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The apparatus of motivic stable homotopy theory provides a notion of Euler characteristic for smooth
projective varieties, valued in the Grothendieck–Witt ring of the base field. Previous work of the first
author and recent work of Déglise, Jin and Khan established a motivic Gauss–Bonnet formula relating
this Euler characteristic to pushforwards of Euler classes in motivic cohomology theories. We apply this
formula to SL-oriented motivic cohomology theories to obtain explicit characterizations of this Euler
characteristic. The main new input is a uniqueness result for pushforward maps in SL-oriented theories,
identifying these maps concretely in examples of interest.
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1. Introduction

Let k be a field and let X be a smooth projective k-scheme. Let SH(k) denote the motivic stable homotopy
category over k; recall that this comes equipped with the structure of a symmetric monoidal category,
whose tensor product we denote ∧k and whose unit object (the motivic sphere spectrum) we denote 1k .

Our starting point in this paper is the following fact, which shall be reviewed in Section 2, and which
goes back to the categorical notion of Euler characteristic introduced by Dold and Puppe [1980].

Proposition 1.1. The infinite suspension spectrum 6∞T X+ ∈ SH(k) is dualizable. In particular, we can
associate to X a natural Euler characteristic χ(X/k) ∈ EndSH(k)(1k), defined as the composition

1k
δ
→6∞T X+ ∧k (6

∞

T X+)∨
τ
→ (6∞T X+)∨ ∧k 6

∞

T X+
ε
→ 1k,

where the maps δ and ε are the coevaluation and evaluation that comprise the duality, and τ is the
symmetry isomorphism.
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For k perfect, a theorem of Morel identifies EndSH(k)(1k) with the Grothendieck–Witt group GW(k),
i.e., the Grothendieck group of k-vector spaces equipped with a nondegenerate symmetric bilinear form.
Hence, we may think of the Euler characteristic χ(X/k) as a class in GW(k). It is then natural to wonder
whether there is an explicit interpretation of this Euler characteristic in terms of symmetric bilinear forms.
An intuitive speculation is that the Euler characteristic should be given by the value of some cohomology
theory on X, equipped with an intersection pairing.

One of the main results in this paper is to make precise and confirm this speculation. To state the
result, we recall that classes in GW(k) can be represented not just by nondegenerate symmetric bilinear
forms on k-vector spaces, but also by nondegenerate symmetric bilinear forms on perfect complexes
over k (see Section 8D for a review of what this means). With this in mind, we give the following explicit
interpretation of the Euler characteristic χ(X/k).

Construction 1.2. Suppose that X is of pure dimension d . Then we have the Hodge cohomology groups
Hi (X;� j

X/k) for 0≤ i, j ≤ d and the canonical trace map

Tr : Hd(X;�d
X/k)→ k.

We define a perfect complex of k-vector spaces (with zero differential),

Hdg(X/k) :=
d⊕

i, j=0

Hi (X, � j
X/k)[ j − i],

and the trace map defines a nondegenerate symmetric bilinear form on Hdg(X/k) via the pairings

Hi (X, � j
X/k)⊗k Hd−i (X, �d− j

X/k )
∪
→ Hd(X, �d

X/k)
Tr
−→ k,

where the first map denotes the cup product (that this is indeed a nondegenerate symmetric bilinear form
will be shown in Section 8D). We thus obtain a Grothendieck–Witt class (Hdg(X/k),Tr) ∈ GW(k). This
construction extends in an evident manner to the case that X is not necessarily of pure dimension.

The next formula for χ(X/k)was proposed by J-P. Serre (private communication to Levine, 28.07.2017).

Theorem 1.3. Assume that k is a perfect field of characteristic different from two. Then χ(X/k) =
(Hdg(X/k),Tr) ∈ GW(k).

We prove a more general result over a base-scheme B; see Theorem 8.6 and Corollary 8.7 for details.
If k=R, a class in GW(k) is determined by two Z-valued invariants, rank and signature, and Theorem 1.3

reproves the following known result (see [Abelson 1976, Theorem 1; Kharlamov 1974, Theorem A]).

Corollary 1.4. Suppose that k =R and X is of even pure dimension 2n. Then the symmetric bilinear form

Hn(X, �n
X/R)×Hn(X, �n

X/R)
∪
→ H2n(X, �2n

X/R)
Tr
−→ R

has signature equal to χ top(X (R)), the classical Euler characteristic of the real points of X in the analytic
topology. In particular, we have

|χ top(X (R))| ≤ dimR Hn(X, �n
X/R).
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This is Corollary 8.8 in the text.
Besides giving an explicit formula for the rather abstractly defined χ(X/k), Theorem 1.3 opens the way

to computing χ(X/k) in the situation that X is a twisted form of another k-scheme Y, namely by twisting
the symmetric bilinear form (Hdg(Y/k),Tr) by the descent data for X. This cannot be done with the class
χ(Y/k) ∈ GW(k), as GW(−) does not satisfy Galois descent. This is discussed in detail in Section 8E.

Let us now explain our methods for proving Theorem 1.3. The idea is to use the theory of Euler classes
in motivic cohomology theories. More specifically, our focus is on cohomology theories represented
by SL-oriented motivic ring spectra; recall that this refers to a commutative monoid object E in SH(k)
equipped with a compatible system of Thom classes for oriented vector bundles (where an orientation is a
specified trivialization of the determinant line bundle). The example of interest for proving Theorem 1.3 is
hermitian K-theory; other examples of interest include Chow–Witt theory, ordinary motivic cohomology,
and algebraic K-theory (the last two are actually GL-oriented, meaning they have Thom classes for all
vector bundles). The assumption that k has characteristic different from two in Theorem 1.3 arises from
this use of hermitian K-theory, which at present is only known to satisfy the properties we need when
char(k) 6=2; we do not know of any counter-examples to our formula for χ(X/k) for k of characteristic two.

Given an SL-oriented motivic ring spectrum E ∈ SH(k), one may define certain pushforward maps in
twisted E-cohomology. Namely, if Y and Z are smooth quasiprojective k-schemes, f : Z→ Y is a proper
morphism of relative dimension d ∈ Z, and L is a line bundle on Y, then there is a pushforward map

f∗ : Ea,b(Z;ωZ/k ⊗ f ∗L)→ Ea−2d,b−d(Y ;ωY/k ⊗ L),

where ω−/k denotes the canonical bundle. This is defined abstractly via the six-functor formalism for
motivic stable homotopy theory.

We note two key examples of these pushforwards, assuming our smooth projective variety X is of pure
dimension d for simplicity:

– The structural morphism π : X→ Spec (k) gives a pushforward map

π∗ : E2d,d(X, ωX/k)→ E0,0(Spec k).

– Given a vector bundle p : V → X, the zero section s : X ↪→ V gives a pushforward map

s∗ : E0,0(X)→ E2d,d(V ; p∗ det−1(V )).

The first should be thought of as a kind of integration map. The second allows us to define the Euler
class of a vector bundle V → X,

eE(V ) := s∗s∗(1) ∈ E2d,d(X; det−1(V )),

where s again denotes the zero-section, and 1 ∈ E0,0(X) denotes the unit element.
Using the above notions, we may state the following motivic version of the classical Gauss–Bonnet

formula equating the Euler characteristic with the integral of the Euler class of the tangent bundle; this
result is a fairly immediate consequence of [Levine 2017b, Lemma 1.5]:
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Theorem 1.5 (motivic Gauss–Bonnet). Let E be an SL-oriented motivic ring spectrum in SH(k). Let
u : 1k→ E denote the unit map, inducing the map u∗ : GW(k)' 10,0

k (Spec k)→ E0,0(Spec k). Then

u∗(χ(X/k))= π∗(eE(TX/k)) ∈ E0,0(Spec k).

A general motivic Gauss–Bonnet formula is also proven in [Déglise et al. 2018, Theorem 4.6.1], which
implies the above formula by applying the unit map. Our method is somewhat different from [Déglise
et al. 2018] in that we replace their general theory of Euler classes with the more special version for
SL-oriented theories used here; see Theorem 5.3 below for our general statement of this result.

As stated above, we deduce Theorem 1.3 from Theorem 1.5 by considering the example of hermitian
K-theory, E = BO. In this case, the map u∗ :GW(k)→ BO0,0(Spec k) is an isomorphism. The deduction
requires an explicit understanding of both the Euler class eE(TX/k) and the pushforward π∗ in hermitian
K-theory; the former is fairly straightforward, but the latter requires new input.

What we do is identify the abstractly defined projective pushforward maps in hermitian K-theory with the
concrete ones defined in terms of pushforward of sheaves and Grothendieck–Serre duality. This comparison
follows from a uniqueness result we prove for pushforward maps in an SL-oriented theory E , characterizing
them, under certain further hypotheses on E , in terms of their behavior in the case of the inclusion of
the zero-section of a vector bundle (which is governed by Thom isomorphisms). We leave the detailed
statement of this result to the body of the paper (see Theorem 7.1), as it would take too long to spell out here.

Remark 1.6. Bachmann and Wickelgren [2020] discussed results closely related to those discussed here.
For example, they identified the abstract pushforward maps in hermitian K-theory with those defined by
Grothendieck–Serre duality in the case of a finite syntomic morphism (as opposed to the case of a smooth
and proper morphism between smooth schemes addressed here). Moreover, combining their identifications
of various Euler classes with our motivic Gauss–Bonnet formula, one may recover Theorem 1.3 above.

Outline. The paper is organized as follows. In Section 2, we review the basic framework of motivic
homotopy theory, as well as relevant aspects of the dualizability result Proposition 1.1. In Section 3, we
review basic facts about SL-oriented motivic ring spectra. In Section 4, we describe the abstractly defined
pushforwards in the twisted cohomology theory arising from an SL-oriented motivic ring spectrum. In
Section 5, we prove the general Gauss–Bonnet formula for SL-oriented motivic ring spectra. In Section 6,
we axiomatize the features of the twisted cohomology theory arising from an SL-oriented motivic ring
spectrum. In Section 7, we use these axioms to prove our unicity/comparison theorem characterizing the
pushforward maps in SL-oriented theories. Finally, in Section 8, we apply the previous results in specific ex-
amples of SL-oriented theories to obtain various concrete consequences, in particular proving Theorem 1.3.

2. Duality and Euler characteristics

In this section, we review the strong dualizability of smooth projective schemes as objects of the stable
motivic homotopy category, which supplies a notion of Euler characteristic for these schemes. We also
recall a result from [Levine 2017b] that gives an alternative characterization of this Euler characteristic.
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2A. Preliminaries. Let us first recall the basic framework of stable motivic homotopy theory, which
will be used throughout.

Notation 2.1. Throughout, we let B denote a noetherian separated base scheme of finite Krull dimension.
Let SchB denote the category of quasiprojective B-schemes, that is, B-schemes X → B that admit a
closed immersion i : X ↪→U over B, with U an open subscheme of PN

B for some N. Let Schpr
B denote the

subcategory of SchB with the same objects as SchB but with morphisms the proper morphisms. Let SmB

denote the full subcategory of SchB with objects the smooth (quasiprojective) B-schemes. (The same
notation will be used when working over schemes other than B.) For X a B-scheme, we will usually
denote the structure morphism by πX : X→ B.

Notation 2.2. Given X ∈ SchB , we let SH(X) denote the stable motivic homotopy category over X. We
will rely on the six-functor formalism for this construction, as established in [Ayoub 2007; Hoyois 2017].
In particular, for each morphism f : Y → X in SchB , one has the adjoint pairs of functors

SH(X)
f ∗
// SH(Y )

f∗
oo and SH(Y )

f!
// SH(X)

f !
oo ;

natural isomorphisms

(g f )∗ ' f ∗g∗, (g f )! ' f !g!, (g f )∗ ' g∗ f∗, (g f )! ' g! f!

for composable morphisms, with the usual associativity; a natural transformation η f
!∗
: f!→ f∗, which is

an isomorphism if f is proper. There are various base-change morphisms, which we will recall as needed.
In addition, for f smooth, there is a further adjoint pair

SH(Y )
f]
// SH(X)

f ∗
oo .

There is also the symmetric monoidal structure on SH(X); we denote the tensor product by ∧X and
the unit by 1X ∈ SH(X). For f a closed immersion, we have the adjoint pair f∗ a f ! arising from a
corresponding adjoint pair in the unstable setting, so we will take f! = f∗ with η f

!∗
= id. Similarly, if f is

an open immersion, we have a canonical isomorphism of adjoint pairs ( f# a f ∗)∼= ( f! a f !), so we take
f! = f# and f ! = f ∗.

We also have the unstable motivic homotopy category H•(X), which we recall is a localization of the
category Spc

•
(X) of presheaves of pointed simplicial sets on SmX . For Y → X in SmX , we write Y+

for the presheaf represented by the X -scheme Y q X→ X, that is, the presheaf Z 7→ HomSmX (X, Y )+
(here (−)+ denotes addition of a disjoint basepoint to a set and we regard a set as a constant simplicial
set). The category Spc

•
(X) has a canonical symmetric monoidal structure with unit object X+, and

H•(X) inherits this structure via the localization functor. Finally, we have the infinite suspension functor
6∞T :H•(X)→SH(X), which is canonically symmetric monoidal, so that in particular we have a canonical
identification 1X '6

∞

T X+.
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For f : Y → X a smooth morphism in SchB , the adjoint pair f] a f ∗ mentioned above for stable
motivic homotopy categories arises from an adjoint pair in the unstable setting,

H•(Y )
f]
// H•(X)

f ∗
oo ,

where the left adjoint is induced by the functor f# : Spc
•
(Y )→ Spc

•
(X) obtained as the left Kan extension

of the functor f# : SmY → Spc
•
(X) sending p :W → Y to ( f ◦ p :W → X)+.

We often write −/X for the functor 6∞T : H•(X)→ SH(X), and if πX : X → B is smooth, then
we write −/B for the functor πX# ◦6

∞

T : H•(X)→ SH(B). We use the same notation to denote the
precompositions of these functors with the functor (−)+ : SmX → H•(X).

Remark 2.3. For p : E → X an affine space bundle in SchB (that is, a torsor in the Zariski topology
for a vector bundle), the composition p] ◦ p∗ is an autoequivalence of SH(X) (this is a formulation of
homotopy invariance).

Notation 2.4 (the localization triangle). Let j :U → X be an open immersion in SchB with (reduced)
complement i : Z→ X. We have the localization distinguished triangle of endofunctors on SH(X)

j! j !→ idSH(X)→ i∗i∗→ j! j ![1], (2.4.1)

where the morphism j! j !→ idSH(X) is the counit of the adjunction j! a j ! and the morphism idSH(X)→ i∗i∗

is the unit of the adjunction i∗ a i∗. Moreover i∗ = i!, j! = j# and j ! = j∗.
We often write X Z/X for i∗(1Z ) ∈ SH(X). With this notation (and that of Notation 2.2), applying

(2.4.1) to 1X gives us the distinguished triangle in SH(X),

U/X j/X
−−→ X/X→ X Z/X→U/X [1];

in other words, we have a canonical isomorphism X Z/X '6∞T (X/U ); accordingly, we often write X Z

for the quotient presheaf X/U in H•(X).

Notation 2.5 (suspension and Thom spaces). Let p : V → X be a vector bundle over some X ∈ SchB ,
with zero-section s : X ↪→ V. We have the endofunctors

6−V, 6V
: SH(X)→ SH(X)

defined by 6−V
:= s! p∗ and 6V

:= p] ◦ s∗. These are in fact inverse autoequivalences.
The endofunctor 6V can also be written in terms of Thom spaces. Setting 0V := s(X)⊂ V, the Thom

space of the vector bundle is defined as

ThX (V ) := V/(V \ 0V ) ∈ H•(X).

To lighten the notation, we often write ThX (V ) for ThX (V )/X = 6∞T (ThX (V )) ∈ SH(X), when the
context makes the meaning clear. For πX : X → B in SmB , we set Th(V ) := πX#(ThX (V )) in H•(B),
and we similarly write Th(V ) for Th(V )/B ' πX#(ThX (V )/X) ∈ SH(B) when appropriate.
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To see the relation between the Thom space ThX (V ) and the suspension functor 6V, consider the
localization distinguished triangle

j! j !→ idV → s∗s∗→ j! j ![1],

where s still denotes the zero section and j denotes the open complement V \0V ↪→ V. Evaluating the se-
quence at 1V and noting that j! j != j# j∗ and s∗= s!, we obtain an identification between ThX (V )∈SH(X)
and p#s∗(1X )=6

V (1X ). Consequently, we have identifications πV #(s∗(1X ))' πX#(6
V (1X ))' Th(V ).

