We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann
and Nguyen; and Vermeulen to prove the uniform dimension growth
conjecture of Heath-Brown and Serre for varieties of degree at least
over
global fields. As an intermediate step, we generalize the bounds of Bombieri
and Pila to curves over global fields and in doing so we improve the
factor
by a
factor.
PDF Access Denied
We have not been able to recognize your IP address
3.226.122.122
as that of a subscriber to this journal.
Online access to the content of recent issues is by
subscription, or purchase of single articles.
Please contact your institution's librarian suggesting a subscription, for example by using our
journal-recommendation form.
Or, visit our
subscription page
for instructions on purchasing a subscription.
Department of Mathematics
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria – Pabellón I
1428
Ciudad Autónoma de Buenos Aires
Argentina
Department of Mathematics
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria – Pabellón I
1428
Ciudad Autónoma de Buenos Aires
Argentina
Instituto Argentino de Matemáticas
Alberto P. Calderón-CONICET
Saavedra 15, Piso 3
1083
Ciudad Autónoma de Buenos Aires
Argentina