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We investigate a class of sharp Fourier extension inequalities on the planar curves s D jyjp, p > 1. We
identify the mechanism responsible for the possible loss of compactness of nonnegative extremizing
sequences, and prove that extremizers exist if 1 < p < p0 for some p0 > 4. In particular, this resolves
the dichotomy of Jiang, Pausader, and Shao concerning the existence of extremizers for the Strichartz
inequality for the fourth-order Schrödinger equation in one spatial dimension. One of our tools is a
geometric comparison principle for n-fold convolutions of certain singular measures in Rd, developed in
the companion paper of Oliveira e Silva and Quilodrán (Math. Proc. Cambridge Philos. Soc., (2019)).
We further show that any extremizer exhibits fast L2-decay in physical space, and so its Fourier transform
can be extended to an entire function on the whole complex plane. Finally, we investigate the extent to
which our methods apply to the case of the planar curves s D yjyjp�1, p > 1.
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1. Introduction

Gaussians are known to extremize certain Strichartz estimates in low dimensions. Consider, for instance,
the Strichartz inequality for the homogeneous Schrödinger equation in d spatial dimensions,

ke�it�f k
L
2C4=d
x;t .RdC1/

� S .d/kf kL2.Rd /; (1-1)
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with optimal constant given by

S .d/ WD sup
0¤f 2L2

ke�it�f k
L
2C4=d
x;t .RdC1/

kf kL2.Rd /
: (1-2)

That S .d/ <1 is of course due to the original work of Strichartz [1977], which in turn had precursors in
[Tomas 1975; Segal 1976]. If d 2 f1; 2g, then Gaussians extremize (1-1), and therefore S .1/D 12�1=12

and S .2/D 2�1=2. This was originally established in [Foschi 2007; Hundertmark and Zharnitsky 2006],
and alternative proofs were subsequently given in [Bennett et al. 2009; 2015; Gonçalves 2019]. All
of these approaches ultimately rely on the fact that the Strichartz exponent 2C 4

d
is an even integer if

d 2 f1; 2g, which in turn allows us to recast inequality (1-1) in convolution form. This is a powerful
technique that has proved very successful in tackling a number of problems in sharp Fourier restriction
theory; see the recent survey [Foschi and Oliveira e Silva 2017].

In the recent work [Oliveira e Silva and Quilodrán 2018], we explored the convolution structure of
a family of Strichartz inequalities for higher-order Schrödinger equations in two spatial dimensions in
order to answer a question concerning the existence of extremizers that had appeared in the previous
literature. Our purpose with the present work is three-fold. Firstly, we resolve the dichotomy from [Jiang
et al. 2010] concerning the existence of extremizers for the Strichartz inequality for the fourth-order
Schrödinger equation in one spatial dimension. This is related to the Fourier extension problem on the
planar curve s D y4. Secondly, we study similar questions in the more general setting of the Fourier
extension problem on the curve s D jyjp for arbitrary p > 1. We also consider odd curves s D yjyjp�1,
p > 1, the case p D 3 relating to the Airy–Strichartz inequality [Farah and Versieux 2018; Frank and
Sabin 2018; Shao 2009]. Lastly, we study superexponential decay and analyticity of the corresponding
extremizers and their Fourier transform via a bootstrapping procedure.

Jiang, Pausader, and Shao [Jiang et al. 2010] considered the fourth-order Schrödinger equation with
L2 initial datum in one spatial dimension,�

i@tu��@
2
xuC @

4
xuD 0; .x; t/ 2 R�R;

u. � ; 0/D f 2 L2x.R/;
(1-3)

where u W R�R! C, and �� 0. By scaling, one may restrict attention to � 2 f0; 1g. The solution of the
Cauchy problem (1-3) can be written in terms of the propagator

u.x; t/D eit.@
4
x��@

2
x/f .x/D

1

2�

Z
R

eix�eit.�
4C��2/ Of .�/ d�;

where the spatial Fourier transform is defined as1

Of .�/ WD

Z
R

e�ix�f .x/ dx:

1The Fourier transform will occasionally be denoted by F.f /D Of .
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The solution disperses as jt j !1, and consequently the following Strichartz inequality due to Kenig,
Ponce, and Vega [Kenig et al. 1991, Theorem 2.1] holds:2

kD
1
3
�e
it.@4x��@

2
x/f kL6x;t .R1C1/

. kf kL2.R/: (1-4)

The main result of [Jiang et al. 2010] is a linear profile decomposition for (1-3), which uses a refinement
of the Strichartz inequality (1-4) in the scale of Besov spaces, together with improved localized Fourier
restriction estimates. As a consequence, the authors of [Jiang et al. 2010] establish a dichotomy result for
the existence of extremizers for (1-4) when �D 0, which can be summarized as follows: Consider the
sharp inequality in multiplier form

kD
1
3

0 e
it@4xf kL6x;t .R1C1/

�Mkf kL2.R/; (1-5)

with optimal constant given by

M WD sup
0¤f 2L2

kD
1
3

0 e
it@4xf kL6x;t .R1C1/

kf kL2.R/
: (1-6)

Then [Jiang et al. 2010, Theorem 1.8] states that either an extremizer for (1-5) exists, or there exist a
sequence fang � R satisfying janj !1 as n!1 and a function f 2 L2 such that

M D lim
n!1

kD
1
3

0 e
it@4x .eianxf /kL6x;t .R1C1/

kf kL2.R/
:

In the latter case, one necessarily has M D S .1/, where S .1/ denotes the optimal constant defined in
(1-2). Our first main result resolves this dichotomy.

Theorem 1.1. There exists an extremizer for (1-5).

Theorem 1.1 will follow from a more general result which we now introduce. As noted in [Kenig et al.
1991, §2], the operator D1=30 eit@

4
x is nothing but a constant multiple of the Fourier transform at the point

.�x;�t / 2 R2 of the singular measure

d�4.y; s/D ı.s�y4/jyj
1
3 dy ds (1-7)

defined on the curve s D y4. As in [Oliveira e Silva and Quilodrán 2018, §6.4], one is naturally led to
consider generic power curves s D jyjp. The corresponding inequality is

kMp.f /kL6x;t .R1C1/
�Mpkf kL2.R/; (1-8)

where the multiplier operator Mp is defined as

Mp.f /.x; t/DD
p�2
6

0 eit j@x j
p

f .x/:

2Given � 2 f0; 1g and ˛ 2 R, we follow the notation from [Jiang et al. 2010] and denote by D˛� the differentiation operator
D˛�f .x/ WD

1
2�

R
R e

ix� .�C 6�2/˛=2 Of .�/ d�.
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Inequality (1-8) can be equivalently restated as a Fourier extension inequality,

kEp.f /kL6.R2/ �Epkf kL2.R/; (1-9)

or in convolution form as

kf�p �f�p �f�pkL2.R2/ � C
3
p kf k

3
L2.R/

: (1-10)

Here, the singular measure �p is defined in accordance with (1-7) by

d�p.y; s/D ı.s� jyjp/jyj
p�2
6 dy ds; (1-11)

and the Fourier extension operator Ep.f /D F.f �p/.� � / is given by

Ep.f /.x; t/D
Z

R

eixyeit jyj
p

jyj
p�2
6 f .y/ dy; (1-12)

so that

6
p�2
12 Ep. Of /D 2�Mp.f /:

If f is an extremizer for (1-9), then f is likewise an extremizer for (1-10), and F�1.f / is an extremizer
for (1-8). Thus these three existence problems are essentially equivalent. The convolution form (1-10)
also shows that the search for extremizers can be restricted to the class of nonnegative functions. An
application of Plancherel’s theorem further reveals that the corresponding optimal constants satisfy

E6p D .2�/
2C 6p D .2�/

361�
p
2M6

p :

Our next result extends the dichotomy proved in [Jiang et al. 2010, Theorem 1.8] to the case of arbitrary
exponents p > 1. It states that one of two possible scenarios occurs, compactness or concentration at a
point. We make the latter notion precise.

Definition 1.2. A sequence of functions ffng � L2.R/ concentrates at a point y0 2 R if, for every
"; � > 0, there exists N 2 N such that, for every n�N,Z

jy�y0j��

jfn.y/j
2 dy < "kfnk2L2.R/:

We choose to phrase our second main result in terms of the convolution inequality (1-10) because, as
we shall see, condition (1-13) has a very simple geometric meaning in terms of the boundary value of the
relevant 3-fold convolution measure.

Theorem 1.3. Let p > 1. If

C 6p >
2�

p
3p.p� 1/

; (1-13)

then any extremizing sequence of nonnegative functions in L2.R/ for (1-10) is precompact, after normal-
ization and scaling. In this case, extremizers for (1-10) exist. If instead equality holds in (1-13) then, given
any y0 2 R, there exists an extremizing sequence for (1-10) which concentrates at y0.
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A few remarks may help to further orient the reader. Firstly, if p D 1, then the curve s D jyj has no
curvature, and no nontrivial Fourier extension estimate can hold. Secondly, if equality holds in (1-13), then
Theorem 1.3 does not guarantee the nonexistence of extremizers. Indeed, C 62 D �=

p
3, and Gaussians

are known to extremize (1-10) when p D 2. Various results of a similar flavor to that of Theorem 1.3
have appeared in the recent literature. They are typically derived from a sophisticated application of
concentration-compactness techniques [Christ and Shao 2012a; Shao 2016a], a full profile decomposition
[Jiang et al. 2010; 2014; Shao 2009], or the missing mass method as in [Frank et al. 2016; Frank and
Sabin 2018]. We introduce a new variant which follows the spirit of the celebrated works [Brézis and Lieb
1983; Lieb 1983; Lions 1984a; 1984b]. It seems more elementary and may be easier to adapt to other
manifolds. The proof of Theorem 1.3 involves a variant of Lions’ concentration-compactness lemma
[1984a], a variant of the corollary of the Brézis–Lieb lemma from [Fanelli et al. 2011], bilinear extension
estimates, and a refinement of inequality (1-9) over a suitable cap space.

In a range of exponents that includes the case p D 4, we are able to resolve the dichotomy posed by
Theorem 1.3.

Theorem 1.4. There exists p0 > 4 such that, for every p 2 .1; p0/nf2g, the strict inequality (1-13) holds.
In particular, if p 2 .1; p0/, then there exists an extremizer for (1-10).

Our method yields p0 � 4:803 with three decimal places, and effectively computes arbitrarily good
lower bounds for the ratio ofL2-norms in (1-10) via expansions of suitable trial functions in the orthogonal
basis of Legendre polynomials. We remark that the value p0 � 4:803 is suboptimal, in the sense that a
natural refinement of our argument allows us to increase this value to � 5:485; see Section 4C below.

Once the existence of extremizers has been established, their properties are typically deduced from the
study of the associated Euler–Lagrange equation. Following this paradigm, we show that any extremizer
of (1-9) decays superexponentially fast in L2, which reflects the analyticity of its Fourier transform. This
is the content of our next result.

Theorem 1.5. Let p > 1. If f is an extremizer for (1-9), then there exists �0 > 0 such that

x 7! e�0jxj
p

f .x/ 2 L2.R/:

In particular, its Fourier transform Of can be extended to an entire function on C.

Note that the exponent �0 necessarily depends on the extremizer itself; see the discussion in [Christ
and Shao 2012b, p. 964]. The proof relies on a bootstrapping argument that found similar applications in
[Christ and Shao 2012b; Erdoğan et al. 2011; Hundertmark and Shao 2012; Shao 2016b].

To some extent, our methods are able to handle the case of the planar odd curves s D yjyjp�1, p > 1.
Define the singular measure

d�p.y; s/D ı.s�yjyjp�1/jyj
p�2
6 dy ds: (1-14)

The associated Fourier extension operator Sp.f /D F.f�p/.� � /, defined in (6-2) below, satisfies the
estimate kSp.f /kL6 . kf kL2 . In sharp convolution form, this can be rewritten as

kf�p �f�p �f�pkL2.R2/ �Q
3
pkf k

3
L2.R/

; (1-15)
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where Qp denotes the optimal constant. Odd curves are of independent interest, in particular because a
new phenomenon emerges: caps centered around points with parallel tangents interact strongly, regardless
of separation between the points. This mechanism was discovered in [Christ and Shao 2012a], and
further explored in [Carneiro et al. 2017; Foschi 2015; Frank et al. 2016; Frank and Sabin 2018; Shao
2016a]. Some of these works include a symmetrization step which relies on the convolution structure
of the underlying inequality. In the present case, we also show that the search for extremizers can be
further restricted to the class of even functions, but interestingly our symmetrization argument does
not depend on the convolution structure. This may be of independent interest since it applies to other
Fourier extension inequalities where some additional symmetry is present, as we indicate in Section 6A
below.

The following versions of Theorems 1.3 and 1.4 hold for odd curves.

Theorem 1.6. Let p > 1. If

Q6p >
5�

p
3p.p� 1/

; (1-16)

then any extremizing sequence of nonnegative, even functions in L2.R/ for (1-15) is precompact, after
normalization and scaling. In this case, extremizers for (1-15) exist. If instead equality holds in (1-16)
then, given any y0 2 R, there exists an extremizing sequence for (1-15) which concentrates at the pair
f�y0; y0g.

The case p D 3 of Theorem 1.6 coincides with a special case of [Frank and Sabin 2018, Theorem 1],
which was obtained by different methods.

Theorem 1.7. If p 2 .1; 2/, then the strict inequality (1-16) holds and, in particular, there exists an
extremizer for (1-15).

We believe that extremizers do not exist if p � 2; see Conjecture 6.6 below.

Overview. The paper is organized as follows. Section 2 is devoted to the technical preliminaries for the
dichotomy statement concerning the existence of extremizers: bilinear estimates and cap bounds. We then
prove Theorem 1.3 in Section 3. Existence of extremizers is the subject of Section 4, where we establish
Theorem 1.4. Theorem 1.5 addresses the regularity of extremizers and is established in Section 5. Odd
curves are treated in Section 6, where Theorems 1.6 and 1.7 are proved. In the Appendix, we establish
useful variants of Lions’ concentration-compactness lemma (Proposition A.1) and of a corollary of the
Brézis–Lieb lemma (Proposition B.1).

Notation. If x; y are real numbers, we write xDO.y/ or x.y if there exists a finite absolute constant C
such that jxj �C jyj. If we want to make explicit the dependence of the constant C on some parameter ˛,
we write x DO˛.y/ or x .˛ y. We write x & y if y . x, and x ' y if x . y and x & y. Finally, the
indicator function of a set E � Rd will be denoted by 1E , and the complement of E will at times be
denoted by E{.
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2. Bilinear estimates and cap refinements

In this section, we prove the bilinear extension estimates and cap refinements which will be needed
in the next section. Bilinear extension estimates are usually deep [Tao 2003; Wolff 2001], but in the
one-dimensional case one may rely on the classical Hausdorff–Young inequality. Throughout this section,
we shall consider the dyadic regions

Ik WD Œ2
k; 2kC1/ and I �k WD .�2

kC1;�2k�[ Œ2k; 2kC1/ .k 2 Z/:

2A. Bilinear estimates. Recall the definitions (1-11) and (1-12) of the measure �p and the Fourier
extension operator Ep , respectively. Our first result quantifies the principle that distant caps interact weakly.

Proposition 2.1. Let p > 1 and k; k0 2 Z. Then

kEp.f /Ep.g/kL3.R2/ .p 2�jk�k
0j
p�1
6 kf kL2.R/kgkL2.R/ (2-1)

for every f; g 2 L2.R/ satisfying suppf � I �
k

and suppg � I �
k0

.

