights
for some i ∈ Z. Then define Dst(E)= Dst(E(i))(−i).

Remark 8.7. Obviously the last two parts of the definition are independent of the choice of i such that
E(i) has negative Hodge–Tate weights.



The universal family of semistable p-adic Galois representations 1107

The above defines a functor from the category of crystalline representations on X to the category of
filtered ϕ-modules over X. Moreover it is a direct consequence of the definition that for every morphism
f : Y → X and any family of crystalline GK -representations on X we have

Dcris( f ∗E)= f ∗Dcris(E).

The same remark applies to the semistable case as well.

Definition 8.8. Let µ be a cocharacter as in (2-5), let Eµ be its reflex field, and let X be an adic space
locally of finite type over Eµ. We say that a crystalline (resp. semistable) GK -representation E over X has
constant Hodge polygon equal to µ if the K -filtered ϕ-module Dcris(E) (resp. Dst(E)) over X has this
property.

It is obvious from the definition that Dst defines a functor from the category of semistable representations
with constant Hodge polygon µ over an adic space X to the category of K -filtered (ϕ, N )-modules over
X with constant Hodge polygon µ and similarly for crystalline representations.

Remark 8.9. Let E be a crystalline (resp. semistable) representation over X with negative Hodge–Tate
weights and let M be as in Definition 8.2. We write D = Dcris(E)= D(M). Then

D⊗OX⊗Qp K0 B
[0,1)
X [1/λ] ∼=M⊗

B
[0,1)
X

B
[0,1)
X [1/λ]

and hence, as λ is invertible in Bcris, we obtain a (GK , ϕ)-equivariant isomorphism

Dcris(E)⊗OX⊗Qp K0 OX ⊗̂Bcris ∼= E ⊗OX OX ⊗̂Bcris.

Similarly, if E is semistable, we obtain a (GK , ϕ, N )-equivariant isomorphism

Dst(E)⊗OX⊗Qp K0 OX ⊗̂Bst ∼= E ⊗OX OX ⊗̂Bst.

Using twists by the cyclotomic character, we find that the same holds true also for crystalline (resp.
semistable) representations with arbitrary Hodge–Tate weights.

Moreover, if we had defined (the correct) filtration on OX ⊗̂Bst these morphisms would also respect
filtrations. However, as we will not explicitly make use of this, we did not carefully define the filtrations.

Lemma 8.10. Let E be a family of GK -representations on an adic space X locally of finite type over Qp.
Then E is crystalline if and only it is semistable and the monodromy N on Dst(E) vanishes. In this case
we have Dst(E)= Dcris(E) as subobjects of E ⊗OX (OX ⊗̂Bst).

Proof. We may assume that E has negative Hodge–Tate weights and that there exists some M as in
Definition 8.2.

Assume that E is semistable with vanishing monodromy. As the isomorphism (8-4) is equivariant for
the action of N the claim follows after taking N = 0 on both sides.

Conversely, let us assume that E is crystalline. Then obviously E is semistable and using the definition
of Dst we see immediately that N = 0 on Dst(E). �
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Remark 8.11. In [Kisin 2008], techniques from [Kisin 2006] are used to construct what are called
(potentially) semistable deformation rings. Fix a continuous representation ρ : GK → GLn(F) with F a
finite extension of Fp as well as a set of labeled Hodge–Tate weights

k= {ki,τ , i = 1, . . . , n, τ : K ↪→Qp}.

Given these data, Kisin constructs a quotient Rk
ρ of the universal framed deformation ring1 Rρ of ρ such

that a point

Spec L→ Spec Rρ

with L a finite extension of Qp, factors over Spec Rk
ρ if and only if the corresponding Galois representation

is semistable2 with labeled Hodge–Tate weights k. As the defining condition for Rk
ρ is only formulated

for points, the ring Rk
ρ is reduced by definition (once it is known to exist). Kisin moreover shows that for

every finite-dimensional Qp-algebra A a morphism

Spec A→ Spec Rρ

factors over Spec Rk
ρ if and only if the corresponding representation ρ : GK → GLn(A) is semistable.

Our construction differs from Kisin’s strategy in the following way: Kisin starts with a family of Galois
representations on integral level and cuts out the locus in the generic fiber where the representations are
semistable. In contrast to this we start with a family of p-adic Hodge structures in characteristic zero and
cut out the locus where this family of p-adic Hodge structures comes from a Galois representation.

On the other hand after having constructed a universal family in our case, we can compare the outcome
of this construction to Kisin’s deformation space again. This is done in Proposition 8.17 below.

Lemma 8.12. Let X be an adic space locally of finite type over Qp and let E , E1 and E2 be families of
semistable representations.

(i) Assume that E has negative Hodge–Tate weights. Then there is a canonical isomorphism

E→ (M(Dst(E))⊗B
[0,1)
X
(OX ⊗̂B+st ))

ϕ= id,N=0.

(ii) One has E1 ∼= E2 if and only if Dst(E1)∼= Dst(E2).

Proof. (i) Let us write M=M(Dst(E)). Then by definition fpqc-locally on X we obtain an isomorphism

M⊗
B
[0,1)
X

B+st ⊗̂OX ∼= E ⊗OX B+st ⊗̂OX .

