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OF THE COMPRESSIBLE EULER SYSTEM

SUBJECT TO STOCHASTIC FORCES

DOMINIC BREIT, EDUARD FEIREISL AND MARTINA HOFMANOVÁ

We consider the barotropic Euler system describing the motion of a compressible inviscid fluid driven by
a stochastic forcing. Adapting the method of convex integration we show that the initial value problem
is ill-posed in the class of weak (distributional) solutions. Specifically, we find a sequence τM →∞ of
positive stopping times for which the Euler system admits infinitely many solutions originating from the
same initial data. The solutions are weak in the PDE sense but strong in the probabilistic sense, meaning,
they are defined on an a priori given stochastic basis and adapted to the driving stochastic process.

1. Introduction

Solutions of nonlinear systems of conservation laws, including the compressible Euler system discussed
in the present paper, are known to develop singularities in finite time even for smooth initial data. Weak
solutions that can accommodate these singularities provide therefore a suitable framework for studying
the behavior of the system in the long run. A delicate and still largely open question is well-posedness of
the associated initial value problem in the class of weak solutions. More precisely, a suitable admissibility
criterion is needed to select the physically relevant solution. The method of convex integration, developed
in the context of fluid mechanics in [De Lellis and Székelyhidi 2012], gives rise to several striking results
concerning well-/ill-posedness of the Cauchy problem for the Euler system and related models of inviscid
fluids; see, e.g., [Chiodaroli 2014; De Lellis and Székelyhidi 2009; 2010]. In particular, the barotropic
Euler system in two and three space dimensions is ill-posed in the class of admissible entropy solutions
(solutions dissipating energy) even for rather regular initial data; see [Chiodaroli, De Lellis, and Kreml
2015; Chiodaroli and Kreml 2014]. In the context of incompressible fluids, the method has been used
for attacking the celebrated Onsager’s conjecture, finally proved in [Isett 2018], accompanied by related
results obtained in [Buckmaster, De Lellis, Székelyhidi, and Vicol 2019]. Very recently, the ill-posedness
in the class of weak solutions has been extended even for the incompressible Navier–Stokes system in
[Buckmaster and Vicol 2019]; see also [Buckmaster, Colombo, and Vicol 2018].
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In the present paper, we show that this difficulty persists even in the presence of a random forcing. As
a model example, we consider the barotropic Euler system describing the time evolution of the density %
and the velocity u of a compressible fluid:

d%+ divx(%u) dt = 0, (1-1)

d(%u)+ divx(%u⊗ u) dt +∇x p(%) dt = %G(%, %u) dW, (1-2)

where p = p(%) is the pressure, and the term %G(%, %u) dW represents a random volume force acting on
the fluid. A typical example is the so-called isentropic pressure density state equation p(%) = %γ. We
focus on two iconic examples of forcing, namely,

%G(%, %u) dW = %G dW = %
∞∑

i=1

Gi dβi , Gi
= Gi (x), (1-3)

or
%G(%, %u) dW = %u dβ. (1-4)

Here βi = βi (t), β = β(t) are real-valued Wiener processes, whereas the diffusion coefficients Gi are
smooth functions depending only on the spatial variable x . For the sake of simplicity, we consider periodic
boundary conditions, meaning the underlying spatial domain can be identified with a flat torus,

T N
= ([0, 1]|{0,1})N , N = 2, 3.

Other boundary conditions, in particular the impermeability of the boundary, could be accommodated at
the expense of additional technical difficulties.

The problem of solvability of the stochastic compressible Euler system (1-1), (1-2) is very challenging
with only a few results available. In space dimension 1, [Berthelin and Vovelle 2013] proved existence
of entropy solutions. These solutions are also weak in the probabilistic sense; that is, the underlying
stochastic elements are not known in advance and become part of the solution. The only available results
in higher space dimensions concern the local well-posedness of strong solutions. To be more precise,
given a sufficiently smooth initial condition

%(0, · )= %0, %u(0, · )= (%u)0, (1-5)

it can be shown that the problem (1-1), (1-2), (1-5) admits a unique local strong solution taking values
in the class of Sobolev spaces W m,2 of order m > 1

2 N + 3. These solutions are strong in both the
PDE and probabilistic sense; i.e., they are constructed on a given stochastic basis with a given Wiener
process. Nevertheless, they exist (and are unique in terms of the initial data) only up to a strictly positive
maximal stopping time τ . Beyond this time that may be finite, the solutions develop singularities and
uniqueness is not known. We refer the reader to [Breit, Feireisl, and Hofmanová 2018], where the
stochastic compressible Navier–Stokes system with periodic boundary conditions was treated, and in
particular to Remark 2.10 of that work for a discussion of the inviscid case. Let us finally remark that
general symmetric hyperbolic systems on the whole space RN were studied in [Kim 2011].

For completeness, let us mention that (1-4) may be seen as a “damping” term, the regularizing effect
of which in the context of incompressible fluids has been recognized in [Glatt-Holtz and Vicol 2014],
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and for a general symmetric hyperbolic system in [Kim 2011]. To be more precise, in [Kim 2011] it
was shown that the probability that the strong solution never blows up can be made arbitrarily close to 1
provided the initial condition is sufficiently small. In [Glatt-Holtz and Vicol 2014] it was proved that the
smallness assumption on the initial condition can be replaced by large intensity of the noise. Additionally,
in the case of additive noise, which in our setting corresponds to (1-3), that work showed global existence
of strong solutions to the incompressible Euler equations in two dimensions.

Our goal in the present paper is to show that the problem (1-1), (1-2) is ill-posed in the class of weak
(distributional) solutions. More precisely, we show that there exists an increasing sequence of strictly
positive stopping times τM , with τM →∞ as M →∞ a.s., such that problem (1-1), (1-2), (1-3) or
(1-4), (1-5) admits infinitely many weak solutions in the time interval [0, τM ∧ T ) for any positive T.
We emphasize that weak is meant only in the PDE sense — the spatial derivatives are understood in the
distributional framework — while solutions are strong in the probabilistic sense. To be more precise, the
stochastic basis together with a driving Wiener process W are given and we construct infinitely many
solutions that are stochastic processes adapted to the given filtration. This is particularly interesting in
light of the fact that uniqueness is violated. Indeed, without the knowledge of uniqueness it is typically
only possible to construct probabilistically weak solutions that are not adapted to the given Wiener process.
This already applies on the level of SDEs; see, for instance, the discussion in [Karatzas and Shreve 1988,
Chapter 5].

Formally, both (1-3) and (1-4) represent a multiplicative noise. Nevertheless, under these assumptions,
the system of stochastic PDEs (1-1), (1-2) may be reduced to a system of PDEs with random coefficients
by means of a simple transformation. As a consequence, the stochastic integral no longer appears in
the system and deterministic methods can be employed pathwise. Such a semideterministic approach
was already used in many works; see for instance [Feireisl, Maslowski, and Novotný 2013; Tornatore
and Fujita Yashima 1997] for the compressible setting, and the seminal paper [Bensoussan and Temam
1973] for the incompressible case. However, we point out that in all these references, the nontrivial issue
of adaptedness of solutions with respect to the underlying stochastic perturbation remained unsolved.
Therefore, it was not possible to return to the original formulation of the problem with a well-defined
stochastic Itô integral. Even though we employ a similar semideterministic approach to (1-1), (1-2), (1-3)
or (1-4), we are able to answer affirmatively the question of adaptedness and accordingly the stochastic
Itô integral in the original formulation (1-1), (1-2) is well-defined.

To be more precise, for both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system
with variable random coefficients in the spirit of [Feireisl 2016]. This relies on the particular structure
of the compressible Euler system and its interplay with stochastic perturbations satisfying (1-3) or
(1-4). The resulting problem is then solved by an adaptation of the deterministic method of convex
integration developed in [De Lellis and Székelyhidi 2010]. The main difficulty is to ensure that the
abstract construction based on the concept of subsolutions yields a solution %, %u adapted to the noise W.
This is done by a careful analysis of the oscillatory lemma of [De Lellis and Székelyhidi 2010], where
adaptedness is achieved by a delicate use of the celebrated Ryll–Nardzewski theorem on the existence of
a measurable selection of a multivalued mapping.
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The key point is to study a certain nonpositive functional I (see Section 6D) defined on an appropriate
class of subsolutions (see Section 6A) to the abstract Euler system. These subsolutions capture already all
the required (probabilistic) properties expected from the solutions. Similarly to [De Lellis and Székelyhidi
2010], the existence of infinitely many solutions to the original problem is obtained by applying an abstract
Baire category argument based on the possibility of augmenting a given subsolution by rapidly oscillating
increments. Determining the amplitude as well as the frequency of these oscillatory components at a
given time t requires knowing the behavior of a given subsolution up to the time t+δ, δ > 0. The specific
value of δ is in general a random variable, the value of which depends on the behavior of the noise W
in the interval [t, t + δ). Consequently, it is not adapted with respect to the natural filtration associated
to the noise. The problem can be solved only if δ > 0 is deterministic, specifically if the solution paths
belong to a fixed compact set. To ensure this, we replace W by WM(t)=W (t∧τM), where τM is a family
of suitable stopping times defined in terms of the Hölder norm of W. It is exactly this rather technical
difficulty that restricts validity of our main result to the random time interval [0, τM). Note, however, that
τM can be made arbitrarily large with probability arbitrarily close to 1.

