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For a right-angled Coxeter system (W, S) and q > 0, let Mq be the associated Hecke von Neumann algebra,
which is generated by self-adjoint operators Ts , s∈ S, satisfying the Hecke relation (

√
qTs−q)(

√
qTs+1)=0,

as well as suitable commutation relations. Under the assumption that (W, S) is irreducible and |S| ≥ 3 it
was proved by Garncarek (J. Funct. Anal. 270:3 (2016), 1202–1219) that Mq is a factor (of type II1) for a
range q ∈ [ρ, ρ−1

] and otherwise Mq is the direct sum of a II1-factor and C.
In this paper we prove (under the same natural conditions as Garncarek) that Mq is noninjective, that it

has the weak-∗ completely contractive approximation property and that it has the Haagerup property. In
the hyperbolic factorial case Mq is a strongly solid algebra and consequently Mq cannot have a Cartan
subalgebra. In the general case Mq need not be strongly solid. However, we give examples of nonhyperbolic
right-angled Coxeter groups such that Mq does not possess a Cartan subalgebra.

1. Introduction

Hecke algebras are one-parameter deformations of group algebras of a Coxeter group. They were the
foundation for the theory of quantum groups [Jimbo 1986; Kassel 1995] and have remarkable applications
in the theory of knot invariants, as was shown by V. Jones [1985]. A wide range of applications of Coxeter
groups and their Hecke deformations can be found in [Davis 2008]. Dymara [2006] (see also [Davis
2008, Section 19]) introduced the von Neumann algebras generated by Hecke algebras. Many important
results were then obtained (see also [Davis et al. 2007]) for these Hecke von Neumann algebras. This
gave for example insight into the cohomology of associated constructions and its Betti numbers. In this
paper we investigate the approximation properties of Hecke von Neumann algebras as well as their Cartan
subalgebras (here we mean the notion of a Cartan subalgebra in the von Neumann algebraic sense, which
we recall in Section 5, and not the Lie algebraic notion).

Let us recall the following definition. Let q > 0 and let W be a right-angled Coxeter group with
generating set S (see Section 2). The associated Hecke algebra is a ∗-algebra generated by Ts , s ∈ S,
which satisfies the relation

(
√

q Ts − q)(
√

q Ts + 1)= 0, T ∗s = Ts, and Ts Tt = Tt Ts

for s, t ∈ S with st = ts. Hecke algebras carry a canonical faithful tracial vector state (the vacuum
state) and therefore generate a von Neumann algebra Mq under its GNS construction. It was recently
proved by Garncarek [2016] that if (W, S) is irreducible (see Section 2) and |S| ≥ 3, the von Neumann
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algebra Mq is a factor in the case q ∈ [ρ, ρ−1
], where ρ is the radius of convergence of the fundamental

power series (2-2). If q 6∈ [ρ, ρ−1
] then Mq is the direct sum of a II1-factor and C. For more general

Coxeter groups/Hecke algebras (not necessarily being right-angled, or for multiparameters q) this result
is unknown. It deserves to be emphasized that this in particular shows that the isomorphism class of Mq

depends on q; an observation that was already made in the final remarks of [Davis 2008, Section 19].
The first aim of this paper is to determine approximation properties of Mq (assuming the same natural

conditions as Garncarek). We first show that Mq is a noninjective von Neumann algebra and therefore
falls outside Connes’ classification of hyperfinite factors [1976]. Secondly we show that Mq has the
weak-∗ completely contractive approximation property (wk-∗ CCAP). This means that there exists a net
of completely contractive finite-rank maps on Mq that converges to the identity in the point σ -weak
topology. In case q = 1 the algebra Mq is the group von Neumann algebra of a right-angled Coxeter
group. In this case the result was known. For instance the CCAP follows from Reckwerdt’s result [2015]
and noninjectivity follows easily from identifying a copy of the free group inside W. Noninjectivity
can also be proved for right-angled Coxeter groups through the techniques developed in [Bożejko and
Speicher 1994]. Here we find the following:

Theorem A. Let q > 0:

(1) Let (W, S) be an irreducible right-angled Coxeter system with |S| ≥ 3. Then Mq is noninjective.

(2) For a general right-angled Coxeter system (W, S) the associated Hecke von Neumann algebra Mq

has the wk-∗ CCAP and the Haagerup property.

The proofs of noninjectivity and the Haagerup property proceed by showing that Hecke von Neumann
algebras are actually graph products [Caspers and Fima 2017] and then using general graph/free-product
techniques involving important results of [Ueda 2011]. For the wk-∗- CCAP we first obtain cb-estimates
for radial multipliers and then use estimates of word-length projections (see Proposition 4.11) going back
to [Haagerup 1978].

Our second aim is the study of Cartan subalgebras of the Hecke von Neumann algebra Mq . Recall
that a Cartan subalgebra of a II1-factor is by definition a maximal abelian subalgebra whose normalizer
generates the II1-factor itself. Cartan subalgebras arise typically in crossed products of free ergodic
probability measure preserving actions of discrete groups on a probability measure space.

Voiculescu [1996] was the first one to find factors (namely free group factors) that do not have a Cartan
subalgebra. His proof relies on estimates for the free entropy dimension of the normalizer of an injective
von Neumann algebra. Using a different approach, Ozawa and Popa [2010] were also able to find classes
of von Neumann algebras that do not have a Cartan subalgebra (including the free group factors). Ozawa
and Popa actually proved that these algebras have a stronger property that afterwards became known as
strong solidity: the normalizer of a diffuse injective von Neumann subalgebra generates an injective von
Neumann algebra again.

After these fundamental results by Ozawa and Popa, strong solidity was studied for many other
von Neumann algebras. In particular Popa and Vaes [2014] (see also [Chifan and Sinclair 2013]) proved
the absence of Cartan subalgebras for group factors of biexact groups that have the CBAP. Isono [2015]
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then put the results from [Popa and Vaes 2014] into a general von Neumann framework in order to prove
absence of Cartan subalgebras for free orthogonal quantum groups. Isono proved that factors with the
wk-∗ CBAP that satisfy condition (AO)+ are strongly solid. Using this strong solidity result by Isono we
are able to prove the following.

Theorem B. Let q ∈ [ρ, ρ−1
] with ρ as in Theorem 2.2. Let (W, S) be an irreducible right-angled

Coxeter system with |S| ≥ 3. Assume that W is hyperbolic. Then the associated Hecke von Neumann
algebra Mq is strongly solid.

In turn as Mq is noninjective by Theorem A we are able to derive the result announced in the title of
this paper for the hyperbolic case.

Corollary C. Let q ∈ [ρ, ρ−1
] with ρ as in Theorem 2.2. For an irreducible right-angled hyperbolic

Coxeter system (W, S) with |S| ≥ 3 the associated Hecke von Neumann algebra Mq does not have a
Cartan subalgebra.

General right-angled Hecke von Neumann algebras are not strongly solid; see Remark 5.6. Still we
can prove in some cases that they do not possess a Cartan subalgebra. We do this by showing that if Mq

were to have a Cartan subalgebra then under suitable conditions each of the three alternatives in [Vaes
2014, Theorem A] fails to be true, which leads to a contradiction.

Theorem D. Let q ∈ [ρ, ρ−1
]. Let (W, S) be an irreducible right-angled Coxeter system with |S| ≥ 3 for

which the Coxeter graph satisfies the conditions of Theorem 6.7. Then the associated Hecke von Neumann
algebra Mq does not have a Cartan subalgebra.

Structure. In Section 2 we introduce Hecke von Neumann algebras and some basic algebraic properties.
Lemma 2.7 is crucial for the results on strong solidity and the weak-∗ CCAP. In Section 3 we obtain
universal properties of Hecke von Neumann algebras and prove that they decompose as graph products. We
collect the consequences for the Haagerup property and noninjectivity. In Section 4 we find approximation
properties of Mq and conclude Theorem A. Section 5 proves the strong solidity result of Theorem B
from which Corollary C shall easily follow. Finally Section 6 proves absence of Cartan subalgebras for
the cases of Theorem D.

Convention. Let X be a set and let A, B ⊆ X . We will briefly write A\B for A\(A∩ B).

2. Notation and preliminaries

Standard results on operator spaces can be found in [Effros and Ruan 2000; Pisier 2003]. Standard
references for von Neumann algebras are [Strătilă and Zsidó 1979; Takesaki 1979]. Recall that ucp stands
for unital completely positive.

2A. Coxeter groups. A Coxeter group W is a group that is freely generated by a finite set S subject to
relations

(st)m(s,t) = 1
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for some constant m(s, t) ∈ {1, 2, . . . ,∞} with m(s, t) = m(t, s) ≥ 2, s 6= t , and m(s, s) = 1. The
constant m(s, t) = ∞ means that no relation is imposed, so that s, t are free variables. The Coxeter
group W is called right-angled if either m(s, t)= 2 or m(s, t)=∞ for all s, t ∈ S, s 6= t and this is the
only case we need in this paper. Therefore we assume from now on that W is a right-angled Coxeter
group with generating set S. The pair (W, S) is also called a Coxeter system.

Let w ∈ W and suppose that w = w1 · · ·wn with wi ∈ S. The representing expression w1 · · ·wn is
called reduced if whenever also w=w′1 · · ·w

′
m with w′i ∈ S then n ≤m; i.e., the expression is of minimal

length. In that case we will write |w| = n. Reduced expressions are not necessarily unique (only if
m(s, t)=∞ whenever s 6= t), but for each w ∈W we may pick a reduced expression which we shall call
minimal.

Convention. For w ∈W we shall write wi for the minimal representative w = w1 · · ·wn .

To the pair (W, S)we associate a graph 0 with vertex set V0= S and edge set E0={(s, t) :m(s, t)=2}.
A subgraph 00 of 0 is called full if the following property holds: for all s, t ∈ V00 with (s, t) ∈ E0 we
have (s, t) ∈ E00.

A clique in 0 is a full subgraph in which every two vertices share an edge. We let Cliq(0) denote the
set of cliques in 0. To keep the notation consistent with the literature the empty graph is in Cliq(0) by
convention (in this paper we shall sometimes exclude the empty graph from Cliq(0) explicitly or treat it
as a special case to keep some of the arguments more transparent).

For s ∈ S we set
Link(s)= {t ∈ S : m(s, t)= 2},

so these are all vertices in 0 that have distance exactly 1 to s. For a subset X ⊆ V0 we set Link(X)=⋂
s∈X Link(s). We sometimes regard Link(X) as a full subgraph of 0.

Definition 2.1. A Coxeter system (W, S) is called irreducible if the complement of 0 is connected. Here
the complement 0c of the graph 0 is the graph with the same vertex set V0 and for v,w ∈ V0 we have
(v,w) ∈ E0c if and only if (v,w) 6∈ E0.