Proof. Setting  D j � jp and w D j � j
p�2
3 , we have

.Ep.f /Ep.g//.x; t/D
Z

R2
eix.yCy

0/eit. .y/C .y
0//f .y/g.y0/w.y/

1
2w.y0/

1
2 dy dy0:

Change variables .y; y0/ 7! .u; v/D .yCy0;  .y/C .y0//. Except for null sets, this is a 2-to-1 map
from R2 onto the region f.u; v/W v � 2 .u=2/g. Its Jacobian is given by

J�1.y; y0/D
@.u; v/

@.y; y0/
D det

�
1  0.y/

1  0.y0/

�
D  0.y0/� 0.y/D p.y0jy0jp�2�yjyjp�2/ (2-2)

and satisfies jJ�1.y; y0/j � pjjyjp�1� jy0jp�1j, with equality if and only if yy0 � 0. Thus

.Ep.f /Ep.g//.x; t/D 2
Z
eixueitvf .y/g.y0/w.y/

1
2w.y0/

1
2J.u; v/ du dv; (2-3)

where the integral is taken over the region f.u; v/W v � 2 .u=2/g. Note that this implies

.f �p �g�p/.u; v/D 2f .y/g.y
0/w.y/

1
2w.y0/

1
2J.u; v/ (2-4)

for every .u; v/ satisfying v > 2 .u=2/, where .y; y0/ is related to .u; v/ via the change of variables
described above.

By symmetry, we can and will restrict attention to jy0j � jyj. Taking the L3-norm of (2-3), invoking
the Hausdorff–Young inequality, and then changing variables back to .y; y0/,

kEp.f /Ep.g/kL3.R2/ . kf .y/g.y0/w.y/
1
2w.y0/

1
2J.u; v/k

L
3=2
u;v .R1C1/

D kf .y/g.y0/w.y/
1
2w.y0/

1
2 jJ.y; y0/j

1
3 k
L
3=2

y;y0
.R1C1/

:
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If 2k � jyj< 2kC1, 2k
0

� jy0j< 2k
0C1, and k � k0C 2, then

jyy0j
p�2
4

p
1
2 jjyjp�1� jy0jp�1j

1
2

.
2.kCk

0/p�2
4

2k
p�1
2 .1� 2�.k�k

0�1/.p�1//
1
2

. 2.k
0�k/p

4
�k
0

2 : (2-5)

It follows that

kEp.f /Ep.g/k
3
2

L3
.
Z

R2
jf .y/g.y0/j

3
2w.y/

3
4w.y0/

3
4 jJ.y; y0/j

1
2 dy dy0

�

Z
R2
jf .y/g.y0/j

3
2

jyy0j
p�2
4

p
1
2 jjyjp�1� jy0jp�1j

1
2

dy dy0

. 2.k
0�k/p

4
�k
0

2 2
k
4 2

k0

4 kf k
3
2

L2
kgk

3
2

L2

D 2�jk�k
0j
p�1
4 kf k

3
2

L2
kgk

3
2

L2
: (2-6)

If k 2 fk0; k0C 1g, then we can simply use the estimate kEp.f /Ep.g/kL3 . kf kL2kgkL2 . �

Corollary 2.2. Let p > 1 and k; k0 2 Z be such that k0 � k. Then

kEp.f /Ep.g/kL3.R2/ .p 2�jk�k
0j
p�1
6 kf kL2.R/kgkL2.R/ (2-7)

for every f; g 2 L2.R/ satisfying suppf � fjyj � 2kg and suppg � fjy0j � 2k
0

g.

Proof. Write f D
P
j�k fj and g D

P
j 0<k0 gj 0 , where fj WD f 1I�

j
and gj 0 WD g1I�

j 0
. Then

kEp.f /Ep.g/kL3.R2/ �
X

j�k; j 0<k0

kEp.fj /Ep.gj 0/kL3 .
X

j�k; j 0<k0

2�jj�j
0j
p�1
6 kfj kL2kgj 0kL2

�

� X
j�k; j 0<k0

2�jj�j
0j
p�1
3

�1
2
� X
j�k; j 0<k0

kfj k
2
L2
kgj 0k

2
L2

�1
2

'

�X
j�k

2�jj�k
0j
p�1
3

�1
2

kf kL2kgkL2

' 2�jk�k
0j
p�1
6 kf kL2kgkL2 ;

where we used the triangle inequality, Proposition 2.1, the Cauchy–Schwarz inequality, L2-orthogonality,
and the fact that a geometric series is comparable to its largest term. �

When studying concentration at points different from the origin, it will be useful to consider dyadic
decompositions of the real line with arbitrary centers. By reflection and scaling, it suffices to consider
decompositions centered at 1. Define the dyadic regions

Ik WD f2k � y � 1 < 2kC1g and I �k WD f2
k
� jy � 1j< 2kC1g .k 2 Z/

so that Ik D 1C Ik and I �
k
D 1C I �

k
. The following analogue of Proposition 2.1 holds.
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Proposition 2.3. Let p > 1 and k; k0 2 Z. Let ˇ Dmin
˚
1
6
; p�1
6

	
. Then

kEp.f /Ep.g/kL3.R2/ .p 2�ˇ jk�k
0j
kf kL2.R/kgkL2.R/ (2-8)

for every f; g 2 L2.R/ satisfying suppf � I �
k

and suppg � I �
k0

.

Before embarking on the proof, let us take a closer look at the factor jyy0j.p�2/=4jJ.y; y0/j1=2 that
appears after applying the Hausdorff–Young inequality in (2-6). We have already seen that

jJ�1.y; y0/j D pjyjyjp�2�y0jy0jp�2j: (2-9)

In (2-5) we observed that, if y; y0 are separated (say, jy0j � 1
2
jyj), then

jyy0j
p�2
4

jyjyjp�2�y0jy0jp�2j
1
2

.
jyy0j

p�2
4

jyj
p�1
2

D jyj�
p
4 jy0j

p�2
4 : (2-10)

In order to obtain a useful bound in the case when both y; y0 are close to 1, invoke the mean value theorem
and write

jyjp�1� jy0jp�1 D .p� 1/sp�2.jyj � jy0j/

for some s 2 Œjy0j; jyj�. Then, for 0� y0 � y, we have

jyjyjp�2�y0jy0jp�2j D jyp�1�y0p�1j&
�
jy �y0jyp�2 if p 2 .1; 2�;
jy �y0jy0p�2 if p 2 Œ2;1/:

Thus the following estimate holds for every 1
2
� y; y0 � 3

2
:

jyy0j
p�2
4

jyjyjp�2�y0jy0jp�2j
1
2

. jy �y0j�
1
2 : (2-11)

Proof of Proposition 2.3. Without loss of generality, assume jk � k0j � 2. We start by considering the
situation when 0 is an endpoint of I �

k0
, i.e., k0 2 f�1; 0g. Let k0 D�1, so that I �

k0
D
�
0; 1
2

�
[
�
3
2
; 2
�
, split

g D g`Cgr , with g` WD g1.0; 1
2
� and gr WD g1Œ 3

2
;2/, and take the dyadic decomposition

g` D
X
j�1

gj ; with gj WD g1.2�.jC1/;2�j �:

If k � �3, then (2-10) implies

kEp.f /Ep.g`/kL3 .
X
j�1

�Z
R2
jf .y/gj .y

0/j
3
2

jyy0j
p�2
4

jjyjp�1� jy0jp�1j
1
2

dy dy0
�2
3

.
X
j�1

�
2�j

p�2
4

Z
R2
jf .y/gj .y

0/j
3
2 dy dy0

�2
3

.
X
j�1

�
2�j

p�2
4 2

k
4 2�

j
4 kf k

3
2

L2
kgj k

3
2

L2

�2
3

D 2
k
6 kf kL2

X
j�1

2�j
p�1
6 kgj kL2 . 2

k
6 kf kL2kg`kL2 . 2�

jk�k0j
6 kf kL2kgkL2 :
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If k � 1, then Corollary 2.2 applies, and directly yields

kEp.f /Ep.g`/kL3 . 2�jk�k
0j
p�1
6 kf kL2kgkL2 :

A similar analysis applies to gr . Setting ˇ WDmin
˚
1
6
; p�1
6

	
, we conclude that, if k0D�1 and jk�k0j � 2,

then
kEp.f /Ep.g/kL3 . 2�ˇ jk�k

0j
kf kL2kgkL2 :

The case k0 D 0 admits a similar treatment. If k; k0 � �2 and k� k0 � 2, then (2-11) implies

kEp.f /Ep.g/kL3 .
2
k
6 2

k0

6

2
k
3

kf kL2kgkL2 D 2
�
jk�k0j
6 kf kL2kgkL2 :

Finally, the remaining cases can be handled in a similar way by Corollary 2.2. �

Corollary 2.4. Let p > 1 and k; k0 2 Z be such that k0 � k. Let ˇ Dmin
˚
1
6
; p�1
6

	
. Then

kEp.f /Ep.g/kL3.R2/ .p 2�ˇ jk�k
0j
kf kL2.R/kgkL2.R/ (2-12)

for every f; g 2 L2.R/ satisfying suppf � fjy � 1j � 2kg and suppg � fjy0� 1j � 2k
0

g.

We finish this subsection by taking yet another look at the Jacobian factor (2-9). This will be useful in
Section 2B below. Let p � 2. If yy0 � 0, then jJ�1.y; y0/j D p.jyjp�1Cjy0jp�1/, in which case

jyy0j
p�2
4

.jyjp�1Cjy0jp�1/
1
2

. .jyjC jy0j/�
1
2 D jy �y0j�

1
2

uniformly in y; y0. To handle the complementary case yy0 > 0, note that, if p � 2 and 0� a � b, then

bp�1� ap�1 ' .b� a/bp�2: (2-13)

It follows that, if p � 2 and yy0 > 0, then

jJ�1.y; y0/j D pjjyjp�1� jy0jp�1j ' jy �y0jmaxfjyj; jy0jgp�2;

and so if additionally jyj � jy0j, then

jyy0j
p�2
4

jjyjp�1� jy0jp�1j
1
2

.
jyy0j

p�2
4

jyj
p�2
2 jy �y0j

1
2

� jy �y0j�
1
2 :

Therefore the estimate

kEp.f /Ep.g/k
3
2

L3.R2/
.
Z

R2

jf .y/g.y0/j
3
2

jy �y0j
1
2

dy dy0 (2-14)

holds as long as p � 2. We cannot hope for such a bound if 1 < p < 2 since (2-13) fails in that case.
However, if jyj ' jy0j, then one can check in a similar way that the estimate

kEp.fk/Ep.gk/k
3
2

L3.R2/
.
Z

R2

jfk.y/gk.y
0/j

3
2

jy �y0j
1
2

dy dy0 (2-15)

holds for any p > 1 and functions fk; gk which are both supported on I �
k

.
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2B. Cap bounds. An inspection of the proof of Proposition 2.1 reveals that if suppf �I �
k

and suppg�I �
k0

for some k; k0 2 Z satisfying k� k0 � 2, then

kEp.f /Ep.g/kL3.R2/ . 2�jk�k
0j
p�1
6

�
jIkj
� 1
4

Z
I�
k

jf j
3
2

�2
3
�
jIk0 j

� 1
4

Z
I�
k0

jgj
3
2

�2
3

. 2�jk�k
0j
p�1
6 ƒ.f /

2
9ƒ.g/

2
9 kf k

2
3

L2.R/
kgk

2
3

L2.R/
; (2-16)

where the quantity ƒ.f / is defined via

ƒ.f / WD sup
k2Z

jIkj
� 1
4

Z
I�
k

jf j
3
2 : (2-17)

The purpose of this subsection is to develop on this observation. Given f 2 L2.R/, write f D
P
k2Z fk ,

with fk WD f 1I�
k

. Our first result is the following.

Proposition 2.5. Let p > 1. Then the following estimates hold for every f 2 L2.R/:

kEp.f /k3L6.R2/ .p
X
k2Z

kfkk
3
L2.R/

; (2-18)

kEp.f /k3L6.R2/ .p
X
k2Z

kEp.fk/k3L6.R2/Cƒ.f /
4
9

�X
k2Z

kfkk
3
L2.R/

�1
3

kf k
4
3

L2.R/
: (2-19)

Proof. By the triangle inequality,

kEp.f /k3L6 �
X

.i;j;k/2Z3

kEp.fi /Ep.fj /Ep.fk/kL2 :

For each triple .i; j; k/ in the previous sum, we lose no generality in assuming that

jj � kj Dmaxfji 0� j 0j W i 0; j 0 2 fi; j; kgg: (2-20)

Hölder’s inequality and Proposition 2.1 then imply

kEp.fi /Ep.fj /Ep.fk/kL2 . 2�jj�kj
p�1
6 kfikL2kfj kL2kfkkL2 :

By the maximality of jj � kj, we have jj � kj � 1
3
ji � j jC 1

3
jj � kjC 1

3
jk� i j, and hence

kEp.f /k3L6 .
X

.i;j;k/2Z3

2�ji�j j
p�1
18 2�jj�kj

p�1
18 2�jk�i j

p�1
18 kfikL2kfj kL2kfkkL2 :

A final application of Hölder’s inequality yields (2-18). Estimate (2-19) follows from similar considerations
which we now detail. Let S WD f.i; j; k/ 2 Z3Wmaxfji �j j; jj �kj; jk� i jg � 1g and S{ WD Z3 nS . Split
the sum into diagonal and off-diagonal contributions,

kEp.f /k3L6 �




 X
.i;j;k/2S

Ep.fi /Ep.fj /Ep.fk/





L2
C





 X
.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
;
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and analyze the two terms separately. For the diagonal term, note that



 X
.i;j;k/2S

Ep.fi /Ep.fj /Ep.fk/





L2

�

X
k2Z

�
3kEp.fk/Ep.fk/Ep.fkC1/kL2 C 3kEp.fk�1/Ep.fk/Ep.fk/kL2 CkEp.fk/Ep.fk/Ep.fk/kL2

�
�

X
k2Z

�
3kEp.fk/k2L6kEp.fkC1/kL6 C 3kEp.fk�1/kL6kEp.fk/k

2
L6
CkEp.fk/k3L6

�
.
X
k2Z

kEp.fk/k3L6 :

To handle the off-diagonal term, note that estimate (2-16) implies



 X
.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
.

X0

.i;j;k/Wjj�kj�2

kfikL2kEp.fj /Ep.fk/kL3

.ƒ.f /
4
9

X0

.i;j;k/Wjj�kj�2

2�jj�kj
p�1
6 kfikL2kfj k

2
3

L2
kfkk

2
3

L2
;

where the sum †0 is taken over triples .i; j; k/ 2 S{ for which .j; k/ satisfies the maximality assumption
(2-20). It follows that



 X

.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
.ƒ.f /

4
9

X
i;j;k

2�.ji�j jCjj�kjCjk�i j/
p�1
18 kfikL2kfj k

2
3

L2
kfkk

2
3

L2

.ƒ.f /
4
9

�X
k2Z

kfkk
3
L2

�1
3
�X
k2Z

kfkk
2
L2

�2
3

:

This implies (2-19) at once, and concludes the proof of the proposition. �

The following L2 dyadic cap estimate is a direct consequence of (2-18).

Corollary 2.6. Let p > 1. Then, for every f 2 L2.R/,

kEp.f /k3L6.R2/ .p
�
sup
k2Z

kfkkL2.R/
�
kf k2

L2.R/
:

We now derive a cap bound similar to [Jiang et al. 2010, Lemma 1.2] and [Shao 2009, Lemma 1.2].

Proposition 2.7. Let p > 1. Then the following estimate holds:

kEp.f /k3L6.R2/ .p
�
sup
k2Z

sup
I�I�

k

jI j�
1
6 kf kL3=2.I /

� 2
3 kf k

7
3

L2.R/
(2-21)

for every f 2 L2.R/, where the inner supremum is taken over all subintervals I � I �
k

.

Proof. We start by considering the case when f D fk.D f 1I�
k
/. From (2-15), we have

kEp.fk/k3L6 .
Z

R2

jfk.y/fk.y
0/j

3
2

jy �y0j
1
2

dy dy0: (2-22)
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Arguing as in as in [Jiang et al. 2010; Shao 2009] we obtain, for every q > 1, that

kEp.fk/kL6 .
�

sup
I�I�

k

jI j
1
2
� 1
q kfkkLq.I /

� 1
3 kfkk

2
3

L2.R/
: (2-23)

For the convenience of the reader, we provide the details. In light of (2-22), we may assume fk � 0.
Normalizing the supremum in (2-23) to equal 1, we may further assume thatZ

I

f
q

k
� jI j1�

q
2 for every subinterval I � I �k : (2-24)

Denote the collection of dyadic intervals of length 2j by Dj WDf2j Œk; kC1/ Wk2Zg, and set D WD
S
j2Z Dj .

