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Uniform Yomdin—Gromov parametrizations
and points of bounded height in valued fields

Raf Cluckers, Arthur Forey and Francgois Loeser

We prove a uniform version of non-Archimedean Yomdin—Gromov parametrizations in a definable context
with algebraic Skolem functions in the residue field. The parametrization result allows us to bound the
number of [, [#]-points of bounded degrees of algebraic varieties, uniformly in the cardinality g of the
finite field F, and the degree, generalizing work by Sedunova for fixed g. We also deduce a uniform
non-Archimedean Pila—Wilkie theorem, generalizing work by Cluckers—Comte—Loeser.

1. Introduction

Since the pioneering work [Bombieri and Pila 1989], the determinant method of Bombieri and Pila has
been used in various contexts to count integer and rational points of bounded height in algebraic or
analytic varieties. Parametrization results, as initiated by Yomdin and Gromoyv, play a prominent role in
some of the most fruitful applications of this method, such as the Pila and Wilkie counting theorem [2006]
for definable sets in o-minimal structures. In the non-Archimedean setting, Cluckers, Comte and Loeser
prove in [Cluckers et al. 2015] an analog of the Pila—Wilkie counting theorem, but for subanalytic sets
in @, the field of p-adic numbers. Their proof relies also on a Yomdin—Gromov type parametrization
result. The aim of this paper is to extend their result to obtain bounds uniform in p for some counting
points of bounded height problems, over Q,, and over [F,((¢)). Before discussing our parametrization
result, we start by presenting the applications to point counting.

1.1. Point counting in function fields. For g a prime power, consider the finite field with g elements [,
and for each positive integer n, let [F,[¢], be the set of polynomials with coefficients in [, and degree
(strictly) less than n. Cilleruelo and Shparlinski [2013] have raised the question of bounding the number
of [, [],-points in plane curves. That question was settled by Sedunova [2017]. A particular case of our
main theorem is a uniform version of her results. We refer to Theorem 4.1.1 for a more general statement,
namely for X of arbitrary dimension. For an affine variety X defined over a subring of [, ((#)), write
X (Fy[]), for the subset of X (F,((7))) consisting of points whose coordinates lie in [y [7],.

Theorem A. Fix an integer § > 0. Then there exist real numbers C = C(8) and N = N (8) such that for

each prime p > N, each q = p“, each integer n > 0 and each irreducible plane curve X C A%q @) of
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degree &, one has
#X (F,[t]), < Cn*q/°1.

A similar statement is proved by Sedunova [2017], for fixed g. More precisely, she proves that fixing §,
g and ¢ > 0, there exists a constant C' = C’(8, g, ) such that for each irreducible plane curve X C A%g (1]
of degree § and positive integer n,

#X(U:q (] < C/qﬂ((l/s)-b-e)'

Observe that our result improves Sedunova’s by replacing the ¢ factor by a polylogarithmic term. By the
very nature of our methods, which are model-theoretic, we are however unable to establish such a result
for g a power of a small prime p.

Recently, F. Vermeulen [2020] improved our Theorem A and Sedunova’s results. More precisely, he
obtains a variant of Theorem A for all primes p and with, moreover, a polynomial dependence of the
constant C on the degree §.

1.2. A uniform non-Archimedean point counting theorem. We state a uniform version of the Cluckers—
Comte—Loeser non-Archimedean point counting theorem. A semialgebraic set is a set defined by a
first-order formula in the language L4y = {0, 1, 4+, -, | } and parameters in Z[[¢], where | is a relation
interpreted by x | y if and only if ord(y) < ord(x), with ord the valuation. As usual, we identify definable
sets with the formulas that define them. Subanalytic sets are definable sets in the language obtained by
adding a new symbol for each analytic function with coefficients in Z[[¢] to the language Lg;,. For each
local field L of characteristic zero, we fix a choice of uniformizer @w; and view it as a Z[[t]]-ring by
sending ¢ to ¢;. Hence, we can consider the L-points of a semialgebraic or subanalytic set, for L a local
field of any characteristic. The notion of semialgebraic and subanalytic sets considered in Section 5 is
slightly more general than the one considered here; see also Setting 3.1.1.

The dimension of a subanalytic set X is the largest d such that there exists a coordinate projection p to
a linear space of dimension d such that p(X) contains an open ball. A subanalytic set is said to be of
pure dimension d if for each x € X and every ball B centered at x, X N B is of dimension d. If X C L",
we denote by X2 the union of all semialgebraic curves of pure dimension 1 contained in X. Observe
that in general, X alg is not semialgebraic (nor subanalytic).

If X € K™ and H > 1, with K a field of characteristic zero, we denote by X (Q, H) the set of

x=(x1,...,Xxn) € XNQ™ that can be written as x; = a; /b;, with a;, b; € Z, |a;|, |b;| < H (where | -] is
the Archimedean absolute value). If X C L™, where L = [F,(()), we denote by X ([, (¢), H) the set of
X =(x1,...,xn) € XNEF,(#)" that can be written as x; = a; /b;, with a;, b; € [F,[t] of degree less than

or equal to log, (H).
The following result is a particular case of Theorem 5.2.2. It provides a uniform version of Theorem
4.2.4 of [Cluckers et al. 2015].

Theorem B. Let X be a subanalytic set of dimension m in n variables, with m < n. Fix ¢ > 0. Then
there exists C = C(X,¢), N=N(X, &), a = a(n, m) and a semialgebraic set W& C X such that for each
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H > 1 and each local field L, with residue field of characteristic py, > N and cardinal qr, the following
holds. We have W¢(L) € X (L)¥¢ and if L is of characteristic zero,

#X\W)(L)(Q, H) < C(X, e)qp HE.
If L is of positive characteristic, then
#X\W)(L)(Fy, (1), H) < C(X, e)qp HE.

An important step toward the proof of Theorem B is Proposition 5.1.4, which states that integer
points of height at most H and lying in a subanalytic set X of dimension m in n variables are contained
in Cq™ log(H)* algebraic hypersurfaces of degree C’log(H)#, where o and B are explicit constants
depending only on n and m.

1.3. Uniform Yomdin—-Gromov parametrizations. The proofs of Theorems A and B rely on the following
parametrization result.

Fix a positive integer r. Let L be a local field, or more generally a valued field endowed with its
ultrametric absolute value |- |. A function f: U C L™ — L is said to satisfy 7,-approximation if for each

y € U there is a polynomial Tf<y’ (x) of degree less than r and coefficients in L such that for each x, y € U,

f 00 = T )| < Ix = yI".

A T,-parametrization of a set X C L" of dimension m is a finite partition of X into pieces (X;);c; and
for each i € I, a subset U; C O} and a surjective function f; : U; — X; that satisfies 7,-approximation.
The following statement is a particular case of Theorem 3.1.4.

Theorem C. Let X be a subanalytic set included in some cartesian power of the valuation ring, and of
dimension m. Then there exist integers C and N such that if L is a local field of residue characteristic
pL > N, then for each integer r > 0, there is a partition of X (L) into Cr"™ pieces such that for each

piece X, there is a surjective function f; : U; € O} — X; satisfying T,-approximation on Uj.

Observe that in the preceding theorem, we do not claim that the X; and f; are subanalytic, and indeed
they are not in general.

Theorem C is used to deduce Theorems A and B, using an analog of the Bombieri—Pila determinant
method. To be more precise, we follow closely the approach by Marmon [2010] in order to prove
Theorem A.

Note also that from Theorem 3.1.3 of [Cluckers et al. 2015], we can deduce by compactness a result
similar to Theorem C but for fixed r and with the number of pieces depending polynomially on the
cardinality of the residue field. Such a result is however too weak to obtain a nontrivial bound in
Theorem A.

The way we make Theorem C independent of the residue field is by adding algebraic Skolem functions
in the residue field to the language. This enables us to work in a theory where the model-theoretic
algebraic closure is equal to the definable closure. The functions involved in the parametrization are
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definable in such an extension of the language. Theorem C is then deduced from a 7;-parametrization
Theorem 3.4.2, where the functions are required to satisfy an extra technical condition called condition ()
(see Definition 3.2.1). Such a condition implies that the function (when interpreted in any local field of
large enough residue characteristic) is analytic on any box contained in its domain. This allows us to
deduce the T,-parametrization result by precomposing with power functions.

A first step toward Theorem C is Theorem 2.3.1, which states that the domain of a definable (in the
above sense) function that is locally 1-Lipschitz can be partitioned into finitely many definable pieces on
which the function is globally 1-Lipschitz. It is similar to Theorem 2.1.7 of [Cluckers et al. 2015], but
there the domain is partitioned into infinitely many pieces parametrized (definably) by the residue field.
The improvement is made possible by the fact that we work in a theory with algebraic Skolem functions
in the residue field.

Let us finally observe that the number of pieces of the T,-parametrization is Cr™, where m is the
dimension. In the Archimedean setting, a similar result has recently been proven by Cluckers, Pila and
Wilkie [Cluckers et al. 2020], but there the number of pieces of the 7,.-parametrization is a polynomial in
r of nonexplicit degree in general; in the case of Ry, this degree in » has meanwhile been made explicit
in Theorem 2 of [Binyamini and Novikov 2019] (see also the discussion just before Lemma 3.4.4).

The paper is organized as follows. Section 2 is devoted to the fact that one can go from local to global
Lipschitz continuity. In Section 3, we prove our main parametrization result. Sections 4 and 5 are devoted
to applications, the first to the counting of points of bounded degree in [, (7], the second to the uniform
non-Archimedean Pila—Wilkie theorem.

2. Global Lipschitz continuity

For h: D € A x B — C any function between sets and for a € A, write D, for the set {b € B | (a, b) € D}
and h(a, -) or h, for the function which sends b € D, to h(a, b). We use similar notation D, and h(a, -)
or h, when D is a (subset of a) Cartesian product ]_[?:1 A; and a € p(D) for some coordinate projection

P:D = Tlicicy.. . Air

2.1. Tame theories. We consider tame structures in the sense of [Cluckers et al. 2015, Section 2.1]. We
recall their definition here.

Let Lgasic be the first-order language with the sorts VF, RF and VG, and symbols for addition and
a constant 0 on VF; for functions ac : VF — RF and | - | : VF — VG; for the order, the multiplication
and a constant 0 on VG; and for a constant 0 on RF. Let £ be any expansion of Lgsic. By £-definable
we mean -definable in the language £, and likewise for other languages than £. By contrast, we use
the word “definable” more flexibly in this paper and it may involve parameters from a structure. Write
VEY = {0}, RF® = {0}, and VG = {0}, with a slight abuse of notation. Note that £ may have more sorts
than Lpgysic, since it is an arbitrary expansion.

We assume that all the £-structures we consider are models of Tggsic, the Lpasic-theory stating that VF
is an abelian group, that VG = VG* U {0} with VG a (multiplicatively written) ordered abelian group,
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that | - | : VF — VG is a surjective ultrametric absolute value (for groups), and that ac : VF — RF is
surjective with ac—!(0) = {0}.

Consider an L-structure with K for the universe of the sort VF, k for RF and I' for VG. We usually
denote this structure by (K, £).

