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ABSENCE OF CARTAN SUBALGEBRAS FOR
RIGHT-ANGLED HECKE VON NEUMANN ALGEBRAS

MARTIIN CASPERS

For a right-angled Coxeter system (W, S) and g > 0, let M, be the associated Hecke von Neumann algebra,
which is generated by self-adjoint operators Ty, s € S, satisfying the Hecke relation (,/qT;—q) (/g T;+1)=0,
as well as suitable commutation relations. Under the assumption that (W, S) is irreducible and |S| > 3 it
was proved by Garncarek (J. Funct. Anal. 270:3 (2016), 1202-1219) that M, is a factor (of type II;) for a
range q € [p, p~'] and otherwise My is the direct sum of a II;-factor and C.

In this paper we prove (under the same natural conditions as Garncarek) that M, is noninjective, that it
has the weak-* completely contractive approximation property and that it has the Haagerup property. In
the hyperbolic factorial case M, is a strongly solid algebra and consequently M, cannot have a Cartan
subalgebra. In the general case M, need not be strongly solid. However, we give examples of nonhyperbolic
right-angled Coxeter groups such that M, does not possess a Cartan subalgebra.

1. Introduction

Hecke algebras are one-parameter deformations of group algebras of a Coxeter group. They were the
foundation for the theory of quantum groups [Jimbo 1986; Kassel 1995] and have remarkable applications
in the theory of knot invariants, as was shown by V. Jones [1985]. A wide range of applications of Coxeter
groups and their Hecke deformations can be found in [Davis 2008]. Dymara [2006] (see also [Davis
2008, Section 19]) introduced the von Neumann algebras generated by Hecke algebras. Many important
results were then obtained (see also [Davis et al. 2007]) for these Hecke von Neumann algebras. This
gave for example insight into the cohomology of associated constructions and its Betti numbers. In this
paper we investigate the approximation properties of Hecke von Neumann algebras as well as their Cartan
subalgebras (here we mean the notion of a Cartan subalgebra in the von Neumann algebraic sense, which
we recall in Section 5, and not the Lie algebraic notion).

Let us recall the following definition. Let ¢ > 0 and let W be a right-angled Coxeter group with
generating set S (see Section 2). The associated Hecke algebra is a x-algebra generated by T, s € S,
which satisfies the relation

(ﬁTs—Q)(ﬁTs+1)=0, Ts*=TY7 and TsTt=Tth

for s,t € S with st = ts. Hecke algebras carry a canonical faithful tracial vector state (the vacuum
state) and therefore generate a von Neumann algebra M, under its GNS construction. It was recently
proved by Garncarek [2016] that if (W, S) is irreducible (see Section 2) and |S| > 3, the von Neumann

MSC2010: 47L10.
Keywords: Hecke von Neumann algebras, approximation properties, Cartan subalgebras.

1


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2020.13-1
http://dx.doi.org/10.2140/apde.2020.13.1
http://msp.org
https://doi.org/10.1016/j.jfa.2015.11.014

2 MARTIJN CASPERS

algebra M, is a factor in the case g € [p, "1, where p is the radius of convergence of the fundamental
power series (2-2). If g & [p, p~ '] then My is the direct sum of a II;-factor and C. For more general
Coxeter groups/Hecke algebras (not necessarily being right-angled, or for multiparameters ¢) this result
is unknown. It deserves to be emphasized that this in particular shows that the isomorphism class of M,
depends on ¢; an observation that was already made in the final remarks of [Davis 2008, Section 19].

The first aim of this paper is to determine approximation properties of M, (assuming the same natural
conditions as Garncarek). We first show that M, is a noninjective von Neumann algebra and therefore
falls outside Connes’ classification of hyperfinite factors [1976]. Secondly we show that M, has the
weak-* completely contractive approximation property (wk-+x CCAP). This means that there exists a net
of completely contractive finite-rank maps on M, that converges to the identity in the point o-weak
topology. In case g = 1 the algebra M, is the group von Neumann algebra of a right-angled Coxeter
group. In this case the result was known. For instance the CCAP follows from Reckwerdt’s result [2015]
and noninjectivity follows easily from identifying a copy of the free group inside W. Noninjectivity
can also be proved for right-angled Coxeter groups through the techniques developed in [Bozejko and
Speicher 1994]. Here we find the following:

Theorem A. Let g > 0:

(1) Let (W, S) be an irreducible right-angled Coxeter system with |S| > 3. Then M is noninjective.

(2) For a general right-angled Coxeter system (W, S) the associated Hecke von Neumann algebra M,
has the wk-x CCAP and the Haagerup property.

The proofs of noninjectivity and the Haagerup property proceed by showing that Hecke von Neumann
algebras are actually graph products [Caspers and Fima 2017] and then using general graph/free-product
techniques involving important results of [Ueda 2011]. For the wk-x- CCAP we first obtain cb-estimates
for radial multipliers and then use estimates of word-length projections (see Proposition 4.11) going back
to [Haagerup 1978].

Our second aim is the study of Cartan subalgebras of the Hecke von Neumann algebra M. Recall
that a Cartan subalgebra of a II;-factor is by definition a maximal abelian subalgebra whose normalizer
generates the II;-factor itself. Cartan subalgebras arise typically in crossed products of free ergodic
probability measure preserving actions of discrete groups on a probability measure space.

Voiculescu [1996] was the first one to find factors (namely free group factors) that do not have a Cartan
subalgebra. His proof relies on estimates for the free entropy dimension of the normalizer of an injective
von Neumann algebra. Using a different approach, Ozawa and Popa [2010] were also able to find classes
of von Neumann algebras that do not have a Cartan subalgebra (including the free group factors). Ozawa
and Popa actually proved that these algebras have a stronger property that afterwards became known as
strong solidity: the normalizer of a diffuse injective von Neumann subalgebra generates an injective von
Neumann algebra again.

After these fundamental results by Ozawa and Popa, strong solidity was studied for many other
von Neumann algebras. In particular Popa and Vaes [2014] (see also [Chifan and Sinclair 2013]) proved
the absence of Cartan subalgebras for group factors of biexact groups that have the CBAP. Isono [2015]
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then put the results from [Popa and Vaes 2014] into a general von Neumann framework in order to prove
absence of Cartan subalgebras for free orthogonal quantum groups. Isono proved that factors with the
wk-* CBAP that satisfy condition (AO)™ are strongly solid. Using this strong solidity result by Isono we
are able to prove the following.

Theorem B. Let g € [p, p~ 11 with p as in Theorem 2.2. Let (W, S) be an irreducible right-angled
Coxeter system with |S| > 3. Assume that W is hyperbolic. Then the associated Hecke von Neumann
algebra M is strongly solid.

In turn as M, is noninjective by Theorem A we are able to derive the result announced in the title of
this paper for the hyperbolic case.

Corollary C. Let g € [p, p~'] with p as in Theorem 2.2. For an irreducible right-angled hyperbolic
Coxeter system (W, S) with |S| > 3 the associated Hecke von Neumann algebra M, does not have a
Cartan subalgebra.

General right-angled Hecke von Neumann algebras are not strongly solid; see Remark 5.6. Still we
can prove in some cases that they do not possess a Cartan subalgebra. We do this by showing that if M,
were to have a Cartan subalgebra then under suitable conditions each of the three alternatives in [Vaes
2014, Theorem A] fails to be true, which leads to a contradiction.

Theorem D. Let g € [p, p~']. Let (W, S) be an irreducible right-angled Coxeter system with |S| > 3 for
which the Coxeter graph satisfies the conditions of Theorem 6.7. Then the associated Hecke von Neumann
algebra M does not have a Cartan subalgebra.

Structure. In Section 2 we introduce Hecke von Neumann algebras and some basic algebraic properties.
Lemma 2.7 is crucial for the results on strong solidity and the weak-x CCAP. In Section 3 we obtain
universal properties of Hecke von Neumann algebras and prove that they decompose as graph products. We
collect the consequences for the Haagerup property and noninjectivity. In Section 4 we find approximation
properties of M, and conclude Theorem A. Section 5 proves the strong solidity result of Theorem B
from which Corollary C shall easily follow. Finally Section 6 proves absence of Cartan subalgebras for
the cases of Theorem D.

Convention. Let X be a set and let A, B € X. We will briefly write A\ B for A\(AN B).

2. Notation and preliminaries

Standard results on operator spaces can be found in [Effros and Ruan 2000; Pisier 2003]. Standard
references for von Neumann algebras are [Stritild and Zsid6 1979; Takesaki 1979]. Recall that ucp stands
for unital completely positive.

2A. Coxeter groups. A Coxeter group W is a group that is freely generated by a finite set S subject to
relations

(s))y"®" =1
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for some constant m(s, t) € {1,2,...,00} with m(s,t) = m(t,s) > 2, s #t, and m(s,s) = 1. The
constant m(s, t) = oo means that no relation is imposed, so that s, ¢ are free variables. The Coxeter
group W is called right-angled if either m(s,t) =2 or m(s,t) = oo forall s,¢ € S, s # t and this is the
only case we need in this paper. Therefore we assume from now on that W is a right-angled Coxeter
group with generating set S. The pair (W, S) is also called a Coxeter system.

Let w € W and suppose that w = w; - - - w,, with w; € S. The representing expression wj - - - w, is
called reduced if whenever also w = w’l -+ w,, with wl’. € S then n < mj; i.e., the expression is of minimal
length. In that case we will write |[w| = n. Reduced expressions are not necessarily unique (only if
m(s, t) = oo whenever s # t), but for each w € W we may pick a reduced expression which we shall call
minimal.

Convention. For w € W we shall write w; for the minimal representative w = wy - - - wy,.