2B. Hecke von Neumann algebras. Let (W, S) be a right-angled Coxeter system. Let q > 0. By [Davis
2008, Proposition 19.1.1] there exists a unique unital ∗-algebra Cq(0) generated by a basis {T̃w :w ∈W }
satisfying the following relations. For every s ∈ S and w ∈W we have

T̃s T̃w =

{
T̃sw if |sw|> |w|,
qT̃sw + (q − 1)T̃w otherwise,

T̃ ∗w = T̃w−1 .

We define normalized elements Tw = q−|w|/2T̃w. Then for w ∈W and s ∈ S,

Ts Tw =

{
Tsw if |sw|> |w|,
Tsw + pTw otherwise,

(2-1)

where
p =

q − 1
√

q
.
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There is a natural positive linear tracial map τ on Cq(W ) satisfying τ(Tw)= 0, w 6= 1, and τ(1)= 1. Let
L2(Mq) be the Hilbert space given by the closure of Cq(W ) with respect to 〈x, y〉 = τ(y∗x) and let Mq

be the von Neumann algebra generated by Cq(W ) acting on L2(Mq). The map τ extends to a state on
Mq and L2(Mq) is its GNS space with cyclic vector � := Te. Mq is called the Hecke von Neumann
algebra at parameter q associated to the right-angled Coxeter system (W, S).

Theorem 2.2 (see [Garncarek 2016]). Let (W, S) be an irreducible right-angled Coxeter system and
suppose that |S| ≥ 3. Let ρ be the radius of convergence of the fundamental power series

∞∑
k=0

|{w ∈W : |w| = k}|zk . (2-2)

For every q ∈ [ρ, ρ−1
] the von Neumann algebra Mq is a factor. For q > 0 not in [ρ, ρ−1

] the von
Neumann algebra Mq is the direct sum of a factor and C.

As Mq possesses a normal faithful tracial state the factors appearing in Theorem 2.2 are of type II1.
For the analysis of Mq we shall in fact need M1, which is the group von Neumann algebra of the

Coxeter group W. It can be represented on L2(Mq). Indeed, let T (1)
w denote the generators of M1 as in

(2-1) and let Tw be the generators of Mq . Define the unitary map1

U : L2(M1)→ L2(Mq) : T (1)
w �→ Tw�.

In this paper we shall always assume that M1 is represented on L2(Mq) by the identification M1→

B(L2(Mq)) : x 7→U xU∗. Note that this way

T (1)
v (Tw�)= Tvw�. (2-3)

For w ∈W we shall write Pw for the projection of L2(Mq) onto the closure of the space spanned linearly
by {Tv� : |w

−1v| = |v| − |w|} (see Remark 2.3 below). For 00 ∈ Cliq(0) we shall write PV00 for Pw,
where w ∈W is the product of all vertex elements of 00, and |V00| for the number of elements in V00.
Note that if s, t ∈ V00 then Ps and Pt commute and so PV00 is well-defined. Similarly we shall write
PvV00 for Pw, where w ∈W is the product of v with all vertex elements of 00.

Remark 2.3 (creation and annihilation arguments). Note that for w, v ∈W saying that |w−1v| = |v|−|w|

just means that the start of v contains the word w. Throughout the paper we say that s ∈ S acts by means
of a creation operator on v ∈ W if |sv| = |v| + 1. It acts as an annihilation operator if |sv| = |v| − 1.
Note that as W is right-angled we cannot have |sv| = |v|. For v,w ∈W we may always decompose w as
w =w′w′′ such that |w| = |w′|+ |w′′|, |w′′v| = |v|− |w′′|, and |wv| = |v|− |w′′|+ |w′|. That is, w first
acts by means of annihilations of the letters of w′′ and then w′ acts as a creation operator on w′′v. We
will use such arguments without further reference.

1Unitarity follows as the vectors Tw� are orthonormal. Indeed 〈Tw�, Tv�〉 = 〈T ∗v Tw�,�〉. If v∗w is reducible this
expression is 0. Otherwise there exists a letter w1 at the starts of v and w such that T ∗v Tw = T ∗

v′
Tw′ + pT ∗

v′
Tw1 Tw′ , where

w1w′ = w and w1v′ = v and w′ and v′ are of shorter length. The term pT ∗
v′

Tw1 Tw′ reduces further and can be written
as a sum of operators

∑
i Tui but each ui must contain the letter w1 as else w and v would not be reducible. Therefore

〈pT ∗
v′

Tw1 Tw′�,�〉 = 0. So 〈T ∗v Tw�,�〉 = 〈T ∗v′Tw′�,�〉. Continuing inductively we get 〈T ∗v Tw�,�〉 = δv,w .
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The following Lemma 2.5, together with Lemma 2.7, says that Tw decomposes in terms of a sum of
operators that first act by annihilation (this is T (1)

u′′ ) then a diagonal action (this is the projection PuV00)
and finally by creation (this is T (1)

u′ ).

Definition 2.4. Let w ∈W. Let Aw be the set of triples (w′, 00,w
′′) with w′,w′′ ∈W and 00 ∈ Cliq(0)

such that (1) w = w′V00w
′′, (2) |w| = |w′| + |V00| + |w

′′
|, (3) if s ∈ S commutes with V00 then

|w′s|> |w′| (that is, letters commuting with V00 cannot occur at the end of w′, and if they are present
they should occur at the start of w′′).

Lemma 2.5. For (w′, 00,w
′′) ∈ Aw there exist u, u′, u′′ ∈W such that

T (1)
w′ PV00 T (1)

w′′ = T (1)
u′ PuV00 T (1)

u′′ , (2-4)

and moreover if s ∈ S is such that |u′s| < |u′| then |su′′| > |u′′|. We may assume that u′ = w′u−1 and
u′′ = uw′′.

Proof. Let u ∈ W be the (unique) element of maximal length such that |w′u−1
| = |w′| − |u| and

|uw′′| = |w′′| − |u|. Set u′ = w′u−1 and u′′ = uw′′. It then remains to prove (2-4) as the rest of the
properties are obvious or follow by maximality of u. We must show that

PuV00 = T (1)
u PV00 T (1)

u−1 .

Take v ∈W. If |(uV00)
−1v| = |v| − |uV00| (i.e., v starts with uV00) then |(V00)

−1u−1v| = |u−1v| −

|V00| (i.e., u−1v starts with V00). We shall prove that the converse holds. First, we claim that if
|(V00)

−1u−1v| = |u−1v|− |V00| then |u−1v| = |v|− |u−1
| (i.e., v starts with u). Indeed, because if this

were not the case then one of the letters in u would remain at the start of u−1v. And as the letters of u do
not commute with V00 this would mean that |(V00)

−1u−1v| 6= |u−1v|− |V00|, which is a contradiction.
From the initial assumption |(V00)

−1u−1v| = |u−1v| − |V00| (u−1v starts with V00) together with
|u−1v| = |v| − |u−1

| (v starts with u) we get that |(uV00)
−1v| = |v| − |uV00|.

The previous paragraph shows the first equality of

PuV00(Tv�)= T (1)
u PV00(Tu−1v�)= T (1)

u PV00 T (1)
u−1(Tv�). �

Remark 2.6. In Lemma 2.5 the property that |u′s| < |u′| implies that |su′′| > |u′′| is equivalent to
|u′u′′| = |u′| + |u′′|. The words u′ and u′′ in Lemma 2.5 are not unique: in the case |su′′| = |u′′| − 1 and
s commutes with V00, we may replace (u′, u′′) by (u′s, su′′).

Lemma 2.7. We have

Tw =

∑
(w′,00,w′′)∈Aw

p|V00|T (1)
w′ PV00 T (1)

w′′ , (2-5)

where Aw is given in Definition 2.4.

Proof. The proof proceeds by induction on the length of w. If |w| = 1 then Tw = T (1)
w + pPw by (2-1).

Now suppose that (2-5) holds for all w ∈W with |w| = n. Let v ∈W be such that |v| = n+1. Decompose
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v as v = sw, |w| = n, s ∈ S. Then,

Tv = Ts Tw = (T (1)
s + pPs)

( ∑
(w′,00,w′′)∈Aw

p|V00|T (1)
w′ PV00 T (1)

w′′

)
=

∑
(w′,00,w′′)∈Aw

(p|V00|T (1)
sw′ PV00 T (1)

w′′ + p|V00|+1 Ps T (1)
w′ PV00 T (1)

w′′ ). (2-6)

Now we need to make the following observations.

(1) If sw′ = w′s then Ps T (1)
w′ = T (1)

w′ Ps . So in that case,

Ps T (1)
w′ PV00 T (1)

w′′ = T (1)
w′ Ps PV00 T (1)

w′′ .

Moreover Ps PV00 equals PsV00 in the case s commutes with all elements of V00 and it equals 0 otherwise.

(2) In the case sw′ 6= w′s we claim that Ps T (1)
w′ PV00 T (1)

w′′ = 0. To see this, rewrite Ps T (1)
w′ PV00 T (1)

w′′ =

Ps T (1)
u′ PuV00 T (1)

u′′ with u, u′, u′′ as in Lemma 2.5. As sw′ 6= w′s we have su′ 6= u′s and/or su 6= us
(because w′ = u′u with |w′| = |u′| + |u|; see Lemma 2.5).

(a) Assume su′ 6= u′s. For v ∈W with Tu′′v� in the range of PuV00 ,

Ps T (1)
u′ PuV00 T (1)

u′′ (Tv�)= Ps Tu′u′′v�. (2-7)

Furthermore, the assertions of Lemma 2.5 imply |u′uV00| = |u′| + |uV00| and therefore (recalling
that Tu′′v� is in the range of PuV00) we get that |u′u′′v| = |u′′v| + |u′|, which implies (because
su′ 6= u′s and u′u′′v starts with all letters of u′) that (2-7) is 0. For v ∈ W with Tu′′v� not in the
range of PuV00 we have T (1)

u′ PuV00 T (1)
u′′ (Tv�)= 0. In all we conclude Ps T (1)

u′ PuV00 T (1)
u′′ = 0.

(b) Assume su′ = u′s but su 6= us. Then Ps T (1)
u′ Pu = T (1)

u′ Ps Pu = 0.

