Vol. 15, No. 7, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Modèle local des schémas de Hilbert–Siegel de niveau $\Gamma_1(p)$

Shinan Liu

Vol. 15 (2021), No. 7, 1655–1698
DOI: 10.2140/ant.2021.15.1655

Nous construisons un modèle local pour les schémas de Hilbert–Siegel de niveau Γ1(p), lorsque p est non-ramifié dans le corps totalement réel. Notre outil clé est une variante du complexe de Lie anneau-équivariant défini par Illusie.

We construct a local model for Hilbert–Siegel moduli schemes with Γ1(p)-level structures, when p is unramified in the totally real field. Our key tool is a variant of the ring-equivariant Lie complex defined by Illusie.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

variété de Shimura, modèle local, complexe cotangent
Mathematical Subject Classification 2010
Primary: 11G18
Secondary: 14A99
Received: 10 November 2019
Revised: 3 November 2020
Accepted: 12 December 2020
Published: 1 November 2021
Shinan Liu
Morningside Center of Mathematics
Chinese Academy of Sciences