In parallel, we shall write ThX (−V ) for6−V (1X ) and Th(−V ) for πX#6
−V (1X ). With these notational

conventions, there are canonical natural isomorphisms

6V (−)' ThX (V )∧X (−), 6−V (−)' ThX (−V )∧X (−). (2.5.1)

Remark 2.6. Let Dperf(X)iso denote the subcategory of isomorphisms in the perfect derived category
Dperf(X) and let K(X) denote the groupoid associated to the K-theory space of X. Then the assignment
V 7→6V extends to a functor

6(−) : Dperf(X)iso→ Aut(SH(X)),

and moreover factors through the canonical functor Dperf(X)iso→ K(X), so that a distinguished triangle
E ′→ E→ E ′′→ E ′[1] in Dperf(X) determines a natural isomorphism 6E ′

◦6E ′′
'6E. See for example

[Riou 2010, Proposition 4.1.1] for a proof of this last statement in the special case concerning the functor
ThX (−)=6

(−)(1X ) : Dperf(X)iso→ SH(X) (which in fact implies the general statement by (2.5.1)).
In this context, for an integer n, we sometimes write n for the trivial bundle of virtual rank n; for

example, 6n+E
'6n

P1 ◦6
E for E in Dperf(X).

Remark 2.7 (Atiyah duality). For f : Y → X a smooth morphism in SchB with relative tangent bundle
T f → Y, there are canonical natural isomorphisms

f! ' f] ◦6−T f , f ! '6T f ◦ f ∗;

see [Hoyois 2017, Theorem 6.18(2)]. In addition, for f as above and V → X a vector bundle, there are
canonical natural isomorphisms

f] ◦6± f ∗V
'6±V

◦ f], f ∗ ◦6±V
'6±V

◦ f ∗,

the latter valid for an arbitrary morphism f : Y → X in SmB . Moreover, for f : Y → X an arbitrary
morphism in SchB and V → X a vector bundle, there is a canonical natural isomorphism

f ! ◦6±V
'6± f ∗V

◦ f ! ;

see the beginning of [Hoyois 2017, §5.2]. Finally, for f : Y → X a regular embedding in SchB with
normal bundle N f → Y, there is a canonical natural isomorphism

f ! '6−N f ◦ f ∗.
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In fact, the isomorphism f ! ' 6T f ◦ f ∗ for smooth f extends to the case of an lci morphism, as
follows. For f : Y → X an lci morphism in SchB , we factor f as f = p ◦ i with i : Y → Z a regular
embedding and p : Z → X a smooth morphism (both in SchB). This gives the relative virtual normal
bundle ν f := [Ni ] − [i∗TZ/X ] in K(Y ), independent up to canonical isomorphism on the choice of the
factorization. Thus, we have the canonically defined suspension automorphism 6−ν f and a canonical
natural isomorphism

f ! = i ! ◦ p! '6−Ni ◦ i∗ ◦6TZ/X ◦ p∗ '6−ν f ◦ f ∗.

One can then construct a left adjoint f] to f ∗ by setting

f] := f! ◦6ν f .

The functoriality (g f )∗ = f ∗ ◦ g∗ gives rise to the functoriality on the adjoints (g f )] = g] ◦ f] for
composable lci morphisms.

Notation 2.8. Let π : Z→ X be a morphism in SchB . For Y ∈ H•(Z), we set

Y/XB.M. := π!(6
∞

T Y ) ∈ SH(X),

and for Y ∈ SmZ , we make the abbreviation Y/XB.M. for Y+/XB.M. = π!(6
∞

T Y+). In particular, we by
definition have Z/XB.M. = π!(1Z ) ∈ SH(X).

Furthermore, for i :W ↪→ Z the inclusion of a reduced closed subscheme, we set

ZW/XB.M. := π!(i∗(1W )).

We observe two facts about this object. Firstly, letting π ′ denote the composite π ◦ i :W→ X, the isomor-
phism π ′

!
= π! ◦ i∗ determines an isomorphism ZW/XB.M.'W/XB.M.. Secondly, let j :U := Z \W→ Z

denote the open complement of W and consider the localization distinguished triangle

j! j !→ idSH(Z)→ i∗i∗.

Then the identities j ! = j∗ and i∗ = i! give a canonical distinguished triangle in SH(X),

U/XB.M.→ Z/XB.M.→ ZW/XB.M.→U/XB.M.[1].

Remark 2.9. The assignment Z 7→ Z/XB.M. extends to a functor

(−)/XB.M. : (Schpr
X )

op
→ SH(X).

This is described in a number of places, for example [Levine 2017a, §1]; we recall the construction for
the reader’s convenience, referring to [loc. cit.] for details.

Let g : Z→ Y be a proper morphism in SchX . Let πY : Y → X and πZ : Z→ X denote the structural
morphisms. As mentioned in Notation 2.2, we have a natural isomorphism η

g
!∗
: g! ' g∗. We may then

define a natural transformation g∗ : πY !→ πZ !g∗ as the composition

πY !
ug
−→ πY !g∗g∗

(η
g
!∗
)−1

−−→ πY !g!g∗ ' πZ !g∗,
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where ug : idSH(Y )→ g∗g∗ is the unit of the adjunction. Evaluating this natural transformation at 1Y gives a
map g∗= g/XB.M. :Y/XB.M.→ Z/XB.M., and it follows directly from the definitions that this construction
satisfies (gh)∗ = h∗g∗ for composable proper morphisms g, h. This establishes the claimed functoriality.

2B. Duality for smooth projective schemes. Let (C,⊗, 1, µ, τ ) be a symmetric monoidal category.
Recall that the dual of an object x of C is a triple (y, δ, ε) with δx : 1→ x ⊗ y and εx : y⊗ x→ 1 maps
such that the two compositions

x µ−1
−→ 1⊗ x δx⊗idx

−−−→ x ⊗ y⊗ x idx⊗εx
−−−→ x ⊗ 1 µ

→ x

and
y µ−1
−→ y⊗ 1 idy⊗δx

−−−→ y⊗ x ⊗ y εx⊗idy
−−−→ 1⊗ y µ

→ y

are equal to the respective identity maps (this notion goes back to [Dold and Puppe 1980]; see [May
2001] for details). In this subsection, we recall from [Hoyois 2017] the construction of the dual of a
smooth projective scheme in the stable motivic homotopy category.

Remark 2.10. Let (C,⊗, 1, µ, τ ) be a symmetric monoidal category and let x ∈ C. If a triple (y, δ, ε)
satisfying the above definition of the dual exists, then it is unique up to unique isomorphism. We often
omit specific mention of δ and ε and denote the dual object y by x∨.

When x admits a dual (x∨, δ, ε), then it is immediate that x∨ is also dualizable, with dual (x, τ ◦δ, τ ◦ε),
so that x is canonically isomorphic to (x∨)∨.

Sending x 7→ x∨ extends to a contravariant functor (−)∨ on the full subcategory of C consisting
of those objects x that admit a dual with canonical isomorphism, and the above determines a natural
isomorphism ((−)∨)∨ ' id. For f : x → z a morphism of dualizable objects in C, the dual morphism
f ∨ : z∨→ x∨ is the composition

z∨ µ−1
−→ z∨⊗ 1 idz∨⊗δx

−−−−→ z∨⊗ x ⊗ x∨ id⊗ f⊗id
−−−−→ z∨⊗ z⊗ x∨ εz⊗idx∨

−−−→ 1⊗ x∨ µ
→ x∨.

Lemma 2.11. Let πX : X → B be an object of SmB . View X ×B X as a X-scheme via the projection
p2 : X ×B X→ X onto the second factor. Then there are canonical isomorphisms

π∗X (X/BB.M.)' p2]6
−p∗1 TX/B (1X×B X )' X ×B X/XB.M.

in SH(X) and a canonical isomorphism

πX](X ×B X/XB.M.)' X/BB.M. ∧B X/B

in SH(B).

Proof. Consider the commutative square

X ×B X
p2
//

p1

��

X

πX

��

X
πX

// B
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This gives us the canonical isomorphism

TX×B X/X ' p∗1 TX/B .

We have the identities and canonical isomorphisms

π∗X (X/BB.M.)= π
∗

XπX !(1X )' π
∗

XπX]6
−TX/B (1X )

(base change)
' p2] p∗16

−TX/B (1X )

' p2]6
−p∗1 TX/B (p∗11X )= p2]6

−p∗1 TX/B (1X×B X )

which gives us the first isomorphism in SH(X). The second follows from

p2]6
−p∗1 TX/B (1X×B X )' p2]6

−TX×B X/X (1X×B X )' p2!(1X×B X )= X ×B X/XB.M..

Finally, to give the isomorphism in SH(B), we have

πX](X ×B X/XB.M.)' πX](p2](6
−TX×B X/X (1X×B X ))' πX] p1](6

−TX×B X/X (1X×B X ))

' πX] p1](6
−p∗1 TX/B (1X×B X ))' πX]6

−TX/B p1](1X×B X )' πX ! p1] p∗2(1X )

(base change)
' πX !π

∗

XπX](1X )' πX !(1X ∧X π
∗

X (X/B))
(projection formula)

' πX !(1X )∧B (X/B)= X/BB.M. ∧B X/B.

The base change isomorphisms follow from [Hoyois 2017, Theorem 6.18(3)] and the projection formula
is [Hoyois 2017, Theorem 6.18(7)]. �

Construction 2.12. Let πX : X→ B be an object of SmB that is proper (i.e., a smooth projective scheme
over B). We recall (from [Hoyois 2017], but see also the constructions of [Riou 2005; Ayoub 2007]) the
construction of a duality between the objects X/B and X/BB.M. in SH(B).

We first construct the coevaluation map δX/B : 1B→ X/B ∧B X/BB.M.. Applying the functoriality of
(−)/BB.M. from Remark 2.9 to the proper map πX gives the map

π∗X : 1B = B/BB.M.→ X/BB.M. = πX !(1X )' πX](6
−TX/B (1X ))

in SH(B), and the diagonal 1X/B : X→ X×B X induces via the functoriality of (−)/X : SmX→ SH(X)
the map

1X/B∗ :=1X/B/X : 1X = X/X→ X ×B X/X

in SH(X). We may put together these two maps to obtain the composition

1B
π∗X−→ πX](6

−TX/B (1X ))
πX]6

−TX/B (1X/B∗)
−−−−−−−−−−→ πX]6

−TX/B (X ×B X/X),

Using the identification πX]6
−TX/B (X ×B X/X)' X/B ∧B X/BB.M. from Lemma 2.11, this gives the

desired map δX/B .
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We now construct the evaluation map εX/B : X/BB.M.∧B X/B→ 1B (which does not require properness
of πX ). Here we apply the functoriality of (−)/XB.M. to the proper map 1X/B to obtain the map

1∗X/B : X ×B X/XB.M.→ X/XB.M. = 1X

in SH(X), and the functoriality of (−)/B to the map πX to obtain the map

πX∗ : X/B→ B/B = 1B .

Putting these together yields the composition

πX](X ×B X/XB.M.)
πX/B](1

∗)
−−−−−→ πX/B](1X )= X/B πX∗

−→ 1B .

Now using the identification X/BB.M. ∧B X/B ' πX](X ×B X/XB.M.) from Lemma 2.11, we get the
desired map εX/B .

It is shown in [Hoyois 2017, Corollary 6.13] that the triple (X/BB.M., δX/B, εX/B) is the dual of X/B
in SH(B). Using our notation for Thom spaces, we have

X/BB.M. = πX !(1X )' πX# ◦6
−TX/B (1X )= ThX (−TX/B)/B,

the coevaluation map is

δX/B : 1B→ X/B ∧B ThX (−TX/B)/B

and the evaluation map is

εX/B : ThX (−TX/B)/B ∧B X/B→ 1B

The dualizability of X/B as above allows one to define an Euler characteristic for smooth projective
schemes:

Definition 2.13. For X→ B in SmB and proper, the Euler characteristic χ(X/B) ∈ EndSH(B)(1B) is the
composition

1B
δX/B
−−→ X/B ∧B ThX (−TX/B)/B τ

→ ThX (−TX/B)/B ∧B X/B εX/B
−−→ 1B,

where τ denotes the symmetry isomorphism, and δX/B and εX/B are as in Construction 2.12.

To finish this section, we give an alternative characterization of the Euler characteristic χ(X/B) just
defined (Lemma 2.15 below). We proved this result in the case B = Spec k for k a field in [Levine 2017b];
the proof in this more general setting is exactly the same.

Construction 2.14. We consider X ×B X as a smooth X -scheme via the projection p2. The diagonal
1X : X→ X ×B X gives a section to p2. Let q : X ×B X→ X ×B X/(X ×B X \1X (X)) be the quotient
map. We have the Morel–Voevodsky purity isomorphism [1999, Theorem 3.2.23], which gives the
isomorphism in H•(X)

mv1 : X ×B X/(X ×B X \1X (X))−→∼ ThX (N1X ).
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Composing the 0-section sN :X→N1X with the quotient map N1X→Th(N1X ) defines s̄N :X→ThX (N1X ).
It follows from the proof of the purity isomorphism that we have the commutative diagram in H•(X)

X ×B X+
q
// X ×B X/(X ×B X \1X (X))

mv1
// ThX (N1X )

X+

q◦1X

OO

s̄N

55

1X

hh

(2.14.1)

Finally, we have the isomorphism N1X ' TX/B of vector bundles over X furnished by the composition

TX/B −→
∼ 1∗X p∗2 TX/B

i2
→1∗X (p

∗

1 TX/B ⊕ p∗2 TX/B)'1
∗

X TX×B X/B
π
→ N1X ,

where π : 1∗X TX×B X/B → N1X is the canonical projection. Putting these maps together gives us the
composition in H•(X)

X+
1X
−→ X ×B X q

→ X ×B X/(X ×B X \1X (X))
mv1
−−→ ThX (N1X )−→

∼ ThX (TX/B);

the commutativity of (2.14.1) shows that this composition is equal to the map s̄TX/B : X+→ ThX (TX/B),
induced as for s̄N1X

by the zero-section sTX/B : X→ TX/B .
Applying 6−TX/B6∞

P1(−) and the isomorphism

6−TX/B Th(TX/B)'6
−TX/B ◦6TX/B (1X )' 1X

gives the morphism

β̃X/B :6
−TX/B (1X )→ 1X

in SH(X). Finally, applying πX# gives the morphism

βX/B : Th(−TX/B)→ X/B

in SH(B).
Summarizing our construction, βX/B is given by applying πX# to the composition in SH(X)

6−TX/B (1X )
6
−TX/B (1X )
−−−−−−→6−TX/B (X×B X/X) 6

−TX/B (q)
−−−−−→6−TX/B ([X×B X/(X×B X \1X )]/X)

6
−TX/B (mv1X )
−−−−−−−→6−TX/B (ThX (N1X ))'6

−TX/B (ThX (TX/B))'6
−TX/B ◦6TX/B (1X )' 1X (2.14.2)

or equivalently, to the composition

6−TX/B (1X )
6
−TX/B (s̄TX/B )
−−−−−−−→6−TX/B (ThX (TX/B))'6

−TX/B ◦6TX/B (1X )' 1X (2.14.3)

Lemma 2.15. For X smooth and proper over B, χ(X/B) is equal to the composition

1B
π∗X
−→ Th(−TX/B)

βX/B
−−→ X/B πX∗

−→ 1B
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Proof. Let pi : X ×B X→ X, i = 1, 2, be the projections. The map

evX : X/B∨ ∧B X/B→ 1B

is the composition

X/B∨ ∧B X/B = Th(−TX/k)∧B X/B = Th(−p∗1 TX/k)
q
→ Th(−p∗1 TX/B)/Th(− j∗ p∗1 TX/B)

' Th(−TX/B ⊕ N1X )' Th(−TX/B ⊕ TX/B)' X/B πX
−→ 1B .

From our description of βX/B as πX# applied to the composition (2.14.2), we see that πX∗ ◦ βX/B =

evX/B ◦Th(1X ). Also, π∗X = π
∨

X and π∨X is given by

1B
δX/B
−−→ X/B ∧B X/B∨ = Th(−p∗2 TX/B)

p2
−→ Th(−TX/B)

It follows from the construction of the map δX/B described above that

δX/B = Th(1X ) ◦π
∗

X .

This gives us the commutative diagram

X/B ∧B X/B∨
τX,X∨

// X/B∨ ∧B X/B
evX

''
1B

δX/B

77

π∗X ''

Th(−p∗2 TX/B)
τX,X∨

// Th(−p∗1 TX/B) 1B

Th(−TX/B)

Th(1X )

55

Th(1X )

OO

βX/B

// X/B

πX∗

77

�

3. SL-oriented motivic spectra

In this section, we discuss the definition and basic features of SL-oriented motivic spectra. This is treated
in [Ananyevskiy 2016a] in the context of the motivic stable homotopy category SH(k) for k a field.
Essentially all of the constructions in [op. cit.] go through without change in the setting of a separated
noetherian base-scheme B of finite Krull dimension; the most one needs to do is replace a few arguments
that rely on Jouanolou covers with some properties coming out of the six-functor formalism. We will
recall and suitably extend Ananyevskiy’s treatment here without any claim of originality.

Definition 3.1. A motivic commutative ring spectrum in SH(B) is a triple (E, µ, u) with E in SH(B),
and µ : E ∧B E → E , u : 1B → E morphisms in SH(B), defining a commutative monoid object in the
symmetric monoidal category SH(B). We usually drop the explicit mention of the multiplication µ and
unit u unless these are needed.
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Notation 3.2. Recall that, given a motivic spectrum E ∈ SH(B), we have a notion of E-cohomology
E∗∗(X) for X ∈ H(B): this is the bigraded abelian group defined by

Ea,b(X) := HomSH(B)(6
∞

T X+,Sa,b
∧ E)

for a, b ∈ Z, where Sa,b
∈ SH(B) denotes the usual bigraded stable motivic sphere. This of course

specializes to give the E-cohomology of objects X ∈ SmB . It also specializes to give E-cohomology with
supports E∗∗Z (X) for X ∈ SmB and Z ⊆ X a closed subset: namely, we define

Ea,b
Z (X) := Ea,b(X/(X \ Z)).