Remark 2.1.1. Most often, K will be a valued field, & its residue field and I" its value group (hence the
sort names VF, RF and VG), although here we just require K to be a (valued) abelian group.

We define an open ball as a subset B C K of the form {x € K | [x —a| < a}, for some a € K and
a € I'*, and similarly a closed ball as {x € K | |x —a| < «}.
We define k™ as k\{0}. For £ € k and o € I", we introduce the notation

Ag, ={x e K |ac(x)=§, x| =a}.

Observe that if § € k™ and o € '™, then A¢ ,, is an open ball.

We put on K the valuation topology, that is, the topology with the collection of open balls as base and
the product topology on Cartesian powers of K.

For a tuple x = (x1, ..., x,) € K", set |x| = max;<;j<,{|x;i|}.

Definition 2.1.2. Let f: X € K™ — K be a function. The function f is called 1-Lipschitz continuous
(globally on X) or, in a short form, 1-Lipschitz if for all x and y in X,

Lf )= fO] =[x =yl

The function f is called locally 1-Lipschitz if, locally around each point of X, the function f is 1-Lipschitz
continuous.

For y e I', a function f : X € K" — K is called y-Lipschitz if for all x and y in X,

lfG)—=fOI=<y-Ix—yl

Definition 2.1.3 (s-continuity). Let F : A — K be a function for some set A C K. We say that F is
s-continuous if for each open ball B C A the set F'(B) is either a singleton or an open ball, and there
exists y = y(B) € I" such that

|F(x)— F(y)| = y|x —y| forall x,y e B. @2.1.1)

If a function g : U € K" — K on an open U is s-continuous in, say, the variable x,, by which we
mean that g(a, -) is s-continuous for each choice of a = (x, ..., x,—1), then we write |dg/dx,(a, x,)|
for the element y € I'" witnessing the s-continuity of g(a, -) locally at x,, namely, y is as in (2.1.1) for
the function F(-) = g(a, - ), where x, y run over some ball B containing x,, and with {a} x B C U.

Definition 2.1.4 (tame configurations). Fix integers a >0, b > 0, a set

T CK xkxTI?,
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and some ¢ € K. We say that T is in c-config if there is & € k such that T equals the union over y € I" of

sets
(c+ Ae,) x U,

for some U, C k9 x I'’. If moreover & # 0 we speak of an open c-config, and if & = 0 we speak of a
graph c-config. If T' is nonempty and in c-config, then & and the sets U,, with A¢ ,, nonempty are uniquely
determined by T and c.

We say that T C K x k% x T'? is in £-tame config if there exist s > 0 and £-definable functions

g:K—k and c:k'—> K
such that the range of c is finite, and, for each n € k*, the set
TN(g () xk*xT?)

is in c(n)-config. We call c the center of T (despite not being in 7T in the case of open c-config).

For any L-structure M elementarily equivalent to (K, £) and for any language L obtained from L by
adding some elements of M (of any sort) as constant symbols, call (M, L) a test pair for (K, £).

Definition 2.1.5 (tameness). We say that (K, £) is weakly tame if the following conditions hold.
(1) Each £-definable set T € K x k* x I'” with a > 0, b > 0 is in £-tame config.

(2) For any L-definable function F : X € K — K there exist s > 0 and an £-definable function g : X — k°
such that, for each 1 € k*, the restriction of F to g~!() is s-continuous.

We say that (K, £) is tame when each test pair (M, L) for (K, £) is weakly tame. Call an L-theory T
tame if for each model M of T, the pair (M, £) is tame.

Recall [Cluckers et al. 2015, Corollary 2.1.11], which states that a tame theory, restricted in the sorts
VF, RF, VG, is b-minimal, in the sense of [Cluckers and Loeser 2007]. In particular, one can make use
of dimension theory for b-minimal structures.

2.2. Skolem functions. Recall that an L-structure M has algebraic Skolem functions if for any A € M
every finite A-definable set X € M" admits an A-definable point. Observe that this condition is equivalent
to the fact that the model-theoretic algebraic closure is equal to the definable closure. More generally, for
a multisorted language, we say that a structure M has algebraic Skolem functions in the sort S if for any
A C M and every finite A-definable set X C §j}, there is an A-definable point, with Sy, the universe for
the sort S in the structure M.

We say that a theory T has algebraic Skolem functions (in the sort ), if each model has. In any case,
one can algebraically Skolemize in the usual sense, that is, given a theory T in a language L, the algebraic
Skolemization of T in the sort § is the theory 7° in an expansion £° of £ obtained by adding function
symbols, such that 7° has algebraic Skolem functions in the sort S and such that (£*, 7) is minimal
with this property (where minimality is seen after identifying pairs with exactly the same models and
definable sets); see also [Niibling 2004].
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Lemma 2.2.1. Let £ a countable language extending Lpasic and T a tame L-theory. If T has algebraic
Skolem functions in the sort RF, then it also has algebraic Skolem functions in the sort VFE. In any case,
there is a countable extension L' of L by function symbols on the sort RF and an L'-theory T’ extending
T such that T has algebraic Skolem functions in the sort RF and hence also in the sort VE. Moreover,

every model of T can be extended to an L'-structure that is a model of T, and, T is tame.

Proof. Since T is tame, every finite definable (with parameters) set in the VF sort is in definable bijection
with a definable set in the RF sort. The first statement follows: If 7 has algebraic Skolem functions
in the sort RF, then also in the sort VF. In general, let us algebraically Skolemize the theory 7 in the
sort RF. Denote by £’ and 7" the obtained language and theory. Clearly one may take £’ to be countable.
It remains to prove that 77 is tame. One needs to check condition (1) and (2) of Definition 2.1.5. Assume
that (K, £) is a model of 7" and let T C K x k% x I'® be some £/-definable set. Then there is an
L-definable set Ty such that T C Ty and for each (x, &, o) € Ty, there is & such that (x,&,a) € T
and (x, &, o) € acly(x, &, o). Indeed, an £-formula for Ty is made from one for T by replacing each
occurrence of a new function symbol by a formula for the definable set it lands in. The fact that Tj is in
L-tame config then implies that T is in £'-tame config. The reasoning for (2) is similar. U

Remark 2.2.2. Let £ be an extension of Lgsic such that any local field can be endowed with an £-
structure. Let 7 be an £L-theory such that any ultraproduct of local fields which is of residue characteristic
zero is a model of 7. Consider the algebraic Skolemization £’, 7' in the sort RF from Lemma 2.2.1.
Then one can endow every local field with an £’-structure such that moreover any ultraproduct of such
structures that is of residue characteristic zero is a model of 7”. Indeed, for each new function symbol in
L'\ L set the function output to be 0 if the corresponding set is empty, and to be any point in the set if
nonempty. Such a choice of £'-structure is often highly noncanonical and is not required to be compatible
among field extensions.

Remark 2.2.3. Usually the Skolemization process breaks most of the model-theoretic properties of the
theory. However, since we apply it only to the residue field many results such as cell decomposition
are preserved. Moreover, since we add only algebraic Skolem functions in the sort RF, the situation is
somehow controlled. For example, if the theory of the residue field is simple in the sense of model theory,
then adding algebraic Skolem functions in the residue field preserves simplicity; see [Niibling 2004].

It is also worth noting that we will apply our results in the case where the residue field is pseudofinite,
and that such fields almost always have algebraic Skolem functions; see [Beyarslan and Hrushovski 2012].
See also [Beyarslan and Chatzidakis 2017] for a more concrete characterization.

2.3. Lipschitz continuity. We can now state our first main result on Lipschitz continuity, going from
local to piecewise global (with finitely many pieces).

Theorem 2.3.1. Suppose that (K, L) is tame with algebraic Skolem functions in the sort RF. Let
f: X € K" — K be an L-definable function which is locally 1-Lipschitz. Then there exists a finite
definable partition of X such that the restriction of f on each of the parts is 1-Lipschitz.
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As in [Cluckers et al. 2015], Theorem 2.3.1 is complemented by Theorem 2.3.2 about simultaneous par-
titions of domain and range into parts with 1-Lipschitz centers. They are proved by a joint induction on 7.

Theorem 2.3.2 (Lipschitz continuous centers in domain and range). Suppose that (K, L) is tame with
algebraic Skolem functions in the sort RF. Let f : A C K" — K be an L-definable function which is
locally 1-Lipschitz. Then for a finite partition of A into definable parts, the following holds for each
part X. There exist s > 0, a coordinate projection p : K" — K"~ and L-definable functions

g:X—k, c:p(X)CK" 'K and d:pX)CK" 'K

such that ¢ and d are 1-Lipschitz, and for each n € k® and w in p(X), the set g~' (1), is in c(w)-config
and the image of g~ () under f,, is in d(w)-config.

Before proving Theorems 2.3.1 and 2.3.2, we obtain in Lemma 2.3.5 a weaker version of Theorem 2.3.2,
where the centers are only required to be locally 1-Lipschitz. It will itself rely on [Cluckers et al. 2015,
Theorem 2.1.8], which looks similar, but there the centers depend on auxiliary parameters.

Lemma 2.3.3. Suppose that (K, L) is tame with algebraic Skolem functions in the sort RF. Let
Y C K" x k* be a definable set, p : Y — K" be the canonical projection, X = p(Y),and f : X — K be
a definable function such that for each n € k*, the restriction of f to Y, is locally 1-Lipschitz. Then there
is a finite definable partition of X such that the restriction of f on each of the pieces is locally 1-Lipschitz.

The proof of Lemma 2.3.3 is a joint induction with the following lemma.

Lemma 2.3.4. Suppose that (K, L) is tame with algebraic Skolem functions in the sort RF. Let A C K™
be a definable set of dimension n. Then there is a finite definable partition of A such that for each part X,
there is an injective projection X C K™ — K" and its inverse is locally 1-Lipschitz.

Proof of Lemma 2.3.4. Assume Lemma 2.3.3 holds for integers up to n. We use dimension theory for
b-minimal structures. We get a finite definable partition of A such that on each piece X, there is a
projection p : X — K" which is finite-to-one. For each w € p(X), the fiber X, is finite. By the existence
of algebraic Skolem functions in the sort RF and hence also in VF by Lemma 2.2.1, each of the points of
X, 1s definable. By compactness, we can find a finite definable partition of X such that p is injective on
each of the pieces.