To the pair (W, S) we associate a graph I" with vertex set VI" = § and edge set EI" ={(s, t) :m(s, t) =2}.
A subgraph I'y of I is called full if the following property holds: for all s, t € Vo with (s, 1) € ET" we
have (s, t) € ET.

A clique in I is a full subgraph in which every two vertices share an edge. We let Cliq(I") denote the
set of cliques in I'. To keep the notation consistent with the literature the empty graph is in Cliq(T") by
convention (in this paper we shall sometimes exclude the empty graph from Cliq(I") explicitly or treat it
as a special case to keep some of the arguments more transparent).

For s € § we set

Link(s) ={r € S : m(s, 1) =2},

so these are all vertices in I" that have distance exactly 1 to s. For a subset X C VI we set Link(X) =
(sex Link(s). We sometimes regard Link(X) as a full subgraph of T".

Definition 2.1. A Coxeter system (W, S) is called irreducible if the complement of I" is connected. Here
the complement I' of the graph I' is the graph with the same vertex set VI" and for v, w € VI" we have
(v, w) € ET¢ if and only if (v, w) ¢ ET.

2B. Hecke von Neumann algebras. Let (W, S) be a right-angled Coxeter system. Let ¢ > 0. By [Davis
2008, Proposition 19.1.1] there exists a unique unital *-algebra C,(I") generated by a basis {Tw cwe W}
satisfying the following relations. For every s € § and w € W we have

~

~~ Tew if [sw| > |w|,
TsTw = ~ ~ .
qTsw+ (g —1)T, otherwise,
Tr =Ty

We define normalized elements T, = ¢~ */2T,,. Then for w € W and s € S,

T, if
T.T, =1 bv lhwfmh 2-1)
Tsw+ pTy otherwise,

where
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There is a natural positive linear tracial map t on C, (W) satisfying 7(7,) =0, w # 1, and (1) = 1. Let
Lz(Mq) be the Hilbert space given by the closure of C, (W) with respect to (x, y) = t(y*x) and let M,
be the von Neumann algebra generated by C, (W) acting on Lz(Mq). The map t extends to a state on
M, and LZ(Mq) is its GNS space with cyclic vector Q :=T,. M, is called the Hecke von Neumann
algebra at parameter g associated to the right-angled Coxeter system (W, S).

Theorem 2.2 (see [Garncarek 2016]). Let (W, S) be an irreducible right-angled Coxeter system and
suppose that |S| > 3. Let p be the radius of convergence of the fundamental power series

[e.8]
D HweW:|w| =k)*. (2-2)
k=0
For every q € [p, p~'] the von Neumann algebra My is a factor. For q > 0 not in [p, o~ the von
Neumann algebra M is the direct sum of a factor and C.

As M, possesses a normal faithful tracial state the factors appearing in Theorem 2.2 are of type II;.

For the analysis of M, we shall in fact need M, which is the group von Neumann algebra of the
Coxeter group W. It can be represented on Lz(Mq). Indeed, let T,,(,l) denote the generators of M as in
(2-1) and let Ty, be the generators of M. Define the unitary map!

U:L*(M)) = L*(My) : T{VQ — T, Q.

In this paper we shall always assume that M, is represented on Lz(Mq) by the identification M; —
B(LZ(Mq)) :x — UxU* Note that this way

TI(TyQ) = Tyu . (2-3)

For w € W we shall write P, for the projection of L2(./\/lq) onto the closure of the space spanned linearly
by {T,Q2 : [w™'v| = |v| — |w|} (see Remark 2.3 below). For I'y € Cliq(I") we shall write Pyr, for Py,
where w € W is the product of all vertex elements of I'g, and |V I'g| for the number of elements in V I'.
Note that if s, € VI'p then Py and P; commute and so Pyr, is well-defined. Similarly we shall write
Pyyr, for Py, where w € W is the product of v with all vertex elements of I'.

Remark 2.3 (creation and annihilation arguments). Note that for w, v € W saying that |w~!v| = |v| — |w|
just means that the start of v contains the word w. Throughout the paper we say that s € S acts by means
of a creation operator on v € W if |sv| = |v| + 1. It acts as an annihilation operator if |sv| = |v| — 1.
Note that as W is right-angled we cannot have |sv| = |v|. For v, w € W we may always decompose w as
w = w'w” such that |w| = |w'| + |w”|, |[w”"v| = |v|—|w”|, and |[wv| = |v] — |w”| + |w’|. That is, w first
acts by means of annihilations of the letters of w” and then w’ acts as a creation operator on w”v. We
will use such arguments without further reference.

lUnitarity follows as the vectors Ty $2 are orthonormal. Indeed (Ty 2, Ty Q) = (T TwS2, Q). If v*w is reducible this
expression is 0. Otherwise there exists a letter wy at the starts of v and w such that T,/ Ty = Tv*, Ty + pT;‘, Ty, Ty, where
wiw’ = w and w1y’ = v and w’ and v’ are of shorter length. The term pT;Ty, Ty reduces further and can be written
as a sum of operators ) ; Ty; but each u; must contain the letter w; as else w and v would not be reducible. Therefore
(pT':iTwl T2, Q) =0. So (T Ty, Q) = (T:, T, 2, ©2). Continuing inductively we get (T, Ty 2, Q) = 8y, w-
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The following Lemma 2.5, together with Lemma 2.7, says that 73, decomposes in terms of a sum of
operators that first act by annihilation (this is Tu(,p) then a diagonal action (this is the projection Pyyr,)
and finally by creation (this is Tu(,l) ).

Definition 2.4. Let w € W. Let A,, be the set of triples (w’, I'g, w”) with w’, w” € W and I'y € Cliq(I")
such that (1) w = w'VIgw”, 2) |w| = |w'| + |VIg| + |w”|, (3) if s € S commutes with VI then
|lw’s| > |w’| (that is, letters commuting with VT cannot occur at the end of w’, and if they are present
they should occur at the start of w”).

Lemma 2.5. For (w', Ty, w") € Ay, there existu, u’, u” € W such that
1 1 1 1
T Pyr, ) =TV Pyyr, T, (2-4)

//|' 1

and moreover if s € S is such that |u's| < |u'| then |su”| > |u"|. We may assume that u' = w'u™" and

u// — uw//‘

Proof. Let u € W be the (unique) element of maximal length such that |w’ u'| = |w| — |u| and

//| —

|luw |lw”| — |u|. Set u’ = w'u"" and u” = uw”. It then remains to prove (2-4) as the rest of the

properties are obvious or follow by maximality of #. We must show that
1
Pyvr, = Tu(])PVI‘()Tu(—)I'

Take v € W. If [(uVTo) " 'v| = |v| — [uV Ty (i.e., v starts with uVT) then | (Vo) 'u='v| = |u~'v| —
|VTo| (i.e., u~'v starts with VI'y). We shall prove that the converse holds. First, we claim that if
[(VIo)'utv|=|u""v| — |V then |u—'v| = |v| — |u~!| (i.e., v starts with ). Indeed, because if this
were not the case then one of the letters in # would remain at the start of #~'v. And as the letters of u do
not commute with VT this would mean that [ (Vo)™ 'u~"v| # |u—'v| — |V Ty|, which is a contradiction.
From the initial assumption |(VI o) 'u~!v| = [u~'v| — |[VIo| (u~'v starts with VT) together with
lu'v| = |v| — |u"| (v starts with u) we get that |uVTo)~ v = |v| — |uVTy.
The previous paragraph shows the first equality of

Puvro(To) = TV Pyry (T,-1,2) = TV Py T(T,9). O

Remark 2.6. In Lemma 2.5 the property that |u’s| < |u’| implies that |su”| > |u”| is equivalent to
|u'u”| = |u'| + |u”|. The words u’ and u” in Lemma 2.5 are not unique: in the case |su”| = |u”| — 1 and
s commutes with VT, we may replace (u’, u”) by (u's, su”).

Lemma 2.7. We have
Z 1 1
Tw — p‘vr()lTu()/)PVl—‘()Tu()//)v (2_5)

(w',To,w") €Ay
where Ay is given in Definition 2.4.

Proof. The proof proceeds by induction on the length of w. If |w| =1 then T}, = T,,(,l) + p Py by (2-1).
Now suppose that (2-5) holds for all w € W with |w| =n. Let v € W be such that |v| =n+ 1. Decompose
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vasv=sw, |[w|=n, s € S. Then,

T,=T,T, = (T + pPS)( > p'VFO'T,f})PVFOT,ﬁ?)

(W', To,w")eAy
1 1 1 1
= Z (PWFOITS(,,) PVI"OT,‘(,//) + p‘vr"lHPsT,‘(,/)PvroTu(,//))- (2-6)
(W', Tp,w")EAy
Now we need to make the following observations.