For instance, if V → X is a vector bundle, then Ea,b
0V
(V )= Ea,b(Th(V )), where 0V ⊂ V is the image of

the zero-section. We further define

Ea,b
Z (Th(V )) := Ea,b

0V∩q−1(Z)(V )

for Z ⊆ X a closed subset and q : V → X a vector bundle.
A commutative ring spectrum structure on E determines a natural cup product structure on E-cohomology

and E-cohomology with supports in the usual manner; we refrain from spelling it out in detail here.

Notation 3.3. For a scheme X and a rank r vector bundle V → X, we let det V → X denote the
determinant line bundle, defined by det V :=3r V. Given two vector bundles V1→ X and V2→ X, we
have a canonical isomorphism

αV1,V2 : det(V1⊕ V2)→ (det V1)⊗OX (det V2),

characterized by requiring that, for a local basis of sections s1
1 , . . . , s1

n of V1 and s2
1 , . . . , s2

m of V2, we have

αV1,V2(((s
1
1 , 0)∧ · · · ∧ (s1

n , 0)∧ (0, s2
1)∧ · · · ∧ (0, s2

m)))= (s
1
1 ∧ · · · ∧ s1

n)⊗ (s
2
1 ∧ · · · ∧ s2

m).

This extends to a canonical natural isomorphism

αE : det V → (det V1)⊗OX (det V2)

for each exact sequence E of vector bundles on X,

0→ V1→ V → V2→ 0;

one can define αE by choosing local splittings and noting that the resulting isomorphism is independent
of the choice of splitting.

Definition 3.4. An SL-orientation of a motivic commutative ring spectrum E in SH(B) is an assignment
of elements thV,θ ∈ E2r,r (Th(V )) for each pair (V, θ) consisting of a rank r vector bundle V→ X (for any
r ≥ 0) with X ∈SmB and an isomorphism θ : det V→OX of line bundles, satisfying the following axioms:

(i) Naturality: Let (V → X, θ : det V →OX ) be as above and let f : Y → X be a morphism in SmB .
Consider the vector bundle f ∗V → Y and isomorphism f ∗θ : det f ∗V ' f ∗ det V →OY . Then we
have f ∗(thV,θ )= th f ∗V, f ∗θ .
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(ii) Products: Let (V1→ X, θ1 : det V1→OX ) and (V2→ X, θ2 : det V2→OX ) be two pairs as above.
Consider the vector bundle V1⊕V2→ X and the isomorphism θ1∧θ2 : det(V1⊕V2)→OX defined by

θ1 ∧ θ2 := (θ1⊗ θ2) ◦αV1,V2 .

Then thV1⊕V2,θ1∧θ2 = thV1,θ1 ∪ thV2,θ2 .

(iii) Normalization: For X ∈ SmB , consider the trivial vector bundle V = OX and the identity iso-
morphism θ : V → OX . Then, under the canonical identification Th(V ) ' 6T X+, the element
thV,θ ∈ E2,1(Th(V )) is the image of the unit 1 ∈ E0,0(B) under the composition

E0,0(B) π∗X−→ E0,0(X)
suspension
' E2,1(6T X+).

An SL-oriented motivic spectrum is a pair (E, th(−)) with E a motivic commutative ring spectrum and
th(−) an SL-orientation on E .

Variant 3.5. A GL-orientation, or simply orientation, on a motivic commutative ring spectrum E is an
assignment (V → X) 7→ thV ∈ E2r,r (Th(V )), where V → X is a rank r vector bundle (for any r ≥ 0) on
X ∈ SmB , satisfying the evident modifications of the axioms (i)–(iii) in Definition 3.4, i.e., omitting the
conditions on the determinant line bundle. The pair (E, th(−)) is called a GL-oriented motivic spectrum,
or more simply, an oriented motivic spectrum.

For the remainder of the section, we fix an SL-oriented motivic spectrum E . Let us first observe that
the SL-orientation determines Thom isomorphisms in E-cohomology for oriented vector bundles:

Lemma 3.6. Let (E, th(−)) be an SL-oriented motivic spectrum and let q : V → X be a rank r vector
bundle on X ∈ SmB with an isomorphism θ : det V → OX . Then sending x ∈ Ea,b

Z (X) to q∗(x)∪ thV,θ

defines an isomorphism

ϑV,θ : Ea,b
Z (X)→ Ea+2r,b+r

Z (Th(V ))

natural in (X, V, θ).

Proof. The naturality of the maps ϑV,θ follows from the naturality of the Thom classes, i.e., property (i)
in their definition.

It follows from properties (i)–(iii) of the Thom class that for V =
⊕r

i=1 OX ei and θ : det V →OX the
canonical isomorphism given by θ(e1 ∧ · · · ∧ en)= 1, the map ϑV,θ is the suspension isomorphism

Ea,b
Z (X)' Ea+2r,b+r (6r

T X+/6r
T (X \ Z)+)' Ea+2r,b+r

Z (Th(V )).

The naturality of the maps ϑV,θ allow one to use a Mayer–Vietoris sequence for a trivializing open cover
of X for V to show that ϑV,θ is an isomorphism in general. �

The above Thom isomorphism may be extended to vector bundles without orientation by introducing
twists to E-cohomology, as follows.
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Definition 3.7. For X∈SmB and q :L→X a line bundle, we define the twisted E-cohomology E∗∗(X;L) by

Ea,b(X; L) := Ea+2,b+1(Th(L))= Ea+2,b+1
0L

(L).

We also have a version with supports: given in addition a closed subset Z ⊆ X, we define

Ea,b
Z (X; L) := Ea+2,b+1

0L∩q−1(Z)(L).

Finally, when we also have a vector bundle V → X, we similarly define

Ea,b(Th(V ); L) := Ea,b
0V
(V ; q∗L), Ea,b

Z (Th(V ); L) := Ea,b
0V∩q−1(Z)(V ; q

∗L);

these definitions may be rewritten a bit, e.g., for the former we have

Ea,b(Th(V ); L)= Ea,b
0V
(V ; q∗L)= Ea+2,b+1

0V⊕L
(V ⊕ L)= Ea+2,b+1(Th(V ⊕ L)).

Remark 3.8. The product structure on E-cohomology extends to a product structure on twisted E-
cohomology: namely, for X ∈ SmB and L ,M two line bundles on X, combining the cup product

∪ : Ea+2,b+1
0L

(L)⊗ Ec+2,d+1
0M

(M)→ Ea+c+4,b+d+2
0L⊕M

(L ⊕M),

the canonical isomorphism αL ,M : det(L⊕M)→ L⊗M, and the Thom isomorphism ϑL⊕M , we get a map

∪ : Ea,b(X; L)⊗ Ec,d(X;M)→ Ea+c,b+d(X; L ⊗M),

as well as a version with supports.

Remark 3.9. The definitions of twisted E-cohomology given in Definition 3.7 are instances of a more
general definition. Namely, for X ∈ SmB , L→ X a line bundle, and any T ∈ SH(B) equipped with an
identification T ' πX](T ′) for some T ′ ∈ SH(X), we may define the twisted E-cohomology E∗∗(T ; L) by

Ea,b(T ; L) := HomSH(X)(6
L T ′,Sa+2,b+1

∧π∗XE).

Of course, this notation is abusive since E∗∗(T ; L) really depends on T ′ ∈ SH(X). This construction
recovers the notions introduced in Definition 3.7 as follows:

– We have E∗∗(X; L)' E∗∗(T ; L) for T =6∞T X+ ' πX](1X ).

– We have E∗∗Z (X; L)' E∗∗(T ; L) for T = X Z/B ' πX](X Z/X).

– We have E∗∗(Th(V ); L)' E∗∗(T ; L) for T = Th(V )' πX](ThX (V )).

The extra generality will be invoked later on (see Lemma 4.3) for the case

T = X Z/BB.M. = πX !(X Z/XB.M.)'πX](6
−TX/B X Z/XB.M.),

where the last identification is by Atiyah duality (Remark 2.7).

The following construction is due to Ananyevskiy [2016a, Corollary 1].
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Construction 3.10. Let X ∈ SmB , let q : V → X be a rank r vector bundle, and let p : L→ X denote the
determinant bundle det V ; let p′ : L−1

→ X denote the inverse of L . Then we have canonical isomorphisms

αV,L−1 : det(V ⊕ L−1)→OX , αL−1⊕L : det(L−1
⊕ L)→OX .

Consider now the two pullback bundles

pV : q∗(L−1
⊕ L)→ V, qL ⊕ p′L : p∗(V ⊕ L−1)→ L ,

which inherit trivializations of their determinants. For (E, th(−)) an SL-oriented motivic spectrum,
Lemma 3.6 gives us isomorphisms

ϑq∗(L−1⊕L),q∗αL−1⊕L
: Ea+2r,b+r

0V
(V )→ Ea+2r+2,b+r+1

q−1(0L−1⊕0L )∩p−1
V (0V )

(q∗(L−1
⊕ L))

and
ϑp∗(V⊕L−1),p∗αV⊕L−1 : E

a+2,b+1
0L

(L)→ Ea+2r+2,b+r+1
p−1(0V⊕0L−1 )∩p′−1

L (0V )
(p∗(V ⊕ L−1)).

However, as X -schemes q∗(L−1
⊕ L) and p∗(V ⊕ L−1) are both canonically isomorphic to

V ⊕ L−1
⊕ L→ X,

and via this isomorphism, the closed subsets q−1(0L−1 ⊕ 0L)∩ p−1
V (0V ) and p−1(0V ⊕ 0L−1)∩ p′−1

L (0V )

are both equal to 0V⊕L−1⊕L . We thus have a canonical isomorphism

φ : Ea+2r+2,b+r+1
q−1(0L−1⊕0L )∩p−1

V (0V )
(q∗(L−1

⊕ L))→ Ea+2r+2,b+r+1
p−1(0V⊕0L−1 )∩p′−1

L (0V )
(p∗(V ⊕ L−1))

Combining all of the above the, we obtain the Thom isomorphism

ϑV : Ea,b(X; L)→ Ea+2r,b+r (Th(V )), (3.10.1)

defined by
ϑV := ϑ

−1
q∗(L−1⊕L),q∗αL−1⊕L

◦φ ◦ϑp∗(V⊕L−1),p∗αV⊕L−1 .

This construction extends to cohomology with supports in an evident manner.

We next discuss the Thom classes in twisted E-cohomology governing this more general Thom
isomorphism.

Definition 3.11. Let X ∈ SmB and let q : V → X be a rank r vector bundle. The canonical Thom class
thV ∈ E2r,r (Th(V ); det−1 V ) is defined as follows. As noted in Definition 3.7, we have

E2r,r (Th(V ); det−1 V )= E2r+2,r+1(Th(V ⊕ det−1 V )).

The isomorphism
α := αV,det−1 V : det(V ⊕ det−1 V )→OX

gives us the Thom class thV⊕det−1 V,α ∈ E
2r+2,r+1(Th(V ⊕ det−1 V )), and we define thV to be the corre-

sponding element of E2r,r (Th(V ); det−1 V ) under the above identification.
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Remark 3.12. Let X and V be as in Definition 3.11. Let πX : X → B denote the structure morphism.
Then the Thom class thV is an element of

E2r,r (Th(V ); det−1 V )= E2r+2,r+1(πX](6
V⊕det−1(V )(1X ))

= HomSH(B)(πX](6
V⊕det−1(V )(1X ),S2r+2,r+1

∧ E)

' HomSH(X)(6
V⊕det−1(V )(1X ),S2r+2,r+1

∧π∗XE)

' HomSH(X)(1X ,S2r+2,r+1
∧6−(V⊕det−1(V ))π∗XE).

Thus, via the multiplication on E , the class thV induces a map

×thV : π
∗

XE→ S2r+2,r+1
∧6−(V⊕det−1(V ))π∗XE

in SH(X).

Lemma 3.13. The map ×thV defined above is an isomorphism in SH(X).

Proof. For each object x ∈ SH(X), ×thV induces a map

ϑV,x : HomSH(X)(x, π∗XE)→ HomSH(X)(x,S2r+2,r+1
∧6−(V⊕det−1(V ))π∗XE)

By the Yoneda lemma, it suffices to show that ϑV,x is an isomorphism for all x ∈ SH(X).
The collection of objects x for which ϑV,x is an isomorphism is closed under arbitrary direct sums,

hence is a localizing subcategory of SH(X). The objects x = Sa,b
∧ 1X are contained in this subcategory,

since for these objects the map ϑV,x identifies with the Thom isomorphism θV⊕det−1(V ),α (where α is
as in Definition 3.11). For p : Y → X in SmX , applying p∗ and using the adjunction with p] shows
that furthermore ϑV,x is an isomorphism for x = Sa,b

∧ Y/X. As SH(X) is generated as a localizing
subcategory by the objects Sa,b

∧ Y/X, this proves the lemma. �

Definition 3.14. For X ∈ SmB and V → X a rank r vector bundle, we define

ϑE
V :6

1−det Vπ∗XE→6r−Vπ∗XE

to be the composition of isomorphisms

61−det Vπ∗XE
6det V−1(×thdet V⊕det−1 V )

−1

−−−−−−−−−−−−−−−→6det−1 V−1π∗XE
61−det−1 V (×thV )
−−−−−−−−−→6r−Vπ∗XE .

Remark 3.15. Let X ∈ SmB and let V → X be a rank r vector bundle. Under the identification
Th(V )= πX#6

V (1X ) and the isomorphisms

Ea,b(X, det V )' HomSH(X)(1X ,Sa+2,b+1
∧6− det Vπ∗XE)

and
E2r+a,r+b(Th(V ))' HomSH(X)(1X ,S2r+a,r+b

∧6−Vπ∗XE),

the Thom isomorphism ϑV : Ea,b(X, det V )→ E2r+a,r+b(Th(V )) is the map induced by ϑE
V .
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Remark 3.16. Let X ∈ SmB and let V→ X and W→ X be vector bundles of respective ranks rV and rW .
We have the multiplication map

Ea,b(Th(V ), det−1 V )⊗ Ec,d(Th(W ), det−1 W )→ Ea+c,b+d(Th(V ⊕W ), det−1(V ⊕W ))

induced by the isomorphism

V/(V \ {0V })∧X W/(W \ {0W })→ (V ⊕W )/(V ⊕W \ {0V⊕W })

in H•(X) and our canonical isomorphism det(V )⊗ det(W )' det(V ⊕W ). The multiplicative property
of the Thom classes (Definition 3.4(ii)) implies a similar multiplicativity for the canonical Thom classes:

thV⊕W = thV ∪ thW .

This then implies, roughly speaking, that

“ϑE
W⊕V = ϑ

E
W ◦ϑ

E
V .”

More precisely, after using properties of 6(−) to make the necessary identifications, the following diagram
commutes:

61−det(W⊕V )π∗XE
ϑE

det W⊕det V
//

ϑE
W⊕V
��

62−(det W⊕det V )π∗XE
∼
// 61−det W61−det Vπ∗XE

61−det WϑE
E

��

6rW+rV−(W⊕V )π∗XE 6rV−V61−det Wπ∗XE
6rV −VϑE

W

oo 61−det W6rV−Vπ∗XE∼
oo

Remark 3.17. Using Remark 3.16, the definition of ϑE
−

extends to virtual bundles by setting ϑE
V−W :=

ϑE
V ◦(ϑ

E
W )
−1
= (ϑE

W )
−1
◦ϑE

V (with these identities understood as in Remark 3.16), giving the isomorphism

ϑE
V−W :6

1−det V⊗det−1 Wπ∗XE −→∼ 6rV−rW−V+Wπ∗XE .

Remark 3.16 then extends directly to virtual bundles.
If we have an exact sequence 0 → V ′ → V → V ′′ → 0, then the corresponding isomorphisms

6V
'6V ′⊕V ′′ and det V ' det(V ′⊕ V ′′) transform ϑE

V to ϑE
V ′⊕V ′′ .

Remark 3.18. If the SL-orientation on E extends to a GL-orientation, then all the results of this section for
SL-oriented theories hold for E in simplified form: we can omit all the twisting by line bundles and replace
61−det Vπ∗XE with π∗XE using the Thom class thdet V to define an isomorphism 6Tπ

∗

XE '6
det Vπ∗XE .

We close this section with one last result about twisted E-cohomology in the SL-oriented setting.

Proposition 3.19. Let X ∈ SmB , let L ,M be two line bundles on X, and let Z ⊆ X a closed subset. Then
there is a natural isomorphism

ψL ,M : E∗,∗Z (X; L)→ E∗,∗Z (X; L ⊗M⊗2).
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Proof. Let s : X→ L ⊕M be the zero-section. We have the Thom isomorphisms

E∗,∗Z (X; L)' E∗+4,∗+2
s(Z) (L ⊕M;M−1), E∗,∗Z (X; L ⊗M⊗2)' E∗+4,∗+2

s(Z) (L ⊕M;M).