By [Cluckers et al. 2015, Corollary 2.1.14], up to changing the coordinate projection we see that the
inverse of p is locally 1-Lipschitz when restricted to fibers of some definable function g : p(X) — k". By
Lemma 2.3.3, we can find a finite partition of p(X) such that the inverse of p is locally 1-Lipschitz on
each of the parts. ]

Proof of Lemma 2.3.3. We work by induction on n. If n = 0 there is nothing to prove. Assume now n > 1
and that Lemmas 2.3.3 and 2.3.4 hold for integers up to n — 1. Assume first that X is of dimension n. By
dimension theory, there is at least one 7 such that Y, is of dimension n. Define X’ to be the union of the
interior of Y), for all such 7 € k°. The function f is locally 1-Lipschitz on X’. It remains to deal with
X" = X\ X'. By dimension theory, X” is of dimension less than n. Assume X” = X for simplicity. By
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Lemma 2.3.4, up to considering a finite definable partition of X we can assume that there is an injective
coordinate projection p : X — K"~! with inverse locally 1-Lipschitz. Then f is locally 1-Lipschitz if

1 -1

and only if f o p~" is. Now p(X) with the function f o p~" satisfies the hypothesis of Lemma 2.3.3. By

induction hypothesis, we have the result. ]

Lemma 2.3.5. Suppose that (K, L) is tame with algebraic Skolem functions in the sort RF. Let
f 1A C K" — K be an L-definable function which is locally 1-Lipschitz. Then for a finite partition of
A into definable parts, the following holds for each part X. There exist s > 0, a coordinate projection
p: K" — K"~ ! and L-definable functions

g:X—k, c:pX)SK"'5>K and d:K"'—K

such that the functions ¢ and d are locally 1-Lipschitz, and for each w in p(K™), the set g~ (1), is in
c(w)-config and the image of g~ ()., under f,, is in d(w)-config.

The proof uses [Cluckers et al. 2015, Theorem 2.1.8], but only a weaker version is actually needed:
we only need to require the centers to be locally 1-Lipschitz.

Proof. Apply [Cluckers et al. 2015, Theorem 2.1.8] to f. Work on one of the definable pieces X of
A and use notations from the application of [Cluckers et al. 2015, Theorem 2.1.8], which is similar to
Theorem 2.3.2 except that the input of ¢ and d may additionally depend on some k-variables. We now
show that these additional k-variables are not needed as input for ¢ and d. We first show (after possibly
taking a finite definable partition of X)) that ¢(-, w) and d( -, w) are constant.

Fix some w € p(X). Since the range of the w-definable function ¢, : n € k¥ > c(n, w) € K does not
contain an open ball, it must be finite. By tameness, there is a w-definable bijection 4, between the
range of ¢, and a subset of B,, C k', for some s’ € N. By the existence of algebraic Skolem functions in
the sort RF, and hence also in VF by Lemma 2.2.1, each of the points of B,, is w-definable. Taking the
preimage of those points by 4, o ¢,, leads to a w-definable finite partition of k*. After taking preimages
by g, this itself leads to a w-definable finite partition of X,,. By compactness, we find a finite partition of
X such that on each piece, the function c¢(g(x), p(x)) is independent of g(x) € k* and can be (abusively)
written c(p(x)). The argument for d is similar.

By Lemma 2.3.3, we can refine the partition such that the functions ¢, d : p(X) — K are locally
1-Lipschitz. ]

Proof of Theorem 2.3.2. We proceed by induction on n. Theorem 2.3.2 for n = 1 is exactly Lemma 2.3.5
for n = 1 since the Lipschitz condition is empty in this case. Assume now that Theorems 2.3.1 and 2.3.2
hold for integers up to n — 1. Apply Lemma 2.3.5. On each of the definable pieces X obtained, one
has a coordinate projection p and definable functions ¢, d : p(X) — K that are locally 1-Lipschitz. By
Theorem 2.3.1 for n — 1, we have a finite definable partition of p(X) such that ¢ and d are 1-Lipschitz on
each of the pieces. This induces a finite definable partition of X satisfying the required properties. [

Proof of Theorem 2.3.1. We work by induction on n, assuming that Theorem 2.3.2 holds for integers up
to n and Theorem 2.3.1 holds for integers up to n — 1. For n = O there is nothing to show, and hence
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we assume that n > 1. Write p : X — K"~! for the coordinate projection sending x = (x, ..., X,) to
X=(x1,...,%y,_1), and define Y as the image of X under the function /& : X — K™ sending x to (X, f(x)).

Up to taking a finite definable partition of X, switching the variables, by induction on the number of
variables on which f depends, by Lemma 2.3.4 and Theorem 2.3.2, tameness and compactness, we may
assume that the following holds:

e X is openin K",

there is a definable function g : X — k®, and definable functions ¢, d : p(X) — K,

for each X € p(X) and n € k*, g~ (n); is in open c(X)-config and h(g~!(n)); is in d(X)-config,

the restriction of f(x, ) to g‘l(n) + is s-continuous for each x € p(X) and n € k*,

the functions ¢ and d are 1-Lipschitz,

e the function f (-, x,) is 1-Lipschitz for each x,,.

We show that under these assumptions, f is 1-Lipschitz. Since d is 1-Lipschitz, we can replace f by
x+— f(x,x,) —d(x) (and translate Y accordingly) in order to assume d = 0.

Let x, y € X and assume first that both x,, and y, lie in an open ball B C X;. Then g(x) = g(X, yn);
indeed, otherwise ¢(X) € B, which would contradict that g~ (1); is in open c(x)-config for every n € k°.
It follows that f (X, -) is s-continuous on B. Since f is locally 1-Lipschitz, the constant y involved in
the definition of s-continuity on B satisfies y < 1.

Thus, using the ultrametric inequality and the assumption about f (-, y,), we have

lf) = fODI=1fx) = fE y)+ f(E, y) = f)]
<max(|f(x) = f&, y)l 1 &, ya) — FODI)
< max(|x, — yal, I — 1)

=[x =yl
which settles this case.
Suppose now that x,, and y, do not lie in an open ball included in X3, and by symmetry nor in an open
ball included in X;. This implies that

|, _C(£)| <Ixp =yl and |y, _C()A’)| < xXn = yal. (2.3.1)

By s-continuity and the fact that f is locally 1-Lipschitz, the image of a small enough open ball in X;
of radius « is either a point or an open ball of radius less than or equal to ««. This implies that

If(x) =d@)] = lxp —c®)] and [f(y) =dD)] = lya—cOI. (23.2)
Recall that d = 0. Combining (2.3.1) and (2.3.2), we have by the ultrametric inequality
|f ) = fFD)] < max(|x, — (B, [yn — (D)) < X0 = yal < Ix =yl

which finishes the proof. U
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Remark 2.3.6. Let us recall that [Cluckers et al. 2010] and [Cluckers and Halupczok 2012], with
related results on Lipschitz continuity on p-adic fields, are amended in Remark 2.1.16 of [Cluckers
et al. 2015]. When making d = 0 it is important to keep ¢ possibly nonzero in the proof of [Cluckers
et al. 2015, Theorem 2.1.7] and in the above proof of Theorem 2.3.1; this was forgotten in the proofs
of the corresponding results [Cluckers et al. 2010, Theorems 2.3] and [Cluckers and Halupczok 2012,
Theorem 3.5], where ¢ should also have been kept.

3. Analytic parametrizations

The goal of this section is to prove a uniform version of non-Archimedean Yomdin—Gromov parametriza-
tions.

3.1. T,-approximation.

Setting 3.1.1. We fix for the whole section one of the two following settings, of Tpp or 73, both of
which we now introduce. Let O be the ring of integers of a number field. Recall that the Denef—Pas
language is a three sorted language, with one sort VF for the valued field with the ring language, one
sort RF for the residue field with the ring language, one sort VG for the value group with the Presburger
language with an extra symbol for oo, and function symbols ord : VF — VG for the valuation (sometimes
denoted multiplicatively | - |) and ac : VF — RF for an angular component map (namely a multiplicative
map sending O to 0 and sending a unit of the valuation ring to its reduction modulo the maximal ideal).
Consider the theory of henselian discretely valued fields of residue field characteristic zero in the Denef-
Pas language, with constants symbols from O[¢]] and with ¢ as a uniformizer of the valuation ring. This
theory is tame by Theorem 6.3.7 of [Cluckers and Lipshitz 2011]. Applying Lemma 2.2.1, one obtains
a new language and a new theory which we denote by Lpp and 7pp, which thus has algebraic Skolem
functions in each of the sorts.

We can also work in an analytic setting corresponding to Example 4.4(1) of [Cluckers and Lipshitz
2011], as follows. Consider the expansion of the Denef-Pas language Lpp by adding function symbols
for elements of

OltMx1, ..., xn) = {f = Za;x’ ’ ay € O[t], ord;(a;) —> —|—oo}.
[I|—+00
ITeN"

Any complete discretely valued field over O (namely, with a unital ring homomorphism from O into
the valued field) can be endowed with a structure for this expansion, by interpreting the new function
symbols as the corresponding power series evaluated on the unit box and put equal to zero outside the
unit box. Let £}, and 73 be the resulting language and the theory of these models, respectively. (For a
shorter and explicit axiomatization for the analytic case, see the axioms of Definition 4.3.6(i) of [Cluckers
and Lipshitz 2011].)

From now on, we work in a language £ that is either Lpp or L}, and in the theory 7 that is corre-

an

spondingly Tpp or T3p
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Let us summarize our theory once more: 7 is the £-theory which is the algebraic Skolemization in the
residue field sort of the theory of complete discrete valued fields, residue field of characteristic zero, with
constants symbols from O[¢] (as a subring) and where ¢ has valuation 1, and (in the subanalytic case),
with the restricted analytic function symbols as the corresponding power series evaluated on the unit box
and put equal to zero outside the unit box.

In any case, the theory 7 is tame by Theorem 6.3.7 of [Cluckers and Lipshitz 2011], and, it has
algebraic Skolem functions in each sort by Lemma 2.2.1 and by Example 4.4(1) with the homothecy with
factor ¢ on the valuation ring to make the system strict instead of separated. Note that there is no need to
algebraically Skolemize again when going from 7pp to the larger theory 735 by the elimination of valued
field quantifiers from Theorem 6.3.7 of [Cluckers and Lipshitz 2011]. Definable means definable without
parameters in the theory 7.

Definition 3.1.2 (7,-approximation). Let L be any valued field. Consider a set P € L™, a function
f=C(f,..., fu): P— O} and an integer r > 0. We say that f satisfies T,-approximation if P is open
in L™, and, for each y € P, there is an n-tuple Tf<y’ of polynomials with coefficients in Oy, and of degree
less than r that satisfies

If(x)—Tff;(x)l <|x—y|" forallx € P.

We say that a family (g;);cs of functions g; : P; — X; € O} is a T,-parametrization of X = J;; X;
if each g; is surjective and satisfies 7,-approximation.

Observe that if f satisfies T,-approximation, then the polynomials Tf<; are uniquely determined.

Observe also that if K is a complete valued field of characteristic zero, if f is of class € (i.e., f isr
times differentiable and the r-th differential is continuous) and satisfies 7,-approximation, then Tf<§ is
just the tuple of Taylor polynomials of f at y of order r.

Notation 3.1.3. Let O be the ring of integers of a number field. We denote by .Ap the collection of all
local fields of characteristic zero over O and by B those of positive characteristic, and set 6» = . Ap U Bo.
(By alocal field L over O we mean a non-Archimedean locally compact field, i.e., a finite field extension
of Q,, or of [, ((¢)) for a prime p, allowing a unital homomorphism O — L.) If L € 6, we denote by ord
its valuation (normalized such that ord(L*) = Z), O its valuation ring, M its maximal ideal, @ € M|
a fixed choice of uniformizer, k; its residue field, g, the cardinality of k; and p; the characteristic
of kp. If N € N, we define Ap n (resp. Bo.n, 6o n) to be the set of L € Ap (resp. L € Bop, L € 6p)
such that p;, > N. By Remark 2.2.2, we can consider L € 6 as an L-structure, and any nonprincipal
ultraproduct of residue characteristic zero of such local fields is a model of 7.