We perform a Whitney decomposition of R2 n f.y; y/ W y 2 Rg in the following manner; see for instance
[Dodson et al. 2018, Lemma 10] and [Bégout and Vargas 2007, Proof of Theorem 1.2]. Given distinct
y; y0 2 R, there exists a unique pair of maximal dyadic intervals I; I 0 satisfying

.y; y0/ 2 I � I 0; jI j D jI 0j; and dist.I; I 0/� 4jI j:

Let I denote the collection of all such pairs as y ¤ y0 ranges over R�R. ThenX
.I;I 0/2I

1I .y/1I 0.y
0/D 1 for every .y; y0/ 2 R2 with y ¤ y0;

and therefore

fk.y/fk.y
0/D

X
.I;I 0/2I

fk;I .y/fk;I 0.y
0/ for a.e. .y; y0/ 2 R2;

where fk;I WD fk1I . Clearly, if .y; y0/ 2 I �I 0 and .I; I 0/ 2 I, then jy�y0j ' jI j. From this and (2-22),
we may choose a slightly larger dyadic interval containing I [ I 0 but of length comparable to jI j (still
denoted by I ), and it suffices to show thatX

I2D

1

jI j
1
2

�Z
f
3
2

k;I

�2
.
Z
f 2k :

We further decompose fk;I as

fk;I D
X
n2Z

fk;I;n; where fk;I;n WD fk1
fy2I W 2n

jI j1=2
�fk.y/<

2nC1

jI j1=2
g
;

and note that it suffices to establishX
I2D

1

jI j
1
2

�Z
f
3
2

k;I;n

�2
. 2�jnj"

Z
f 2k (2-25)

for some " > 0 and every n 2 Z. By the Cauchy–Schwarz inequality,�Z
f
3
2

k;I;n

�2
�

�Z
f 2k;I;n

��Z
fk;I;n

�
:
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By construction of fk;I;n, Chebyshev’s inequality, and normalization (2-24),Z
fk;I;n �

2nC1

jI j
1
2

ˇ̌̌̌�
y 2 I W fk.y/�

2n

jI j
1
2

�ˇ̌̌̌
�
2nC1

jI j
1
2

R
I f

q

k

2nqjI j�
q
2

. 2�jnj.q�1/jI j
1
2 (2-26)

for every q > 1 and n� 0. If n < 0, then the following simpler estimate suffices:Z
fk;I;n .

2n

jI j
1
2

jI j D 2�jnjjI j
1
2 : (2-27)

Combining (2-26) and (2-27), we concludeX
I2D

1

jI j
1
2

�Z
f
3
2

k;I;n

�2
. 2�jnj"

X
I2D

Z
f 2k;I;n

for some " > 0, from which we get the desired (2-25) by noting thatX
I2D

Z
f 2k;I;n D

X
j2Z

X
I2Dj

Z
f 2k 1ffk'2n�j=2g D

Z
R

� X
j2ZW

fk.y/'2
n�j=2

f 2k .y/

�
dy .

Z
f 2k :

This concludes the verification of (2-23). Recalling inequality (2-19), and specializing (2-23) to q D 3
2

,
yields

kEp.f /k3L6 .
�

sup
k;I�I�

k

jI j�
1
6 kfkkL3=2.I /

�X
k2Z

kfkk
2
L2
C
�
sup
k2Z

jIkj
� 1
6 kfkkL3=2

� 2
3 kf k

7
3

L2

.
�
sup
k2Z

sup
I�I�

k

jI j�
1
6 kfkkL3=2.I /

� 2
3 kf k

7
3

L2
;

where the last line follows from Hölder’s inequality. �
In the next section, it will be useful to have the L1 version of (2-21) at our disposal, and this is the

content of the following result.

Proposition 2.8. Let p > 1. Then there exist 
 2 .0; 1/ such that

kEp.f /kL6.R2/ .p;

�
sup
k2Z

sup
I�I�

k

jI j�
1
2 kf kL1.I /

�

kf k

1�


L2.R/
(2-28)

for every f 2 L2.R/, where the inner supremum is taken over all subintervals I � I �
k

.

The proof below yields 
 D 2
45

and is inspired by [Christ and Shao 2012a, Proposition 2.9].

Proof of Proposition 2.8. Set ı WD kEp.f /kL6kf k�1L2 . From (2-21) we have

sup
k2Z

sup
I�I�

k

jI j�
1
6 kf kL3=2.I / & ı

9
2 kf kL2.R/:

Then there exist k 2 Z and an interval I � I �
k

such thatZ
I

jf j
3
2 � c0ı

27
4 jI j

1
4 kf k

3
2

L2.R/
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for a universal constant c0 (independent of f; ı). Given R � 1, define the set E WD fy 2 I W jf .y/j �Rg.
Set g WD f 1E and h WD f �g. Then g and h have disjoint supports, and kgkL1 �R. Since jh.y/j �R
for almost every y 2 I for which h.y/¤ 0, we haveZ

I

jhj
3
2 �R�

1
2

Z
I

jhj2 �R�
1
2 kf k2

L2.R/
:

Choose R satisfying R�
1
2 D

1
2
c0ı

27
4 jI j

1
4 kf k

� 1
2

L2.R/
. ThenZ

I

jgj
3
2 D

Z
I

jf j
3
2 �

Z
I

jhj
3
2 �

c0

2
ı
27
4 jI j

1
4 kf k

3
2

L2.R/
:

Since g is supported on I, Hölder’s inequality implies

kgkL2 � jI j
� 1
6 kgkL3=2 � c1ı

9
2 kf kL2 ; (2-29)

where c1 is universal. Since kgkL1 �R, we have (by the definition of R) that

jg.y/j � c2ı
� 27
2 jI j�

1
2 kf kL2.R/1I .y/ for almost every y 2 R;

where c2 is universal. Together with (2-29), this implies the lower boundZ
I

jgj �

Z
I

jgj
jgj

c2ı
� 27
2 jI j�

1
2 kf kL2

D c�12 ı
27
2 jI j

1
2

kgk2
L2

kf kL2
� c3ı

45
2 jI j

1
2 kf kL2 ;

where c3 is universal. Since jgj � jf j, it follows that

c3ı
45
2 jI j

1
2 kf kL2.R/ � kgkL1.I / � kf kL1.I /:

Recalling the definition of ı, we obtain (2-28) with 
 D 2
45

. �

3. Existence versus concentration

This section is devoted to the proof of Theorem 1.3. Start by observing the scale invariance of (1-10), or
equivalently that of (1-9). Indeed, if f�.y/ WD f .�y/, then kf�kL2.R/ D �

�1=2kf kL2.R/. On the other
hand, Ep.f�/.x; t/D ��.pC4/=6Ep.f /.x=�; t=�p/, and so

kEp.f�/kL6.R2/ D �
�
pC4
6
C
pC1
6 kEp.f /kL6.R2/ D �

� 1
2 kEp.f /kL6.R2/:

In particular, given any sequence fang � R n f0g, if ffng is an L2-normalized extremizing sequence for
(1-9), then so is fjanj1=2fn.an � /g.

We come to the first main result of this section.

Proposition 3.1. Let ffng � L2.R/ be an L2-normalized extremizing sequence of nonnegative functions
for (1-9). Then there exist a subsequence ffnkg and a sequence fakg � R n f0g such that the rescaled
sequence fgkg, gk WD jakj1=2fnk .ak � / satisfies one of the following conditions:

(i) There exists g 2 L2.R/ such that gk! g in L2.R/ as k!1.

(ii) fgkg concentrates at y0 D 1.
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Theorem 1.3 follows at once from Proposition 3.1 and the following result.

Lemma 3.2. Let p > 1. Given y0 2 R n f0g, let ffng � L2.R/ be a sequence concentrating at y0. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2.R2/

kfnk
6
L2.R/

�
2�

p
3p.p� 1/

: (3-1)

If we set fn.y/ D e�n.jyj
p�jy0j

p�py0jy0j
p�2.y�y0//jyj.p�2/=6, then the sequence ffnkfnk�1L2 g concen-

trates at y0, and equality holds in (3-1).

Convolution of singular measures is treated in much greater generality in the companion paper [Oliveira
e Silva and Quilodrán 2019]. Lemma 3.2 is almost contained in [Oliveira e Silva and Quilodrán 2018;
2019], and we just indicate the necessary changes.

Proof sketch of Lemma 3.2. Once the boundary value for j � j.p�2/=6�p � j � j.p�2/=6�p � j � j.p�2/=6�p
given in (4-3) below is known to equal the right-hand side of (3-1), the proof for p � 2 follows the exact
same lines as that of [Oliveira e Silva and Quilodrán 2018, Lemmas 4.1 and 4.2]. We omit the details.

If 1<p<2, then the function j � j.p�2/=6 fails to be continuous at the origin, and an additional argument
is needed. We show how to reduce matters to the analysis of projection measure. Let ffng � L2.R/
concentrate at y0 ¤ 0. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D jy0j
p�2 lim sup

n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

; (3-2)

where �p denotes the projection measure d�p D ı.s� jyjp/ dy ds. To verify (3-2), consider the interval
J WD Œy0=2; 3y0=2�. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D lim sup
n!1

kfn1J�p �fn1J�p �fn1J�pk2L2

kfn1J k6L2

D jy0j
p�2 lim sup

n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

:

Here, to justify the first equality, invoke the continuity of the operator Ep , and the fact that the sequence
ffng concentrates at y0. For the second equality, additionally note that

kfn1J j � j
p�2
6 �fn1J jy0j

p�2
6 kL2

kfn1J kL2
! 0 as n!1:

From [Oliveira e Silva and Quilodrán 2019, Proposition 2.1], the measure �p��p��p defines a continuous
function in the interior of its support, with continuous extension to the boundary except at .0; 0/. Moreover,
for any y0 ¤ 0,

.�p � �p � �p/.3y0; 3jy0j
p/D

2�
p
3p.p� 1/jy0jp�2

:

The result now follows as in [Oliveira e Silva and Quilodrán 2018, Lemmas 4.1 and 4.2]. �
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The proof of Proposition 3.1 relies on the bilinear extension estimates and cap bounds from Section 2,
together with a suitable variant of Lions’ concentration-compactness lemma, which is formulated in the
Appendix as Proposition A.1. This has two important consequences for the present context, the first of
which is the following.

Proposition 3.3. Let ffng � L2.R/ be an L2-normalized extremizing sequence for (1-9). Let frng be a
sequence of nonnegative numbers satisfying rn! 0 as n!1 and

inf
n2N

Z 1Crn

1�rn

jfn.y/j
2 dy > 0:

Then the sequence ffng concentrates at y0 D 1.

Proof. Consider the intervals Jn WD Œ1� rn; 1C rn�, n 2 N, and define the pseudometric

%WR n f1g �R n f1g ! Œ0;1/; %.x; y/ WD jk� k0j; (3-3)

where k; k0 are such that jx� 1j 2 Œ2k; 2kC1/ and jy � 1j 2 Œ2k
0

; 2k
0C1/. Let R be an integer. Then the

ball centered at x ¤ 1 of radius R defined by % is given by

B.x;R/D fy 2 R n f1gW 2k�R � jy � 1j< 2kCRC1g:

Let ffng be as in the statement of the proposition. Apply Proposition A.1 to the sequence fjfnj2g with
X DR equipped with Lebesgue measure, Nx D 1, the function % defined as in (3-3), and �D 1. Passing to
a subsequence, also denoted by fjfnj2g, one of three cases arises.

Case 1: The sequence fjfnj2g satisfies compactness. In this case, there exists fxng � R n f1g with the
property that for any " > 0 there exists R <1 such that, for every n� 1,Z

B.xn;R/

jfnj
2
� 1� ": (3-4)

Suppose that lim supn!1 jxn � 1j > 0. Then, possibly after extraction of a subsequence, fxng is
eventually far from 1; i.e., there exist N0 2 N, `� 2 Z such that jxn � 1j > 2`

�

for every n � N0. Let
" WD 1

2
infn kfnk2L2.Jn/ > 0, and choose an integer R such that (3-4) holds. Now,

B.xn; R/D fy 2 R n f1gW 2kn�R � jy � 1j< 2knCRC1g;

where kn is such that jxn � 1j 2 Œ2kn ; 2knC1/, and hence B.xn; R/ � fy ¤ 1W jy � 1j � 2`
��Rg. Let

N1 �N0 be such that rn < 2`
��R for every n�N1. In this case, we have Jn\B.xn; R/D∅, which is

impossible because our choice of " would then force

1D

Z
R

jfnj
2
�

Z
Jn

jfnj
2
C

Z
B.xn;R/

jfnj
2 > 1:

It follows that xn!1 as n!1 and consequently the sequence ffng concentrates at y0D1. Indeed, given
" > 0, choose an integer R such that (3-4) holds. Then B.xn; R/� Œ1� 2knCRC1; 1C 2knCRC1� n f1g,
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where jxn� 1j 2 Œ2kn ; 2knC1/ and kn!�1, as n!1, so that 2knCRC1! 0, as n!1. This forcesZ 1C2knCRC1

1�2knCRC1
jfn.y/j

2 dy � 1� "

for every n� 1, which implies concentration of the sequence ffng at y0 D 1.

Case 2: The sequence fjfnj2g satisfies dichotomy. Let ˛ 2 .0; 1/ be as in the dichotomy condition. Given
" > 0, consider the corresponding data R, k0, �n;j D jfn;j j2, j 2 f1; 2g, fxng �Rnf1g, fRng � Œ0;1/.
In particular,

supp.fn;1/� B.xn; R/ and supp.fn;2/� B.xn; Rn/{:

Since Rn�R!1 as n!1, by Corollary 2.4 we obtain

kEp.fn;1/Ep.fn;2/kL3 � Cnkfn;1kL2kfn;2kL2 ; (3-5)

where Cn D Cn."/. 2�ˇ.Rn�R/ for some ˇ > 0. In particular, given " > 0, we have Cn! 0 as n!1.
Aiming at a contradiction, consider

kEp.fn�fn;1�fn;2/kL6 �Epkfn� .fn;1Cfn;2/kL2 �Ep"
1
2 : (3-6)

The latter inequality requires a short justification which boils down to the pointwise estimate

.jfnj � .jfn;1jC jfn;2j//
2
� jjfnj

2
� .jfn;1jC jfn;2j/

2
j D jjfnj

2
� .jfn;1j

2
Cjfn;2j

2/j: (3-7)

This, in turn, follows from the disjointness of the supports of fn;1 and fn;2, together with the trivial
estimate jjfnj� .jfn;1jC jfn;2j/j � jfnjC .jfn;1jC jfn;2j/. In this way, (3-7) and Proposition A.1 imply

k.jfnj � .jfn;1jC jfn;2j//
2
kL1 � kjfnj

2
� .jfn;1j

2
Cjfn;2j

2/kL1 � ":

Coming back to (3-6), we have as an immediate consequence that

kEp.fn/kL6 �Ep"
1
2 CkEp.fn;1Cfn;2/kL6 :

Expanding the binomial, using kfn;1kL2 ; kfn;2kL2 � 1, and Hölder’s inequality together with (3-5), we
find that there exists c independent of n such that, for sufficiently large n,

kEp.fn;1Cfn;2/k6L6 � kEp.fn;1/k
6
L6
CkEp.fn;2/k6L6 C cCn

�E6p .kfn;1k
6
L2
Ckfn;2k

6
L2
/C cCn

�E6p ..˛C "/
3
C .1�˛C "/3/C cCn: (3-8)

This implies, for every sufficiently large n,

kEp.fn/kL6 �Ep"
1
2 C .E6p ..˛C "/

3
C .1�˛C "/3/C cCn/

1
6 :

Taking n!1, and recalling that ffng is an L2-normalized extremizing sequence for (1-9), we find that

Ep �Ep"
1
2 CEp..˛C "/

3
C .1�˛C "/3/

1
6
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for every " > 0. Taking "! 0 yields 1 � ˛3C .1� ˛/3, which is impossible since ˛ 2 .0; 1/. Hence
dichotomy does not arise.