Let us stress that our results apply mutatis mutandis to situations when the driving force is given
by a more general stochastic process or a deterministic signal of low regularity. Provided a suitable
transformation formula to a PDE with random coefficients can be justified, the only ingredient is the
one required in Section 3A for the construction of the corresponding stopping times τM . Namely, the
trajectories of the driving stochastic process are supposed to be a.s. a-Hölder continuous for some
a ∈ (0, 1). Then existence of infinitely many weak solutions (to the transformed system) adapted to
the given stochastic process follows. Whether it is possible to go back to the original formulation then
depends on the particular stochastic process at hand, namely, whether a corresponding stochastic integral
can be constructed. If the driving signal is a deterministic Hölder continuous path, the stopping times are
not needed and we obtain infinitely many weak solutions (to the transformed system) defined on the full
time interval [0, T ].

It is important to note that the restriction to the multidimensional case N = 2, 3 is absolutely essential
here and the variant of the method of convex integration presented below does not work for N = 1.
Indeed, the method leans on the property of the system to admit oscillatory solutions. As observed in
the pioneering works [DiPerna 1983a; 1983b], the deterministic counterpart of (1-1), (1-2) appended by
suitable admissibility conditions gives rise to a solution set that is precompact in the L p framework if
N = 1.

To conclude this introductory part, let us summarize the current state of understanding of a compressible
flow of an inviscid fluid under stochastic perturbation. Consider a sufficiently smooth initial condition
(1-5) and a fixed stochastic basis. On the one hand, it can be shown that there exists a unique local
strong solution. However, in view of our result, there exist infinitely many weak solutions emanating
from the same initial datum. The very natural question is therefore whether one can compare these two
kinds of solutions. In fluid dynamics, it is often possible to establish a so-called weak-strong uniqueness
result: strong solutions coincide with weak solutions satisfying a suitable form of energy inequality. The
corresponding result for the stochastic compressible Navier–Stokes system was proved in [Breit, Feireisl,
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and Hofmanová 2017]. Consequently, it would be interesting to see whether our weak solutions could be
constructed to satisfy an energy inequality. In analogy with the deterministic setting, we know this might
be possible only for certain initial data and we leave this problem to be addressed in future work.

The paper is organized as follows. In Section 2, we introduce a proper definition of a weak solution and
state our main results. In Section 3, the problem is rewritten in a semideterministic way that eliminates
the explicit presence of stochastic integrals. In Section 4, we rewrite the system as an abstract Euler
problem in the spirit of [Feireisl 2016]. Section 5 is the heart of the paper. Here, the apparatus of convex
integration developed in [De Lellis and Székelyhidi 2010] is adapted to stochastic framework. The main
result is a stochastic variant of the oscillatory lemma (Lemma 5.6) proved via the Ryll–Nardzewski
theorem on measurable selection. The proof of the main result is completed in Section 6.

2. Problem formulation and main results

Let (�,F, (Ft)t≥0,P) be a probability space with a complete right-continuous filtration (Ft)t≥0. For the
sake of simplicity, we restrict ourselves to the case of a single noise; specifically,

%G(%, %u) dW = %G(x) dβ or %G(%, %u) dW = %u dβ, (2-1)

where β = β(t) is a standard Wiener process relative to the filtration (Ft)t≥0. In particular, we may
correctly define the stochastic integral (in Itô’s sense)∫ τ

0

(∫
T N
%G(%, %u) ·ϕ dx

)
dW

as soon as the processes

t 7→
∫
T N
%φ dx, t 7→

∫
T N
%u ·ϕ dx (2-2)

are (Ft)-progressively measurable for any smooth (deterministic) test functions φ = φ(x) and ϕ = ϕ(x).

Definition 2.1. We say that [%, u, τ ] is a weak solution to problem (1-1), (1-2), (1-5) with a stopping
time τ provided:

(i) τ ≥ 0 is an (Ft)-stopping time.

(ii) The density % is (Ft)-adapted and satisfies

% ∈ C([0, τ );W 1,∞(T N )), % > 0 P-a.s.

(iii) The momentum %u satisfies t 7→
∫
T N %u ·ϕ dx ∈C([0, τ ]) for any ϕ ∈C∞c (T N

; RN ), the stochastic
process t 7→

∫
T N %u ·ϕ dx is (Ft)-adapted, and

%u ∈ Cweak([0, τ ); L2(T N
; RN ))∩ L∞((0, τ )× T N

; RN ) P-a.s..

(iv) For all φ ∈ C∞c (T N ) and all t ≥ 0 the following holds P-a.s.:∫
T N
%(t ∧ τ, · )φ dx −

∫
T N
%0φ dx =

∫ t∧τ

0

∫
T N
%u · ∇xφ dx dt. (2-3)
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(v) For all ϕ ∈ C∞c (T N , RN ) and all t ≥ 0 the following holds P-a.s.:∫
T N
%u(t ∧ τ, · ) ·ϕ dx −

∫
T N
(%u)0 ·ϕ dx

=

∫ t∧τ

0

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt +

∫ t∧τ

0

(∫
T N
%G ·ϕ dx

)
dW. (2-4)

Remark 2.2. The processes in (2-2) are continuous and (Ft)-adapted, whence progressively measurable.
Consequently, the stochastic integral in (2-3) is correctly defined as soon as G = G(%, %u) satisfies (2-1).

We are ready to formulate our main result.

Theorem 2.3. Let T > 0 and the initial data %0, (%u)0 be F0-measurable such that

%0 ∈ C3(T N ), (%u)0 ∈ C3(T N
; RN ), %0 > 0 P-a.s. (2-5)

Let the stochastic term satisfy (2-1), where β is a standard Wiener process, and the coefficient G ∈
W 1,∞(T N

; RN ) is a given deterministic function. Finally, suppose that the pressure function p = p(%)
satisfies

p ∈ C1
[0,∞)∩C2(0,∞), p(0)= 0.

Then there exists a family of P-a.s. strictly positive (Ft)-stopping times τM satisfying τM ≤ τL P-a.s. for
M ≤ L , and

τM →∞ as M→∞ P-a.s.,

such that problem (1-1), (1-2), (1-5) admits infinitely many weak solutions with the stopping time τ=τM∧T
in the sense of Definition 2.1.

Remark 2.4. Solutions obtained in Theorem 2.3 are “almost global” in the sense that for any ε > 0,
problem (1-1), (1-2), (1-5) admits infinitely many (weak) solutions living on a given time interval (0, T )
with probability 1− ε (choosing M large enough). The necessity of considering finite stopping times is
explained in detail in Remark 5.13 below.

Remark 2.5. We transform the problem to an abstract Euler system (see (4-7), (4-8) and (4-13), (4-14))
and show the existence of infinitely many solutions to the latter one. It is worth noting that our approach
can be applied to other problems in fluid mechanics, in particular to the incompressible stochastic Euler
equations. See also Remark 4.2.

The rest of the paper is devoted to the proof of Theorem 2.3. Let us now summarize the key points
of our construction. For both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system with
variable random coefficients in the spirit of [Feireisl 2016]. On the set of subsolutions to this system we
define the functional

I [v] = E

[∫ T

0

∫
T N

[
1
2
|v+ h|2

r
− e

]
dx dt

]
.

Here, h, r are given functions related to the density ansatz and e is the target energy. The solutions of
the problem are represented by the points of continuity of I with respect to v. The exact definition of
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I is given in Section 6D below. It is rather standard to see that I has infinitely many continuity points
and that I [v] = 0 implies that v is a solution. The bulk is to show that each continuity point satisfies
I [v] = 0, which implies the existence of infinitely many solutions. The latter statement can be shown
indirectly by augmenting a given continuity point by rapidly oscillating increments. These increments
are obtained by an adaptation of the deterministic method of convex integration developed in [De Lellis
and Székelyhidi 2010]. The main difficulty is to ensure progressive measurability in this construction.
Following [Donatelli, Feireisl, and Marcati 2015] we proceed in three steps:

(i) Assuming the subsolution under consideration is constant in space-time (but random) we gain an
oscillator sequence which is a random variable itself by the Ryll–Nardzewski theorem on measurable
selection. This is first done on the unit interval with density equal to 1 (see Lemma 5.6). A more general
version follows by scaling (see Lemma 5.8).

(ii) The construction from (i) can be extended to piecewise constant subsolutions which are evaluated at
the first time-point of each subinterval. This ensures progressive measurability of the oscillatory sequence
(see Lemma 5.10).

(iii) Finally, we consider the general case of continuous subsolutions (see Lemma 5.11). They can be
approximated by piecewise constant ones and we can apply step (ii). It is important that the modulus of
continuity can be controlled. This is where the stopping times in the noise come into play.

3. Transformation to a semideterministic setting

In view of the difficulties mentioned in Section 1, we are forced to replace the original Wiener process β
by a suitable truncation and to rewrite the problem in a semideterministic setting.

3A. Stopping times. We start by fixing a family (τM)M∈N of stopping times enjoying the properties
claimed in Theorem 2.3. For a given 0< a < 1

2 and the Wiener process β, β(0)= 0 P-a.s., we introduce

O(t)= sup
0≤s≤t

|β(s)| + sup
0≤t1 6=t2≤t

|β(t1)−β(t2)|
|t1− t2|a

for t > 0, O(0)= 0.