A family (X,),cy of sets X, indexed by y € Y is called a definable family if the total set X :=
{(x,y) |x € X,, yeY}(and hence also Y) is a definable set. Likewise, a family of functions is called a
definable family if the family of graphs is a definable family. We use notations like Oy for the definable
set which in any model K is the valuation ring Ok, and similarly My for the maximal ideal, and so
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on. For a definable set X and a structure L, we write X (L) for the L-points on X, and for a definable
function f : X — Y, we write f; for the corresponding function X (L) — Y (L).!

The main goal of this section is to prove the next two theorems on the existence of 7,.-parametrizations
with rather few maps, in terms of r. Even the mere finiteness of the parametrizing maps is new, as
compared to [Cluckers et al. 2015] where “residue many” maps were allowed, but we even get an upper
bound which is polynomial in r. This finiteness is crucial for Theorem A, and, useful for Theorem B,
where it makes the exponent @ of ¢g; independent of X. Recall from Setting 3.1.1 that we work in a
theory with algebraic Skolem functions.

Theorem 3.1.4 (uniform 7,.-approximation in local fields). Letn >0, m >0 be integers and X = (Xy) ey
a definable family of subsets X, C Oy, for y running over a definable set Y. Suppose that X, has
dimension m for each y € Y (and in each model of T). Then there exist integers ¢ > 0 and M > 0 such
that for each L € €p,m and for each integer r > 0, there are a finite set 1, , of cardinality cr™ and an
R,-definable family g = (gy.i)(y.iyeyw)x1, of (Ry, y)-definable functions

8y,i:Pyi—> Xy(L)

with Py ; € OF such that for each y € Y (L), the family (gy.i)ie1,, forms a T,-parametrization of Xy (L)
and R, C Of is a set of lifts of representatives for the r-th powers in (D

Note that Theorem C in the introduction is a particular case and a less precise version of Theorem 3.1.4.
The following result is uniform in all models K of 7. Note that 7 requires in particular the residue
field to have characteristic zero, and the value group to be elementarily equivalent to Z.

Theorem 3.1.5 (uniform 7,-approximation for models of 7). Let n > 0, m > 0 be integers and let
X = (Xy)yey be a definable family of subsets X, C Oy, for y running over a definable set Y. Suppose
that X, has dimension m for each y € Y and each model of T. Then there exists an integer ¢ > 0 such
that for each model K of T and for each integer r > 0 such that the r-th powers in the residue field have a
finite number b, = b, (K) of cosets, there are a finite set I, of cardinality c(b,r)"™ and an R,.-definable
family g = (gy.i)(y,nev(k)x1, of (R, y)-definable functions

8y.i:Pyi— X, (K)

with P, ; € O% such that for each y € Y (K), the family (g, ;)ie1, forms a T,-parametrization of X ,(K)
and R, C Oy is a set of lifts of representatives for the r-th powers in k*.

Remark 3.1.6. Observe that even if Theorems 3.1.4 and 3.1.5 are very similar, one cannot deduce the
first from the second by compactness. The reason is the quantification over r in the statement. They will,
however, both be deduced from the upcoming Theorem 3.4.2, which is a T;-parametrization theorem

I'When we interpret definable sets or functions into local fields L (or, more generally, £-structures that are not models of our
theory 7°), we implicitly assume that we have chosen some formula ¢ that defines the set and consider ¢ (L). This set ¢ (L) may
of course change with a different choice of formula ¢ for small values of the residue field characteristic of L, but this is not a
problem by Remark 2.2.2, and since we are interested only in the case of large residue field characteristic.
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with an extra technical condition. It will allow us to define a 7,-parametrization by precomposing by
power functions. Furthermore, note that in Theorem 3.1.4, the factor b, for the index of r-th powers in
the residue field is not needed; this is because of an additional trick using a property true in finite fields.

Remark 3.1.7. For most of the section, we could in fact work in a slightly more general setting (up
to imposing some additional requirements for Theorem 3.1.4). Using resplendent relative quantifier
elimination as in [Rideau 2017], we can add arbitrary constant symbols and allow an arbitrary residual
extension (and an arbitrary extension on the value group) of the language and the theory before applying
the algebraic Skolemization in the residue field sort. In particular, Theorem 3.1.5 holds in this more
general setting. If the extended language and theory still have the property that any local field can
be equipped with a structure for the extended language such that, moreover, any ultraproduct of such
equipped local fields which is of residue characteristic zero is a model of the extended theory, then also
Theorem 3.1.4 would go through.

Remark 3.1.8. The condition that the value group be a Presburger group can probably be relaxed to
any value group in which the index v, of the subgroup of r-multiples is finite, by replacing c(b,r)™ by
c(byv,)™ for the cardinality of /, and taking R, UV, instead of R,, V, a set of lifts of representatives for
the r-multiples in the value group.

Note that extending Theorem 3.1.5 and its proof to mixed characteristic henselian valued fields may be
possible too, with the adequate adaptations. For example, when going from local to piecewise Lipschitz
continuity, the Lipschitz constant should be allowed to grow. (Indeed, look at the function x — x? on the
valuation ring of C,.)

Before starting the proofs of Theorems 3.1.4 and 3.1.5, we need a few more definitions.

Definition 3.1.9 (cell with center). Consider an integer n > 0. For nonempty definable sets Y and

X CY x VF”, the set X is called a cell over Y with center (¢;);=;1.__, if it is of the form

.....

{(y,x) €Y x VF" | (y, (ac(x; — ci(x<), Ixi —ci(x<p))7_,) € G},

for some definable set G C Y x RF" x VG" and some definable functions and ¢; : ¥ x VF~! — VF,
where x_; = (v, x1, ..., xj—1). If moreover G is a subset of ¥ x (RF*)" x (VG*)", where (VG*)? = {0},
then X is called an open cell over Y (with center (¢;);i=1,... n)-

We next give a special name to cells over ¥ whose center equals 0.

Definition 3.1.10 (cell around zero). We say that a nonempty set X C Y x VF”" is a cell around zero
(over Y) if it is of the form

X={0,x)=,x1,...,x) €Y x VF'| (y, @c(x), |x;D}_,) € G}

for some definable set G C Y x RF" x VG". Similarly, one can call a set X a cell around zero (over Y)
for X C L" for some valued field L with an angular component map, if it is of the corresponding form.
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Definition 3.1.11 (associated cell around zero). Let X be a cell over Y with center, with notation from
Definition 3.1.9. The cell around zero associated to X is by definition the cell X obtained by forgetting
the centers, namely

XO ={(y,x) e Y x VF" |y € Y, ac(x;) = &(y), (y, (x:]):) € G}

with associated bijection 0y : X — X© sending (y, x) to (v, (x; — ¢;(x~;));). For a definable map
f: X — Z there is the natural corresponding function f© = f o6, from X© to Z.

Definition 3.1.12 (associated box). Let K be a valued field. By a box B C K" we mean a product of
open balls in K. Let B = ]_[liifn B(a;, r;) € K" be a box, with open balls

B(ai,ri) ={x € K | |x —a;| <ri},
with a; € K and nonzero r; € I'x. The box associated to B is the box B,s € K¢ defined by
By = (x € (K")" | Ix —a;| <13},
where K% is an algebraic closure of K, endowed with the canonical extension of the valuation of K.

We now define the term language. This is an expansion £* of £, by joining division and witnesses for
henselian zeros and roots.

Definition 3.1.13. Let £* be the expansion of £U {~!} obtained by joining to £ U {~'} function symbols
h,, and root,, for integers m > 1. The h,, are interpreted on a henselian valued field K of equicharacteristic
zero and residue field & as the functions

hy: K" xk—> K

sending (ag, . .., am, §) to the unique y satisfying ord(y) =0, ac(y) =& mod Mg, and ) |, aiy' =0,
whenever £ is a unit, ord(a;) > 0, Z;":O a;€" =0 mod Mg, and

f'(&) #0 mod Mg

with f’ the derivative of f, and to O otherwise. Likewise, root,, is the function K x k — K sending
(x, &) to the unique y with y” = x and ac(y) = & if there is such y, and to O otherwise.

Proposition 3.1.14 (term structure of definable functions). Every VF-valued definable function is piece-
wise given by a term. More precisely, given a definable set X and a definable function f : X — VF, there
exists a finite partition of X into definable parts and for each part A an L*-term t such that

t(x)=f(x) forallx e A.

Proof. By Theorem 7.5 of [Cluckers et al. 2006] there exists a definable function g : X — RF” for some
m > 0 and an £*-term f( such that

fo(x, g(x)) = f(x).
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Since the terms #,, (the henselian witnesses) and root, (the root functions) involve at most a finite choice
in the residue field, one can reduce to the case that g has finite image. The fibers of g can then be taken
as part of the partition to end the proof. U

3.2. Condition (*). We now introduce a technical condition, named (x), that will be used in Section 3.3
to show a strong form of analyticity of definable functions, named global analyticity in Definition 3.3.1.

Definition 3.2.1 (condition (x)). We first define condition (x) for £*-terms, inductively on the complexity
of terms. Consider a definable set X € VF" and let x run over X.

We say that a VF-valued £*-term ¢ (x) satisfies condition (x) on X if the following holds.

If £ (x) is a term of complexity O (i.e., a constant or a variable), then it satisfies condition (x) on X.

Suppose now that the term ¢ is of the form t; + 1, 11 - 1, to_l, hy(to, ..., t; t—1), root, (ty; t_;) for
some n > 0, or f(t,...,t,), with f one of the analytic functions of the language. In the first two
cases, we just reiuire that | and £, s;tisfy condition (x) on X. In the remaining four cases, we require
that 1y, . .., t, satisfy condition (x) on X and moreover that for any box B C X, the functions 7_; and
ac(ty), ..., ac(t,), ord(1y), ..., ord(t,) are constant on B.

We finally say that an £-definable function f : X € VF" — VF" for m’ > 0 satisfies condition (x) on
X if there is a tuple 7 of £L*-terms #; (x) satisfying condition (*) on X and such that f(x) =¢(x) for x € X.

The following lemma ensures existence of functions satisfying condition ().

Lemma 3.2.2. Let f : X CY x VF" — VF" be a definable function for some m and m’'. Then there is a

finite partition of X into some open cells A over Y with center (c;)i=1,..,m and a set B such that B, is of

.....

dimension less than m for each y € Y, such that the function
(A(O))y — VF" : x > FO@y, x)
satisfies condition (x) on (A(O))y for each y, with notation from Definition 3.1.11.