Case 3: The sequence fjfnj2g satisfies vanishing. In this case,

lim
n!1

sup
k2Z

Z
2k�R�jy�1j�2kCRC1

jfn.y/j
2 dy D 0

for every integer R <1. In particular, for fixed k 2 N, we have

lim
n!1

Z
2�k�jy�1j�2k

jfn.y/j
2 dy D 0: (3-9)

Set fn;1 WD fn1Œ1�2�k ;1C2�k� and fn;2 WD fn1fjy�1j�2kg. Since kfn � fn;1 � fn;2kL2 ! 0 as n!1
it follows that ffn;1 C fn;2gn is also an extremizing sequence for (1-9) for each k 2 N. This new
sequence splits the mass into two separated regions, and so we expect to reach a contradiction if
lim supn!1 kfn;2kL2 > 0, just as in Case 2. Set ˛k WD lim supn!1 kfn;2k

2
L2

(recall that fn;2 depends
on k), and note that f˛kg is a constant sequence. Indeed,Z

jy�1j�2k
jfn.y/j

2 dy D
Z
jy�1j�2kC1

jfn.y/j
2 dyC

Z
2k�jy�1j�2kC1

jfn.y/j
2 dy (3-10)

and from (3-9) with kC 1 instead of k we have

lim
n!1

Z
2k�jy�1j�2kC1

jfn.y/j
2 dy D 0:

Taking lim supn!1 in (3-10) yields ˛kC1 D ˛k for every k 2 N. An argument analogous to that of
Case 2 (starting from (3-8)) shows that there exist ˇ > 0 and a sequence fCkg, 0� Ck . 2�ˇk! 0 as
k!1 such that

1� ˛3kC .1�˛k/
3
CCk for every k 2 N:

Since ˛k � ˛ is constant, we may take k!1 in the previous inequality and obtain 1� ˛3C .1�˛/3.
Since ˛ 2 Œ0; 1�, necessarily ˛ 2 f0; 1g. We claim that ˛D 0. For any k � 1, the support of fn;2 is disjoint
from the interval Jn if n large enough. Thus

kfn;2k
2
L2
� 1�

Z
Jn

jfnj
2
� 1� inf

n2N

Z
Jn

jfnj
2;

and therefore
˛ � 1� inf

n2N

Z
Jn

jfnj
2 < 1:

We conclude that ˛D 0, as claimed. Finally, we show that vanishing implies concentration at yD 1. Since

1D kfnk
2
L2
D kfn;1k

2
L2
Ckfn;2k

2
L2
C on.1/D kfn;1k

2
L2
C on.1/D kfn1Œ1�2�k ;1C2�k�k

2
L2
C on.1/;

we find that, for every k 2 N,

lim
n!1

Z 1C2�k

1�2�k
jfn.y/j

2 dy D 1:

This implies that the sequence ffng concentrates at y0 D 1.
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To sum up, we proved that any sequence ffng as in the statement of the proposition does not satisfy
dichotomy, and that if it satisfies compactness or vanishing, then it concentrates at y0D 1. Thus the proof
is complete. �

As a second application of Proposition A.1, we prove dyadic localization of extremizing sequences,
after rescaling. We take X D R, Nx D 0, and use the dyadic pseudometric

%WR n f0g �R n f0g ! Œ0;1/; %.x; y/ WD jk� k0j; (3-11)

where this time jxj 2 Œ2k; 2kC1/ and jyj 2 Œ2k
0

; 2k
0C1/. In this case, if R is an integer, then

B.x;R/D fy 2 R n f0gW 2k�R � jyj< 2kCRC1g:

Proposition 3.4. Let ffng � L2.R/ be an L2-normalized extremizing sequence for (1-9). Then there
exist a subsequence ffnkg, a sequence fakg � R n f0g, and a function ‚ W Œ1;1/! .0;1/, ‚.R/! 0

as R!1 such that the rescaled sequence fgkg, gk WD jakj1=2fnk .ak � /, satisfies

kgkkL2.Œ�R;R�{/ �‚.R/ for every k � 1 and R � 1: (3-12)

This proposition will provide the input for the suitable application of the Brézis–Lieb lemma, which is
formulated in the Appendix as Proposition B.1.

Proof of Proposition 3.4. Let ffng be as in the statement of the proposition. In view of Corollary 2.6,
there exists `n 2 Z such that kfnkL2.I �

`n
/ &p 1, if n is large enough. Setting gn WD 2`n=2fn.2`n � /, we

then have

kgnkL2.I �0/
&p 1 (3-13)

for every sufficiently large n. Using Proposition A.1 with the pseudometric (3-11), we obtain a subsequence
fjgnk j

2g that satisfies one of three possibilities. Because of (3-13), vanishing does not occur. The argument
given in Case 2 of the proof of Proposition 3.3 can be used in conjunction with Corollary 2.2 to show that
the sequence fjgnk j

2g does not satisfy dichotomy either. Therefore it must satisfy compactness. Thus,
there exists a sequence fNkg � Z such that, for every k � 1 and " > 0, there exists an integer r D r."/
for which Z

2Nk�r�jyj�2NkCrC1
jgk.y/j

2 dy � 1� ":

Because of (3-13), the sequence fNkg is bounded, supk�1 jNkj DW r0 <1. By redefining r as rC r0C1,
it follows that Z

2�r�jyj�2r
jgk.y/j

2 dy � 1� " for every k � 1: (3-14)

Defining the function

�.R/ WD sup
k�1

Z
fR�1�jyj�Rg{

jgk.y/j
2 dy;
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R 7! �.R/ is a nonincreasing function of R which is bounded by 1 and, in view of (3-14), satisfies
�.R/! 0 as R!1. By construction,Z

fR�1�jyj�Rg{
jgk.y/j

2 dy � �.R/ for every k � 1; R � 1;

which implies (3-12) at once by taking ‚ WD �1=2. �

We are finally ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let ffng be as in the statement of the proposition. Apply Proposition 3.4 to
ffng, and denote the resulting rescaled subsequence by fgng. From the L1 cap estimate (2-28) we know
that, for each sufficiently large n, there exists an interval Jn D Œsn� rn; snC rn�, contained in a dyadic
interval3 Œ2kn ; 2knC1�, such that Z

Jn

jgnj � cjJnj
1
2

for some c > 0 which is independent of n. By the Cauchy–Schwarz inequality,

kgnkL2.Jn/ � c; (3-15)

and so estimate (3-12) implies the existence of C > 0 independent of n, such that C�1 � jsnj � C.
Rescaling again, we may assume sn D 1 for every n.

If r� WD lim infn!1 jJnj> 0, then passing to the relevant subsequence that realizes the limit inferior
we have Z 1C2r�

1�2r�
gn.y/ dy D

Z 1C2r�

1�2r�
jgn.y/j dy �

Z
Jn

jgnj&
p
r�;

provided n is large enough to ensure Jn � Œ1 � 2r�; 1C 2r��. Therefore any L2-weak limit of the
sequence fgng is nonzero. Here we used the nonnegativity of the sequence fgng. By Proposition B.1, we
conclude that there exists 0¤ g 2 L2.R/, such that possibly after a further extraction, gn! g in L2.R/,
as n!1. In other words, (i) holds.

It remains to consider the case when jJnj ! 0, as n!1. In view of (3-15), Proposition 3.3 applies,
and the sequence fgng concentrates at y0 D 1, i.e., (ii) holds. This finishes the proof of Proposition 3.1
(and therefore of Theorem 1.3). �

4. Existence of extremizers

In this section, we prove Theorem 1.4. The basic strategy is to choose an appropriate trial function f for
which the ratio from (1-10),

p̂.f / WD
kf�p �f�p �f�pk

2
L2.R2/

kf k6
L2.R/

; (4-1)

3Or its negative, but in that case we replace fn by its reflection around the origin.
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can be estimated via a simple lower bound. We will give different arguments depending on whether
1 < p < 2 or p > 2, which rely on distinct choices of trial functions. This can be explained by the
different qualitative nature of the 3-fold convolutions w�p �w�p �w�p in the two regimes of p; see
Figure 1. Here, and throughout this section, d�p D ı.s� jyjp/ dy ds denotes projection measure on the
curve s D jyjp, and the weight is given by w D j � j.p�2/=3. Note that d�p D

p
w d�p.

The following analogue of [Oliveira e Silva and Quilodrán 2018, Proposition 6.4] holds for 3-fold
convolutions in R2.

Proposition 4.1. Given p > 1, the following assertions hold for w�p �w�p �w�p:

(a) It is absolutely continuous with respect to Lebesgue measure on R2.

(b) Its support, denoted by Ep, is given by

Ep D f.�; �/ 2 R2 W � � 31�pj�jpg: (4-2)

(c) If p � 2, then its Radon–Nikodym derivative, also denoted by w�p �w�p �w�p , defines a bounded,
continuous function in the interior of the set Ep. If 1 < p < 2, then w�p �w�p �w�p defines a
continuous function on the set

zEp WD f.�; �/ 2 R2 W 31�pj�jp < � < 21�pj�jpg:

(d) It is even in �, that is,

.w�p �w�p �w�p/.��; �/D .w�p �w�p �w�p/.�; �/

for every � 2 R, � > 0, and is homogeneous of degree zero in the sense that

.w�p �w�p �w�p/.��; �
p�/D .w�p �w�p �w�p/.�; �/ for every � > 0:

(e) It extends continuously to the boundary of Ep , except at the point .�; �/D .0; 0/, with values given by

.w�p �w�p �w�p/.�; 3
1�p
j�jp/D

2�
p
3p.p� 1/

if � ¤ 0: (4-3)

Proof. For p � 2, the result follows from Proposition 2.1 and Remark 2.3 of [Oliveira e Silva and
Quilodrán 2019]. If 1 < p < 2, then the weight w is singular at the origin, and an additional argument is
required in order to establish parts (c) and (e) (as the others follow from [loc. cit.]). Note that part (e)
also follows from [loc. cit.] after we verify (c), and so it suffices to show the latter.

Let  D j � jp. From [loc. cit., Remark 2.3], the formula

.w�p �w�p �w�p/.�; �/D

Z
S1

�ˇ̌
1
3
�C˛.!1C!2/

ˇ̌ ˇ̌
1
3
� �˛!1

ˇ̌ ˇ̌
1
3
� �˛!2

ˇ̌�p�2
3˝

!1;
W1

˛

˛
C
˝
!2;

W2

˛

˛ d�.!1;!2/; (4-4)

where

Wi .�; �; !1; !2/Dr 
�
1
3
�C˛!1C˛!2

�
�r 

�
1
3
� �˛!i

�
; i D 1; 2;
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holds on zEp, provided that the function W defined by

W.�; !1; !2/ WD
�ˇ̌
1
3
�C˛.!1C!2/

ˇ̌ ˇ̌
1
3
� �˛!1

ˇ̌ ˇ̌
1
3
� �˛!2

ˇ̌�p�2
3 (4-5)

is continuous in the domain of integration. Here !21 C!
2
2 D 1, arc-length measure on the unit circle S1

is denoted by �, and the function ˛ D ˛.�; �; !1; !2/ is implicitly defined byˇ̌
1
3
�C˛.!1C!2/

ˇ̌p
C
ˇ̌
1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
D � I

see [Oliveira e Silva and Quilodrán 2019] for details. It follows thatˇ̌
1
3
�C˛.!1C!2/

ˇ̌p
C
ˇ̌
1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
< 21�pj�jp;

provided .�; �/ 2 zEp. On the other hand, if 1
3
� �˛!1 D 0, then convexity of  impliesˇ̌

2
3
�C˛!2

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
� 21�pj�jp;

and similarly if 1
3
� �˛!2 D 0, while if 1

3
�C˛.!1C!2/D 0, thenˇ̌

1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
� 21�p

ˇ̌
2
3
� �˛.!1C!2/

ˇ̌p
D 21�pj�jp:

It follows that none of these three terms can vanish in a neighborhood of any point .�; �/2 zEp , and therefore
W is continuous there. Thus identity (4-4) holds, and this concludes the verification of part (c). �

The boundedness of w�p�w�p�w�p provides an alternative way towards estimate (1-10) via the usual
application of the Cauchy–Schwarz inequality, at least in the restricted range p � 2. Moreover, identity
(4-3) and the argument in Lemma 3.2 together imply that the corresponding optimal constant Cp satisfies

C 6p �
2�

p
3p.p� 1/

;

which should be compared to (1-13).

4A. Effective lower bounds for Cp. We start by examining a simple lower bound, which is the analogue
of [Oliveira e Silva and Quilodrán 2018, Lemma 6.1] for 3-fold convolutions in R2.

Lemma 4.2. Given a strictly convex function ‰ W R! R and a nonnegative function w W R! Œ0;1/,
consider the measures d�.y; s/D ı.s�‰.y// dy ds and d� D

p
w d�. Let E denote the support of the

convolution measure � � � � �. Given � > 0, a 2 R, let f�;a.y/ WD e��.‰.y/Cay/
p
w.y/. Then

kf�;a� �f�;a� �f�;a�k
2
L2.R2/

kf�;ak
6
L2.R/

�

kf�;ak
6
L2.R/R

E e
�2�.�Ca�/ d� d�

(4-6)

for every f�;a 2 L2.R/ such that f�;a� �f�;a� �f�;a� 2 L2.R2/.

The proof is entirely parallel to that of [Oliveira e Silva and Quilodrán 2018, Lemma 6.1]. Note that
(4-6) implies

sup
0¤f 2L2.R/

kf� �f� �f�k2
L2.R2/

kf k6
L2.R/

� sup
�>0; a2R

kf�;ak
6
L2.R/R

E e
�2�.�Ca�/ d� d�

: (4-7)
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Specializing Lemma 4.2 to the case of the measure �p with the natural choice of trail function f .y/D
e�jyj

p

jyj.p�2/=6, a quick computation yields

p̂.f /�
4�
�pC1
3p

�3
31�

1
pp2�

�
1
p

� : (4-8)

This lower bound is good enough to establish the strict inequality (1-13) in a range of p that includes
the cubic case p D 3 but not the quartic case p D 4, so we have to refine it. For the above choice of
trial function, the corresponding ratio (4-1) can be expanded as an infinite series with nonnegative terms,
whose coefficients are given in terms of the Gamma function and whose first term equals the expression
on the right-hand side of (4-8).

Proposition 4.3. Let p > 1 and f .y/D e�jyj
p

jyj.p�2/=6 2 L2.R/. Then

p̂.f /D
31�

1
pp2�

�
1
p

�
23�

�pC1
3p

�3 1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�2
; (4-9)

where the coefficients fI2k.p/gk�0 are given by expression (4-15) below.

The proof will make use of the classical Legendre polynomials, denoted by fPngn�0, which constitute
a family of orthogonal polynomials with respect to the L2-norm on the interval Œ�1; 1�. Explicitly, they
are given by4

Pn.t/D 2
n

nX
kD0

�n
k

�� nCk�1
2

n

�
tk; �1� t � 1; (4-10)

from where one checks that hPm; PniL2 D .2=.2nC 1// ı.nDm/; see [Stein and Weiss 1971, Corol-
lary 2.16, Chapter 4]. See also [Carneiro and Oliveira e Silva 2015; Christ and Shao 2012a; Foschi
2015; Gonçalves 2019; Negro 2018] for earlier appearances of Legendre and other families of orthogonal
polynomials in sharp Fourier restriction theory.