(1) If sw’ = w’s then P Tu(}) = Tu(})PS. So in that case,

1 1 1 1
PTY Pyr, T =T P Py, TY).

w
Moreover P Pyr, equals Psyr, in the case s commutes with all elements of VI'g and it equals 0 otherwise.
(2) In the case sw’ # w's we claim that P; Tu(,})PVFo Tlf}},) = 0. To see this, rewrite P T,,(,})Pvro Tlf)},) =
PSTu(,])PuVFOTu(,l,) with u, ', u” as in Lemma 2.5. As sw’ # w's we have su’ # u's and/or su # us

(because w’ = u'u with |w’| = |u’| + |u|; see Lemma 2.5).
(a) Assume su’ # u's. For v e W with T/, <2 in the range of P,yr,,
1
PT) Puvr, Ty (T,Q2) = PyTyu 2. 2-7)

Furthermore, the assertions of Lemma 2.5 imply |u'uVTy| = |u’| + |uVTy| and therefore (recalling
that 7,7, is in the range of P,yr,) we get that [u'u”"v| = |u”v| + |u’|, which implies (because
su' # u's and u'u’"v starts with all letters of ') that (2-7) is 0. For v € W with T+, not in the
range of P,yr, we have Tu(,l)Puvro Tu(,l,)(T,, ) = 0. In all we conclude P; Tu(,l)Puvr0 Tu(,l,) =

(b) Assume su’ = u's but su # us. Then PsTu(,l)Pu = Tu(,l)Ps P, =0.
So in all (2-6) gives,

1 1 1 1
=Y  pYTO Py 1) + > pVH T Py T

(w',To,w")eAy (w',To,w")eAy,sw'=w's,sVIo=VTps

and in turn an identification of all summands shows that the latter expression equals

S PRIy T 0

', To,v")€Asw

2C. Group von Neumann algebras. Let G be a discrete group with left regular representation s > A
and group von Neumann algebra £(G) = {X, : s € G}”. We let A(G) be the Fourier algebra consisting
of functions ¢(s) = (A&, 1), &, n € £2(G). There is a pairing between A(G) and £(G) which is given
by (¢, A(f)) = fG f(s)p(s)ds which turns A(G) into an operator space that is completely isometrically
identified with £(G),. We let M5 A(G) be the space of completely bounded Fourier multipliers of A(G).
For m € McgA(G) we let T, : L(G) — L(G) be the normal completely bounded map determined by
A(f) = A(mf). The following theorem is due to Bozejko and Fendler [1984] (see also [Junge et al. 2009,
Theorem 4.5]).
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Theorem 2.8. Let m € McpA(G). There exists a unique normal completely bounded map M, :
B(£%(G)) — B({%(G)) that is an L™ (G)-bimodule homomorphism and such that M, restricts to T, :
A(f) = A(mf) on L(G). Moreover, ||Mu|lcg = Tnllcs = Imllmesa)-

The map M,, is called the Herz—Schur multiplier.

3. Universal property and conditional expectations

In this section we establish universal properties for M, and consequently show that M, is noninjective
and has the Haagerup property.

3A. Universal properties.

Theorem 3.1. Let g > 0, put p = (g — 1)/./q and let (W, S) be a right-angled Coxeter system with
associated Hecke von Neumann algebra (M, ©). Suppose that (N, Txr) is a von Neumann algebra with
GNS faithful state Tty that is generated by self-adjoint operators Ry, s € S, that satisfy the relations
R,R, = R;R; whenever m(s,t) = 2, Rs2 =14 pR;,, s €S, and further Tor(Ry, - - - Ry,) = 0 for every
nonempty reduced word w = wy ---w, € W. Then there exists a unique normal *-homomorphism
1 My — N such that w(Ts) = Rs. Moreover Tyyom =T.

Proof. The proof is routine; see [Caspers and Fima 2017, Proposition 2.12]. We sketch it here. Let
(L*>(N), mnr, ) be a GNS construction for (N, Tyr). As s is GNS faithful we may assume that A is
represented on L?(N) via .. We define a linear map V : Lz(Mq) — L>(N) by VQ =15 and

V(Ty2) = Ryn, wherew e W,

and Ry, := Ry, - - - Ry,. One checks that V is isometric by showing that {Ry,n : w € W} is an orthonormal
system.2 Putting 7 (-) = V(-)V* concludes the lemma. As VQ =n we get tyyom = 7. O

Remark 3.2. Note that the property TS2 =1+ pT;, s € S, with p = (¢ — 1)/./q, is equivalent to the
usual Hecke relation (/g Ty — q)(,/q Ty + 1) = 0 that appears in the literature.

We shall say that (W, §) is a Coxeter subsystem of (W, S) if S CSandm(s,t)=m(s,t)foralls, e S.
Here 77 is the function on S x S that determines the commutation relations for VT/; see Section 2A.

Corollary 3.3. Let g > 0. Let (W, S) be a Coxeter subsystem of a right-angled Coxeter system (W, S).
Let /\71q and M be their respective Hecke von Neumann algebras. Then naturally Mq is a von Neumann
subalgebra of M. In particular, there exists a trace-preserving normal conditional expectation & :
My — M,

2The proof goes as follows. We may find unique coefficients ¢, such that Tw;l coo Ty Ty - Ty, = Zv ew cvTy. We have
¢z =1if w=w"and cy = 0if w # w’ by comparing the trace of both sides of this expression. In fact the coefficients ¢, may
be found by using the commutation relations for 7y and the Hecke relation TS2 =14 pT; to “reduce” the left-hand side of this ex-
pression. As the same relations hold for the operators Ry (by the assumption of the lemma) we also get Rwi{ . Rw’l Ry, -Ry,=
Y vew coRu. S0, (Rwi, Ryn) = T (R, Ruw) = Tnr (Ryy -+ - Ry Ruyy -+ Ru,) = tA (X pew cvRv) = cg. This proves that
indeed V is isometric.



ABSENCE OF CARTAN SUBALGEBRAS FOR RIGHT-ANGLED HECKE VON NEUMANN ALGEBRAS 9

Proof. Theorem 3.1 implies that ./\71[1 is a von Neumann subalgebra of M, and the canonical trace of
M, agrees with the one on ./\7161. Therefore Mq admits a trace-preserving normal conditional expectation
value; see [Takesaki 2003, Theorem IX.4.2]. O

Consider the Hecke von Neumann algebra M, for the case that § is a one-point set, g > 0, and

p=(q—1)/,/q. In that case we have W = {e, s} and Lz(/\/lq) has a canonical basis €2 and 7,$2. With
01
lp
that M, = Cld, ®CTj; i.e., it is 2-dimensional. The following corollary uses the graph product, for which

respect to this basis Ty takes the form (| ) and one sees (using for example the relation 72 = 1+ pTy)
we refer to [Caspers and Fima 2017]. It is a generalization of the free product by adding a commutation
relation to vertex algebras that share an edge; the free product is then given by a graph product over a
graph with no edges. In [Caspers and Fima 2017] the symbol % was used for graph products. We use the
notation * instead to distinguish them from free (amalgamated) products.

Corollary 3.4. Let (W, S) be an arbitrary right-angled Coxeter system and let ¢ > 0. Let I be the graph
associated to (W, S) as before. For s € S let M (s) be the 2-dimensional Hecke von Neumann subalgebra
corresponding to the one-point set {s}. Then we have a graph product decomposition My = *scyr M, (s).

Proof. Let Ty € M, s € S, be the operators as introduced in Section 2B. Let T,, s € S, be the operator T
but then considered in the algebra M, (s), which in turn is contained in x;eyr M, (s) with conditional
expectation. Now the map 7§ — T, determines an isomorphism by Theorem 3.1 and the universal property
of the graph product given by [Caspers and Fima 2017, Proposition 2.12]. U

3B. Noninjectivity.
Definition 3.5. A von Neumann algebra M C B(H) is called injective if there exists a conditional
expectation & : B(H) — M.

Theorem 3.6. Let (W, S) be an irreducible right-angled Coxeter system with |S| > 3. Then M, is
noninjective.

Proof. It suffices to prove that M, contains an expected noninjective von Neumann subalgebra. Now any
irreducible Coxeter system (W, S) contains a Coxeter subsystem (W, §) either of the form § = {r,s, t}
with m(r, s) =m(r,t) = m(s, t) = o0 or S = {r,s,t} withm(r,s) =m(r,t) = oo and m(s, t) = 2. So
it satisfies to prove noninjectivity for these systems. In both cases, for ¢ fixed, set M to be the Hecke
von Neumann algebra of the Coxeter system consisting of just {r}. M has dimension 2. Set N to be
the Hecke von Neumann algebra of the Coxeter system {s, ¢}, which is infinite-dimensional in the case
m(s, t) = oo and 4-dimensional if m(s, t) = 2 (being the tensor product of two 2-dimensional algebras).
Then M, is isomorphic to the free product M s over the canonical traces by Corollary 3.4 and [Caspers
and Fima 2017, Remark 3.23]. As dim(M) 4 dim(N) > 5 it follows that M, is noninjective from [Ueda
2011, Theorem 4.1] (see comment (5) in Remark 4.2 of that work). Il

3C. Haagerup property. We first construct radial multipliers.

Proposition 3.7. Let (W, S) be a right-angled Coxeter group with Hecke von Neumann algebra M,
q > 0. For every 0 < r < 1 there exists a normal unital completely positive map ®, : My, — M, that is
determined by ®,(Ty) = rlelr,.
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Proof. As in Corollary 3.4 we identify M, with the graph product *Eevr(./\/lq(s), 7,), where 7, is the
tracial state on M, (s). Consider the map @, ; : M, (s) — M, (s) determined by 1+ 1, T; > rT;. This
map is unital and completely positive: indeed consider the matrices

() =G ) (4 )

Then &, ; agrees with x — A*x A+ B*x B4+C*xC as before Corollary 3.4 we already noted that 7, = ((1) }17)
Furthermore ®, ; preserves the trace 7, as 7, is the vector state associated with (1, 0)". Therefore we may
apply [Caspers and Fima 2017, Proposition 2.30] and obtain the graph product ucp map @, := xscyr s,
which proves the proposition. O

Definition 3.8. Recall that a von Neumann algebra M with normal faithful tracial state 7 has the Haagerup
property if there exists a net ®; of r-preserving ucp maps M — M such that 7; : xQ2; — ®;(x)Q2; is
compact and converges to 1 strongly.

Theorem 3.9. For any Coxeter system (W, S) and any q > O the von Neumann algebra M, has the
Haagerup property.

Proof. 1f § is finite Proposition 3.7 directly shows that M, has the Haagerup property by letting r 7 1.
Then the general case follows by an inductive limit argument on finite Coxeter subsystems using the
conditional expectations from Corollary 3.3. U

4. Completely contractive approximation property

We show that for a right-angled Coxeter system (W, S) the Hecke von Neumann algebra M, has the
wk-* CCAP; see Definition 4.12. The proof follows a— by now standard — strategy of [Haagerup 1978]
by considering radial multipliers first and then showing that word-length cut-downs have a complete
bound that is at most polynomial in the word length.