Proof. We proceed by induction on m. By Proposition 3.1.14 for f we may suppose that f is given by a
tuple ¢ (x) of L*-terms. Let 4 : X — RF* x I'*' be the definable function created from ¢ such that 4 has
a component function of the form ¢’ for each RF-valued subterm ¢’ of ¢ and also of the forms ord(z”)
and ac(¢”) for each VF-valued subterm ¢” of ¢. The proposition requires us to find a finite partition of X
into cells over Y such that for each open cell A over Y, the map (f; )@ (y, -) has condition (*) on A(,O),
with notation from Definition 3.1.11. Now apply the cell decomposition theorem adapted to # and work
on one of the open pieces A. Thus, A is an open cell over Y with some center (c;);=1,...,» adapted to A,
namely, there are definable functions ¢; : A CVF — VFEfori =0,...,m — 1 such that 4% is constant
on each box contained in ¢~!(A), which is moreover an open cell around zero, where

c:x e VF" = (x1+co, xo+c1(x), ..., X+ Cm_1(x)),

with notation from Definition 3.1.11. Note that ¢ = 0;1 and ¢~!(4) = A in that notation. [l
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3.3. Global analyticity. To more easily speak of analyticity in this section, we work with complete
discretely valued fields (a meaning of analyticity exists for all models of 7 by [Cluckers and Lipshitz
2011]).

Definition 3.3.1 (globally analytic map). Let K be a complete discretely valued field. Let X € K™ be
asetand f: X — K" a function. We say that f is globally analytic on X if for each box B C X, the
restriction of f to B is given by a tuple of power series with coefficients in K (say, taken around some
a € B), which converges on the associated box Bys.2

The following proposition is the reason why we introduced condition (x). Observe that it applies also
to local fields, and thus not only to models of our theory 7.

Proposition 3.3.2 (analyticity, [Cluckers and Lipshitz 2011, Lemma 6.3.15]). Let f be a definable
function satisfying condition (x) on some definable set X. Then there is some M > 0 such that for L
which is either a local field with residue field cardinality at least M, or a model of T which is moreover a
complete discretely valued field, the following holds. For any box B € X (L) and b € B, there is a power
series g centered at b and converging on Byg such that f is equal to g on B. Moreover, M can be taken
uniformly in definable families of definable functions.

Proof. We recall the strategy of the proof of [Cluckers and Lipshitz 2011, Lemma 6.3.15]. One works
by induction on the complexity of the L£L*-term corresponding to the definition of condition (x), using
compositions of power series as in Remark 4.5.2 of [Cluckers and Lipshitz 2011]. The only nontrivial
cases are 1, 1, ha(to, ..., 1 t—1), root, (ty; 1), and I (t1, ..., t,) for some restricted analytic function
f from the language. If L is a model of 7, we may assume by the definition of condition (x) that the
t_erms t; satisfy condition () on X and that 7_; and ac(¢y), ..., ac(t,), ord(%p), . .., ord(t,) are constant
on B. In the local field case, by compactness there is some M > 0 such that if the residue field of L
is of cardinality at least M, the functions ¢_; and ac(ty), ..., ac(t,), ord(tp), . . ., ord(t,) are constant
on any box B contained in X (L). One finishes exactly as in the proof of [Cluckers and Lipshitz 2011,
Lemma 6.3.11], where for the case f(f, ..., t,), with f one of the analytic functions of the language,
condition (x) ensures that either the function fis interprgted as the zero function on a box B or the image
of the box B by (71, ..., t,) is strictly contained in the unit box, whence so is the image of By, ensuring
convergence of f on it, and giving analyticity of f (1o, ..., ;) on Bys. U

3.4. Strong T,.-approximation. We can now state a stronger notion of 7,.-approximation, for definable
functions. The strong T-approximation will be key for the proofs of Theorems 3.1.4 and 3.1.5. Strong
T,-approximation for » > 1 is not needed in this paper, but we include its definition for the sake of
completeness.

Definition 3.4.1 (strong T,-approximation). Let P C VF™ be definable, f = (fi,..., fu): P — VF"a
definable function, and r > 0 an integer.

2Here, converging on B,s means that the partial sums obtained by evaluating at any element of B,s form a Cauchy sequence
(the limits actually lie inside K alg by [Cluckers and Lipshitz 2011]).
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(1) We say that f satisfies strong 7,-approximation if P is an open cell around zero, f satisfies condition
(%) on P and, for each model L of 7, the function f; satisfies 7,-approximation and moreover for
each box B C P(L), the L*-term associated to f satisfies 7,-approximation on Bjs.

(2) A family f; : P — X for i € I of definable functions is called a (strong) 7,-parametrization of
X C VF" if each f; is a (strong) T,-approximation and

sy =x.
iel
The fact that P is an open cell around zero in Definition 3.4.1 is particularly handy since it enables an
easy description of the maximal boxes contained in P, which combines well with condition () and for
composing with power maps. Global analyticity in complete models as given in Section 3.3, together
with a calculation on the coefficients of the occurring power series, will then complete the proofs of the
parametrization Theorems 3.1.4 and 3.1.5.

Theorem 3.4.2 (strong Ty-parametrization). Let n > 0, m > 0 be integers and let X = (X)yey be a
definable family of subsets X , C Oy for y running over a definable set Y. Suppose that X, has dimension
m for each 'y € Y. Then there exist a finite set I and a definable family g = (gy.;)(y,ieyx1 of definable

functions
8y,i:Pyi—> X,y

such that Py ; € Oy and for each y, (gy,i)ier forms a strong Ti-parametrization of X .

Proof. We work by induction on m. We repeatedly throw away pieces of lower dimension and treat them
by induction, working uniformly in y. We also successively consider finite definable partitions of X
without renaming. By Lemma 2.3.4, up to taking a finite definable partition of X, we can find a locally
1-Lipschitz surjective function fy : P, € VF" — X, with P, open for each y € Y. By Theorem 2.3.1, we
can further assume that f, is globally 1-Lipschitz on Py, or equivalently, that f, satisfies 7}-approximation
on Py. By Proposition 3.1.14 we may moreover suppose that the component functions of f are given by
L*-terms. We still need to improve f and P in order for the f to satisfy strong 77-approximation, in
particular, condition (x), Tj-approximation on associated boxes of boxes in its domain, and that P is an
open cell around zero.

First we ensure, as an auxiliary step, that the first partial derivatives of the f, are bounded by 1 on
the associated box of any box in its domain Py, by passing to an algebraic closure VF¥2 of VF with the
natural £ and £* structures. This passage to VF¥€ preserves well properties of quantifier-free formulas
and of terms by results from [Cluckers and Lipshitz 2011; 2017] for the involved analytic structures
on VF and on VF¥2. This step is done by switching again the order of coordinates as in the proof of
Lemma 2.3.4 where necessary. Since it is completely similar to the corresponding part of the proof of
[Cluckers et al. 2015, Theorem 3.1.3], we skip the details.

Finally we show that we can ensure all remaining properties, using induction. Apply Lemma 3.2.2,
uniformly in y, to obtain a partition of P = (Py), into open cells A = (A,), over Y with center (¢;);_,
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and an associated bijection 64 in the notation of Definition 3.1.11, while neglecting a definable subset
B of P where B, is of dimension less than m. By induction on m, we may apply Theorem 3.4.2 (for
the value m — 1) to the graph of (c;)

., to find a strong T;-parametrization for this graph. One obtains
the required parametrization of X by composing the parametrization of the graph of (¢;)!_, with 0;1
and f. Indeed, one first concludes as in the proof of Lemma 3.2.2 that property (x) is satisfied for this
composition and that the domain is an open cell around zero. Secondly, the composition of 1-Lipschitz
functions is 1-Lipschitz, and the first-order partial derivatives are bounded by 1 on associated boxes of its
domain. Finally, the condition of T;-approximation on each associated box follows from Proposition 3.3.2
and [Cluckers et al. 2015, Corollary 3.2.12], since the derivative is bounded by 1 on associated boxes of

its domain. O

The whole purpose of requiring the domains of strong 7}-parametrizations to be cells around zero is to
deduce existence of 7,-parametrizations from strong 7-parametrizations by precomposing with power
functions. This is enabled by the next two lemmas.

Lemma 3.4.3. Let f be a definable function on X C VF satisfying strong Ti-approximation. Then there
is some M > 0 such that for L either a model of T which is a complete discretely valued field, or a local
field with residue field cardinality at least M, the following holds for any integer r > 0 and with p, being
the r-power map sending x in L to x". For any open ball B =b(1 + My) C L with B C X, and for any
ball D C L satisfying p,(D) C B, the function

fri=fLop,

satisfies T,-approximation on D. Moreover, f, can be developed around any point b’ € D as a power

series which is converging on Dy and whose coefficients c; satisfy
lci| < |b'|”™" foralli > 0.
Proof. Observe first that since the choice of b € B is arbitrary, it suffices to show the lemma for b’ € D

with b'" = b. Since f satisfies condition (), there is a converging power series ),y @i (x — b)' as given
by Proposition 3.3.2. Since x > Y ;. ai(x — b)! satisfies T}-approximation on B, we have

> _aitx—b)

i>1

< b

for all x € Bys. By the relation between the Gauss norm and the supremum norm on By, we then have
jail < 1b|'™ (34.1)

for all i > 1. Fix b’ € D with b'" = b. Since f is given by a power series on B, by composition we can
develop f, = Zkzo cx(x —b)¥ as a power series around b’. Using multinomial development, we find
that for k > 1, .

lex] < maxila;| - b/},

Note that we could also get an explicit expression for ¢, using the chain rule for Hasse derivatives.
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Combining with equation (3.4.1) yields
Jexl < 167",

In particular, we have |cx| < 1 for k <r and for any x € D,

Dl =)t

k>r

| fr(0) =T7l (0] = <lx=b,

which concludes the proof. ]

We now formulate a multidimensional version of Lemma 3.4.3. To do so we introduce the following
notations. For a tuple i = (i1, ...,in) € N" and x = (x1, ..., x,,) € L™, recall that x' is [, -, x,i" and
il =i1+ - +in. Also define |x|min.; to be o

15j§1nl,n,;,»>o {Ix;1}-

The idea is also to precompose with the r-th power to achieve the 7,-property on boxes. A naive
approach to estimate the coefficients of the composite function, using the maximum modulus principle on
the associated box, would lead to a bound for the i € N”* coefficient of || |b'|~". This however is not
optimal and not enough for our needs. We improve it, working one variable at a time. The same idea (of
composing with r-th power maps while controlling how many pieces are needed) is used in the real case
in [Cluckers et al. 2020], but in our situation we get sharper control on the number of pieces in terms of r,
resembling the sharper control of [Binyamini and Novikov 2019]. The difficulty for the corresponding
control in [Cluckers et al. 2020] is that the cells in the o-minimal case have cell walls which also need to
get small derivatives, and, composing with powers maps changes these cell walls. In our situation, there
are no cell walls which can be considered as an advantage. On the other side, the absence of cell walls,
and more generally of convexity arguments, has been a challenge in the non-Archimedean case that we
have overcome by working with 7,-maps here and in [Cluckers et al. 2015].

Lemma 3.4.4. Let f be a definable function on X C VF" satisfying strong T\ -approximation. Then there
is some M > 0 such that for L either a model of T which is a complete discretely valued field, or a local
field with residue field cardinality at least M, the following holds for any integer r > Q.