Then locally on X the claim follows by applying the invariants on both sides and using Proposition 7.8.
The construction of this morphism is obviously compatible with the descent data and hence descends to X.

(ii) After twisting with powers of the cyclotomic character, we may assume that E1 and E2 have negative
Hodge–Tate weights. Then second part is a direct consequence of the first. �

1Note that our notations here differ from Kisin’s.
2There is a similar version with crystalline instead of semistable.
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Proposition 8.13. Let X be a reduced adic space locally of finite type over Eµ and let D=(D,8,N ,F •)∈
Dan,adm
ϕ,N ,µ (X). Then there is a family of semistable representations E on X such that Dst(E)= (D,8, N ,F •).

Moreover, E is canonically identified with the subrepresentation

(M(Dst(E))⊗B
[0,1)
X
(OX ⊗̂B+st ))

ϕ= id,N=0

of M(Dst(E))⊗B
[0,1)
X
(OX ⊗̂B+st ).

Proof. After twisting with powers of the cyclotomic character and after changing µ accordingly, we
may assume that the Hodge–Tate weights defined by µ are negative. Let us write M for the choice
of a ϕ-module of finite height over A

[0,1)
X and a family E of GK∞-representations such that there is a

(ϕ,GK∞)-equivariant isomorphism

E ⊗OX Ã
[0,1)
X [1/p] ∼=M⊗

A
[0,1)
X

Ã
[0,1)
X .

Such a module exists fpqc locally on X by definition of the admissible locus and Theorem 7.11 (iii).
This isomorphism extends to an isomorphism

E ⊗OX (OX ⊗̂B+st )
∼=M⊗

B
[0,1)
X
(OX ⊗̂B+st )

that is still equivariant for the actions of ϕ and GK∞ . According to the definition of a semistable
representation we have to prove that the GK∞ action on E extends to an action of GK and that the above
isomorphism is equivariant for GK . As E embeds into the left-hand side, it is enough to show that it is
stabilized by the GK -action on the right-hand side. After localization we may assume that X =Spa(A, A+)
is affinoid and that E is the trivial vector bundle on X. After choosing a basis of E let g ∈ GK and denote
by M ∈Matn×n(0(X,OX ⊗̂B+st )) the matrix of the g-action with respect to this basis. We have to show
that this matrix has entries in A. However, M⊗A κ(x) has entries in κ(x) for all classical points x ∈ X by
[Kisin 2006, Proposition 2.1.5] (note that the proof of that proposition implies that the arrows in (2.1.6) of
[loc. cit.] are isomorphisms). It now follows from Lemma 7.5 (a) (and the remark following that lemma)
that M has entries in A.

This proves the existence of E fpqc-locally on X. In order to finish the proof, we just notice that our
construction defines descend data on E that are compatible with the isomorphisms

Dst(E)→ (D,8, N ,F •)

and the descend data on the latter. Hence both E as well as the isomorphism descent. �

Recall that the stack Dad
ϕ,N ,µ is the quotient of the adic space Xµ associated to PK0,d × FlagK ,d,µ by

the action of the group (ResK0/Qp GLd,K0)Eµ and consider the open subspace X adm
µ ⊂ X int

µ ⊂ Xµ. This
subset is stable under the action of (ResK0/Qp GLd,K0)Eµ and we write Dad,adm

ϕ,N ,µ for the quotient of X adm
µ

by this action.

Proposition 8.14. Let µ be a cocharacter as in (2-5) and let Eµ be its reflex field. Let X be a reduced
adic space locally of finite type over Eµ and let E be a family of semistable GK -representations on X with
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constant Hodge polygon equal to µ. Then the morphism

X→ Dad
ϕ,N ,µ

induced by the K -filtered (ϕ, N )-module Dst(E) factors over Dad,adm
ϕ,N ,µ .

Proof. By Definition 8.2, there is (locally on X ) an A
[0,1)
X -module M such that M⊗

A
[0,1)
X

B
[0,1)
X =M(D),

where D = Dst(E) is the filtered (ϕ, N )-module on X defining the morphism X→ Dad
ϕ,N ,µ. Moreover by

definition

M⊗
A
[0,1)
X

Ã
[0,1)
X [1/p] ∼= E ⊗OX Ã

[0,1)
X [1/p]

equivariant for the action of ϕ and GK∞ . In particular this implies that f factors over the admissible locus.
�

Theorem 8.15. There is a family Euniv of semistable GK -representations on Dad,adm
ϕ,N ,µ such that Dst(E)=

(D,8, N ,F •) is the universal family of filtered (ϕ, N )-modules on Dad,adm
ϕ,N ,µ . This family is universal in the

following sense: Let X be an adic space locally of finite type over Eµ and let E ′ be a family of semistable
GK -representations on X with constant Hodge polygon equal to µ. Then there is a unique morphism
f : X→ Dad,adm

ϕ,N ,µ such that E ′ ∼= f ∗E as families of GK -representations.

Proof. The existence of the family E follows by applying Proposition 8.13 to the family (M,8) of
ϕ-modules of finite height over A [0,1) on

Y = (PK0,d ×FlagK ,d,µ)
ad,adm.