So in all (2-6) gives,

Tv =

∑
(w′,00,w′′)∈Aw

p|V00|T (1)
sw′ PV00 T (1)

w′′ +

∑
(w′,00,w′′)∈Aw,sw′=w′s,sV00=V00s

p|V00|+1T (1)
w′ PsV00 T (1)

w′′ ,

and in turn an identification of all summands shows that the latter expression equals∑
(v′,00,v′′)∈Asw

p|V00|T (1)
v′ PV00 T (1)

v′′ . �

2C. Group von Neumann algebras. Let G be a discrete group with left regular representation s 7→ λs

and group von Neumann algebra L(G) = {λs : s ∈ G}′′. We let A(G) be the Fourier algebra consisting
of functions ϕ(s) = 〈λsξ , η〉, ξ, η ∈ `2(G). There is a pairing between A(G) and L(G) which is given
by 〈ϕ, λ( f )〉 =

∫
G f (s)ϕ(s) ds which turns A(G) into an operator space that is completely isometrically

identified with L(G)∗. We let MCB A(G) be the space of completely bounded Fourier multipliers of A(G).
For m ∈ MCB A(G) we let Tm : L(G)→ L(G) be the normal completely bounded map determined by
λ( f ) 7→ λ(m f ). The following theorem is due to Bożejko and Fendler [1984] (see also [Junge et al. 2009,
Theorem 4.5]).
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Theorem 2.8. Let m ∈ MCB A(G). There exists a unique normal completely bounded map Mm :

B(`2(G))→ B(`2(G)) that is an L∞(G)-bimodule homomorphism and such that Mm restricts to Tm :

λ( f ) 7→ λ(m f ) on L(G). Moreover, ‖Mm‖CB = ‖Tm‖CB = ‖m‖MCB A(G).

The map Mm is called the Herz–Schur multiplier.

3. Universal property and conditional expectations

In this section we establish universal properties for Mq and consequently show that Mq is noninjective
and has the Haagerup property.

3A. Universal properties.

Theorem 3.1. Let q > 0, put p = (q − 1)/
√

q and let (W, S) be a right-angled Coxeter system with
associated Hecke von Neumann algebra (Mq , τ ). Suppose that (N , τN ) is a von Neumann algebra with
GNS faithful state τN that is generated by self-adjoint operators Rs , s ∈ S, that satisfy the relations
Rs Rt = Rt Rs whenever m(s, t) = 2, R2

s = 1+ pRs , s ∈ S, and further τN (Rw1 · · · Rwn ) = 0 for every
nonempty reduced word w = w1 · · ·wn ∈ W. Then there exists a unique normal ∗-homomorphism
π :Mq →N such that π(Ts)= Rs . Moreover τN ◦π = τ .

Proof. The proof is routine; see [Caspers and Fima 2017, Proposition 2.12]. We sketch it here. Let
(L2(N ), πN , η) be a GNS construction for (N , τN ). As τN is GNS faithful we may assume that N is
represented on L2(N ) via πN . We define a linear map V : L2(Mq)→ L2(N ) by V�= η and

V (Tw�)= Rwη, where w ∈W,

and Rw := Rw1 · · · Rwn . One checks that V is isometric by showing that {Rwη :w ∈W } is an orthonormal
system.2 Putting π( · )= V ( · )V ∗ concludes the lemma. As V�= η we get τN ◦π = τ . �

Remark 3.2. Note that the property T 2
s = 1+ pTs , s ∈ S, with p = (q − 1)/

√
q, is equivalent to the

usual Hecke relation (
√

q Ts − q)(
√

q Ts + 1)= 0 that appears in the literature.

We shall say that (W̃, S̃) is a Coxeter subsystem of (W, S) if S̃⊆ S and m̃(s, t)=m(s, t) for all s, t ∈ S̃.
Here m̃ is the function on S̃× S̃ that determines the commutation relations for W̃ ; see Section 2A.

Corollary 3.3. Let q > 0. Let (W̃, S̃) be a Coxeter subsystem of a right-angled Coxeter system (W, S).
Let M̃q and Mq be their respective Hecke von Neumann algebras. Then naturally M̃q is a von Neumann
subalgebra of Mq . In particular, there exists a trace-preserving normal conditional expectation E :
Mq → M̃q .

2The proof goes as follows. We may find unique coefficients cv such that Tw′n · · · Tw′1
Tw1 · · · Twn =

∑
v∈W cvTv . We have

c∅ = 1 if w = w′ and c∅ = 0 if w 6= w′ by comparing the trace of both sides of this expression. In fact the coefficients cv may
be found by using the commutation relations for Ts and the Hecke relation T 2

s = 1+ pTs to “reduce” the left-hand side of this ex-
pression. As the same relations hold for the operators Rs (by the assumption of the lemma) we also get Rw′n · · · Rw′1

Rw1· · ·Rwn=∑
v∈W cv Rv . So, 〈Rwη, Rw′η〉 = τN (R

∗

w′
Rw) = τN (Rw′n · · · Rw′1

Rw1 · · · Rwn ) = τN
(∑

v∈W cv Rv
)
= c∅. This proves that

indeed V is isometric.
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Proof. Theorem 3.1 implies that M̃q is a von Neumann subalgebra of Mq and the canonical trace of
Mq agrees with the one on M̃q . Therefore M̃q admits a trace-preserving normal conditional expectation
value; see [Takesaki 2003, Theorem IX.4.2]. �

Consider the Hecke von Neumann algebra Mq for the case that S is a one-point set, q > 0, and
p = (q − 1)/

√
q. In that case we have W = {e, s} and L2(Mq) has a canonical basis � and Ts�. With

respect to this basis Ts takes the form
( 0

1
1
p

)
and one sees (using for example the relation T 2

s = 1+ pTs)
that Mq =CId2⊕CTs ; i.e., it is 2-dimensional. The following corollary uses the graph product, for which
we refer to [Caspers and Fima 2017]. It is a generalization of the free product by adding a commutation
relation to vertex algebras that share an edge; the free product is then given by a graph product over a
graph with no edges. In [Caspers and Fima 2017] the symbol ∗ was used for graph products. We use the
notation ? instead to distinguish them from free (amalgamated) products.

Corollary 3.4. Let (W, S) be an arbitrary right-angled Coxeter system and let q > 0. Let 0 be the graph
associated to (W, S) as before. For s ∈ S let Mq(s) be the 2-dimensional Hecke von Neumann subalgebra
corresponding to the one-point set {s}. Then we have a graph product decomposition Mq = ?s∈V0Mq(s).

Proof. Let Ts ∈Mq , s ∈ S, be the operators as introduced in Section 2B. Let T̃s , s ∈ S, be the operator Ts

but then considered in the algebra Mq(s), which in turn is contained in ?s∈V0Mq(s) with conditional
expectation. Now the map Ts 7→ T̃s determines an isomorphism by Theorem 3.1 and the universal property
of the graph product given by [Caspers and Fima 2017, Proposition 2.12]. �

3B. Noninjectivity.

Definition 3.5. A von Neumann algebra M ⊆ B(H) is called injective if there exists a conditional
expectation E : B(H)→M.

Theorem 3.6. Let (W, S) be an irreducible right-angled Coxeter system with |S| ≥ 3. Then Mq is
noninjective.

Proof. It suffices to prove that Mq contains an expected noninjective von Neumann subalgebra. Now any
irreducible Coxeter system (W, S) contains a Coxeter subsystem (W̃, S̃) either of the form S̃ = {r, s, t}
with m̃(r, s) = m̃(r, t) = m̃(s, t) =∞ or S̃ = {r, s, t} with m̃(r, s) = m̃(r, t) =∞ and m̃(s, t) = 2. So
it satisfies to prove noninjectivity for these systems. In both cases, for q fixed, set M to be the Hecke
von Neumann algebra of the Coxeter system consisting of just {r}. M has dimension 2. Set N to be
the Hecke von Neumann algebra of the Coxeter system {s, t}, which is infinite-dimensional in the case
m(s, t)=∞ and 4-dimensional if m(s, t)= 2 (being the tensor product of two 2-dimensional algebras).
Then Mq is isomorphic to the free product M∗N over the canonical traces by Corollary 3.4 and [Caspers
and Fima 2017, Remark 3.23]. As dim(M)+ dim(N )≥ 5 it follows that Mq is noninjective from [Ueda
2011, Theorem 4.1] (see comment (5) in Remark 4.2 of that work). �

3C. Haagerup property. We first construct radial multipliers.

Proposition 3.7. Let (W, S) be a right-angled Coxeter group with Hecke von Neumann algebra Mq ,
q > 0. For every 0< r < 1 there exists a normal unital completely positive map 8r :Mq →Mq that is
determined by 8r (Tw)= r |w|Tw.
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Proof. As in Corollary 3.4 we identify Mq with the graph product ∗0s∈V0(Mq(s), τs), where τs is the
tracial state on Mq(s). Consider the map 8r,s :Mq(s)→Mq(s) determined by 1 7→ 1, Ts 7→ rTs . This
map is unital and completely positive: indeed consider the matrices

A :=
(√

1−r 0
0 0

)
, B =

(
0
√

1−r
0 0

)
, C =

(√
r 0

0
√

r

)
.

Then8r,s agrees with x 7→ A∗x A+B∗x B+C∗xC as before Corollary 3.4 we already noted that Ts=
( 0

1
1
p

)
.

Furthermore 8r,s preserves the trace τs as τs is the vector state associated with (1, 0)t. Therefore we may
apply [Caspers and Fima 2017, Proposition 2.30] and obtain the graph product ucp map 8r := ?s∈V08r,s ,
which proves the proposition. �

Definition 3.8. Recall that a von Neumann algebra M with normal faithful tracial state τ has the Haagerup
property if there exists a net 8i of τ -preserving ucp maps M→M such that Ti : x�τ 7→8i (x)�τ is
compact and converges to 1 strongly.

Theorem 3.9. For any Coxeter system (W, S) and any q > 0 the von Neumann algebra Mq has the
Haagerup property.

Proof. If S is finite Proposition 3.7 directly shows that Mq has the Haagerup property by letting r ↗ 1.
Then the general case follows by an inductive limit argument on finite Coxeter subsystems using the
conditional expectations from Corollary 3.3. �

4. Completely contractive approximation property

We show that for a right-angled Coxeter system (W, S) the Hecke von Neumann algebra Mq has the
wk-∗ CCAP; see Definition 4.12. The proof follows a — by now standard — strategy of [Haagerup 1978]
by considering radial multipliers first and then showing that word-length cut-downs have a complete
bound that is at most polynomial in the word length.

4A. Creation/annihilation arguments. Here we present some combinatorial arguments that we need in
Section 4B. We have chosen to separate these from the proofs of Section 4B so that the reader could skip
them at first sight.

We introduce the following notation. Let x,w ∈W. We shall write w ≤ x to indicate that |w−1x| =
|x| − |w|. Then w < x is defined naturally. So w ≤ x means that w is obtained from x by cutting off
a tail. An element v ∈W is called a clique word in the case its letters form a clique. For 3 a clique in
W and v ∈ W we define v(2,∅) as the maximal3 clique 00 such that |vV00| = |v| − |V00|. Then we
take the decomposition v = v(1,3)v(2,3) with |v| = |v(1,3)| + |v(2,3)| and v(2,3) = v(2,∅)\3
(which uniquely determines v(1,3)). For g ≤ x we let 3g,x be (x−1 g)(2,∅). In other words 3g,x is
the maximal clique that appears at the start of g−1x. We let C(g, x) be the collection of w ∈ W with
g ≤ w ≤ g3g,x . Note that C(g, x) contains at least g and g3g,x (and the latter elements can be equal).
We write C(g,+) for

⋃
g≤x C(g, x).

