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We study the system ��u D juj˛�1u with 1 < ˛ � nC2
n�2

, where u D .u1; : : : ; um/, m � 1, is a
C 2 nonnegative function that develops an isolated singularity in a domain of Rn, n � 3. Due to the
multiplicity of the components of u, we observe a new Pohozaev invariant different than the usual one in
the scalar case. Aligned with the classical theory of the scalar equation, we classify the solutions on the
whole space as well as the punctured space, and analyze the exact asymptotic behavior of local solutions
around the isolated singularity. On a technical level, we adopt the method of moving spheres and the
balanced-energy-type monotonicity functionals.
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1. Introduction

1A. Background. This paper concerns the analysis of singular solutions to semilinear elliptic systems
with power-law nonlinearity of type

��uD juj˛�1u; (1-1)

where 1 < ˛ � nC2
n�2

, and uD .u1; : : : ; um/, m� 1, is a C 2 vector-valued function defined on a domain
in Rn, n � 3. Our primary interest is in the case when each component of u is nonnegative and the
domain is of the form BR n f0g, with BR being the ball of radius R centered at the origin. It is by now
well known that in cylindrical coordinates t D� log jxj 2 R and � D x=jxj 2 Sn�1, the transformation

u.x/D jxj�
2
˛�1v

�
� log jxj;

x

jxj

�
(1-2)
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yields the system

@t tvC�@tvC��v��vCjvj
˛�1vD 0 (1-3)

in .� logR;1/�Sn�1, and vice versa, where �� is the Laplace–Beltrami operator on Sn�1 and � and
� are the constants fixed throughout this paper by

�D
2

˛�1

�
n� 2�

2

˛�1

�
; �D

4

˛�1
�nC 2: (1-4)

The scalar case of this system was introduced in [Lane 1870] and later studied in [Emden 1907] to
describe distribution of mass densities in spherical polytropic star in hydrostatic equilibrium. Since its
birth, this equation has been used in many applications such as astrophysics, kinetic theory, and quantum
mechanics; see [Goenner and Havas 2000]. The Lane–Emden equation has thus been subject to intensive
studies in the last few decades and nowadays there is a vast amount of literature treating many aspects of
the solutions to this equation and its diverse varieties.

One of the central questions1 and a technically difficult problem for differential equations and systems
is the study of the singular solutions, that is, solutions that develop singularities. In the scalar case, the
classical and subsequent works have considered the asymptotic behavior of the solutions close to isolated
singularities, with an accurate description of the asymptotic behavior of solutions around such singular
points; see, e.g., [Aviles 1983; 1987; Bidaut-Véron and Véron 1991; Chen and Li 1991; Caffarelli et al.
1989; Gidas and Spruck 1981a; 1981b; Korevaar et al. 1999; Véron 1981; 1996].

The system (1-1) can be considered as a generalization of the Lane–Emden equation, and can also be
viewed as a strongly coupled system of nonlinear Schrödinger equations (or more precisely the limiting
system of the associated blowup solutions). In the latter point of view, there has been some development
regarding classification of the global solutions, and compactness of the blowup sequence; see for instance
[Chen and Lin 2015; Druet et al. 2010]. In the former point of view, there are many other types of
generalizations, among which the Lane–Emden–Fowler systems have received considerable attention.
Among possible references, we refer to [Bidaut-Véron and Raoux 1996; Bidaut-Véron and Grillot 1999;
Bidaut-Véron and Giacomini 2010; Busca and Manásevich 2002; de Figueiredo and Felmer 1994; Poláčik
et al. 2007; Serrin and Zou 1996] for the classification of global solutions, nonexistence theory of singular,
positive solutions and local estimates of solutions to the Lane–Emden–Fowler systems. We refer to
[Reichel and Zou 2000; Zou 2006] for more general cooperative elliptic systems. One may also consult
to [de Figueiredo 2008] for a general theory regarding semilinear elliptic systems. To the best of the
authors’ knowledge, this is the first paper that conducts a thorough analysis on the qualitative behavior of
the system (1-1), particularly regarding the classification of the solutions on the punctured space Rn n f0g

with respect to the balanced-energy-type functionals
�
subcritical case 1 < ˛ < nC2

n�2

�
and the Pohozaev

identities
�
critical case ˛D nC2

n�2

�
, as well as the asymptotic behavior of local solutions around the isolated

singularities.

1To the best of our knowledge there are three central questions in this area. The other two questions refer to the structure of
singular sets, see [Pacard 1993], and nonexistence theory, see [Grigor’yan and Sun 2014; Souplet 2009].
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The key difference between the system (1-1) and its scalar version is, of course, the multiplicity of the
components. The major observation in this paper is that the system (1-1) turns out to be very sensitive to
the setting of multiple components in the case of the upper critical exponent

�
that is, ˛D nC2

n�2

�
and lower

critical exponent
�
that is, ˛ D n

n�2

�
. Specifically, in the upper critical case ˛ D nC2

n�2
, we discover a new

Pohozaev invariant different than the usual one. The lower critical case is rather technical and we shall
present the discussion on this issue in Section 7D.

Let us briefly illustrate how the new Pohozaev invariant comes into play in the analysis of the system
(1-1) in the upper critical case. For the sake of clarity, let us assume that the solution u is rotationally
symmetric, so that the cylindrical transformation v is a function of t only. After some manipulation, one
can obtain the usual Pohozaev identity,ˇ̌̌̌

dv

dt

ˇ̌̌̌2
D
.n� 2/2

4
jvj2�

n� 2

n
jvj

2n
n�2 C � (1-5)

for the system (1-3), with a constant �, also known as the usual Pohozaev invariant. Due to the presence
of the multiple components, we haveˇ̌̌̌

dv

dt

ˇ̌̌̌2
�

�
d jvj

dt

�2
D

1

jvj2

X
1�i<j�m

�
vi
dvj

dt
� vj

dvi

dt

�2
� 0; (1-6)

and the equality on the rightmost side does not hold in general. This shows that � alone is not enough to
analyze the behavior of jvj, due to the discrepancy (1-6) between jdv=dt j and jd jvj=dt j. In this paper,
we find that there is another constant �� such that�

d jvj

dt

�2
D
.n� 2/2

4
jvj2�

n� 2

n
jvj

2n
n�2 C �C

��

jvj2
; (1-7)

and we shall call this constant the new Pohozaev invariant.2

Thanks to an anonymous referee, we also observe a more precise characterization of the new invariant.
Multiplying by vi and �vj in the j -th and respectively in the i -th component of the system (1-3)

�
with

˛ D nC2
n�2

�
, and then adding the resulting equations together side by side, we deduce that

d

dt

�
vi
dvj

dt
� vj

dvi

dt

�
D 0; 1� i; j �m:

Thus for each 1� i; j �m there exists a constant kij such that we have

vi
dvj

dt
� vj

dvi

dt
D kij : (1-8)

2After this paper was accepted, we discovered a very recent work [Caju et al. 2019], from which we can actually prove that
the new Pohozaev invariant in our paper is always zero for nonnegative solutions to the system (1-1). Having said that, some
arguments here can be made more direct, without invoking the new Pohozaev invariant. Even so, we believe that our method
gives some valuable insight, in particular, on the no-sign solution, where the new Pohozaev invariant becomes nontrivial for
systems, while the method in [Caju et al. 2019] only works for nonnegative solutions.
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Inserting (1-8) into (1-6) and comparing it with (1-7), we find that

�� D�
X

1�i<j�m

k2ij : (1-9)

Without the radial symmetry, we obtain a more general formula (2-17) for the new Pohozaev invariant.
We point out that the analysis of the behavior of solutions to system (1-1) involves both � and ��. This

is a significant difference from the case of scalar equations, where � fully determines the behavior of the
solution around the isolated singularity, and especially � D 0 is a sufficient and necessary condition to
have removable singularity.

On the technical level, the system (1-1) exhibits some subtleties compared to the scalar case. One
of the main tools we employ in the study of (1-1) is the method of moving spheres, which has been
considered in [Jin et al. 2008; Li and Zhang 2003] and then continuously developed especially in the
frame of the fractional Laplace operator; see, e.g., [Jin et al. 2014; Caffarelli et al. 2014]. The use of such
a method in the case of systems requires particular attention, since the procedure can be continued in
some components but should stop in others.

Another technical tool is the balanced-energy-type monotonicity functional (see, e.g., (2-1) below),
which yields the Pohozaev identity in the upper critical case ˛D nC2

n�2
, combined with the blowup analysis.

This energy functional has been a classical tool for the study of scalar case; see, e.g., [Bidaut-Véron and
Véron 1991; Aviles 1987; Korevaar et al. 1999] and many others. We believe that the argument presented
in this paper regarding the energy functional is more effective, due to an easy observation on the scaling
relation (2-3) that is standard in the framework of free boundary problems.

1B. Main results. The main results are as follows. First we classify the solutions on the entire space,
via the method of moving spheres.

Theorem 1.1. Let u be a nonnegative solution of (1-1) in Rn with 1 < ˛ � nC2
n�2

:

(i) If 1 < ˛ < nC2
n�2

, then u is trivial.

(ii) If ˛ D nC2
n�2

, then u is of the form

u.x/D

�
.n.n� 2//

n�2
4

�
r

r2Cjx� zj2

�n�2
2
�
e (1-10)

for some z 2 Rn, r � 0, and a unit nonnegative vector e 2 Rm.

Remark 1.2. Theorem 1.1(ii) was proved by O. Druet, E. Hebey and J. Vétois [Druet et al. 2010,
Proposition 1.1] via the method of moving spheres. Here we include the result and the proof for the
reader’s convenience.

Next we classify the solutions in the punctured space, through the limiting energy levels or the Pohozaev
invariants of the associated energy functional and the blowup analysis, which is standard in the framework
of free boundary problems. For the upper critical case ˛ D nC2

n�2
, we introduce a new Pohozaev invariant,

which will play the central role.
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Theorem 1.3. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

, and let ˆ.r;u/ be
as in (2-1) for all r > 0:

(i) If 1 < ˛ � n
n�2

, then u is trivial.

(ii) If n
n�2

< ˛ < nC2
n�2

, then ˆ.r;u/ converges as r! 0 and r!1, and

fˆ.0C;u/; ˆ.C1;u/g �

�
�
˛� 1

˛C 1
�
˛C1
˛�1 ; 0

�
W (1-11)

(a) ˆ.0C;u/D 0 if and only if u is trivial.

(b) ˆ.C1;u/D� ˛�1
˛C1

�.˛C1/=.˛�1/ if and only if u is homogeneous of degree � 2
˛�1

, and hence of the
form

u.x/D �
1
˛�1 jxj�

2
˛�1 e; (1-12)

where � is given by (1-4) and e 2 Rm is a unit nonnegative vector.