Proof of Proposition 4.3. Start by noting that the function f .y/ D e�jyj
p

jyj.p�2/=6 coincides with
e��

p
w.�/ on the support of �p . Using this together with parts (b) and (d) of Proposition 4.1, we obtain

kf�p �f�p �f�pk
2
L2
D ke�� .w�p �w�p �w�p/k

2
L2

D

Z 1
0

Z 31�1=p�1=p

�31�1=p�1=p
e�2� .w�p �w�p �w�p/

2.�; �/ d� d�

D

Z 1
0

Z 31�1=p

�31�1=p
�
1
p e�2� .w�p �w�p �w�p/

2.�
1
p �; �/ d� d�

D

�Z 1
0

�
1
p e�2� d�

�Z 31�1=p

�31�1=p
.w�p �w�p �w�p/

2.�; 1/ d�

D
31�

1
p�
�
1
p

�
p21C

1
p

Z 1

�1

.w�p �w�p �w�p/
2.31�

1
p t; 1/ dt: (4-11)

4Recall that the binomial coefficient
�˛
n

�
WD ˛.˛� 1/ � � � .˛�nC 1/=nŠ is also defined when ˛ … Z.
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On the other hand,

kf k2
L2
D

Z
R

e�2jyj
p

jyj
p�2
3 dy D 2

Z 1
0

e�2y
p

y
p�2
3 dy D

2
2
3
� 1
3p

p
�

�
pC 1

3p

�
: (4-12)

Given t 2 Œ�1; 1�, define gp.t/ WD .w�p�w�p�w�p/.31�1=pt; 1/. Expanding gp in the basis of Legendre
polynomials,

kgpk
2
L2.Œ�1;1�; dt/ D

1X
nD0

1

kPnk
2
L2

�Z 1

�1

gp.t/Pn.t/ dt
�2

D

1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

� Z 1

�1

gp.t/t
2k dt

�2
;

where the last identity follows from (4-10), the normalization kPnk2L2D 2=.2nC1/, and the fact that gp is
an even function of t . We proceed to find an explicit expression for the moments In.p/ WD

R 1
�1 gp.t/ t

n dt .
Given b 2 R, we computeZ

R2
e�.��b�/.w�p �w�p �w�p/.�; �/ d� d�

D

Z 1
0

Z 31�1=p

�31�1=p
�
1
p e��eb�

1=p�.w�p �w�p �w�p/.�; 1/ d� d�

D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

�Z 1
0

e���
2nC1
p d�

�Z 1

�1

t2n.w�p �w�p �w�p/.3
1� 1

p t; 1/ dt

D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

2nC 1

p
�

�
2nC 1

p

�
I2n.p/: (4-13)

This Laplace transform can be alternatively computed asZ
R2
e�.��b�/.w�p �w�p �w�p/.�; �/ d� d� D

�Z
R

e�jyj
p

eby jyj
p�2
3 dy

�3
D

� 1X
nD0

2b2n

.2n/Š

Z 1
0

e�y
p

y
p�2
3
C2n dy

�3
D

� 1X
nD0

2b2n

p.2n/Š
�

�
pC 1C 6n

3p

��3
: (4-14)

Equating coefficients of the same degree, we obtain

I2n.p/D
23.2n/Š

3.1�
1
p
/.2nC1/p2.2nC 1/�

�
2nC1
p

� nX
kD0

n�kX
mD0

�
�pC1C6k

3p

�
�
�pC1C6m

3p

�
�
�pC1C6.n�k�m/

3p

�
.2k/Š .2m/Š .2.n� k�m//Š

:

(4-15)
Identity (4-9) follows at once, and the proof is complete. �



502 GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENÉ QUILODRÁN

p D 3

p D 4

p D 5

p D 10

p D 11

p D 12

p D 4
3

p D 3
2

p D 5
3

Figure 1. Plots of the functions gp;N .t/, appropriately normalized so that they are
close to 1 at t D 1 for p 2 f3; 4; 5; 10; 11; 12g and p 2

˚
4
3
; 3
2
; 5
3

	
. For p 2 f3; 4; 5g and

p 2
˚
4
3
; 3
2
; 5
3

	
we used N D 10, for p 2 f10; 11; 12g we used N D 15.

Remark 4.4. From the preceding proof, we have the following approximating sequence fgp;N gN�0
for gp:

gp;N .t/ WD

NX
nD0

.4nC 1/22n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�
P2n.t/; �1� t � 1:

This was used to construct Figure 1. They correspond to approximate graphs of w�p �w�p �w�p on the
region f.�; 1/W 0� � � 31�1=pg for different values of p. By homogeneity, the full picture on R2 can be
obtained from these graphs. Figure 1 (top) indicates that, for large p, the function gp.t/ becomes small as
t! 0. The function .w�p�w�p�w�p/.�; �/ should then be small near the � -axis, unlike the case of small
values of p. This suggests that extremizing sequences may concentrate at the boundary if p is large enough.

4B. Proof of Theorem 1.4. We consider the case p > 2 first. From Theorem 1.3 and Proposition 4.3, it
suffices to show that there exists N 2 N such that

31�
1
pp2�

�
1
p

�
23�

�pC1
3p

�3 NX
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�2
>

2�
p
3p.p� 1/

; (4-16)

where the coefficients I2k.p/ are given by (4-15). The range of validity of (4-16) can be estimated by
performing an accurate numerical calculation. Taking N D 15, one checks that inequality (4-16) holds
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for every p 2 .2; p0/, where p0 2 Œ4; 5� and can be numerically estimated by p0 � 4:803, with three
decimal places. Increasing the value of N does not seem to substantially increase p0.

If 1 < p < 2, then inequality (4-16) fails (for every N 2N). Incidentally, note that if p D 2, then the
left- and right-hand sides of (4-16) are equal (for every N 2N) since the 3-fold convolution of projection
measure on the parabola is constant inside its support; see [Foschi 2007, Lemma 4.1]. We are thus led to
a different trial function. For n 2 N, define

fn.y/D e
�n
2
.jyjp�py/

jyj�
2�p
6 : (4-17)

In light of Lemma 3.2, the sequence ffnkfnk�1L2 g concentrates at y0 D 1. Passing to a continuous
parameter � > 0, Lemma 4.2 yields the lower bound

p̂.f�/�
kf�k

6
L2.R/R

Ep
e��.��p�/ d� d�

DW �p.�/;

which we proceed to analyze. Since

kf�k
2
L2.R/

D

Z 1
�1

e��.jyj
p�py/

jyj�
2�p
3 dy;Z

Ep

e��.��p�/ d� d� D
Z 1
�1

e�p�
�Z 1

31�p j�jp
e��� d�

�
d� D

1

�

Z 1
�1

e��.3
1�p j�jp�p�/ d�;

we have

�p.�/D �

�R1
�1

e��.jyj
p�py/jyj�

2�p
3 dy

�3R1
�1

e��.3
1�p j�jp�p�/ d�

:

In view of (4-7), we have C 6p � �p.�/ for every � > 0. Therefore it suffices to show that �p.�/ >
2�=.
p
3p.p� 1//, provided � is large enough. This is the content of the following lemma, which we

choose to formulate in terms of the function 'p.�/ WD �p.��1/.

Lemma 4.5. Let p 2 .1; 2/. Then

lim
�!0C

'p.�/D
2�

p
3p.p� 1/

; (4-18)

lim
�!0C

'0p.�/D
�.2�p/.2p� 1/

9
p
3p2.p� 1/2

; (4-19)

In particular, if � > 0 is small enough, then 'p.�/ > 2�=.
p
3p.p� 1//.

Note that (4-18) follows from Lemma 3.2, but we choose to present a unified approach that establishes
both (4-18) and (4-19).

Proof of Lemma 4.5. Rewrite �p in the equivalent form

�p.�/D �

�R1
�1

e��.jyj
p�1�p.y�1//jyj�

2�p
3 dy

�3R1
�1

e��3
1�p.jyjp�3p�p3p�1.y�3// dy

:
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Define real-valued functions y 7! ˛.y/ and y 7! ˇ.y/ via5

jyjp � 1�p.y � 1/D
�p
2

�
..y � 1/2C˛.y � 1//;

jyjp � 3p �p3p�1.y � 3/D 3p�2
�p
2

�
..y � 3/2Cˇ.y � 3//:

(4-20)

By the binomial series expansion, if jyj< 1, then

˛.y/D
p� 2

3
y3C

.p� 2/.p� 3/

12
y4C � � � ; (4-21)

ˇ.y/D
p� 2

3 � 3
y3C

.p� 2/.p� 3/

12 � 32
y4C � � � : (4-22)

One easily checks that j˛.y/j !1 and jˇ.y/j !1 as jyj !1, and

lim
�!1

�˛.��
1
2y/D lim

�!1
�ˇ.��

1
2y/D 0 (4-23)

for each y 2 R. We also haveZ
R

exp
�
��
jyjp � 1�p.y � 1/�

p
2

� �
jyj�

2�p
3 dy D ��

1
2

Z
R

e�y
2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy;

Z
R

exp
�
��

31�p.jyjp � 3p �p3p�1.y � 3//�
p
2

� �
dy D 3

1
2��

1
2

Z
R

e�y
2

e�
�
3
ˇ.. 3

�
/
1=2
y/ dy;

and consequently

�p

�
2�

p.p� 1/

�
D

2
p
3p.p� 1/

�R
R
e�y

2

e��˛.�
�1=2y/j1C��

1
2yj�

2�p
3 dy

�3R
R
e�y

2
e�

�
3
ˇ.. 3

�
/
1=2
y/ dy

:

For bookkeeping purposes, set

Ap.�/ WD

�Z
R

e�y
2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy

�3
and Bp.�/ WD

Z
R

e�y
2

e�
�
3
ˇ.. 3

�
/
1=2
y/ dy:

We now analyze each expression. Recalling (4-22), the numerator Ap.�/ is seen to satisfy

Ap.�/D �
3
2

�
1�

.p� 2/.2p� 1/

144�
CO.��

3
2 /

�3
as �!1: (4-24)

Since binomial series expansions are only valid inside the unit ball, this step requires some care which
we now briefly describe. Split the integral defining Ap.�/ into three regions,

A
1
3
p .�/D

�Z �p�
2

�1

C

Z p�
2

�

p
�
2

C

Z 1
p
�
2

�
e�y

2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy DW IC IIC III;

5Note that ˛.y/D 3�2ˇ.3y/.
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and estimate each of them separately. The main contribution comes from the integral IID II.�/. Appealing
to (4-21) and to the binomial series expansion, we have

exp.��˛.��
1
2y//D 1�

p� 2

3
��

1
2y3�

.p� 2/.p� 3/

12
��1y4C

.p� 2/2

18
��1y6COy.�

� 3
2 /;

j1C��
1
2yj�

2�p
3 D 1C

p� 2

3
��

1
2yC

.p� 2/.p� 5/

18
��1y2COy.�

� 3
2 /

uniformly in y 2 Œ�
p
�=2;

p
�=2�. From this one easily checks that

II.�/D �
1
2 C�

1
2
.p� 2/.2p� 1/

144
��1CO.��

3
2 /:

Matters are thus reduced to verifying that the contributions from I and III become negligible as �!1.
On the region of integration of ID I.�/, the factor j1C��1=2yj�.2�p/=3 has an integrable singularity at
y D��1=2. Recalling the definition (4-20) of the function ˛, and changing variables ��1=2y x, we
have

I.�/D �
1
2

Z � 1
2

�1

e�
2�

p.p�1/
.j1Cxjp�1�px/

j1C xj�
2�p
3 dx:

Invoking the elementary inequality j1C xjp � 1� px &p jxjp, which is valid for every x � �1
2

and
1 < p < 2, we may use Hölder’s inequality together with the local integrability of x 7! j1C xj�.2�p/=3

in order to bound
I.�/DOp.�

1
2 exp.�Cp�//

for some Cp > 0. The contribution of III.�/ is easier to handle because no singularity occurs on
the corresponding region of integration. This concludes the verification of (4-24), which can then be
differentiated term by term because there is sufficient decay. Therefore

lim
�!1

Ap.�/D �
3
2 and lim

�!1
��2A0p.�/D�

3.p� 2/.2p� 1/�
3
2

144
:

On the other hand, using the binomial series expansion (4-22) we obtain

exp
�
�
�

3
ˇ

��
3

�

�1
2

y

��
D 1�

p� 2

3
3
2

��
1
2y3�

.p� 2/.p� 3/

36
��1y4C

.p� 2/2

54
��1y6COy.�

� 3
2 /

uniformly in y 2
�
�
1
2

�
1
3
�
�1=2

; 1
2

�
1
3
�
�1=2�, so that an argument similar to that for Ap.�/ gives

Bp.�/D �
1
2 C

.p� 2/.2p� 1/�
1
2

144�
CO.��

3
2 /;

lim
�!1

Bp.�/D �
1
2 and lim

�!1
��2B 0p.�/D

.p� 2/.2p� 1/�
1
2

144
:

We conclude

lim
�!0C

'p.�/D lim
�!1

�p.�/D lim
�!1

�p

�
2�

p.p� 1/

�
D

2�
p
3p.p� 1/

:
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To address (4-19), note that

'0p.�/D��
�2�0p.�

�1/; and so lim
�!0C

'0p.�/D lim
�!1

��2�0p.�/:

Therefore

lim
�!1

��2
d

d�

�
�p

�
2�

p.p�1/

��
D

2�
p
3p.p�1/

�
�
3.p�2/.2p�1/

144
�
.p�2/.2p�1/

144

�
D
�.2�p/.2p�1/

18
p
3p.p�1/

;

which readily implies (4-19). This completes the proof of the lemma (and therefore of Theorem 1.4). �

4C. Improving p0. In view of the results from the last subsection, it is natural to let the functional p̂

defined on (4-1) act on trial functions f .y/D e�jyj
p

jyj.p�2/=6Ca for different choices of a.6 By doing
so, the value p0 � 4:803 can be improved. We turn to the details.

Set � WD j � j.p�2/=3Ca, and note that

.��p � ��p � ��p/.��; �
p�/D �3a.��p � ��p � ��p/.�; �/ for every � > 0:

Reasoning as in (4-11) and (4-12), one checks that

kf�p �f�p �f�pk
2
L2.R2/

D
31�

1
p�
�
1C6a
p

�
p21C

1C6a
p

.1C 6a/

Z 1

�1

.��p � ��p � ��p/
2.31�

1
p t; 1/ dt;

kf k2
L2.R/

D
2
2
3
�
1C6a
3p

p
�

�
pC 1C 6a

3p

�
:

Given t 2 Œ�1; 1�, define hp.t/ WD .��p ���p ���p/.31�1=pt; 1/. Expanding hp in the basis of Legendre
polynomials,

khpk
2
L2.Œ�1;1�; dt/ D

1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

� Z 1

�1

hp.t/t
2k dt

�2
:

We proceed to find explicit expressions for the moments In.p; a/ WD
R 1
�1 hp.t/t

n dt . Given b 2 R, we
compute as in (4-13) and (4-14)Z

R2
e�.��b�/.��p���p���p/.�;�/d� d� D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

2nC1C3a

p
�

�
2nC1C3a

p

�
I2n.p;a/

D

� 1X
nD0

2b2n

p.2n/Š
�

�
pC1C6nC3a

3p

��3
:

Equating coefficients as before, we find that the moment I2n.p; a/ equals

3�.1�
1
p
/.2nC1/23.2n/Š

p2.2nC 1C 3a/�
�
2nC1C3a

p

� nX
kD0

n�kX
mD0

�
�pC1C6kC3a

3p

�
�
�pC1C6mC3a

3p

�
�
�pC1C6.n�k�m/C3a

3p

�
.2k/Š .2m/Š .2.n� k�m//Š

:

6Note that L2-integrability forces a > �.pC 1/=6.
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This implies

p̂.f /D
31�

1
pp2�

�
1C6a
p

�
23�

�pC1C6a
3p

�3 .1C 6a/ 1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p; a/

�2
;

and consequently the following lower bound holds for every N � 0:

p̂.f /�
31�

1
pp2�

�
1C6a
p

�
23�

�pC1C6a
3p

�3 .1C 6a/ NX
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p; a/

�2
:

By numerically evaluating this sum with N D 15 and aD 7
15

, one can establish a lower bound that beats
the critical threshold 2�=.

p
3p.p � 1// for every p 2 .2; p1/, where p1 � 5:485 with three decimal

places. One further observes that the lower bound for small values of a > 0 is larger than that for aD 0,
strongly suggesting that the original trial function y 7! e�jyj

p

jyj.p�2/=6 might not be an extremizer in
that range of exponents.

