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DISTANCE GRAPHS AND SETS OF POSITIVE UPPER DENSITY IN R

NEIL LYALL AND AKOS MAGYAR

We present a refinement and sharp extension of a result of Bourgain on finding configurations of k41 points
in general position in measurable subset of R? of positive upper density whenever d > k + 1 to all proper
k-degenerate distance graphs.

1. Introduction

1.1. Background. A result of Furstenberg, Katznelson, and Weiss [Furstenberg et al. 1990] states that
if A C R? has positive upper Banach density, then its distance set {|x — x’| : x,x” € A} contains all
sufficiently large numbers. Recall that the upper Banach density of a measurable set A € R? is defined by

§*(A) = lim su 14N+ 9Nl
N—00 |ON

ey

where | - | denotes Lebesgue measure on R and Qy denotes the cube [N /2, N /2]%

Note that the distance set of any set of positive Lebesgue measure in R automatically contains all
sufficiently small numbers (by for example the Lebesgue density theorem) and that it is easy to construct
a set of positive upper density which does not contain a fixed distance by placing small balls centered on
an appropriate square lattice.

This result was later reproved using Fourier analytic techniques by Bourgain [1986]. In fact he
established the following more general result for all finite point configurations V = {vg, vy, ..., vx} with
the property that {v; — vo, ..., vx — v} forms a linearly independent collection of vectors in R¢, namely
for all nondegenerate simplices. In the sequel we shall refer to such point configurations as being in
general position.

Theorem 1 [Bourgain 1986]. Let Ay € R? be a fixed collection of k + 1 points in general position.
If A CR? has positive upper Banach density and d > k+ 1, then there exists a threshold Ao = Ao(A, Ay)
such that A contains an isometric copy of A - Ay for all A > L.

Recall that a point configuration A} is said to be an isometric copy of A - A if there exists a bijection
¢ : Ay — A} such that |¢ (v) — @ (w)| = Alv —w| for all v, w € Ayg.

Bourgain [1986] further demonstrated that no result along the lines of Theorem 1 can hold for
configurations that contain any three points in arithmetic progression on a line, specifically showing that
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for any d > 1 there are sets of positive upper Banach density in R? which do not contain an isometric
copy of configurations of the form {0, y, 2y} with |y| = A for all sufficiently large A. However, Ziegler
[2006] established the remarkable result that if A € R? with d > 2 has positive upper density and
V={0,v,...,v,} C R, where n can notably be taken arbitrarily large with respect to d, then there
does exists a threshold A9 = X9(A, V) such that A, contains an isometric copy of A - V for all A > Xy and
any ¢ > 0, where A, denotes the e-neighborhood of A.

Together these results may be viewed as initial results in geometric Ramsey theory where, roughly
speaking, one shows that “large” but otherwise arbitrary sets necessarily contain certain geometric config-
urations. Recently there has been a number of results in this direction in various contexts; see [Bulinski
2018; Bennett et al. 2016; losevich and Parshall 2018]. The objective of this article is to present a common
extension in the setting of measurable subsets of Euclidean spaces of positive upper Banach density, while
simultaneously presenting a new approach to (and refinement of) Theorem 1 based on a simple notion of
uniform distribution attached to an appropriate scale. For another instance of this new approach see [Lyall
and Magyar 2018] where configurations of points that form the vertices of a rigid geometric square, and
more generally the direct product of any two finite point configurations in general position, are addressed.

1.2. Distance graphs and main result. A distance graph I' = T'(V, E) is a connected finite graph with
vertex set V contained in R for some d > 1. We say that I' is k-degenerate if each of its subgraphs contains
a vertex with degree at most k; that is, some vertex in the subgraph touches k or fewer of the subgraphs
edges. It is thus straightforward to verify, by induction, that if a given graph is k-degenerate, then there
exists an ordering of its vertex set V = {vo, vy, ..., v,} in such a way that |V;| <k forall 1 < j <n, where

Vii={v;: (v;,v;) € Ewith0 <i < j} 2)

denotes the set of predecessors of the vertex v;. In this article we shall always assume that the vertices of
any given k-degenerate graph have been ordered as such. The degeneracy of a graph is defined to be the
smallest k for which it is k-degenerate. Finally, we shall refer to a distance graph as proper if for every
1 < j < n, the set of vertices v; U V;, namely v; together with its predecessors, are in general position.