(iii) If ˛ D nC2
n�2

, then ˆ�.r;u/ as in (2-10) is well-defined for all r > 0, and there are constants �.u/ and
��.u/ such that �.u/Dˆ.r;u/ and ��.u/Dˆ�.r;u/ for all r > 0. Moreover,

�.u/� �
2

n

�
n� 2

2

�n
; (1-13)

and

�

�
2

n

�
n� 2

2

�n
C �.u/

��
n� 2

2

�n�2
� ��.u/� 0; (1-14)

where the equalities of the lower bounds of both �.u/ and ��.u/ hold only simultaneously:

(a) �.u/D ��.u/D 0 if and only if u has removable singularity at the origin, hence of the form (1-10).

(b) If �.u/2 C ��.u/2 > 0, then u has nonremovable singularity at the origin, and is rotationally
symmetric. Moreover, the cylindrical transformation v as in (1-2) satisfies (1-7).

(c) �.u/D�2
n

�
n�2
2

�n and ��.u/D 0 if and only if u is homogeneous of degree �n�2
2

, and hence is of
the form

u.x/D

��
n� 2

2

�n�2
2

jxj�
n�2
2

�
e; (1-15)

where e is a unit nonnegative vector.

The subsequent theorems are concerned with the local solutions in the punctured unit ball. First we
deduce the asymptotic radial symmetry by combining the methods of moving spheres and moving planes;
a similar argument appears in [Caffarelli et al. 2014, Theorem 1.2]. This result is particularly important
to define the second Pohozaev invariant for local solutions.

Theorem 1.4. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ � nC2
n�2

. Then

u.x/D .1CO.jxj// Nu.jxj/ as x! 0; (1-16)

where Nu.r/ is the average of u over @Br .

Utilizing the classification of solutions in the punctured space and the asymptotic radial symmetry, we
obtain the exact asymptotic behavior of local solutions around the singularity.
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Theorem 1.5. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ � nC2
n�2

. Then either u has
a removable singularity at the origin, or the following alternatives hold:

(i) If n
n�2

< ˛ < nC2
n�2

, then

ju.x/j D .1C o.1//�
1
˛�1 jxj�

2
˛�1 as x! 0; (1-17)

where � is given as in (1-4).

(ii) If ˛ D nC2
n�2

, then there are c; C > 0 such that

cjxj�
n�2
2 � ju.x/j � C jxj�

n�2
2 as x! 0; (1-18)

where c depends on u, while C is determined by n and m only.

(iii) If 1 < ˛ < n
n�2

, then there are c; C > 0 such that

cjxj2�n � ju.x/j � C jxj2�n as x! 0; (1-19)

where both c and C depend on u.

(iv) If ˛ D n
n�2

, then

ju.x/j D .1C o.1//

�
.n� 2/2

2jxj2.� log jxj/

�n�2
2

as x! 0: (1-20)

The paper is organized as follows. In the next section, we present the balanced-energy-type monotonicity
formula and introduce the second Pohozaev invariants for the upper critical case. In Section 3, we classify
the solutions of (1-1) on the whole space, proving Theorem 1.1. In Section 4, we investigate the properties
of the solutions on the punctured space, and present the proof of Theorem 1.3. Section 5 is devoted
to the a priori estimates for the local solutions, which will play one of the key roles in the subsequent
analysis, while we prove the asymptotic radial symmetry, Theorem 1.4, in Section 6. Finally, we derive
the exact asymptotic behavior of the local solutions of (1-1) for all 1 < ˛ � nC2

n�2
in Section 7. The proofs

of parts (i)–(iv) in Theorem 1.5 are presented in the ends of Sections 7A–7D, respectively.

1C. Notation and terminology. If juj is bounded in any neighborhood of the origin, we say juj has a
removable singularity. Otherwise, we say that it has a nonremovable singularity.

By Br.z/� Rn (n� 3) we denote the ball of radius r centered at z, and Br D Br.0/. In addition, !n
is the volume of the unit ball B1 �Rn. Given an open set ��Rn, we shall denote by @� the topological
boundary of �. Moreover, when @� is C 1, � denotes the unit normal on @� pointing towards the origin.
r� will denote the tangential derivative on @�.

Sn�1 is the unit sphere in Rn, and is also identified with @B1. Note that n!n is the area of Sn�1. By
r� and �� we shall write the derivative and, respectively, the Laplace–Beltrami operator on Sn�1.

Any vector in the target space Rm (m� 1) is written in bold. Given a vector a 2 Rm, we denote by ai
the i -th component of a. By jaj we denote its l2-norm; i.e., jaj D

�Pm
iD1 a

2
i

�1=2. By a� 0 (resp., a� 0)
or by saying that a is nonnegative (resp., nonpositive) we indicate that ai � 0 (resp., ai � 0) for each
1� i �m. For two vectors a and b, we define a �bD

Pm
iD1 aibi . Also given two vectorial C 1-functions

f and g, we define rf W rg D
Pm
iD1.rfi / � .rgi /.
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The constants C , C0, C1, C2, : : : will always be positive, generic, determined by n, m and ˛ only,
unless otherwise stated. We shall also call these constants universal. In addition, we shall fix �, �, and N�
throughout the paper as in (1-4) and

N�D
˛� 1

˛C 1
�
˛C1
˛�1 : (1-21)

2. Monotonicity formula and Pohozaev invariant

We consider the balanced-energy-type functional

ˆ.r;u/D
r�C1

n!n

Z
@Br

�ˇ̌̌̌
@u

@�
�

2

.˛� 1/r
u

ˇ̌̌̌2
� jr�uj

2

�
d�

C
2r�C1

.˛C 1/n!n

Z
@Br

juj˛C1 d� �
�r��1

n!n

Z
@Br

juj2 d�; (2-1)

where � and � are given as in (1-4). Note that � � 0 if and only if ˛ � n
n�2

, and � � 0 if and only if
1 < ˛ � nC2

n�2
.

Let us introduce the scaling function

ur.x/D r
2
˛�1u.rx/: (2-2)

Note that the problem (1-1) is preserved under this scaling. That is, if u solves (1-1) in BR n f0g then ur
solves (1-1) in BR=r n f0g. In terms of ur , one may easily observe that ˆ satisfies the scaling relation

ˆ.rs;u/Dˆ.s;ur/ (2-3)

for any r; s > 0.
Recall from (1-2) the cylindrical transformation v, in terms of which ˆ can be represented as

ˆ.r;u/D‰.� log r; v/; (2-4)

where ‰.t; v/ is given by

‰.t; v/D
1

n!n

Z
Sn�1

�
j@tvj

2
� jr�vj

2
��jvj2C

2

˛C 1
jvj˛C1

�
d�: (2-5)

Proposition 2.1. Let u be a nonnegative solution of (1-1) in BR n f0g with 1 < ˛ � nC2
n�2

, and let ˆ.r;u/
be as in (2-1). One has

d

dr
ˆ.r;u/D

2�r�

n!n

Z
@Br

ˇ̌̌̌
@u

@�
�

2

.˛� 1/r
u

ˇ̌̌̌2
d�; (2-6)

where � is given as in (1-4). In particular, the following are true:

(i) If 1 < ˛ < nC2
n�2

, then ˆ.r;u/ is nondecreasing for 0 < r < R. Moreover, ˆ.r;u/ is constant for
r1 < r < r2 if and only if u is homogeneous of degree � 2

˛�1
in Br2 nBr1 , i.e.,

u.x/D jxj�
2
˛�1u

�
x

jxj

�
in Br2 nBr1 : (2-7)

(ii) If ˛ D nC2
n�2

, then ˆ.r;u/ is constant for 0 < r < R.
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Proof. The computation is easy if one chooses cylindrical coordinates. Since (2-4) holds with t D� log r ,

r P̂ .r;u/D�‰0.t; v/D�
2

n!n

Z
Sn�1

..@t tv��vCjvj
˛�1v/ � @tv�r�v W r�@tv/ d�

D�
2

n!n

Z
Sn�1

.@t tvC��v��vCjvj
˛�1v/ � @tv d�

D
2�

n!n

Z
Sn�1
j@tvj

2 d�;

where P̂ and ‰0 denote dˆ=dr and d‰=dt respectively, and the right side is evaluated at t D� log r . In
addition, when deriving the last equality we used (1-3). Rephrasing the rightmost side in terms of u, we
arrive at (2-6).

The assertion on the monotonicity of ˆ is now clear from (2-6). On the other hand, the assertion on
the homogeneity can be shown as follows. We see that if ˛ ¤ nC2

n�2
, then one has � ¤ 0. Hence, the

assumption that ˆ.r;u/ is constant for r1 < r < r2 along with (2-6) yields that for any r1 < r < r2
@u

@�
D

2

.˛� 1/r
u on @Br ;

where � is the unit normal pointing towards the origin. Thus, u is homogeneous of degree � 2
˛�1

in
Br2 nBr1 . �

Remark 2.2. As a matter of fact, (2-6) holds for ˛ > nC2
n�2

, and hence ˆ.r;u/ is nonincreasing in this
case, since � < 0 for ˛ > nC2

n�2
.

Remark 2.3. For the case ˛ D nC2
n�2

, we obtain from Proposition 2.1(ii) a constant �.u/ such that

�.u/Dˆ.r;u/ (2-8)

for any 0 < r < R. Since there is a one-to-one correspondence between the nonnegative solutions u of
(1-1) and v of (1-3) via the cylindrical transform (1-2), we shall write �.u/ by �.v/ as well. In view of
(2-4), it is clear that

�.v/D‰.t; v/ (2-9)

for any t > � logR. We shall call � the first Pohozaev invariant.

Let us construct the second Pohozaev invariant in a general setting, that is without rotational symmetry.3

For ˛ D nC2
n�2

, let us define, formally for the moment, the quantity

ˆ�.r;u/D
1
4
.r Pf .r;u//2� 1

4
..n� 2/2/f .r;u/2� �.u/f .r;u/

C
n� 2

n
f .r;u/

2n�2
n�2 � 2

Z r

0

�
�

n!n

Z
@B�

jr�uj
2 d�

�
Pf .�;u/ d�

C
2n� 2

n

Z r

0

�
�

n!n

Z
@B�

juj
2n
n�2 d� �f .�;u/

n
n�2

�
Pf .�;u/ d�; (2-10)

3As noted in an earlier footnote, we discovered that the second Pohozaev invariant always becomes trivial for nonnegative
singular solutions on the punctured space, Rn n f0g, after this paper was accepted. However, this is by no means straightforward
for local solutions in a punctured ball, without asymptotic radial symmetry (Theorem 1.4). Moreover, this invariant becomes
nontrivial for no-sign solutions. For these reasons, we shall present a general formulation of the second Pohozaev invariant.
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where Pf denotes df=dr , and

f .r;u/D
1

n!nr

Z
@Br

juj2 d�: (2-11)

Notice that ˆ�.r;u/ is well-defined only if the last two double integrals on the right side are finite.
Moreover, once ˆ�.r;u/ becomes well-defined, we may also deduce from

r Pf .r;u/D�
2

n!n

Z
@Br

u �

�
@u

@�
�
n� 2

2r
u

�
d� (2-12)

a scaling relation of ˆ�,
ˆ�.rs;u/Dˆ�.s;ur/; (2-13)

which holds for any r; s > 0. On the other hand, in terms of the cylindrical transformation v, one has

ˆ�.r;u/D‰�.� log r; v/; (2-14)
where ‰�.t; v/ is given by

‰�.t; v/D
1
4
.g0.t; v//2� 1

4
..n� 2/2/g.t; v/2� �.v/g.t; v/

C
n� 2

n
g.t; v/

2n�2
n�2 C 2

Z 1
t

�
1

n!n

Z
Sn�1
jr�vj

2 d�

�
g0.�; v/ d�

�
2n� 2

n

Z 1
t

�
1

n!n

Z
Sn�1
jvj

2n
n�2 d� �g.�; v/

n
n�2

�
g0.�; v/ d�; (2-15)

with g0 being dg=dt and

g.t; v/D
1

n!n

Z
Sn�1
jvj2 d�: (2-16)

Proposition 2.4. Let u be a nonnegative solution of (1-1) in BR n f0g with ˛ D nC2
n�2

, and let ˆ�.r;u/ be
as in (2-10). Then ˆ�.r;u/ is well-defined and is constant for 0 < r < R.