5. Superexponential L2-decay

This section is devoted to the proof of Theorem 1.5. We follow the outline of [Erdoğan et al. 2011; Hundert-
mark and Shao 2012], and shall sometimes be brief. The Euler–Lagrange equation associated to (1-9) is

E�p
�
Ep.f /. � ; t /jEp.f /. � ; t /j4

�
D �f I (5-1)

see [Christ and Quilodrán 2014, Proposition 2.4] for the variational derivation in a related context. The
following 6-linear form will play a prominent role in the analysis:

Q.f1; f2; f3; f4; f5; f6/ WD

Z
R2

3Y
jD1

Ep.fj /.x; t/Ep.fjC3/.x; t/ dx dt:

An immediate consequence of (1-9) is the basic estimate

jQ.f1; f2; f3; f4; f5; f6/j.
6Y

jD1

kfj kL2.R/: (5-2)

The form Q can be rewritten as

Q.f1; f2; f3; f4; f5; f6/D

Z
R6

3Y
jD1

fj .yj /jyj j
p�2
6 fjC3.yjC3/jyjC3j

p�2
6 ı.˛.y// ı.ˇ.y// dy;

where y D .y1; : : : ; y6/ 2 R6 and

˛.y/ WD jy1j
p
Cjy2j

p
Cjy3j

p
� jy4j

p
� jy5j

p
� jy6j

p;

ˇ.y/ WD y1Cy2Cy3�y4�y5�y6:

We will also consider the associated form

K.f1; f2; f3; f4; f5; f6/ WDQ.jf1j; jf2j; jf3j; jf4j; jf5j; jf6j/;
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which is sublinear in each entry. Clearly,

jQ.f1; f2; f3; f4; f5; f6/j �K.f1; f2; f3; f4; f5; f6/; (5-3)

K.f1; f2; f3; f4; f5; f6/.
6Y

jD1

kfj kL2.R/: (5-4)

Let us now introduce a parameter s � 1, which will typically be large. If there exist j ¤ k such that fj is
supported on Œ�s; s� and fk is supported outside of Œ�Cs; C s� for some C > 1, then estimate (5-4) can
be improved to

K.f1; f2; f3; f4; f5; f6/. C�
p�1
6

6Y
jD1

kfj kL2.R/; (5-5)

in accordance with the bilinear estimates of Corollary 2.2. Introducing the weighted variant

KG.f1; f2; f3; f4; f5; f6/ WD

Z
R6
eG.y1/�

P6
jD2G.yj /

6Y
jD1

jfj .yj /jjyj j
p�2
6 ı.˛.y// ı.ˇ.y// dy;

one checks at once that

K.eGf1; e
�Gf2; e

�Gf3; e
�Gf4; e

�Gf5; e
�Gf6/DKG.f1; f2; f3; f4; f5; f6/: (5-6)

Given �; "� 0, define the function

G�;".y/ WD
�jyjp

1C "jyjp
: (5-7)

The same proof as [Hundertmark and Shao 2012, Proposition 4.5] yields

KG�;".f1; f2; f3; f4; f5; f6/�K.f1; f2; f3; f4; f5; f6/I (5-8)

see also Remark 4.6 of that paper. Split f D f<Cf> with f> WD f 1
Œ�s2;s2�{ , and define

kf k�;s;" WD ke
G�;"f>kL2 :

Definition 5.1. A function f 2L2.R/ is said to be a weak solution of (5-1) if there exists �> 0 such that

Q.g; f; f; f; f; f /D �hg; f iL2 for every g 2 L2.R/: (5-9)

Note that if f extremizes (1-9), then f satisfies (5-9) with �DE6p kf k
4
L2

. The following key step
shows that for some positive �, the quantity kf k�;s;" is bounded in " > 0.

Proposition 5.2. Given p > 1, let f be a weak solution of the Euler–Lagrange equation (5-1) with
kf kL2 D 1. If s � 1 is sufficiently large, then there exists C <1 such that

�kf ks�2p;s;" � o1.1/kf ks�2p;s;"CC

5X
`D2

kf k`
s�2p;s;"

C o2.1/; (5-10)

where for j 2 f1; 2g we have oj .1/! 0 as s!1 uniformly in ". Moreover the constant C is independent
of s and ".
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Proof. We start by introducing some notation. Let G WDG�;" be as in (5-7). Let h WD eGf , h> WD eGf>,
and h< WD h � h>. Further split f< D f� C f� and h< D h� C h�, where f� WD f 1Œ�s;s� and
h� WD e

Gf�. Since f satisfies (5-9), we have

�keGf>k
2
L2
D �he2Gf>; f>iL2 D �he

2Gf>; f iL2 DQ.e
2Gf>; f; f; f; f; f /

DQ.eGh>; f; f; f; f; f /DQ.e
Gh>; e

�Gh; e�Gh; e�Gh; e�Gh; e�Gh/DWQG :

It follows from (5-3), (5-6), and (5-8) that jQG j . K.h>; h; h; h; h; h/. Writing h D h< C h>, the
sublinearity of K implies

jQG j.K.h>; h<; h<; h<; h<; h</C
�X0

C

X00
�
K.h>; hj2 ; hj3 ; hj4 ; hj5 ; hj6/;

where the first sum, denoted by B1, is taken over indices j2; : : : ; j6 2 f>;<g with exactly one of the jk
equal to >, and the second sum, denoted by B2, is taken over indices j2; : : : ; j6 2 f>;<g with two or
more of the jk equal to >. We estimate the three terms separately. For the first one,

A WDK.h>; h<; h<; h<; h<; h</�K.h>; h�; h<; h<; h<; h</CK.h>; h�; h<; h<; h<; h</

. kh>kL2.s�
p�1
6 kh�kL2 Ckh�kL2/kh<k

4
L2
;

where we made use of the support separation of h> and h� via (5-5). Since kf kL2 D 1, the estimates

kh<kL2 . e�s
2p

; kh�kL2 . e�s
p

; and kh�kL2 . e�s
2p

kf�kL2

hold and therefore

A. kh>kL2.s�
p�1
6 e�.s

p�s2p/
Ckf�kL2/e

5�s2p :

The terms B1; B2 can be estimated in a similar way. One obtains

B1 . kh>k2L2.s
�
p�1
6 e�.s

p�s2p/
Ckf�kL2/e

4�s2p and B2 . kh>kL2
� 5X
`D2

kh>k
`
L2

�
e3�s

2p

:

The result follows by choosing �D s�2p and noting that kf�kL2 ! 0, as s!1. �

We are finally ready to prove that extremizers decay superexponentially fast.

Proof of Theorem 1.5. Let f 2 L2 be an extremizer of (1-9), normalized so that kf kL2 D 1. Then f
satisfies (5-9) with �DE6p . Note that the function .s; "/ 7! kf ks�2p;s;" is continuous in .s; "/ 2 .0;1/2

and, for each fixed " > 0,

kf ks�2p;s;" D ke
G
s�2p;"f 1

Œ�s2;s2�{kL2 ! 0 as s!1: (5-11)

Let C be the constant promised by Proposition 5.2, and consider the function

H.v/ WD 1
2
�v�C.v2C v3C v4C v5/:
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In (5-10) choose s sufficiently large so that o1.1/� 1
2
� for every " > 0. This is possible since o1.1/! 0

as s!1 uniformly in " > 0. Consequently,

H.kf ks�2p;s;"/� o2.1/ for every " > 0:

In view of (5-11), and the facts that H.0/D 0, H 0.0/ > 0, and H is concave on Œ0;1/, we may choose
s sufficiently large so that sup">0 o2.1/ < H.v0/ and kf ks�2p;s;1 � v0, where 0 < v0 < v1 are the two
unique positive solutions of the equation

H.vj /D
1
2

maxfH.v/ W v � 0g:

By continuity, kf ks�2p;s;" � v0 for every " > 0. The monotone convergence theorem then implies
kf ks�2p;s;0 � v0 <1, which translates into

es
�2p j � jpf 2 L2.R/:

Letting �0 WD s�2p, where s is large enough so that all of the above steps hold, we have thus proved the
first part. For the second part, note that, for every � 2 R, the function

e�jxjf .x/D e�jxj��0jxj
p

� e�0jxj
p

f .x/

belongs to L2.R/, since the first factor is bounded (here we use p > 1) and the second factor is, as we
have just seen, square integrable. The result then follows from the Paley–Wiener theorem as in [Reed and
Simon 1975, Theorem IX.13]. �

We finish with two concluding remarks. Firstly, the argument can be adapted to the case of extremizers
for odd curves treated in the next section. Secondly, an interesting problem is whether extremizers are
smooth (and not only their Fourier transforms). This question has been addressed in the context of the
Fourier extension operator on low-dimensional spheres in [Christ and Shao 2012b; Shao 2016b], but we
have not investigated the extent to which their analysis can be adapted to the present case.

6. The case of odd curves

In this section we discuss the necessary modifications to establish analogues of Theorems 1.3 and 1.4 for
odd curves. In general terms, the analysis is similar, but the existence of parallel tangents requires an
extra symmetrization step. Estimate (1-15) can be rewritten as

kSp.f /kL6.R2/ �Opkf kL2.R/; (6-1)

where the Fourier extension operator on the curve s D yjyjp�1 is given by

Sp.f /.x; t/D
Z

R

eixyeityjyj
p�1

jyj
p�2
6 f .y/ dy: (6-2)

Given a real-valued function f 2 L2.R/, denote the reflection of f with respect to the origin by
Qf WD f .� � /. One easily checks that

Sp. Qf /.x; t/D Sp.f /.�x;�t /D Sp.f /.x; t/;
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where the bar denotes complex conjugation. In particular,

kSp.f /Sp.g/kL3 D kSp.f /Sp. Qg/kL3 ;

and so functions f; g supported on intervals I and �I, respectively, are seen to interact in the same way
as if they were both supported on I, unlike the case of even curves. In this way, one is led to symmetrize
with respect to reflection. This has already been observed in the case of the spheres S1 [Shao 2016a]
and S2 [Christ and Shao 2012a]. Symmetrization on S2 has been efficiently handled via ı-calculus in
[Foschi 2015]. The same method can be applied to the present case, but we choose to present a different
argument which does not rely on the underlying convolution structure.

Lemma 6.1. Let p > 1 and f 2 L2.R/. Then

kSp.f /kL6.R2/
kf kL2.R/

� sup
0¤g2L2.R/
g even

kSp.g/kL6.R2/
kgkL2.R/

: (6-3)

If equality holds in (6-3), then f is necessarily an even function.

Proof. Given f 2 L2.R/, f ¤ 0, take the decomposition f D fe C fo, where fe is an even function,
fe D Qfe a.e. in R, and fo is odd, fo D� Qfo a.e. in R. Then kf k2

L2
D kfek

2
L2
Ckfok

2
L2

, and Sp.fe/ is
real-valued, while Sp.fo/ is purely imaginary. Thus

jSp.f /.x; t/j2 D jSp.fe/.x; t/j2CjSp.fo/.x; t/j2 for almost every .x; t/ 2 R2; (6-4)

and so, by the triangle inequality for the L3-norm, kSp.f /k2L6 � kSp.fe/k
2
L6
CkSp.fo/k2L6 . It follows

that
kSp.f /k2L6
kf k2

L2

�
kSp.fe/k2L6 CkSp.fo/k

2
L6

kfek
2
L2
Ckfok

2
L2

�max
�
kSp.fe/k2L6
kfek

2
L2

;
kSp.fo/k2L6
kfok

2
L2

�
;

where we set either ratio on the right-hand side of this chain of inequalities to zero whenever the
corresponding function fe or fo happens to vanish identically. Therefore we may restrict attention to
functions which are either even or odd. On the other hand, the equivalent convolution form (1-15) of the
inequality implies kSp.g/kL6 � kSp.jgj/kL6 , with equality if and only if g D jgj a.e. in R. Thus

kSp.f /k2L6
kf k2

L2

�max
�
kSp.fe/k2L6
kfek

2
L2

;
kSp.jfoj/k2L6
kfok

2
L2

�
� sup
0¤g2L2
g even

kSp.g/kL6
kgkL2

; (6-5)

where we used that both fe and jfoj are even functions. In order for equality to hold in (6-3), both
inequalities in (6-5) must be equalities. Inspection of the chain of inequalities leading to (6-5) shows that,
if there is equality in the first inequality, then necessarily one of the following alternatives must hold:

� kfokL2 D 0, in which case f D fe, and so f is even; or

� kfekL2 D 0 and fo D jfoj a.e. in R, which implies that fo � 0, and so f � 0 which does not hold
by assumption; or
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� kfekL2kfokL2 ¤ 0 and kSp.fe/kL6kfek�1L2 D kSp.fo/kL6kfok
�1
L2
D kSp.jfoj/kL6kfok�1L2 , which

again forces fo D jfoj a.e. in R, so that fo D 0 which is absurd.

Therefore equality in (6-3) forces f to be an even function, as desired. �

For the remainder of this section, we restrict attention to nonnegative, even functions f . To prove the
analogue of Proposition 3.1, we need bilinear estimates as in Propositions 2.1 and 2.3, and an L1 cap
bound as in Proposition 2.8. These can be obtained in exactly the same way as for the case of even curves,
since the Jacobian factor corresponding to (2-2) is now equal to pjjy0jp�1� jyjp�1j, which amounts to
the bound we used before. We also need an analogue of Proposition A.1 with two points removed; i.e.,
consider X Nx; Ny WD X n f Nx; Nyg equipped with a pseudometric % W X Nx; Ny �X Nx; Ny ! Œ0;1/. The statement
is analogous so we omit it. Next, defining the dyadic pseudometric centered at zero as in (3-11) and
invoking the appropriate bilinear estimates, we obtain an analogue of Proposition 3.4, the statement again
being identical (omitted). The analogue of Proposition 3.3 requires the pseudometric

%WR n f�1; 1g �R n f�1; 1g ! Œ0;1/; %.x; y/ WD jk� k0j;

where k; k0 2 Z are such that jjxj � 1j 2 Œ2k; 2kC1/ and jjyj � 1j 2 Œ2k
0

; 2k
0C1/. It handles concentration

at a pair of opposite points, which we now define.

Definition 6.2. Let y0 2 R. A sequence of even functions ffng � L2.R/ concentrates at the pair
f�y0; y0g if, for every "; � > 0, there exists N 2 N such that, for every n�N,Z

jyCy0j��
jy�y0j��

jfn.y/j
2 dy < "kfnk2L2.R/:

The following analogue of Proposition 3.3 holds for odd curves.

Proposition 6.3. Let ffng � L2.R/ be an L2-normalized extremizing sequence of even functions for
(6-1). Let frng be a sequence of nonnegative numbers satisfying rn! 0 as n!1, and

inf
n2N

Z 1Crn

1�rn

jfn.y/j
2 dy > 0:

Then the sequence ffng concentrates at the pair f�1; 1g.

As in the case of even curves, this can be used to prove the analogue of Proposition 3.1.

Proposition 6.4. Let ffng � L2.R/ be an L2-normalized extremizing sequence of nonnegative, even
functions for (6-1). Then there exist a subsequence ffnkg and a sequence fakg � R n f0g such that the
rescaled sequence fgkg, gk WD jakj1=2fnk .ak � /, satisfies one of the following conditions:

(i) There exists g 2 L2.R/ such that gk! g in L2.R/ as k!1.

(ii) fgkg concentrates at the pair f�1; 1g.