3Suppose that 00 and 01 are cliques such that |vV0i | = |v|− |V0i |, i = 0, 1. Then the letters V00 and V01 must commute.
So the union 02 = 00 ∪01 is a clique with |vV02| = |v| − |V02|.
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Example 4.1. Consider the Coxeter system (W, S) with S = {r, s, t} in which m(r, s)= 2 and m(r, t)=
m(s, t) =∞. Consider v = trs. Then v(1,∅) = t , v(2,∅) = rs, v(1, r) = tr , and v(2, r) = s. Also
3t,trst = {t, tr, ts, trs}.

Lemma 4.2. Let x,w ∈ W. Let w = w′w′′ be the decomposition with |w| = |w′| + |w′′| such that
|w′′x| = |x| − |w′′| and |wx| = |x| − |w′′| + |w′|. Take (w′′)−1

≤ g ≤ x. Then, for v ∈ C(g, x),

(wv)(2, (wg)(2,∅)\g(2,∅))= v(2, g(2,∅)\(wg)(2,∅)) (4-1)

and
|(wv)(1, (wg)(2,∅)\g(2,∅))| = |v(1, g(2,∅)\wg(2,∅))| − |w′′| + |w′|. (4-2)

Proof. Let v ∈ C(g, x). The clique v(2,∅) consists of the clique g−1v plus all letters in g(2,∅) that
commute with g−1v. Therefore v(2, g(2,∅)\(wg)(2,∅)) is the clique consisting of g−1v plus all letters
in (wg)(2,∅)∩ g(2,∅) that commute with g−1v. On the other hand (wv)(2,∅) consists of the clique
g−1v together with all letters in (wg)(2,∅) that commute with g−1v. Then (wv)(2, (wg)(2,∅)\g(2,∅))
equals g−1v together with all elements in (wg)(2,∅)∩ g(2,∅) that commute with g−1v. So we conclude
(4-1). Therefore,

|(wv)(1, (wg)(2,∅)\g(2,∅))| = |wv| − |(wv)(2, (wg)(2,∅)\g(2,∅))|

= |v| − |w′′| + |w′| − |v(2, g(2,∅)\(wg)(2,∅))|

= |v(1, g(2,∅)\wg(2,∅))| − |w′′| + |w′|, (4-3)

completing the proof. �

Lemma 4.3. Let x,w∈W and decompose w as w=w′w′′ such that |w|= |w′|+|w′′|, |w′′x|= |x|−|w′′|,
and |wx| = |x| − |w′′| + |w′|. Let (w′′)−1

≤ g ≤ x. Then:

(1) g(2,∅)\(wg)(2,∅)= g(2,∅)\(w′′g)(2,∅).

(2) For v ∈ C(g, x) we have

v(2, v(2,∅)\(w′′v)(2,∅))= v(2, g(2,∅)\(w′′g)(2,∅)). (4-4)

Proof. (1) Because (w′′)−1
≤ g ≤ x we also have |w′′g| = |g| − |w′′| and |wg| = |g| − |w′′| + |w′|. So

w′ creates letters in w′′g so that g(2,∅)\(wg)(2,∅)= g(2,∅)\(w′′g)(2,∅).

(2) Let A be the set of letters in g(2,∅) that commute with g−1v. The clique v(2,∅) consists of g−1v∪A.
This means that v(2, v(2,∅)\(w′′v)(2,∅)) consists of g−1v∪ A intersected with (w′′v)(2,∅). The inter-
section of (w′′v)(2,∅) with g−1v is g−1v so that v(2, v(2,∅)\(w′′v)(2,∅))= g−1v∪(A∩(w′′v)(2,∅)).
On the other hand v(2, g(2,∅)\(w′′g)(2,∅)) equals g−1v ∪ (A ∩ (w′′g)(2,∅)) and as g(2,∅) ∩
(w′′g)(2,∅)=g(2,∅)∩(w′′v)(2,∅) clearly (A∩(w′′v)(2,∅))=(A∩(w′′g)(2,∅)). This proves (4-4). �

Although Coxeter groups generally do not have polynomial growth (nor are they hyperbolic) we still
have the polynomial estimate of the following Lemma 4.4. We do not believe that the degree of the
polynomial bound we obtain in Lemma 4.4 is optimal, but it suffices for our purposes and it admits a
short proof.
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Lemma 4.4. Let W be a right-angled Coxeter group with finite graph 0. Let x ∈W. For a ∈ N define

κx(a)= |{w ≤ x : |w| = a}|.

Then κx(a)≤ Ca|V0|−2. Moreover, the constant C can be taken uniformly in x.

Proof. To carry out the proof we shall actually count a more refined number. We write 3≤ 0 to indicate
that 3 is a complete subgraph of 0. We say that w is a (≤3)-word if its letters (in reduced form) are all
in V3 (they do not need to exhaust all of V3); we say that w is a 3-word if its letters are exactly V3.
Then define

κ3x (a)= |{v ≤ x : |v| = a and v is a (≤3)-word}|. (4-5)

Let c and k0 be constants such that for a∈{0, 1}we have for all ∅ 6=3<0 that κ3x (a)≤ c(a+k0)
|V3|−2

and further for all a ∈ N and all nonempty complete subgraphs 3 of 0 we have 2|V3|ca ≤ (a+ k0)
2. We

prove by induction on a ∈ N that for all ∅ 6=3< 0 we have κ3x (a)≤ c(a+ k0)
|V3|−2.

Inductive step. Pick some fixed w < x with |w| = a and w a 3-word. Now if v < x with |v| = a then let
v0 be an element of maximal length such that both v0 ≤ v and v0 ≤ w (we leave in the middle if v0 is
unique).

Let s ∈ S be a letter that appears at the start of v−1
0 w. We claim that the letter s must commute with

v−1
0 v. Indeed, first observe that as v0 has maximal length s cannot appear at the start of v−1

0 v. Further,
write x = v0(v

−1
0 v)(v−1x) and x = v0(v

−1
0 w)(w−1x). So,

(v−1
0 w)(w−1x)= (v−1

0 v)(v−1x). (4-6)

Now s appears at the start of (v−1
0 w) and hence this letter must occur somewhere in the expression

(v−1
0 v)(v−1x) as well. Consider the first occurrence of s in (v−1

0 v)(v−1x). All the letters before it must
then commute with s as otherwise the equality (4-6), saying that s is at the start, is violated (see the normal
form theorem [Green 1990, Theorem 3.9]). But then s does not occur on v−1

0 v as then it is automatically
at its start. So the first time s occurs in (v−1

0 v)(v−1x) is in the part (v−1x) and so it commutes with all
elements in (v−1

0 v).
So if v−1

0 w is a 3-word then v−1
0 v is a Link(3)-word (recall Link(3) =

⋂
s∈V3 Link(s)); in fact it

must be a (Link(3)∩3)-word as we only deal with words with letters in 3. Moreover v−1
0 v must appear

at the start of w−1x. So every word in the set we count in (4-5) is obtained from w by cutting off a tail
(this is v−1

0 w) and then adding a tail of the same size with commuting letters (this is v−1
0 v). This certainly

gives the inequality

κ3x (a)≤
∑
3′≤3

∑
v≤w

v−1w is a 3′-word

κ
Link(3′)
w−1x (|v−1w|).

Note that the number of v ∈ W with v < w, |v| = l and v a 3′ -word is smaller than or equal to
κ3
′

w−1(|w| − l). In the case l = 0 we have κ3
′

w−1(|w| − l) = 1 (elementary) and in the case l > 0 we can
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apply our induction hypothesis to get κ3
′

w−1(|w| − l)≤ c(a− l + k0)
|V3′|−2. Therefore we get

κ3x (a)≤
∑
3′<3

∑
v<w

v−1w is a 3′-word

c(a+ k0)
|Link(3′)∩V3|−2

≤

∑
3′<3

a∑
l=0

c2(a− l + k0)
|V3′|−2(a+ k0)

|Link(3′)∩V3|−2

≤

∑
3′<3

a∑
l=0

c2(a+ k0)
|V3′|−2(a+ k0)

|Link(3′)∩V3|−2.

Since the intersection of each V3′ and Link(3′)∩ V3 is empty we find

κ3x (a)≤
∑
3′<3

a∑
l=0

c2(a+ k0)
|V3|−4

≤ 2|V0|c2(a+ 1)(a+ k0)
|V3|−4

≤ c(a+ k0)
|V3|−2.

The last line follows from the choice of c and k0. �

4B. Word-length projections. The aim of this section is to prove that Tw 7→ δ(|w| ≤ n)Tw gives a
complete bounded multiplier of Mq with complete bound growing at most polynomially in n. Firstly we
simplify notation a little bit.

Remark 4.5. We may identify `2(W ) with basis δx , x ∈ W, with L2(Mq) with basis Tx�. This way
T (1)

w acts on `2(W ) by means of the left regular representation.

We borrow the following construction from [Ozawa 2008]. We let B f (W ) be the set of finite subsets
of W. For A ∈ B f (W ) we define ξ̃±A to be the vectors in `2(B f (W )) given by

ξ̃+A (ω)=

{
1 if ω ⊆ A,
0 otherwise,

ξ̃−A (ω)=

{
(−1)|ω| if ω ⊆ A,
0 otherwise.

Using the binomial formula (see Lemma 4 of [Ozawa 2008]), we have ‖ξ̃±A ‖
2
= 2|A| and

〈ξ̃+A , ξ̃
−

B 〉 =

{
0 A∩ B 6=∅,
1 otherwise.

We let
R= span{Pw : w ∈W }. (4-7)

Let Qw be the operator
Qwδx = δ(w = x)δx;

i.e., Qw is the Dirac delta function at w seen as a multiplication operator.

Lemma 4.6. For w ∈W we have Qw =
∑

v∈C(w,+)(−1)|w
−1v|Pv.

Proof. Firstly, Qw(w) = 1 = Pw(w) =
(∑

v∈C(w,+)(−1)|w
−1v|Pv

)
(w). Let x ∈ W. If w 6≤ x we get

Qw(x)= 0=
(∑

v∈C(w,+)(−1)|w
−1v|Pv

)
(x). In the case w < x we find( ∑

v∈C(w,+)

(−1)|w
−1v|Pv

)
(x)=

∑
v∈C(w,x)

(−1)|w
−1v|, (4-8)
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and this expression equals 0 by the binomial formula. Indeed, let 3w,x be the maximal clique appearing
at the start of w−1x (see Section 4A). The number of words smaller than 3w,x of length l is |3w,x|

choose l. So (4-8) equals
|3w,x |∑

l=0

∑
v∈C(w,x),|w−1v|=l

(−1)|w
−1v|
=

|3w,x |∑
l=0

(
|3w,x|

l

)
(−1)|w

−1v|
= 0. �

Now let Aq be the ∗-algebra generated by the operators Tw, w ∈ W. So Mq is the σ -weak closure
of Aq . We define

9≤n :Aq →Mq : Tw 7→

{
Tw, |w| ≤ n,
0, otherwise.