Replacing L ⊕M by X and M by L , this reduces us to showing that there is a natural isomorphism

ψL : E∗,∗Z (X; L)→ E∗,∗Z (X; L−1)

For this, we follow the proof of [Ananyevskiy 2016a, Lemma 2]. We have the morphism of X -schemes

L ⊕ L−1
= L ×X L−1 µ

→ X ×B A1

defined by µ(x, y)= x · y; let Y :=µ−1(X×1). Setting L0 := L \0L and L−1
0 := L−1

\0L , we see that Y
is a closed subscheme of L ×X L−1 projecting isomorphically to L0 via p1 and isomorphically to L−1

0

via p2.
Consider the commutative diagram

Y //

p1

��

L ×X L−1

p1

��

// L ×X L−1/Y

p̄1

��

L0 // L // L/L0

whose rows are cofiber sequences. As the first two vertical maps are isomorphisms in H(B), the map p̄1

induces an isomorphism

p̄1/B : (L ×B L−1/Y )/B→ Th(L)/B

in SH(B). Similarly, we have the isomorphism

p̄2/B : (L ×B L−1/Y )/B→ Th(L−1)/B

in SH(B). Replacing X with U := X \ Z , we have the isomorphisms

p̄1U/B : (L ×B L−1
×X U/Y ×X U )/B→ Th(L ×X U )/B.

and

p̄2U/B : (L ×B L−1
×X U/Y ×X U )/B→ Th(L−1

×X U )/B

It follows that the arrows in following diagram are isomorphisms in SH(B) after applying −/B:

Th(L)/Th(L ×X U )

(L ×X L−1/Y )/(L ×X L−1
×X U/Y ×X U )

p1
33

p2 ++

Th(L−1)/Th(L−1
×X U )
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Finally, applying HomSH(B)(−, 6
∗+2,∗+1E) gives the desired isomorphism

ψL : E∗,∗Z (X; L)→ E∗,∗Z (X; L−1). �

4. Projective pushforward in twisted cohomology

In this section, we describe how one gets projective pushforward maps in twisted E-cohomology for E
an SL-oriented motivic spectrum. We rely on the six-functor formalism. This is a bit different from the
treatment of projective pushforward given by Ananyevskiy [2016a]: in that treatment, one relies on the
factorization of an arbitrary projective morphism Y → X into a closed immersion Y → X ×PN followed
by a projection X ×PN

→ X. This factorization property will however reappear in our treatment when
we discuss the uniqueness of the pushforward maps in Section 6.

We continue to work over a noetherian separated base scheme B of finite Krull dimension.

Lemma 4.1. Let s : Y → X be a section of a smooth morphism p : X → Y and let η : id → s∗s∗,
ε : s∗s∗→ id be unit and counit of adjunction. Then the composition

idSH(Y ) −→
∼ p! ◦ s! = p! ◦ s∗

s∗
→ s∗ ◦ s∗

ε
→ idSH(Y )

is the identity. Here the morphism s∗ : p!→ s∗ is the one constructed in Remark 2.9.

Proof. The functor s∗s∗ is an equivalence [Hoyois 2017, Corollary 4.19]. As a general property of adjoint
functors, s∗εs∗ ◦ ηs∗s∗ = ids∗s∗ (see, e.g., [Mac Lane 1971, p. 134]), hence s∗εs∗s∗ ◦ ηs∗s∗s∗ = ids∗s∗s∗

and thus s∗ε ◦ ηs∗ = ids∗ . The result follows from the commutative diagram

id

o

��
pX ! ◦ s∗

pX !ηs∗
��

id

''

s∗

&&

pX ! ◦ s!

pX ! ◦ s∗s∗s∗
pX !s∗ε

// pX ! ◦ s∗

pX ! ◦ s! ◦ s∗ ◦ s∗

o

��

pX !s!ε
// pX ! ◦ s!

o

��

s∗ ◦ s∗ ε
// id �

Remark 4.2. Let s : Y → V be the zero-section of a vector bundle p : V → Y. Then the canonical
isomorphism idSH(Y ) ' p!s∗ is equal to the composition

idSH(Y ) '6
−V6V

=6−V p#s∗ ' p#6
−p∗V s∗ ' p!s∗.
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Indeed 6−V6V
→ idSH(Y ) is the counit of the adjunction 6−V

a6V, corresponding to id :6V
→6V,

6−V p#s∗→ idSH(Y ) is the counit of the adjunction 6−V
= s! p∗ a p#s∗. The functors 6−V and p# are

both left adjoints, so 6−V p# is left adjoint to s∗ and the counit of the adjunction

6−V p# a p∗6V
'6 p∗V p∗ ' p! ' s∗

is the same as that of 6−V
a p#s∗. Composing with the isomorphism p! ' p#6

−p∗V
'6−V p#, we see

that the counit of the adjunction p! a s∗ is induced from that of 6−V p# a s∗, and thus agrees with the
canonical isomorphism p!s∗ ' idSH(Y ).

Lemma 4.3. Let (E, th(−)) be an SL-oriented motivic spectrum in SH(B). Suppose given X ∈ SmB of
dimension dX over B, i : Z→ X a closed subset, and p : L→ X a line bundle. Then the isomorphism

ϑE
L−TX/B

:61−det(L−TX/B)π∗XE→6
rL−TX/B−L+TX/Bπ∗XE

induces an isomorphism

ρX,Z ,L : Ea,b
Z (X;ωX/B ⊗ L)' Ea−2dX ,b−dX (X Z/BB.M.; L),

where the right-hand side is as defined in Remark 3.9.

Proof. We have det(L − TX/B) = det−1(TX/B)⊗ L = ωX/B ⊗ L and rL−TX/B = 1− dX . Moreover, we
have canonical isomorphisms

Ea,b
Z (X;ωX/B ⊗ L)' HomSH(X)(i∗(1Z ), Sa,b

∧61−ωX/B⊗Lπ∗XE)

and
Ea−2dX ,b−dX (X Z/BB.M.; L)' HomSH(X)(i∗(1Z ), Sa,b

∧6(1−dX )+TX/B−Lπ∗XE).

Finally, ϑE
L−TX/B

induces the isomorphism

Sa,b
∧ϑE

L−TX/B
: Sa,b

∧61−ωX/B⊗Lπ∗XE→ Sa,b
∧6(1−dX )+TX/B−Lπ∗XE,

which completes the proof. �

Using the isomorphisms ρX,Z ,L , we make the following definition.

Definition 4.4. Let (E, th(−)) be an SL-oriented motivic spectrum in SH(B), let f :Y→ X be a proper mor-
phism of relative dimension d in SmB , let L→ X be a line bundle, and let Z ⊂ X be a closed subset. Define

f∗ : Ea,b
f −1(Z)(Y, ωY/B ⊗ f ∗L)→ Ea−2d,b−d

Z (X, ωX/B ⊗ L)

to be the unique map making the diagram

Ea−2dY ,b−dY (Y f −1(Z)/BB.M.; f ∗L)
( f ∗)∗

// Ea−2dY ,b−dY (X Z/BB.M.; L)

Ea,b
f −1(Z)(Y, ωY/B ⊗ f ∗L)

ρY, f−1 Z , f ∗L

OO

f∗
// Ea−2d,b−d

Z (X, ωX/B ⊗ L)

ρX,Z ,L

OO

commute.
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Let p : V → Y be a rank r vector bundle on some Y ∈ SmB , with 0-section s : Y → V. Letting
L = det V, the exact sequence

0→ p∗V → TV/B
dp
−→ p∗TY/B→ 0

gives the canonical isomorphism ωV/B ' p∗(det−1 V ⊗ωY/B), or p∗ det−1 V ' ωV/B ⊗ω
−1
Y/B . Letting

(E, th) be an SL-oriented motivic spectrum, we have the pushforward map

s∗ : Ea,b(Y )→ Ea+2r,b+r (V, p∗ det−1 V ),

and the version with supports,

s∗ : Ea,b(Y )= Ea,b
Y (Y )→ Ea+2r,b+r

0V
(V, p∗ det−1 V ).

Lemma 4.5. Let 1E
Y ∈ E

0,0(Y ) be the unit π∗Y/B(u). Then

s∗(1E
Y )= thV ∈ E2r,r

0V
(V, p∗ det−1 V ).

As a consequence, s∗(1E
Y ) in E2r,r (V, p∗ det−1 V ) is the image of thV under the “forget supports” map

E2r,r
0V
(V, p∗ det−1 V )→ E2r,r (V, p∗ det−1 V ).

Proof. The exact sequence
0→ p∗V → TV/B

dp
−→ p∗TY/B→ 0

gives us the isomorphism
ω−1

V/B ⊗ det−1 V ' p∗ω−1
Y/B .

Keeping this in mind, we have the following commutative diagram defining s∗:

E−2dY ,−dY (Y/BB.M.;ω
−1
Y/B)

(s∗)∗
// E−2dY ,−dY

0V
(V/BB.M., p∗ω−1

Y/B)

E0,0
Y (Y )

ρ
Y,Y,s∗ p∗ω−1

Y/B

OO

s∗
//

s∗ **

E2r,r
0V
(V, det−1 V )

ρ
V,0V ,p∗ω

−1
Y/B

OO

forget supports
��

E2r,r (V, det−1 V )

(4.5.1)

Here the lower s∗ is the one we are considering and the upper s∗ is the map with supports. Thus, we need
to show that the upper s∗ satisfies s∗(1E

Y )= thV .
We will be using the isomorphisms

E−2dY ,−dY (Y/BB.M.;ω
−1
Y/B)' HomSH(Y )(1Y , 6

1−dY+TY/B−ω
−1
Y/Bπ∗YE),

E−2dY ,−dY
0V

(V/BB.M., p∗ω−1
Y/B)' HomSH(V )(s∗(1Y ),6

1−dY+TV/B−p∗ω−1
Y/Bπ∗V E),

E2r,r
0V
(V, det−1 V )' HomSH(V )(s∗(1V ),6

r+1−det−1 Vπ∗V E).

(4.5.2)
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By Lemma 4.1, the composition

πY ! −→
∼ πV ! ◦ s!

πV !α
−−→ πV ! ◦ s∗ s∗

→ πY !

is the identity. Evaluating at 1Y gives the commutative diagram

YB.M.
φ

∼
// πV !(s∗(1Y ))

s∗xx

V0V /BB.M.

YB.M.

(4.5.3)

and the isomorphism φ induces the isomorphism

φ∗ : E−2dY ,−dY
0V

(V/BB.M., p∗ω−1
Y/B)→ E−2dY ,−dY (YB.M., ω

−1
Y/B).

The isomorphism ρV,0V ,p∗ω−1
Y/B

is the map induced on HomSH(V )(s∗(1Y ),−) by the isomorphism

ϑp∗ω−1
Y/B−TV/B

:61−det−1 Vπ∗V E→61−dV+TV/B−p∗ω−1
Y /Bπ∗V E .

We have the isomorphisms

6r−Vϑ−V :6
r+1−V−det−1 Vπ∗YE→ π∗YE,

6r−Vϑω−1
Y/B−TY/B−V :6

r+1−V−det−1 Vπ∗YE→6r+1−dY+TY/B−ωY/Bπ∗YE,

ϑωY/B−TT/B : π
∗

YE→61−dY+TY/B−ωY/Bπ∗YE .

The first induces an isomorphism

ρ−V : HomSH(Y )(1Y , 6
r+1−V−det−1 Vπ∗YE)→ E0,0(Y ),

the second an isomorphism

ρTY/B+V−ω−1
Y/B
: HomSH(Y )(1Y , 6

r+1−V−det−1 Vπ∗YE)→ E−2dY ,−dY (Y/BB.M., ω
−1
Y/B),

while the third induces the isomorphism

ρY,Y,ω−1
Y/B
: E0,0(Y )→ E−2dT Y,−dY (Y/BB.M., ω

−1
Y/B).

Altogether these maps and isomorphisms gives the diagram of isomorphisms

E−2dY ,−dY
0V

(V/BB.M., p∗ω−1
Y/B)

φ∗
// E−2dY ,−dY (Y/BB.M., ω

−1
Y/B)

E0,0(Y )

ρ
Y,Y,ω−1

Y/B
hh

E2r,r
0V
(V, det−1 V )

ρV,0V ,det−1 V

OO

ψ
// HomSH(Y )(1Y , 6

r+1−V−det−1 Vπ∗YE)

ρTY/B+V−ωY/B

OO

ρ−V

66
(4.5.4)
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The triangle commutes by the functoriality of ϑ−, as expressed by Remark 3.16.
To see that square commutes, we have the diagram

6
1−d+TV−p∗ω−1

Y/Bπ∗V E
∼
// 6

1−d+p∗(TY+V−ω−1
Y/B)π∗V E

∼
// p∗61−d+TY+V−ω−1

Y/Bπ∗YE

6r+1−p∗ det−1 Vπ∗V E

6r
Tϑp∗ω−1

Y/B−TV/B

OO

6r+1−p∗ det−1 Vπ∗V E ∼
//

6r
Tϑp∗(ω−1

Y/B−TY/B−V )

OO

p∗6r+1−det−1 Vπ∗YE

p∗6r
Tϑω−1

Y/B−TY/B−V

OO

The first square commutes using the exact sequence 0→ p∗V → TV/B→ p∗TY/B→ 0 and the second
by the naturality of ϑ−. Applying the adjunction p# a p∗, the identity p#s∗ =6V and applying 6−V to
yield the isomorphism [6V x, y]SH(Y ) ' [x, 6V y]SH(Y ), applying HomSH(V )(s∗(1Y ),−) to the last map
gives the commutative square

HomSH(V )(s∗(1Y ), p∗61−d+TY+V−ω−1
Y/Bπ∗YE)

∼

++

HomSH(Y )(1Y , 6
1−d+TY−ω

−1
Y/Bπ∗YE)

HomSH(V )(s∗(1Y ), p∗6r+1−det−1 Vπ∗YE)

p∗6r
P1ϑω−1

Y/B−TY/B−V∗

OO

∼
++

HomSH(Y )(1Y , 6
r+1−V−det−1 Vπ∗YE)

6r−Vϑ
ω
−1
Y/B−TY/B−V∗

OO

Applying HomSH(V )(s∗(1Y ),−) to the first diagram, putting these two diagrams together and using the
isomorphisms (4.5.2) and Remark 4.2 gives the commutativity of the square in (4.5.4).

It follows from the commutativity of (4.5.3) that φ∗ ◦ (s∗)∗ ◦ ρY,Y,ω−1
Y/B
= ρY,Y,ω−1

Y/B
. The commutativity

of (4.5.1) and (4.5.4) then shows that ρ−V ◦ψ ◦ s∗ = id. By Remarks 3.15 and 3.16 the map ρ−V ◦ψ

is the inverse of the canonical Thom isomorphism ϑV : E0,0(Y )→ E2r,r
0V
(V, det−1 V ). Thus s∗ = ϑV so

s∗(1E
Y )= thV . �

Remark 4.6. If we have a GL-orientation on E , we have functorial pushforward maps

f∗ : Ea,b
W (Y )→ Ea−2d,b−d

Z (X)

for f : Y→ X a projective morphism in SmB , of relative dimension d , with W ⊂ Y, Z ⊂ X closed subsets
with f (W )⊂ Z . All the results of this section hold in the oriented context after deleting the twist by line
bundles. This follows from Remark 3.18.
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5. Motivic Gauss–Bonnet

Definition 5.1. Let p : V → X be a rank r vector bundle on some X ∈ SmB , and let E ∈ SH(B) be an
SL-oriented motivic ring spectrum. The Euler class eE(V ) ∈ E2r,r (X, det−1 V ) is defined as

eE(V ) := s∗s∗(1E
X ); 1E

X ∈ E
0,0(X) the unit.

Remark 5.2. By Lemma 4.5, eE(V ) := s∗s∗(1EX )= s̄∗thV , where s̄ : X→ThX (V ) is the map induced by s.

Theorem 5.3 (motivic Gauss–Bonnet). Let E ∈ SH(B) be an SL-oriented motivic ring spectrum, πX :

X→ B a smooth and projective B-scheme, let uE : 1B→ E be the unit map. Then

πX/B∗(eE(TX/B))= uE∗(χ(X/B)) ∈ E0,0(B).

Proof. We have the canonical Thom isomorphism

ϑE
−TX/B

: Ea,b(X;ωX/B)→ Ea−2 dim X,b−dim X (Th(−TX/B)).