4A. Creation/annihilation arguments. Here we present some combinatorial arguments that we need in
Section 4B. We have chosen to separate these from the proofs of Section 4B so that the reader could skip
them at first sight.

We introduce the following notation. Let x, w € W. We shall write w < x to indicate that |jw~!x| =
|x| — |w|. Then w < x is defined naturally. So w < x means that w is obtained from x by cutting off
a tail. An element v € W is called a clique word in the case its letters form a clique. For A a clique in
W and v € W we define v(2, @) as the maximal® clique I'y such that [vV o] = |[v] — |VT|. Then we
take the decomposition v = v(1, A)v(2, A) with |v| = [v(1, A)|+ |v(2, A)| and v(2, A) = v(2, D)\ A
(which uniquely determines v(1, A)). For g < x we let Ag , be (x'g)(2, @). In other words Ag yx is
the maximal clique that appears at the start of g~'x. We let C(g, x) be the collection of w € W with
g <w < gAg . Note that C(g, x) contains at least g and g A, , (and the latter elements can be equal).
We write C(g, +) for Ugsx C(g,x).

3Suppose that I'g and I'y are cliques such that |[vVT';| = [v| — |VI};]|, i =0, 1. Then the letters VI'g and VI'; must commute.
So the union I'y =g UT'| is a clique with [vVIy| = |v| — |V I;|.
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Example 4.1. Consider the Coxeter system (W, §) with S = {r, s, ¢t} in which m(r, s) =2 and m(r, t) =
m(s,t) = oo. Consider v = trs. Then v(1, ) =1t¢, v(2, D) =rs, v(l,r) =tr,and v(2,r) =s. Also
At,trst = {t9 Ir, ts, trs}‘

Lemma 4.2. Let x,w € W. Let w = w'w” be the decomposition with |w| = |w’| + |w”| such that
lw”’x| = |x| — |[w”] and |lwx| = |x| — |w”| + |w'|. Take (w")~' < g < x. Then, forv e C(g, x),
(wv)(2, (wg)(2, ©)\g(2, ) =v(2, g2, D)\ (wg)(2, 2)) (4-1)
and
[(wo)(1, (wg)(2, )\g(2, )| = |v(l, g2, 2)\wg (2, @))| — |w"| + |w’|. (4-2)

Proof. Let v € C(g, x). The clique v(2, @) consists of the clique g ~'v plus all letters in g(2, @) that
commute with g~ !'v. Therefore v(2, g(2, @)\(wg)(2, @)) is the clique consisting of g v plus all letters
in (wg)(2, @) N g(2, @) that commute with g~ 'v. On the other hand (wv)(2, @) consists of the clique
g~ 'v together with all letters in (wg)(2, @) that commute with g~'v. Then (wv)(2, (wg) (2, @)\g(2, @))
equals g_lv together with all elements in (wg) (2, ¥)Ng(2, &) that commute with g_l
(4-1). Therefore,

[(wv)(1, (wg)(2, D)\g2, D)) = |wv| — [(wv)(2, (wg)(2, )\g((2, 2))|
=] —|w"|+ |w'|—v(2, g2, D)\ (wg)(2, @))|
=|v(1, g2, 2)\wg (2, 2))| — |w"| + |w|, (4-3)

v. So we conclude

completing the proof. U

Lemma 4.3. Let x, w € W and decompose w as w = w'w” such that |lw| = |w'|+|w”|, |w"x|=|x|—|w"|,
and |lwx| = |x| — |[w”| + |w'|. Let (w")~"' < g <x. Then:

(1) g2, 2)\(wg)(2, 9) = g2, D)\ (w"g)(2, 2).
(2) Forv e C(g,x) we have

v(2,v(2, D)\(W'v)(2,2)) =v(2, g2, 2)\(w"g) (2, 9)). (4-4)

Proof. (1) Because (w”)™! < g < x we also have |[w”g| = |g| — |w”| and |wg| = |g| — |[w”| + |w’|. So
w’ creates letters in w”g so that g(2, @)\ (wg)(2, @) = g2, D)\ (w"g)(2, D).

(2) Let A be the set of letters in g (2, @) that commute with g~ 'v. The clique v(2, &) consists of g~ 'vUA.
This means that v(2, v(2, @)\(w”v)(2, @)) consists of g~ 'vU A intersected with (w”v)(2, @). The inter-
section of (w”v)(2, @) with g~ 'vis g~ v so that v(2, v(2, @)\ (W' v)(2, @)) =g~ 'WUAN(W V) (2, @)).
On the other hand v(2, g(2, @)\(w"g)(2, @)) equals g~'v U (AN (w”"g)(2, @)) and as g(2, @) N
(w’g)(2, 2)=g2, Z)N(w"v)(2, @) clearly (AN(w"v)(2, @))=(AN(w"g)(2, &)). This proves (4-4). [J

Although Coxeter groups generally do not have polynomial growth (nor are they hyperbolic) we still
have the polynomial estimate of the following Lemma 4.4. We do not believe that the degree of the
polynomial bound we obtain in Lemma 4.4 is optimal, but it suffices for our purposes and it admits a
short proof.
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Lemma 4.4. Let W be a right-angled Coxeter group with finite graph I'. Let x € W. For a € N define
Kkx(@) =|{w <x:|w|=a}|.

Then kx(a) < CalV'I=2 Moreover, the constant C can be taken uniformly in x.

Proof. To carry out the proof we shall actually count a more refined number. We write A < I" to indicate
that A is a complete subgraph of I. We say that w is a (< A)-word if its letters (in reduced form) are all
in VA (they do not need to exhaust all of V A); we say that w is a A-word if its letters are exactly V A.
Then define

kMa)=|{v<x:|v]=aand visa (< A)-word}|. (4-5)

Let ¢ and ko be constants such that for a € {0, 1} we have for all @ # A <T that k2 (a) < c(a+ko)! V2172
and further for all a € N and all nonempty complete subgraphs A of T we have 2! Alca < (a + ko)% We
prove by induction on @ € N that for all @ # A < I" we have K;\ (a) < c(a+ko)!VAI=2,

Inductive step. Pick some fixed w < x with |w| =a and w a A-word. Now if v < x with |v| = a then let
vg be an element of maximal length such that both vy < v and vg < w (we leave in the middle if vy is
unique).

Let s € § be a letter that appears at the start of v, 'w. We claim that the letter s must commute with
v, 'v. Indeed, first observe that as vy has maximal length s cannot appear at the start of v, 'v. Further,
write x = vo(v, ' v)(v"'x) and x = v(v; 'w)(w'x). So,

vy 'w)(w %) = (v, ') (v %), (4-6)

Now s appears at the start of (v, 'w) and hence this letter must occur somewhere in the expression
(v 1v)(v_lx) as well. Consider the first occurrence of s in (v, 1v)(v_lx). All the letters before it must
then commute with s as otherwise the equality (4-6), saying that s is at the start, is violated (see the normal

form theorem [Green 1990, Theorem 3.9]). But then s does not occur on v, !

v as then it is automatically
at its start. So the first time s occurs in (v, 1v)(vflx) is in the part (v~'x) and so it commutes with all
elements in (v, 1v).

So if vo_lw is a A-word then vo_lv is a Link(A)-word (recall Link(A) = [,cy 4 Link(s)); in fact it

v must appear

must be a (Link(A) N A)-word as we only deal with words with letters in A. Moreover v,
at the start of w~'x. So every word in the set we count in (4-5) is obtained from w by cutting off a tail

(this is v, ! w) and then adding a tail of the same size with commuting letters (this is v, ! v). This certainly

Link(A’ -
PO =20 D S S St (A1) 0

A <A v=w
v lwisa A’-word

gives the inequality

Note that the number of v € W with v < w, |[v] =/ and v a A’ -word is smaller than or equal to
Kl’l}/,l (Jw| —1). In the case [ = 0 we have K;\i, (Jjw| — 1) = 1 (elementary) and in the case [ > 0 we can
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apply our induction hypothesis to get k2", (|w| —) < c(a — I +ko)!V»1=2. Therefore we get

K;\(a) < Z Z c(a +k0)\Link(A’)va|_2

A <A . y<w
v 'wisa A’-word

< Z Zcz(a—l+k0)‘VA/‘_2((1+k0)‘Link(A,)mVA|_2

AN <A I=0
a
< Z ZC2(a +k0)|VA |_2(Cl +k0)|Llnk(A )QVA\—Z.
A <A 1=0

Since the intersection of each V A’ and Link(A") NV A is empty we find

a
kMa) < YD Fatk)VM <2V @+ 1)@+ ko) VAT < cla+ ko) VA,
AN <A 1=0

The last line follows from the choice of ¢ and k. Il

4B. Word-length projections. The aim of this section is to prove that Ty, +— d(Jw| < n)Ty, gives a
complete bounded multiplier of M, with complete bound growing at most polynomially in n. Firstly we
simplify notation a little bit.

Remark 4.5. We may identify ¢2(W) with basis 8x, x € W, with L?(M,,) with basis 7T, Q. This way
Tu(,l) acts on £2(W) by means of the left regular representation.

We borrow the following construction from [Ozawa 2008]. We let B (W) be the set of finite subsets
of W. For A € By(W) we define éj‘t to be the vectors in Zz(Bf(W)) given by

- 1 ifwCA, - (=Dl ifwcCA,
’ = =
54 (@) {0 otherwise, 54 (@) {0 otherwise.
Using the binomial formula (see Lemma 4 of [Ozawa 2008]), we have |5 |? = 214! and
.. - [0 ANB#£D
+ _ b
Ca-8p) = {1 otherwise.