We shall postpone the proof to Section 6, since proving the well-definedness of ˆ�.r;u/ essentially
relies on the asymptotic radial symmetry of local solutions to (1-1) (see Theorem 1.4).

Remark 2.5. Knowing that ˆ�.r;u/ is constant, we obtain a constant ��.u/ such that

��.u/Dˆ�.r;u/ (2-17)

for any 0 < r < R. We shall call this constant the second Pohozaev invariant. As with the first Pohozaev
invariant, we will also write it by ��.v/ whenever v is the cylindrical transformation. Clearly,

��.v/D‰�.t; v/ (2-18)

for any t > � logR. In Sections 4 and 7A we will observe that ��.v/ D 0 if and only if v.t; �/ D
.1C o.1//jv.t; �/je uniformly for � 2 Sn�1 as t !1, with some nonnegative unit vector e 2 Rm.

3. Solutions on the whole space

In this section we classify the smooth solutions of (1-1) on the whole space Rn. The analysis is based on
the method of moving spheres along with the Kelvin transform, and we follow essentially the argument
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proposed in [Li and Zhang 2003, Section 2], with only a minor modification. Nevertheless, we shall
include the full argument here for the reader’s convenience.

Given z 2 Rn and r > 0, we shall write u�z;r for the Kelvin transform of u with respect to the sphere
Br.z/; that is,

u�z;r.y/D

�
r

jy � zj

�n�2
u

�
zC

r2

jy � zj2
.y � z/

�
: (3-1)

Let us remark that if u is a solution of (1-1) in Rn, then

��u�z;r D

�
r

jy � zj

�.˛�1/�
ju�z;r j

˛�1u�z;r in Rn n fzg; (3-2)

where � is given by (1-4). Note that �� 0 if and only if 1 < ˛ � nC2
n�2

. The nonnegativity of � will play
a key role when comparing u and u�z;r .

We begin with a basic lemma that holds for any nonnegative, superharmonic function, as a starting
point of the method of moving spheres.

Lemma 3.1 [Li and Zhang 2003, Lemma 2.1]. Let v 2 C 2.Rn/ be a superharmonic and nonnegative
function on Rn. Then for each z 2 Rn, there exists r0 > 0, which may depend on v and z, such that for all
0 < r < r0

v�z;r � v in Rn nBr.z/: (3-3)

The next lemma is an analogue of [Caffarelli et al. 1989, Lemma 2.4], which claims that either the
inequality (3-3) must hold until the solution becomes symmetric (with respect to a sphere) or it must fail
on a compact subset of Rn. The proof is given in that of [Li and Zhang 2003, Lemma 2.2], and we shall
not repeat it here.

Lemma 3.2. Let v 2 C 2.Rn/, z 2 Rn, and r0 > 0 be such that

��.v� v�z;r0/� 0 in Rn nBr0.z/; (3-4)

v�z;r0 < v in Rn nBr0.z/: (3-5)

Then there is a small � > 0 such that for any r0 < r < r0C �

v�z;r < v in Rn nBr.z/: (3-6)

Now let us turn our interest to the nonnegative, smooth global solutions u of (1-1). Given z 2 Rn, let
us define, for each 1� i �m,

ri .z/D supfr > 0 W .ui /�� � ui in Rn nB�.z/ for any 0 < � < rg: (3-7)

Since each component ui of u is nonnegative and superharmonic, Lemma 3.1 applies to ui , from which
we know that ri .z/ > 0 for each 1� i �m. Thus, we have

Nr.z/D inf
1�i�m

ri .z/ > 0: (3-8)
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Let us remark that we have defined Nr.z/ by the infimum, instead of minimum, over a finite set of indices
f1; 2; : : : ; mg, since ri .z/ as a supremum could be infinite. Moreover, if ri .z/D1 for all 1� i �m, we
shall say that Nr.z/D1.

The following lemma takes care of the case when Nr.z/ is either finite or infinite. The proof is essentially
the same as those of [Druet et al. 2010, Lemmas 1.2 and 1.3], which deal with the upper critical case
˛ D nC2

n�2
only, whence we shall skip the details.

Lemma 3.3. Let u be a nonnegative solution of (1-1) in Rn with 1 < ˛ � nC2
n�2

, z 2 Rn be arbitrary, and
Nr.z/ be as in (3-8). If Nr.z/ is finite, then

u�z; Nr.z/ D u in Rn n fzg: (3-9)

If Nr.z0/D1 for some z0 2 Rn, then Nr.z/D1 for all z 2 Rn.

We are now ready to classify the smooth global solutions.

Proof of Theorem 1.1. In view of Lemma 3.3, we observe that Nr.z/ defined in (3-8) is either finite or
infinite for all z 2Rn. If Nr.z/ is finite for all z 2Rn, then we have (3-9) at every point z 2Rn. In this case,
we may apply [Li and Zhang 2003, Lemma 11.1]: there are ai � 0, ri > 0, and zi 2 Rm for 1� i �m
such that

ui .x/D air
�n�2

2

i

�
ri

r2i Cjx� zi j
2

�n�2
2

: (3-10)

On the other hand, if Nr.z/ is infinite for all z 2 Rn, we have (3-7) for all r > 0 at any z 2 Rn. Due to [Li
and Zhang 2003, Lemma 11.2], there are bi � 0 for 1� i �m such that

ui .x/D bi : (3-11)

Suppose that u satisfies (3-11), that is, u is constant everywhere on Rn. As u is a nonnegative solution
of (1-1) in Rn, u must be zero everywhere. Hence, parts (i) and (ii) of Theorem 1.1 are satisfied under
this assumption.

Next, let us consider the case that ui satisfies (3-10) for all 1 � i �m. This part is the same as the
proof of [Druet et al. 2010, Proposition 1.1], so we omit the details. �

4. Solutions in punctured space

4A. Radial symmetry of singular solutions. This section is devoted to the radial symmetry of nonnega-
tive, singular solutions of (1-1). To be more precise, u is a nonnegative solution of (1-1) in the punctured
space Rn n f0g that has a nonremovable singularity at the origin, i.e.,

lim sup
x!0

ju.x/j D1: (4-1)

The proof relies again on the method of moving spheres used in the previous section. The proof for the
case of a single equation has already been established in [Jin et al. 2008, Proposition 2.1]. Nevertheless,
the multiplicity in the components here makes the comparison argument more subtle, as observed in the
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previous section. Let us also address that the method of moving planes also works, see [Caffarelli et al.
1989, Theorem 8.1], after a suitable modification.

Lemma 4.1. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

. If u satisfies (4-1),
then u is radially symmetric.

Proof. Let z 2 Rn n f0g be arbitrary. Arguing similarly to Lemma 3.1, whose proof can be found in [Li
and Zhang 2003, Lemma 2.1], there exists some 0 < r0 < jzj such that for any 0 < r � r0

.ui /
�
z;r � ui in Rn n .Br.z/[f0g/ for each 1� i �m:

Hence, one can define, as with (3-7) and (3-8),

ri .z/D supfr > 0 W .ui /�z;� � ui in Rn n .B�.z/[f0g/ for any 0 < � < rg
and

Nr.z/D inf
1�i�m

ri .z/:

We first claim that
0 < Nr.z/� jzj: (4-2)

The positivity of Nr.z/ is clear.To prove the second inequality in (4-2), let us first observe that by (4-1),
there exist some sequence xj ! 0 and a component ui such that ui .xj /!1. If Nr.z/ > jzj, then by its
definition, there should exist � > jzj such that

.ui /
�
z;� � ui in Rn nB�.z/: (4-3)

Now let yj be the reflection of xj with respect to @B�.z/; i.e.,

yj D zC

�
�

jxj � zj

�2
.xj � z/:

Since xj ! 0, we have yj 2 Rn nB�.z/ for all sufficiently large j , and moreover,

yj ! y0 D

�
1�

�
�

jzj

�2 �
z:

Thus, if we take � close enough to jzj, we have y0 ¤ 0, whence ui is smooth at y0. However, (4-3)
implies

ui .y0/D lim
j!1

ui .yj /� lim
j!1

..ui /
�
z;�.yj //�

�
jzj

�

�n�2
lim
j!1

ui .xj /D1;

a contradiction.
From (4-2), we can also claim that

Nr.z/D jzj:

The argument is based on the proof of [Jin et al. 2008, Proposition 2.1] with the corresponding modification
shown in Lemma 3.3, which amounts to the number of nontrivial components. The main idea is that if
Nr.z/ < jzj, then (4-1) together with the maximum principle implies

ui > .ui /
�
z; Nr.z/ in Rn n .B Nr.z/.z/[f0g/; (4-4)
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at least for one 1 � i �m. Then we must have juj > ju�
z; Nr.z/

j in Rn n .B Nr.z/.z/[ f0g/, and the strong
maximum principle yields that the strict inequality in (4-4) must hold for all nontrivial components.
Hence, as with Lemma 3.2, we obtain some � > 0 such that (4-4) holds for all 1 � i � m with Nr.z/
replaced by some Nr.z/ < r < Nr.z/C �, a contradiction to (4-3). The details are omitted.

To this end, we have proved that for each z 2 Rn n f0g and for any 0 < r < jzj

.ui /
�
z;r � ui in Rn n .Br.z/[f0g/ for each 1� i �m:

Thus, one may deduce from [Jin et al. 2008, Lemma 2.1] that ui is radially symmetric for each 1� i�m. �

4B. Limiting energy levels and Pohozaev invariants. Knowing the radial symmetry of singular solutions,
we may classify the nonnegative solutions on the punctured space, using the balanced-energy limit. The
idea is to consider both blowups and shrink-downs of u under the scaling (2-2). Here by saying a blowup or
a shrink-down under the scaling ur we indicate a limit of ur as r D rj ! 0C, or respectively r D rj !1
in C 2loc.R

n n f0gIRm/. The following lemma provides the compactness of the sequence ur in order to
have both the blowups and the shrink-downs.