Given a distance graph ' =T'(V, E) and A > 0 we will say that I'' = T""(V’, E’) is isometric to A - T
if there exists a bijection ¢ : V — V’ such that (v, w) € E if and only if (¢ (v), ¢ (w)) € E’ and
| (v) — @ (w)| = Alv — w|, and say that I'’ is a §-close isometric copy of A - I' if one has the additional
“angular closeness” property that

(P(v) —pw)) - (v—w)
(W) —@(w)|lv—w
for all (v, w) € E. Note that if 6 > 2 then a §-close isometric copy is merely an isometric copy. Finally,
we say that A € R? contains a distance graph ' ='(V, E) if V C A.
The main result of this article is the following:

>1-34 3)

Theorem 2. Let I' =T'(V, E) be a proper k-degenerate distance graph and § > 0:

(1) IfAC R has positive upper Banach density and d > k + 1, then there exists Lo = Ao(A, T, §), which
tends to infinity as § — OV, such that A contains a 8-close isometric copy of A -T for all . > A.
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(i) If A [0, 119 with |A| > 0 and d > k + 1, then A will contain a 8-close isometric copy of A-T for all
A in some interval of length at least exp(—Cr 5| A|~CV1), with Cr 5 tending to infinity as § — 0.

Intuitively one should visualize a distance graph with edges made of rigid rods which can freely turn
around the vertices. One should further visualize an isometric copy of a distance graph in a set A € R?
as a folding of the graph so that all of its vertices are supported on A, and a é-close isometric copy of a
distance graph in a set A € R?, with § > 0 and small, as a suitably small perturbation of the graph so that
all of its vertices are supported on A.

Part (i) of Theorem 2 already constitutes a refinement of Theorem 1 when I' is simply taken to be a
complete distance graph on (k + 1) vertices in general position and é > 0 is taken sufficiently small. In
this special case it establishes that positive upper density subsets of R¢ not only contain an isometric copy
of all sufficiently large dilates of a given nondegenerate simplex, as already guaranteed by Theorem 1,
but that these copies can in fact be found as sufficiently large dilates of a “small rotation™ of the original
simplex. We further note that in both parts of Theorem 2 the dimension d is restricted only by the “level
of degeneracy” of the given distance graph and not on the number of its vertices which could in fact be
arbitrarily large. It is important to further observe that the length of the interval of dilations guaranteed by
Part (ii) of Theorem 2 depends only on the measure of A and not on the set A itself.

Allowing the edges to rotate around the vertices is essential in our arguments. For example, the authors
are unaware of any proof that there are k-equally spaced points along a line in a subset of positive density
of R?, with arbitrary large gaps that does not invoking Szemerédi’s theorem [1975], and that such a
result is in fact not possible for all sufficiently large gaps'. The reason being that the linear relations
between the points of the pattern are no longer there when we allow for rotations of the edges around the
vertices. A crucial observation of this note is that in this case the frequency of isometric copies in a given
set is controlled by a simple norm, which may be we viewed as a Euclidean analogue of the so-called
U'-seminorm [Tao and Vu 2006, Chapter 11], utilized in additive combinatorics. In the context of finite
field geometries, a geometric analogue of the Gowers U2-uniformity norm was developed in [Lyall et al.
2018] and used to prove that sets of positive density contain isometric copies of all circular quadrilaterals.
We hope to address such problems for subsets of positive upper density of Euclidean spaces in the future.

As mentioned above, various special cases of our main result have been established, albeit in different
contexts. Indeed, in [Bulinski 2018] the embedding of large copies of trees (1-degenerate distance graphs)
was shown for dense subsets of the integer lattice. In [Bennett et al. 2016] it was shown that measurable
subsets A C [0, 1]¢ of Hausdorff dimension larger than (d 4 1)/2 contain an isometric copy of A - I" for
all A in some interval, in the special case when I" is a finite path. Very recently, parallel to our work,
embedding of bounded degree distance graphs was addressed for subsets of vector spaces over finite
fields [losevich and Parshall 2018].

Examples of distance graphs. (a) A nonempty connected graph is 1-degenerate if and only if it is a
tree (contains no cycles). Any tree with vertices in R? with d > 1 is isometric to a proper 1-degenerate
distance graph in R2.

IFor k = 3 a result of this type was obtained in [Cook et al. 2017], with the Euclidean distance replaced by the £P-distance,
for all p # 2.
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N

Figure 1. An example of a proper 2-degenerate distance graph in R?

(b) Cycles with vertices in R? with 4 > 1 form 2-degenerate distance graphs, but these are not necessarily
isometric to a proper 2-degenerate distance graph in R? for any d > 1. Indeed, if V = {0, 1, 2} € R and
E ={(0, 1), (1, 2), (0, 2)}, then this defines just such a distance graph.

© IfV=AGj):0<ij<n} SR and E ={(( ), @"j") : i =i'| +1j — j'| = 1), then this
“2-dimensional grid” forms a proper 2-degenerate distance graph in R2.