Letb = (by,...,by) bein L™ and suppose that B =[], bi(1+ M) € L™ is a subset of X (L). For
anyd = (dy, ..., dy) in L™, write p, 4 for the function (xy, ..., xXp) > (dix], ..., dyx,,). Then for any
box D C L™ such that p, (D) C B, the function

Jra = fLopra

satisfies T,-approximation on D. Moreover, f, 4 can be developed around any point b’ € D as a power
series converging on D,s with coefficients cy satisfying

ekl < 16 1in i B" 171 for all k € N"™\{0}.

m
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Proof. Up to rescaling, we can assume d; = --- =d,, = 1. As in the proof of Lemma 3.4.3, we can fix
b e B, b’ € D such that ' = b and develop f as a power series ) . nm @i (X — b)! that converges on By.
Fix x; € l;(l + M L)g;—l and consider the function

f2, i b1(1+Mp)as— L, x1 = f(x1,X1).

It is given by a power series ZileN aj, (X1)(x1 — b1)" around b that converges on by (1 4+ M )as.
By the Tj-property for f on B,s, we have that for any x; € b1 (1 + Mp)qs,

| f5,(x1) = f5, (0D = | f(x1, X1) — f (b1, XD)| < |x1 —b1] < |by].

Hence by the relation between the Gauss norm and the supremum norm on by (1 + M ),s, for each i} > 0

we have
A 1—i
lai, (X)) < |b1] "

Now view a;, (X1) as a function of x; € l;( 1+M L)’;_l, and by using again the relation between Gauss
norm and sup norm, we find that for each i € N such that i} > 0,

e R A e
By switching the numbering of the coordinates, we get that for each i € N\ {0},
il < 1Blmin, 51"

The end of the proof is now similar to that of Lemma 3.4.3. Indeed, we develop f.4 = f o p, 4 into a
power series around ', denoted by cheNm
bound for a; we find that for £k € N\ {0},

¢k (x —b’). Then by multinomial development and using the

ki—1
lek | < |b/|fnin,k|b/ |

It is now a direct consequence of this bound that |cx| < 1 for k € N\ {0} with |k| < r.
Now fix x € D and k € N"\{0} with |k| > r. Choose some r € N" such that |r| =r and r; < k; for
j=1,...,m. We have

ek (x = b)) < 1B [ s 1617 1 = B

m
k-1 k—
< b [in i 10751 e =B |x =)
< BB =B e = b1
<|x=0b".
Hence f, 4 satisfies T,-approximation on D. O

Proof of Theorem 3.1.4. First apply Theorem 3.4.2 to X to get a finite set / and a family g = (gy.;)(y,iyey 1

of definable functions
&yi:Pyi—> X,

such that Py ; € Oy and for each y, (g,,;)ie; forms a strong T;-parametrization of X.
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By Proposition 3.3.2, we find M € N such that for any L € 6o y, any y € Y(L), any box B C P, ;(L)
and any b € B, there is a power series centered at b, converging on B,g and equal on B, to g,s. Fix such
an L and write g for gr.

Observe that it is enough to prove the theorem for r prime to g. Indeed, a 7, |-parametrization is
also a T,.-parametrization. Hence, up to enlarging the constant, if  is not prime to ¢ one can apply the
theorem with r 4 1 to obtain a T,-parametrization.

We fix an integer r prime to ¢ and we partition [qu into £ = ged(r, g — 1) sets Ay, ..., A, such that
x > x" is a bijection from each A; to (F)", the set of r-th powers in F . We choose representatives
di, ..., d for cosets of ([F;)r and we fix lifts of them, denoted by dy, ..., dy, € Op. For x € O \{0}, we
set £(x) = d; for i such that ac(x) € A;.

Now define for j = (ji, ..., jm) € {0, ...,r — 1} the function

Prj s (OL\OD™ = (OO, x = (1, ..y X)) = (P EQDX], - 176 (o)),

where ¢ is our constant symbol for a uniformizer of Oy.

Let Dy; ;= pr_j1 (Py,i(L)). By compactness and up to making M larger if necessary, we have that
P, ;(L) is acell around zero. By Hensel’s lemma, the union over j € {0, ..., r—1}" of the sets p, ; (D, ; ;)
is equal to Py ;(L). We claim that the family (g, ; = &y.i © Pr.j)(y.i, ey (L)xIx{0,...,r—1yn 18 the desired
T,-parametrization of X (L). Note that since we used in its definition the lifts d;, it is an R,-definable
family, where R, is a set of lifts of representatives of cosets of (F;)". To lighten notations, let us skip
for the rest of the proof the subscript (y, i, j). By Lemma 3.4.4 and up to making M larger if necessary,
g satisfies T,-approximation on each box contained in D. We show using 7’ -approximation for g and
ultrametric computations that g satisfies 7,-approximation on the whole D.

Fix x, y € D. If x and y are in the same box contained in D, then we are done. Assume then that they
are not.

Choose v € D such that ac(v;) =ac(y;) and |v;| = |x;|, and in the case we moreover have ac(x;) =ac(y;),
set v; = x;. Such a v exists by Hensel’s lemma and the fact that D is a cell around zero. Define w € D such
that w; = v; if |v;| = |y;| and w; = y; if |v;| # |y;|. We have that w and y lie in the same box contained
in D. There are also d, d’, d” € O as prescribed by p,. ; such that g(x) = g(dx"), g(w) = g(d'w") and
g(y)=gW@"y".

We then have

12(x) = T35 ()] < max{|g(x) — g(w)], 1§(w) — Ty (w)], [Ty (w) — Ty (x)1}

{
= max{|g(dx") — g(d'w")|. 1§(w) — Ty )l | T3 (w) — T3 ()]}
smax{|dxr d’w| w— Y1 1T (w) = T3 ()]}
< max{[x — yI", [w— ", |T;;<w>—T<’(x>|}

< max{|x — y|", | T (w) — T (x|}

<lx—yl".



Uniform Yomdin—Gromov parametrizations and points of bounded height in valued fields 1445

The first inequality is by the ultrametric triangular inequality, the second is by the global T}-property for
g and the T.-property on boxes for g. The third one is because for each i, we have |d;x] —d/w"| < |x; —y;|".
Indeed, there are three cases to consider. In one case, we have x; = w; and d; =d;, and then d;x/ —d]w" =0.
Or we have |x;| # |y;|. In that case, |w;| = |y;| and |d;| = |d{| < 1. Then by the ultrametric property we
have |x; — y;| = max{|x;[, | y;|} and

|dix] —djw"| = max{|d;x] |, |djw; |} < max{|x;|, [w;[}" = max{|x;], [y:[}".

The last case is when |x;| = |y;| and ac(x;) % ac(y;). In that case,
lwi| = |x;], ac(w;) = ac(y:), |d;| = |dj| < 1.
We then have |x; — y;| = |x;| and by the choice made in the definition of p,. ;,

ac(d;x") # ac(d/w"),

I" = |x; — yil".

The fourth inequality holds because by definition of w, either w; = y;, or w; = x;, or |w;| = |x;| = |yi|

whence |dix] —d/w"| = |dix"| < |x;

and ac(x;) # ac(w;) = ac(y;). In those three cases, we have |w; — y;| < |x; — y;|.
To conclude the proof, it remains to prove the last inequality

T3 (w) = T3 ()] < e =yl
Suppose Tgfy’ x)= ZkeN"’,lk\<r cr(x — y)" . For A € N introduce the notation

T = > ak-y~
keNm, |k|<r,keA
Then set
A'={k=(ki,....kn) e N" |k =0if |y;i| <|x; — yil},

and let A be its complement. The condition can be rephrased by writing that k; = 0 if w; # x;. In

particular, for k € A’ we have (x — y)* = (w — y)*, and hence Tg;’A/ (x) = T;’;’A/(w).

Thus it remains to show that
A LA
T (w) — T ()] < Jx =yl
We claim that

A A
T Ol < v =y and T )] < v =yl

which implies the preceding inequality.
Since for each i, |w; — y;| < |x; — y;|, it is enough to prove that for each k € A such that 0 < |k| < r,

lee(x — | < lx —yI".

From the definition of A, there is some i such that k;; > 0 and |y;,| < |x;, — ¥i,|. Suppose to lighten
the notation that ig = 1. Setr = (ry, ..., r,) withr; =k; fori > landr; =r — k| + k1 > 1.
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Recall the bound for |ci| obtained from Lemma 3.4.4. We now compute, using this bound and the

definition of r, L ol L
e (x = )| < 1y lyin i [T 1 (e = )7

< Iy Y7 = ) [
<[y — M

=yl =y
< bt =y M@ =y
<l -yl
This finishes the proof of the theorem. O

Proof of Theorem 3.1.5. The proof is similar to that of Theorem 3.1.4 above, using Theorem 3.4.2 and
then precomposition by power functions. One just needs to delete the application of compactness, and,
instead of using the map & which chooses and exploits the lifts of cosets of r-th powers in the residue
field, one uses parameters from R, to paste pieces together. (A factor b, comes in because in this general
case the pasting is rougher, since in the residue field, the number of cosets of the r-th powers fails to
equal the number of solutions of x” =1 in general.) The rest of the proof is completely similar. O

4. Points of bounded degree in [, [¢]

4.1. A counting theorem. The goal of this section is to prove the following theorem, of which Theorem A
is a particular case. Recall from the introduction that, for ¢ a prime power and n a positive integer, [, [7],
is the set of polynomials with coefficients in [, and degree (strictly) less than 7, and, for an affine variety
X defined over a subring of [, ((r)), X (F,[t]), denotes the subset of X (F,((7))) consisting of points whose
coordinates lie in F,[#],. Also, for a subset A of [, ((#))", write A, for the subset of A consisting of
points whose coordinates lie in Fg[7],.

For an affine (reduced) variety X C A% with R an integral domain contained in an algebraically closed
field K, we define the degree of X as the degree of the closure of X in P%. For example, if X is a
hypersurface given by one (reduced) equation f, then the degree of X equals the (total) degree of f.

Theorem 4.1.1. Let d, m and § be positive integers. Then there exist real numbers C = C(d, m, §) and
N = N(d, m, §) such that for each prime p > N, each power g = p* with a > 0 an integer, each integer

n > 0 and each irreducible variety X C Aﬁ @) of degree 5 and dimension d, one has

#X([Fq [t])n < anqn(d—l)-i-]—n/(ﬂ .

We first give a bound for a so-called naive degree. Define the naive degree of a variety X C A with
R an integral domain as the minimum, taken over all tuples of (nonzero) polynomials f = (f1, ..., fs)
over R with X(K) = {x € K™ | f(x) = 0}, of the product of the degrees of the f;.

Lemma 4.1.2. Let d, m, and § be positive integers. Then there exist numbers C = C(d, m, §) and
N = N(d, m, 8) such that for each prime p > N, each power g = p* with o > 0 an integer, and each
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geometrically irreducible variety X C Aﬁ @) of degree § and dimension d, one has that the naive degree
of X is bounded by C.

Proof. From the theory of Chow forms (see [Samuel 1955] or [Catanese 1992]), a variety X C N{; @) of
degree § and dimension d is determined set-theoretically by a hypersurface of degree ¢ in the Grasmanniann
of G(m—d—1, m) of (m—d—1)-dimensional vector subspaces of the m-dimensional space. As explained
for example in [Catanese 1992], one can construct from such a hypersurface a system of m (d+1) equations
of degrees at most § such that their zero sets coincide set-theoretically with X. Hence the naive degree of
X is bounded by dm(d + 1). ]

The following trivial bound for points of bounded height is typical.