We let
R =span{Py : w € W}. 4-7
Let Q4 be the operator
Qudy = 3(w = x)dy;
i.e., Qy is the Dirac delta function at w seen as a multiplication operator.

Lemma 4.6. For w € W we have Q, = Zvec(w&)(—l)w_lwpv,

Proof. Firstly, Qu(w) =1 = Py(w) = (Zvec(wﬁr)(—l)'“’_l”'Pv)(w). Letx e W. If w £ x we get
Qp(x)=0= (Zvec(w’ﬂ(—l)‘wqﬂP,,)(x). In the case w < x we find

( > (—1>'”“"Pv)<x>= > (=p (4-8)

veC(w,+) veC(w,x)
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and this expression equals 0 by the binomial formula. Indeed, let A, , be the maximal clique appearing
at the start of w='x (see Section 4A). The number of words smaller than A, , of length [ is |Ay x|
choose . So (4-8) equals

[Awxl [Aw,x]

Z Z (_1)\10‘11)\ — Z (|Azlv,x|>(_1)\w‘lv| =0. 0

=0 veC(w,x),|lwv|=I 1=0

Now let A, be the x-algebra generated by the operators T, w € W. So M, is the o-weak closure

of A,. We define
Tw ’ |w| S n7
Ve, Ay > Mg Ty —
=t 4w {0, otherwise.

We also set W, = W<, — W(,—1). The crucial part which we need to prove is that W, is completely
bounded with a complete bound that can be upper-estimated in n polynomially. In order to do so we first
introduce three auxiliary maps.

Auxiliary map 1: Recall that M is just the group von Neumann algebra of the right-angled Coxeter

group W. For k € N define the multiplier A; — A;
pe(Ty") = 8(|lwl = BT,

This map is completely bounded as the range is finite-dimensional. We may extend p; to a o-weakly
continuous map M; — M; (for convenience of the reader we provided details of this extension trick
through double duality in Theorem 4.13). By the Bozejko—Fendler theorem, Theorem 2.8, we may extend
pr uniquely to a o-weakly continuous £°°(W)-bimodule map B({2(W)) — B(2(W)) with the same
completely bounded norm. Using Lemma 2.7 we see that

n
Wey=Y proWsy.
k=0

We emphasize at this point that in our proofs we shall not need a growth estimate for || o¢||cs in terms
of k. It is known however by [Reckwerdt 2015] that || o ||cs admits a polynomial bound in k. In the
hyperbolic case this would already follow from [Ozawa 2008, Theorem 1(2)].

Only in the hyperbolic case it is known by [Ozawa 2008, Theorem 1(2)] that this map is completely
bounded and moreover || prllcg < C(k + 1) for some constant C independent of k.

Auxiliary map 2: Let T be the unit circle in C. For z € T we define a unitary map,

A, (W) = £2(W) : 8 > 21V15,,.
We set fori € Z,
®; 1 BUAH(W)) — BE*(W)) : x > / T ANXA dz,
T

where the measure is the normalized Lebesgue measure on T. Intuitively ®; cuts out the operators that
create i more letters than they annihilate (where a negative creation is an annihilation). Using Lemma 2.7
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we see that
n
Woy= Y ®ioWs,.
i=—n

Auxiliary map 3: Assume that I" is finite. For a € N we define Stinespring dilations

U (W) = CW) @ (W) @ £2(W) @ £2(By(W)) (4-9)

by mapping &, to (see Section 4A for notation)

Z Z 'Bgt,x,A,aag ®‘Sg’lx & 5g(2,A) ®§;{:

g8=x A<g(2,0)
Here

—1
Boxna= D (DEFA ), (4-10)
veC(g,x)
where Fj ,(v) = 1if

2v(1, M+ v(2, A)| < a,
and else Fp ,(v) =0. We let ,Bg_’x’A o =1if ,Bg r.Aq 7> 0and ,Bg_’x’Aﬂ = 0 otherwise. Then set,
oap(X)= U x®101 1)U, . 4-11)
The map U is bounded with polynomial bound in a by the following lemma.

Lemma 4.7. If T is finite, the map U ;E is bounded. Moreover, there exists a polynomial P such that
IUFI < P(a).

Proof. Tt follows by a comparison of the first two tensor legs in the definition of U= that the images
of §x, x € W, are orthogonal vectors. Therefore it suffices to show that sup,.y [|U. ai(Sx | is bounded
polynomially. Now let C = Y_ \ .cjigry 2"*/2. Then

Uadxll =

Z Z @t,x,A,a‘sg@ng*lx®5g(2,A>®§Ai

8=x A=g(2,2)

[A] _
<Z Z |,8ng |22 <CZA€rgz|2((r) gx,A,a|' (4-12)

g8=<x A<g(2,9)

In the case
a<2[g(1, M| +1g2, A, (4-13)
/S;L A.q = 0 by definition. Inequality (4-13) will certainly hold when a < [g|. Let M be the maximum

length of a clique in Cliq(T"). Then if
2lg1, M) +1g2, M =a—2M—1, (4-14)

we find that ,Bg x.A.q = 0 by the binomial formula as for every v € C(g, x) we have F, 4(v) = 1. Inequality
(4-14) will certainly hold if 2|g| <a —2M — 1. So (4-12) can be estimated by C times the number of
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g <x with
Sa—2M—1)<|g|<a.

But the number such g’s grows polynomially in a; see Lemma 4.4. O
Lemma4.8. Letx €¢ W. Letu’, u” € W be such that |u”"x| = |x| — |u”|, [w'u"x| = |x|— |u"| + |u|. Let
v e W be such that w")~' < v < x. Then,

+ —
Z 'Bg,x,g(2,®)\(u’u”g)(2,@),a wu'g.u'u"x,(uu"g)2,2)\g2,2),a=2|u'|+2|u"|
V=g=x

B {1 if2lv(1,v(2, @)\ (@'u"v)(2, @)+ |v(2, v(2, D)\('u"v)(2, ©))| < a, (4-15)
|0 otherwise.
Proof. By (4-1) and (4-2) for v < g we get

+ - lg~ vl
Be x.g.onwue)2.2).a = Z (=D*¥ P Fee.onwug).).a(W)
weC(g,x)

-1
= Z (=D Y Fuwrg)2.00e2.0).a—21u 2w (W)

weC(uw'u’"g,u'u’x)

_pt

- IBu’u”g,u/u”x,(u’u”g)(Z,@)\g(Z,@),a—Zlu/|+2|u”|'
Therefore also,

'B;,x,g(l@)\(u’u”g)(Z,@),a = 'Bz;u”g,u/u”x,(u/u”g)(2,@)\g(Z,@),a72\u/|+2|u”\ .
We thus have that the left-hand side of (4-15) equals
+ - _ +
Z ’Bg,x’g(lZ)\(u’u/’g)(l@),a g.x,22,9\Wu"g)(2,2),a — Z ﬂg,xvg(l@)\(u/u”g)(lZ),a'
v<g<x v<g=<x

To compute this sum, recall that R was defined in (4-7), and define the mapping
Kqg:R—>R: Py Fyeonwew@2o),q(W)Py.

Then, using Lemma 4.6, the definition of «,, Lemma 4.3, and the definition (4-10),

xa<Qg)<x>=xa( > (—1)'g‘“"Pw>(x)= Y =D Fyp o e 2,290 (W)

weC(g,x) weC(g,x)

— ﬁ+

T Pex,g2o)\Wu"g)(2,2),a
As ), <g<x Qg can be written as P, plus projections in R that are not supported at x we see therefore
that

+
Y Birseonwipema= D ka(Qg)®) =ka(P)(x).

v<g<x v<g<x
This expression equals 1 if Fy2 o)\ w'u"v)2,2),a(v) = 1 and 0 otherwise, which corresponds exactly to the

statement of the lemma. O

Lemma 4.9. Assume that U is finite so that (4-11) is defined boundedly. We have for n € N that
\ijn = Z;l:—n O'nfl"n+l' (¢] qu o \Ijgw
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Proof. Let Ty € M, with [w| < n. We need to show that

n n
Tw = Z Z On—in+i © ®; o pr(Ty).

k=0i=—n

We split T;, by Lemma 2.7,
Tw= Y. T3 Pyr,TY.
(w',Tg,w")eAy
and show that
n n
Z Z On—in+i © Pi o pg
k=0 i=—n

applied to each of these summands acts as the identity. Let us consider a summand T(l) PvroT(},) with
(w', Tg, w”) € Ay. Let u, u’, u” be as in Lemma 2.5 so that T(])PVFOT(E,) = T(])P VFOT(,,) We have

Ty Pavr, T, if k= u/| + |u”],

) )
T P T 4 -
Pk ( uvro Tyn') = {0 otherwise.

So the only nonzero summand is k = |u’| + |u”| so that it remains to show that for x, y € W

n
< Y Ouimti 0 Pi(Ty Puvry Ty )8y, 8 > (T Puyry T 8. 8y). (4-16)

i=—n

If the right-hand side is nonzero then we must have y =u’u”x. Furthermore, recall that there is a choice for
u’, u” and we may choose them (depending on x) such that |u”x| = |x|—|u”| and |u'u"x|=|x|—|u"|+|u’|.
After making this choice the right-hand side is nonzero in the case (#”)~'uV Ty < x, in which case the
expression equals 1.