We also set 9n = 9≤n −9≤(n−1). The crucial part which we need to prove is that 9≤n is completely
bounded with a complete bound that can be upper-estimated in n polynomially. In order to do so we first
introduce three auxiliary maps.

Auxiliary map 1: Recall that M1 is just the group von Neumann algebra of the right-angled Coxeter
group W. For k ∈ N define the multiplier A1→A1

ρk(T (1)
w )= δ(|w| = k)T (1)

w .

This map is completely bounded as the range is finite-dimensional. We may extend ρk to a σ -weakly
continuous map M1→M1 (for convenience of the reader we provided details of this extension trick
through double duality in Theorem 4.13). By the Bożejko–Fendler theorem, Theorem 2.8, we may extend
ρk uniquely to a σ -weakly continuous `∞(W )-bimodule map B(`2(W ))→ B(`2(W )) with the same
completely bounded norm. Using Lemma 2.7 we see that

9≤n =

n∑
k=0

ρk ◦9≤n.

We emphasize at this point that in our proofs we shall not need a growth estimate for ‖ρk‖CB in terms
of k. It is known however by [Reckwerdt 2015] that ‖ρk‖CB admits a polynomial bound in k. In the
hyperbolic case this would already follow from [Ozawa 2008, Theorem 1(2)].

Only in the hyperbolic case it is known by [Ozawa 2008, Theorem 1(2)] that this map is completely
bounded and moreover ‖ρk‖CB ≤ C(k+ 1) for some constant C independent of k.

Auxiliary map 2: Let T be the unit circle in C. For z ∈ T we define a unitary map,

Az : `
2(W )→ `2(W ) : δw 7→ z|w|δw.

We set for i ∈ Z,

8i : B(`2(W ))→ B(`2(W )) : x 7→
∫

T

z−i A∗z x Az dz,

where the measure is the normalized Lebesgue measure on T. Intuitively 8i cuts out the operators that
create i more letters than they annihilate (where a negative creation is an annihilation). Using Lemma 2.7
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we see that

9≤n =

n∑
i=−n

8i ◦9≤n.

Auxiliary map 3: Assume that 0 is finite. For a ∈ N we define Stinespring dilations

U±a : `
2(W )→ `2(W )⊗ `2(W )⊗ `2(W )⊗ `2(B f (W )) (4-9)

by mapping δx to (see Section 4A for notation)∑
g≤x

∑
3≤g(2,∅)

β±g,x,3,aδg ⊗ δg−1x ⊗ δg(2,3)⊗ ξ̃
±

3 .

Here
β+g,x,3,a =

∑
v∈C(g,x)

(−1)|g
−1v|F3,a(v), (4-10)

where F3,a(v)= 1 if
2|v(1,3)| + |v(2,3)| ≤ a,

and else F3,a(v)= 0. We let β−g,x,3,a = 1 if β+g,x,3,a 6= 0 and β−g,x,3,a = 0 otherwise. Then set,

σa,b(x)= (U−a )
∗(x ⊗ 1⊗ 1⊗ 1)U+b . (4-11)

The map U±a is bounded with polynomial bound in a by the following lemma.

Lemma 4.7. If 0 is finite, the map U±a is bounded. Moreover, there exists a polynomial P such that
‖U±a ‖ ≤ P(a).

Proof. It follows by a comparison of the first two tensor legs in the definition of U±a that the images
of δx , x ∈ W, are orthogonal vectors. Therefore it suffices to show that supx∈W ‖U

±
a δx‖ is bounded

polynomially. Now let C =
∑

3∈Cliq(0) 2|3|/2. Then

‖Uaδx‖ =

∥∥∥∥∑
g≤x

∑
3≤g(2,∅)

β±g,x,3,aδg ⊗ δg−1x ⊗ δg(2,3)⊗ ξ̃
±

3

∥∥∥∥
≤

∑
g≤x

∑
3≤g(2,∅)

|β±g,x,3,a|2
1
2 |3| ≤ C

∑
g≤x

max
3∈Cliq(0)

|β±g,x,3,a|. (4-12)

In the case
a ≤ 2|g(1,3)| + |g(2,3)|, (4-13)

β±g,x,3,a = 0 by definition. Inequality (4-13) will certainly hold when a ≤ |g|. Let M be the maximum
length of a clique in Cliq(0). Then if

2|g(1,3)| + |g(2,3)| ≤ a− 2M − 1, (4-14)

we find that β±g,x,3,a= 0 by the binomial formula as for every v ∈C(g, x) we have F3,a(v)= 1. Inequality
(4-14) will certainly hold if 2|g| ≤ a− 2M − 1. So (4-12) can be estimated by C times the number of
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g ≤ x with
1
2(a− 2M − 1)≤ |g| ≤ a.

But the number such g’s grows polynomially in a; see Lemma 4.4. �

Lemma 4.8. Let x ∈W. Let u′, u′′ ∈W be such that |u′′x| = |x|− |u′′|, |u′u′′x| = |x|− |u′′|+ |u′|. Let
v ∈W be such that (u′′)−1

≤ v ≤ x. Then,∑
v≤g≤x

β+g,x,g(2,∅)\(u′u′′g)(2,∅),aβ
−

u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|

=

{
1 if 2|v(1, v(2,∅)\(u′u′′v)(2,∅))| + |v(2, v(2,∅)\(u′u′′v)(2,∅))| ≤ a,
0 otherwise.

(4-15)

Proof. By (4-1) and (4-2) for v ≤ g we get

β+g,x,g(2,∅)\(u′u′′g)(2,∅),a =
∑

w∈C(g,x)

(−1)|g
−1v|Fg(2,∅)\(u′u′′g)(2,∅),a(w)

=

∑
w∈C(u′u′′g,u′u′′x)

(−1)|g
−1v|F(u′u′′g)(2,∅)\g(2,∅),a−2|u′′|+2|u′|(w)

= β+u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|.

Therefore also,

β−g,x,g(2,∅)\(u′u′′g)(2,∅),a = β
−

u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|.

We thus have that the left-hand side of (4-15) equals∑
v≤g≤x

β+g,x,g(2,∅)\(u′u′′g)(2,∅),aβ
−

g,x,g(2,∅)\(u′u′′g)(2,∅),a =
∑

v≤g≤x
β+g,x,g(2,∅)\(u′u′′g)(2,∅),a.

To compute this sum, recall that R was defined in (4-7), and define the mapping

κa :R→R : Pw 7→ Fw(2,∅)\(u′u′′w)(2,∅),a(w)Pw.

Then, using Lemma 4.6, the definition of κa , Lemma 4.3, and the definition (4-10),

κa(Q g)(x)= κa

( ∑
w∈C(g,x)

(−1)|g
−1w|Pw

)
(x)=

∑
w∈C(g,x)

(−1)|g
−1w|Fw(2,∅)\(u′u′′w)(2,∅),a(w)

= β+g,x,g(2,∅)\(u′u′′g)(2,∅),a.

As
∑

v≤g≤x Q g can be written as Pv plus projections in R that are not supported at x we see therefore
that ∑

v≤g≤x
β+g,x,g(2,∅)\(u′u′′g)(2,∅),a =

∑
v≤g≤x

κa(Q g)(x)= κa(Pv)(x).

This expression equals 1 if Fv(2,∅)\(u′u′′v)(2,∅),a(v)= 1 and 0 otherwise, which corresponds exactly to the
statement of the lemma. �

Lemma 4.9. Assume that 0 is finite so that (4-11) is defined boundedly. We have for n ∈ N that
9≤n =

∑n
i=−n σn−i,n+i ◦8i ◦9≤n .
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Proof. Let Tw ∈Mq with |w| ≤ n. We need to show that

Tw =

n∑
k=0

n∑
i=−n

σn−i,n+i ◦8i ◦ ρk(Tw).

We split Tw by Lemma 2.7,

Tw =

∑
(w′,00,w′′)∈Aw

T (1)
w′ PV00 T (1)

w′′ ,

and show that
n∑

k=0

n∑
i=−n

σn−i,n+i ◦8i ◦ ρk

applied to each of these summands acts as the identity. Let us consider a summand T (1)
w′ PV00 T (1)

w′′ with
(w′, 00,w

′′) ∈ Aw. Let u, u′, u′′ be as in Lemma 2.5 so that T (1)
w′ PV00 T (1)

w′′ = T (1)
u′ PuV00 T (1)

u′′ . We have

ρk(T
(1)
u′ PuV00 T (1)

u′′ )=

{
T (1)

u′ PuV00 T (1)
u′′ if k = |u′| + |u′′|,

0 otherwise.

So the only nonzero summand is k = |u′| + |u′′| so that it remains to show that for x, y ∈W〈 n∑
i=−n

σn−i,n+i ◦8i (T
(1)
u′ PuV00 T (1)

u′′ )δx, δ y

〉
= 〈T (1)

u′ PuV00 T (1)
u′′ δx, δ y〉. (4-16)

If the right-hand side is nonzero then we must have y= u′u′′x. Furthermore, recall that there is a choice for
u′, u′′ and we may choose them (depending on x) such that |u′′x|= |x|−|u′′| and |u′u′′x|= |x|−|u′′|+|u′|.
After making this choice the right-hand side is nonzero in the case (u′′)−1uV00 ≤ x, in which case the
expression equals 1.

Now consider the left-hand side of (4-16),

〈(8i (T
(1)
u′ PuV00 T (1)

u′′ )⊗ 1⊗ 1⊗ 1)U+n−iδx,U−n+iδ y〉

=

〈∑
g≤x

∑
3≤g(2,∅)

β+g,x,3,n−i8i (T
(1)
u′ PuV00 T (1)

u′′ )δg ⊗ δg−1x ⊗ δg(2,3)⊗ ξ̃
+

3 ,∑
h≤ y

∑
3′≤h(2,∅)

β−h, y,3′,n+iδh⊗ δh−1 y⊗ δh(2,3′)⊗ ξ̃
−

3

〉
. (4-17)

Comparing the first two tensor legs of this equation we derive the following. The only summands that are
nonzero are the ones where u′u′′g = h and at the same time g−1x = h−1 y. In particular we must have
y = u′u′′x and there is a choice for u′, u′′ (same choice as above) such that in fact |u′′x| = |x| − |u′′|
and |u′u′′x| = |x| − |u′′| + |u′|. We also see that we must have (u′′)−1uV00 ≤ x for this expression to
be nonzero. Taking into account 8i we see that (4-17) is nonzero only if i = |u′′| − |u′|.