As the construction is obviously functorial, this vector bundle is equivariant for the action of the group
(ResK0/Qp GLd,K0)Eµ and hence defines the desired family of semistable GK -representations on Dad,adm

ϕ,N ,µ .
Further the isomorphism Dst(E)∼= (D,8, N ,F •) on Y is by construction equivariant under the action of
(ResK0/Qp GLd,K0)Eµ and hence descends to Dad,adm

ϕ,N ,µ .
Now let X be as above. The K -filtered (ϕ, N )-module Dst(E ′) defines a morphism f : X→ Dad

ϕ,N ,µ.
This map factors over Dad,adm

ϕ,N ,µ by Proposition 8.14 as factoring over an open subspace may be check on
the reduced space underlying X. Further we have isomorphisms Dst(E ′)∼= f ∗Dst(E)∼= Dst( f ∗E). Now
the claim follows from Lemma 8.12. �

Corollary 8.16. There is a family E of crystalline GK -representations on Dad,adm
ϕ,µ such that Dcris(E) =

(D,8,F •) is the universal family of filtered ϕ-modules on Dad,adm
ϕ,µ . This family is universal in the following

sense: Let X be an adic space locally of finite type over Eµ and let E ′ be a family of crystalline GK -
representations on X with constant Hodge polygon µ. Then there is a unique morphism f : X→ Dad,adm

ϕ,µ

such that E ′ ∼= f ∗E as families of GK -representations.

Proof. This is a direct consequence of the discussion of the semistable case in Theorem 8.15 and
Lemma 8.10. �
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Let us compare this result to the construction of the universal semistable deformation rings as in [Kisin
2008]. Fix a continuous representation

ρ : GK → GLn(F)

with F a finite extension of Qp and write Rρ for the universal framed deformation ring of ρ. Further
we write Rk

ρ for the quotient of Rρ constructed in [Kisin 2008, Theorem 2.5.5]. Moreover let us write
D̃ad,adm
ϕ,N ,µ for the stack over Dad,adm

ϕ,N ,µ parametrizing trivializations of the universal semistable representation
constructed in Theorem 8.15, i.e., for the stack that assigns to f : S → Dad,adm

ϕ,N ,µ the set of isomor-
phisms On

S
∼= f ∗Euniv. Note that D̃ad,adm

ϕ,N ,µ actually is representable by an adic space locally of finite
type over Qp (resp. over the reflex field of µ). We write D̃ad,adm,+

ϕ,N ,µ for the open subspace where the
canonical representation

ρuniv
: GK → GL(0(D̃ad,adm

ϕ,N ,µ , E))→ GLn(0(D̃
ad,adm
ϕ,N ,µ ,O))

factors over

GLn(0(D̃
ad,adm
ϕ,N ,µ ,O

+))⊂ GLn(0(D̃
ad,adm
ϕ,N ,µ ,O)).

Note that this really defines an open subspace as the group GK is topologically finitely generated (and
hence we only need to check for finitely many elements of GK whether the corresponding matrix has
bounded entries).

Having fixed ρ we can cut out an open subspace D̃ad,adm,+
ϕ,N ,µ (ρ) by demanding that the composition

GK → GLn(0(D̃
ad,adm
ϕ,N ,µ ,O

+))→ GLn(0(D̃
ad,adm
ϕ,N ,µ ,O

+/O++))

is equal to ρ. Here O++⊂O+ denotes the ideal of topologically nilpotent elements. More precisely, given
any affinoid open subset U = Spa(A, A+)⊂ D̃ad,adm,+

ϕ,N ,µ we have a canonical family of GK -representations
on the reduced special fiber Spec A+/A++ of Spf A (where A++ ⊂ A+ is the ideal of topologically
nilpotent elements), namely

GK → GLn(A+)→ GLn(A+/A++).

We let U (ρ)⊂U denote the tube over the Zariski closed subset of Spec A+/A++ where this composition
is equal to ρ (or the base change of ρ to A+/A++). This construction is obviously compatible with
localization on the generic fiber (i.e., with replacing Spf A+ by an affine open subset of an admissible
blow up) and hence the pieces U (ρ) glue together to give D̃ad,adm,+

ϕ,N ,µ (ρ).
Moreover the restriction of ρuniv to D̃ad,adm,+

ϕ,N ,µ (ρ) induces by construction a morphism to (Spf Rρ)ad.

Proposition 8.17. The canonical morphism

D̃ad,adm,+
ϕ,N ,µ (ρ)→ (Spf Rρ)ad (8-5)

induces an isomorphism

D̃ad,adm,+
ϕ,N ,µ (ρ)∼= (Spf Rk

ρ)
ad
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Proof. It follows from [Kisin 2008, Theorem 2.5.5] and the reducedness of the source that the morphism
factors over (Spf Rk

ρ)
ad and is a bijection on L-valued points. Now [Kisin 2008, Theorem 2.5.5] again and

the functorial description of the left-hand side show that the morphism is an isomorphism on A-valued
point for all finite dimensional Qp-algebras A. As the left-hand side is known to be representable we find
that the morphism

f : D̃ad,adm,+
ϕ,N ,µ (ρ)→ (Spf Rk

ρ)
ad

is a smooth and bijective map of adic spaces locally of finite type over Qp. Especially it is étale and hence
locally given by the composition of an open embedding with a finite étale morphism. As f is bijective on
L-valued points, the finite étale morphism has to be of degree 1, i.e., an isomorphism. We deduce that f
is an open embedding. We conclude that f is an isomorphism by constructing a continuous section to f .