Now consider the left-hand side of (4-16),

(@i(T" Puyr, TS @ 1@ 1@ DU 8¢, U, ,8)

<Z Z ﬂgx An—i® T( )PuvroTu(/})ﬁg ®8g-1x ®8g2,0) ®EL,

8=x A<g(2,2) ~
> ﬂ,l,y,A,,nﬁ.ah@a,,1y®ah(2,m®sA>. (4-17)
h<y N'<h(2,2)

Comparing the first two tensor legs of this equation we derive the following The only summands that are
-1

///

nonzero are the ones where u'u”g = h and at the same time g~'x = h~'y. In particular we must have

y = u'u”x and there is a choice for u’, u” (same choice as above) such that in fact |u”x| = |x| — |u”|

///|

and |u = |x| — |u”| + |u'|. We also see that we must have (1)~ 'uV T < x for this expression to

be nonzero. Taking into account ®; we see that (4-17) is nonzero only if i = |u”| — |u’|.

Next we note that by comparing the last two tensor legs, if a summand in (4-17) is nonzero then we
have g(2, A) = h(2, A’) and AN A" = @. Recall that h = u'u”g. But then A must equal the letters in
g(2, @) that are not anymore in (#'u”g)(2, @) and A’ must equal the letters in (u'u” g)(2, @) that are not

anymore in g(2, @). This precisely means that A = g(2, @)\ (w'u"g)(2, @) and A’ = (W'u’g)\g(2, @).
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In all, we find that

@-17) = (T Payr, T @ 1@ 1@ DU, 8¢, U, .8y)

(T X Aenn TP 8 00, 0500 O,

8=x A<g(2,9) -
Z Z By nrntiOh=1x ® Sn @ B2, A7) ®$A>
h<y N'<h(2,2)

— + -
= 2. BieseonwwneoniBiwguwswngo.onse.o i
(@)~ luVTy<g=x

We claim that this expression is 1 by verifying Lemma 4.8. Indeed set w := (u”)~'u V. First suppose
that u is the empty word. Then

w2, w2, 2)\(W'u"w)2, @) =V,
and so
w(l, w2, 2)\@u"w)2, 2)) = @)

If u is not the empty word, then let s € W be a final letter of u (i.e., |us| = |u| — 1). Then s cannot
commute with VT’ as this would violate the equation T( )PuVFOT(,p = T(l)P FOT(,,). Therefore again,

w2, w2, 2)\(Wu"w)2, 2) =w?2,2) =V

and so

w(l, w2, O\@'u"w)2, ) =w") u.
Further our constructions give that |u”| = (k —i)/2 and 2|u| + |VTo| = |w| — |u'| — |u”| = |w| — k. So
we have

2lw(l, w2, 2)\(@'u"w)(2, )|+ w2, w2, X)\(w'u"w)(2, 2))|
=2|@")" [+ 2lul+|VTo| = ZkT_l + (lw| — k)
=|w|—i<n-—i, (4-18)
so that by Lemma 4.8 we see that (4-17) is 1. So we conclude that (4-16) holds. Il
Lemma 4.10. Assume that T is finite so that (4-11) is defined boundedly. We have forn e N, —n <i <n,
On—in+i © PioWey =0y nti 0 D;.

Proof. The proof pretty much parallels the proof of Lemma 4.9. We need to show that the right-hand
side applied to Ty, with |w| > n equals 0. Therefore we may look at the summands T(I)PVFOT(D with
(w’, Tp, w”) € Ay, which can be further decomposed as Tu(, )PuV]"o Tu(,,) with u, u’, u” as in Lemma 2.5.
It suffices then to show that for all choices of k the following expression is O:

(On—insi © i 0 k(T Puyry Tyr )3s. Sy). (4-19)
Firstly, this expression is O in the case |u'| + |u”| # k. So assume |u’| + |u”| = k. Then,

(4-19) = (0 nti 0 D (TS Puyry T )8y, 85).

u//
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As in the proof of Lemma 4.9 the expression (4-19) equals O unless #'u”x =y and (u”) " 'uVIy < x
with u”, u’ chosen in such a way that |[u”x| = |x| — |u”| and |u'u"x| = |x| — |u”| + |u'|]. In that case
i=|u|—|u". Asin (4-17),

4-19) = (T Puvr, T @ 1@ 1@ DU, 8¢, Uy, 8y)

_ . . (4-20)
- Z ﬁg,x,g(2,®)\(u’u”g)(2,®),n—t ,Bu’u”g,u’u”x,(u’u”g)(2,@)\g(2,®),n+t .
(@)~ luVly<g<x
As for w:= (u”) " 'uVTy we have again by the same reasoning as in/before (4-18) that
2lw(1, w2, D)\ ('u"w)(2, @)+ w2, w2, D)\(@'u"w)(2, D) = |w| —i >n—i.
The expression (4-20) is 0 by Lemma 4.8. O

Proposition 4.11. We have || V<, |lcs < P(n) for some polynomial P.
Proof. By Lemmas 4.9 and 4.10 we have

n n
\ygn = Z On—in+i © ®; 0 "Ijgn = Z On—i,n+i © P,
i=—n i=—n
and the right-hand side is completely bounded with polynomial bound in #; indeed the bound of o,_; ,,1;
is polynomial in n by its very definition and Lemma 4.7. O

Definition 4.12. A von Neumann algebra M has the weak-x completely bounded approximation property
(wk-x CBAP) if there exists a net of normal finite-rank maps ®; : M — M such that &;(x) — x
in the o-weak topology and moreover sup; ||®;|lcg < oo. If the maps ®; can be chosen so that
lim sup; ||®;llcs <1 then M is said to have the weak-* completely contractive approximation property
(wk-x CCAP).

Theorem 4.13. Let (W, S) be a right-angled Coxeter system and let ¢ > 0. The Hecke von Neumann
algebra M has the wk-x CCAP.

Proof. By an inductive limit argument and Corollary 3.3 we may assume that I" is finite. The proof
goes back to [Haagerup 1978]. Consider the completely bounded map W<, o ®, : A, — M,. Clearly as
n — oo and r /' 1 this map converges to the identity in the point o-weak topology. Let € > 0. We have

o0

[W<p 0o ®@rlle < [(W<n —1d) 0 @y lles + [ Prllen = < Z r”ll‘lfnllczs) + 1P lles,
i=n+1
which shows using Propositions 4.11 and 3.7 that we may let r /' 1 and then choose n := n, converging
to oo such that |W<,, o ®,| ¢ < 1+ € for some constant.

The map &, is normal. Also W<, is normal by a standard argument: indeed using duality and
Kaplansky’s density theorem one sees that W, maps Ll(/\/lq) — Ll(/\/lq) boundedly. Then taking the
dual of this map yields that ¥, : M, — M, is a normal map. We may extend W, o ®, to a normal map
M, — M. Then using a standard approximation argument yields the result. O
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Remark 4.14. In case our right-angled Coxeter group is free (i.e., m(s, t) = oo for all s # ¢) it is possible
to adapt the arguments of [Ricard and Xu 2006] in order to obtain word-length cut-downs with polynomial
bound. This argument — purely based on bookkeeping of creations/annihilations — seems unrepairable
in the general case. In the case g = 1, for a general right-angled Coxeter group, word-length cut-downs
were obtained in [Reckwerdt 2015] by using actions on CAT(0)-spaces. The connection with the general
Hecke case is unclear.

5. Strong solidity in the hyperbolic case

We prove that in the factorial case (see Theorem 2.2) M, is a strongly solid von Neumann algebra in the
case the Coxeter group is hyperbolic.

5A. Preliminaries on strongly solid algebras. The normalizer of a von Neumann subalgebra P of M is
defined as {# € U(M) : uPu* = P}. We define Norp (M) as the von Neumann algebra generated by the
normalizer of P in M. A von Neumann algebra is called diffuse if it does not contain minimal projections.

Definition 5.1. A finite von Neumann algebra M is strongly solid if for any diffuse injective von Neumann
subalgebra P C M the von Neumann algebra Nor ¢ (P) is again injective.

Ozawa and Popa [2010] proved that free group factors are strongly solid and consequently they could
prove that these are II;-factors that have no Cartan subalgebras (as was proved in [Voiculescu 1996]
earlier by a completely different method). A general source for strongly solid von Neumann algebras
are group von Neumann algebras of groups that have the weak-* completely bounded approximation
property and are biexact (see [Chifan and Sinclair 2013; Chifan et al. 2013; Popa and Vaes 2014]; we
also refer to these sources for the definition of biexactness). The following definition and subsequent
theorem were then introduced and proved in [Isono 2015]. For standard forms of von Neumann algebras
we refer to [Takesaki 2003].

Definition 5.2. Let M C B(#) be a von Neumann algebra represented on the standard Hilbert space H
with modular conjugation J. We say that M satisfies condition (AO)™ if there exists a unital C*-subalgebra
A C M that is o-weakly dense in M and which satisfies the following two conditions:

(1) Ais locally reflexive.
(2) There exists a ucp map 6 : A®min JAJ — B(H) such that 8(a ® b) — ab is a compact operator on .

Theorem 5.3 [Isono 2015]. Let M be a Il -factor with separable predual. Suppose that M satisfies con-
dition (AO)™ and has the weak-* completely bounded approximation property. Then M is strongly solid.

A maximal abelian von Neumann subalgebra P € M of a II;-factor M is called a Cartan subalgebra
if Nor ¢ (P) = M. It is then obvious that if M is a noninjective strongly solid II;-factor, then M cannot
contain a Cartan subalgebra. Therefore we will now prove that the Hecke von Neumann algebra M, in
the factorial, hyperbolic case satisfies condition (AO)*.
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5B. Crossed products. Let A be a C*-algebra that is represented on a Hilbert space H. Let o : G~ A be
a continuous action of a discrete group G on A. The reduced crossed product A x, G is the C*-algebra of
operators acting on H ® £?(G) generated by operators

ug:=> 1®emn g€G  and 7@):=> h ' x@enn x€A (5-1)
heG heG
Here the convergence of the sums should be understood in the strong topology. There is also a universal

crossed product A x,, G for which we refer to [Brown and Ozawa 2008] (in the case we need it, it turns
out to equal the reduced crossed product).