Lemma 4.2. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

. If u satisfies (4-1),
then for each 1� i �m

ui .x/�

�
˛� 1

2n

�� 1
˛�1

jxj�
2
˛�1 in Rn n f0g: (4-5)

Proof. Let ui be a positive component of u. Then, since ui is superharmonic in Rn n f0g, it follows from
the extended maximum principle [Gilbarg and Serrin 1956, Theorem 1] that

lim inf
x!0

ui .x/ > 0: (4-6)

Now let v D u1�˛i . Then v satisfies, in Rn n f0g,

�v �
˛

˛� 1

jrvj2

v
C˛� 1:

Hence, for each r > 0, the auxiliary function

w.x/D v.x/�
˛� 1

2n
jxj2

becomes subharmonic in Br n f0g. Then by (4-6), w is bounded around the origin, and thus, it follows
from the extended maximum principle [Gilbarg and Serrin 1956, Theorem 1] that

0� lim sup
x!0

w.x/� sup
@Br

w D sup
@Br

v�
˛� 1

2n
r2:

In terms of ui , we obtain

inf
@Br

ui �

�
˛� 1

2n

�� 1
˛�1

r�
2
˛�1 :

Now the radial symmetry obtained in Lemma 4.1 yields (4-5). �
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The next lemma gives the compactness of the sequence ur , and hence the existence of both a blowup
and a shrink-down of u.

Lemma 4.3. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

. Then there is some
0 < 
 < 1 such that ur is uniformly bounded in C 2;
 .KIRm/ on each compact set K � Rn n f0g.

Proof. If u does not satisfy (4-1), then u is bounded around the origin, and the origin becomes a removable
singularity. According to Theorem 1.1, if 1 < ˛ < nC2

n�2
, u is trivial, while if ˛ D nC2

n�2
, u is globally

bounded and satisfies ju.x/j DO.jxj2�n/ as jxj !1. Hence, in any case, ur is bounded uniformly for
all r > 0 on a fixed compact subset of Rn n f0g.

On the other hand, if u satisfies (4-1), Lemma 4.2 implies that ur is globally bounded in Rn n f0g.
Thus, regardless of the removability of the singularity at the origin, we know that ur is uniformly bounded
in each compact subset of Rn n f0g.

Now since ur also solves (1-1) in Rn n f0g, it follows from the interior regularity theory [Gilbarg and
Trudinger 1983, Theorems 6.2 and 6.19] that ur is uniformly bounded in C 2;
 .KIRm/ on each compact
set K � Rn n f0g for some 0 < 
 < 1. �

Let ˆ.r;u/ be the balanced-energy-type functional defined by (2-1). Recall from Proposition 2.1 that
ˆ.r;u/ is monotone increasing in r > 0 for 1 < ˛ < nC2

n�2
, while it is constant for ˛ D nC2

n�2
.

Lemma 4.4. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

, and let u0 and
u1 be respectively a blowup and shrink-down under the scaling ur . Then ˆ.r;u0/ D ˆ.0C;u/ and
ˆ.r;u1/ D ˆ.1;u/ for all r > 0. In particular, both u0 and u1 are homogeneous of degree � 2

˛�1
,

provided that 1 < ˛ < nC2
n�2

.

Proof. Since the argument for shrink-downs is the same, we shall only present it for blowups. Let u0 be a
blowup with a sequence rj ! 0C. Then due to the scaling relation (2-3), we have, for any r > 0,

ˆ.r;u0/D lim
j!1

ˆ.r;urj /D lim
j!1

ˆ.rrj ;u/Dˆ.0C;u/;

where the existence of ˆ.0C;u/ follows from the compactness of ur (Lemma 4.3) and the monotonicity
of ˆ.r;u/ (Proposition 2.1(i)). This proves the first assertion of Lemma 4.4. The second assertion on the
homogeneity follows again from Proposition 2.1(i). �

Lemma 4.5. Let u be a nonnegative solution of (1-1) in Rn n f0g with 1 < ˛ � nC2
n�2

. Suppose further that
u is homogeneous of degree � 2

˛�1
:

(i) If 1 < ˛ � n
n�2

, then u is trivial.

(ii) If n
n�2

< ˛ � nC2
n�2

, then either u is trivial, or u is of the form (1-12).

Proof. Since u is homogeneous of degree � 2
˛�1

, the cylindrical transform v introduced in (1-2) satisfies

��v��vCjvj
˛�1vD 0 on Sn�1; (4-7)

where �� is the Laplace–Beltrami operator, and � is given by (1-4).
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Case 1: 1 < ˛ � n
n�2

. In view of (1-4), we have � � 0. As a nonnegative solution of (4-7), we see
that each component vi satisfies ��vi � 0 on Sn�1. This implies that vi does not attain any strict local
minimum on Sn�1. As Sn�1 is a compact manifold, vi must be a constant. This argument holds for all
1 � i � m, which makes v a nonnegative, constant vector on Sn�1. However, a nonnegative constant
solution of (4-7) must be trivial because �� 0. Returning to u, it indicates that u is trivial on @B1. As
each of its components is nonnegative and superharmonic, u must be trivial in the whole domain, which
proves Lemma 4.5(i).

Case 2: n
n�2

< ˛ < nC2
n�2

. Suppose that u is a nontrivial solution in the punctured space. Then by the
nonnegativity and the superharmonicity of each component of u, we know juj is positive everywhere.
As it is homogeneous of degree � 2

˛�1
, u must have a nonremovable singularity at the origin, i.e., (4-1)

holds. By Lemma 4.1, u is radially symmetric, whence u is a positive constant vector, a, on @B1.
By (4-7) we have jajD�1=.˛�1/. By the homogeneity, we see that u is of the form �1=.˛�1/jxj�2=.˛�1/e

with some nonnegative unit vector e 2 Rm, proving Lemma 4.5(ii). �

We are in a position to prove Theorem 1.3(i) and (ii).

Proof of Theorem 1.3.i/ and .ii/. Let u0 and u1 be a blowup and, respectively, a shrink-down of u.
According to Lemma 4.4, both u0 and u1 are homogeneous of degree � 2

˛�1
. Hence, it follows from

Lemma 4.5(i) that if 1 < ˛ � n
n�2

, both u0 and u1 are trivial. This in turn yields by Lemma 4.4 that
ˆ.0C;u/ D ˆ.1;u/ D 0. Due to the monotonicity of ˆ.r;u/, we have ˆ.r;u/ D 0 for all r > 0.
Thus, by Proposition 2.1(i), u is homogeneous of degree � 2

˛�1
. Theorem 1.3(i) is now an immediate

consequence of Lemma 4.5(i).
Now let us consider the case n

n�2
<˛< nC2

n�2
. By Lemmas 4.4 and 4.5(ii), any blowup u0 is either trivial

or of the form (1-12). If u0 is trivial, then clearly ˆ.r;u0/D 0 for all r > 0, which along with Lemma 4.4
implies that ˆ.0C;u/D 0. On the other hand, if u0 is of the form (1-12), then a simple computation
shows that ˆ.r;u0/ D �N� for all r > 0, with N� given as in (1-21). Thus, again from Lemma 4.4 it
follows that ˆ.0C;u/ D �N�. The converse statement is obviously true, whence we have proved that
ˆ.0C;u/ 2 f�N�; 0g, and ˆ.0C;u/D 0 if and only if all the blowups are trivial, while ˆ.0C;u/D�N�
if and only if all the blowups are of the form (1-12).

Further, the same assertion holds for any shrink-down u1, proving that ˆ.1;u/ 2 f�N�; 0g, and
ˆ.1;u/D 0 if and only if all the shrink-downs are trivial, while ˆ.1;u/D�N� if and only if all the
shrink-downs are of the form (1-12).

Now if ˆ.0C;u/D 0, then since ˆ.r;u/ is nondecreasing in r and ˆ.1;u/ 2 f�N�; 0g, we must have
ˆ.r;u/ D 0 for all r > 0. Hence, by Lemmas 4.4 and 4.5(ii), u is either trivial or of the form (1-12).
However, the latter yields that ˆ.0C;u/D�N�, a contradiction. Thus, u must be trivial. Of course, the
converse is also true.

Similarly, ˆ.1;u/D�N� implies u is of the form (1-12). This finishes the proof of Theorem 1.3(ii). �

The analysis on the case ˛ D nC2
n�2

is more subtle. Our approach relies on the Pohozaev invariants
of which the first one �.u/ was introduced in (2-8). In the following we focus on the second Pohozaev
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invariant ��.u/, which was briefly introduced in Remark 2.5. More importantly, we shall observe that
this second invariant appears solely due to the multiplicity of the components of (1-1).

Lemma 4.6. Let u be a nonnegative solution of (1-1) in Rn n f0g with ˛ D nC2
n�2

. Then ˆ.r;u/ and
ˆ�.r;u/ in (2-1) and (2-10) are well-defined, and there are constants �.u/ and ��.u/ satisfying (2-8)
and (2-17) respectively. Moreover, the inequalities (1-13) and (1-14) hold and the equalities of the lower
bounds only occur simultaneously.

Proof. The proof can be divided into two cases; first we consider the case where u is not rotationally
symmetric, and then we treat the other case. We shall prove the equivalent statements for the cylindrical
transformation v. Since v will be fixed throughout the proof, we shall omit the dependence of ‰, ‰�, �
and �� on v here.

Suppose that u is not rotationally symmetric. Due to Lemma 4.1, u has a removable singularity at the
origin. Thus, its cylindrical transformation v, given as in (1-2), satisfies

jv.t; �/jC j@tv.t; �/j � Ce
�n�2

2
t on Sn�1 (4-8)

as t !1, with some constant C > 0 independent of t . This combined with (2-9) implies

� D lim
t!1

‰.t/D 0: (4-9)

On the other hand, the estimate (4-8) also ensures the well-definedness of ‰�.t/ given by (2-15) for
all t 2 R. To prove that ‰�.t/ is constant for any t 2 R, we need to compute the derivatives of g, given
by (2-16). Utilizing (1-3), (2-9) and (4-9) one can verify that

g00 D
2

n!n

Z
Sn�1

�
.n� 2/2

2
jvj2C 2jr�vj

2
�
2n� 2

n
jvj

2n
n�2

�
d�;

from which it follows that

‰0�.t/D g
0

�
g00

2
�
.n� 2/2

2
g�

2

n!n

Z
Sn�1

�
jr�vj

2
�
n� 1

n
jvj

2n
n�2

�
d�

�
D

g0

n!n

Z
Sn�1

�
j@tvj

2
�
.n� 2/2

4
jvj2� jr�vj

2
C
n� 2

n
jvj

2n
n�2

�
d� D 0: (4-10)

Thus, ‰�.t/ is constant for any t 2 R, and there must exist a constant ��.v/ such that (2-18) holds for
all t . Moreover, one can also verify from (4-8) that

�� D lim
t!1

‰�.t/D 0:

This proves the lemma for the case where u is not rotationally symmetric.
Next we consider the case where u is rotationally symmetric, so that the cylindrical transformation v

becomes a function of t only. In this case, we have already observed that (1-7) holds with �� given by
(1-9). Note that under the rotational symmetry of v, g as in (2-16) is identical to jvj2. Hence, one can
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easily observe from (2-15) and (1-7) that

‰�.t/D
.g0/2

4
�
.n� 2/2

4
g2� �gC

n� 2

n
g
2n�2
n�2 D ��; (4-11)

as desired.
Let us now prove the bounds in (1-13) and (1-14). Since we have already verified above that �D ��D 0

if v is not rotationally symmetric, it suffices to consider the situation where v is rotationally symmetric.
Then one can follow the derivation of (1-9) and verify that �� � 0. Hence, we are only left with proving
the lower bounds of � and ��.