By Lemma 2.15, it suffices to show that the map

β∗X/B : E
0,0(X)→ E0,0(Th(−TX/B))

sends 1E
X to ϑE

−TX/B
(eE(TX/B)); by Remark 5.2, this is the same as ϑ−TX/B (s̄

∗thTX/B ), where

s̄ : X+→ Th(TX/B)

is the map induced by the zero-section s : X→ TX/B .
We use our description of βX/B as πX# applied to (2.14.3). Applying HomSH(X)(−, π

∗

XE) to βX/B and
using the adjunction HomSH(B)(πX#(−), E) ' HomSH(X)(−, π

∗

XE), we have that β∗X/B is given by the
composition

E0,0(X) a
∼
−→ HomSH(X)(1X , π

∗

XE)
b
∼
−→ HomSH(X)(6

−TX/B ◦6TX/B (1X ), π
∗

XE)
c
∼
−→ HomSH(X)(ThX (TX/B)),6

TX/Bπ∗XE)
s̄∗
→ HomSH(X)(1X , 6

TX/Bπ∗XE)

' HomSH(X)(6
−TX/B (ThX (TX/B)), π

∗

XE)

where the isomorphisms a, b, c are the canonical ones.
The functoriality of the canonical Thom isomorphisms gives us the commutative diagram

E0,0(X)
ϑTX/B

//

ao
��

E2dX ,dX (Th(TX/B), ωX/B)

ϑE
−TX/B

��

HomSH(X)(1X , π
∗

XE)

bo
��

HomSH(X)(6
−TX/B6TX/B (1X ), π

∗

XE) c
∼
// HomSH(X)(ThX (TX/B),6

TX/Bπ∗XE)
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Thus
(c ◦ b ◦ a)(1E

X )= ϑ
E
−TX/B

(thTX/B ).

Applying ϑE
−TX/B

as above gives us the commutative diagram

E2dX ,dX (Th(TX/B), ωX/B)
s̄∗

//

ϑE
−TX/B

��

E2dX ,dX (X, ωX/B)

ϑE
−TX/B
��

HomSH(X)(ThX (TX/B),6
TX/Bπ∗XE) s̄∗

//

o

��

HomSH(X)(1X , 6
TX/Bπ∗XE)

o

��

HomSH(X)(6
−TX/B ThX (TX/B), π

∗

XE)
6
−TX/B (s̄∗)

// HomSH(X)(6
−TX/B (1X ), π

∗

XE)

and thus
β∗X/B(1

E
X )= ϑ−TX/B (s̄

∗(thTX/B ))= ϑ−TX/B (e
E(TX/B)),

as desired. �

6. SL-oriented cohomology theories

Our ultimate goal is to apply the Gauss–Bonnet theorem of Section 5 when projective pushforwards are
defined on a representable cohomology theory in some concrete manner, not necessarily relying on the
six-functor formalism. For this, we need a suitable axiomatization for such theories; we use a modification
of the axioms of Panin and Smirnov [Panin 2003; 2009]. As before, our base-scheme B is a noetherian,
separated scheme of finite Krull dimension.

Definition 6.1. We let Sm-LB denote the category of triples (X, Z , L) with X in SmB , Z ⊂ X a closed
subset and L→ X a line bundle. A morphism ( f, f̃ ) : (X, Z , L)→ (Y,W,M) is a morphism f : X→ Y
with Z ⊃ f −1(W ), together with an isomorphism of line bundles f̃ : L→ f ∗M. We let Sm-Lpr

B denote
the category with the same objects as Sm-LB , but with morphisms ( f ; f̃ ) : (X, Z , L)→ (Y,W,M) a
proper morphism f : X→ Y in SmB , with f (Z)⊂W, and f̃ : L→ f ∗M an isomorphism of line bundles.

Definition 6.2. An SL-oriented cohomology theory on SmB consists of the following data:

(D1) A functor H∗,∗ : Sm-Lop
B → BiGrAb, (X, Z , L) 7→ H∗,∗Z (X; L); we often write f ∗ for H∗,∗( f, f̃ ).

(D2) A functor H∗,∗ : Sm-Lpr
B → GrAb, (X, Z , L) 7→ H Z

∗,∗(X, L); we often write f∗ for H∗,∗( f, f̃ ).

(D3) Natural isomorphisms, for X of dimension dX

H 2dX−n,dX−m
Z (X, ωX/B ⊗ L) αX,Z ,L

−−−→ H Z
n,m(X, L).

(D4) An element 1 ∈ H 0,0
B (B;OB). For x := (X, Z , L), y := (Y,W,M) in Sm-LB , a bigraded cup

product map

∪x,y : H
∗,∗
Z (X, L)⊗ H∗,∗W (Y,M)→ H∗,∗Z×W (X ×B Y, p∗1 L ⊗ p∗2 M)
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(D5) For Z ⊂W closed subsets of an X ∈ SmB a bigraded boundary map

δ
∗,∗
X,W,Z : H

∗,∗
Z\W (X \W ; j∗W L)→ H∗+1,∗

W (X, L)

We write H∗,∗(X, L) for H∗,∗X (X, L) and H∗,∗Z (X) for H∗,∗Z (X,OX ); we use the analogous notation
for H∗,∗. We write ∪ for ∪x,y and δ for δX,Z ,L when the context makes the meaning clear.

For f : Y → X a proper map of relative dimension d in SmB , with Z ⊂ X, W ⊂ Y closed subsets with
f (W )⊂ Z and L→ X a line bundle, combining (D2) and (D3) gives us pushforward maps

f∗ : H
∗,∗
W (Y, ωY/B ⊗ f ∗L)→ H∗−2d,∗−d

Z (X, ωX/B ⊗ L)

defined as the composition

H∗,∗W (Y, ωY/B ⊗ f ∗L)
α−1

Y,W, f ∗L
−−−−→ H W

2dY−∗,dY−∗
(Y, f ∗L)

f∗
−→ H Z

2dY−∗,dY−∗
(X, L) αX,Z ,L

−−−→ H∗−2d,∗−d
Z (X, ωX/B ⊗ L).

These data are required to satisfy the following axioms:

(A1) H∗,∗ and H∗,∗ are additive: H∗,∗ transforms disjoint unions to products and H∗,∗ transforms disjoint
unions to coproducts; in particular, H∗,∗Z (∅, L)= 0 and H Z

∗,∗(∅, L)= 0.

(A2) Let

Y ′

f ′
��

g′
// Y

f
��

X ′ g
// X

be a cartesian diagram in SchB , with X, Y, X ′, Y ′ in SmB (sometimes called a transverse cartesian
diagram in SmB) and with f, f ′ proper of relative dimension d. This gives us the isomorphism

f ′∗ωX ′/X ' ωY ′/Y .

Let Z ⊂ X be a closed subset, let W ⊂ Y be a closed subset with f (W ) ⊂ Z , let Z ′ = g−1(Z),
W ′ = g′−1(W ). Let L→ X be a line bundle on X and let L ′ = g′∗(L). Then the diagram

H∗,∗W ′ (Y
′, ωY ′/B ⊗ω

−1
Y ′/Y ⊗ g′∗L ′)

f ′∗
��

H∗,∗W (Y, ωY/B ⊗ f ∗L)
g′∗

oo

f∗
��

H∗−2d,∗−d
Z ′ (X ′, ωX ′/B ⊗ω

−1
X ′/X ⊗ L ′) H∗−2d,∗−d

Z (X, ωX/B ⊗ L)
g∗
oo

commutes.
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(A3) For Z ⊂W closed subsets of an X ∈ SmB , let U = X \ Z with inclusion j :U→ X. For L→ X a
line bundle, this gives us the morphisms

(id, id) : (X,W, L)→ (X, Z , L) and ( j, id) : (U,W \ Z , j∗L)→ (X,W, L).

Then the sequence

· · ·
δZ ,W,X
−−−→ H∗,∗Z (X, L)→ H∗,∗W (X, L) j∗

→ H∗,∗W\Z (U, j∗L) δZ ,W,X
−−−→ H∗+1,∗

Z (X, L)→ · · ·

is exact. Moreover, the maps δZ ,W,X are natural with respect to the pullback maps g∗ and the
proper pushforward maps f∗.

(A4) Let i : Y → X be a closed immersion in SmB , let W ⊂ Y be a closed subset, L→ X a line bundle.
Let Z = i(W ), giving the morphism (i, id) : (Y,W, i∗L)→ (X, Z , L) in Sm-Lpr

B . Then

i∗ : H W
∗,∗(Y, i∗L)→ H Z

∗,∗(X, L)

is an isomorphism.

(A5) The cup products ∪ of (D4) are associative with unit 1. The maps f ∗ and f∗ are compatible with
cup products: ( f × g)∗(α ∪x,y β)= f ∗(α)∪x,y g∗(β). Moreover, using the isomorphisms of (D3),
the cup products induce products ∪x,y on H∗,∗ and one has ( f × g)∗(α∪x,y β)= f∗(α)∪x,y g∗(β).
Finally, the boundary maps δZ ,W,X are module morphism: retaining the notation of (D4), for
α ∈ H∗,∗Z\W (X \W ; j∗W L) and β ∈ H∗,∗T (Y,M), we have

δX×Y,Z×T,W×T (α ∪β)= δX,Z ,W (α)∪β.

(A6) Let i : Y → X be a closed immersion in SmB of codimension c, πY : Y → B the structure map.
Let 1H

Y ∈ H 0,0(Y ) be the element π∗Y (1). Then ϑ(i) := αX,Y (i∗(1H
Y )) ∈ H 2c,c

Y (X, det−1 Ni ) is
central, that is, for each (U, T,M) ∈ Sm-LB , and each β ∈ H∗,∗T (U,M), we have

τ ∗(β ∪ϑ(i))= ϑ(i)∪β

where τ : X ×B U →U ×B X is the symmetry isomorphism.

(A7) Let ( f, id) : (Y,W, f ∗L)→ (X, Z , L) be a morphism in Sm-LB . Suppose that the induced map
f : YW/B→ X Z/B is an isomorphism in SH(B). Then

f ∗ : H∗,∗Z (X, L)→ H∗,∗W (Y, f ∗L)

is an isomorphism.

Remark 6.3. It may seem strange that the proper pushforward maps respect products in the sense of (A5);
one might rather expect a projection formula. However, (A5) asks that the proper pushforward maps
respect external products, not cup products, and in fact, having the pushforward and pullback maps
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respect products as in (A5) implies the projection formula, as one sees by considering the commutative
pentagon associated to a proper morphism f : Y → X in SmB of relative dimension d:

Y

f

��

γ f :=( f×idX )◦1Y

��

1Y

// Y ×B Y

f×idY %%

X ×B Y

idX× fyy

X
1X

// X ×B X

Note that the square

Y
γ f
//

f
��

X ×B Y

idX× f
��

X
1X

// X ×B X

is transverse cartesian. If we have closed subsets Z ⊂ X, W ⊂ Y with f (W )⊂ Z , and line bundle L→ X,
the pentagon diagram induces the diagram in cohomology

H∗,∗W (Y, ωY/B ⊗ f ∗L)Y

f∗

��

H∗,∗W×W (Y ×B Y, ωY/B ⊗ f ∗L)
1∗Y

oo

H∗,∗Z×W (X ×B Y, ωY/B � L)

γ ∗f

ww

( f×idY )
∗

jj

(idX× f )∗uu

H∗−2d,∗−d
Z (X, ωX/B ⊗ L) H∗−2d,∗−d

Z×Z (X ×B X, ωX/B ⊗ L)
1∗X

oo

Take α ∈ Ha,b
Z (X,M), β ∈ H c,d

W (Y, ωY/B ⊗ f ∗(L ⊗M−1)). By functoriality of (−)∗ and (A5) for (−)∗

we have γ ∗f (α ∪X,Y β)= f ∗(α)∪Y β and by (A2) and (A5) for (−)∗ we have

f∗( f ∗(α)∪Y β)=1
∗

X (idX × f )∗(α ∪X,Y β)= α ∪X f∗(β).

Similarly, in the presence of (A2) and (A5) for (−)∗, functoriality for (−)∗ and (−)∗ and the projection
formula implies (A5) for (−)∗.
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Definition 6.4. A twisted cohomology theory on SmB is given by the data (D1), (D4), (D5) above,
satisfying the parts of the axioms (A1), (A3)–(A7) that only involve H∗,∗. Given an SL-oriented coho-
mology theory (H∗,∗, H∗,∗, . . .) on SmB , one has the underlying twisted cohomology theory (H∗,∗, . . .)
by forgetting the proper pushforward maps.

Example 6.5. The primary example of an SL-oriented cohomology theory on SmB is the one induced by
an SL-oriented motivic spectrum E ∈ SH(B):

(X, Z , L) 7→ E∗,∗Z (X; L).

One defines, for X ∈ SmB of dimension dX over B,

E Z
m,n(X; L) := E2dX−m,dX−n

Z (X;ωX/B ⊗ L);

we extend the definition to arbitrary X ∈ SmB by taking the sum over the connected components of X
and write this also as E2dX−m,dX−n

Z (X;ωX/B ⊗ L) by considering dX as a locally constant functor on X.
The pushforward maps for a proper morphism of relative dimension d, f : Y → X, closed subsets

W ⊂ Y, Z ⊂ X with f (W )⊂ Z and line bundle L→ X are given by the pushforward

f∗ : E2dY−m,2dY−n
W (Y ;ωY/B ⊗ f ∗L)→ E2dX−m,2dX−n

Z (X;ωX/B ⊗ L).

7. Comparison isomorphisms

We recall the element η∈HomSH(B)(1B, S−1,−1
∧1B) induced by the map of B-schemes η :A2

\{0}→P1,
η(a, b) = (a : b). As every E ∈ SH(B) is a module for 1B , we have the map ×η : E → S−1,−1

∧ E for
each x ∈ SH(B). We say that η acts invertibly on E if ×η is an isomorphism in SH(B).

We consider the following situation: fix an SL-oriented motivic spectrum E ∈ SH(B). This gives us the
twisted cohomology theory E∗,∗ underlying the oriented cohomology defined by E . Let (E∗,∗, Ẽ∗,∗) be an ex-
tension of E∗,∗ to an oriented cohomology theory on SmB , in other words, we define new pushforward maps

f̂∗ : E∗,∗W (Y, ωY/B ⊗ f ∗L)→ E∗−2d,∗−d
Z (X, ωX/B ⊗ L)

The main result of this section is a comparison theorem. Before stating the result we recall the decom-
position of SH(B)[1/2] into plus and minus parts.

We have the involution τ : 1B→ 1B induced by the symmetry isomorphism τ : P1
∧P1
→ P1

∧P1. In
SH(B)[1/2], this gives us the idempotents (id+ τ)/2, (id− τ)/2, and so decomposes SH(B)[1/2] into
+1 and -1 “eigenspaces” for τ :

SH(B)[1/2] = SH(B)+×SH(B)−

We decompose E ∈ SH(B)[1/2] as E = E+⊕ E−.

Theorem 7.1. Suppose the pushforward maps

f∗, f̂∗ : E∗,∗W (Y, ωY/B ⊗ f ∗L)→ E∗−2d,∗−d
Z (X, ωX/B ⊗ L)
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agree for W, Z , L , X = V a vector bundle over Y and f : Y → V the zero-section. Suppose in addition
that one of the following conditions holds:

(i) The SL-orientation of E extends to a GL-orientation.

(ii) η acts invertibly on E .

(iii) 2 acts invertibly on E and E−1,0
+ (U )= 0 for affine U in SmB .

Then f∗ = f̂∗ for all X, Y, Z ,W, L , f for which the pushforward is defined.

Proof. By the standard argument of deformation to the normal cone, it follows that f∗ = f̂∗ for all
f : Y → X a closed immersion, Z ,W, L . As every proper map in SmB is projective, f admits a
factorization f = p ◦ i , with i : Y → X ×B PN a closed immersion and p : X ×B PN

→ X the projection.
By functoriality of the pushforward maps, it suffices to check that p∗ = p̂∗.

In case (i), this follows from the uniqueness assertion in [Panin 2009, Theorem 2.5(i)]. Indeed, the
cohomology theory associated to a GL-oriented motivic spectrum E satisfies the axioms of Panin and
Smirnov and the associated Thom isomorphisms give rise to an “orientation” in the sense of [Panin 2009,
Definition 1.9], so we may apply the results cited. We note that in [Panin 2009] the base-scheme is Spec k,
with k a field, so [loc. cit.] does not immediately apply to our setting of a more general base-scheme; we
say a few words about the extension of this result to our base-scheme B. As a proper map f : Y → X
in SmB is projective, one factors f as f = p ◦ i , with i : Y → Pn

X a closed immersion and p : Pn
X → X

the projection. The uniqueness for a closed immersion in SmB reduces to the case of the zero-section of
a vector bundle by the usual method of deformation to the normal bundle, and as the pushforward by
the zero-section of our two theories are the same by assumption, we have agreement in the case of a
closed immersion. For the projection p, the proof of [Panin 2009, Theorem 2.5(i)] relies on [Panin 2004,
Theorem 1.1.9], where for p, using the projective bundle formula, the key point is to show that both
pushforwards have the same value on the unit 1Pn

X
∈ E0,0(Pn

X ). The proof of this relies on the formula for
the pushforward of 1Pn

X
under the diagonal 1Pn

X
: Pn

X → Pn
X ×X Pn

X given by [Panin 2004, Lemma 1.9.4].
As 1Pn

X
is a closed immersion, the two pushforwards under 1Pn

X
agree, and the proof of the formula in

[Panin 2004, Lemma 1.9.4] uses only formal properties of pushforward and pullback as expressed in our
axioms, plus the projective bundle formula. This latter in turn relies only on properties of the Thom class
of O(−1) and localization with respect to Am

X ⊂ Pm
X , and thus we may use [Panin 2004, Lemma 1.9.4] in

our more general setting. The argument that the pushforward of 1Pn
X

under p can be recovered from the
formula for the pushforward of 1Pn

X
under 1Pn

X
is elementary and formal, and only uses the restriction of

the two theories to Sm-LX , and not the fact that these restrictions come from theories over k. Thus, the
argument used in the proof of [Panin 2004, Lemma 1.9.4] may be used to prove our result in case (i).