Obviously, O is a nondecreasing stochastic process adapted to (Ft)t≥0. Moreover, as β is a Wiener
process, it follows from the Kolmogorov continuity criterion that

|β(t1)−β(t2)| ≤ B(T, b)|t1− t2|b = B(T, b)|t1− t2|b−a
|t1− t2|a whenever 0≤ t1, t2 ≤ T,

for any 0< a < b< 1
2 , T > 0, where B(T, b) is random and finite P-a.s. In particular, we deduce that O

is continuous in [0,∞). As a consequence, for M ∈ N,

τM = inf
t≥0
{O(t) > M} ∧ T

defines an (Ft)-stopping time. Moreover, τM ≤ τL P-a.s. for M ≤ L , and in particular we get

τM →∞ as M→∞ P-a.s.

Finally, as O is continuous and O(0)= 0 P-a.s., we have that τM > 0 P-a.s. for all M ∈ N.
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Next, let us introduce the stopped stochastic process

WM = βM , βM(t)= β(t ∧ τM) for t ≥ 0.

We recall that, for τ = τM , the stochastic integral in (2-4) can be rewritten as∫ t∧τM

0

(∫
T N
%G ·ϕ dx

)
dW =

∫ t

0

(∫
T N
%G ·ϕ dx

)
dWM .

From now on, we consider problem (1-1), (1-2), (1-5) with β replaced by βM . Under these circumstances,
our task reduces to showing Theorem 2.3 with β = βM on the deterministic time interval [0, T ]. Note
that the paths of βM are uniformly bounded and uniformly Hölder continuous,

‖βM‖Ca[0,T ] ≤ M, 0< a < 1
2 P-a.s. (3-1)

This is the essential property we use to construct probabilistically strong solutions, that is, solutions that
are adapted to the given filtration (Ft)t≥0 associated to β.

3B. Problem with additive noise. If the noise is given by (1-3), we may combine Itô’s calculus with the
equation of continuity (2-3) to rewrite the stochastic integral in the form∫ t

0

(∫
T N
%G ·ϕ dx

)
dβM =

(∫
T N
%G ·ϕ dx

)
βM(t)−

∫ t

0
βM(s)

∫
T N
%u · ∇x(G ·ϕ) dx ds.

Consequently, the momentum equation (1-2) can be formally written as

d(%u− %βM G)+ divx(%u⊗ u) dt +∇x p(%) dt = βM G divx(%u) dt, (3-2)

where no stochastic integration is necessary. Passing to the weak formulation, our task reduces to finding
% and %u such that

t 7→
∫
T N
%φ dx, t 7→

∫
T N
%u·ϕ dx continuous and (Ft)-adapted,∫

T N
%(0, ·)φ dx =

∫
T N
%0φ dx,

∫
T N
%u(0, ·)·ϕ dx =

∫
T N
(%u)0·ϕ dx

(3-3)

for any smooth test functions φ, ϕ, satisfying∫ T

0

∫
T N
[%∂tφ+ %u · ∇xφ] dx dt = 0 (3-4)

for any φ ∈ C∞c ((0, T )× T N );∫ T

0

∫
T N
[(%u− %βM G) · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt

=

∫ T

0

∫
T N
[βM%u · ∇x G ·ϕ+βM%u · ∇xϕ · G] dx dt (3-5)

for any ϕ ∈ C∞c ((0, T )× T N
; RN ).
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Remark 3.1. Problem (3-4), (3-5) can be viewed as a system of partial differential equations with random
coefficients. We point out that all steps leading from the original problem (2-3), (2-4) to (3-4), (3-5) are
reversible as long as %, %u are weakly continuous (Ft)-adapted and Itô’s calculus applies. In particular, it
is enough to solve (3-3)–(3-5).

3C. Problem with linear multiplicative noise (stochastic “damping”). If the forcing is given by (1-4),
we may again use Itô’s calculus for 0≤ t ≤ τM obtaining

d exp(−βM)=− exp(−βM) dβM +
1
2 exp(−βM) dt,

and

exp(−βM)

[
d
(∫

T N
%u ·ϕ dx

)
−

(∫
T N
%u ·ϕ dx

)
dβM

]
= d

[
exp(−βM)

∫
T N
%u ·ϕ dx

]
+

1
2 exp(−βM)

∫
T N
%u ·ϕ dx dt.

On the other hand, in accordance with (2-4),

d
(∫

T N
%u ·ϕ dx

)
−

(∫
T N
%u ·ϕ dx

)
dβM =

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt.

We therefore conclude that

d
[

exp(−βM)

∫
T N
%u ·ϕ dx

]
=−

1
2 exp(−βM)

∫
T N
%u ·ϕ dx dt + exp(−βM)

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt.

Similarly to the case of additive noise, we may replace (2-3), (2-4) by a system of partial differential
equations with random coefficients, the weak formulation of which reads∫ T

0

∫
T N
[%∂tφ+ %u · ∇xφ] dx dt = 0 (3-6)

for any ϕ ∈ C∞c ((0, T )× T N );

0=
∫ T

0

∫
T N
[exp(−βM)%u · ∂tϕ+ exp(−βM)%u⊗ u : ∇xϕ+ exp(−βM)p(%) divx ϕ] dx dt

−
1
2

∫ T

0

∫
T N

exp(−βM)%u ·ϕ dx dt (3-7)

for any ϕ ∈ C∞c ((0, T )× T N
; RN ), where %, %u are the stochastic processes satisfying (3-3).

4. Abstract Euler problem

Our next goal is to rewrite the problems (3-3), (3-4), (3-5) and (3-3), (3-6), (3-7), respectively, to fit into
the abstract framework introduced in [Feireisl 2016]. In addition to (2-5) we suppose that P-a.s.

‖%0‖C3(T N )+‖(%u)0‖C3(T N ;RN )+‖%
−1
0 ‖C(T N ) ≤ D (4-1)
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for some deterministic constant D > 0. We claim that it is enough to show Theorem 2.3 for the initial
data satisfying (4-1). Indeed, any initial data %0, (%u)0 satisfying (2-5) can be written as

[%0, (%u)0] = lim
D→∞
[%0,D, (%u)0,D] P-a.s.,

where

[%0,D, (%u)0,D](ω)=
{
[%0, (%u)0](ω) if (4-1) holds,
[1, 0] otherwise.

Let [%D, (%u)D] be the solution emanating from the data [%0,D, (%u)0,D], the existence of which is
guaranteed by Theorem 2.3. We set

�D = {ω ∈� | [%0, (%u)0](ω) satisfies (4-1)}.

Note that �D is F0-measurable for any D > 0. Since

[%0, (%u)0] = 1�1[%1, (%u)1] +
∞∑

D=2

1�D\�D−1[%0,D, (%u)0,D],

the desired solution for arbitrary initial data satisfying (2-5) can be obtained in the form

[%, %u] = 1�1[%1, (%u)1] +
∞∑

D=2

1�D\�D−1[%D, (%u)D].

4A. Additive noise. Going back to (3-4), (3-5) we write

%u− %βM G = v+ V +∇x9,

where

divx v = 0,
∫
T N
v dx = 0, V = V (t) ∈ RN a spatially homogeneous function.

Remark 4.1. Note that v+ V represents the standard Helmholtz projection 5H of %u− %βM G onto the
space of solenoidal functions.

To meet the initial conditions (1-5), we fix

v(0, · )=5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx,

V (0)=
1
|T N |

∫
T N
(%u)0 dx, ∇x9(0, · )=5⊥H [(%u)0].

Accordingly, the equation of continuity (3-4) reads

∂t%+1x9 +βM divx(%G)= 0, %(0, · )= %0. (4-2)

For given 9, βM , and G, the density % in (4-2) is uniquely determined by the method of characteristics.
Moreover, as βM satisfies (3-1) and %0 is strictly positive uniform in �, we may fix the potential 9 and
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subsequently the density % in such a way that

9 ∈ C2([0, T ];C3(T N )) P-a.s., 9 (Ft)-adapted, ‖9‖C2([0,T ];C3(T N )) ≤ cM P-a.s.,

% ∈ C1([0, T ];C1(T N )) P-a.s., %(0, · )= %0, % (Ft)-adapted,

‖%‖C1([0,T ];C1(T N )) ≤ cM , % ≥
1

cM
P-a.s., (4-3)

where cM > 0 is a deterministic constant depending on the stopping parameter M. Here, we have also
used the extra hypothesis (4-1).

Remark 4.2. We would like to point out that 9 and subsequently % are not uniquely determined. As a
matter of fact, there are infinitely many possibilities of how to choose 9 and % satisfying (4-2), (4-3). In
particular, if

divx(%u)0 = 0,
∫
T N
(%u)0 = 0, and divx G = 0

we can take the ansatz

% ≡ 1, 9 ≡ 0

obtaining %u = v— a solution of the incompressible Euler system.

Having fixed % and 9, we compute V as the unique solution of the differential equation

dV
dt
=−

1
|T N |

∫
T N
[%β2

M∇x G · G+βM∇x G · ∇x9] dx, V (0)=
1
|T N |

∫
T N
(%u)0 dx . (4-4)

In view of (4-3) and the assumption G ∈W 1,∞(T N
; RN ) we easily deduce that

V ∈ C1([0, T ]; RN ) P-a.s., V is (Ft)-adapted, ‖V‖C1([0,T ];RN ) ≤ cM P-a.s. (4-5)

Thus it remains to find v to satisfy (3-5). It turns out that v must be a weak solution of the abstract
Euler system

∂tv+ divx

(
(v+ %βM G+ V +∇x9)⊗ (v+ %βM G+ V +∇x9)

%

)
=−∇x p(%)− ∂t∇x9 +βM divx(%βM G+∇x9)G−

1
|T N |

∫
T N
βM divx(%βM G+∇x9)G dx,

divx v = 0, v(0, · )= v0 =5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx .

Finally, we solve the elliptic system

divx

[
∇x m+∇ t

x m− 2
N

divx mI
]

=∇x p(%)+ ∂t∇x9 −βM divx(%βM G+∇x9)G+
1
|T N |

∫
T N
βM divx(%βM G+∇x9)G dx . (4-6)
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Note that (4-6) admits a unique solution as the right-hand side is a function of zero mean. Consequently,
setting

r = %, h = %βM G+ V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI

we may rewrite the problem in a concise form:

∂tv+ divx

[
(v+ h)⊗ (v+ h)

r
+M

]
= 0, divx v = 0, v(0, · )= v0, (4-7)

where

v0∈C1(T N
; RN ) P-a.s., divx v0=0,

∫
T N
v0 dx=0, v0 is F0-measurable, ‖v0‖C1(T N ;RN )≤cM P-a.s.,

h∈Ca([0,T ];C1(T N
; RN )) P-a.s., h is (Ft)-adapted, ‖h‖Ca([0,T ];C1(T N ;RN ))≤ cM P-a.s.,

r ∈Ca([0,T ];C1(T N )) P-a.s., r is (Ft)-adapted, ‖r‖Ca([0,T ];C1(T N ))≤ cM ,
1
r
≥

1
cM

P-a.s.,

M∈Ca([0,T ];C1(T N
; RN×N

0,sym)) P-a.s., M is (Ft)-adapted, ‖M‖Ca([0,T ];C1(T N ;RN×N
0,sym))

≤ cM P-a.s.

(4-8)

are given data. In the following we give a precise definition for solutions to (4-7).

Definition 4.3. Assume that the data v0, h, r,M satisfy (4-8).1 We say that v is a weak solution to
problem (4-7) provided:

(i) We have t 7→
∫
T N v · ϕ dx ∈ C([0, T ]) for any ϕ ∈ C∞(T N

; RN ), the stochastic process t 7→∫
T N v ·ϕ dx is (Ft)-adapted, and

v ∈ Cweak([0, T ]; L2(T N
; RN ))∩ L∞((0, T )× T N

; RN ) P-a.s..

(ii) For all ϕ ∈ C∞(T N , RN ) and all t ∈ [0, T ] the following holds P-a.s.:∫
T N
v(t, · ) ·ϕ dx −

∫
T N
v0 ·ϕ dx =

∫ t

0

∫
T N

[
(v+ h)⊗ (v+ h)

r
: ∇xϕ+M : ∇xϕ

]
dx dt. (4-9)

Let us summarize the above discussion in the following proposition.

Proposition 4.4. Let βM and G ∈W 1,∞(T N
; RN ) be given. Let %, 9 belonging to the class (4-3) satisfy

(4-2). Finally, let v be a weak solution of problem (4-7) in the sense of Definition 4.3, with

r = %, h = %βM G+ V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI,

where V, m solve (4-4), (4-6), respectively.
Then

%, %u = v+ V +∇x9 + %βM G

is a solution of problem (3-3)–(3-5).

Remark 4.5. In view of Proposition 4.4 and Remark 3.1, the proof of Theorem 2.3 in the case of additive
noise reduces to showing the existence of infinitely many solutions to problem (4-7).

1A weak solution could be defined under much less restrictive assumptions on the data.
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4B. Multiplicative noise. Mimicking the steps of the previous section we write

exp(−βM)%u = v+ V +∇x9

in (3-7), where

divx v = 0,
∫
T N
v dx = 0, V = V (t) ∈ RN is a spatially homogeneous function,

and

v(0, · )=5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx, V (0)=

1
|T N |

∫
T N
(%u)0 dx, ∇x9(0, · )=5⊥H [(%u)0].

Accordingly, the equation of continuity reads

∂t%+ divx(exp(βM)∇x9)= 0, %(0, · )= %0. (4-10)

Next, we fix V as the unique solution of

dV
dt
+

1
2 V = 0, V (0)=

1
|T N |

∫
T N
(%u)0 dx . (4-11)

Accordingly, the momentum equation can be written as

∂tv+exp(βM)

[
divx

(
v+V+∇x9

)
⊗
(
v+V+∇x9

)
%

]
+exp(−βM)∇x p(%)+∂t∇x9+

1
2∇x9=−

1
2v,

divx v= 0, v0=5H [(%u)0]−
1
|T N |

∫
T N
(%u)0 dx .

(4-12)

Similarly to the above, we can fix %, 9 to satisfy (4-10) together with (4-3).
Finally, seeing that

∫
T N v dx = 0, we may solve an analogue to the elliptic system (4-6), namely,

divx

[
∇x m+∇ t

x m− 2
N

divx mI
]
= exp(−βM)∇x p(%)+ ∂t∇x9 +

1
2∇x9 +

1
2v. (4-13)

Note that, in contrast with (4-6), the solution m = m[v] depends on v.
Similarly to (4-7) we can write the final problem (setting h = V +∇x9 and r = %):

∂tv+ divx

[
(v+ h)⊗ (v+ h)

r
+M[v]

]
= 0, divx v = 0, v(0, · )= v0, (4-14)

where

v0∈C1(T N
; RN ) P-a.s., divx v0=0,

∫
T N
v0 dx=0, v0 is F0-measurable, ‖v0‖C1(T N ;RN )≤cM P-a.s.,

h∈Ca([0,T ];C1(T N
; RN )) P-a.s., h is (Ft)-adapted, ‖h‖Ca([0,T ];C1(T N ;RN ))≤cM P-a.s., (4-15)

r∈Ca([0,T ];C1(T N )) P-a.s., r is (Ft)-adapted, ‖r‖Ca([0,T ];C1(T N )≤cM ,
1
r
≥

1
cM

P-a.s., (4-16)

and
M=M[v] = ∇x m+∇ t

x m− 2
N

divx mI (4-17)

is the unique solution of the elliptic system (4-13).
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Remark 4.6. Note that h is actually more regular than in Section 4A.

Similarly to the preceding section we have the following definition.

Definition 4.7. Assume that the data v0, h, r satisfy (4-15) and let M[v] be given by (4-17) with %,9
satisfying (4-3).2 We say that v is a weak solution to problem (4-14) provided:

(i) We have t 7→
∫
T N v · ϕ dx ∈ C([0, T ]) for any ϕ ∈ C∞(T N

; RN ), the stochastic process t 7→∫
T N v ·ϕ dx is (Ft)-adapted,

v ∈ Cweak([0, T ]; L2(T N
; RN ))∩ L∞((0, T )× T N

; RN ) P-a.s..

(ii) For all ϕ ∈ C∞(T N , RN ) and all t ∈ [0, T ] the following holds P-a.s.:∫
T N
v(t, · ) ·ϕ dx −

∫
T N
v0 ·ϕ dx =

∫ t

0

∫
T N

[
(v+ h)⊗ (v+ h)

r
: ∇xϕ+M[v] : ∇xϕ

]
dx dt. (4-18)

Again similarly to the preceding section, we summarize as follows.

Proposition 4.8. Let βM be given. Let %, 9 solve (4-10), and let V solve (4-11). Let v be a weak solution
of (4-14), with

r = %, h = V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI,

where m = m[v] is the unique solution of the elliptic system (4-13).
Then

%, %u = exp(βM)(v+ V +∇x9) (4-19)

is a solution of problem (3-6), (3-7).

Remark 4.9. In view of Proposition 4.8, the proof of Theorem 2.3 in the case of the multiplicative noise
reduces to showing the existence of infinitely many solutions to problem (4-14).

5. Convex integration

Problems (4-7) and (4-14) can be solved pathwise using the method of [De Lellis and Székelyhidi 2010],
with the necessary modifications developed in [Feireisl 2016]. In such a way, we would obtain the existence
of (infinitely many) solutions in the semideterministic spirit introduced in [Bensoussan and Temam 1973].
More specifically, solutions obtained this way would be random variables, meaning F-measurable but not
necessarily (Ft)-adapted (progressively measurable). Obviously, such a semideterministic result would
hold without any restriction imposed by the stopping times. Progressive measurability of %, %u claimed
in Theorem 2.3 represents a nontrivial issue that requires a careful revisiting of the method of convex
integration presented in [De Lellis and Székelyhidi 2010]. The main ingredient is a stochastic variant of
the so-called oscillatory lemma shown in the present section.

Definition 5.1. Let G :�→ X be a (Borelian) random variable ranging in a topological space X . We
say that G has a compact range in X if there is a (deterministic) compact set K ⊂ X such that G ∈ K a.s.