Set

f .s/D
.n� 2/2

4
s2�

n� 2

n
s
2n�2
n�2 C �s;

and let us rephrase the second identity in (4-11) as

.g0/2

4
D f .g/C ��: (4-12)

Utilizing �� � 0 in the identity above, we see that f .g/� 0. Since either g.t/D 0 and g.t/ > 0 for all t ,
and g.t/D 0 yields � D 0, we can focus on the case g.t/ > 0 for all t . Then 1

g
f .g/� 0 as well, from

which it follows that

� � �
.n� 2/2

4
gC

n� 2

n
g

n
n�2 � �

2

n

�
n� 2

2

�n
:

This verifies the lower bound (1-13) of �.
To verify the lower bound (1-14) of ��, let us remark that�

2

n

�
n� 2

2

�n
C �

��
n� 2

2

�n�2
D f

��
n� 2

2

�n�2 �
:

Now suppose towards a contradiction that there is a solution v having �� < �f
��
n�2
2

�n�2�. Then it
follows from (4-12) that minfg.t/ W t 2Rg>

�
n�2
2

�n�2, or equivalently, minfjv.t/j W t 2Rg>
�
n�2
2

�.n�2/=2.
In view of (1-3), this implies

v00i D
.n� 2/2

4
vi � jvj

4
n�2 vi � �ıvi (4-13)

for each 1� i �m, where ı Dminfjv.t/j W t 2 Rg�
�
n�2
2

�.n�2/=2
> 0. Hence, vi is a concave function.

However, (4-5) shows that vi is uniformly bounded for all t , which indicates that vi .t/!ai and v00i .t/!0

as t!1 for some ai > 0. However, this is a contradiction against (4-13), which proves the lower bound
(1-14) of ��.

Finally, let us investigate the scenario when the equalities of the lower bounds in (1-13) and (1-14)
hold. Suppose that the equality of the lower bound in (1-14) occurs. That is,

�C

�
n� 2

2

�2�n
�� D�

2

n

�
n� 2

2

�n
: (4-14)
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Arguing much as above, one can deduce that minfjv.t/j W t 2Rg �
�
n�2
2

�.n�2/=2 and v00i � 0 in R for each
1� i �m. Again vi is a concave function that is uniformly bounded in R, so vi .t/! ai for some ai 2R,
and v00i .t/! 0 as t !1. Thus, jv.t/j ! jaj with aD .a1; : : : ; am/, and it follows from v00i .t/! 0 and
the first equality in (4-13) that jaj D

�
n�2
2

�.n�2/=2. On the other hand, we also have v0i .t/! 0 as t!1,
so sending t !1 in the second equality of (2-9) yields that

� D lim
t!1

�
jv0.t/j2�

.n� 2/2

4
jv.t/j2C

n� 2

n
jv.t/j

2n
n�2

�
D�

2

n

�
n� 2

2

�n
:

Thus, (4-14) forces �� D 0, and the final assertion of the lemma is proved. �

Let us finish this section by proving Theorem 1.3(iii).

Proof of Theorem 1.3.iii/. The well-definedness and the bounds of � and �� are proved in Lemma 4.6.
The other assertions can be proved as follows.

First consider the assertion (iii)-(a). If u is not radially symmetric, then by Lemma 4.1, u has a
removable singularity at the origin, as desired. On the other hand, if u is radially symmetric, one can
deduce from (1-7) that the cylindrical transformation v, which is now a function of t only, satisfies�

d jvj

dt

�2
D
.n� 2/2

4
jvj2�

n� 2

n
jvj

2n
n�2 : (4-15)

Hence, classical work such as [Fowler 1931; Caffarelli et al. 1989] applies to jvj, proving the “only if”
part of the assertion (iii)-(a). The “if” part can be verified through a direct computation.

Let us move on to the case �2 C �2� > 0. From the assertion (iii)-(a), we see that u must have a
nonremovable singularity at the origin. According to Lemma 4.1, u is radially symmetric, so one can
follow the computation in Section 1 and deduce (1-7).

Finally, assume that � D�2
n

�
n�2
2

�n and �� D 0. It follows from (1-7) that�
d jvj

dt

�2
�
.n� 2/2

4
jvj2C

n� 2

n
jvj

2n
n�2 C

2

n

�
n� 2

2

�n
D 0;

whence jvj has to be constant in R, and the constant has to be
�
n�2
2

�.n�2/=2. In terms of u this implies
that u is homogeneous of degree �n�2

2
and is of the form (1-15). This constitutes the “only if” part of

the assertion (iii)-(c). The “if” part follows easily from a direct computation. �

5. A priori estimate and Harnack-type inequality for local solutions

In this section, we prove a priori upper bounds for local solutions of (1-1) in B1 n f0g with 1 < ˛ � nC2
n�2

,
which further allows us to derive related Harnack inequalities, interior gradient estimates and the com-
pactness of scaling functions. Our analysis is divided into two cases, according to the subcritical range
1 < ˛ < nC2

n�2
and the critical range ˛ D nC2

n�2
. The former is based on the nonexistence of the smooth,

positive, global solution in Theorem 1.1(i) along with a blowup argument. The latter uses the method of
moving spheres presented in the previous section, essentially following [Li and Zhang 2003].
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5A. A priori bound for 1 < ˛ < nC2
n�2

. We begin with the upper bound for the subcritical case, which is
(much) simpler than the critical case.

Proposition 5.1. Let 1 < ˛ < nC2
n�2

and suppose that v 2 C 2.B1IRm/\ C.B1IRm/ is a nonnegative
solution of

��vD jvj˛�1v in B1: (5-1)

Then there exists C > 0, depending only on n, m and ˛, such that

jv.x/j � C.1� jxj/�
2
˛�1 in B1: (5-2)

Proof. Note that w D v1C � � �C vm satisfies

1

c
w˛ � ��w � cw˛

for some c > 1, depending only on m and ˛. Thus, we can follow the proof of [Poláčik et al. 2007,
Theorem 2.1] and obtain the desired inequality. We omit the details. �

5B. A Harnack-type inequality for ˛D nC2
n�2

. Our approach to achieve the Harnack-type inequality for
˛ D nC2

n�2
follows the line of the scalar case in [Li and Zhang 2003, Lemma 5.1]. In our system setting,

the problem becomes very sensitive to the number of nonzero components, and we modify the proof of
[Li and Zhang 2003, Lemma 5.1] in this direction.

Proposition 5.2. Let v 2 C 2.B2IRm/\C.B2IRm/ be a nonnegative solution of

��vD jvj
4
n�2v in B2: (5-3)

Then, there exists C > 0 depending only on n and m, such that�
min
i2Im

inf
@B2

vi
�
jv.x/j � C.1� jxj/�

n�2
2 in B1; (5-4)

where Im is the set of indices 1� i �m such that vi is nontrivial.

Proof. If v is trivial, then Im D∅, whence there is nothing to prove. Thus, we shall assume that v is not
trivial, so that Im ¤∅. Then for each i 2 Im, we know from the superharmonicity and the nonnegativity
of vi that inf@B2 vi > 0, whence .mini2Im inf@B2 vi /

�1 is a positive, finite number.
If jv.x/j � C1.1� jxj/�.n�2/=2 in B1 for some C1 > 0 depending only on n and m, then the claim

(5-4) is true, since the maximum principle and the superharmonicity of each component of v implies that
inf@B2 vi � vi .0/. Thus, let us assume that for all j � 1 there are nonnegative solutions vj of (5-3) and
points xj 2 B1 such that

Mj WD sup
jxj�1

..1� jxj/
n�2
2 jvj .x/j/D .1� jxj j/

n�2
2 jvj .xj /j !1: (5-5)
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We know that xj 2 B1 (instead of @B1) since vj is continuous on B1. Moreover, we shall set

rj D
1
2
.1� jxj j/ > 0; (5-6)

ıj D jvj .xj /j
�˛�1

2 D 2rjM
� 2
n�2

j ! 0; (5-7)

Rj D
rj

ıj
D

1
2
M

2
n�2

j !1: (5-8)

It should be noted that due to (5-5), we have

jvj .x/j �

�
1� jxj j

1� jxj

� 2
˛�1

jvj .xj /j � 2
2
˛�1 jvj .xj /j in Brj .xj /: (5-9)

In addition, inserting (5-6) into (5-5), we obtain

jvj .xj /j D .2rj /
� 2
˛�1Mj : (5-10)

With (5-9) and (5-10) at hand, one can follow the proof of [Li and Zhang 2003, Lemma 5.1] to deduce
that the sequence of the scaled function

wj .x/D ı
n�2
2

j vj .ıjxC xj / in BRj

converges to w0 in C 2loc.R
nIRm/ for certain w0 2 C 2.RnIRm/, which is a nonnegative solution of

��w0 D jw0j
4
n�2w0 in Rn (5-11)

satisfying
jw0.x/j � 2

2
˛�1 in Rn; (5-12)

as well as
jw0.0/j D 1: (5-13)

We omit the details here.
With only a minor modification, one may apply Lemma 3.1 to each component wi;j of wj , with i 2 Im,

and obtain a number si;j .z/ > 0, corresponding to each z 2 Rn, such that for all 0 < r < si;j .z/

.wi;j /
�
z;r � wi;j in B1=.2ıj /.z/ nBr.z/: (5-14)

Here we choose j large enough so that B1=.2ıj /.z/� B1=ıj , which is possible due to (5-7). One may
refer to the proof of [Li and Zhang 2003, Theorem 1.5] for the details.