In general, one can construct a proper 2-degenerate distance graph in R> as follows: Start with any
proper cycle with vertices in R>, such as a proper triangle (three vertices in general position) or four
vertices forming a “nonrigid” square (no diagonal edges), and at every step attach an edge (or vertex) of
another proper cycle (or tree) to any of the edges (or vertices) of the graph constructed at the previous
step. See Figure 1.

(d) A complete graph with vertices {vo, ..., vx} € R* forms a proper k-degenerate distance graph if and
only if {vg, ..., vr} are in general position. Another example of a proper k-degenerate distance graph
in R¥ is the “k-dimensional grid” with vertices V = {(iy, ..., i) :0<iy,..., iy <n} C R and edges
E={((1,....i0), (},....0) iy =iyl + -+ lig —ip| =1}

More generally, one can construct a proper k-degenerate distance graph in R¥*! as follows: Start with
any known proper k-degenerate distance graph with vertices in R**! and at every step attach another proper
{-degenerate distance graph with £ < k to any of the faces, edges, or vertices of the graph constructed at
the previous step.

Remark on the sharpness of the dimension condition in Theorem 2. Let ey, ..., e; be the standard
basis vectors of R¥ and Ay and A_ denote the complete graphs with vertices {0, e}, e, ..., ¢;} and
{0, —ey, €2, ..., ex} respectively. It is clear that I' = Ay U A_ then defines a proper k-degenerate distance
graph with the property that any isometric copy of A - I" in R¥ must contain three collinear points, i.e.,
a copy of {—Xey, 0, Ae;} obtained by a translation and a rotation. As mentioned above, it was shown
in [Bourgain 1986] that there are sets of positive upper Banach density in R, for any k, which do not
contain such configurations for all large A. This example shows the sharpness of the dimension condition
d >k +1 in Theorem 2.

1.3. Outline of the paper. In Section 2 we introduce a norm which measures the uniformity of distribution
with respect to a scale L. We prove that this norm controls the frequency with which isometric copies of
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a given distance graph occur in a subset of the unit cube. This is analogous to the so-called von Neumann
type inequalities in additive combinatorics; see for example [Tao and Vu 2006, Chapter 11].

In Section 3 we observe that sets of positive density are uniformly distributed with respect to sufficiently
large scales which immediately implies Part (i) of Theorem 2. The proof of Part (ii) is also provided in
Section 3 and based on a decomposition of a set into uniformly distributed parts.

Section 4 contains an alternative approach inspired by the argument in [Bourgain 1986]. We include
this in order to highlight the simplicity and directness of our approach to Part (i) of Theorem 2, but also
with the hope that this will serve to clarify Bourgain’s approach and emphasize that our approach to
Part (ii) of Theorem 2 is in essence a physical space reinterpretation of Bourgain’s original.

2. A counting function and generalized von Neumann inequality

We now fix § > 0 and let I' =I'"(V, E) denote a fixed proper k-degenerate distance graph with vertex set
V ={vo, v1, ..., vy} with vg=01in R? withd > k+ 1.

As our arguments are analytic, we need to define a measure on, or at least on a local piece of, the
configuration space of all isometric copies of I'. For each (v;, v;) € E lett;; = |v; —v; |>. The configuration
space of all isometric copies of I', with the vertex vg remaining fixed at 0, namely

St :={(x0, X1, - .., x,) € RYTD : xg =0 and |x; — x;|*> = ¢;; for all i, j for which (v;, v;) € E} (4)

is clearly a real subvariety. We now proceed to give an equivalent description of the Sr.
For each point (xg, x1, ..., x,) € R+ apnd 1 < j <nwelet

X :={x; : i has the property that v; € V;},

with V; = {v; : (v;, vj) € E with 0 <i < j} as in (2) above. Moreover, for each (xo, x1, ..., x,) € R4+
and 1 < j < n, we define the sets

Sj = SJ(X,) = {x € Rd : |)C —xi|2 =l‘,'j for all x; € X/} (5)

Note that for any finite set X;, S;(X;) is the intersection of | X ;| spheres and hence is itself either a sphere
(of some dimension) or empty. It is thus easy to see that

0, x1,....,x) €St = x;e€8;(X;) forall<j<n (6)

since both sides are defined by the same set of equations given in (4) above.