In case (ii), we use Lemma 7.2 below. Indeed, if N is odd, we may apply the closed immersion
X×B PN

→ X×B PN+1 as a hyperplane, so we reduce to the case N even, in which case both p∗ and p̂∗
are inverse to the map i∗, where i : X→ X×B PN is the section associated to the point (1 : 0 : . . . : 0) of PN.
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In case (iii) we may work in the category SH(B)[1/2]. We decompose E ∈ SH(B)[1/2] as E = E+⊕E−
and similarly decompose the pushforward maps f∗ and f̂∗. By Lemma 7.5, η acts invertibly on SH(B)−

and the projection of η to SH(B)+ is zero. By Lemma 7.3 below, the SL-orientation of E induces an
SL-orientation on the projection E+ that extends to a GL-orientation. By (i), this implies that f +

∗
= f̂ +
∗

.
By (ii), f −

∗
= f̂ −
∗

, so f∗ = f̂∗. �

Lemma 7.2 [Ananyevskiy 2016a, Theorem 1]. Let E ∈ SH(B) be an SL-oriented motivic spectrum on
which η acts invertibly. Let 0 ∈ PN (Z) be the point (1 : 0 . . . : 0). For X ∈ SmB , L→ X a line bundle and
Z ⊂ X a closed subset, the pushforward map

i∗ : E∗−2N ,∗−N
Z (X, ωX/B ⊗ L)→ E∗,∗p−1(Z)(X ×B PN , ωPN /B ⊗ p∗L)

is an isomorphism.

Proof. Using a Mayer–Vietoris sequence, we see that the statement is local on X for the Zariski topology,
so we may assume that L = OX . If we prove the statement for the pair (X, X) and (X \ Z , X \ Z) the
local cohomology sequence gives the result for (X, Z), thus we may assume that Z = X, and we reduce
to showing that

i∗ : E∗−2N ,∗−N (X, ωX/B)→ E∗,∗(X ×B PN , ωPN /B)

is an isomorphism.
This is [Ananyevskiy 2016a, Theorem 4.6] in case B = Spec k, k a field. The proof over a general

base-scheme is essentially the same, we say a few words about this generalization. Most of the results
that are used in the proof of [loc. cit.] are already proved in the required generality here, for example,
the Thom isomorphism (3.10.1) of Construction 3.10 generalizes Ananyevskiy’s construction [2016a,
Corollary 1] from B = Spec k to general B. The proof of [Ananyevskiy 2016a, Theorem 4.6] relies
also on [Ananyevskiy 2016a, Lemma 4.1], which in our setting reduces to the fact that for X ∈ SchB ,
and u ∈ 0(X,O×X ) a unit, the automorphism of X ×P1 sending (x, (t0 : t1)) to (x, (ut0, u−1t1) induces
the identity on X+ ∧P1/X in H•(X). This follows by identifying P1

X with P(A2
X ) and noting that the

diagonal matrix with entries u, u−1 is an elementary matrix in GL2(0(X,OX )). �

Lemma 7.3. Suppose that E ∈ SH(B) is SL oriented and that E−1,0(U )= 0 for all affine U in SmB . Then
the induced SL orientation on E+ ∈ SH(B)+ extends to a GL orientation.

Proof. Let u ∈ 0(X,O×X ) be a unit on some X ∈ SmB . Then the map

×u : X ×B P1
→ X ×B P1

; (x, [t0 : t1]) 7→ (x, [ut0 : t1])

induces the identity on S2,1
∧ X/B in SH(B)+. Indeed, let [u] : X/B→ X/B ∧Gm be the map induced

by u : X→ Gm . The argument given by Morel [2004, 6.3.4], that

×u/B = id+ η[u]
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in case B = Spec k, k a field, is perfectly valid over a general base-scheme: this only uses the fact that
for X and Y pointed spaces over B, one has

6∞S1 X ×B Y '6∞S1 X ⊕6∞S1 Y ⊕6∞S1 (X ∧Y)

and that the map ×u : S1
∧Gm ∧ X+→ S1

∧Gm ∧ X+ is the S1-suspension of the composition

S1
∧Gm ∧ X+

id∧u
−−→ S1

∧ (Gm ×Gm)∧ X+
id∧µ∧id
−−−−→ S1

∧Gm ∧ X+,

where µ :Gm×Gm→Gm is the multiplication. As η goes to zero in SH(B)+, it follows that ×u/B = id
in SH(B)+.

Now take g ∈ 0(X,GLn(OX )), let u = det g, let mu ∈ 0(X,GLn(OX )) be the diagonal matrix with
entries u, 1, . . . , 1 and let h = m−1

u · g ∈ 0(X,SLn(OX )). We have

ThX (On
X )= (P

1)∧n
∧ X+.

Since E is SL-oriented, the map Th(h) : ThX (On
X )→ ThX (On

X ) induces the identity on E∗∗ and thus

Th(g)∗ = Th(mu)
∗
: E∗,∗+ (ThX (On

X ))→ E∗,∗+ (ThX (On
X )).

But as Th(mu)= (×u)∧ id, our previous computation shows that Th(mu)
∗
= id.

Now let V → X be a rank r vector bundle on some X ∈ SmB , choose a trivializing affine open cover
U = {Ui } of X and let φi : V|Ui →Ui ×Ar be a local framing. We have the suspension isomorphism

Th(VUi )' Th(Ui ×Ar )=6r
TUi+

giving the isomorphism

θi : Ea,b
+ (Ui )→ E2r+a,r+b

+0V|Ui
(V|Ui ).

Since GLr (OUi ) acts trivially on E∗∗
+
(Th(Ui ×Ar )), the isomorphism θi is independent of the choice of

framing φi . In addition, the assumption E−1,0(Ui ∩U j )= 0 implies

E2r−1,r
+0V|Ui∩U j

(V|Ui∩U j )= 0

for all i, j. By Mayer–Vietoris, the sections

θi (1Ui ) ∈ E
2r,r
+0V|Ui

(V|Ui )

uniquely extend to an element

θV ∈ E2r,r
+0V

(V ).

The independence of the θi on the choice of framing and the uniqueness of the extension readily
implies the functoriality of θV and similarly implies the product formula θV⊕W = p∗1θV ∪ p∗2θW . By
construction, θV is the suspension of the unit over Ui , another application of independence of the choice
of framing and the uniqueness of the extension shows that this is the case over every open subset U ⊂ X
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for which V|U is the trivial bundle. Finally, the independence and uniqueness shows that V 7→ θV is an
extension of the SL orientation on E+ induced by that of E . �

Lemma 7.4. For u ∈ 0(X,O×X ) we have

[u]η = η[u] :6∞T X+→6∞T X+.

Proof. We use the decomposition

6∞T X+ ∧Gm ×Gm =6
∞

T X+ ∧Gm ⊕6
∞

T X+ ∧Gm ⊕6
∞

T X+ ∧Gm ∧Gm .

Via this, η is the map

[s] ∧ [t] 7→ [st] − [s] − [t],

so η[u] sends [t] to [ut]− [u]− [t] and idGm ∧ η[u] sends [s] ∧ [t] to [s] ∧ [ut]− [s] ∧ [u]− [s] ∧ [t], so
[u]η is given by

[s] ∧ [t] 7→ [st] − [s] − [t] 7→ [u] ∧ [st] − [u] ∧ [s] − [u] ∧ [t].

We have the automorphism ξ of G∧3
m sending [u]∧ [s]∧ [t] to [s]∧ [t]∧ [u]. We have the isomorphism in

H•(B), 66
S1

G∧3
m ' A3/A3

\ {0}, via which 66
S1
ξ is induced by the linear map (u, s, t) 7→ (s, t, u). As this

latter linear map has matrix in the standard basis a product of elementary matrices, 66
S1ξ is A1-homotopic

to the identity, so after stabilizing, idGm ∧ η[u] is the map

[s] ∧ [t] 7→ [s] ∧ [t] ∧ [u] 7→ [u] ∧ [s] ∧ [t] 7→ [u] ∧ [st] − [u] ∧ [s] − [u] ∧ [t] = [u]η([s] ∧ [t]). �

Lemma 7.5. The projection η− of η to SH(B)− is an isomorphism and the projection η+ of η to SH(B)+
is zero.

Proof. Morel [2004, §6] proves this in the case of a field, but the proof works in general. In some detail,
the map τ is the map on A2/(A2

\ {0}) induced by the linear map (x, y) 7→ (y, x). The matrix identity(
0 1
1 0

)
=

(
1 1
0 1

)
·

(
1 0
−1 1

)
·

(
1 1
0 1

)
·

(
−1 0
0 1

)
shows that the maps (x, y)→ (y, x) and (x, y) 7→ (−x, y) are A1-homotopic. By the arguments in
Lemma 7.3, this latter map induces the map 1+ η[−1] = 1+ [−1]η in SH(B), giving the identity

(1+ η[−1])− = (1+ [−1]η)− =−id⇒ η · (−[−1]/2)= (−[−1]/2) · η = idSH(B)−

For η+, the projector to SH(B)+ is given by the idempotent (1/2)(τ + 1) = (1/2)(2+ η[−1]), so
η+ = (1/2)η · (2+ η[−1]). Since the map τ : P1

∧P1
→ P1

∧P1 is 1+ η[−1] and P1
= S1
∧Gm , the

symmetry ε : Gm ∧Gm → Gm ∧Gm is −(1+ η[−1]). From our formula for η([s] ∧ [t]) we see that
ηε = η which gives η · (2+ η[−1])= 0. �
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8. Applications

In this section, we apply the motivic Gauss–Bonnet formula of Section 5 and the comparison results of
Section 7 to various specific SL-oriented cohomology theories, and thereby make computations of the
motivic Euler characteristic χ(X/B) in different contexts.

8A. Motivic cohomology and cohomology of the Milnor K-theory sheaves. We work over the base-
scheme B = Spec k, with k a perfect field. In SH(k) we have the motivic cohomology spectrum HZ

representing Voevodsky’s motivic cohomology (see, e.g., [Levine 2008, §6.2] for a construction valid in
arbitrary characteristic). By [Voevodsky 2002], there is a natural isomorphism

HZa,b(X)' CHb(X, 2b− a)

for X ∈ SmB , where CHb(X, 2b− a) is Bloch’s higher Chow group [1986].
HZ admits a localization sequence: for i : Z→ X a closed immersion of codimension d in Smk , there

is a canonical isomorphism
HZ

a,b
Z (X)' HZa−2d,b−d(Z).

See for example [Bloch 1994]. In particular, for p : V → X a rank r vector bundle over X ∈ Smk , we
have the isomorphism

HZ
2r,r
0V
(V )' HZ0,0(X)

which gives us Thom classes ϑHZ
V ∈ HZ

2r,r
0V
(V ) corresponding to the unit 1HZ

X ∈ HZ0,0(X). Thus HZ is a
GL-oriented motivic spectrum.

Let X be a smooth projective k-scheme of dimension n over k. For a class x ∈ HZ2n,n(X), the
isomorphism HZ2n,n(X) ' CHn(X, 0) = CHn(X) allows one to represent x as the class of a 0-cycle
x̃ =

∑
i ni pi , with the pi closed points of X. One has the degree degk(pi ) := [k(pi ) : k] and extending by

linearity gives the degree degk(x̃), which one shows passes to rational equivalence to define a degree map

degk : HZ2n,n(X)→ CH0(Spec k)= Z.

As a GL-oriented theory, HZ has Chern classes for vector bundles: cr (V ) ∈ HZ2r,r (X) for V → X a
vector bundle over some X ∈ Smk and r ≥ 0.

Theorem 8.1. Let X ∈ Smk be projective of dimension dX . Then

uHZ(χ(X/k))= degk(cdX (TX/k)).

Proof. One has well-defined pushforward maps on CH∗(−, ∗) for projective morphisms (see, e.g., [Bloch
1986, Proposition 1.3]). Via the isomorphism HZa,b(X) ' CHb(X, 2b − a) [Voevodsky 2002], this
gives pushforward maps f̂∗ on HZ∗,∗ for f : Y → X a projective morphism in SmB (see [Bloch 1986]
for details), making (X, Z) 7→ HZ

∗,∗
Z (X) a GL-oriented cohomology theory on Smk . In addition, for

πX : X → Spec k in Smk projective of dimension n, the map π̂X∗ : HZ2n,n(X)→ CH0(Spec k) = Z is
degk , and for i : Y → X a closed immersion, the map î∗ is given by the localization theorem, which
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readily implies that î∗ = i∗. By our comparison Theorem 7.1, which here really reduces to the theorem of
Panin and Smirnov, it follows that f̂∗ = f∗ for all projective f .

Finally, one has cdX = s∗s∗(1HZ
X ) = eHZ(V ) [Fulton 1984, Corollary 6.3], so applying the motivic

Gauss–Bonnet Theorem 5.3 gives the statement. �

One can obtain the same result by using the cohomology of the Milnor K-theory sheaves as a bigraded
cohomology theory. The homotopy t-structure on SH(k) has heart the abelian category of homotopy
modules 5*(k) (see [Morel 2004, §5.2; 2012] for details); we let H0 : SH(k)→5*(k) be the associated
functor. The fact that HZn,n(Spec F)' KM

n (F) for F a field [Nesterenko and Suslin 1989; Totaro 1992]
says that H0HZ is canonically isomorphic to the homotopy module (KM

n )n , which is in fact a cycle module
in the sense of Rost [1996]. This gives us the isomorphism

H0HZa,b(X)' Ha(X,KM
b ).

The isomorphism H n(X,KM
n )' CHn(X) (a special case of Rost’s formula [1996, Corollary 6.5] for the

Chow groups of a cycle module) gives us as above Thom classes ϑKM
∗ (V ) ∈ H0HZ

2r,r
0V
(V ), giving H0HZ

a GL-orientation. As for HZ∗,∗, one has explicitly defined pushforward maps on H∗(−,KM
∗
) which give

H0HZ∗,∗ the structure of a GL-oriented cohomology theory on Smk and for which the pushforward map
for the zero-section of a vector bundle is given by the Thom isomorphism. Since the pushforward on
Hn(X,KM

n ) agrees with the classical pushforward on CHn , we deduce the following using the same proof
as for Theorem 8.1.

Theorem 8.2. Let X ∈ Smk be projective of dimension dX . Then

uH0HZ(χ(X/k))= degk(cdX (TX/k)) in CH0(Spec k)= Z.

8B. Algebraic K-theory. We now let B be any regular separated base-scheme of finite Krull dimension.
Algebraic K-theory on SmB is represented by the motivic commutative ring spectrum KGL ∈ SH(B); see
[Voevodsky 1998, §6.2]. Just as for HZ, the purity theorem

KGLa,b
Z (X)' KGLa−2c,b−c(Z)

for i : Z → X a closed immersion of codimension d in SmB (a consequence of Quillen’s localization
sequence for algebraic K-theory [1973, §7, Proposition 3.2]) gives Thom class ϑKGL(V ) ∈ KGL2r,r

0V
(V )

for V → X a rank r vector bundle over X ∈ SmB , and makes KGL a GL-oriented motivic spectrum.
Explicitly, KGL represents Quillen K-theory on SmB via KGLa,b

' K2b−a and the Thom class for a
rank r vector bundle p : V → X is represented by the Koszul complex KosV (p∗V∨, can). Here

can : p∗V∨→OV

is the dual of the tautological section OV → p∗V and KosV (p∗V∨, can) is the complex whose terms are
given by

KosV (p∗V∨, can)−r
=3r p∗V∨
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and whose differential 3r p∗V∨→3r−1 p∗V∨ is given with respect to a local framing of V∨ by

d(ei1 ∧ · · · ∧ eir )=

r∑
j=1

(−1) j−1can(ei j ) · ei1 ∧ · · · ∧ êi j ∧ · · · ∧ eir .

This complex is a locally free resolution of s∗(OX ), where s : X→V is the zero-section. Thus, by the identi-
fication of KGL2r,r

0V
(V )with the Grothendieck group of the triangulated category of perfect complexes on V

with support contained in 0V , KosV (p∗V∨, can) gives rise to a class [KosV (p∗V∨, can)] ∈ KGL2r,r
0V
(V )

which maps to 1X under the purity isomorphism KGL2r,r
0V
(V ) ' KGL0,0(X), so that we indeed have

[KosV (p∗V∨, can)] = ϑKGL(V ).
Just as for motivic cohomology, one has explicit pushforward maps in K-theory given by Quillen’s

localization and devissage theorems identifying, for X ∈SmB and Z ⊆ X a closed subscheme, the K-theory
with support KZ (X) with the K-theory of the abelian category of coherent sheaves CohZ on Z , denoted
G(Z). For a projective morphism f : Y → X, one has the pushforward map f̂∗ : G(Y )→ G(X) defined
by using a suitable subcategory of CohY on which f∗ is exact. On K0, this recovers the usual formula

f̂∗([F])=
dim Y∑
j=0

(−1) j
[R j f∗(F)]

for F ∈ CohY . Via the isomorphisms KGLa,b
Z (X) ' G2b−a(Z), this gives pushforward maps f̂∗ for

KGL∗,∗, defining a GL-oriented cohomology theory on SmB .
For s : X→ V the zero-section of a vector bundle, ŝ∗ agrees with the pushforward s∗ using the Thom

isomorphism/localization theorem, hence by our comparison theorem (again really the theorem of Panin
and Smirnov), we have f̂∗ = f∗ for all projective f .