Indeed, Kisin’s construction [2008, (2.5)] consists of two steps: first he constructs a quotient A of Rρ
where the restriction of the universal GK representation to GK∞ is defined by a ϕ-module M over AW [[u]],
that is by a A

[0,1)
(Spf A)ad-module of finite height. Let us write X = (Spf A)ad and E for the restriction of the uni-

versal GK -representation to X. Then Rk
ρ is the quotient of A, defined by the condition that the isomorphism

M⊗
A
[0,1)
X

Ã
[0,1)
X

[ 1
p

]
∼= E ⊗OX Ã

[0,1)
X

[ 1
p

]
extends to a (GK , ϕ, N )-equivariant isomorphism

M⊗
A
[0,1)
X

(B⊗Qp B+st )
∼= E ⊗OX B⊗Qp B+st

for every map Rk
ρ→ B to a finite dimensional Qp-algebra. Using Lemma 7.5 (a) and the matrices of the

action of g ∈ GK (resp. of ϕ and N ) in some chosen basis, we deduce that hence the induced isomorphism

M⊗
A
[0,1)
X

(OX ⊗̂B+st )
∼= E ⊗OX OX ⊗̂B+st

is equivariant for the actions of (GK , ϕ, N ). In particular the family of Galois representations on (Spf Rk
ρ)

ad

is semistable according to our definition.
Hence we obtain a canonical morphism

(Spf Rk
ρ)

ad
→ Dad,adm

ϕ,N ,µ .

As E comes with a trivialization of an GK -stable O+-lattice inside E this morphism canonically lifts to
D̃ad,adm,+
ϕ,N ,µ (ρ) and defines a morphism that is set-theoretically a section to f . As f already is known to

be an open embedding it is enough to conclude. �

Remark 8.18. We note that Kisin’s description of the semistable deformation rings is a priori quite
different: a family of Galois representations over some affinoid algebra A is crystalline (resp. semistable)
in Kisin’s sense if it is crystalline (resp. semistable) after the base change to each quotient of A that is
finite-dimensional as a Qp-vector space. On the other hand we have aimed at giving a definition of a
family of crystalline representations in the spirit of Fontaine (though we did not do this using filtered
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ϕ-modules, but rather ϕ-modules on the open unit disc). As it is not so obvious how these definitions
directly relate to each other we construct the morphism (8-5) in a slightly complicated manner.

Note that our construction has the advantage that we no longer need to fix a framing of an integral
structure inside the Galois representation. After this paper was written, Wang-Erickson [2018] extended
the results of Kisin in a direct way to families that do not longer fix a framing. For such families a similar
comparison with our construction should hold true. However, it seems that one cannot recover the main
result of [Wang-Erickson 2018] from our construction that takes place purely in the generic fiber.

We finally comment on the relation of our construction with the work of Berger and Colmez [2008].
They studied families of p-adic representations parametrized by p-adic Banach algebras. They proved for
example that in such a family the locus of point-wise crystalline (resp. semistable) representations of fixed
Hodge–Tate weight is a closed subspace, and there exist a family of filtered ϕ-modules (resp. filtered
(ϕ, N )-modules) that specializes to the filtered (ϕ, N )-modules at each point. We deduce from the
comparison with Kisin’s construction that our families have the same property.

Corollary 8.19. Let X be a reduced adic space locally of finite type over Qp and let E be a family of
GK -representations on X. We assume that (fpqc-locally on X ) there exists a GK -stable O+X -lattice in E .
Then E is a semistable family if and only if E ⊗ κ(x) is semistable for all x ∈ X.

Proof. The subspace (Spf Rk
ρ)

ad
⊂ (Spf Rρ)ad is the Zariski-closure of all classical points at which the

universal Galois representation on (Spf Rρ)ad is semistable with Hodge–Tate weight k. The result hence
follows from the fact that by assumption we may (locally in the fpqc-topology) construct a morphism
X → (Spf Rρ)ad such that the pullback of the universal representation on (Spf Rρ)ad agrees with the
GK -stable O+X lattice in E . �

We remark that the existence of an integral lattice is always assumed in [Berger and Colmez 2008]. In
fact we do not know whether it automatically exists or whether this is a true condition. As our definition (in
particular the definition of the completed sheaves of period rings) differs, the relation of our construction
with theirs is less clear in the nonreduced case. However, the universal case is reduced.