Next we note that by comparing the last two tensor legs, if a summand in (4-17) is nonzero then we
have g(2,3)= h(2,3′) and 3∩3′ =∅. Recall that h = u′u′′g. But then 3 must equal the letters in
g(2,∅) that are not anymore in (u′u′′g)(2,∅) and 3′ must equal the letters in (u′u′′g)(2,∅) that are not
anymore in g(2,∅). This precisely means that 3= g(2,∅)\(u′u′′g)(2,∅) and 3′ = (u′u′′g)\g(2,∅).
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In all, we find that

(4-17)= 〈(T (1)
u′ PuV00 T (1)

u′′ ⊗ 1⊗ 1⊗ 1)U+n−iδx,U−n+iδ y〉

=

〈∑
g≤x

∑
3≤g(2,∅)

β+g,x,3,n−i T
(1)
u′ PuV00 T (1)

u′′ δg ⊗ δg−1x ⊗ δg(2,3)⊗ ξ̃
+

3 ,∑
h≤ y

∑
3′≤h(2,∅)

β−h, y,3′,n+iδh−1x ⊗ δh⊗ δh(2,3′)⊗ ξ̃
−

3

〉
=

∑
(u′′)−1uV00≤g≤x

β+g,x,g(2,∅)\(u′u′′g)(2,∅),n−iβ
−

u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),n+i .

We claim that this expression is 1 by verifying Lemma 4.8. Indeed set w := (u′′)−1uV00. First suppose
that u is the empty word. Then

w(2,w(2,∅)\(u′u′′w)(2,∅))= V00

and so
w(1,w(2,∅)\(u′u′′w)(2,∅))= (u′′)−1.

If u is not the empty word, then let s ∈ W be a final letter of u (i.e., |us| = |u| − 1). Then s cannot
commute with V00 as this would violate the equation T (1)

u′ PuV00 T (1)
u′′ = T (1)

w′ PV00 T (1)
w′′ . Therefore again,

w(2,w(2,∅)\(u′u′′w)(2,∅))= w(2,∅)= V00

and so
w(1,w(2,∅)\(u′u′′w)(2,∅))= (u′′)−1u.

Further our constructions give that |u′′| = (k− i)/2 and 2|u| + |V00| = |w| − |u′| − |u′′| = |w| − k. So
we have
2|w(1,w(2,∅)\(u′u′′w)(2,∅))| + |w(2,w(2,∅)\(u′u′′w)(2,∅))|

= 2|(u′′)−1
| + 2|u| + |V00| = 2

k− i
2
+ (|w| − k)

= |w| − i ≤ n− i, (4-18)

so that by Lemma 4.8 we see that (4-17) is 1. So we conclude that (4-16) holds. �

Lemma 4.10. Assume that 0 is finite so that (4-11) is defined boundedly. We have for n ∈N, −n ≤ i ≤ n,

σn−i,n+i ◦8i ◦9≤n = σn−i,n+i ◦8i .

Proof. The proof pretty much parallels the proof of Lemma 4.9. We need to show that the right-hand
side applied to Tw with |w|> n equals 0. Therefore we may look at the summands T (1)

w′ PV00 T (1)
w′′ with

(w′, 00,w
′′) ∈ Aw which can be further decomposed as T (1)

u′ PuV00 T (1)
u′′ with u, u′, u′′ as in Lemma 2.5.

It suffices then to show that for all choices of k the following expression is 0:

〈σn−i,n+i ◦8i ◦ ρk(T
(1)
u′ PuV00 T (1)

u′′ )δx, δ y〉. (4-19)

Firstly, this expression is 0 in the case |u′| + |u′′| 6= k. So assume |u′| + |u′′| = k. Then,

(4-19)= 〈σn−i,n+i ◦8i (T
(1)
u′ PuV00 T (1)

u′′ )δx, δ y〉.
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As in the proof of Lemma 4.9 the expression (4-19) equals 0 unless u′u′′x = y and (u′′)−1uV00 ≤ x
with u′′, u′ chosen in such a way that |u′′x| = |x| − |u′′| and |u′u′′x| = |x| − |u′′| + |u′|. In that case
i = |u′| − |u′′|. As in (4-17),

(4-19)= 〈(T (1)
u′ PuV00 T (1)

u′′ ⊗ 1⊗ 1⊗ 1)U+n−iδx,U−n+iδ y〉

=

∑
(u′′)−1uV00≤g≤x

βg,x,g(2,∅)\(u′u′′g)(2,∅),n−iβu′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),n+i .
(4-20)

As for w := (u′′)−1uV00 we have again by the same reasoning as in/before (4-18) that

2|w(1,w(2,∅)\(u′u′′w)(2,∅))| + |w(2,w(2,∅)\(u′u′′w)(2,∅))| = |w| − i > n− i.

The expression (4-20) is 0 by Lemma 4.8. �

Proposition 4.11. We have ‖9≤n‖CB ≤ P(n) for some polynomial P.

Proof. By Lemmas 4.9 and 4.10 we have

9≤n =

n∑
i=−n

σn−i,n+i ◦8i ◦9≤n =

n∑
i=−n

σn−i,n+i ◦8i ,

and the right-hand side is completely bounded with polynomial bound in n; indeed the bound of σn−i,n+i

is polynomial in n by its very definition and Lemma 4.7. �

Definition 4.12. A von Neumann algebra M has the weak-∗ completely bounded approximation property
(wk-∗ CBAP) if there exists a net of normal finite-rank maps 8i :M →M such that 8i (x) → x
in the σ -weak topology and moreover supi ‖8i‖CB < ∞. If the maps 8i can be chosen so that
lim supi ‖8i‖CB ≤ 1 then M is said to have the weak-∗ completely contractive approximation property
(wk-∗ CCAP).

Theorem 4.13. Let (W, S) be a right-angled Coxeter system and let q > 0. The Hecke von Neumann
algebra Mq has the wk-∗ CCAP.

Proof. By an inductive limit argument and Corollary 3.3 we may assume that 0 is finite. The proof
goes back to [Haagerup 1978]. Consider the completely bounded map 9≤n ◦8r :Aq →Mq . Clearly as
n→∞ and r ↗ 1 this map converges to the identity in the point σ -weak topology. Let ε > 0. We have

‖9≤n ◦8r‖CB ≤ ‖(9≤n − Id) ◦8r‖CB+‖8r‖CB ≤

( ∞∑
i=n+1

rn
‖9n‖CB

)
+‖8r‖CB,

which shows using Propositions 4.11 and 3.7 that we may let r ↗ 1 and then choose n := nr converging
to∞ such that ‖9≤nr ◦8r‖CB ≤ 1+ ε for some constant.

The map 8r is normal. Also 9≤n is normal by a standard argument: indeed using duality and
Kaplansky’s density theorem one sees that 9n maps L1(Mq)→ L1(Mq) boundedly. Then taking the
dual of this map yields that 9n :Mq→Mq is a normal map. We may extend 9≤n ◦8r to a normal map
Mq →Mq . Then using a standard approximation argument yields the result. �
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Remark 4.14. In case our right-angled Coxeter group is free (i.e., m(s, t)=∞ for all s 6= t) it is possible
to adapt the arguments of [Ricard and Xu 2006] in order to obtain word-length cut-downs with polynomial
bound. This argument — purely based on bookkeeping of creations/annihilations — seems unrepairable
in the general case. In the case q = 1, for a general right-angled Coxeter group, word-length cut-downs
were obtained in [Reckwerdt 2015] by using actions on CAT(0)-spaces. The connection with the general
Hecke case is unclear.

5. Strong solidity in the hyperbolic case

We prove that in the factorial case (see Theorem 2.2) Mq is a strongly solid von Neumann algebra in the
case the Coxeter group is hyperbolic.

5A. Preliminaries on strongly solid algebras. The normalizer of a von Neumann subalgebra P of M is
defined as {u ∈ U(M) : uPu∗ = P}. We define NorP(M) as the von Neumann algebra generated by the
normalizer of P in M. A von Neumann algebra is called diffuse if it does not contain minimal projections.

Definition 5.1. A finite von Neumann algebra M is strongly solid if for any diffuse injective von Neumann
subalgebra P ⊆M the von Neumann algebra NorM(P) is again injective.

Ozawa and Popa [2010] proved that free group factors are strongly solid and consequently they could
prove that these are II1-factors that have no Cartan subalgebras (as was proved in [Voiculescu 1996]
earlier by a completely different method). A general source for strongly solid von Neumann algebras
are group von Neumann algebras of groups that have the weak-∗ completely bounded approximation
property and are biexact (see [Chifan and Sinclair 2013; Chifan et al. 2013; Popa and Vaes 2014]; we
also refer to these sources for the definition of biexactness). The following definition and subsequent
theorem were then introduced and proved in [Isono 2015]. For standard forms of von Neumann algebras
we refer to [Takesaki 2003].

Definition 5.2. Let M⊆ B(H) be a von Neumann algebra represented on the standard Hilbert space H
with modular conjugation J. We say that M satisfies condition (AO)+ if there exists a unital C∗-subalgebra
A⊆M that is σ -weakly dense in M and which satisfies the following two conditions:

(1) A is locally reflexive.

(2) There exists a ucp map θ : A⊗min JAJ→ B(H) such that θ(a⊗b)−ab is a compact operator on H.

Theorem 5.3 [Isono 2015]. Let M be a II1-factor with separable predual. Suppose that M satisfies con-
dition (AO)+ and has the weak-∗ completely bounded approximation property. Then M is strongly solid.

A maximal abelian von Neumann subalgebra P ⊆M of a II1-factor M is called a Cartan subalgebra
if NorM(P)=M. It is then obvious that if M is a noninjective strongly solid II1-factor, then M cannot
contain a Cartan subalgebra. Therefore we will now prove that the Hecke von Neumann algebra Mq in
the factorial, hyperbolic case satisfies condition (AO)+.
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5B. Crossed products. Let A be a C∗-algebra that is represented on a Hilbert space H. Let α : Gy A be
a continuous action of a discrete group G on A. The reduced crossed product Aor G is the C∗-algebra of
operators acting on H⊗ `2(G) generated by operators

ug :=
∑
h∈G

1⊗ egh,h, g ∈ G, and π(x) :=
∑
h∈G

h−1
· x ⊗ eh,h, x ∈ A. (5-1)

Here the convergence of the sums should be understood in the strong topology. There is also a universal
crossed product Aou G for which we refer to [Brown and Ozawa 2008] (in the case we need it, it turns
out to equal the reduced crossed product).