Let ffng � L2.R/ be an L2-normalized sequence of nonnegative, even functions concentrating at
the pair f�1; 1g. Write fn D gnC Qgn, where gn WD fn1Œ0;1/. In particular, kgnkL2 D 2

�1=2, and the
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sequence fgng concentrates at y0 D 1. The left-hand side of (1-15) can be expanded into

kfn�p�fn�p�fn�pk
2
L2
D kgn�p�gn�p�gn�pk

2
L2
Ck Qgn�p� Qgn�p� Qgn�pk

2
L2

C9kgn�p�gn�p� Qgn�pk
2
L2
C9kgn�p� Qgn�p� Qgn�pk

2
L2

C6hgn�p�gn�p�gn�p; gn�p�gn�p� Qgn�piL2

C6hgn�p� Qgn�p� Qgn�p; Qgn�p� Qgn�p� Qgn�piL2

C18hgn�p� Qgn�p� Qgn�p; gn�p�gn�p� Qgn�piL2

C6hgn�p�gn�p�gn�p; gn�p� Qgn�p� Qgn�piL2

C6hgn�p�gn�p� Qgn�p; Qgn�p� Qgn�p� Qgn�piL2

C2hgn�p�gn�p�gn�p; Qgn�p� Qgn�p� Qgn�piL2 : (6-6)

The last three summands vanish since the corresponding supports intersect on a Lebesgue null set. The
symmetry of the inner products then implies

kfn�p �fn�p �fn�pk
2
L2

D 20kgn�p �gn�p �gn�pk
2
L2
C 30hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2 :

Note that �p D �p on the support of gn, where �p was defined in (1-11). It follows that

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D
5

2

kgn�p �gn�p �gn�pk
2
L2

kgnk
6
L2

C
15

4

hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2

kgnk
6
L2

: (6-7)

Since the sequence fgng concentrates at y0 D 1, we have

lim
n!1

hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2 D 0:

Heuristically, gn�p �gn�p is supported near the point .2; 2/, while .gn�p/�.4/ is supported near the point
.4; 4/, and so in the limit there is no contribution of the inner product. More precisely, given " > 0, write
gn D hnC �n, where hn WD gn1Œ1�";1C"� and k�nk2L2! 0 as n!1. If " is small enough, then support
considerations force

hhn�p � hn�p � hn�p � hn�p; hn�p � hn�piL2 D 0 for every n;

whereas the cross terms involve �n, whose L2-norm tends to zero as n!1. We conclude

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D
5

2
lim sup
n!1

kgn�p �gn�p �gn�pk
2
L2

kgnk
6
L2

; (6-8)

and similarly for the limit inferior. Lemma 3.2 applied to the sequence fgng implies

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2.R2/

kfnk
6
L2

�
5�

p
3p.p� 1/

:
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Moreover, equality holds if we take fn D gnC Qgn, with gn WD 2�1=2hnkhnk�1L2 , and

hn.y/ WD e
�n.jyjp�1�p.y�1//

jyj
p�2
6 1Œ0;1/.y/:

Theorem 1.6 is now proved.

Remark 6.5. The invariant form of condition (1-16) in Theorem 1.6 is�
Qp

C2

�6
>

5

p.p� 1/
; (6-9)

where C 62 D �=
p
3 is the best constant for the parabola in convolution form. In the case p D 3, a similar

condition appears in [Shao 2009] on the Airy–Strichartz inequality, which translates into .Q3=C2/6 > 1
3

.
This is of course incompatible with (6-9) but, as was recently pointed out in [Frank and Sabin 2018,
Remark 2.7], there is a problem in [Shao 2009, Lemma 6.1] in the passage from equation (89) to
equation (90), as the argument presented there disregards the effect of symmetrization. On the other hand,
the case p D 3 of (6-9) agrees with [Frank and Sabin 2018, Case p D q D 6 of Theorem 1], once the
proper normalization is considered.

We now come to the question of whether extremizers for (1-15) actually exist, and discuss the case
1 < p < 2 first. Just as in (4-17), set gn.y/ WD e�.u=n/n2.jyj

p�py/jyj�.2�p/=6. Its even extension,

fn WD
gn1Œ0;1/C Qgn1.�1;0�

2
1
2 kgnkL2.0;1/

;

can be used to establish the strict inequality in (1-16). One simply uses (6-8) together with the fact that
the sequence fgnkgnk�1L2 gs>0 concentrates at y0 D 1, so that an argument similar to Lemma 4.5 can be
applied to the present case. Therefore, extremizers for (1-15) exist if 1 < p < 2, and Theorem 1.7 is now
proved.

The case p�2 seems harder. In view of (6-8), it is natural to use the methods of Section 4 in order to find
the series expansion for the trial functions f D2�1=2.gC Qg/, where g.y/D e�jyj

p

jyj.p�2/=6Ca1Œ0;1/.y/
for different choices of a. By doing so, we find that we cannot reach the critical threshold 5�=.

p
3p.p�1//,

but that we can approach it from below by varying the value of a. We are led to the following conjecture.

Conjecture 6.6. For every p � 2, �
Qp

C2

�6
D

5

p.p� 1/
:

Moreover, extremizers for (1-15) do not exist.

6A. On symmetric complex- and real-valued extremizers. The proof of Lemma 6.1 merits some further
remarks which we attempt to insert within a broader context.

First of all, identity (6-4) holds thanks to the symmetry with respect to the origin of both the curve
s D yjyjp�1 and the measure d�p D ı.t �yjyjp�1/jyj.p�2/=6 dy ds. In fact, the proof of Lemma 6.1
immediately generalizes to the Fourier extension operator associated to any antipodally symmetric
pair .†;�/. By this we mean a set†�Rd (usually a smooth submanifold) together with a Borel measure
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� supported on †, both symmetric with respect to the origin in the sense that T .†/D† and T ��D �,
where T denotes the antipodal map T .y/D�y and T �� denotes the pushforward measure.

Secondly, the Lebesgue exponent 6 can be replaced with any finite exponent r � 2. More precisely, in
the general context of an antipodally symmetric pair .†;�/, if an estimate

kcf�kLr .Rd / . kf kL2.†;�/ (6-10)

does hold for some r 2 Œ2;1/, then necessarily7

sup
0¤f 2L2.†;�/
f R-valued

kcf�kLr .Rd /
kf kL2.†;�/

D sup
0¤g2L2.†;�/

g R-valued, g even or g odd

kcg�kLr .Rd /
kgkL2.†;�/

:

Thirdly, the discussion extends to the more general situation of complex-valued functions. For
concreteness, let us specialize to the case of the unit sphere †D Sd�1 � Rd, d � 2, equipped with its
natural surface measure �. Given an exponent p � pd WD 2.d C 1/=.d � 1/, the Tomas–Stein inequality
states that

kb.u�/kLp.Rd / .p;d kukL2.Sd�1/ (6-11)

for every complex-valued function u 2 L2.Sd�1/. It is known [Fanelli et al. 2011; Frank et al. 2016]
that complex-valued extremizers for (6-11) exist in the full range p � pd , the endpoint existence in
dimensions d � 4 being conditional on a celebrated conjecture concerning (1-2). Moreover, if p � pd
is an even integer, then real-valued, even, nonnegative extremizers for (6-11) exist, by virtue of the
equivalent convolution form; see [Christ and Shao 2012a; Foschi 2015; Shao 2016a]. Finally, if p D1,
then one easily checks that the unique extremizers for (6-11) are the constant functions. For general
p � pd , p ¤ 1, we argue that the search for extremizers of (6-11) can be restricted to the class of
complex-valued, symmetric functions. Indeed, write uD f C ig, with f D<u, gD=u. By reorganizing
the summands, we may write uD F C iG, where F D feC igo and G D ge � ifo. The functions F;G
are complex-valued and symmetric, in the sense that F.y/ D F.�y/ and G.y/ D G.�y/, for every
y 2 Sd�1. Moreover, one easily checks that

F.y/D
1

2
.u.y/Cu.�y//; G.y/D

1

2i
.u.y/�u.�y//; kuk2

L2
D kF k2

L2
CkGk2

L2
;

and that, in view of the antipodal symmetry of the pair .Sd�1; �/, the functions bF�, bG� are real-valued.
Following the proof of Lemma 6.1, we are thus led to the following result.

Proposition 6.7. Let d �2 and 2.dC1/=.d�1/�p�1. Then for every complex-valued u2L2.Sd�1/,
u¤ 0, the following inequality holds:

kb.u�/kLp.Rd /
kukL2.Sd�1/

� sup
0¤F 2L2sym.S

d�1/

kbF�kLp.Rd /
kF kL2.Sd�1/

; (6-12)

7Here, a real-valued function g W†! R is naturally defined to be even (resp. odd) if g.y/D g.�y/ (resp. g.y/D�g.�y/)
for �-almost every point y 2†.
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where L2sym.S
d�1/ WD fF 2 L2.Sd�1/WF.y/ D F.�y/ for �-a.e. y 2 Sd�1g. Moreover, if u realizes

equality in (6-12), then there exist F 2 L2sym.S
d�1/ and a constant � 2 C such that uD �F, �-a.e.

Proof. In light of the previous discussion, we can assume p<1, and only the last statement merits further
justification. Suppose that u realizes equality in (6-12). In particular, u is a complex-valued extremizer
for (6-11). Decompose uD F C iG as before, with F.y/D 1

2
.u.y/Cu.�y//, G D 1

2i
.u.y/�u.�y//,

so that F;G 2 L2sym.S
d�1/. If either F � 0 or G � 0, then there is nothing to prove, and so in what

follows we assume F;G not to be identically zero. Following the proof of Lemma 6.1, we note that
equality occurs in the application of the triangle inequality with respect to the Lp=2.Rd /-norm (recall
that p=2 > 1 is finite) only if there exists � > 0 such that8

jbF�.�/j D �jbG�.�/j for every � 2 Rd : (6-13)

Subsequent cases of equality further imply

kb.u�/kLp.Rd /
kukL2.Sd�1/

D
kbF�kLp.Rd /
kF kL2.Sd�1/

D
kbG�kLp.Rd /
kGkL2.Sd�1/

;

and so the functions F;G are also extremizers for (6-11). It suffices to show that F D �G, where
� 2 f��; �g. Recall that bF�;bG� are real-valued functions, since F;G 2 L2sym.S

d�1/. Let �0 2 Rd

be such that jbF�.�0/j ¤ 0. We lose no generality in assuming that bF�.�0/ > 0 and bG�.�0/ > 0, for
otherwise we could replace F by �F or G by �G. By continuity, there exists r0 > 0 such that

bF�.�C �0/D �bG�.�C �0/ for every j�j< r0: (6-14)

On the other hand, bF�.� C �0/ D5.e�iy��0F�/.�/ and bG�.� C �0/ D 5.e�iy��0G�/.�/. The functions
e�iy��0F and e�iy��0G belong to L2sym.S

d�1/, and may be expanded in the basis of spherical harmonics,

e�iy��0F D

1X
nD0


.d;n/X
kD1

an;kYn;k and e�iy��0G D

1X
nD0


.d;n/X
kD1

bn;kYn;k : (6-15)

Here, fYn;kg

.d;n/

kD1
denotes a basis for the space of spherical harmonics of degree n in the sphere Sd�1,

which has dimension 
.d; n/ WD
�
dCn�1
n

�
�
�
dCn�3
n�2

�
; see [Stein and Weiss 1971, Chapter IV]. The

coefficients an;k; bn;k are complex numbers. Applying the Fourier transform to (6-15), we find that

bF�.�C �0/D .2�/d2
1X
nD0


.d;n/X
kD1

an;ki
�n
j�j�

d
2
C1Jd

2
�1Cn.j�j/Yn;k

�
�

j�j

�
;

bG�.�C �0/D .2�/d2
1X
nD0


.d;n/X
kD1

bn;ki
�n
j�j�

d
2
C1Jd

2
�1Cn.j�j/Yn;k

�
�

j�j

�
:

(6-16)

8As Fourier transforms of compactly supported distributions, both sides of (6-13) coincide with the absolute value of
real-valued, smooth functions, so that the pointwise equality occurs at every point, and not just almost everywhere.
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Using (6-14) and (6-16) together with the orthogonality of the functions fYn;kg in L2.Sd�1/, we obtain

an;kr
�d
2
C1Jd

2
�1Cn.r/D �bn;kr

�d
2
C1Jd

2
�1Cn.r/ for every r 2 .0; r0/:

In particular, an;k D �bn;k . This and (6-15) together imply F D �G. �

A similar result to Proposition 6.7 holds for a broader class of antipodally symmetric pairs .†;�/.
Indeed, let r 2 Œ2;1/ be such that the extension estimate (6-10) holds. Then

sup
0¤u2L2.†;�/

kb.u�/kLr .Rd /
kukL2.†;�/

D sup
0¤F 2L2sym.†;�/

kbF�kLr .Rd /
kF kL2.†;�/

; (6-17)

with the obvious definition of L2sym.†;�/. Moreover, if � is compactly supported and finite, then
any complex extremizer u for (6-10) necessarily coincides with a multiple of a symmetric extremizer
F 2 L2sym.†;�/. Regarding the second part of Proposition 6.7, the previous proof used the particular
geometry of the sphere, but it can be modified to handle this more general situation. The crux of the matter
is the fact that the Fourier transform of a compactly supported finite measure is real analytic. Indeed, if �
is a positive, compactly supported finite measure, and F 2 L2.†;�/, then, for every �0 2 Rd,

bF�.�/D
Z
†

e�i��yF.y/ d�.y/D
Z
†

e�i.���0/�ye�i�0�yF.y/ d�.y/

D

1X
kD0

.�i/k

kŠ

Z
†

..� � �0/ �y/
ke�i�0�yF.y/ d�.y/; (6-18)

where the convergence is locally uniform. To see this, note the tail estimate



 1X
kDK

.�i/k

kŠ

Z
†

..� � �0/ �y/
ke�i�0�yF.y/ d�.y/






L1
�
.�/

� �.†/
1
2 kF kL2.†;�/

1X
kDK

sk

kŠ
;

which holds for every compact subset ��Rd and every K 2N. Here, s D sup�2�;y2† j�� �0jjyj<1.
Therefore, the analogue of (6-13) in this setting leads to the corresponding (6-14), which by analyticity of
(6-18) implies bF�D �bG�, and therefore F D �G.

These observations can be of interest when combined with the main result of [Fanelli et al. 2011],
which states that complex-valued extremizers exist in the nonendpoint setting, provided � is a positive,
compactly supported finite measure. Important cases of antipodally symmetric pairs .†;�/ which have
attracted recent attention include the aforementioned case of spheres, together with ellipsoids equipped
with surface measure, and the double cone, the one- and the two-sheeted hyperboloids equipped with
their natural Lorentz invariant measures; see [Foschi and Oliveira e Silva 2017].

We end this section with a final remark on the multiplier form of inequality (6-1). Consider the Cauchy
problem �

@tu� j@xj
p�1@xuD 0; .x; t/ 2 R�R;

u. � ; 0/D f 2 L2x.R/;
(6-19)
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whose solution can be written in terms of the propagator

u.x; t/D et j@x j
p�1@xf .x/D

1

2�

Z
R

eix�eit�j�j
p�1
Of .�/ d�: (6-20)

In view of (6-1), and more generally of [Kenig et al. 1991, Theorem 2.1], this satisfies the mixed norm
estimate

kjDj
p�2
r et j@x j

p�1@xf kLrtL
s
x.R1C1/

.r;s kf kL2.R/;

whenever the Lebesgue exponents r; s are such that 2
r
C
1
s
D

1
2

.
In this context, as noted in [Frank and Sabin 2018; Shao 2009] for the case p D 3, it makes sense to

distinguish between real-valued and general complex-valued L2 initial data. This is because the evolution
et j@x j

p�1@x preserves real-valuedness. In other words, if f is real-valued, then so is et j@x j
p�1@xf for every

t 2 R. In fact, if f is real-valued, then Of .��/D Of .�/, and so taking the complex conjugate of (6-20)
reveals that u.x; t/D u.x; t/. The operator jDj.p�2/=ret j@x j

p�1@x is seen to preserve real-valuedness in
a similar way.

It is then natural to consider the following family of sharp inequalities, for real- and complex-valued
initial data and admissible Lebesgue exponents r; s:

kjDj
p�2
r et j@x j

p�1@xukLrtL
s
x.R1C1/

�Mp;r;s.C/kukL2.R/; (6-21)

kjDj
p�2
r et j@x j

p�1@xf kLrtL
s
x.R1C1/

�Mp;r;s.R/kf kL2.R/; (6-22)

where u WR!C is complex-valued and f WR!R is real-valued. The study of extremizers for (6-21)–(6-22)
in the Airy–Strichartz case pD 3 has been considered in [Farah and Versieux 2018; Frank and Sabin 2018;
Hundertmark and Shao 2012; Shao 2009]. It would be interesting to determine whether the methods devel-
oped in the present paper can be adapted to the study of extremizers for (6-21)–(6-22) in the mixed norm
case r¤ s, so as to obtain an alternative approach to profile decomposition or the missing mass method. We
do not pursue these matters here. However, we would still like to point out two interesting features of this
problem which are easily derived from our previous analysis, and are the content of the following result.