Lemma 4.1.3. Let d, m and § be positive integers. Then there exist real numbers C = C(d, m, §) and
N = N(d, m, §) such that for each prime p > N, each power g = p* with a > 0 an integer, each integer
n > 0 and each irreducible variety X C Aﬁ{; ) of degree 5 and dimension d, one has

#X (Fylt])n < Cq™.
Proof. The lemma follows easily from Noether’s normalization lemma and Lemma 4.1.2. U

Let us first reduce the statement of Theorem 4.1.1 to the case of planar curves, similarly to [Pila 1995].
In this section, definable means definable in the language Lpp of Setting 3.1.1 and with O = Z.

Reduction of Theorem 4.1.1 to the case m =2 and d = 1.. Fix positive integers d, m, §. By Lemma 4.1.2,
irreducible varieties in A™ of dimension d and of degree é form a definable family of sets, say, with
parameter z in a definable (and Zariski-constructible) set Z; write X, for the variety in A™ corresponding
to the parameter z € Z. Assume first that m > 2 and d = 1. Consider the family of linear projections
DPap A" — A? written in coordinates x = Y a;x; and y =Y b;y; and with parameters (a, b) € A?" Then,
for each z € Z, there is a nonempty Zariski open subset of parameters O, € A" such that p,, j is surjective
and the varieties X; and p, »(X;) have the same degree § (and are both irreducible of dimension 1) for
all (a, b) € Oz. Clearly the open sets O, form a definable family of sets with parameter z € Z.

Now suppose that the prime p is large enough and that ¢ = p“ for some «. Since the complement of
O, is of dimension less than 2m by Lemma 4.1.3, and since the O, form a definable family, we can find
for each z € Z(F,((?))) a point (@®, b°) in O (F4[t])1 (hence, so to say, a tuple of polynomials in ¢ over
[, and of degree 0). Hence, p,o 0 maps points in [, [7];" to points in [, [t]2. Furthermore, the fibers of
Pao p0 On X are finite, uniformly in z, say, bounded by C. We thus have that for each large enough p,
each z in Z(F,((2))), and each n > 0, that

#X(FqltDn < CHp(X) (Fy[1]Dn-

Hence the result for d = 1 and general m > 1 follows from the case d = 1 and m = 2.
Assume now that m > 2 and d > 1. By a projection argument as above, we can assume that d =m — 1.
Consider the family of hyperplanes H = H, ; with equation )  «;x; = b and parameters « and b. Then
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for each z € Z there is a nonempty Zariski open subset O, of A"*+! such that if («, b) lies in O, then
X ;N Hy p is irreducible, of degree § and dimension d. Hence, similarly as above, for large enough primes
p and with g = p%, we can find for each z in Z([,((¢))) a point (@, %) in O.(F4[t])1. Now consider
the family of hyperplanes H), of equations ) _ a?xi = b with parameter b running over [F,((r)). Since
(a, b°) belongs to O.(F4[t])1, and by construction, there are at most finitely many values for b such that
(@, b) ¢ O (F4((2))), say, b1, ..., by. In any case we can assume that X; N Hj; is of dimension at most

m — 1 for each j, and hence that
#(X. N Hp,) < Cq"™!

for some C which is independent of ¢ and n, by Lemma 4.1.3. To treat the remaining part, we apply the

induction hypothesis to X g = (X, N Hp) for b outside {by, ..., by}, and we take the sum of the bounds
over all values of b in [F,[t],. O
4.2. Determinant lemma. We fix the following notation for the rest of the paper. For o = («y, ..., o)

in N set |o| =1 + - -+ . Set also
Ap (k) :={a eN" | |a| =k}, Ap (k) :={a e N" | || <k},
Ly (k) :=#An (k), Dy (k) = #A (k).

Lemma 4.2.1 [Cluckers et al. 2015, Lemma 3.3.1]. Let K be a discretely valued henselian field. Fix
w,r €N, and U an open subset of K™ contained in a box that is a product of m closed balls of valuative
radius p. Fix xy, ..., x, € U, and functions ¥y, ..., ¥, : U — K. Assume that

o the integer r satisfies
Dy (r —1) < < Dy (r);

e the functions \ry, ..., Y, satisfy T, on U.

Then
ord, (det(¥;(x;))) > pe,

where e = Y10 i Ly (i) +7(jt — Dy (r — 1)).

4.3. Hilbert functions. Fix a field K. For s a positive integer, denote K|[xo, ..., x,]s the space of
homogenous polynomials of degree s. Let / be a homogenous ideal of K|[xo, ..., x,], associated
to an irreducible variety of dimension d and degree § of P%. Let Iy = I N K|[xo, ..., x,]; and let
HF;(s) = dimg K[xo, ..., x,]s/I; be the (projective) Hilbert function of /. The Hilbert polynomial HP;
of [ is a polynomial such that for s large enough, HP;(s) = HF;(s). It is a polynomial of degree d and
leading coefficient §/d!.

Fix some monomial ordering in the sense of [Cox et al. 2015]. Denote by LT (/) the ideal generated by
leading terms of elements of /. By [Cox et al. 2015], the Hilbert functions of I and LT(/) are equal. It

follows that
HF;(s) =#a € Apy1(s) [ x¥ ¢ LT()}.
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Define also fori =0, ..., n,
oLi(s) = > ;. (4.3.1)
aE€Ap41(s), x*¢LT (1)
Hence, we have s HF;(s) = Z?:o o01.i(s). The function oy ; is also equal to a polynomial function of
degree at most d + 1, for s large enough. It follows that there exist nonnegative real numbers a;; such

that _—
1i
— —qg;;+0(1 432
SHP, (5 40 +0(/s) (4.3.2)
when s goes to +00.

Remark 4.3.1. The s chosen large enough so that HF; (s) is a polynomial and the implicit constant in
(4.3.2) depend on I. However, since HF;(s) = HFr(;), they in fact only depend on LT(/). Since they
are obtained in a pure combinatorial way, they do not depend on the field K. If we let / vary among
ideals generated by a polynomial of degree at most d, then only finitely many different LT (/) appear. So
the previous constants can be chosen uniformly over the whole family of such ideals 7.

We will also use the following lemma of Salberger [2007], which is the reason why we will use a
projective embedding in the proof of Theorem 4.1.1.

Lemma 4.3.2 [Salberger 2007]. Let X be a closed equidimensional subscheme of dimension d of P%.
Assume that no irreducible component of X is contained in the hyperplane at infinity defined by xy = 0.
Let < be the monomial ordering defined by a < B if |x| < |B| or |a| = |B| and for some i, a; > B; and
aj = pjfor j <i. Then

d
ar1+---+apm < arl

4.4. Proof of Theorem 4.1.1 for m =2 and d = 1. Fix a positive integer 6. Clearly all irreducible curves
in A? of degree § form a definable family, say, with parameter z in a definable (and Zariski-constructible)
set Z; write X, for the curve in A? corresponding to the parameter z € Z.

Apply Theorem 3.1.4 to the definable family of the definable sets X . It gives some constant C and, for
some M, all local fields K in Bz j and all integers r > O prime to gk, a T,-parametrization of X,(O)
with Cr many pieces. Fix such a K and a parameter z € Z(K) corresponding to an irreducible curve
X, C A% of degree §.

Consider the map

l :A%( — A%, x,y)y—{,x,y)

and the corresponding embedding
E:A%(<—> IP’%{, x, )= [1:x:y].

Denote by I, the homogenous ideal associated to the closure of ((X).
Fix some positive integer s, set

My(s) ={a € A3(s) |x* ¢ LT(L)}, pw=#M(s) and e=ju(u—1).
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Now consider the given 7,-parametrization of X,(Og) with r = p and work on one of the Cu pieces
U, € Ok with function g, : U, — X (Ok) satisfying T, on U.
Fix a closed ball Bg € Ok of valuative radius 8. Fix some points yi, ..., y, in (g(BgNU)), and
consider the determinant
A =det(t(yi)*) 1<i<p,aeM,(s)-

Since the composition of functions satisfying 7}, also satisfies 7;,, we can apply Lemma 4.2.1 with

m =1, r = u to get that
ord; A > Be.

On the other hand, since the points y; are of degree less than n as polynomials in ¢ over F,, , we also

have
deg A < (n—1)(o1 +02),

where o1, 0, are defined by equation (4.3.1). Hence, if A is not zero, then

ord; A < (n—1)(o1 +07).

It follows that A = 0 whenever
Be > (n—1)(o1 +07). “4.4.1)

When such an inequality holds, the matrix A = (y;) is of rank less than p. Fix a minor of maximal rank
B = (y)ier,aes and some o € M (s)\J. Then the polynomial

o

vy
Gy =det( | )
(1, x, y)* iel,aceJU{ap}

is of total degree at most s and nonzero, since the coefficient of (1, x, y)*° is det(B). Moreover, it vanishes
at all points in g(Bg NU), but does not vanish on the whole X, since its exponents lie in M, (s) and X,
is irreducible. Hence, by Bézout’s theorem, there are at most sé points in (g(Bg N U)),.

We now show how to choose s and 8 in terms of n such that inequality (4.4.1) holds. Recall that
w =#M,(s) = HF,, (s). By properties of Hilbert polynomials and equation (4.3.2), we have

u=2as+ 0(1) (4.4.2)
and

ofi
—=a;s+ 0O(1).
7

Here and below, the notation O (1) refers to s — 400, and by Remark 4.3.1, the implicit constant is

independent of z and ggx. Combining those two equations, we get
0; =a;8s*+ 0(s) and e= 1857+ 0(s),

and finally, by applying Lemma 4.3.2,
o1+o2
e

1 —1
=< g‘f‘O(S ).
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Hence there is some sg and Cy > 0 such that for every s > s,

1
Atn _ 1L o
e d
Recall that the coefficients of Hilbert polynomials can be bounded in terms of the degree of the curve

and that the characteristic is assumed to be large. Hence sy and Cy depend only on the degree § of the

curve X,.
If follows that for
s = [max{sg, 2Co(n — 1)}], (4.4.3)
we have
2% 1]
e )

We can thus set 8 = [n/d] to satisfy inequality (4.4.1). It follows from the preceding discussion that there
are at most sé points in g(Bg NU),. From equation (4.4.2), we have u < 85 + Cy, for some constant C1,
and from (4.4.3), that s < C,n for some constant C;, with C; independent of n. Since we need qﬁ closed
balls of valuative radius B to cover [, [[7]] = Ok, and since we have a T),-parametrization of X (F,[¢]])
involving Cu pieces, we find that (after enlarging C) there are at most

Cn2q™/1
points in X (F,[1]),. O
Remark 4.4.1. In the preprint [Bhargava et al. 2017], Sedunova’s result [2017] is used to bound the
2-torsion of class groups of function fields over finite fields; see their Theorem 7.1. One can use instead
our Theorem 4.1.1 in the special case of Theorem A to obtain a uniform version of their result. We thank
Paul Nelson for directing us to the reference [Bhargava et al. 2017].