5C. Gromov boundary and condition (AO)*. Let again (W, S) be a Coxeter system which we assume
to be hyperbolic (see [Brown and Ozawa 2008, Section 5.3]). Let A be the associated Cayley tree. A
geodesic ray starting at a point w € A is a sequence (w, wvy, Wvjvy, ...) such that jwv; - - - v, | = |w| +n.
We typically write w = (w(0), w (1), ...) for a geodesic ray. Let 0W be the Gromov boundary of W
which is the collection of all geodesic rays starting at the identity of W modulo the equivalence w; =~ w,
if and only if lim, ., dist(w; (x), w2(y)) = 0. WU dW may be topologized as in [Brown and Ozawa
2008, Section 5.3].

Let W ~ W be the action by means of left translation. The action extends continuously to W UJdW
and then restricts to an action W ~ dW. We may pull back this action to obtain W ~ C(dW). As
in this section we assumed that W is a hyperbolic group, the action W ~ dW is well known to be
amenable [Brown and Ozawa 2008], which implies that C(0W) x, W = C(d W) x, W, and furthermore
this crossed product is a nuclear C*-algebra. Let f € C(0W), let fl, fz e C(WUQW) be two continuous
extensions of f, and let f; and f, be their respective restrictions to W. Then f; — f> € Co(W). That
is, the multiplication map fi — f> acting on ¢>(W) determines a compact operator. So the assignment
f > fi is a well-defined s-homomorphism C (dW) — B(£?(W))/K, where K are the compact operators
on £2(W). It is easy to check that this map is W-equivariant and thus we obtain a *-homomorphism:

7 COW) x, W — BUA(W))/K. (5-2)

Let again W ~ W be the action by means of left translation which may be pulled back to obtain an
action W ~ £°°(W). Let
02 (W) x, W — BU*(W))

be the o-weakly continuous x-isomorphism determined by p : uy, — T,,(,l) and p : m(x) — x (see [Vaes
2001, Theorem 5.3]). In fact p is an injective map (this follows immediately from [De Commer 2011, The-
orem 2.1] as the operator G in this theorem equals the multiplicative unitary/structure operator [Takesaki
2003, p. 68]). Let Coo (W) be the C*-algebra generated by the projections Py, w € W. Take f € Coo(W)
and let f be the continuous extension of f to WU W. The map f +— flaw determines a s-homomorphism
0 : Coo (W) — C(0W) that is W-equivariant. Therefore it extends to the crossed product map

o0 X Id: Cou(W) x, W — C(OW) x, W.

Theorem 5.4. Let (W, S) be a right-angled hyperbolic Coxeter group and let g € [p, p~'1; see Theorem 2.2.
The von Neumann algebra M satisfies condition (AO)™.
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Proof. We let A, be the unital C*-subalgebra of M, generated by operators T,,, w € W. It is easy to
see that A, is preserved by the multipliers that we constructed in order to prove that M, had the wk-*
CBAP; see Section 4 (indeed these were compositions of radial multipliers — see Proposition 3.7 — and
word-length projections — see Proposition 4.11). Therefore A, has the CBAP; hence by the remarks
before [Haagerup and Kraus 1994, Theorem 2.2] it is exact. Therefore A, is locally reflexive [Brown and
Ozawa 2008; Pisier 2003, Chapter 18].

It remains to prove condition (2) of Definition 5.2. By Lemma 2.7 we see that A, is contained in the
C*-subalgebra of B2(W)) generated by the operators Py, T,,(,l) with w € W. So p~! (Ay) is contained in
Coo(W) X, W and therefore we may set

YA > COW)x, W asy=(o X,Id)op_l.

The mapping 7, : JA,J — B(*(W))/K : b+ b is a *-homomorphism and its image commutes with
the image of ;| of (5-2) (as was argued in [Higson and Guentner 2004, Lemma 6.2.8]). By the definition
of the maximal tensor product there exists a *-homomorphism

(M ®@m2) : (COW) Xy W) Qumax JAGJ — B*(W))/K:a® JbJ — my(a)JblJ.
We may now consider the following composition of *-homomorphisms:

®id
Ag @nmin JAG] ——> (C@OW) x, W) ®nin JAqJ (5-3)

l/:

BUW)/K <—(COW) >y W) @max JAJ.
By construction this map is given by
a®JbJ— alJbJ+K, wherea,beA,. (5-4)

The map m; is nuclear because we already observed that C(d W) x, W is nuclear. Also 7, is nuclear as it
equals J(-)JomjoyolJ(-)J. It therefore follows that the mapping 7| ®72: (C(OW) X, W) Qmin J Ay J —
B(£*(W))/K in diagram (5-3) is nuclear and we may apply the Choi-Effros lifting theorem [1976] in
order to obtain a ucp lift 6 : (C(OW) x, W) Qmin JA4J — B(£>(W)). Then 6 o (y ® Id) together with
(5-4) witness the result. O

Corollary 5.5. Let (W, S) be an irreducible hyperbolic Coxeter system with |S| > 3 and q € [p, p~'].
Then the Hecke von Neumann algebra M has no Cartan subalgebra.

Proof. This is a consequence of Theorem 5.3 together with Theorems 3.6, 4.13, and 5.4. O

Remark 5.6. In case W is not hyperbolic, it is not necessarily true that the group von Neumann algebra
M is strongly solid. The easiest case is when I" is K> 3, the complete bipartite graph with 2 4 3 vertices.
Then the graph product W = xg, .75 = (Z3 x Z3) X (Z2 * Z2 % Z,) contains a copy of Z x [F,. Thus M
cannot be strongly solid as it contains the group von Neumann algebra of Z x F,. Note that K 3 is not an
irreducible graph but the same argument applies if one adds one point with no edges to K> 3.
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6. Absence of Cartan subalgebras

As we saw in Remark 5.6 the absence of Cartan subalgebras for general right-angled Hecke von Neumann
algebras cannot be proved through strong solidity. In this section we obtain absence of Cartan subalgebras
for some additional Hecke von Neumann algebras through an analysis of amalgamated free products
in conjunction with [Vaes 2014, Theorem A] (see also [loana 2015] for related results). We need some
terminology first.

Definition 6.1. Let A/, P C M be finite von Neumann algebras. We say that N is injective (or amenable)
relative to P if there is a completely positive map ® from the basic construction (M, ep) onto A such
that ®| ¢ is the conditional expectation of M onto N. Here ep is the Jones projection, i.e., the conditional
expectation of M to P on the L>-level.

The following Theorem 6.2 uses Popa’s intertwining by bimodules technique. For us it suffices that
for finite (separable) von Neumann algebras N, P € M we say that N <, P if there exists no sequence
of unitaries wy in A/ such that for all x, y € M we have ||Ep(xwiy)|l2 — 0. The following theorem is a
somewhat less general version of [Vaes 2014, Theorem A].

Theorem 6.2. Let N;, i =1, 2, be finite von Neumann algebras with common von Neumann subalgebra B.
Let N' = N 5 N3 be the (tracial) amalgamated free product. Let A C N be a von Neumann subalgebra
that is injective relative to one of the N, i =1, 2. Then at least one of the following statements holds true:

(1) A=<un B
(2) There exists i such that Nory (A) <n M.
(3) Norpr(A) is injective relative to B.

Recall that for a graph I" and r € VI we have Link(r) ={s € VI": (r, s) € ET'} and Star(r) = Link(r)U{r}.
We include the following lemma to show that part of the condition in Theorem 6.7 can always be achieved.

Lemma 6.3. Every irreducible graph T" with |VT'| > 3 contains a vertex r € VI such that VT — Star(r)
contains at least two points.

Proof. Pick some random point r € VI. We cannot have Star(r) = VI because then I" would not be
irreducible. So there is at least one point w € VI" — Star(r). If there is another point in VI" — Star(r)
then we are done, so we assume that w is the only point in VI" — Star(r). This implies that Link(r) is
nonempty. Star(w) does not contain r as w & Star(r). Also there must be at least one point u € Link(r)
(which was nonempty!) that is not connected to w because if this is not the case then every two elements
in Link(r) and {r, w} would be connected so that I' is not irreducible. In all we proved that w has the
property that VI" — Star(w) contains at least two elements, namely r and u. 0

We recall the following definitions from [Caspers and Fima 2017].

Definition 6.4. Let I be a graph and let w = w; - - - w, be a word with letters in VI. Suppose that
w; = w;. We say that the i-th and j-th letters of w are separated if there is a k with i < k < j such that
wy & Star(w;). If every two (equal) letters in w are separated then w is called reduced.
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Definition 6.5. Let I" be a graph and for s € VI let M (s) be a von Neumann algebra with normal faithful
tracial state 7;. Let M(s)° = {a € M(s) : 7;(a) = 0}. Leta = ay - - - a, with a; € M(s;)° be an operator
in the graph product von Neumann algebra ;e M(s). Then a is called reduced if the word s - - - s, is
reduced. The word s; - - - 5, is then called the zype of a. We also say that two operators a; and a; of the
same type s € VI are separated if there exists i < k < j such that the type of a; is not in Star(s).

Definition 6.6. An inclusion of tracial von Neumann algebras B C N is called mixing if for every
sequence b, in B with ||b,|| < 1 and b, — 0 weakly we have that ||Eg(xb,y)|» — O forall x,y e N © B.

For the proof of the following theorem we need a condition assuming the existence of a specific point
r € S. The condition is chosen such that in Claim 2 of the proof of Theorem 6.7 we get a mixing inclusion
of von Neumann algebras. This gives examples of Hecke von Neumann algebras of nonhyperbolic Coxeter
groups that do not possess Cartan subalgebras. Indeed examples can easily be constructed; for example if
there exists a point r € S such that Link(r) is the graph of a nonhyperbolic Coxeter group and if there are
few edges between Link(r) and VI" — Star(r) (i.e., such that the condition below is satisfied). Though
we believe that the theorem should hold without this condition we were unable to find a complete proof.