Since I is proper there exists a point (xo, X1, . .., x,) € Sp with the property that the sets X i =1{xj}UX;
are in general position for all 1 < j < n; for example one could (and we will) take x; = v; forall0 < j <n.
We shall refer to such points in Sr as proper. The following example illustrates that there may exist points
of St that are not proper. Let V = {vo, vy, v2, v3} C R3 and E = {{(vo, v1), (vo, v2), (v1, v3), (V2, V3)},
where

UOZ(O’ 01 0)7 vlz(l’o’ 0)7 v2:(0’ 2’ 0)1 v3:(172’ 0)'
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Then I' =T"(V, E) is a proper 2-degenerate distance graph in R3. If we let xo = vg, x| = vy, X2 = (2,0,0),
and x3 = (3,0, 0), then it is easy to see that (xg, x1, X2, Xx3) is a point on Sr that is not proper since
X5 = {x1, x2, x3} is not in general position. It is however clear in this example, and in fact also true in
general (although we do not need this fact), that “generic points” of Sr will always be proper.

The basic properties of the spheres S;(X;) and their geometric relationship with the sets X, specifically
in the nontrivial case when |X;| > 2, are collected in Lemma 3 below.

Lemma 3. If (x, x1, ..., x,) is a proper point of Sr, then for all 1 < j <n for which we have |X;| > 2:

(1) The affine subspaces spanned by S;j(X;) and X; respectively are orthogonal and hence S;(X;) is a
sphere of dimension d — | X |, which is at least 1 since |X;| <k andd > k + 1.

(i1) The radius r; of the sphere S;(X;) is positive, equal to the distance from any point x € S; to the affine
subspace spanned by X, and in fact depends continuously on the points in X;.

Proof. We first recall the elementary fact that the intersection of any two spheres in R is either empty or a
circle lying in a plane perpendicular to the line joining the centers of the spheres. Since any four points in
R? with d > 3 span a three-dimensional affine subspace, it follows immediately from the elementary fact
above that if we let x € S;(X;) and x;, and x;, be any two points in X, then the vectors x —x; and x;, — x;,
are orthogonal, and hence the affine subspaces spanned by S;(X;) and X; respectively are orthogonal.

Let ¢; denote the projection of x; onto the affine subspace spanned by X ;. We claim that c; is the center
of the sphere S;(X;). Indeed, since ¢; has the property that the vectors x — ¢; and x; — ¢; are orthogonal
for all x € S;(X;) and all x; € X;, it follows that for any fixed x; € X; we have |x; —xi|* = |x — x;|? for
all x € $;(X;), and hence by Pythagoras that [x —¢;| = |x; —¢;| for all x € S;(X).

The discussion above implies that the radius r; of S;(X;) is positive and equal to the distance from any
point x € §;, so in particular x;, to the affine subspace spanned by X;. Specifically, if X; = {x;, ..., x;,},
then the fact that X i =1{xi,, ..., Xx;,, xj} is in general position ensures that the volume of the £-dimensional
fundamental parallelotope determined by the vectors {x; — x;,, ..., x; — x;,} is nonzero. It is a basic
fact, see for example either Section 8.72 in [Shilov 1971] or Theorem 7 in Chapter X of [Birkhoff and
Mac Lane 1941], that the volume of this parallelotope is equal to the square root of the so-called Gram
determinant, namely the determinant of the (Gram) inner product matrix

det{(xj —x;,, ) - (xj = Xi,, )} 1<my mo<e-

It thus follows that

det{(x; —x;, ) - (xj — Xi,, M 1<myma<t
]=\/ ! - ’ (7)

det{(x;, — xi,, ) - (Xip = Xi,,, )Y 1<m i my<e—1

as r; is the height of our parallelotope if we take its base to be the (£—1)-dimensional parallelotope
determined by the vectors {x;, —x;,, ..., X;, — x;,_, }; see for example Section 8.72 in [Shilov 1971].
Since one can easily see, by expanding |(x; — ximz) —(xj — iy, )|2, that

1 2
det{(x; — xi, ) - (¥j = Xi,, Y i<mimo<e = 5, jF iy j = 1Xi, — Xi, 1),

it follows that r;, in addition to being positive, in fact depends continuously on the points in X;. U
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Finally we introduce compactly supported functions n; € C ©(R?) with 0 < ; <1landn;(v;) =1
for each 0 < j < n. We further assume that the supports of each n; have been chosen small enough to
ensure that every (xo, X1, ..., X,) € St with x; € supp n; corresponds to a §-close isometric copy of I'
with vertex vo remaining fixed at 0.

An important consequence of Part (ii) of Lemma 3 above is that we may also assume that the supports
of each n; have been chosen small enough to ensure that there exists a constant rr > 0 such that for each
(x0, X1, ..., X,) € Sr, with x; € supp n;, the corresponding spheres S; (X;) will all have radius r; > rr.

Definition 4 (localized counting function). For any 0 < A « 1 and functions

for fiseens [2:10,117 > R,
with d > k+ 1, we define

Tr 5 (fos f1,---,fn)()»)=//---/ o) fi(x —Axy) -+ fu(x —Axp) dpin (xp) - - - dpr(x1) dx,  (8)

where du;(x;) =n;(x;) doj(x;) and o; denotes the normalized surface measure on ;.