9. The morphism to the adjoint quotient

As in [Hellmann 2011, §4] we consider the adjoint quotient A/Sd , where A⊂GLd,Qp is the diagonal torus
and Sd is the finite Weyl group of GLd . Under the morphism c : A→ Ad−1

Qp
×Qp Gm,Qp which maps an

element g of A to the coefficients c1, . . . , cd of its characteristic polynomial χg = Xd
+c1 Xd−1

+· · ·+cd ,
the adjoint quotient A/Sd is isomorphic to Ad−1

Qp
×Qp Gm,Qp = Spec Qp[c1, . . . , cd , c−1

d ]. Recall from
[Hellmann 2011, §4] that there is a morphism

ResK0/Qp GLd,K0 → A/Sd (9-1)

which is invariant under ϕ-conjugation on the source. It is defined on R-valued points by sending b ∈
(ResK0/Qp GLd,K0)(R)=GLd(R⊗Qp K0) to the characteristic polynomial of (b·ϕ) f

=b·ϕ(b) · · ·ϕ( f−1)(b),
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where f = [K0 : Qp]. This characteristic polynomial actually has coefficients in R, because it is
invariant under ϕ, as can be seen from the formula ϕ(b ·ϕ) f

= b−1
· (b ·ϕ) f

·ϕ f (b)= b−1
· (b ·ϕ) f

· b.
Since ResK0/Qp GLd,K0 acts on itself by ϕ-conjugation via (g, b) 7→ g−1b ϕ(g) and (g−1b ϕ(g) ϕ) f

=

g−1
· (b ·ϕ) f

· g the map (9-1) is invariant under ϕ-conjugation.
Let µ be a cocharacter as in (2-5), let Eµ be its reflex field, and set (A/Sd)Eµ := A/Sd ×Qp Eµ. By

projecting to ResK0/Qp GLd,K0 we may extend β to morphisms

PK0,d ×Qp QK ,d,�µ
α̃

//

��

(A/Sd)Eµ

Hϕ,N ,�µ
α

// (A/Sd)Eµ

We further obtain morphisms to (A/Sd)Eµ from the locally closed substacks Hϕ,�µ, Hϕ,N ,µ, Hϕ,µ,
Dϕ,N ,µ, and Dϕ,µ, which we likewise denote by α. Here we view Dϕ,N ,µ and Dϕ,µ as substacks of Hϕ,N ,µ

via the zero section from Remark 2.8 (3). We also consider the adification of these morphisms.

Theorem 9.1. Let µ be a cocharacter as in (2-5), let Eµ be its reflex field and let x ∈ (A/Sd)
ad
Eµ . Then

there exists an open subscheme X of α̃−1(x) such that the weakly admissible locus in the fiber over x is
given by

α̃−1(x)wa
= X ad.

Proof. This is similar to the proof of [Hellmann 2011, Theorem 4.1]. Let

x = (c1, . . . , cd) ∈ κ(x)d−1
× κ(x)×

and let vx denote the (multiplicative) valuation on κ(x). First note that

cd = detκ(x)⊗Qp K0(b ·ϕ)
f
= detκ(x)((b ·ϕ) f )1/ f

and hence α̃−1(x)wa
=∅ unless

vx(cd)
−1/ f
· vx(p)

1
e f
∑
ψ, j µψ, j

= λ(D)= 1.

In the following we will assume that this condition is satisfied. We now revert to the notation of the
proof of Theorem 5.6. In particular we consider the projective PK0,d-schemes Zi , the global sections
fi ∈ 0(Zi ,OZi ), the functions hi , the closed subsets

Yi,m = {y ∈ Z ad
i × Qad

K ,d,�µ | hi (y)≥ m}

and the proper projections pri,m : Yi,m→ PK0,d ×Qp QK ,d,�µ. This time

Si,m ={y= (gy,Ny,Uy,qy)∈ Yi,m×(PK0,d×QK ,d,�µ)α̃
−1(x) | vy( fi(gy,Uy))> vy(p) f 2m

}

is a union of connected components of Yi,m×(PK0,d×QK ,d,�µ) α̃
−1(x); hence a closed subscheme and not just

a closed adic subspace. This can be seen as follows: Let λ1, . . . , λd denote the zeros of the polynomial

Xd
+ c1 Xd−1

+ · · ·+ cd−1 X + cd .
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Then every possible value of the fi is a product of some of the λi and hence fi can take only finitely
many values. As in the proof of Theorem 5.6

α̃−1(x)wa
= α̃−1(x) r

⋃
i,m

pri,m(Si,m),

where the union runs over 1≤ i ≤ d − 1 and m ∈ Z. So α̃−1(x)wa is an open subscheme of α̃−1(x). �

Corollary 9.2. Let x ∈ (A/Sd)
ad
E and consider the 2-fiber product

α−1(x)wa //

��

H ad,wa
ϕ,N ,�µ

α
��

x // (A/W )ad
E

Then there exists an Artin stack in schemes A over the field κ(x) which is an open substack of α−1(x),
such that α−1(x)wa

= Aad. The same is true for Hϕ,�µ, Hϕ,N ,µ, Hϕ,µ, Dϕ,N ,µ, and Dϕ,µ.

Proof. This is an immediate consequence of Theorem 9.1 and the proof of Corollary 5.7. �

We also determine the image of the weakly admissible locus in the adjoint quotient.