5C. Gromov boundary and condition (AO)+. Let again (W, S) be a Coxeter system which we assume
to be hyperbolic (see [Brown and Ozawa 2008, Section 5.3]). Let 3 be the associated Cayley tree. A
geodesic ray starting at a point w ∈3 is a sequence (w,wv1,wv1v2, . . . ) such that |wv1 · · · vn| = |w|+n.
We typically write ω = (ω(0), ω(1), . . . ) for a geodesic ray. Let ∂W be the Gromov boundary of W
which is the collection of all geodesic rays starting at the identity of W modulo the equivalence ω1 ' ω2

if and only if limx,y→∞ dist(ω1(x), ω2(y))= 0. W ∪ ∂W may be topologized as in [Brown and Ozawa
2008, Section 5.3].

Let W y W be the action by means of left translation. The action extends continuously to W ∪ ∂W
and then restricts to an action W y ∂W. We may pull back this action to obtain W y C(∂W ). As
in this section we assumed that W is a hyperbolic group, the action W y ∂W is well known to be
amenable [Brown and Ozawa 2008], which implies that C(∂W )ou W = C(∂W )or W, and furthermore
this crossed product is a nuclear C∗-algebra. Let f ∈C(∂W ), let f̃1, f̃2 ∈C(W ∪ ∂W ) be two continuous
extensions of f , and let f1 and f2 be their respective restrictions to W. Then f1 − f2 ∈ C0(W ). That
is, the multiplication map f1− f2 acting on `2(W ) determines a compact operator. So the assignment
f 7→ f1 is a well-defined ∗-homomorphism C(∂W )→ B(`2(W ))/K, where K are the compact operators
on `2(W ). It is easy to check that this map is W -equivariant and thus we obtain a ∗-homomorphism:

π1 : C(∂W )ou W → B(`2(W ))/K. (5-2)

Let again W y W be the action by means of left translation which may be pulled back to obtain an
action W y `∞(W ). Let

ρ : `∞(W )or W → B(`2(W ))

be the σ -weakly continuous ∗-isomorphism determined by ρ : uw 7→ T (1)
w and ρ : π(x) 7→ x (see [Vaes

2001, Theorem 5.3]). In fact ρ is an injective map (this follows immediately from [De Commer 2011, The-
orem 2.1] as the operator G in this theorem equals the multiplicative unitary/structure operator [Takesaki
2003, p. 68]). Let C∞(W ) be the C∗-algebra generated by the projections Pw, w ∈W. Take f ∈ C∞(W )

and let f̃ be the continuous extension of f to W∪∂W. The map f 7→ f̃ |∂W determines a ∗-homomorphism
σ : C∞(W )→ C(∂W ) that is W -equivariant. Therefore it extends to the crossed product map

σ or Id : C∞(W )or W → C(∂W )or W.

Theorem 5.4. Let (W, S) be a right-angled hyperbolic Coxeter group and let q∈[ρ, ρ−1
]; see Theorem 2.2.

The von Neumann algebra Mq satisfies condition (AO)+.
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Proof. We let Aq be the unital C∗-subalgebra of Mq generated by operators Tw, w ∈ W. It is easy to
see that Aq is preserved by the multipliers that we constructed in order to prove that Mq had the wk-∗
CBAP; see Section 4 (indeed these were compositions of radial multipliers — see Proposition 3.7 — and
word-length projections — see Proposition 4.11). Therefore Aq has the CBAP; hence by the remarks
before [Haagerup and Kraus 1994, Theorem 2.2] it is exact. Therefore Aq is locally reflexive [Brown and
Ozawa 2008; Pisier 2003, Chapter 18].

It remains to prove condition (2) of Definition 5.2. By Lemma 2.7 we see that Aq is contained in the
C∗-subalgebra of B(`2(W )) generated by the operators Pw, T (1)

w with w ∈W. So ρ−1(Aq) is contained in
C∞(W )or W and therefore we may set

γ : Aq → C(∂W )or W as γ = (σ or Id) ◦ ρ−1.

The mapping π2 : JAq J → B(`2(W ))/K : b 7→ b is a ∗-homomorphism and its image commutes with
the image of π1 of (5-2) (as was argued in [Higson and Guentner 2004, Lemma 6.2.8]). By the definition
of the maximal tensor product there exists a ∗-homomorphism

(π1⊗π2) : (C(∂W )ou W )⊗max JAq J → B(`2(W ))/K : a⊗ JbJ 7→ π1(a)JbJ.

We may now consider the following composition of ∗-homomorphisms:

Aq ⊗min JAq J
γ⊗id // (C(∂W )or W )⊗min JAq J

'
��

B(`2(W ))/K (C(∂W )ou W )⊗max JAq J._?π1⊗π2

oo

(5-3)

By construction this map is given by

a⊗ JbJ 7→ a JbJ +K, where a, b ∈ Aq . (5-4)

The map π1 is nuclear because we already observed that C(∂W )ou W is nuclear. Also π2 is nuclear as it
equals J ( · )J ◦π1◦γ ◦ J ( · )J. It therefore follows that the mapping π1⊗π2 : (C(∂W )or W )⊗min J Aq J→
B(`2(W ))/K in diagram (5-3) is nuclear and we may apply the Choi–Effros lifting theorem [1976] in
order to obtain a ucp lift θ : (C(∂W )or W )⊗min J Aq J → B(`2(W )). Then θ ◦ (γ ⊗ Id) together with
(5-4) witness the result. �

Corollary 5.5. Let (W, S) be an irreducible hyperbolic Coxeter system with |S| ≥ 3 and q ∈ [ρ, ρ−1
].

Then the Hecke von Neumann algebra Mq has no Cartan subalgebra.

Proof. This is a consequence of Theorem 5.3 together with Theorems 3.6, 4.13, and 5.4. �

Remark 5.6. In case W is not hyperbolic, it is not necessarily true that the group von Neumann algebra
M1 is strongly solid. The easiest case is when 0 is K2,3, the complete bipartite graph with 2+ 3 vertices.
Then the graph product W = ∗K2,3Z2 = (Z2 ∗Z2)× (Z2 ∗Z2 ∗Z2) contains a copy of Z× F2. Thus M1

cannot be strongly solid as it contains the group von Neumann algebra of Z×F2. Note that K2,3 is not an
irreducible graph but the same argument applies if one adds one point with no edges to K2,3.
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6. Absence of Cartan subalgebras

As we saw in Remark 5.6 the absence of Cartan subalgebras for general right-angled Hecke von Neumann
algebras cannot be proved through strong solidity. In this section we obtain absence of Cartan subalgebras
for some additional Hecke von Neumann algebras through an analysis of amalgamated free products
in conjunction with [Vaes 2014, Theorem A] (see also [Ioana 2015] for related results). We need some
terminology first.

Definition 6.1. Let N ,P ⊆M be finite von Neumann algebras. We say that N is injective (or amenable)
relative to P if there is a completely positive map 8 from the basic construction 〈M, eP〉 onto N such
that 8|M is the conditional expectation of M onto N. Here eP is the Jones projection, i.e., the conditional
expectation of M to P on the L2-level.

The following Theorem 6.2 uses Popa’s intertwining by bimodules technique. For us it suffices that
for finite (separable) von Neumann algebras N ,P ⊆M we say that N ≺M P if there exists no sequence
of unitaries wk in N such that for all x, y ∈M we have ‖EP(xwk y)‖2→ 0. The following theorem is a
somewhat less general version of [Vaes 2014, Theorem A].

Theorem 6.2. Let Ni , i = 1, 2, be finite von Neumann algebras with common von Neumann subalgebra B.
Let N =N1 ∗B N2 be the (tracial) amalgamated free product. Let A⊆N be a von Neumann subalgebra
that is injective relative to one of the Ni , i = 1, 2. Then at least one of the following statements holds true:

(1) A≺N B.

(2) There exists i such that NorN (A)≺N Ni .

(3) NorN (A) is injective relative to B.

Recall that for a graph0 and r ∈V0 we have Link(r)={s∈V0 : (r, s)∈ E0} and Star(r)=Link(r)∪{r}.
We include the following lemma to show that part of the condition in Theorem 6.7 can always be achieved.

Lemma 6.3. Every irreducible graph 0 with |V0| ≥ 3 contains a vertex r ∈ V0 such that V0− Star(r)
contains at least two points.

Proof. Pick some random point r ∈ V0. We cannot have Star(r) = V0 because then 0 would not be
irreducible. So there is at least one point w ∈ V0− Star(r). If there is another point in V0− Star(r)
then we are done, so we assume that w is the only point in V0− Star(r). This implies that Link(r) is
nonempty. Star(w) does not contain r as w 6∈ Star(r). Also there must be at least one point u ∈ Link(r)
(which was nonempty!) that is not connected to w because if this is not the case then every two elements
in Link(r) and {r, w} would be connected so that 0 is not irreducible. In all we proved that w has the
property that V0− Star(w) contains at least two elements, namely r and u. �

We recall the following definitions from [Caspers and Fima 2017].

Definition 6.4. Let 0 be a graph and let w = w1 · · ·wn be a word with letters in V0. Suppose that
wi = wj . We say that the i-th and j-th letters of w are separated if there is a k with i < k < j such that
wk 6∈ Star(wi ). If every two (equal) letters in w are separated then w is called reduced.
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Definition 6.5. Let 0 be a graph and for s ∈ V0 let M(s) be a von Neumann algebra with normal faithful
tracial state τs . Let M(s)◦ = {a ∈M(s) : τs(a)= 0}. Let a = a1 · · · an with ai ∈M(si )

◦ be an operator
in the graph product von Neumann algebra ?s∈V0M(s). Then a is called reduced if the word s1 · · · sn is
reduced. The word s1 · · · sn is then called the type of a. We also say that two operators ai and aj of the
same type s ∈ V0 are separated if there exists i < k < j such that the type of ak is not in Star(s).

Definition 6.6. An inclusion of tracial von Neumann algebras B ⊆ N is called mixing if for every
sequence bn in B with ‖bn‖ ≤ 1 and bn→ 0 weakly we have that ‖EB(xbn y)‖2→ 0 for all x, y ∈N 	B.

For the proof of the following theorem we need a condition assuming the existence of a specific point
r ∈ S. The condition is chosen such that in Claim 2 of the proof of Theorem 6.7 we get a mixing inclusion
of von Neumann algebras. This gives examples of Hecke von Neumann algebras of nonhyperbolic Coxeter
groups that do not possess Cartan subalgebras. Indeed examples can easily be constructed; for example if
there exists a point r ∈ S such that Link(r) is the graph of a nonhyperbolic Coxeter group and if there are
few edges between Link(r) and V0− Star(r) (i.e., such that the condition below is satisfied). Though
we believe that the theorem should hold without this condition we were unable to find a complete proof.

Theorem 6.7. Let (W, S) be an irreducible right-angled Coxeter group with |S| ≥ 3. Let q ∈ [ρ, ρ−1
].