Note that if A C [0, 1]¢ and Trs(1a, 14, ..., 14)(X) > 0, then A must contain a point configuration
I'={x, x4+ Axy, ..., x4+ Ax,} with each x; € S;(X;), and hence a §-close isometric copy of A - I".
The key to showing that Tt 5(14, 14, ..., 14)(X) is positive for certain sets A is to estimate (8) in

terms of a suitable uniformity norm localized to a scale L (related to A).

Definition 5 (U'(L)-norm). For 0 < L <« 1 and functions f : [0, 1]Y — R we define

A lorwy = 1f *eLll2,
where (,OL(X) = L_d(p(L_l)C), with Q= 1[_1/2’1/2]01.
Note that if A C [0, 1]¢ with & = |A| > 0 and we define f4 := 14 — aljg 1y, then
2
2 AN+ Qp)l
= ———— —|A|| dt, 9
il = [ | o 1A ©)
where Q; =[—L/2, L/2]%

Evidently the U'(L)-norm is measuring the mean-square uniform distribution of A on scale L. The
engine that drives our approach to Theorem 2 is the following:

Proposition 6 (generalized von Neumann). Let0 < &, A < 1. For any L < %A, 0 <m < n, and functions

fos fiseees fu 110, 118 — [—1,1],
we have
1T s(fos fiseevs fs Ly oo s DO M fullpr ey + Or (o).

Here 1 stands for the indicator function of the unit cube [0, 1]¢ and Or(¢) means a quantity bounded
by Cre with Cr a constant depending only on I. We will also use the notation f <r s g to indicate
that | f| < cr s g with a constant cr s > 0, depending on only I' and 4, that is sufficiently small for our
purposes.
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The above proposition immediately implies the following result for uniformly distributed sets from
which we will deduce both parts of Theorem 2 in Section 3 below.

Corollary 7. Let § > 0 and T be a proper k-degenerate distance graph on n + 1 vertices in R? with
d>k+1.

Leta € (0,1)and 0 < A <& <5 a" T\ If A C [0, 119 with |A| = « satisfies I fallyieony K €, then

Trs(la. 1a, ... 1) = Feoa" T,
where
co=co(I',8) = // - -/dun(xn) cedpy(xy) dx.

Note that in light of the assumptions that we have placed on the measures p; (via the functions 7;),
the quantity co(T", §) above clearly tends to zero as § — 0.
Proof of Corollary 7. The result follows immediately from Proposition 6 since

n
Trs(la, . L) =coa™ ' + ) " " Trs(la. - La, far Lo, DG,
———

m=0 m copies
where fA= lA—Oll[O’l]d. O
We conclude this section with the proof of Proposition 6.

Proof of Proposition 6. Fix 0 <m < n. We have

|TF,5(f05 flv MR fmv 17 ceey 1)()")|

5/.../(/‘/fm(x_)\xm)cm+1(X],...,Xm)d/,bm(.xm)

dx) dptm—1(Xm—1) - - -dpi(xy),

where
cm+1(1“,6;x1,...,xm)zf---/ dpn(x) - - ditm41 (Xm+1) (10)
if 0 <m <n—1and ¢,4+; = 1. It follows from an application of Cauchy—Schwarz and Plancherel that
|Tr,s(fo,f1,...,fm,1,...,1)(x>|25f|fm@)|21m<xs>ds, (11)
where
o 2
In(®) =/---f|cm+mm<s>| i1 Cem1) -~ dptr (1), (12)
with

Cmm (5) = / Cerl(xl» e X )N (X)) e—2nixm-$ dom (Xm)
if2<m<nand I =|c210; |2. In light of the trivial uniform bound 0 < I,,,(§) < 1 and the fact that

ol = f | fn @7 16LE) de,

it suffices to establish that
Ly (A8)(1 — §(LE)?) = Or(e”). (13)
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Since 0 < $(£)> < 1 for all £ € RY and $(0) = 1 it follows that 0 < 1 — @(LE)? < min{l, 4w L|£|}.
The uniform bound (13) thus reduces to establishing the decay estimate

L,(&) <min{l, Cr |£]""/%} (14)
since this would in turn imply that
Ly (A&)(1 — G(LE)?) < Cr min{(1|E]) /2, %A|&|} < Cre?