Theorem 8.3. Let πX : X→ B be a smooth projective morphism with B a regular separated scheme of
finite Krull dimension. Then

uKGL(χ(X/B))=
dimB X∑

j=0

dimB X∑
i=0

(−1)i+ j
[R jπX∗�

i
X/B] ∈ K0(B)= KGL0,0(B).

Proof. Let p : TX/B→ X denote the relative tangent bundle and let s : X→ TX/B denote the zero-section.
We have

eKGL(TX/B)= s∗(th(TX/B))= s∗(KosTX/B (p
∗T∨X/B, can)).

Since T∨X/B =�X/B , and s∗(can) is the zero-map, it follows that, in K0(X),

s∗(KosTX/B (p
∗T∨X/B, can))=

dimB X∑
i=0

(−1)i [�i
X/B],

and thus

πX∗(eKGL(TX/B))=

dimB X∑
j=0

dimB X∑
i=0

(−1)i+ j
[R jπX∗�

i
X/B].
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We conclude by applying the motivic Gauss–Bonnet theorem. �

8C. Milnor–Witt cohomology and Chow–Witt groups. In this case, we again work over a perfect base-
field k. The Milnor–Witt sheaves KMW

∗
constructed by Morel [2004, §6; 2012, Chapter 3] give rise to an

SL-oriented theory as follows. Morel describes an isomorphism of KMW
0 with the sheafification GW of

the Grothendieck–Witt rings;1 the map of sheaves of abelian groups Gm→ GW× sending a unit u to the
one-dimensional form 〈u〉 allows one to define, for L→ X a line bundle, a twisted version

KMW
∗
(L) := KMW

∗
×Gm L×

as a Nisnevich sheaf on X ∈ Smk (see [Morel 2012, p. 118] or [Calmès and Fasel 2014, §1.2]). One may
use the Rost–Schmid complex for KMW

∗
(L) [Morel 2012, Chapter 5] to compute H∗Z (X,K

MW
∗
(L)) for

Z ⊆ X a closed subset, which gives a purity theorem: for i : Z→ X a codimension d closed immersion
in Smk and L→ X a line bundle, there is a canonical isomorphism

H∗Z (X,K
MW
∗
(L))' H∗−d(Z ,KMW

∗−d(i
∗L ⊗ det Ni )), (8.3.1)

where Ni → Z is the normal bundle of i . Applying this to the zero-section of a rank r vector bundle
p : V → X gives the isomorphism

H0(X,GW)' Hr
0V
(V,KMW

r (p∗ det−1 V )); (8.3.2)

in particular, given an isomorphism φ : det V →OX , we obtain a Thom class

θV,φ ∈ Hr
0V
(V,KMW

r )

corresponding to the unit section 1X ∈ H0(X,GW).
On the other hand, Morel’s computation [2004, Theorem 6.4.1, Remark 6.4.2; 2012, Theorem 6.40] of

the zeroth graded homotopy sheaf of the sphere spectrum gives an identification

H0(1k)' (KMW
n )n∈Z

in 5*(k), which then gives the natural isomorphism

H0(1k)
a+b,b
Z (X)' Ha

Z (X,K
MW
b ).

This is moreover compatible with twisting by a line bundle p : L → X , on the H0(1k) side using the
Thom space construction

H0(1k)
∗,∗
Z (X; L) := H0(1k)

∗+2,∗+1
Z (L)

1Morel [2012, Lemma 3.10] defined an isomorphism GW(F)→ KMW(F), F a field. Morel [2012, §3.2] defined KMW
∗ as

an unramified sheaf and it follows from [Ojanguren and Panin 1999, Theorem A] that GW is an unramified sheaf. From this it is
not difficult to show that the isomorphism GW(F)→ KMW(F) for fields extends to an isomorphism of sheaves.
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and on the Milnor–Witt cohomology side using the twisted Milnor–Witt sheaves. To see this, note that
the “untwisted” isomorphism gives us an isomorphism

H0(1k)
a+b+2,b+1
Z (Th(L))' H0(1k)

a+b+2,b+1
0L∩p−1(Z) (L)' Ha+1

0L∩p−1(Z)(X,K
MW
b+1),

so it suffices to identify the right-hand side with Ha
Z (X,K

MW
b (L)). For Y ∈Smk and line bundle M→Y, the

Rost–Schmid complex for KMW
m (M) consists in degree a of sums of terms of twisted Milnor–Witt groups

of the form KMW
m−a(k(y);3

a(my/m
2
y)
∨
⊗M), for y a codimension a point of Y and my ⊂OY,y the maximal

ideal. To compute cohomology with supports in W ⊆Y, one restricts to those y ∈W. If we now take Y = L
and M the trivial bundle, with supports in p−1(Z)∩ 0L and m = b+ 1, and compare with Y = X, with
supports in Z with m= b, the term for y ∈ Z , of codimension a+1 on L is KMW

b−a(k(y);3
a(my/m

2
y)
∨
⊗L)

while the term for y ∈ Z , of codimension a on X is KMW
b−a(k(y);3

a(my/m
2
y)
∨), where my is the maximal

ideal in OX,y in both cases. This gives the desired identification

Ha+1
0L∩p−1(Z)(X,K

MW
b+1)' Ha

Z (X,K
MW
b (L)).

The purity isomorphism (8.3.1) is a special case of this construction.
The Thom class θV,φ ∈ Hr

0V
(V,KMW

r ) gives the Thom class

θV,φ ∈ H0(1k)
2r,r
0V
(V ),

making H0(1k) an SL-oriented theory; see, e.g, [Levine 2017b, §3.2]. The resulting canonical Thom class

thV ∈ H0(1k)
2r,r
0V
(V ; det−1 V )= Hr

0V
(V,KMW

r (det−1 V ))

agrees with the image of 1X ∈ H0(X,GW) under the Rost–Schmid isomorphism (8.3.2).
Let πX : X → Spec k be smooth and projective over k of dimension d. Using the Rost–Schmid

complex for the twisted homotopy module one has generators for Hd(X,KMW
d (ωX/k)) as formal sums

x̃ =
∑

i αi · pi , with αi ∈ GW(k(pi )) and pi ∈ X closed points. Since k is perfect, the finite extension
k(pi )/k is separable and one can define

d̃egk(x̃) :=
∑

i

Trk(pi )/kαi ∈ GW(k)

where Trk(pi )/k :GW(k(pi ))→GW(k) is the transfer induced by the usual trace map Trk(pi )/k : k(pi )→ k;
see, for example, [Calmès and Fasel 2014, Lemma 2.3]. It is shown in [Calmès and Fasel 2014, §3] that
this descends to a map

d̃egk : H
2d,d
0 (X;ωX/k)= Hd(X,KMW

d (ωX/k))→ H0,0
0 (Spec k)= GW(k).

See also [Hoyois 2014, Lemma 5.10], which identifies this map with one induced by the Scharlau trace.
The methods of this paper give a new proof of the result given in [Levine 2017b, Lemma 1.5]:

Theorem 8.4. Let k be a perfect field of characteristic different from two. For πX : X→ Spec k smooth
and projective over k, we have

χ(X/k)= d̃egk(e
H0(1k)(TX/k)).
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Proof. Under Morel’s isomorphism EndSH(k)(1X )' GW(k) [2004, Theorem 6.4.1, Remark 6.4.2; 2012,
Theorem 6.40] and the isomorphism H0(Spec k,KMW

0 ) ' GW(k), the unit map uH0(1k) : 1k → H0(1k)

induces the identity map on π0,0. Using this, the proof of the claim is essentially the same as the other
Gauss–Bonnet theorems we have discussed, but with a bit of extra work since we are no longer in the
GL-oriented case.

Fasel [2008] has defined pushforward maps

f̂∗ : Ha
W (X,K

MW
b (ωX/k ⊗ f ∗L))→ Ha−d

Z (Y,KMW
b−d(L))

for each projective morphism f : X→ Y in Smk of relative dimension d , line bundle L→ Y, and closed
subsets Z ⊆Y, W ⊆ X with f (W )⊆ Z . In the case of the structure map πX : X→Spec k, the pushforward
π̃X∗ : Hd(X,KMW

d (ωX/k))→ H0(Spec k,KMW
0 )= GW(k) is the map d̃egk .

For s : X→ V the zero-section of a vector bundle, ŝ∗ is the Thom isomorphism s∗. Thus, if we pass
to the η-inverted theory, H0(1X )η := H0(1k)[η

−1
], our comparison Theorem 7.1 says that f̂η∗ = fη∗ for

all projective morphisms f in Smk . We have KMW
∗
[η−1
] ' W , the sheaf of Witt rings, and the map

KMW
0 = GW→ KMW

∗
[η−1
] 'W is the canonical map q : GW→W realizing W as the quotient of GW

by the subgroup generated by the hyperbolic form. Thus, applying our motivic Gauss–Bonnet theorem
gives the identity

q(χ(X/k))= q(d̃egk(e
H0(1k)(TX/k))) in W(k).

To lift this to an equality in GW(k) and thereby complete the proof, we use that the map

(rnk, q) : GW→ Z×W

is injective, together with the fact that we can recover the rank by applying H0 to the unit map 1k→ HZ

and using Theorem 8.2. �

8D. Hermitian K-theory and Witt theory. We again let our base-scheme B be a regular noetherian
separated base-scheme of finite Krull dimension, but now assume that 2 invertible on B. Our goal in
this subsection is to explain how the description of the “rank” of χ(X/B) given by Theorem 8.3 can be
refined to give a formula for χ(X/k) itself in terms of Hodge cohomology by using hermitian K-theory.

By work of Panin and Walter [2018], Schlichting [2010], and Schlichting and Tripathi [2015], hermitian
K-theory KO[∗]

∗
(−) is represented by a motivic commutative ring spectrum BO ∈ SH(B) (we use the

notation of [Ananyevskiy 2016b]). Panin and Walter gave BO an SL-orientation. BO-theory also represents
particular cases of Schlichting’s Grothendieck–Witt groups [2010], via functorial isomorphisms

BO2r,r (X; L)' KO[r ]0 (X, L) := GW(Dperf(X), L[r ], can),

where L→ X is a line bundle and GW(Dperf(X), L[r ], can) is the Grothendieck–Witt group of L[r ]-valued
symmetric bilinear forms on Dperf(X); we recall a version of the definition here.
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Definition 8.5. Let L→ X be a line bundle and let r ∈ Z. An L[r ]-valued symmetric bilinear form on
C ∈ Dperf(X) is a map

φ : C ⊗L C→ L[r ]

in Dperf(X) which satisfies the following conditions.

(i) φ is nondegenerate: the induced map C→RHom(C, L[n]) is an isomorphism in Dperf(X).

(ii) φ is symmetric: φ ◦ τ = φ, where τ : C ⊗L C→ C ⊗L C is the commutativity isomorphism.

(Note that we are assuming nondegeneracy in the definition but leaving this out of the terminology for the
sake of brevity.)

Similar to the case of algebraic K-theory discussed in Section 8B, for a rank r vector bundle p : V→ X,
the Thom class θBO

V ∈ BO2r,r (V ; p∗ det−1 V ) is given by the Koszul complex Kos(p∗V∨, s∨can), where
the symmetric bilinear form

φV : Kos(p∗V∨, s∨can)⊗Kos(p∗V∨, s∨can)→ p∗ det−1 V [r ] =3r V∨[r ]

is given by the usual exterior product

−∧− :3i V∨⊗3r−i V∨→3r V∨.

Moreover, there are isomorphisms for i < 0

BO2r−i,r (X; L)'Wr−i (Dperf(X), L[r ], can)

where Wr−i (Dperf(X), L[r ], can) is Balmer’s triangulated Witt group. In the case B = Spec k for k a field
of characteristic different from two, Ananyevskiy [2016b, Theorem 6.5] showed that this isomorphism
induces an isomorphism of η-inverted hermitian K-theory with Witt-theory,

BO[η−1
]
∗,∗
'W∗[η, η−1

],

where one gives η bidegree (−1,−1) and an element αηn with α ∈Wm has bidegree (m− n,−n); the
same proof works over out general base B (with assumptions as at the beginning of this subsection).

For f : Y → X a proper map of relative dimension d f in SmB and L a line bundle on X, we follow
[Calmès and Hornbostel 2011] in defining a pushforward map

f̂∗ : BO2r,r (Y, ωY/B ⊗ f ∗L)→ BO2r−2d f ,r−d f (X, ωX/B ⊗ L)

by Grothendieck–Serre duality. In [op. cit.], this is worked out for the η-inverted theory BOη when the
base is a field; however, the same construction works for BO over the general base-scheme B and goes
as follows. For r ≥ 0, given an L[r ]-valued symmetric bilinear form φ : C ⊗L C→ ωY/B ⊗ f ∗L[r ], we
have the corresponding isomorphism

φ̃ : C→RHom(C, ωY/B ⊗ f ∗L[r ])'RHom(C, ωY/X ⊗ f ∗(ωX/B ⊗ L[r ])).



Motivic Gauss–Bonnet formulas 1843

Grothendieck–Serre duality gives the isomorphism

R f∗RHom(C, ωY/X ⊗ f ∗(ωX/B ⊗ L[r ])) ψ

∼
−→RHom(R f∗C, ωX/B ⊗ L[r − d f ]).

Composing these, we obtain the isomorphism

ψ ◦ φ̃ : R f∗C→RHom(R f∗C, ωX/B ⊗ L[r − d f ]),

corresponding to the (nondegenerate) bilinear form

R f∗(φ) : R f∗C ⊗L R f∗C→ ωX/B ⊗ L[r − d f ],

which one can show is symmetric. We explicitly define the above pushforward map by setting f̂∗(C, φ) :=
(R f∗C,R f∗(φ)).

Applying this in the situation that f = πX : X → B is a smooth and proper B-scheme of relative
dimension dX , we may obtain the formula

π̂X∗(eBO(TX/B))=
( dimB X⊕

i, j=0

RiπX∗�
j
X/B[ j − i],Tr

)
,

where

Tr :
( dimk X⊕

i, j=0

RiπX∗�
j
X/B[ j − i]

)
⊗

( dimk X⊕
i, j=0

RiπX∗�
j
X/B[ j − i]

)
→OB

is the symmetric bilinear form in Dperf(B) determined by the pairings

(RiπX∗�
j
X/B)⊗ (R

dX−iπX∗�
dX− j
X/B )

∪
−→ RdXπX∗�

dX
X/B

Tr
−→OB .

Indeed, if s : X→ TX/B denotes the zero-section, we have

eBO(TX/B)= s∗(Kos(TX/B), φ)=
( dX⊕

j=0

�
j
X/B[ j], s∗φ

)
with s∗φ determined by the product maps

�
j
X/B[ j]⊗�

dX− j
X/B [dX − j] → ωX/B[dX ],

and therefore π̂X∗(eBO(TX/B)) is
⊕dimk X

i, j=0 RiπX∗�
j
X/B[ j − i] with the symmetric bilinear form Tr as

described above.
Passing to the η-inverted theory BOη, our comparison Theorem 7.1 gives

q ◦ π̂X∗ = q ◦πX∗

as maps BO2dX ,dX
η (X, ωX/B) → BOη(B). We check that the conditions of the comparison theorem

hold just as we did for algebraic K-theory. Firstly, as mentioned above, the SL-orientation for BO
defined by Panin-Walter can be described as follows: the Thom class for an oriented vector bundle
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(p : V → X, ρ : OX −→
∼ det V ) is given by the Koszul complex Kos(p∗V∨, s∨can) equipped with the

symmetric bilinear form φV defined by the product in the exterior algebra followed by the isomorphism
p∗ρ∨ : p∗ det−1 V →OV . On the other hand, the Calmès-Hornbostel pushforward for the zero-section
s : X → V of a rank r vector bundle p : V → X with isomorphism ρ : OX −→

∼ det V is as described
above, sending a symmetric bilinear form ψ : C ⊗L C→ ωX/B ⊗ s∗L[n] to the symmetric bilinear form

Rs∗(ψ) : Rs∗C ⊗L Rs∗C→ ωV/B ⊗ L[n+ r ].

Since s is finite, Rs∗C ' C , which in Dperf(V ) is canonically isomorphic to p∗C ⊗OV Kos(p∗V∨, s∨can).
We may thus view Rs∗(ψ) instead as a map

[p∗C ⊗OV Kos(p∗V∨, s∨can)]⊗
L
[p∗C ⊗OV Kos(p∗V∨, s∨can)] → ωV/B ⊗ L[n+ r ];

tracing through its definition, one finds that this map is given by the composition

[p∗C ⊗OV Kos(p∗V∨, s∨can)]⊗
L
[p∗C ⊗OV Kos(p∗V∨, s∨can)]

−→∼ [p∗C ⊗L p∗C]⊗ [Kos(p∗V∨, s∨can)⊗Kos(p∗V∨, s∨can)]

p∗ψ⊗φV
−−−−→ ωX/B ⊗ L[n]⊗ p∗ det−1 V [r ] −→∼ ωV/B ⊗ L[n+ r ].