Theorem 9.3. The image of H ad,wa
ϕ,N ,�µ (and H ad,wa

ϕ,�µ , H ad,wa
ϕ,N ,µ, H ad,wa

ϕ,µ , Dad,wa
ϕ,N ,µ, and Dad,wa

ϕ,µ ) under the
morphism(s) α is equal to the affinoid subdomain{

c=(c1, . . . ,cd)∈(A/Sd)
ad
Eµ

∣∣∣vc(ci )≤vc(p)
1
e

∑
ψ(µψ,d+·· ·+µψ,d+1−i )

with equality for i=d
}
, (9-2)

where vc is the (multiplicative) valuation of the adic point c with vc(p) < 1.

Remark 9.4. (1) The subset described in (9-2) is really an affinoid subdomain. Indeed the adjoint
quotient (A/Sd)

ad
Eµ is (admissibly) covered by the (admissible) open affinoid rigid spaces (or adic spaces)

X M =
{
c = (c1, . . . , cd) ∈ (A/Sd)

ad
Eµ | vc(ci )≤ pM , for all i and vc(vd)≥−pM}

and the subspace (9-2) is easily seen to be a Laurent subdomain of each of these X M for M � 0.

(2) The morphisms α forget the Hodge–Pink lattice q (or the K -filtration F •) and in general their fibers
contain infinitely many weakly admissible points.

(3) Like in [Hellmann 2011, Proposition 5.2] the affinoid subdomain of Theorem 9.3 can be described
as the closed Newton stratum of the coweight

(
−

1
e

∑
ψ µψ,d ≥ · · · ≥ −

1
e

∑
ψ µψ,1

)
of A. By this we

mean that the Qp-valued points (i.e., the rigid analytic points) of (9-2) coincide with the points of the
corresponding Newton stratum in the sense of [Kottwitz 2006]. In [Hellmann 2011] the claim is made for
all points of the corresponding Berkovich space. In the set up of adic spaces we cannot rely on Kottwitz’s
definition of a Newton stratum for all points of the adic space, as the valuations are not necessarily rank
one valuations, i.e., the value group is not necessarily a subgroup of the real numbers. Especially the
Newton strata do not cover the adic space (A/Sd)

ad.
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(4) For Dad,wa
ϕ,µ the description of the image in our Theorem 9.3 has previously been obtained by Fontaine

and Rapoport [2005, Théorèm 1] and Breuil and Schneider [2007, Proposition 3.2] on the level of
L-valued points where in [Fontaine and Rapoport 2005] L is a complete discretely valued extension of
Eµ with algebraically closed residue field. In [Breuil and Schneider 2007] L is a finite extension of Eµ
and in addition all Hodge–Tate weights are assumed to be pairwise different. Moreover, our affinoid
subdomain (9-2) equals Sd\T

′

ξ from [Breuil and Schneider 2007, Corollary 2.5], where ξ is associated
with the cocharacter ξ̃ :=

(
−µ− (0, 1, . . . , d − 1)

)
dom ∈ X∗(T̃ ). Actually, both [Fontaine and Rapoport

2005; Breuil and Schneider 2007] even prove that over an L-valued point c in the image there is an
L-valued point in α̃−1(c)wa. This also follows from our Theorem 9.1, which shows that α̃−1(c)wa is
Zariski-open in a scheme covered by affine spaces, see (3-2), because the L-valued points (for any infinite
field L) lie dense in such schemes. In this way our theorem provides a new proof for [Fontaine and
Rapoport 2005, Théorèm 1] and generalizes [Breuil and Schneider 2007, Proposition 3.2]; see Section 10
for more details.

Before we prove the theorem we note the following:

Lemma 9.5. Set li :=
1

e f

∑
ψ(µψ,d +· · ·+µψ,d+1−i ). Then li equals the number li defined in [Hellmann

2011, Formula (5.2) on p. 988]. If D = (D,8, N , q) is a (ϕ, N )-module with Hodge–Pink lattice over a
field L⊃ Eµ whose Hodge polygon is bounded by µ and if D′=

(
D′,8|ϕ∗D′, N |D′, q∩D′⊗L⊗K0 BL

)
⊂ D

for a free L ⊗Qp K0-submodule D′ ⊂ D of rank i which is stable under 8 and N, then tH (D′)≥ li .

Proof. The number li in [Hellmann 2011, (5.2)] was defined as follows. Write {µψ,1, . . . , µψ,d} =
{xψ,1, . . . , xψ,r } with xψ, j > xψ, j+1. Let nψ, j := max{k : µψ,k ≥ xψ, j }. In particular nψ,r = d and
µψ,nψ, j ≥ xψ, j . For 0 ≤ i ≤ d let mψ, j (i) := max{0, nψ, j + i − d}. So mψ, j (0) = 0 for all j and
mψ,r (i)= i . It follows that nψ, j ≥ d − i if and only if µψ,d−i ≥ xψ, j . Now li was defined in [Hellmann
2011, (5.2)] as

li =
1

e f

∑
ψ

( r−1∑
j=1

(xψ, j − xψ, j+1)mψ, j (i)+ xψ,r mψ,r (i)
)
.

We compute

li+1− li =
1

e f

∑
ψ

( r−1∑
j=1

(xψ, j − xψ, j+1)
(
mψ, j (i + 1)−mψ, j (i)

)
+ xψ,r

)
.