5. Uniform non-Archimedean Pila—Wilkie counting theorem

In this section we provide uniform versions in the p-adic fields for large p and also in the fields [, ((¢))
of large characteristic of several of the main counting results of [Cluckers et al. 2015] (on rational points
on p-adic subanalytic sets). To achieve this we use the uniform parametrization result of Theorem 3.1.4.
Furthermore, Proposition 5.1.4 is new in all senses, and is a (uniform) non-Archimedean variant of
recent results of [Cluckers et al. 2020; Binyamini and Novikov 2019]; it should be put in contrast with
Proposition 4.1.3 of [Cluckers et al. 2015].

5.1. Hypersurface coverings. We begin by fixing some terminology.

Consider the language £ = L{j;, as described in Setting 3.1.1. From now on we only consider definable
sets which are subsets of the Cartesian powers of the valued field sort (sometimes in a concrete L-structure,
and sometimes for the theory 7).

Definition 5.1.1. Let K be an £-structure. An £(K)-definable set X C K" is said to be of dimension d
at x € X if for every small enough box containing x, X N B is of dimension d. An £L(K)-definable set
X C K" is said to be of pure dimension 4 if it is of dimension d at all points x in X (K).
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For an £(K)-definable set X C K", define the algebraic part X*'¢ of X to be the union of all quantifier-
free Lpp(K )-definable sets of pure positive dimension and contained in X. Note that the set X2 is in
general neither semialgebraic nor subanalytic.

By subanalytic we mean from now on £-definable, or £(K)-definable if we are in a fixed L-structure,
and we speak about definable families in the sense explained just below Notation 3.1.3. Likewise, by
semialgebraic we mean definable in the language Lpp, or Lpp(K )-definable if we are in a fixed structure
(see Setting 3.1.1). Write 7 for 7.

Remark 5.1.2. Observe that the definition of the algebraic part is insensitive to having or not having
algebraic Skolem functions on the residue field. Indeed, its definition is local and allows parameters from
the structure.

If x € Z, set H(x) = |x|, the absolute value of x. If x = (x1, ..., x,) € Z", set H(x) = max;{H (x;)}.
If L is a local field of characteristic zero, B > 1 and X C L", we set

X(Z,B)y={xeXNZ| H(x)<B}.
If x € F,[t], we set
H(x) = q*&",

where deg,(x) is the degree in ¢ of the polynomial x over F,. For x = (x1,...,x,) € (F,4[z])", put
H (x) =max;{H (x;)}. We now set for X C [,[[t] and B > 1

X (F,l1], B) = {x € X NF,[r]| H(x) < B}.

Recall the notation at the beginning of Section 4.1. For all integers d, n, m, set u = D,(d) and
let r be the smallest integer such that D,,(r — 1) < u < D, (r). Then set V = ZZZO kL, (k) and
e =Y 41 kL (k) +7 (it — Dy (r — 1)),

The following result refines Lemma 4.1.2 of [Cluckers et al. 2015] and has a similar proof.

Lemma 5.1.3. For all integers d, n, m with m < n, consider the integers r, V, e as defined above. Fix
a local field L, a subset U C O, an integer H and maps = (Y1, ..., ¥,) : U — Of that satisfy
T,-approximation. Then if L is of characteristic zero, the set ¥ (U)(Z, H) is contained in at most

qm (M!)m/eHmV/e

hypersurfaces of degree at most d. If L is of positive characteristic, the set Y (U)(F,[t], H) is contained

in at most
qumV/e

hypersurfaces of degree at most d. Moreover, when d goes to infinity, mV /e goes to 0.

Proof. We use the notation introduced at the beginning of Section 4.1. Under the hypothesis of the
lemma, fix a closed box B C OF of valuative radius «. Then fix points Py, ..., P, € y(BNU)(Z, H)
(or y(BNU)(F,[], H)) and consider x; € B N U such that ¥ (x;) = P;. Consider the determinant
A= det((w(x,-)f)lsisﬂ’jeAn(d). Since ¥ satisfies T,-approximation, Lemma 4.2.1 gives ord(A) > we.
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In the positive characteristic case, since the P; are in F4[7] of degree less than or equal to log, (H), if
A #0, then ord(A) < logq (H)V. Hence if a > logq (H)V /e, then A =0.

In the characteristic zero case, since the P; are in Z of height at most H, it follows that A € Z is of
(Archimedean) absolute value at most u!H". If A # 0, this implies that ord(A) < logq (w!'H"). Hence
if & > log, (u!H")/e, then A =0.

We now assume that « is chosen such that A = 0. As in the Bombieri—Pila case, by considering minors
of maximal rank, we can produce a hypersurface D of degree d such that all the P; are contained in D.
See the proof of Theorem 4.1.1 for details.

Since we need ¢™* boxes of radius « to cover O7', in the characteristic zero case, we find that we can
cover ¥ (U)(Z, H) by g™ u!"™¢ H"V/¢ hypersurfaces of degree d. In the positive characteristic case, we
can cover ¥ (U)(F4[t], H) by ¢" H™ V/¢ hypersurfaces of degree at most d.

By an explicit computation (see [Pila 2004, p. 212]), we get e~y Ci(m,n)d" "™ and V~; Co(m,n)d"*,
the equivalences being for d — +o0c. Since m < n, mV /e goes to zero as d — +o0. ]

Proposition 5.1.4. Let integers m > 0 and n > m be given. Let X = (Xy)yey € (VF"),ey be an L-
definable family of subanalytic sets with X, of dimension m in each model K of T and each y in Y (K).
Then there are a constant C(X) depending only on X, a constant C'(n, m) depending only on n and m,
and an integer N = N (X) such that for each H > 2 and each local field L € 6oy, the following holds.
Fory € Y(L) and H > 2, the set X\, (L)(Z, H) (or X, (L)(Fy,[t], H) for the positive characteristic

case) is covered by at most
C(X)qy log(H)*

hypersurfaces of degree at most C'(n, m) log(H)™/ =),

Moreover, we have « =nm/(m — 1)(n —m)) ifm > landa =n/(n—1) ifm = 1.

Proof. We work inductively on m. The case m =0 is clear, as the cardinality of the fibers is then uniformly
bounded in y. Assume now 1 < m. Apply the parametrization Theorem 3.1.4 to the definable family X.

We keep the notation from the proof of Lemma 5.1.3. Choose d as a function of H such that H""V/¢
is bounded (say by 2). From the computations at the end of the proof of Lemma 5.1.3, we can choose
d ~y C'(m, n)log(H)"/=m),

We have u ~g C3(n, m)d", and since r is the smallest integer such that D,,(r — 1) < u < Dy, (r),
we have that if m > 1, then r = Oy (u!/™~V) and if m = 1, then r = . From Theorem 3.1.4, we find
a T,-parametrization of X involving C(X)r™ pieces. From Lemma 5.1.3, the points of height at most
H on one of the pieces are included in at most g7’ (u)™eH™V/e (if L € Ap) or qr H™V/¢ (if L € Bo)
hypersurfaces of degree at most d. From the Stirling formula, we see that (u!)™/¢ is bounded. Hence
overall, up to enlarging C(X), we find that X, (L)(Z, H) or X ,(L)(F,, [t], H) is contained in

C(X)qy log(H)*

hypersurfaces of degree at most C’(n, m) log(H)™ =™ with & = nm/((m — 1)(n —m)) if m > 1 and
a=n/n—1)ifm=1. U
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5.2. Blocks. In this final section, we give uniform versions of results of [Cluckers et al. 2015, Section 4.2]
for local fields of large residue characteristic, in particular of Theorems 4.2.3 and 4.2.4 of [Cluckers et al.
2015]. We thus obtain analogs of Pila—Wilkie counting results, uniformly for local fields of large enough
positive characteristic. We leave proofs, which are analogous to the ones for Theorems 4.2.3 and 4.2.4 of
[Cluckers et al. 2015], to the reader.

Definition 5.2.1. A subset W C K™, with K an L-structure, is called a block if it is either a singleton
or a smooth subanalytic set of pure dimension d > 0 contained in a smooth semialgebraic set of pure
dimension d.

A family of blocks W € VF"**, with parameters running over VF, is a subanalytic set W such that
there exists an integer s’ > 0 and a semialgebraic set W' C VF"+" such that for each model K of 7, for
each y € KS thereisa y’ € K s" such that both Wy, (K) and Wy’,(K ) are smooth of the same pure dimension
and such that W,(K) C W;,(K ).

Note that if W is a block of positive dimension, then W = W22,

Note that our notion of family of blocks, which corresponds to the one in [Chambert-Loir and Loeser
2017], is a strengthening of the one in [Cluckers et al. 2015] which solely ask that a family of blocks W
is such that W, is a block for each y € Y. However, all the results in Section 4.2 of [Cluckers et al. 2015]
hold with this strengthened definition.

Let L be in Ap and let k > 0 be an integer. We define the k-height of x € L as

Koo
Hy(x) =min{H(a) la=(ar,....aqx) €75 Y aix' =0,a ;éo}
¢ i=0

and for x = (x1, ..., x,) € L", Hy(x) = max;{H (x;)}.
Let L € Bo and k > 0 be an integer. We define the k-height of x € L as

Koo
Hy(x) =min{H(a) la=(a1,....a0) €Ty [, Y aix' =0.a # 0}
a i=0
and for x = (x1, ..., x,) € L", Hy(x) = max; {H (x;)}.
If X CL", we set
X(k,H)={x € X | Hr(x) < H}.

The following result is a generalized and uniform version of Theorems 4.2.3 and 4.2.4 of [Cluckers
et al. 2015].

Theorem 5.2.2. Let X = (X)yey € (K")yey be a subanalytic family of subanalytic sets of dimension
m < n in each model of T. Fix € > 0. Then there are a positive constant C(X, k, €), integers | =1(X, k, €),
N =N(X,k,¢),x =a(m,n, k), and a family of blocks W = (Wy s)(, seyxx! € K" X ¥ X K' such that
the following holds.
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Foreach L € 6oy, H>1and y € Y(L), there is a subset S = S(X, k, L, H, y) C K*® of cardinality
at most C(X, €)q* H?® such that
X, (L)(k, H) S| Wy
seS
In particular, if we denote by W; the union over s € S of the Wy (L) of positive dimension, we have
We € Xy (L)€ and
» #(X(LO\Wy)(k, H) < C(X, e)g*H".

The proof of Theorem 5.2.2 is completely similar to those of [Cluckers et al. 2015, Section 4.2] (namely
to the proofs of Proposition 4.2.2 and Theorems 4.2.3 and 4.2.4), where instead of using [Cluckers et al.
2015, Proposition 4.2], one uses Proposition 5.1.4. We skip the proofs and refer to [Cluckers et al. 2015]
for details. Theorem B in the introduction is the particular case of Theorem 5.2.2 when k = 2.

Remark 5.2.3. Note also that the bound in Proposition 5.1.4 is polylogarithmic, whereas the bound of
[Cluckers et al. 2015, Proposition 4.2] is subpolynomial. However, this improvement does not guarantee a
polylogarithmic bound in the counting theorems. As in the o-minimal case, such a bound is not expected to
hold in general, but might be true in some specific situations, similar to the context of Wilkie’s conjecture
for R**P-definable sets.
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