whenever L < g%).
To establish (14) we will use the fact that in addition to being trivially bounded by 1, the Fourier
transform of ¢,,4+1 4, also decays for large £ in certain directions, specifically

|Gt o (§)| < min1, (rr - (dist(€, span X,,))~"/?) (15)
uniformly over all xy, ..., x,— with x; € supp n;. This estimate is an easy consequence of the well-known

asymptotic behavior of the Fourier transform of the measure on the unit sphere S¢~1X»l ¢ RI—1Xnl+1
induced by Lebesgue measure; see for example [Stein 1993].
Using the fact that the measure do,,—1(x;;—1) - - - dop(x1) is invariant under the rotation

X1y X)) > (Uxy, ..., Uxp),

for any U € SO(d), together with (15) and the fact that 0 < »n; <1 for 1 < j < m, then gives
In(€) < Cf- : -/(1 + rr - dist(§, span X)) ™ doy_1 (1) - do (x1)
= C/‘ : // (1+rp - dist(€, span U X,,)) ™' dp(U) do—1 (xim—1) - - - do (x1)
SO(d)

=c [ [[ s rierdisspan X)) do0) dor ) - don). (16

where o denotes normalized measure on the unit sphere S~ in R? induced by Lebesgue measure.
Estimate (14) then follows from the easy observation that the inner integral above satisfies the uniform
estimate

/ (1 +rrl|€| - dist(y, span X,,)) "' do (y) = O((1 +rp|&)~1/2). 0
gd—1

3. Proof of Theorem 2

We will deduce Theorem 2 from Corollary 7 by localizing to cubes on which our set is suitably uniformly
distributed. In the case of Part (i) this is achieved as a direct consequence of the definition of upper
Banach density, while for Part (ii) this is achieved via an energy increment argument.

3.1. Direct proof of Part (i) of Theorem 2. Let e > 0and A € R? with §*(A) > 0.

The following two facts follow immediately from the definition of upper Banach density, see (1):
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(i) There exist Mo = My(A, €) such that for all M > M, and all r € R?
AN(t
[ Qml
(ii) There exist arbitrarily large N € R such that

|AN(to+ On)| 14y ox
BT ENT S (1= Lg% s*(A
on = Im3e)d @

for some #o € R%.

Combining (i) and (ii) above we see that for any A > Ao := £~ %M, there exist N > ¢ A and 1) € R?

such that A A
JAN (1t + Q6y)l S(Héf;)l N(to+ On)l

| Qe |OnI
for all t € RY. Consequently, Theorem 2 reduces, via a rescaling of A N (fy+ Q) to a subset of [0, 1]%,
to establishing that if " is a proper k-degenerate distance graph, 0 < A <& <« 1, and A C [0, 1]¢ is
measurable with |A| > 0 and the property that
AN+ Oyl
| Q6.

for all € RY, then A contains an isometric copy of A - T.
Now since A N (t + Q,s;) is only supported in [—£®4, 1 +&%4]¢ and

AN
A= [ 00,
R4 |Q£6A|

<(1+¢%4]

it easily follows that

AnuxCe)l —82>|A|H = 0()
0]

{teRd:0<

and hence that

2
2 AN+ Qo) B 5
”fA”Ul(Sé»)L) —/ Tgbﬂ — |A|| dt = O(e7).
R4
The result thus follows from Corollary 7 above provided & <r s 8*(A)"*1. O

3.2. Proof of Part (ii) of Theorem 2.

Lemma 8 (localization principle). Let A C [0, 114 withd > k+ 1 and |A| =« > 0.

Lete >0and e’ > Ly > Ly>> - -- be any decreasing sequence with Ll_1 eNandLjy < ce7Lj with
Lii1|Ljforall j > 1. If we let G; denote the partition of |0, 114 into cubes of side length L;, then there
exists 1 < j < Ce™? such that for all but at most 8Lj_d of the cubes Q in G; the set A will be uniformly
distributed on the smaller scale L; inside Q in the sense that

L/ ANQNG+0u,)  |ANQIP
101 Jo 101, 0]

dt <e. (17)
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Before proving Lemma 8 we first show that it, together with Corollary 7 (after rescaling), is sufficient
to establish Part (ii) of Theorem 2. Let ¢ < s a"*! and {Q;} denote the cubes of side length L ; in the
partition G; of [0, 114 that we obtain from Lemma 8. If we then let A; = ANQ; and seto; =|ANQ;|/| Qi 1, it
follows from Corollary 7 (after rescaling) and Holder’s inequality that for any A € (L j+1, €L;) we have

L7 —d —d

J J J n+1
Tr,,s(lA,...,1A><A>zZTr,a<1Ai,...,1A,.><A>zicoL;fZa?+‘zico@Zai) =Jcol A" (18)
i=1 i=1 i=1

Proof of Lemma 8. Let {Q;} denote the cubes of side length L; in the partition G; of [0, 114 and

g =1la—E1alG)p),

where

AN Qi
E(1alG)(x)=—F—+—
! |Qil
for each x € Q;. If || g; ”U'(L,-H) > ¢, then by definition

2
dx > ce.