As this is exactly p∗(C, φ)⊗ thV,ρ , we see that the Calmès-Hornbostel pushforward for s is the same as
that defined by the Panin-Walter SL-orientation on BOη, which verifies the hypothesis in our Theorem 7.1.

Having verified this, we can prove our main result.

Theorem 8.6. Let B be a regular noetherian separated scheme of finite Krull dimension with 2 invertible
in 0(B,OB). Let X be a smooth projective B-scheme. Then:

(1) We have

uBOη(χ(X/B))=
( dimk X⊕

i, j=0

RiπX∗�
j
X/B[ j − i],Tr

)
in BO0,0

η (B)'W(Dperf(B))'W(B).

(2) Let f : GW(B)→ K0(B) denote the forgetful map discarding the symmetric bilinear form. Suppose
that the map

( f, q) : GW(B)→ K0(B)×W (B)

is injective (this is the case if for example B is the spectrum of a local ring). Then

uBO(χ(X/B))=
( dimB X⊕

i, j=0

Hi (X, � j
X/B)[ j − i],Tr

)
in GW(Dperf(B))' GW(B).



Motivic Gauss–Bonnet formulas 1845

(3) Suppose B is in Smk for k a perfect field. Then the image ˜χ(X/B) of χ(X/B) in π0,0(1B)(B) '
H0(B,GW) is given by

˜χ(X/B)=
( dimB X⊕

i, j=0

RiπX∗�
j
X/B[ j − i],Tr

)
∈ H0(B,GW).

In particular, if B = Spec k, then

χ(X/k)=
( dimB X⊕

i, j=0

Hi (X, � j
X/k)[ j − i],Tr

)
∈ GW(k).

Proof. The first statement follows from our comparison Theorem 7.1, as detailed above, together with the
motivic Gauss–Bonnet Theorem 5.3. Statement (2) follows from (1) and our result for algebraic K-theory,
Theorem 8.3. Finally, (3) follows from (2), after we check that the unit map uBO induces the identity map
on GW(k) via

GW(k) (Morel)
∼
−−−→ 10,0

k (Spec k) uBO

∼
−→ BO0,0(Spec k)' KO[0]0 (k)= GW(k),

where the first isomorphism arises from Morel’s theorem [2004, Theorem 6.4.1, Remark 6.4.2; 2012,
Theorem 6.40] identifying 10,0

k (Spec k) with GW(k). The one-dimensional forms 〈λ〉 ∈ GW(k), λ ∈ k×,
generate GW(k), and via Morel’s isomorphism 〈λ〉 maps to the automorphism of 1k induced by the
automorphism φλ : P1

k → P1
k , φλ((x0 : x1)) = (x0 : λ · x1). By [Ananyevskiy 2016b, Corollary 6.2],

the image of φλ under the unit map uBO is also 〈λ〉, after the canonical identification BO0,0(Spec k)'
KO[0]0 (k)' GW(k). �

Corollary 8.7. Let k be a perfect field of characteristic different from two. Let H ∈ GW(k) denote the
class of the hyperbolic form x2

− y2. Let X be a smooth and projective k-scheme.

(1) Suppose X has odd dimension 2n− 1. Let

m :=
∑

i+ j<2n−1

(−1)i+ j dimk Hi (X, � j
X/k)−

∑
0≤i< j

i+ j=2n−1

dimk Hi (X, � j
X/k).

Then χ(X/k)= m · H ∈ GW(k).

(2) Assume X has even dimension 2n. Let

m :=
∑

i+ j<2n

(−1)i+ j dimk Hi (X, � j
X/k)+

∑
0≤i< j

i+ j=2n

dimk Hi (X, � j
X/k)

and let Q be the symmetric bilinear form

Hn(X, �n
X/k)×Hn(X, �n

X/k)
∪
−→ H2n(X, �2n

X/k)
Tr
−→ k.

Then χ(X/k)= m · H + Q ∈ GW(k).
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Proof. For V a finite-dimensional k-vector space and n∈Z, we have the symmetric bilinear form in Dperf(k)

hn : (V [n]⊕ V∨[−n])⊗ (V [n]⊕ V∨[−n])→ k

whose restriction to V [n]⊗ V∨[−n] is the canonical pairing of V [n] with V∨[−n] ' V [n]∨, and (−1)n

times this pairing on V∨[−n] ⊗ V [n]. The corresponding class of hn in GW(k) is (−1)n times the
class of h0, as (V [n] ⊕ V∨[−n], hn) is the image of the class of V [n] in K0(k) under the hyperbolic
map H : K0(−)→ KO[0]0 (−) (see, e.g., [Walter 2003, Theorem 2.6]), and [V [n]] = (−1)n[V [0]] in
K0(Dperf(k))' K0(k).

With this in mind, we may deduce the claim from the formula

χ(X/k)=
( dimB X⊕

i, j=0

Hi (X, � j
X/k)[ j − i],Tr

)
of Theorem 8.6. Indeed, in the case dim X = 2n− 1, the symmetric bilinear form Tr is the sum of the
“hyperbolic” forms as above on

Hi (X, � j
X/k)[ j − i]⊕H2n−1−i (X, �2n−1− j

X/k )[i − j]

for i + j < 2n− 1, or 0≤ i < j and i + j = 2n− 1; and the argument in the even-dimensional case is the
same, except that one has the remaining factor coming from the symmetric pairing on Hn(X, �n

X/k). �

The next result was obtained independently by Abelson [1976, Theorem 1] and Kharlamov [1974,
Theorem A] using an argument of Milnor’s relying on the Lefschetz fixed point theorem.

Corollary 8.8. Let k be a field equipped with an embedding σ : k ↪→ R. Let X be a smooth projective
k-scheme of even dimension 2n. Then

|χ top(X (R))| ≤ dimk Hn(X, �n
X/k).

Proof. We know that χ top(X (R)) is the signature of σ∗(χ(X/k)) ∈ GW(R); see [Levine 2017b,
Remarks 1.11]. The description of χ(X/k) given by Corollary 8.7 gives the desired inequality

|sig σ∗(χ(X/k))| ≤ dimk Hn(X, �X/k). �

Remark 8.9. Let k be a perfect field of characteristic different from two. The formula for the Euler
characteristic given in Theorem 8.6 shows that the invariant χ(X/k) is “motivic” in the following sense.
Let X and Y be smooth projective k-schemes of respective even dimensions 2n and 2m and let α : X 99K Y
be a correspondence with k-coefficients of degree n, that is, an element α ∈ CHm+n(X × Y )k . The
correspondence α induces the map of k-vector spaces α∗ :Hm(Y, �m

Y/k)→Hn(X, �n
X/k). Suppose that α∗

is an isomorphism and is compatible with the trace pairings on Hm(Y, �m
Y/k) and Hn(X, �n

X/k) appearing
in Corollary 8.7. Then χ(X/k)= χ(Y/k) in the Witt ring W(k).
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For instance, supposing k has characteristic zero, if the motives of X and Y (for homological equivalence
with respect to de Rham cohomology) have a Künneth decomposition

h(X)'
2n⊕

i=0

hi (X)〈i〉, h(Y )'
2m⊕
i=0

hi (Y )〈i〉

and α induces an isomorphism α∗ : hm(Y )〈m〉 → hn(X)〈n〉, compatible with the respective intersection
products

hm(Y )〈m〉⊗ hm(Y )〈m〉 → h2m(Y )〈2m〉 πY∗
−→ h0(k)'Q,

hn(X)〈n〉⊗ hn(X)〈n〉 → h2n(X)〈2n〉 πX∗
−→ h0(k)'Q,

then χ(Y/k)= χ(X/k) in W(k).
Presumably, merely having an isomorphism of motives hn(X)〈n〉 ' hm(Y )〈m〉 would not suffice to

yield χ(Y/k)= χ(X/k) in W(k), but we do not have an example.

8E. Descent for the motivic Euler characteristic. Let k be a perfect field of characteristic different from
two. With the explicit formula for χ(X/k) given by Theorem 8.6, we may find χ(X/k) for forms X
of some k-scheme X0 by the usual twisting construction; this works for all manners of descent but we
confine ourselves to the case of Galois descent here.

Let X0, X be smooth projective k-schemes of even dimension 2n. Let K be a finite Galois extension
field of k with Galois group G. Let X K := X×k K , X0K := X0×k K , and suppose we have an isomorphism
φ : X×k K→ X0×k K . This gives us the cocycle {ψσ ∈AutK (X0×k K )}σ∈G , whereψσ :=φσ ◦φ−1. Letting

b0 : Hn(X0, �
n
X0/k)×Hn(X0, �

n
X0/k)→ k,

b : Hn(X, �n
X/k)×Hn(X, �n

X/k)→ k

denote the respective symmetric bilinear forms Tr(x ∪ y), the isomorphism φ induces an isometry

φ∗ : (Hn(X0K , �
n
X0K /K ), b0K )→ (Hn(X K , �

n
X K /K ), bK ),

and the cocycle {ψσ }σ∈G determines a cocycle {(ψ∗σ )
−1
∈ O(b0)(K )}σ∈G . Twisting by the latter cocycle

allows one to recovers b from b0; explicitly, this works as follows.
Firstly, as usual, one recovers the k-vector space Hn(X,�n

X/k) from the K -vector space Hn(X0K,�
n
X0K /K )

as the G-invariants for the map x 7→ ψ∗−1
σ (xσ ). Secondly, letting A ∈ GL(Hn(X0K , �

n
X0K /K )) be a

change of basis matrix comparing the k-forms Hn(X0, �
n
X0/k)⊂ Hn(X0K , �

n
X0K /K ) and Hn(X, �n

X/k)⊂

Hn(X0K , �
n
X0K /K ), we recover b (up to k-isometry) as

b(x, y)= b0(Ax, Ay)=: bA
0 (x, y).

Having performed this twist at the level of symmetric bilinear forms, we may now pass Grothendieck–
Witt classes to describe the Euler characteristic of X : namely, Corollary 8.7(2) gives

χ(X0/k)= [b0+m · H ], χ(X/k)= [bA
0 +m · H ]

in GW(k).
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Remark 8.10. In the case of a smooth projective surface S with pg(S) = 0, over a characteristic zero
field k, the twisting construction reduces to a computation involving CH1(Sk̄)/∼num as a Gal(k)-module;
here k̄ is the algebraic closure of k and ∼num is numerical equivalence. Indeed, the assumption pg(S)= 0
implies that the cycle class map in Hodge cohomology

cycHdg
: CH1(Sk̄)→ H1(Sk̄, �

1
S/k̄)

induces an isomorphism

CH1(Sk̄)/∼num⊗Z k̄ −→∼ H1(Sk̄, �
1
S/k̄)' H1(S, �1

S/k)⊗k k̄

and the cycle class map cycHdg transforms the intersection product on CH1(Sk̄)/∼num to the quadratic
form b0 on H1(Sk̄, �

1
S/k̄
), induced by cup product and the trace map. Thus, our quadratic form b on

H1(S, �1
S/k) is equivalent to the one gotten by twisting the k̄-linear extension of the intersection product

on CH1(Sk̄)/∼num by the natural Galois action.
Analogous comments hold for a “geometrically singular” variety, by which we mean a smooth projective

k-scheme X of dimension 2n such that Hn(X k̄, �
n
X k̄/k̄

) is spanned by cycle classes, where we replace
CH1/∼num with CHn/∼num. For example, one could take a K3 surface with Picard rank 20 over k̄ or a
cubic fourfold X with H2(X k̄, �

2
X k̄/k)' k̄21 spanned by algebraic cycles.

Examples 8.11. (1) As a simple example, take S to be a quadric surface in P3
k defined by a degree two

homogeneous form q(X0, . . . , X3); we may assume that q is a diagonal form,

q(X0, . . . , X3)= a0 X2
0 +

3∑
i=1

ai X2
i

= a0(X0+
√
−a1/a0 X1)(X0−

√
−a1 X1)+ a2(X2−

√
−a3/a2 X3)(X2+

√
−a3/a2 X3).

This trivializes CH1(S) over K := k(
√
−a0a1,

√
−a2a3), namely CH1(S) = Z`1 ⊕ Z`2 with `1

defined by (X0−
√
−a1 X1)= (X2−

√
−a3/a2 X3)= 0 and with `2 defined by (X0−

√
−a1 X1)=

(X2 +
√
−a3/a2 X3) = 0. Embedding Gal(K/k) ⊂ Gal(k(

√
−a0a1)/k)× Gal(k(

√
−a2a3)/k) =

〈σ1〉×〈σ2〉, the Galois action is given by σ1(`1, `2)= σ2(`1, `2)= (`2, `1). A Galois-invariant basis
is thus given by ((`1+ `2),

√
a0a1a2a3(`1− `2)), and the intersection form in this basis has matrix(

2 0
0 −2a0a1a2a3

)
.

In other words, χ(S/k)= 〈2〉+ 〈−2a0a1a2a3〉.

(2) Suppose S is the blowup of P2
k along a 0-dimensional closed subscheme Z ⊂ P2

k , with Z étale over
k. Let ` denote the class of a line in CH1(P2). Writing Z k̄ = {p1, . . . , pr }, we have CH1(Sk̄) '

Z · `⊕
(⊕r

i=1 Z · pr
)
, with the evident Galois action and with intersection form the diagonal matrix

(1,−1, . . . ,−1). It is then easy to show that the twisted quadratic form χ(S/k) is 〈1〉−TrZ/k(〈1〉).
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These last two examples have been computed by different methods before: (1) is a special case of
[Levine 2017b, Corollary 13.2] and (2) is a special case of [Levine 2017b, Proposition 1.10]. Here is a
more interesting example.

Example 8.12. Let π : S→ C be a conic bundle over a smooth projective curve C , all defined over k;
we assume for simplicity that k ⊂ C. Let Z ⊂ C be the degeneracy locus of π : that is, Z is the reduced
proper closed subscheme of C over which π is not smooth. For each geometric point z of Z , the fiber
π−1(z) is isomorphic to two distinct lines in P2: π−1(z)= `z ∪ `

′
z . There is a “double section” D ⊂ S

with D→ C a finite degree two morphism, and with D · `z = 1= D · `′z for all z ∈ Z(k̄).
Over k̄, the bundle S is isomorphic to the blow-up of a P1-bundle Sk̄→ Ck̄ along a finite set Z ′ ⊂ Sk̄

with Z ′ −→∼ Z k̄ via π .
Suppose Z k̄ = {z1, . . . zr }. If we fix a closed point c0 ∈C \ Z of degree d over k, we have the following

basis for CH1(Sk̄)Q/∼num:
`z1 − `

′

z1
, . . . , `zr − `

′

zr
, D, π−1(c0).

We have the finite degree two extension p : Z̃→ Z , where for each z ∈ Z , p−1(z) corresponds to the pair
of lines `z, `

′
z . Let L := k({z1, . . . , zr })⊃ k and let G :=Aut(L/k). Writing k(Z̃)= k(Z)(

√
δ) for some

δ ∈O×Z , we have a basis of CH1(SL)Q/∼num given by

v1, . . . , vr , D, π−1(c0),

with vi :=
√

d(`zi − `
′
zi
). The intersection form on 〈v1, . . . , vr 〉 is the diagonal matrix

(−4δ(z1), . . . ,−4δ(zr )),

the subspaces 〈v1, . . . , vr 〉 and 〈D, π−1(c0)〉 are perpendicular and 〈D, π−1(c0)〉 is hyperbolic. Moreover,
the automorphism group Aut(L/k) acts on 〈v1, . . . , vr 〉 just as it does on 〈z1, . . . , zr 〉. From this it follows
that the twisted intersection form b is given by

b = H −Trk(Z)/k(〈δ〉),

and hence
χ(S/k)= m · H −Trk(Z)/k(〈δ〉)

with

m = 2− dimk H0(S, �1
S/k)− dimk H1(S,OX )= dimQ H0(San,Q)− dimQ H1(San,Q)+ 1,

where San is the complex manifold associated to SC.
As a particular example, we may take S to be a cubic surface V ⊂ P3

k with a line `. Projection from `

realizes V as a conic bundle π : V → P1
k , with degeneracy locus Z ⊂ P1

k a reduced closed subscheme of
degree 5 over k. The above implies that the symmetric bilinear form bV is given by

bV = H −TrZ/k(〈δ〉)

and computes χ(S/k)= 2H −TrZ/k(〈δ〉).
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Remark 8.13. Bayer-Fluckiger and Serre [2019] considered the finite k-scheme W representing the 27
lines on a cubic surface V and computed the trace form TrW/k(〈1〉) in [Bayer-Fluckiger and Serre 2019,
Theorem 5, Interpretation 7.3]. They identified their form q6,V with the trace form on H1(V, �V/k) and
showed that

TrW/k(〈1〉)= λ2bV + (〈−1〉− 〈2〉)bV + 7−〈−2〉.
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