2A weak solution could be defined under much less restrictive assumptions on the data.
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5A. Geometric setting. Let RN×N
sym denote the space of symmetric N × N matrices and let RN×N

0,sym be its
subspace of traceless matrices. Following the ansatz of [De Lellis and Székelyhidi 2010, Lemma 3] we
consider the set

S[e] =
{
[w,H]

∣∣ w ∈ RN, H ∈ RN×N
0,sym,

1
2 Nλmax[w⊗w−H]< e

}
,

where λmax[A] denotes the maximal eigenvalue of a symmetric matrix A. Thanks to the algebraic
inequality

1
2 Nλmax[w⊗w−H] ≥ 1

2 |w|
2, H ∈ RN×N

0,sym, (5-1)

S[e] 6=∅ only if e > 0. In addition, we have

1
2(N − 1)λmax[w⊗w−H] ≥ 1

2 |H|
2, w ∈ RN

; (5-2)

see [De Lellis and Székelyhidi 2010, Lemma 3(iii)]. Thus, for given e > 0, S[e] is a convex open and
bounded subset of RN

× RN×N
0,sym . Moreover, as shown in [De Lellis and Székelyhidi 2010],

∂S[e] =
{[

a, a⊗ a− 1
N
|a|2I

] ∣∣∣∣ 1
2 |a|

2
= e

}
.

De Lellis and Székelyhidi [2010, Lemma 6] proved the following result. Given e> 0 and [w,H] ∈S[e],
there exist a, b ∈ RN enjoying the following properties:

• We have
1
2 |a|

2
=

1
2 |b|

2
= e. (5-3)

•There exists L ≥ 0 such that for s = a− b, M= a⊗ a− b⊗ b, we have

[w+ λs,H+ λM] ∈ S[e],

dist[[w+ λs,H+ λM]; ∂S[e]] ≥ 1
2 dist[[w,H]; ∂S[e]]

(5-4)

for all λ ∈ [−L , L].

• There is a universal constant c(N ) depending only on the dimension such that

L|s| ≥ c(N )
1
√

e

(
e− 1

2 |w|
2). (5-5)

• We have

|a± b| ≥ χ(dist[[w,H]; ∂S[e]]), (5-6)

where χ is positive for positive arguments.

Motivated by this result, we consider a set-valued mapping

F : (0,∞)× RN
× RN×N

0,sym→ 2RN
×RN

determined by the following properties:
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(1) Whenever [w,H] /∈ S[e] we have

F(e,w,H)= {[w,w]}. (5-7)

(2) If [w,H] ∈ S[e], then [a, b] ∈ F(e,w,H) if and only if:

• We have
1
2 |a|

2
=

1
2 |b|

2
= e. (5-8)

• There exists L ≥ 0 such that for s = a− b, M= a⊗ a− b⊗ b, we have

[w+ λs,H+ λM] ∈ S[e],

dist[[w+ λs,H+ λM]; ∂S[e]] ≥ 1
2 dist[[w,H]; ∂S[e]]

(5-9)

for all λ ∈ [−L , L].

• We have

L|s| ≥ c(N )
1
√

e

(
e− 1

2 |w|
2), (5-10)

where c(N ) is the universal constant from (5-5);

|a± b| ≥ χ(dist[[w,H]; ∂S[e]]), (5-11)

where χ has been introduced in (5-6).

Basic properties of F are summarized in the following lemma.

Lemma 5.2. For any (e,w,H) ∈ (0,∞)× RN
× RN×N

0,sym the set F(e,w,H) is nonempty, closed, and
contained in a compact set, the size of which depends only on e and |w|. Moreover, the mapping

F : (0,∞)× RN
× RN×N

0,sym→ 2RN
×RN

has closed graph with respect to the Hausdorff distance on compact sets.

Proof. As shown in [De Lellis and Székelyhidi 2010, Lemma 6], the set F(e,w,H) is nonempty for any
[w,H] ∈ S[e] for a certain universal constant c(N ). If [w,H] ∈ ∂S[e], then

1
2 |w|

2
= e,

and, consequently, F(e,w,H) contains at least the trivial point [w,w]. Obviously, F(e,w,H) is closed
and bounded, whence compact.

Closedness of the graph follows by the standard compactness argument as the target space is locally
compact, and conditions (5-8)–(5-11) are invariant with respect to strong convergence. �

Remark 5.3. The mapping assigns to any point [w,H] ∈ S[e] a segment [w+λs,H+λM], λ∈ [−L , L],
that has “maximal” length and still belongs to the set S[e]. Solutions constructed later by the method of
convex integration “oscillate” along segments of this type.
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Let (�,F,P) be a probability space endowed with a complete σ -algebra of measurable sets F. Suppose
now that

[e,w,H] is an [F,B[(0,∞)× RN
× RN×N

0,sym]]-measurable random variable,

where the symbol B denotes the σ -algebra of Borel sets. Our goal is to show that the composed mapping
F(e,w,H), considered now as a (set-valued) random variable, admits an F-measurable selection. To this
end, we recall the celebrated Kuratowski and Ryll–Nardzewski theorem, see e.g., the survey [Wagner 1977].

Theorem 5.4. Let (X,A, µ) be a measure space with a (complete) σ -algebra of measurable sets A. Let

H : X→ 2Y

be a set-valued mapping, where Y is a Polish space with the σ -algebra of Borel sets B. Suppose that for
all x ∈ X

H(x) is a nonempty and closed subset of Y,

and that H is weakly measurable, meaning

{x |H(x)∩ B 6=∅} ∈A
for any open set B ⊂ Y.

Then H admits an A-B measurable selection, meaning a single valued A-B measurable mapping
H : X→ Y such that

H(x) ∈H(x), x ∈ X.

As both spaces (0,∞)× RN
× RN×N

0,sym and RN
× RN are finite-dimensional, compactness of the range

of F and closedness of its graph imply that F is upper semicontinuous; specifically,

{[e,w,H] | F(e,w,H)∩ D 6=∅} is closed whenever D is closed in RN
× RN .

See [Wagner 1977].
As preimages of closed sets are measurable, we get (strong) measurability of F ; specifically,

{ω ∈� | F(e,w,H)∩ D 6=∅}

is measurable for any closed set D in RN
× RN×N

0,sym . Strong measurability implies weak measurability
of F , namely,

{ω ∈� | F(e,w,H)∩G 6=∅}

is measurable for any open set G in RN
× RN.

Thus applying Theorem 5.4 we obtain the following conclusion.

Proposition 5.5. Let
F(e,w,H) : (0,∞)× RN

× RN×N
0,sym→ 2RN

×RN

be a set-valued mapping enjoying the properties (5-7)–(5-11). Let (�,F,P) be a probability space
endowed with a complete σ -algebra of measurable sets F, and let

(e,w,H) be an [F,B[(0,∞)× RN
× RN×N

0,sym]]-measurable random variable.
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Then the mapping F admits an [F;B[RN
× RN

]]-measurable selection. In particular, there exists an
[F;B[RN

× RN
]]-measurable mapping

F :�→ RN
× RN

such that it holds P-a.s.:

if [w(ω),H(ω)] ∈ S[e(ω)], then F(ω)= [a, b], where [a, b] satisfy (5-8)–(5-11). (5-12)

5B. Analytic setting. Following [De Lellis and Székelyhidi 2010] we introduce a mapping

RN+1
3 ξ = [ξ0, ξ1, . . . , ξn] 7→ Aa,b(ξ) ∈ R(N+1)×(N+1)

0,sym ,

Aa,b(ξ)=
1
2

(
(R · ξ)⊗ (Q(ξ) · ξ)+ (Q(ξ) · ξ)⊗ (R · ξ)

)
, (5-13)

where

Q= ξ ⊗ e0− e0⊗ ξ, R= ([0, a]⊗ [0, b])− ([0, b]⊗ [0, a]),

and

e0 = [1, 0, . . . , 0], a, b ∈ RN , 1
2 |a|

2
=

1
2 |b|

2
= e > 0, a 6= ±b.

Aa,b can be seen as a Fourier symbol of a pseudodifferential operator, where ξ = (ξ0, ξ1, . . . , ξN )

corresponds to ∂ = [∂t , ∂x1, . . . , ∂xN ].
The following was shown in [De Lellis and Székelyhidi 2010, Section 4.4]:

• If φ ∈ C∞c (R× RN ), and if we define [
0 w

w H

]
≡ Aa,b(∂)[φ]

then

∂tw+ divx H= 0, divx w = 0. (5-14)

• For

ηa,b =−
1

(|a||b| + a · b)2/3
[[0, a] + [0, b] − (|a||b| + a · b)e0], ψ ∈ C∞(R), (5-15)

we have

Aa,b(∂)[ψ([t, x] · ηa,b)] = ψ
′′′([t, x] · ηa,b)

[
0 a−b

a−b a⊗ a−b⊗ b

]
. (5-16)

5C. A stochastic version of oscillatory lemma. Let Q = {(t, x) | t ∈ (0, 1), x ∈ (0, 1)N
}. Let (�,F,P)

be a probability space with a complete σ -algebra of measurable sets F. Finally, we introduce the metric
on the space of weakly continuous functions Cweak([0, 1]; L2([0, 1]N ; RN )),

d[v;w] =
∞∑

m=1

1
2m

∣∣∫
[0,1]N (v−w) ·ϕm dx

∣∣
1+

∣∣∫
[0,1]N (v−w) ·ϕm dx

∣∣ ,
ϕm ∈ C∞c ((0, 1)N

; RN ), m = 1, 2, . . . , {ϕm}
∞

m=1 a dense set in L2([0, 1]N ; RN )).