The difference mψ, j (i + 1) − mψ, j (i) is 1 if nψ, j + i − d ≥ 0, that is if xψ, j ≤ µψ,d−i . Otherwise
the difference mψ, j (i + 1)−mψ, j (i) is 0. Therefore li+1− li =

1
e f

∑
ψ µψ,d−i and l0 = 0 implies that

li =
1

e f

∑
ψ(µψ,d + · · ·+µψ,d+1−i ).

To prove the second assertion let s ∈Spec L⊗Eµ K̃ be a point and let µ′=µD(s) be the Hodge polygon
of D at s. Then µψ,d+· · ·+µψ,d+1−i ≤µ

′

ψ,d+· · ·+µ
′

ψ,d+1−i for all ψ and all i by Proposition 2.13(b).
We let pψ be the ψ-component of s∗p := s∗D ⊗κ(s)⊗K0 B+κ(s) and p′ψ be the ψ-component of s∗p′ :=
s∗D′ ⊗κ(s)⊗K0 B+κ(s). By definition of the Hodge polygon, see Construction 2.10, we can choose a
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κ(s)[[t]]-basis (vψ,1, . . . , vψ,d) of pψ such that (t−µ
′

ψ,1 vψ,1, . . . , t−µ
′

ψ,d vψ,d) is a κ(s)[[t]]-basis of the
ψ-component qψ of s∗q. Since

dimκ(s)((t))

(
p′ψ

[ 1
t

]
∩ 〈vψ,1, . . . , vψ,n〉κ(s)((t))

)
≥ n+ i − d

for all n, we can find a κ(s)[[t]]-basis (v′ψ,1, . . . , v
′

ψ,i ) of p′ψ with v′ψ, j ∈ 〈vψ,1, . . . , vψ,d+ j−i 〉κ(s)[[t]].
Namely, for each j we let v′j be an element of(

p′ψ ∩ 〈vψ,1, . . . , vψ,d+ j−i 〉κ(s)[[t]]
)/
〈v′ψ,1, . . . , v

′

ψ, j−1〉κ(s)[[t]]

which generates a nonzero saturated κ(s)[[t]]-submodule, and we let v′ψ, j ∈p
′

ψ∩〈vψ,1, . . . , vψ,d+ j−i 〉κ(s)[[t]]

be a lift of v′ψ, j . Then (v′ψ,1, . . . , v
′

ψ, j ) is linearly independent over κ(s)((t)) and generates a saturated
κ(s)[[t]]-submodule of p′ψ . Using this basis we see that t−µ

′

ψ,d+ j−i · v′ψ, j ∈ qψ ∩ p
′

ψ [1/t]. This implies that
tH (D′)≥ 1

e f

∑
ψ µ
′

ψ,d + · · ·+µ
′

ψ,d+1−i ≥ li . �

Proof of Theorem 9.3. We consider the embedding of Dϕ,µ into Hϕ,µ via the zero section. Under
this section Dad,wa

ϕ,µ is contained in H ad,wa
ϕ,N ,�µ, H ad,wa

ϕ,�µ , H ad,wa
ϕ,N ,µ, H ad,wa

ϕ,µ , and Dad,wa
ϕ,N ,µ by Lemma 5.3 or

Remark 5.8. Conversely they are all contained in H ad,wa
ϕ,N ,�µ. Moreover, these inclusions are compatible

with the morphisms α to (A/Sd)Eµ .
We first claim that the affinoid subdomain is contained in the image of the weakly admissible locus

for all these stacks. By the above it suffices to prove the claim for Dad,wa
ϕ,µ . In this case the claim follows

from [Hellmann 2011, Theorem 5.5 and Proposition 5.2] using Lemma 9.5. Note that in [loc. cit.] only
Berkovich’s analytic points are treated, but the given argument works verbatim also for adic points.

Conversely let c = (c1, . . . , cd) be an L-valued point of (A/Sd)
ad
Eµ which lies in the image of the

weakly admissible locus of one of these stacks. By the above it lies in the image of H ad,wa
ϕ,N ,�µ. So let

D ∈H ad,wa
ϕ,N ,�µ(L

′) for a field extension L ′/L , such that D maps to c. By extending the field L ′ further
we may assume that K0 ⊂ L ′ and that Xd

+ c1 Xd−1
+ · · ·+ cd =

∏d
j=1(X −λ j ) splits into linear factors

with λ j ∈ L ′. We claim that vL ′(
∏

j∈I λ j )≤ vL ′(p) f li for all subsets I ⊂ {1, . . . , d} of cardinality i . By
Lemma 9.5 this implies that c lies in our affinoid subdomain.