1
gy dy
/‘ |QL_,‘+1| X+QLJ-+1 /

It follows that there must exist a xq € [0, 1]¢ for which the shifted grid xo + G, 41 satisfies

/|[E<g,~ %0+ G )P dx > s,

from which one can easily conclude that the (unshifted) refined grid G, satisfies
/ E(gj 1Gj+2) I dx = ce? (19)

provided L;j > < e’L j+1. By orthogonality, it follows immediately from (19) and the definition of g;
that

IECLa 1Gj42)II3 = IE(La | GII3 + ¢ (20)

and hence that there must exist 1 < j < Ce~2 such that lgjllyi(z;,, <& From this it follows that

+1)

L 1 2
Z/‘ (s, —ailg) () dy| dx < Cé?
i=1 |QLj+1| x40,

provided Lj 1 < &2L;. O

4. A second proof of Theorem 2

Let 8 > 0 and I be a proper k-degenerate distance graph in [0, 1]¢ with d > k + 1. We shall make use of
the same notation as in Section 2, specifically for the counting function Tt s as defined in (8), and make
the same assumptions on the measures w; (via the functions ;).
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4.1. Reducing Theorem 2 to a dichotomy between randomness and structure. As we shall see, Theorem 2
is an immediate consequence of the following proposition which reveals that if A C [0, 1]¢ has positive
measure but does not contain an isometric copy of A -I" for all A in a given interval, then this “nonrandom”
behavior is detected by the Fourier transform of the characteristic function of A and results in “structural

information”, specifically a concentration of its L2-mass on appropriate annuli.

Proposition 9 (dichotomy). Let § > 0 and T be a proper k-degenerate distance graph in [0, 11¢ with
d>k+1.

IFACI0, 119 with |A| >0, 0 <a <b <K e* with0 < & Kr.5 |A|"*!, and A does not contain a §-close
isometric copy of A-T for some A in |a, b], then

/ Ta®) P dg > AP+, 21
e?/b=|§|<1/e%a
with the implied constant above independent of a, b, and ¢, and

cr=ci (I, 8)=/---/ dpn(x,) -+ -dpy(x1).

Proof that Proposition 9 implies Theorem 2. We shall first establish Part (ii) of Theorem 2, so we start
by letting A C [0, 1]¢ with |A| > 0. For any fixed 0 < ¢ <rs |A|""], let {Z; }J.Jfl) denote a sequence of
intervals with 7; := [a;, b;] satisfying

bi1 < &' (22)
and b; < &* with the property that for each 1 < j < J(g) there exists a A € Z; such that
x+r-ULD)ZA (23)

for all x € A and U € SO(d). Proposition 9, together with (22), would then imply
J (&)
e | Ta@rde < [ ia@F de. 24)
j=1 32/bj§|§|§1/520j
a contradiction if J(¢) >> £~ since by Plancherel we know that i |i A®)Pde =|A| < 1.

To establish Part (i) of Theorem 2 with this approach we will argue indirectly and thus suppose that
A CR? is a set with 8*(A) > 0 for which the conclusion of Part (i) of Theorem 2 fails to hold, namely
that there exist arbitrarily large A € R for which A does not contain an isometric copy of A - T.

We now let 0 < o < §%(A), 0 < e K5 o"*! and fix J > &2 as above. By our indirect assumption
we can choose a sequence {A; }jJ:1 with the property that A, < ) jforalll1 <j<J—1and A does
not contain an isometric copy of A; - I" for each 1 < j < J. It follows from the definition of upper Banach
density that there exist N € R with N > A; and 1y € RY for which

|AN(to+ On)I -
[On| -

Rescaling A N (fo + Q) to a subset of [0, 114 and arguing as in the proof of Part (ii) above but this time
with b; = X;/N again leads to a contradiction. U
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4.2. Proof of Proposition 9. Let f =14. We will utilize the existence of a suitably smoothed version
of f with the certain properties, specifically:

Lemma 10. For any & > 0 there exists a function g : R¢ — (0, 11, an appropriate smoothing of f, such that

lg(x —Az) —g()| K¢ (25)

uniformly in x € [0, 11¢ and |z| < 1. Moreover, if ¢ < |A|"*!, then

/ f)g() dx > |A"T (26)

The proof of Lemma 10 is straightforward and presented in Section 4.3 below. Assuming for now the
existence of a function g with property (25) it follows that