(5-17)

The following is the main result of the present section.
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Lemma 5.6. Let ω 7→ [e,w,H] be a [F;B[(0,∞)× RN
× RN×N

0,sym]]-measurable mapping such that

[w,H] ∈ S[e] P-a.s. (5-18)

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) t 7→ [wn,Vn] is a stochastic process, meaning

[wn(t, · );Vn(t, · )] ∈ C([0, 1]N ; RN
× RN×N

0,sym) P-a.s.

is [F;B[C([0, 1]N ; RN
× RN×N

0,sym)]]-measurable for any t ∈ [0, 1]. (5-19)

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0. (5-20)

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([0, 1]; L2([0, 1]N ; RN )). (5-21)

(iv) In Q we have P-a.s.
[w+wn,H+Vn] ∈ S[e]. (5-22)

(v) The following holds P-a.s.:

lim inf
n→∞

1
|Q|

∫
Q
|wn|

2 dx dt ≥
c(N )

e

(
e− 1

2 |w|
2)2
. (5-23)

If , in addition to (5-18), e ≤ ēM P-a.s. for some deterministic constant ēM , and

[w,H] ∈ S[e− δ] for some deterministic constant δ > 0, (5-24)

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), and

[w+wn,H+Vn] ∈ S[e− δn] P-a.s. (5-25)

for some deterministic constants δn > 0. Moreover, the convergence in (5-21) can be strengthened to

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞. (5-26)

Remark 5.7. Hypothesis (5-24) is equivalent to saying that

ess inf
�

{
e− 1

2 Nλmax[w⊗w−H]
}
> 0.

Note that if this is the case, we have e ≥ δ > 0, whence e is a random variable with a compact range in
(0,∞).

Proof. The proof is given through several steps.

Step 1: Given [w,H] and e, we use Proposition 5.5 to identify the measurable selection of vectors [a, b]
satisfying (5-12).
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Step 2: For each [a, b] we construct the operator Aa,b and the vector ηa,b enjoying (5-14)–(5-16).

Step 3: We consider a deterministic function ϕ ∈ C∞c (Q) such that

0≤ ϕ ≤ 1, ϕ(t, x)= 1 whenever − 1
2 ≤ t ≤ 1

2 , |x | ≤
1
2 .

Step 4: We identify the functions wn , Vn from the relation

Aa,b(∂)

[
ϕ

L
n3 cos(n[t, x] · ηa,b)

]
=

[
0 wn

wn Vn

]
.

In accordance with our construction of the points [a, b], the operator Aa,b, and the vector ηa,b, it is
easy to check the wn , Vn enjoy the required measurability properties (5-19). Moreover, by virtue of
(5-14), equations (5-20) are satisfied.

Step 5: As A is a homogeneous differential operator of third order, we get, in agreement with (5-16),

Aa,b(∂)

[
ϕ

L
n3 cos(n[t, x] · ηa,b)

]
= ϕ sin(n[t, x] · ηa,b)L

[
0 (a−b)

(a−b) a⊗ a−b⊗ b

]
+

1
n

Rn (5-27)

with |Rn| uniformly bounded for n→∞. As (5-9), (5-10) holds, we deduce the remaining properties
(5-21)–(5-23) provided n is chosen large enough. Note that we have

|ϕ sin(n[t, x] · ηa,b)| ≤ 1

and

lim inf
n→∞

∫
Q
|wn|

2 dx dt ≥ lim inf
n→∞

c
e

(
e− 1

2 |w|
2)2

∫
Q
ϕ2 sin2(n[t, x] · ηa,b) dx dt − lim sup

n→∞

c|Rn|
2

n2

=
c
e

(
e− 1

2 |w|
2)2 |Q|

2

using [De Lellis and Székelyhidi 2010, Lemma 7] in the last step. Strictly speaking |Rn| is a random
variable so we need n ≥ n0(ω), where the latter is F-measurable. Setting [wn,Vn] = [0, 0] whenever
n ≤ n0 yields the desired inclusion (5-22).

Step 6: If e ≤ ēM for some deterministic constants, then w, H have compact range in RN, RN×N
0,sym ,

respectively. In addition, hypothesis (5-24) implies

[w,H] ∈ S[e− ε] for any 0≤ ε < δ.

Thus the above construction can be therefore repeated with e replaced by e− ε, ε > 0. Moreover, in
view of (5-11), the remainder Rn specified in Step 5 above is now bounded uniformly by a deterministic
constant depending only on ε. Since

S[e− δ] ⊂ S[e− ε] ⊂ S[e− ε] ⊂ S[e],

compactness of the range of wn , Vn follows from their construction and (5-11). Notably relations (5-8)
and (5-11) yield deterministic (in terms of ε) upper and lower bounds on the norm of the vector ηa,b used
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in the construction of wn , Vn . More specifically,

0< η ≤ |a||b| + a · b≤ η̄, 0< η ≤ |ηa,b| ≤ η̄, (5-28)

for deterministic constants η, η̄. As ε > 0 can be taken arbitrarily small, the inclusion (5-25) follows.
Finally, we show the uniform convergence claimed in (5-26). As wn , Vn satisfy (5-20), (5-25), we

observe that∣∣∣∣∫
[0,1]N
[wn(t1, · )−wn(t2, · )] ·ϕ dx

∣∣∣∣≤ K (ēM ,ϕ)|t1− t2|

for any 0≤ t1 ≤ t2 ≤ 1, n = 1, 2, . . . , ϕ ∈ C∞c ((0, 1)N
; RN ), (5-29)

where K is a deterministic quantity.
Next we show that∣∣∣∣∫

Q
wn ·ψ dx dt

∣∣∣∣≤ c(ēM)

n
‖ψ‖W 1,∞(RN+1;RN ) for any ψ ∈ C∞c (R

N+1
; RN ). (5-30)

Indeed
wn = ϕL(a− b) sin(n[t, x] · ηa,b)+

1
n

Rn,

where Rn is bounded in terms of the deterministic quantity ēM . Next,∣∣∣∣∫
Q

L(a−b)sin(n[t, x]·ηa,b)·(ϕψ)dx dt
∣∣∣∣= ∣∣∣∣∫

RN

∫
R

L(a−b)sin(n[t, x]·ηa,b)·(ϕψ) dt dx
∣∣∣∣

≤
1

n|(ηa,b)0|

∣∣∣∣∫
RN

∫
R

L(a−b)cos(n[t, x]·ηa,b)·∂t(ϕψ) dt dx
∣∣∣∣

≤
c(ēM)

n|(ηa,b)0|
‖ψ‖W 1,∞(RN+1;RN ).

In view of (5-15),
(ηa,b)0 = (|a||b| + a · b)1/3,

whence (5-30) follows from (5-28).
It remains to observe that (5-29), (5-30) give rise to the uniform convergence claimed in (5-26). Indeed,

since ‖wn‖L∞(Q;RN ) ≤ c(ēM), it is enough to show that

ess sup
ω∈�

(
sup

t∈[0,1]

∣∣∣∣∫
[0,1]N

wn(t, · ) ·ϕ dx
∣∣∣∣)→ 0 as n→∞ (5-31)

for any fixed ϕ ∈ C∞c ((0, 1)N
; RN ). We write,∫

[0,1]N
wn(t, · ) ·ϕ dx =

∫
R
ψε(t− τ)

(∫
[0,1]N

(wn(t, · )−wn(τ, · )) ·ϕ dx
)

dτ +
∫

Q
ψε(t− τ)wn ·ϕ dx dτ

for any

ψε ∈ C∞c (R), ψε ≥ 0, supp[ψε] ⊂ [−ε, ε],
∫

R
ψε(t) dt = 1.

Consequently, (5-31) follows from (5-29), (5-30). �
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5C.1. Extension by scaling. Let

Q = (T1, T2)× (a1, b1)× · · ·× (aN , bN ).

Following [Donatelli, Feireisl, and Marcati 2015, Section 4.2], we may use scaling in t and x and additivity
of the integral to show the following extension of Lemma 5.6.

Lemma 5.8. Let ω 7→ [e, r,w,H] be a [F;B[(0,∞)2, RN , RN×N
0,sym]]-measurable mapping such that[

w
√

r
,H

]
∈ S[e] P-a.s.

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) t 7→ [wn,Vn] is a stochastic process, meaning

[wn(t, · );Vn(t, · )] ∈ C
( N∏

i=1

[ai , bi ]; RN
× RN×N

0,sym

)
P-a.s.

is
[
F;B

[
C
( N∏

i=1

[ai , bi ]; RN
× RN×N

0,sym

)]]
-measurable for any t ∈ [T1, T2]. (5-32)

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0. (5-33)

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([T1, T2]; L2(RN
; RN )). (5-34)

(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e]. (5-35)

(v) The following holds P-a.s.:

lim inf
n→∞

1
|Q|

∫
Q

|wn|
2

r
dx dt ≥

c(N )
e

(
e−

1
2
|w|2

r

)2

. (5-36)

If , in addition,
0< r M ≤ r ≤ r̄M , 0< eM ≤ e ≤ ēM P-a.s. (5-37)

for some deterministic constants r M , r̄M , eM , ēM , and[
w
√

r
,H

]
∈ S[e− δ] P-a.s. for some deterministic δ > 0,

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), respectively, and[

w+wn
√

r
,H+Vn

]
∈ S[e− δn] P-a.s. for some deterministic δn > 0. (5-38)
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Moreover,
ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞.

Remark 5.9. Condition (5-37) can be equivalently formulated saying that the random variable [r, e] has
compact range in (0,∞)2.