Theorem 6.7. Let (W, S) be an irreducible right-angled Coxeter group with |S| > 3. Let g € [p, p~'].
Assume that there is an element r € S such that:
e VI — Star(r) contains at least two points.

e Forevery s, t € Link(r) such that (s,t) ¢ ET we have that
Link(s) N Link(t) N (VT — Star(r)) = @.
Then the Hecke-von Neumann algebra M does not have a Cartan subalgebra.

Proof. LetI' = (VT', ET) be the graph of (W, S). By Corollary 3.4 we get a graph product decomposition
My =xsevr My (s) with M, (s) the Hecke-von Neumann algebra associated with the Coxeter subsystem
generated by just s (so it is 2-dimensional by Section 3). Choose r € VT satisfying the conditions of the
statement of the theorem. Put

N = *sestar(r) Mg (),  Na=rgevr—(yMy(s), and B = xselLink(n Mg (s).

Here Link(r), Star(r), and VI" — {r} are all viewed as full subgraphs of T, i.e., a subgraph for which two
vertices share an edge if and only if they share an edge in I'. Simply write M for M,. By [Caspers and
Fima 2017, Theorem 2.26] we get

./Vl = ./\f] *B N 2.
Now suppose that A € M is a Cartan subalgebra. We are going to derive a contradiction by showing that
any of the three alternatives of Theorem 6.2 is absurd.
Claim 1: We cannot have Nor(A) < N; for either i =1, 2.

Proof of the claim. As A is assumed to be Cartan we need to prove that M £ N;. Lett € VI' — Star(r).
Then the subalgebra of M generated by M, (r) and M, (¢) is the tracial free product M, (r) * M, (7).
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Take unitaries u € M, (r) and v € M,(¢) with trace 0. Put w; = (uv)X, which then is a unitary in
M (r) * M (¢) with trace 0.

We need to show that for all x, y € M we have ||Ex; (xwiy)[l2 — 0. Recall that M, (s)° is the space
of elements z € M, (s) with trace 0. By a density argument we may and will assume that x = xy - - - x
and y = yj - - - y; are reduced operators with x;, y; € M, (s)° for some s (see Definition 6.5 or [Caspers
and Fima 2017, Definition 2.10] for the notion of reduced operators). Take a decomposition x = x’a,
where x" =x; -+ X, and @ = Xppqq - - Xk, With Xppq, .0, X € My (r)° UM, (1)°. We may assume that
this decomposition is taken in such a way that the length of a is maximal; in other words, the end of
the expression x” has (after possible commutations) no factors x; that come from M, (r)° and M, (¢)°.
We take a similar decomposition for y. We may write y = by’ with y =y, .1---y;and b= y; --- y,
with y;, 1 <i <n, elements of either M, (r)° or M, ()°. Again we may assume that this decomposition
is maximal meaning that (after possible commutations) the expression y’ does not have factors at the start
that come from either M, (r)® or M, (¢)°.

Now write xwgy = x'(awb)y’. For k big (in fact k > m + n + 1 suffices) we get that awyb is not
contained in N; for i = 1, 2. Indeed a and b can never cancel all the occurrences of u and v in wy = (uv)*
so that awgh € My (r) x My (1) © (My(r) UM, (t)). So xwry = x'(awib)y” ¢ N; for either i = 1, 2.
Therefore ||En; (xwiy)|l2 = 0 as k — oo.

Claim 2: We do not have A < B.

Proof of the claim. Firstly we check that the inclusion B C N, is mixing. Let b, be a sequence in B with
6,1l < 1 such that b, — 0 weakly. Take x, y € N> © B. By linearity and density we may assume that both
x and y are reduced operators. In particular write a reduced expression x = xy - - - x, with x; € M (s;)°
for some s; € VI'—{r} and 1 <i <n. Since x is not in B let x;, be such that s;, € Link(r). Let V A be the
set of all vertices in Link(r) that share an edge with s;,. Let A be the full subgraph of I" with edge set V A.
Then A must be complete (i.e., every two vertices share an edge) because otherwise this would contradict
the assumptions on r. This means that B:= *sevaMg(8) = @ ey My (s) is finite-dimensional, as
M, (s) is 2-dimensional; see Section 3. This in turn implies that ||£5(b,) (2 — O (indeed, b, is bounded
and converges to 0 weakly, hence o-weakly; so £5(b,) — 0 o-weakly and hence in the || - ||2-norm, by
finite dimensionality). Now we have

Ep(xb,y) = Ep(x (b, — Eg(by))y) +Es(xEx(DR)Y),

where the second summand converges to 0 in the | - ||2-norm as n — oo. Further Ez(x (b, — Ex(b,))y) =0
for every n as the operator xy, is separated from any other operator of type s;,. So this shows that

1€6(xDpy) 2 = €5 (xEF(Dr) Y2 — 0.

This concludes our claim that the inclusion B € N; is mixing.

If A < B then we certainly have A < N>. But then by [Toana 2015, Lemma 9.4] and the previous
paragraph which shows that the inclusion N; € M is mixing, we get that also Nor((A) < N>. However
this is impossible by Claim 1.
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Claim 3: M is not relatively injective with respect to 5.

Proof of the claim. Recall our choice of r € VT at the start of the proof. Let 7, 7, be two different points in
VI —Star(r). Let A be the full subgraph of I" with vertex set {r, 11, t2}. Let N' = %;cy 4 M, (s). Note that
NN B=C. Suppose that M were to be relatively injective with respect to . Then there exists a (possibly
nonnormal) conditional expectation ® : (M, eg) — M. We shall prove that this implies that A\ is injective.

Let A be the set of all reduced words w with letters in VI" that do not end on letters in Link(#) and that
do not start with letters in {r, 1, 1}, meaning that for each s € Link(r) the word ws is reduced and for each
s €{r, t1, o} the word sw is reduced. For each word w € W let X,, be a maximal set of reduced operators
in M of type w that form an orthonormal system in L?(M). Let x € X, x’ € X, with w, w’ € A and
x # x". The spaces spanned by NxB and N'x'B are orthogonal in L?(M) and invariant subspaces for .
Moreover, the projection* of L2(M) onto span N'xB!'l is given by

Dx = E nixegx*n’,

iel
where we have chosen n;, i € I, to be elements of A" that form an orthonormal basis of L>(A\). In particular
€ (M, eg). We have that the projections py, x € Xy, w € A, commute with A/ and they sum up to 1 as

L*M) = @ span NxBl'l2,
weA,xeXy
Forw € A, x € Xy, set

/ *
Dy =Xepx’.

Similarly, p’. is the projection onto span x5 I-12 and P < px. We claim that the von Neumann algebra
generated by p, N p, and p’. is homogeneous of type I. In order to do so note that there is a unitary> map

U, :span NxBI'2 — L2(WV)® L*(B) : nxb +—> n Qb.

We have U,nU} = n ®Id;2 and U, p U} = po ® Id;25), where pq is the projection onto € :=
1y € L*(N). So that the von Neumann algebra U, (py N py, p,)U} is isomorphic to B(L*(NV)) ®1d;2(3),
which is homogeneous of type L.

Now consider ¥ : (M, eg) —® M — N. This is a conditional expectation for the inclusion
N — (M, ep). Let P be the subalgebra of (M, ep) that is generated by all p, N p, and p’, with x € X,

4Indeed px is a projection: clearly p¥ = py. Further, by assumption on x = x; - - - x; we have for n € A/ that nx is a reduced
operator Take b € B of trace 0. The word n;xb is then reduced. In order to determine the conditional expectation £g of
x* n n;xb one needs to write x n ¥njxb as a sum of reduced operators and delete all terms that are not in 5. But the only such
terms are the ones where nl. anmhllates n; and where each x annihilates x;. That is, £g(x* n; *n jxb) = r(n n ])r(x x)b =
8;,jb. Similarly, in order to determine £5 (x* n; *n jxb) one wrltee x* n; *n jx as a reduced expre%slon and ﬁlters all operators
that are in B. Using that x does not end on letters in B, this can only happen if n annihilates the letter n; and each x
annihilates x, That is, Eg(x*n? njx) = r(n nj)r(x Xx) = (Sl j So we conclude EB(x n’ n]xb) =4; jb forany b € B. ThlS
gives epx*n’ njxeB =4;, jeB- Then px Zl _jel hixepx *ninjxepx n/ Yicrnixegx*nt = py. Thei 1mage of py is
clearly contamed in span NxBll2, Finally for a vector nxb, n € N, b € B, we have py (nxb) Yicrnixegx*ninxb =
Yiernixt(x* x)r(n mb=7icrni xr(n n)b =nxb.

SIndeed Uy is unitary as HZZ n;xb; “2—21 j r(b*x /n ixb)=3"; J r(n n; )f(b*b )= ”Zz n; Q@ b;
equality uses that n; xb; is reduced by definition of x and that t(x*x) =1 as x had norm lin L2 (M).

2, where the second
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w € A. The previous paragraph shows that P = @ .y, wea{PxN px, p;) is homogeneous of type L
Restricting ¥ to P gives a conditional expectation for the inclusion N”— P (recall that NV is contained in
P as the projections p, sum up to 1). Hence NV is an expected subalgebra of a homogeneous type-I algebra.
As homogeneous type-I algebras are expected subalgebras of a type-I factor we conclude that A\ is injective.

Remainder of the proof. Now Theorem 6.2 implies that either (1) Nor(A) < N; for either i = 1
ori=2;2) A=<\ B; (3) M is injective relative to B. The three claims above rule out all of these
possibilities, showing that M does not possess a Cartan subalgebra. O
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