Proposition 6.8. Let p > 1, and r; s 2 .2;1/ be such that Mp;r;s.C/ and Mp;r;s.R/ are finite. Then
Mp;r;s.C/DMp;r;s.R/. Moreover, if a complex-valued extremizer u forMp;r;s.C/ exists, then there exist
� 2 C and a real-valued extremizer f forMp;r;s.R/ such that uD �f .

The problem of the relationship between arbitrary complex-valued extremizers and real-valued extremiz-
ers has been considered in the literature; see, e.g., [Christ and Shao 2012b] for the case of the Tomas–Stein
inequality on the sphere S2. Note the duality with the second statement of Proposition 6.7 above.

Proof of Proposition 6.8. The equality Mp;r;s.C/ DMp;r;s.R/ follows the same lines as the proof of
Lemma 6.1. To see why this is the case, let u 2L2.R/ and write uD f C ig, where f and g are the real
and imaginary parts of u, and hence real-valued. Therefore

kuk2
L2
D kf k2

L2
Ckgk2

L2
; (6-23)

jjDj
p�2
r et j@x j

p�1@xu.x/j2 D jjDj
p�2
r et j@x j

p�1@xf .x/j2CjjDj
p�2
r et j@x j

p�1@xg.x/j2 (6-24)
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for every .x; t/ 2R2. If r; s � 2, then we can use the triangle inequality for the Ls=2x - and the Lr=2t -norms
applied to (6-24), and obtain

kjDj
p�2
r et j@x j

p�1@xuk2LrtL
s
x
� kjDj

p�2
r et j@x j

p�1@xf k2LrtL
s
x
CkjDj

p�2
r et j@x j

p�1@xgk2LrtL
s
x
: (6-25)

Without loss of generality, assume that f; g are not identically zero. Reasoning as in the proof of
Lemma 6.1 yields

kjDj
p�2
r et j@x j

p�1@xuk2
LrtL

s
x

kuk2
L2

�max

(
kjDj

p�2
r et j@x j

p�1@xf k2
LrtL

s
x

kf k2
L2

;
kjDj

p�2
r et j@x j

p�1@xgk2
LrtL

s
x

kgk2
L2

)
(6-26)

and therefore Mp;r;s.C/�Mp;r;s.R/. The reverse inequality is immediate. We gratefully acknowledge
recent personal communication with R. Frank and J. Sabin [2018], who independently arrived at a similar
conclusion.

We proceed to show that an arbitrary complex-valued extremizer for Mp;r;s.C/ necessarily coincides
with a constant multiple of a real-valued extremizer for Mp;r;s.R/. Let r; s 2 .2;1/, and suppose that u
is a complex-valued extremizer for Mp;r;s.C/, which we express as the sum of its real and imaginary
parts, u D f C ig. An inspection of the chain of inequalities leading to (6-26) shows that one of the
following alternatives must hold:

� g D 0 and uD f is a real-valued extremizer.

� f D 0, uD ig, and g is a real-valued extremizer.

� f; g are both not identically zero, and

kjDj
p�2
r et j@x j

p�1@xf k2
LrtL

s
x

kf k2
L2

D

kjDj
p�2
r et j@x j

p�1@xgk2
LrtL

s
x

kgk2
L2

DMp;r;s.R/; (6-27)

so that f; g are real-valued extremizers.

It suffices to analyze the latter case. An inspection of the chain of inequalities leading to (6-25) shows
that equality must hold in both applications of the triangle inequality. Since r; s 2 .2;1/, this implies the
existence of � > 0 such that

jjDj
p�2
r et j@x j

p�1@xf .x/j D �jjDj
p�2
r et j@x j

p�1@xg.x/j for almost every .x; t/ 2 R2: (6-28)

Equality in (6-27) then implies kf kL2 D�kgkL2 . By squaring (6-28), and applying the Fourier transform,
the equality of the resulting convolutions can be recast asZ

R2

Of .y1/ Of .y2/ ı.t � .y1/� .y2// ı.x�y1�y2/jy1y2j
p�2
r dy1 dy2

D �2
Z

R2
Og.y1/ Og.y2/ ı.t � .y1/� .y2// ı.x�y1�y2/jy1y2j

p�2
r dy1 dy2; (6-29)

where .x; t/ 2 R2 and  .y/ WD yjyjp�1. Considering points .x; t/ in the interior of the support of the
convolution measure �p ��p , i.e., satisfying t > 2 

�
1
2
x
�

for x > 0, and t < 2 
�
1
2
x
�

for x < 0, we see
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that there exists a unique positive solution ˛ D ˛.x; t/ > 0 of

t D  
�
1
2
x�˛.x; t/

�
C 

�
1
2
xC˛.x; t/

�
; (6-30)

and hence that the system of equations t D  .y1/C .y2/, x D y1Cy2 has unique solutions

.y1; y2/ 2
˚�
1
2
x�˛.x; t/; 1

2
xC˛.x; t/

�
;
�
1
2
xC˛.x; t/; 1

2
x�˛.x; t/

�	
:

From (6-29) and a similar reasoning to that of [Oliveira e Silva and Quilodrán 2019, Proposition 2.1 and
Remark 2.3], it then follows that

Of
�
1
2
x�˛.x; t/

�
Of
�
1
2
xC˛.x; t/

�
D �2 Og

�
1
2
x�˛.x; t/

�
Og
�
1
2
xC˛.x; t/

�
for almost every .x; t/ 2 supp.�p � �p/. Alternatively, the latter identity follows by considering the
analogue of formula (2-4) obtained in the case of even curves, which by the previous discussion applies
to the present scenario as well. This yields

Of .x/ Of .x0/D �2 Og.x/ Og.x0/ (6-31)

for almost every .x; x0/2R2. As Of ; Og belong to L2.R/, we may integrate over any compact subset I �R

in both variables x; x0 and obtain�Z
I

Of .x/ dx
�2
D �2

�Z
I

Og.x/ dx
�2
: (6-32)

Choose a compact subset J � R for which
R
J Og.x/ dx ¤ 0. From (6-32), we haveZ

J

Of .x/ dx D �
Z
J

Og.x/ dx or
Z
J

Of .x/ dx D��
Z
J

Og.x/ dx: (6-33)

Integrating both sides of (6-31) over x0 2 J, one infers from (6-33) that either Of D � Og or Of D �� Og,
and therefore that either f D �g or f D��g. The conclusion is that there exists � > 0 such that either
uD .�C i/g or uD .��C i/g, and so u is a constant multiple of a real-valued extremizer, as desired. �

Appendix A: Concentration-compactness

This appendix consists of a useful observation regarding Lions’ concentration-compactness lemma [1984a].
Let us start with some general considerations. Let .X;B; �/ be a measure space with a distinguished
point Nx 2 X such that f Nxg 2 B and �.f Nxg/ D 0. Set X Nx WD X n f Nxg. Let % W X Nx �X Nx ! Œ0;1/ be a
pseudometric on X Nx , i.e., a measurable function on X Nx �X Nx satisfying %.x; x/D 0, %.x; y/D %.y; x/,
and %.x; y/� %.x; z/C%.z; y/ for every x; y; z 2X Nx . Define the ball of center x 2X Nx and radius r � 0,
B.x; r/ WD fy 2X Nx W %.x; y/� rg, and its complement B.x; r/{ WDX nB.x; r/. It is clear that

X Nx D
[
r�0

B.x; r/

for every x ¤ Nx. We have the following concentration-compactness result, which should be compared to
[Lions 1984a, Lemma I.1].
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Proposition A.1. Let .X;B; �/; Nx 2 X; % W X Nx �X Nx ! Œ0;1/ be as above. Let f�ng be a sequence in
L1.X; �/ satisfying

�n � 0 in X;
Z
X

�n d�D �;

where � > 0 is fixed. Then there exists a subsequence f�nkg satisfying one of the following three
possibilities:

(i) (compactness) There exists fxkg �X Nx such that �nk . � C xk/ is tight; i.e.,

for all " > 0; there exists R <1 such that
Z
B.xk ;R/

�nk d�� �� ":

(ii) (vanishing) limk!1 supy2X Nx
R
B.y;R/ �nk d�D 0 for all R <1;

(iii) (dichotomy) There exists ˛2 .0; �/ with the following property. For every ">0, there existR2 Œ0;1/,
k0 � 1, and nonnegative functions �k;1; �k;2 2 L1.X; �/ such that, for every k � k0,

k�nk � .�k;1C �k;2/kL1.X/ � ";

ˇ̌̌̌Z
X

�k;1 d��˛
ˇ̌̌̌
� ";

ˇ̌̌̌Z
X

�k;2 d�� .��˛/
ˇ̌̌̌
� ";

supp.�k;1/� B.xk; R/ and supp.�k;2/� B.xk; Rk/
{

for certain sequences fxkg �X Nx , fRkg � Œ0;1/, with Rk!1 as k!1.

The proof of Proposition A.1 parallels that of [Lions 1984a, Lemma I.1] and proceeds via analysis of
the sequence of concentration functions

QnW Œ0;1/! R; Qn.t/ WD sup
x2X Nx

Z
B.x;t/

�n d�:

The sequence fQng consists of nondecreasing, nonnegative, uniformly bounded functions on Œ0;1/
which satisfy Qn.t/! � as t!1, since �.f Nxg/D 0. Very briefly, the argument goes as follows. By the
Helly selection principle, there exists a subsequence fnkg �N and a nondecreasing, nonnegative function
QW Œ0;1/! R such that Qnk .t/!Q.t/ as k!1 for every t � 0. Set ˛ WD limt!1Q.t/ 2 Œ0; ��,
and note that:

� If ˛ D 0, then Q� 0. This translates into the vanishing condition at once.

� If ˛ D �, then compactness occurs.

� If 0 < ˛ < �, then dichotomy occurs. In this case, the functions �k;1; �k;2 are given by �k;1 D
�nk1B.xk ;R/ and �k;2 D �nk1

B.xk ;Rk/{
.

We omit further details and refer the interested reader to [Lions 1984a].

When applying Proposition A.1 to the study of extremizing sequences for (1-9), the desirable outcome
(with a view towards obtaining concentration at a point under the hypotheses of Proposition 3.3) is
compactness or vanishing. Therefore the possibility of dichotomy needs to be discarded. To this end,
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Lions proposes the strict superadditivity condition [Lions 1984a, Section I.2], which in the present setting
can be recast as follows. Define

I� WD supfkEp.f /k6L6.R2/W kf k
2
L2.R/

D �g: (A-1)

The quantity I� is said to satisfy the strict superadditivity condition if, for every � > 0,

I� > I˛C I��˛ for every ˛ 2 .0; �/: (A-2)

In our case, Ep is a linear operator, and so I� D �3I1 D �3E6p . Thus (A-2) translates into the elementary
numerical inequality �3 > ˛3C .�� ˛/3, which holds for every � > 0 and ˛ 2 .0; �/. As seen in the
proof of Proposition 3.3, it is condition (A-2) (applied with �D 1) which ensures that dichotomy does
not occur. A similar condition in a more general context is used in [Lieb 1983, Lemma 2.7].

Appendix B: Revisiting Brézis–Lieb

In this appendix, we prove a useful variant of [Fanelli et al. 2011, Proposition 1.1], which in turn relies
on the Brézis–Lieb lemma [1983]. Proposition 1.1 of [Fanelli et al. 2011] states that, in the compact
setting, the only obstruction to the strong convergence of an extremizing sequence is weak convergence
to zero. In the noncompact setting, it is in general nontrivial to verify condition (iv) of [Fanelli et al.
2011, Proposition 1.1]. To overcome this difficulty, various arguments using Sobolev embeddings and the
Rellich–Kondrachov compactness theorem have been employed in [Carneiro et al. 2019; Fanelli et al.
2012; Quilodrán 2013]. In our case, it is not clear how such an argument would go. Instead we take a
different route, and argue that condition (iv) from [Fanelli et al. 2011, Proposition 1.1] can be replaced by
uniform decay of the L2-norm, in a sense compactifying the space in question. The following is a precise
formulation of this idea.

Proposition B.1. Given p > 1, consider the Fourier extension operator EpWL2.R/! L6.R2/ defined in
(1-12). Let ffng � L2.R/, and let ‚ W Œ1;1/! .0;1/ with ‚.R/! 0, as R!1, be such that

(i) kfnkL2.R/ D 1 for every n 2 N,

(ii) limn!1 kEp.fn/kL6.R2/ DEp,

(iii) fn*f ¤ 0 as n!1,

(iv) kfnkL2.Œ�R;R�{/ �‚.R/ for every n 2 N and R � 1.

Then fn! f in L2.R/, as n!1. In particular, kf kL2.R/ D 1 and kEp.f /kL6.R2/ DEp , and so f is
an extremizer of (1-9).

This variant was already observed in [Quilodrán 2012, Proposition 2.31] for the case of the cone, and
the proof follows similar lines to that of [Fanelli et al. 2011, Proposition 1.1]. Note that the function ‚
may depend on the sequence ffng, but not on n. The following proof is inspired by [Frank et al. 2016,
Proposition 2.2].
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Proof of Proposition B.1. Set rn WD fn � f . Then rn* 0 as n!1, and thus m WD limn!1 krnk2L2
exists and satisfies 1D kf k2

L2
Cm. Given R > 0, take the decomposition

rn D rn1Œ�R;R�C rn1
Œ�R;R�{ DW rn;1C rn;2:

Since the support of rn;1 is compact and rn;1*0 as n!1, we know Ep.rn;1/! 0 pointwise a.e. in R2

as n!1. On the other hand, from condition (iv) we have

kEp.rn;2/kL6 �Ep.‚.R/Ckf kL2.Œ�R;R�{// (B-1)

for everyR�1. This upper bound is independent of n, and tends to 0 asR!1. We have Ep.fn�rn;2/D
Ep.f /CEp.rn;1/, and kEp.fn� rn;2/kL6 �Ep.1C‚.R/Ckf kL2.Œ�R;R�{// is uniformly bounded in n.
Since Ep.fn � rn;2/! Ep.f / pointwise a.e. in R2 as n!1, we can invoke the Brézis–Lieb lemma
[1983] and obtain

kEp.fn� rn;2/k6L6 D kEp.f /k
6
L6
CkEp.rn;1/k6L6 C o.1/ as n!1:

It follows that � WD lim supn!1 kEp.rn;1/k6L6 and � WD lim supn!1 kEp.fn� rn;2/k6L6 satisfy

�D kEp.f /k6L6 C�:

Since kEp.rn;1/k6L6 �E
6
p krn;1k

6
L2
�E6p krnk

6
L2

, we have ��E6pm
3. Therefore

�D kEp.f /k6L6 C�� kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3:

Thus, replacing the definition of �, we have proved

lim sup
n!1

kEp.fn� rn;2/k6L6 � kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3 (B-2)

for every R � 1. Now, kEp.fn � rn;2/kL6 � kEp.fn/kL6 �kEp.rn;2/kL6 and kEp.rn;2/kL6 is bounded
above as quantified by (B-1). Thus

lim sup
n!1

kEp.fn� rn;2/kL6 �Ep �Ep.‚.R/Ckf kL2.Œ�R;R�{//

for every R � 1. Using this together with (B-2), and letting R!1, yields

E6p � kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3:

By the elementary inequality .1� t /3 � 1� t3, valid for every t 2 Œ0; 1�, we then have

E6p � kEp.f /k
6
L6
CE6p .1�kf k

6
L2
/:

Since the reverse inequality holds by definition, we conclude that f is an extremizer. Moreover, since
f ¤ 0 and the elementary inequality is strict unless t 2 f0; 1g, we conclude that kf kL2 D 1. This
completes the proof of the proposition. �
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