5C.2. Extension to piecewise constant coefficients. Consider now a complete right-continuous filtration
(Ft)t≥0 of measurable sets in � and fix Q = (0, T )× (0, 1)N. We write [0, 1]N =

⋃
i∈I K i , where Ki

are disjoint open cubes of the edge length 1/m for some m ∈ N. The random variables e, r , w, and H

will be now P-a.s. functions of the time t and the spatial variable x that are piecewise constant. More
specifically, they shall P-a.s. belong to the class of functions satisfying

F(t, x)= F j,i whenever t ∈
[

jT
m
;
( j + 1)T

m

)
, x ∈ Ki , 0≤ j ≤ m− 1, i ∈ I. (5-39)

These functions are piecewise constant on the rectangular grid given by[
jT
m
,
( j + 1)T

m

)
× Ki , 0≤ j ≤ m− 1, i ∈ I.

In addition, we suppose that [e, r,w,H] is (Ft)-adapted, meaning that

[e, r,w,H](t, · ) is F jT/m-measurable whenever t ∈
[

jT
m
;
( j + 1)T

m

)
.

Keeping in mind that the oscillatory increments [wn,Vn] constructed in Lemma 5.8 are compactly
supported in each cube and hence globally smooth, we get the following result when applying Lemma 5.8
with F replaced by F jT/m . Note that wn,Vn are even F jT/m adapted.

Lemma 5.10. Let (�,F, (Ft)t≥0,P) be a probability space with a complete right continuous filtration
(Ft)t≥0. Let [e, r,w,H] be an (Ft)-adapted stochastic process which is P-a.s. piecewise constant and
belongs to the class (5-39). Suppose further that r > 0, e > 0 P-a.s. and[

w
√

r
,H

]
∈ S[e] for all (t, x) ∈ Q P-a.s. (5-40)

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) The process [wn,Vn] is (Ft)-adapted such that

[wn,Vn] ∈ C(Q; RN
× RN×N

0,sym) P-a.s. with compact range.

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0.

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([0, T ]; L2(T N
; RN )).
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(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e]. (5-41)

(v) The following holds P-a.s.:

lim inf
n→∞

∫
Q

|wn|
2

r
dx dt ≥

c(N )
supQ e

∫
Q

(
e−

1
2
|w|2

r

)2

dx dt. (5-42)

If , in addition,

0< r M ≤ r ≤ r̄M , 0< eM ≤ e ≤ ēM P-a.s.

for some deterministic constants r M , r̄M , eM , ēM , and[
w

r
,H

]
∈ S[e− δ] P-a.s. for some deterministic δ > 0,

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), respectively, and[

w+wn
√

r
,H+Vn

]
∈ S[e− δn] P-a.s. for some deterministic δn > 0.

Moreover,

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞.

5C.3. Extension to continuous coefficients. Using the result on the piecewise constant coefficients, we
may use the approximation procedure from [Donatelli, Feireisl, and Marcati 2015, Section 4.3] to
extend the oscillatory lemma to the class of continuous processes [e, r,w,H]. The obvious idea is to
replace [e, r,w,H] by piecewise constant approximations and apply Lemma 5.10. More specifically,
for e ∈ C([0, T ] × T N

; (0,∞)) P-a.s., (Ft)-adapted, e > 0 P-a.s., we define a piecewise constant
approximation

em(t, x)= sup
y∈Ki

e
(

jT
m
, y
)

for t ∈
[

jT
m
;
( j + 1)T

m

)
, x ∈ Ki , 0≤ j ≤ m− 1, i ∈ I, (5-43)

and, similarly, for F ∈ {r,w,H},

Fm(t, x)= F
(

jT
m
, y
)

for some y∈Ki , for t ∈
[

jT
m
;
( j+1)T

m

)
, x ∈Ki , 0≤ j≤m−1, i ∈ I. (5-44)

It is easy to check that these approximations satisfy the hypotheses of Lemma 5.10.
Now, since S[e] is an open set, it is possible, similarly to [Donatelli, Feireisl, and Marcati 2015,

Section 4.3] to replace Fm by F as long as the approximation is uniform. Specifically, for any δ > 0,
there is m = m(δ) such that

|Fm(t, x)− F(t, x)|< δ for all (t, x) ∈ Q (5-45)
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P-a.s. For (5-45) to hold, it is necessary (and sufficient) that all random variables F = e, r,w,H have
compact range in the space of continuous functions on Q. Repeating the arguments of [Donatelli, Feireisl,
and Marcati 2015, Section 4.3] we show the final form of the oscillatory lemma.

Lemma 5.11. Let [�,F,Ft ,P] be a probability space with a complete right continuous filtration (Ft)t≥0.
Let [e, r,w,H] be an (Ft)-adapted stochastic process such that

[e, r,w,H] ∈ C(Q; (0,∞)2× RN
× RN×n

0,sym) P-a.s.

with compact range and such that[
w
√

r
,H

]
∈ S[e− δ] for all (t, x) ∈ Q P-a.s. (5-46)

for some deterministic constant δ > 0.
Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N

0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) The process [wn,Vn] is (Ft)-adapted such that

[wn,Vn] ∈ C(Q; RN
× RN×N

0,sym) P-a.s. with compact range.

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0.

(iii) We have
ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞. (5-47)

(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e− δn]

for some deterministic δn > 0.

(v) The following holds P-a.s.:

lim inf
n→∞

∫
Q

|wn|
2

r
dx dt ≥

c(N )
supQ e

∫
Q

(
e−

1
2
|w|2

r

)2

dx dt. (5-48)

Remark 5.12. Observe that the assumption for a random variable [e, r,w,H] to be of compact range in
C(Q; (0,∞)2× RN

× RN×n
0,sym) includes

0< r M ≤ r ≤ r̄M , e ≤ eM P-a.s.

for some deterministic constants r M , r̄M , eM as well as a positive lower bound for e already guaranteed
by (5-46).

Remark 5.13. The fact that the continuous processes considered in Lemma 5.11 must have compact
range is definitely restrictive but possibly unavoidable. This is also the main reason why our result holds
up to a stopping time, albeit arbitrarily large with “high” probability. Otherwise, the size of the grid used
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to construct the approximations Fm would have to be a random variable. The oscillatory increments wn

would be then constructed on a grid determined by random points 0 < t1 < t2 < · · · < tm related to
stopping times associated to certain norms of the random processes. Here, the length of the interval
[tm, tm+1] would have to be tm predictable which seems impossible.

6. Infinitely many solutions

We are ready to show Theorem 2.3 or, equivalently, its version for the abstract “Euler” problems (4-7),
(4-14), respectively. We begin with problem (4-7), where the tensor M is constant. Then, following
[Feireisl 2016], we specify how to accommodate the dependence M=M[v].

6A. Subsolutions. We introduce the set

X (RN ) := {v :�× Q→ RN
|measureable, v ∈ C([0, T ]× T N

; RN ) a.s. with compact range} (6-1)

and analogously define X (RN×N
0,sym). Following [De Lellis and Székelyhidi 2010], we introduce the set of

subsolutions. Let the functions v0, h, r and M satisfy (4-8), and e = e(t) is a real-valued (Ft)-adapted
process specified below. In particular, the process [h, r,M] ∈ C([0, T ]× T N

; RN )× (0,∞)× RN×N
0,sym is

(Ft) adapted and with compact range. We define a collection of subsolutions corresponding to v0, h, r ,
M and e by

X0=

{
v ∈X (RN )

∣∣∣∣v is (Ft)-adapted with v(0, ·)= v0, there is F∈X (RN×N
0,sym)(Ft)-adapted s.t.

∂tv+divx F= 0, divx v= 0 in D′((0,T )×T N
; RN ) P-a.s.,

1
2 Nλmax

[
(v+h)⊗(v+h)

r
−F+M

]
< e−δ

∀ 0≤ t ≤ T, x ∈ T N , P-a.s. for some deterministic δ > 0
}
. (6-2)

Remark 6.1. The deterministic constant δ > 0 may vary from one subsolution to another. The exact
meaning of the condition

1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
< e− δ

is

ess sup
�

sup
t∈[0,T ],x∈T N

(
1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
− e

)
< 0.

6B. Existence of a subsolution. Next we claim that e can be fixed in such a way that the set of subsolu-
tions is nonempty. To this end, consider

v = v0, F= 0.

This is obviously a subsolution provided e is taken in such a way that

1
2 Nλmax

[
(v0+ h)⊗ (v0+ h)

r
+M

]
< e− δ.

In view of (4-8) this is possible, where e = eM can be taken as a sufficiently large deterministic constant.
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6C. Topology on the set of subsolutions. The processes v belonging to X0 are uniformly determinis-
tically bounded in L∞((0, T )× T N ); specifically, v(t) ∈ B∞ for any t ∈ [0, T ] P-a.s., where B∞ is a
ball in L∞(T N ) with a deterministic radius. Consequently, we may consider the metric d , introduced in
(5-17), associated to the weak L2(T N )-topology on B∞, together with

D[v,w] = E[ sup
t∈[0,T ]

d[v(t);w(t)]].

Let X be the completion of X0 with respect to the metric D. Then X is a complete metric space with
infinite cardinality. Note that any element of X is (Ft)-adapted as the limit of measurable functions is
measurable.

6D. Convex functional. Similarly to [De Lellis and Székelyhidi 2010], we introduce the functional

I [v] = E

[∫ T

0

∫
T N

[
1
2
|v+ h|2

r
− e

]
dx dt

]
.

Here, h, r are given functions related to the density ansatz and e is the target energy. Exactly as in
[De Lellis and Székelyhidi 2010], it can be shown that:

• I is lower semicontinuous on the space X .