To prove the claim we use Remark 2.4. Then Xd
+c1 Xd−1

+· · ·+cd is the characteristic polynomial of
the L ′-endomorphism (8 f )0 of D0 and tN (D)= vL ′(detL′(8

f )0)
1/ f . We write (8 f )0 in Jordan canonical

form and observe that N0 maps the generalized eigenspace of (8 f )0 with eigenvalue λ j into the one with
eigenvalue p− f λ j . If I ⊂ {1, . . . , d} is a subset with cardinality i this allows us to find an i-dimensional
L ′-subspace D′0⊂ D0 which is stable under (8 f )0 and N0 such that the eigenvalues of (8 f )0 on D′0 are of
the form (p−n jλ j : j ∈ I ) for suitable n j ∈ Z≥0. We let D′ ⊂ D be the (ϕ, N )-submodule corresponding
to D′0 ⊂ D0 under Remark 2.4. Then

vL ′

(∏
j∈I

λ j

)
≤ vL ′

(∏
j∈I

p−n jλ j

)
= vL ′

(
detL′(8

f )0|D′0

)
= tN (D′) f

≤ vL ′(p) f tH (D′) ≤ vL ′(p) f li

by the weak admissibility of D and by Lemma 9.5. This proves the theorem. �



1118 Urs Hartl and Eugen Hellmann

10. Applications

Let us mention two conjectural applications of our constructions to the p-adic local Langlands program.

Breuil’s conjecture on the locally analytic socle. Breuil [2015; 2016] formulated a conjecture on the
locally analytic principal series representations that embed into the ρ-isotypical part of completed
cohomology (or some p-adically completed space of automorphic forms) for some fixed global Galois
representation ρ which is associated to an automorphic representation. The automorphic representation
to which ρ is associated defines a locally algebraic representation inside completed cohomology, i.e., a
representation that appears in the conjecture of Breuil and Schneider; see below. The conjectured existence
of more locally analytic principal series representations is the representation-theoretic formulation of the
existence of companion points on eigenvarieties, i.e., the existence of (overconvergent) p-adic automorphic
forms (of finite slope) such that the associated Galois representation is in fact automorphic.

These additional locally analytic representations that should conjecturally embed into completed
cohomology are described by combinatorial data: the relative position of the de Rham filtration and a flag
of ϕ-stable subspaces inside Dst(ρ), i.e., they are described completely by local data. In fact one can
formulate a conjecture for all (potentially) semistable local Galois representations (not just the restrictions
of global Galois representations) by replacing the completed cohomology by the candidate for the p-adic
local Langlands correspondence as in [Caraiani et al. 2016].

In [Breuil et al. 2019], Breuil, Schraen and the second author established a link between the existence
of these locally analytic principal series representations and the degenerations of certain structures from
p-adic Hodge theory (and the theory of (ϕ, 0)-modules) in rigid analytic families. The degenerations
predicted by Breuil’s conjecture can be constructed using precisely the universal families of semistable
representations defined in the present article.

The Breuil–Schneider conjecture. This second application is rather a speculation than a true application.
As mentioned in the introduction the p-adic local Langlands program wants to relate on the one hand
certain continuous representations of GK on n-dimensional L-vector spaces for another p-adic field L , and
on the other hand topologically irreducible admissible representations of GLn(K ) on finite-dimensional
L-Banach spaces. We want to explain in which sense both kinds of representations vary in families.

On the side of GLn(K )-representations, when all Hodge–Tate weights are pairwise different, a Banach–
Hecke algebra B which is the completion of the usual spherical Hecke algebra for a certain norm was
constructed in [Breuil and Schneider 2007; Schneider and Teitelbaum 2006]. This Banach–Hecke
algebra is an affinoid algebra over the Galois closure K̃ of K/Qp, whose associated affinoid space
SpaB is contained in a split n-dimensional torus A. Moreover, the algebra B acts on a universal infinite-
dimensional locally algebraic Banach representation of GLn(K ). Breuil and Schneider also conjectured
that the specialization of the universal Banach representation at any L-valued point of SpaB admits an
(in general many) invariant norm(s) and proved this in some cases. Further cases were established by
Sorensen [2013] and more recently many new cases were proved by Caraiani, Emerton, Gee, Geraghty,
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Paškūnas and Shin [Caraiani et al. 2016]. One might hope that the completions with respect to these
norms produce the searched for irreducible admissible finite-dimensional L-Banach representations.

If on the Galois side one restricts to semistable or crystalline representations of GK then we provide
in this article the moduli spaces Dad,adm

ϕ,N ,µ for those. Sending a semistable GK -representation to the
characteristic polynomial of its associated Frobenius defines a morphism α from Dad,adm

ϕ,N ,µ to the adjoint
quotient (A/Sn)

ad which contains (an image of) the affinoid domain SpaB of Breuil and Schneider.
In Section 9 we proved that the fibers of this morphism α are Artin stacks in schemes (Corollary 9.2) and
we determined the image of α. If all Hodge–Tate weights are pairwise different, Breuil and Schneider
[2007, Proposition 3.2] proved that the image equals SpaB. Our Theorem 9.3 generalizes this to arbitrary
Hodge–Tate weights. So one may now ask whether there is a relation between the fiber of the morphism
α over an L-valued point of SpaB and the set of invariant norms on the specialization of the universal
Banach representation at this point.

The reader should note that by the condition of [Hellmann 2013] that the Hodge–Tate weights lie in
{0, 1} together with the condition of [Breuil and Schneider 2007; Schneider and Teitelbaum 2006] that
they are pairwise different, one was limited to GL2 for which the p-adic local Langlands program is
established when K =Qp; see [Colmez 2010; Paškūnas 2013; Colmez et al. 2014]. So for the application
to GLn when n > 2 our generalization in the present article is essential.
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