Let us now replace si;j .z/ by the supremum value of r such that (5-14) holds; that is,

si;j .z/D supfr W .wi;j /�z;� � wi;j in B1=.2ıj /.z/ nBr.z/ for any 0 < � < rg: (5-15)

Now with si;j .z/ defined as in (5-15), we shall set, analogously to (3-8),

Nsj .z/D inf
i2Im

si;j .z/: (5-16)

Then we have

.wi;j /
�
z;Nsj .z/

� wi;j in B1=.2ıj /.z/ nBNsj .z/.z/ for each i 2 Im; (5-17)
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and respectively,
��.wi;j � .wi;j /

�
z;Nsj .z/

/� 0 in B1=.2ıj /.z/ nB Nsj .z/.z/: (5-18)

Now let us assume towards a contradiction that

min
i2Im

inf
@B2

vi;j � j
�

sup
jxj�1

.1� jxj/
n�2
2 jvj .x/j

��1
D

j

Mj
: (5-19)

In terms of wi;j , one may rewrite (5-19) as

min
i2Im

inf
@B1=ıj

wi;j D ı
n�2
2

j min
i2Im

inf
@B1.xj /

vi;j � ı
n�2
2

j min
i2Im

inf
@B2

vi;j � jı
n�2
j ; (5-20)

where in the derivation of the first inequality we used the superharmonicity of vi;j , the maximum principle
and the fact that B1.xj /� B2, while the second inequality follows from (5-19), (5-7) and the fact that
2rj D 1� jxj j � 1.

In view of (5-20), one may easily deduce that for any z 2 Rn

lim
j!1

Nsj .z/D1: (5-21)

Suppose that (5-21) is false, and there exists some L> 0, independent of j , such that

Nsj .z/� L: (5-22)

Then by the definition of the Kelvin transform (see (3-1)), we have, for any i 2 Im,

sup
@B1=.4ıj /.z/

.wi;j /
�
z;Nsj .z/

D .4ıj Nsj .z//
n�2 sup

@B
4ıj Ns

2
j
.z/

wi;j

� .4ıjL/
n�2ı

n�2
2

j sup
B
4ı2
j
L2

vi;j � .8L/
n�2ın�2j ; (5-23)

where in deriving the first and the second inequalities we used (5-22) and, respectively, (5-9) with (5-10).
According to (5-20) and (5-23), for each i 2 Im,

inf
@B1=.4ıj /.z/

.wi;j � .wi;j /
�
z;Nsj .z/

/� .j � .8L/n�2/ın�2j > 0 (5-24)

for all sufficiently large j , where in the first inequality we used wi;j � inf@B1=ıj wi;j on @B1=.4ıj /.z/,
which follows from the maximum principle, the superharmonicity of wi;j in B1=ıj and the fact that
B1=.4ıj /.z/ � B1=ıj . With (5-24) at hand, we may apply the maximum principle to (5-18) and observe
that for any i 2 Im

.wi;j /
�
z;Nsj .z/

<wi;j in B1=.2ıj /.z/ nB Nsj .z/.z/: (5-25)

Now that wi;j satisfies (5-18) and (5-25) for each i 2 Im, we can follow a similar argument to
that in the proof of [Li and Zhang 2003, Lemma 5.2] and deduce that there exist Nsi;j .z/ > Nsj .z/ and
0 < �i;j < Nsi;j .z/� Nsj .z/ such that for any Nsj .z/ < r < Nsj .z/C �i;j

.wi;j /
�
z;Nsj .z/

<wi;j in B1=.2ıj /.z/ nBr.z/ for each i 2 Im: (5-26)
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Clearly, (5-26) violates the definition of Nsj .z/ in (5-16). Hence, the claim (5-21) should be true, under
the assumption (5-19).

Knowing that (5-20) is true for all z 2 Rn (under the assumption (5-19)), we have for any z 2 Rn and
r > 0 that

.wi;j /
�
z;r � wi;j in B1=.2ıj /.z/ nBr.z/ for any i 2 Im (5-27)

for all sufficiently large j such that Nsj .z/ > r . On the other hand, recall from the beginning of this proof
that wj ! w0 in C 2loc.R

nIRm/ with some w0 2 C 2.RnIRm/ satisfying (5-11), (5-12) and (5-13) with
˛ D nC2

n�2
. This implies .wj /�z;r ! .w0/

�
z;r in C 2loc.R

n n fzgIRm/ for each z 2 Rn and any r > 0. Thus,
we may pass to the limit with j !1 (possibly along a subsequence) in (5-27) in any compact domain
of type BR.z/ nBr.z/� Rn n fzg, which gives

.wi;0/
�
z;r � wi;0 in Rn nBr.z/ for any i 2 Im: (5-28)

As z 2 Rn and r > 0 in (5-28) are arbitrary, we conclude from [Li and Zhang 2003, Lemma 11.2] that
wi;0 is constant for each i 2 Im. Then as wi;0 is a nonnegative (global) solution of (5-11), wi;0 must be
trivial for each i 2 Im. On the other hand, for any i 62 Im, vi is already trivial and so is the limit wi;0.
Consequently, w0 is a trivial solution, a contradiction with (5-13). Therefore, the assumption (5-19) must
fail, which implies (5-4) with some constant C > 0, depending only on n and m. �

5C. Universal upper bounds for 1 < ˛� nC2
n�2

. With Proposition 5.1, we obtain a universal upper esti-
mate for (local) singular solutions in the subcritical case. Let us remark that this bound is not sharp for
1 < ˛ � n

n�2
, although we obtain a universal constant as well as a universal neighborhood in the estimate.

The sharp bounds for those cases will be given separately in Sections 7C and 7D.

Lemma 5.3. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ < nC2
n�2

. Then there exists
C > 0, depending only on n, m and ˛, such that

ju.x/j � C jxj�
2
˛�1 in B1=2 n f0g: (5-29)

Proof. Let x0 2 B1=2 n f0g and set r D 1
2
jx0j. Since Br.x0/� B1 n f0g, one can define

v.x/D r
2
˛�1u.rxC x0/ in B1:

As u is a nonnegative solution of (1-1) in B1 n f0g, we see that v is a nonnegative solution of (5-1).
Moreover, v is continuous up to the boundary of B1. Hence, Proposition 5.1 applies to v and taking
x D 0 in (5-2) we obtain

jv.0/j � C;

which in terms of u can be rephrased as

ju.x0/j � Cr
� 2
˛�1 :

Since x0 2 B1=2 n f0g was arbitrary and r D 1
2
jx0j, the proof is finished. �
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Remark 5.4. For 1<˛< nC2
n�2

, one may take an alternative approach as follows. LetwDu1Cu2C�� �Cum.
Thenw� 0 and 1

c1
w�juj� c1w in B1nf0g with c1Dm1=2. Hence, w satisfies 1

c2
w˛ ���w� c2w

˛ in
B1nf0g with c2Dm.˛�1/=2. By [Serrin and Zou 2002, Corollary IV] it follows that w�C jxj�2=.˛�1/ in
B1=2nf0g, where C depends only on n,m and ˛. This together with the inequality juj� c1w yields (5-29).

From the Harnack-type inequality in Proposition 5.2, we obtain an upper estimate for the critical case
˛ D nC2

n�2
.

Lemma 5.5. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛ D nC2
n�2

. Then there exists C > 0,
depending only on n and m, such that�

min
i2Im

inf
@B3=4

ui
�
ju.x/j � C jxj�

n�2
2 in B1=2 n f0g; (5-30)

where Im consists of all indices 1� i �m such that ui is nontrivial.

Proof. If u has a removable singularity at the origin, then ��uD juj4=.n�2/u in B1 (instead of B1 nf0g),
whence one may apply Proposition 5.2 to u after scaling, and observe that�

min
i2Im

inf
@B3=4

ui
�
ju.x/j � C

�
3
4
� jxj

��n�2
2 � C

�
3
4

��n�2
2 in B1=2 n f0g;

which implies (5-30).
Henceforth, let us assume that u does not have a removable singularity at the origin. Clearly Im ¤∅,

and by the superharmonicity and the nonnegativity of ui with i 2 Im, we have ui > 0 in B1 n f0g for all
i 2 Im.

Now let x0 2 B1=2n f0g and r D 1
8
jx0j. Since B2r.x0/� B1 n f0g, one can define

v.x/D r
n�2
2 u.rxC x0/ in B2:

Obviously, vi is nontrivial if and only if i 2 Im. On the other hand, as u is a nonnegative solution of (1-1)
in B1 n f0g, v becomes a nonnegative solution of (5-3). Hence, it follows from (5-4) that

jv.0/j � C
�

min
i2Im

inf
@B2

vi
��1
D C

�
min
i2Im

inf
B2r .x0/

ui
��1

; (5-31)

where C > 0 depends only on n and m.
Now let Jm � Im consist of all components ui having nonremovable singularity at the origin. Note

that Jm may not be equal to Im. By superharmonicity and positivity, the maximum principle implies that
lim infx!0 ui .x/D1 for each i 2 Jm. On the other hand, if i 2 Im nJm (provided that Im nJm ¤∅),
ui is bounded at the origin, and again by the maximum principle, one has lim infx!0 ui .x/� inf@B3=4 ui .
Hence, one should have inf@B2r .x0/ ui � inf@B3=4 ui for any i 2 Im. This along with (5-31) yields

ju.x0/j � C
�

min
i2Im

inf
B3=4

ui
��1

r�
n�2
2 ;

which proves the lemma. �

Remark 5.6. We shall see in Section 7B that the above estimate can be improved for solutions u with
nonremovable singularity at the origin.
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Due to Lemmas 5.3 and 5.5, we obtain the standard Harnack inequality and interior gradient estimate.

Lemma 5.7. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ � nC2
n�2

. Then there exists
C > 0 such that for each 1� i �m,

sup
BrnBr=2

ui � C inf
BrnBr=2

ui for any 0 < r < 1
2
; (5-32)

and

jrui .x/j � C
ui .x/

jxj
in B1=2 n f0g: (5-33)

Moreover, the constant C in (5-32) depends only on n, m and ˛, provided that 1 < ˛ < nC2
n�2

.

Proof. After a scaling argument we may also say that (5-29) and (5-30) hold in B3=4 n f0g, instead
of B1=2 n f0g. Consider ui , 1 � i � m, as a nonnegative solution of ��ui D a.x/ui in B1 n f0g,
where a.x/D juj˛�1. Due to (5-29) if 1 < ˛ < nC2

n�2
, and to (5-30) if ˛D nC2

n�2
, we know that 0� a.x/�

C jxj�2 in B3=4 n f0g. Thus, (5-32) follows easily from the classical Harnack inequality [Gilbarg and
Trudinger 1983, Corollary 9.25]. With (5-32) at hand, one may also prove (5-33) by the classical gradient
estimate [Gilbarg and Trudinger 1983, Theorem 3.9]. �

6. Asymptotic radial symmetry of local solutions

This section is devoted to the proof of Theorem 1.4. Let us address that a similar argument was also used
in [Caffarelli et al. 2014, Theorem 1.2], which is concerned with fractional Laplacian, scalar equations.

Proof of Theorem 1.4. If the origin is a removable singularity, then the conclusion (1-16) is clear. Hence,
we shall assume that the origin is a nonremovable singularity.