TF,S(f?f""sf)()") n
=t [ PR v+ Y Tra(FE T fo £ f = g L 10+ 0e). @D
m=1

n —m copies

If A does not contain a §-close isometric copy of A - I" for some A in [a, b], then it clearly follows that

TF,(S(f’ f7’f)()\):0

In light of (26) and (27) it follows that if & < ¢{|A|"*!/n then there must exist 1 < m < n such that
/' : /(f‘f[f —gl(x — Axpm)Cmy1 (X1, ooy Xpm) d by (Xp,)

with ¢, defined as before in (10) above. It then follows from an application of Cauchy—Schwarz and
Plancherel that

dx) dim—1(Xm—1) - -dpy(x1)
> crA"M, 0 (28)

/ &) = 2R In () dE > CIAP™, 29)

with I,,, again defined as before in (12) above. The fact that g will be taken to be a sufficient smoothing
of f ensures that its Fourier transform satisfies

1f &) —g@&)|<elf@&)] (30)

provided |§] < e2b™!; see Section 4.3 below. This, together with the fact that 7,,,(§) is bounded by 1
uniformly in &, and Plancherel, ensures that (29) implies

/ o FOP O£ a6 > AP 31)

provided & < s |A|"*!1. Estimate (21), and hence Proposition 9, then follows easily from estimate (31)
and our previously established estimates for /,,, namely (14).
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4.3. A smooth cutoff function and proof of Lemma 10.
4.3.1. A smooth cutoff function. Let ¥ : R? — (0, 0o) be a Schwartz function that satisfies
1=y =¥ =0 and JE =0 forlsl>1.
As usual, for any given ¢ > 0, we define
vi(0) =17y ). (32)
First we record the trivial observation that
[wwar=[verar=io=1. (33)
as well as the simple, but important, observation that ¢ may be chosen so that
1= (§)] = [1 = ¥ (15)] <« min{L, 1]§]}. (34)

Finally we record a formulation, appropriate to our needs, of the fact that for any given small parameter ¢,
our cutoff function ¥, (x) will be essentially supported where |x| < ¢!t and is approximately constant
on smaller scales. More precisely:

Lemma 11. Let ¢ > 0 andt > 0; then

/ ‘ Y (y)dy K¢, (35)
y|>e~ 1t

/ Vi (v =22 = (y)| dy < & (36)
uniformly for |z| < 1, provided t > 7' 1.

Proof of Lemma 11. Estimate (35) is easily verified using the fact that v is a Schwartz function on R¢ as

/ wz(y)dy=/ Y(y)dy <</ (I+|yD ™ dy «e.
lyl=e~1t ly|>e~! ly|=e~!

To verify estimate (36) we make use of the fact that both v and its derivative are rapidly decreasing,
specifically

f|wt(y—xz)—zm(x)|dy < /\w(y—xz/o—w(y)\dy
<<%/(1+|y|)_d_1dy & ’; O

4.3.2. Proof of Lemma 10. Let g = f %Y —1,,.
We first note that estimates (30) and (25) follow immediately from (34) and (36) respectively. In order
to establish the remaining “main term” estimate (26), we need only establish that if ¢ < |A|"+, then

/ f)g(x)dx = (1—Ce)|A] (37)
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for some constant C > 0, since by Holder we would then obtain

(1—Ce)"|AP" < ( f f(x)g(x)dx) <At f fx)g(x)" dx,

from which (26) clearly follows for sufficiently small ¢ > 0.
To establish (37) we first note that Parseval, the fact that 0 < ¥y < 1, and a final application of
Cauchy—-Schwarz give

/ F)g(x) dx = / @ P e be) di

r 21.7 —1 2 _ 2
z/lf(é)l (e b)) dé—/g(x) dx > (/[

0,114

2
g(x) dx) . (38)
Establishing (37) therefore reduces to showing that if & < |A|?, then
/ g(x)dx = (1—-Ce)|A (39)
(0,11

for some constant C > 0. To establish (39) we use (33) and write

|Al =/ g(x)dx
Rd

=/ g(x) dx+/ g(x) dx+/ gx)dx. (40)
[0,1]4 {xeR:dist(x,[0,1]9)>e~2b} {xeR4:0<dist(x,[0,1]9) <e~2b}

The fact that b < &* ensures that
l{x € RY: 0 < dist(x, [0, 119) < e7%b}| < &2 (41)

and hence, since ¢ < |[A] and 0 < g <1, that

/ gx)dx < &* <¢|Al,
{xeR4:0<dist(x,[0,1]9)<e~2b}

while (35) ensures that

/ g(x)dx < |A] Ve-1,(y) dy L glAl, (42)

{xeR<:dist(x,[0,119)>e~2b} IyI>e=2b

which completes the proof. (I
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