Assume that there is an element r ∈ S such that:

• V0− Star(r) contains at least two points.

• For every s, t ∈ Link(r) such that (s, t) 6∈ E0 we have that

Link(s)∩ Link(t)∩ (V0− Star(r))=∅.

Then the Hecke-von Neumann algebra Mq does not have a Cartan subalgebra.

Proof. Let 0= (V0, E0) be the graph of (W, S). By Corollary 3.4 we get a graph product decomposition
Mq = ?s∈V0Mq(s) with Mq(s) the Hecke-von Neumann algebra associated with the Coxeter subsystem
generated by just s (so it is 2-dimensional by Section 3). Choose r ∈ V0 satisfying the conditions of the
statement of the theorem. Put

N1 = ?s∈Star(r)Mq(s), N2 = ?s∈V0−{r}Mq(s), and B = ?s∈Link(r)Mq(s).

Here Link(r), Star(r), and V0−{r} are all viewed as full subgraphs of 0, i.e., a subgraph for which two
vertices share an edge if and only if they share an edge in 0. Simply write M for Mq . By [Caspers and
Fima 2017, Theorem 2.26] we get

M=N1 ∗B N2.

Now suppose that A⊆M is a Cartan subalgebra. We are going to derive a contradiction by showing that
any of the three alternatives of Theorem 6.2 is absurd.

Claim 1: We cannot have NorM(A)≺M Ni for either i = 1, 2.

Proof of the claim. As A is assumed to be Cartan we need to prove that M 6≺M Ni . Let t ∈ V0−Star(r).
Then the subalgebra of M generated by Mq(r) and Mq(t) is the tracial free product Mq(r) ∗Mq(t).
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Take unitaries u ∈Mq(r) and v ∈Mq(t) with trace 0. Put wk = (uv)k, which then is a unitary in
Mq(r) ∗Mq(t) with trace 0.

We need to show that for all x, y ∈M we have ‖ENi (xwk y)‖2→ 0. Recall that Mq(s)◦ is the space
of elements z ∈Mq(s) with trace 0. By a density argument we may and will assume that x = x1 · · · xk

and y = y1 · · · yl are reduced operators with xi , yi ∈Mq(s)◦ for some s (see Definition 6.5 or [Caspers
and Fima 2017, Definition 2.10] for the notion of reduced operators). Take a decomposition x = x ′a,
where x ′ = x1 · · · xm and a = xm+1 · · · xk , with xm+1, . . . , xk ∈Mq(r)◦ ∪Mq(t)◦. We may assume that
this decomposition is taken in such a way that the length of a is maximal; in other words, the end of
the expression x ′ has (after possible commutations) no factors xi that come from Mq(r)◦ and Mq(t)◦.
We take a similar decomposition for y. We may write y = by′ with y′ = yn+1 · · · yl and b = y1 · · · yn

with yi , 1≤ i ≤ n, elements of either Mq(r)◦ or Mq(t)◦. Again we may assume that this decomposition
is maximal meaning that (after possible commutations) the expression y′ does not have factors at the start
that come from either Mq(r)◦ or Mq(t)◦.

Now write xwk y = x ′(awkb)y′. For k big (in fact k ≥ m + n + 1 suffices) we get that awkb is not
contained in Ni for i = 1, 2. Indeed a and b can never cancel all the occurrences of u and v in wk = (uv)k

so that awkb ∈Mq(r) ∗Mq(t)	 (Mq(r)∪Mq(t)). So xwk y = x ′(awkb)y′ 6∈ Ni for either i = 1, 2.
Therefore ‖ENi (xwk y)‖2→ 0 as k→∞.

Claim 2: We do not have A≺M B.

Proof of the claim. Firstly we check that the inclusion B ⊆N2 is mixing. Let bn be a sequence in B with
‖bn‖≤ 1 such that bn→ 0 weakly. Take x, y ∈N2	B. By linearity and density we may assume that both
x and y are reduced operators. In particular write a reduced expression x = x1 · · · xn with xi ∈Mq(si )

◦

for some si ∈ V0−{r} and 1≤ i ≤ n. Since x is not in B let xi0 be such that si0 6∈ Link(r). Let V3 be the
set of all vertices in Link(r) that share an edge with si0 . Let 3 be the full subgraph of 0 with edge set V3.
Then 3 must be complete (i.e., every two vertices share an edge) because otherwise this would contradict
the assumptions on r . This means that B̃ := ?s∈V3Mq(s) =

⊗
s∈V0Mq(s) is finite-dimensional, as

Mq(s) is 2-dimensional; see Section 3. This in turn implies that ‖EB̃(bn)‖2→ 0 (indeed, bn is bounded
and converges to 0 weakly, hence σ -weakly; so EB̃(bn)→ 0 σ -weakly and hence in the ‖ · ‖2-norm, by
finite dimensionality). Now we have

EB(xbn y)= EB(x(bn − EB̃(bn))y)+ EB(xEB̃(bn)y),

where the second summand converges to 0 in the ‖·‖2-norm as n→∞. Further EB(x(bn−EB̃(bn))y)= 0
for every n as the operator xsi0

is separated from any other operator of type si0 . So this shows that

‖EB(xbn y)‖2 = ‖EB(xEB̃(bn)y)‖2→ 0.

This concludes our claim that the inclusion B ⊆N2 is mixing.
If A≺M B then we certainly have A≺M N2. But then by [Ioana 2015, Lemma 9.4] and the previous

paragraph which shows that the inclusion Ni ⊆M is mixing, we get that also NorM(A)≺M N2. However
this is impossible by Claim 1.
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Claim 3: M is not relatively injective with respect to B.

Proof of the claim. Recall our choice of r ∈ V0 at the start of the proof. Let t1, t2 be two different points in
V0−Star(r). Let 3 be the full subgraph of 0 with vertex set {r, t1, t2}. Let N = ?s∈V3Mq(s). Note that
N ∩B=C. Suppose that M were to be relatively injective with respect to B. Then there exists a (possibly
nonnormal) conditional expectation8 : 〈M, eB〉→M. We shall prove that this implies that N is injective.

Let A be the set of all reduced words w with letters in V0 that do not end on letters in Link(r) and that
do not start with letters in {r, t1, t2}, meaning that for each s ∈ Link(r) the word ws is reduced and for each
s ∈ {r, t1, t2} the word sw is reduced. For each word w ∈W let Xw be a maximal set of reduced operators
in M of type w that form an orthonormal system in L2(M). Let x ∈ Xw, x ′ ∈ Xw′ with w,w′ ∈ A and
x 6= x ′. The spaces spanned by N xB and N x ′B are orthogonal in L2(M) and invariant subspaces for N.
Moreover, the projection4 of L2(M) onto span N xB‖·‖2 is given by

px =
∑
i∈I

ni xeBx∗n∗i ,

where we have chosen ni , i ∈ I, to be elements of N that form an orthonormal basis of L2(N ). In particular
px ∈ 〈M, eB〉. We have that the projections px , x ∈ Xw, w ∈ A, commute with N and they sum up to 1 as

L2(M)=
⊕

w∈A,x∈Xw

span N xB‖·‖2 .

For w ∈ A, x ∈ Xw set
p′x = xeBx∗.

Similarly, p′x is the projection onto span xB‖·‖2 and p′x ≤ px . We claim that the von Neumann algebra
generated by pxN px and p′x is homogeneous of type I. In order to do so note that there is a unitary5 map

Ux : span N xB‖·‖2 → L2(N )⊗ L2(B) : nxb 7→ n⊗ b.

We have Ux nU∗x = n ⊗ IdL2(B) and Ux p′xU∗x = p� ⊗ IdL2(B), where p� is the projection onto � :=
1N ∈ L2(N ). So that the von Neumann algebra Ux 〈pxN px , p′x 〉U

∗
x is isomorphic to B(L2(N ))⊗ IdL2(B),

which is homogeneous of type I.
Now consider 9 : 〈M, eB〉 →8 M →EN N. This is a conditional expectation for the inclusion

N → 〈M, eB〉. Let P be the subalgebra of 〈M, eB〉 that is generated by all pxN px and p′x with x ∈ Xw,

4Indeed px is a projection: clearly p∗x = px . Further, by assumption on x = x1 · · · xk we have for n ∈N that nx is a reduced
operator. Take b ∈ B of trace 0. The word ni xb is then reduced. In order to determine the conditional expectation EB of
x∗n∗i n j xb one needs to write x∗n∗i n j xb as a sum of reduced operators and delete all terms that are not in B. But the only such
terms are the ones where n∗i annihilates n j and where each x∗i annihilates xi . That is, EB(x∗n∗i n j xb) = τ(n∗i n j )τ (x∗x)b =
δi, j b. Similarly, in order to determine EB(x∗n∗i n j xb) one writes x∗n∗i n j x as a reduced expression and filters all operators
that are in B. Using that x does not end on letters in B, this can only happen if n∗i annihilates the letter n j and each x∗i
annihilates xi . That is, EB(x∗n∗i n j x) = τ(n∗i n j )τ (x∗x) = δi, j . So we conclude EB(x∗n∗i n j xb) = δi, j b for any b ∈ B. This
gives eBx∗n∗i n j xeB = δi, j eB. Then p2

x =
∑

i, j∈I ni xeBx∗n∗i n j xeBx∗n∗j =
∑

i∈I ni xeBx∗n∗i = px . The image of px is
clearly contained in span N xB‖·‖2 . Finally for a vector nxb, n ∈ N, b ∈ B, we have px (nxb) =

∑
i∈I ni xeBx∗n∗i nxb =∑

i∈I ni xτ(x∗x)τ (n∗i n)b =
∑

i∈I ni xτ(n∗i n)b = nxb.
5Indeed Ux is unitary as

∥∥∑
i ni xbi

∥∥2
2=

∑
i, j τ(b

∗
j x∗n∗j ni xbi )=

∑
i, j τ(n

∗
j ni )τ (b∗j bi )=

∥∥∑
i ni ⊗ bi

∥∥2
2, where the second

equality uses that ni xbi is reduced by definition of x and that τ(x∗x)= 1 as x had norm 1 in L2(M).
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w ∈ A. The previous paragraph shows that P =
⊕

x∈Xw,w∈A〈pxN px , p′x 〉 is homogeneous of type I.
Restricting 9 to P gives a conditional expectation for the inclusion N → P (recall that N is contained in
P as the projections px sum up to 1). Hence N is an expected subalgebra of a homogeneous type-I algebra.
As homogeneous type-I algebras are expected subalgebras of a type-I factor we conclude that N is injective.

Remainder of the proof. Now Theorem 6.2 implies that either (1) NorM(A) ≺M Ni for either i = 1
or i = 2; (2) A ≺M B; (3) M is injective relative to B. The three claims above rule out all of these
possibilities, showing that M does not possess a Cartan subalgebra. �
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