Recall from (3-1) that u�z;r is the Kelvin transform of u with respect to the sphere @Br.z/. Since the
origin is a nonremovable singularity of u, one may prove, with a minor modification of the proof of
Lemma 4.1, that there is some small � > 0 such that for any z 2 B�=2 n f0g and any 0 < r � jzj,

.ui /
�
z;r � ui in B1 n .Br.z/[f0g/ for each 1� i �m: (6-1)

The key observation here is that (6-1) implies, for any a > 1
�

and e 2 @B1,

u�i .y/� u
�
i .ya/ if y � e > a and jyaj> 1 for each 1� i �m; (6-2)

where

u�i .y/D .ui /
�
0;1.y/D jyj

2�nui .jyj
�2y/; ya D yC 2.a�y � e/e;

and Ha.e/ is the half-space fx W x � e > ag. Note that ya is the reflection point of y with respect to the
hyperplane @Ha.e/. To prove the claim (6-2), let us note first that y 2 B1=� if and only if y=jyj2 2 B�.
Now we shall choose some z 2 B�=2 n f0g and some 0 < r < jzj such that

ya

jyaj2
� z D

�
r

jy=jyj2� zj

�2� y

jyj2
� z

�
: (6-3)
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In other words, ya=jyaj2 is the reflection point of y=jyj2 with respect to @Br.z/. We shall ask in addition
that

jyaj

jyj
�
1

r

ˇ̌̌̌
y

jyj2
� z

ˇ̌̌̌
: (6-4)

Before we actually find such z and r , let us verify that along with (6-3) and (6-4), (6-1) implies (6-2) as
follows.

Given y 2 Rn such that y � e > a and jyaj > 1, and 0 < r < jzj < �
2

such that (6-3) and (6-4) hold,
let us write by x and x�z;r the points y=jyj2 and ya=jyaj2 respectively. Then since y � e > a > 1

�
and

jyaj> 1, we have x 2 Br.z/, and x�z;r 2 B1 nBr.z/. Hence, one may proceed, using (6-1), with

u�i .y/D
1

jyjn�2

�
jx�z;r � zj

r

�n�2
.ui /

�
z;r.x

�
z;r/

�
1

jyjn�2

�
jx�z;r � zj

r

�n�2
ui .x

�
z;r/� u

�
i .ya/;

proving (6-2), where in deriving the first equality we used (6-3), while the last inequality follows from
(6-4). Thus, we only need to prove that there actually exist 0 < r < jzj < �

2
satisfying (6-3) and (6-4).

However, it only involves an elementary argument to verify (6-3) and (6-4) as well as 0 < r � jzj< �
2

, by
choosing r D jzj and

z D
1

jyj2
yC

jyaj
2

jyj2� jyaj2

�
1

jyj2
y �

1

jyaj2
ya

�
D

1

jyj2� jyaj2
.y �ya/:

With the claim (6-2) at hand, one may invoke [Caffarelli et al. 1989, Theorem 6.1 and Corollary 6.2]
to finish the proof. That is, from the former one obtains some C > 0, independent of �, such that

u�i .y/� u
�
i .x/ if jxj> 1 and jyj � jxjC C

�
for each 1� i �m:

As u�i is a nonnegative superharmonic function, the latter implies

u�i D

�
1CO

�
1

R

���
inf
@BR

u�i
�

uniformly on @BR as R!1;

which in terms of ui implies the asymptotic radial symmetry claimed as in (1-16). �

With the asymptotic radial symmetry as well as the uniform estimate achieved in the previous section,
we are ready to prove Proposition 2.4, finally showing the existence of the second Pohozaev invariant;
see (2-17).

Proof of Proposition 2.4. Let u be a nonnegative solution of (1-1) in BR n f0g with ˛ D nC2
n�2

, and let
ˆ�.r;u/ be as in (2-10). Let us also assume that u is a nontrivial solution. Let us prove the well-definedness
of ˆ�.r;u/.

In the following, we shall denote by C a positive generic constant independent of r . With f .r;u/
given as in (2-11), it follows immediately from (5-30) and (5-33) that

f .r;u/� C and r j Pf .r;u/j � Cf .r;u/ for any 0 < r < 1
2
R: (6-5)
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On the other hand, by the asymptotic radial symmetry (1-16), we have

j�.u� Nu/j � C jxjj Nuj
nC2
n�2 in B2r nBr ; as r! 0C;

where Nu.r/ is the average of u over the sphere @Br . Hence, it follows from the interior gradient estimate
[Gilbarg and Trudinger 1983, Theorem 3.9] and the Harnack inequality (5-32) that

jr.u� Nu/j � C juj on @Br ;

and in particular,

jr�uj � C juj on @Br ; (6-6)

where r�u is the tangential derivative of u on @Br .
By means of (6-6) and (6-5), we deduce thatˇ̌̌̌Z r

0

�
�

n!n

Z
@B�

jr�uj
2 d�

�
Pf .�;u/ d�

ˇ̌̌̌
� C

Z r

0

�f .�;u/2 d�; (6-7)

provided that r > 0 is sufficiently small. Similarly, one may also prove from (1-16) and (6-5) thatˇ̌̌̌Z r

0

�
�

n!n

Z
@B�

juj
2n
n�2 d��f .�;u/

n
n�2

�
Pf .�;u/ d�

ˇ̌̌̌
� C

Z r

0

�f .�;u/
2n�2
n�2 d�: (6-8)

By the first inequality in (6-5), we see that the right sides of both (6-7) and (6-8) are of order r2, proving
the well-definedness of ˆ�.r;u/.

Proving that ˆ�.r;u/ is indeed constant in 0 < r < R is now easy by considering the cylindrical
version ‰�.t; v/ defined as in (2-15). Since the computation is very similar to that of (4-10), we omit the
details. �

7. Exact asymptotic behavior of local solutions

With the a priori estimates and the classification of the solutions on the punctured space, we are now
ready to investigate exact asymptotic behavior of local solutions near the isolated singularity at the origin.
Before we begin our analysis, let us provide the basic integrability of the solution.

Lemma 7.1. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛ > 1. One has u 2 L˛.B1IRm/.
In particular, if ˛ � n

n�2
, then u is a distribution solution of (1-1) in B1 n f0g in B1, that is,

�

Z
B1

u ��v dx D

Z
B1

juj˛�1u � v dx for any v 2 C10 .B1IR
m/:

Proof. Recall from the proof of Proposition 5.1 and Remark 5.4 that w D u1 C � � � C um satisfies
1
c
w˛ � ��w � cw˛, with some c > 1 depending only on m and ˛. By [Brézis and Lions 1981],
w 2 L˛.B1/ which implies that u 2 L˛.B1IRm/. The second assertion can be proved much as in
[Caffarelli et al. 1989], and we omit the details. �
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7A. Case n
n�2

< ˛ < nC2
n�2

. The upper bound (5-29) and the classification of solutions on the punctured
space allow us to capture the exact asymptotic behavior of local solutions to (1-1), by means of the blowup
analysis. Let us recall from Section 4 that a blowup u0 is a limit of ur along a sequence r D rj ! 0C in
C 2loc.R

n n f0gIRm/.

Lemma 7.2. Let u be a nonnegative solution of (1-1) in B1 n f0g with n
n�2

< ˛ < nC2
n�2

, and let ˆ.r;u/
be as in (2-1). Then ˆ.0C;u/ 2 f�N�; 0g, where N� is given by (1-21). Moreover, the following are true:

(i) ˆ.0C;u/D 0 if and only if

ju.x/j D o.jxj�
2
˛�1 / as x! 0: (7-1)

(ii) ˆ.0C;u/D�N� if and only if

ju.x/j D .1C o.1//�
1
˛�1 jxj�

2
˛�1 as x! 0; (7-2)

where � is given by (1-4).

Proof. Due to the estimates (5-29) and (5-33), we know that ˆ.r;u/ in (2-1) is uniformly bounded for all
0< r < 1

2
. This combined with the monotonicity (Proposition 2.1(i)) implies that ˆ.0C;u/ exists. Hence,

we may argue analogously to the proof of Lemma 4.4 and observe that any blowup u0 of u satisfies
ˆ.r;u0/Dˆ.0C;u/ for all r > 0. As u0 is a nonnegative solution of (1-1) in Rn n f0g, it follows from
Lemma 4.5(ii) that ˆ.0C;u/D 0 if and only if any blowup u0 of u is trivial, while ˆ.0C;u/D�N� if
and only if any blowup of u0 is of the form �1=.˛�1/jxj�2=.˛�1/e with some nonnegative unit vector
e 2 Rm. In other words, ˆ.0C;u/D 0 if and only if jur j ! 0 uniformly on @B1, while ˆ.0C;u/D�N�
if and only if jur j ! �1=.˛�1/ uniformly on @B1, where ur is the scaling function defined by (2-2). �

The next lemma shows that (7-1) is sufficient for the origin to be a removable singularity.

Lemma 7.3. Let u be a nonnegative solution of (1-1) in B1 n f0g with n
n�2

< ˛ < nC2
n�2

. If u satisfies

ju.x/j D o.jxj�
2
˛�1 / as x! 0; (7-3)

then the origin is a removable singularity.

Proof. Under the assumption (7-3), we claim that

ju.x/j � cjxj�
2
˛�1
Cı in Br0 n f0g (7-4)

for some ı > 0, r0 > 0, and c > 1, where c and r0 may depend on u.
Consider the auxiliary function

'�.x/D .C0r
�ı
0 jxj

ı
C �/jxj�

2
˛�1 in Rn n f0g; (7-5)

where C0 > 0 is the (universal) constant from (5-29), r0 > 0 is a small radius to be determined later, and
� > 0 is an arbitrary small number. By direct computation, we observe that

�'� D�.C0r
�ı
0 .�C�ı� ı2/jxjı C ��/jxj

2˛
1�˛ in Rn n f0g;
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with � and � given by (1-4). Note that for ˛ > n
n�2

, we have � > 0. Thus, taking ı > 0 sufficiently small
depending only on � and j�j, we obtain

�'� � �
�

2jxj2
'� in Rn n f0g: (7-6)

Let us fix 1 � i � m and consider the i-th component ui of u as a solution of �ui D �a.x/ui in
B1 n f0g with a.x/D juj˛�1. Due to (7-3), there exists r0 > 0 such that

0� a.x/�
�

2jxj2

in Br0 n f0g, and hence, it follows from (7-6) that '� is a supersolution of �ui D�a.x/ui in Br0 n f0g.
That is,

�'� � �a.x/'� in Br0 n f0g: (7-7)

On the other hand, choosing C0 > 0 to be the constant for which juj satisfies (5-29), we have
ui � C0r

�2=.˛�1/
0 � '� on @Br0 . Utilizing the assumption (7-3) again, one can find a sufficiently small

0 < r < r0 such that ui � �jxj�2=.˛�1/ � '� in Br n f0g. Therefore,

ui � '� on .@Br0/[ .Br n f0g/: (7-8)

In view of (7-7) and (7-8), we may apply the maximum principle in Br0 nBr and obtain ui � ' in
Br0 nBr . Combining this inequality with (7-8), we arrive at

ui � '� in Br0 n f0g: (7-9)

Since the parameters C0, r0, and ı in the definition (7-5) of '� are independent of �, we can take �! 0

in (7-9) and obtain

ui .x/� C0r
�ı
0 jxj

� 2
˛�1
Cı in Br0 n f0g:

Now that this inequality holds for any 1� i �m, we arrive at (7-4) with c D C0r�ı0
p
m.