• I [v] ≤ 0 for any v ∈ X .

• If I [v] = 0 then

e =
1
2
|v+ h|2

r
a.e. in (0, T )× T N (6-3)

P-a.s.

Lemma 6.2. Under the hypotheses (4-8), each v∈ X with I [v]=0 solves the abstract Euler equation (4-7).

Proof. Let v ∈ X . Then there is (vm)⊂ X0 with vm→ v with respect to the metric D. By the definition
of X0 we can find a sequence of (Ft)-adapted processes (Fm) with Fm ∈ L∞(Q, RN×N

0,sym) P-a.s. such that

∂tvm + divx Fm = 0 in D′((0, T )× RN ) (6-4)

P-a.s. and
1
2 Nλmax

[
(vm + h)⊗ (vm + h)

r
− Fm +M

]
≤ e.

Using (5-2) and the properties of M (recall (4-8)) we see that Fm is uniformly bounded in L∞(�×Q,RN×N
0,sym).

Hence, after choosing a weakly∗ converging subsequence, we obtain

∂tv+ divx F= 0, divx v = 0, v(0, · )= v0 in D′((0, T )× RN ), (6-5)

for a certain (Ft)-adapted process F with F ∈ L∞(Q, RN×N
0,sym) P-a.s. Due to convexity of the functional

[v, F] 7→ 1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
,
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we have
1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
≤ e.

Consequently, by virtue of (5-1), relation (6-3) implies

F=M+
(v+ h)⊗ (v+ h)

r
−

1
N
|v+ h|2

r
=M+

(v+ h)⊗ (v+ h)
r

−
2
N

e.

As e is independent of x , (6-4) yields the desired conclusion (4-7). �

Thus each zero point of I yields a weak solution of the abstract Euler problem (4-7). Our next claim is
that I [v] = 0 whenever v is a point of continuity of I on X . By means of the Baire category argument,
the points of continuity of I , the latter being a lower-semicontinuous functional on the complete metric
space X , form a residual set, and in particular are dense in X , which completes the proof of the existence
of infinitely many solutions claimed in Theorem 2.3. Thus it remains to show that I vanishes at each
point of continuity, which is the objective of the last section.

6E. Points of continuity of I in X. We show that at each point of continuity of I on X , we have I [v]= 0.
Let v be a point of continuity of I on X . Suppose that I [v]< 0. Consequently, there is a sequence

vm ∈ X0, D[vm; v] → 0, I [vm] → I [v], I [vm]<−ε < 0 for all m = 0, 1, . . . .

Now, we use the oscillatory lemma (Lemma 5.11) with the ansatz w= vm+h, H=Fm−M. Consequently,
for each fixed m, we find a sequence {wm,n}

∞

n=1 ⊂ X0 such that

vm +wm,n ∈ X0, D[vm +wm,n, vm] → 0 as n→∞.

The first statement follows from Lemma 5.11(iv), which also yields a uniform bound for wm,n as a
consequence of (5-1). The convergence with respect to the metric D follows from Lemma 5.11(iii),
the uniform bounds for wm,n and dominated convergence. Moreover, due to Lemma 5.11(iii), we
have

lim inf
n→∞

I [vm +wm,n] = I [vm] + lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
.

Here, by virtue of (5-48), Fatou’s lemma and Jensen’s inequality

lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
≥

c(N , T )
e

(
E

[∫ T

0

∫
T N

[
e−

1
2
|vm + h|2

r

]
dx dt

])2

=
c(N , T )

e
I 2
[vm] ≥ ε

2 c(N , T )
e

.

In such a way, we may construct a sequence (ṽm)⊂ X0, ṽm = vm +wm,n(m), D[ṽm, v] → 0, and

lim inf
m→∞

I [ṽm]> I [v]. (6-6)

Relation (6-6) contradicts the assumption that v is a point of continuity of I .
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6F. Multiplicative noise. We conclude by showing how to accommodate the case of multiplicative noise,
where the matrix M depends on the solutions v; specifically,

M[v] = ∇x m+∇x mt
−

2
N

divx mI,

where m is the unique solution of the elliptic system (4-13). In particular, if v ∈ X (RN ) (see (6-1)),
then, in view of the standard elliptic estimates, M[v] is (Ft)t≥0-adapted and with compact range in
C([0, T ]× T N

; RN×N
0,sym). Exactly as in Section 6A, we define the set of subsolutions as

X0=

{
v ∈X (RN )

∣∣v is (Ft)-adapted with v(0, ·)= v0, there is F∈X (RN×N
0,sym)(Ft)-adapted s.t.

∂tv+divx F= 0, divx v= 0 in D′((0,T )×T N
; RN ) P-a.s.,

1
2 Nλmax

[
(v+h)⊗(v+h)

r
−F+M[v]

]
< e−δ

∀ 0≤ t ≤ T, x ∈ T N , P-a.s. for some deterministic δ > 0
}
. (6-7)

Similarly to the above, we can show that

• the set X0 is nonempty;

• its closure with respect to the metric D is a complete metric space with infinite cardinality.

Consider the functional I on X defined in the same way as in Section 6D. We have an analogue of
Lemma 6.2:

Lemma 6.3. Under the hypotheses (4-15), (4-16) each v ∈ X with I [v] = 0 solves the abstract Euler
equation (4-7).

Proof. The proof follows the same lines as that of Lemma 6.2. We have only to observe that, up to a
suitable subsequence,

M[vm] →M[v] in C([0, T ]× T N
; RN×N

0,sym) P-a.s.

whenever
{vm}

∞

m=1 ⊂ X0, D[vm, v] → 0.

Indeed this follows from the elliptic regularity estimates as the sequence vm is bounded by a deterministic
constant in L∞((0, T )×T N

; RN ), whence {M[vm]}
∞

m=1 belongs to Cweak([0, T ];W 1,p(T N
; RN×N

0,sym)) for
any 1< p <∞ P-a.s. and is bounded in the space

L∞([0, T ];W 1,p(T N
; RN×N

0,sym))

by a deterministic constant. �

Finally, we show that, necessarily, I [v] = 0 at any point of continuity v of I . Following the arguments
of Section 6E, we suppose I [v]< 0 for some point of continuity v ∈ X . We consider a sequence {vm}

∞

m=1
satisfying

vm ∈ X0, D[vm; v] → 0, I [vm] → I [v], I [vm]<−ε < 0 for all m = 0, 1, . . . .
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Next we apply the oscillatory lemma (Lemma 5.11) to

w = vm + h, H= Fm −M[vm].

Following the arguments of Section 6E, we find a sequence {wm,n}
∞

n=1 ⊂ X0 such that

vm +wm,n ∈ X0, D[vm +wm,n, vm] → 0 as n→∞.

Here, the most delicate point is to show the inclusion

vm +wm,n ∈ X0,

as the oscillatory lemma (Lemma 5.11) asserts only

1
2 Nλmax

[
(vm +wm,n + h)⊗ (vm +wm,n + h)

r
− Fm − Fm,n +M[vm]

]
< e− δm

instead of the desired

1
2 Nλmax

[
(vm +wm,n + h)⊗ (vm +wm,n + h)

r
− Fm − Fm,n +M[vm +wm,n]

]
< e− δm . (6-8)

Since we have
M[vm +wm,n] −M[vm] = ∇x Fm,n +∇

t
x Fm,n −

2
N

divx Fm,nI,

where the field Fm,n is the unique solution of the elliptic system

divx

[
∇x Fm,n +∇

t
x Fm,n −

2
N

divx Fm,nI
]
=

1
2wm,n in T N ,

relation (6-8) follows as soon as we show

ess sup
ω∈�

sup
t∈[0,T ],x∈T N

∣∣∣∇x Fm,n +∇
t
x Fm,n −

2
N

divx Fm,nI

∣∣∣→ 0 as n→∞. (6-9)

To see (6-9), we use the convergence statement (5-47), namely

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wm,n(t); 0]

)
→ 0 as n→∞. (6-10)

On one hand, as
‖wm,n‖L∞((0,T )×T N ;RN ) ≤ c(ēM) P-a.s., (6-11)

we may use the standard elliptic estimates to deduce

sup
t∈[0,T ]

‖∇x Fm,n‖W 1,q (T N ;RN×N ) ≤ c(q, ēM) P-a.s., 1≤ q <∞. (6-12)

On the other hand, by virtue of (6-10), (6-11),

ess sup
ω∈�

(
sup

t∈[0,T ]
‖wm,n‖W−1,2(T N ;RN )

)
→ 0 as n→∞,

whence, by the elliptic estimates,

ess sup
ω∈�

(
sup

t∈[0,T ]
‖∇x Fm,n‖L2(T N ;RN×N )

)
→ 0 as n→∞. (6-13)
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Seeing that W 1,q(T N ) ↪→↪→ C(T N ) for q > N we may interpolate (6-12), (6-13) to obtain the desired
convergence (6-9).

The remaining arguments are the same as in Section 6E. Due to Lemma 5.11(iii), we have

lim inf
n→∞

I [vm +wm,n] = I [vm] + lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
≥ I [vm] + ε

2 c(N , T )
e

.

Thus for ṽm = vm +wm,n(m) we get ṽm ∈ X0, D[ṽm, v] → 0, and

lim inf
m→∞

I [ṽm]> I [v]. (6-14)

Relation (6-14) contradicts the assumption that v is a point of continuity of I .
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