Since a.x/D juj˛�1, we have from (7-4) that 0� a.x/� cjxj�2C.˛�1/ı on Br0 n f0g, which certainly
implies a 2 Ln=.2��/.B1/ for some small � > 0. According to Lemma 7.1, ui satisfies ��ui D a.x/ui
in B1 in the distributional sense for each 1� i �m, whence the classical result [Serrin 1964, Theorem 1]
yields that ui has a removable singularity at the origin. �

Remark 7.4. One may have noticed that the proof of Lemma 7.3 works for the upper critical case,
˛ D nC2

n�2
, without any modification.

We are ready to prove Theorem 1.5(i).

Proof of Theorem 1.5. Suppose that u has a nonremovable singularity at the origin. Then by Lemma 7.3,
u does not satisfy (7-3), whence it follows from Lemma 7.2 that u satisfies (7-2), which proves (1-17). �
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7B. Case ˛D nC2
n�2

. The asymptotic behavior for the case ˛ D nC2
n�2

becomes more subtle, due to the
presence of the second Pohozaev invariant �� given by (2-17). The following lemma is the local version
of Theorem 1.3(iii). Let us remark that the proof is similar to the classical argument, see the proof of
[Caffarelli et al. 1989, Theorem 1.2]; however, the key difference is that we apply the radial symmetry to
the second Pohozaev identity (2-17), instead of the first identity (2-8).

Lemma 7.5. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛ D nC2
n�2

. Also set �.u/ and ��.u/
as in (2-8) and (2-17) respectively. Then �.u/ and ��.u/ satisfy (1-13) and (1-14) respectively. Moreover,
the following are true:

(i) �.u/D ��.u/D 0 if and only if

ju.x/j D o.jxj�
n�2
2 / as x! 0: (7-10)

(ii) �.u/2C ��.u/2 > 0 if and only if there are c; C > 0 such that

cjxj�
n�2
2 � ju.x/j � C jxj�

n�2
2 as x! 0; (7-11)

where c depends on u, while C is determined by n and m only.

(iii) �.u/D�2
n

�
n�2
2

�n and ��.u/D 0 if and only if

ju.x/j D .1C o.1//

�
n� 2

2

�n�2
2

jxj�
n�2
2 as x! 0: (7-12)

Proof. The existence of �.u/ and ��.u/ are proved in Proposition 2.1(ii) and Proposition 2.4 respectively.
Now let u0 be any blowup of u, and write rj ! 0C by the blowup sequence. By the scaling relation
(2-3) of ˆ.r;u/, we see that

�.u0/Dˆ.1;u0/D lim
j!1

ˆ.1;urj /D lim
j!1

ˆ.rj ;u/D �.u/:

However, u0 is a nonnegative solution of (1-1)
�
with ˛ D nC2

n�2

�
in Rn n f0g, whence Lemma 4.6 yields

�.u0/ satisfies (1-13), and so does �.u/. Similarly, one may deduce from the scaling relation (2-13) of
ˆ�.r;u/ that ��.u/D ��.u0/, and by Lemma 4.6, ��.u/ satisfies (1-14).

Suppose that �.u/D ��.u/D 0, and let v be the cylindrical transformation of u as in (1-2). Rephrasing
the estimates (6-7) and (6-8) in terms of v, the second Pohozaev identity (2-18) becomes (as t !1)

.g0/2 D .n� 2/2g2�
4.n� 2/

n
g
2n�2
n�2 CO

�Z 1
t

e�2�g.�/2 d�

�
; (7-13)

where g is given by (2-16) and g0 D dg=dt . Since the term O
�R1
t e�2�g.�/2 d�

�
decays exponentially,

and is comparably smaller than g.t/, the behavior of g0 is determined by the nonnegative roots of

.n� 2/2g2�
4.n� 2/

n
g
2n�2
n�2 D 0;

which are 0 and
�n.n�2/

4

�.n�2/=2 respectively. In particular, g.t/ must be either nonincreasing and
converging to 0, or nondecreasing and converging to .n.n�2/

4
/.n�2/=2.



730 MARIUS GHERGU, SUNGHAN KIM AND HENRIK SHAHGHOLIAN

If g.t/! 0 as t !1, then by the asymptotic radial symmetry we have jv.t; � /j ! 0 uniformly on
Sn�1 as t !1. After the inverse cylindrical transform via (1-2), we arrive at (7-10), as desired.

Now let us show that the other alternative, i.e., g.t/!
�n.n�2/

4

�.n�2/=2 as t ! 1, cannot occur.
Suppose that this is true. Then again from the asymptotic radial symmetry it follows that jur j !�n.n�2/

4

�.n�2/=2 uniformly on @B1 as r ! 0C. This implies that any blowup u0 of u must be of the
form

�n.n�2/
4

�.n�2/=2
jxj�.n�2/=2e for some nonnegative unit vector e 2 Rm. In particular, u0 has a

nonremovable singularity at the origin, and hence Theorem 1.3(iii) yields that �.u0/ or ��.u0/ is non-
zero, a contradiction to �.u/D �.u0/D 0 or, respectively, ��.u/D ��.u0/D 0. Hence, the assertion (i)
is proved.

Now let us consider the case when �.u/2C ��.u/2 > 0. Let u0 be any blowup of u. Then due to the
asymptotic radial symmetry of u, we know u0 is radially symmetric on the punctured space. Hence,
by Lemma 4.2, we have ju0j � C jxj�.n�2/=2, where C > 0 depends only on n and m. Since u0 is an
arbitrary blowup of u, this proves the upper bound in (7-11).

On the other hand, by Theorem 1.3(iii)-(b), the cylindrical transform v0 of u0 satisfies (1-7). Due to
R. H. Fowler [1931], jv0j has to be bounded uniformly away from zero, with the bound determined solely
on the value of n, �.v0/D �.u0/D �.u/ and ��.v0/D ��.u/. This proves that ju0j � cjxj�.n�2/=2 for
some c > 0 depending only on n, �.u/ and ��.u/. Since c is independent of the blowup u0, the lower
bound in (7-11) is proved. Thus, the assertion (ii) is proved.

The final assertion regarding (7-12) follows immediately from Theorem 1.3(iii)-(c), since the latter
implies that the blowup of u is unique and is of the form (1-15), if and only if �.u/D�2

n

�
n�2
2

�n and
��.u/D 0. �

As with Lemma 7.3, we observe that (7-10) is a sufficient condition to have a removable singularity.

Lemma 7.6. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛ D nC2
n�2

. If u satisfies

ju.x/j D o.jxj�
n�2
2 / as x! 0;

then the origin is a removable singularity.

Proof. As mentioned in Remark 7.4, the same proof of Lemma 7.3 works here as well, whence we leave
out the details to the reader. �

Proof of Theorem 1.5.ii/. Suppose that the origin is a nonremovable singularity, and let us write by � and
�� the first and respectively the second Pohozaev invariant. As a contraposition to Lemma 7.6, (7-3) fails.
Thus, by Lemma 7.5, one has �2C�2� > 0. Then the asymptotic bound in (1-18) follows from the second
alternative, (7-11), of Lemma 7.5, and the proof is finished. �

7C. Case 1<˛< n
n�2

. The asymptotic analysis for the case 1< ˛ < n
n�2

is very simple. It is noticeable
that the monotonicity formula is not required here. We also mention that one can reduce our study to the
scalar case by considering w D u1Cu2C � � �Cum � 0, and directly apply the results in [Lions 1980].
Nevertheless, we shall give a more direct proof, for the sake of completeness.

We shall begin with the sharp upper estimate.
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Lemma 7.7. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ < n
n�2

. Then there is C > 0,
depending only juj, such that

ju.x/j � C jxj2�n as x! 0: (7-14)

Proof. Lemma 7.1 asserts that u 2 L˛.B1/. Since 1 < ˛ < n
n�2

and u satisfies the Harnack inequality
(5-32), it is easy to verify that

ju.x/j D o.jxj�
2
˛�1 / as x! 0: (7-15)

Utilizing (7-15), and noting that n� 2 < 2
˛�1

, one may argue with a blowup argument to prove that for
any n� 2 < q < 2

˛�1
, there is some 0 < rq < 1, depending only on n, m, ˛, and q, such that

ju.x/j< jxj�q in Brq n f0g: (7-16)

Now let rq be as in (7-16). Due to Lemma 7.1 again, �u D �juj˛�1u 2 L1.B1/, whence one can
decompose u, in Brq n f0g, as

u.x/D jxj2�na�

Z
Brq

jx�yj2�n�u.y/ dyCh.x/; (7-17)

where a is a nonnegative vector in Rm and h is a nonnegative and harmonic, vectorial function on Brq .
However, owing to the estimate (7-16), it is not hard to see from the equation �uD�juj˛�1u that there
is Cq > 0, depending only on n, m, ˛, and q, such thatˇ̌̌̌Z

Brq

jx�yj2�n�u.y/ dy

ˇ̌̌̌
�

Z
Brq

jx�yj2�njyj�˛q dy � Cqjxj
2�n: (7-18)

Thus, choosing n� 2 < q < 2
˛�1

so as to depend only on n and ˛, and selecting rq and Cq in (7-18)
correspondingly, we derive the sharp estimate (7-14) from (7-17). �

Next we consider a sufficient condition to have a removable singularity.

Lemma 7.8. Let u be a nonnegative solution of (1-1) in B1 n f0g with 1 < ˛ < n
n�2

. If u satisfies

ju.x/j D o.jxj2�n/ as x! 0; (7-19)

then the origin is a removable singularity.

Proof. Under the assumption (7-19), one has u 2 Lq.B1IRm/ for any 1� q < n
n�2

. Since 1 < ˛ < n
n�2

and j�uj � juj˛, we have ��u 2 Lq=˛.B1IRm/ for any ˛ < q < n
n�2

. Thus, the Lp theory [Gilbarg
and Trudinger 1983, Theorem 9.9] (applied to each component of u) and a bootstrap argument based
on the Sobolev inequality yields u 2W 2;p.B1IR

m/ for any 1 < p <1. In particular, it follows from
the Sobolev embedding that u 2 C 1;
 .B1IRm/ for any 0 < 
 < 1, and thus u must have a removable
singularity at the origin. �

We are in a position to prove Theorem 1.5(iii).
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Proof of Theorem 1.5.iii/. Suppose that u has a nonremovable singularity at the origin. By Lemma 7.8,
we know that u does not satisfy (7-19), or equivalently, there is some ı > 0, a component, say u1, and a
sequence rj ! 0C such that

sup
@Brj

u1 � ır
2�n
j :

By the Harnack inequality (5-32), we know that

inf
@Brj

u1 � c0ır
2�n
j ;

where c0 > 0 depends only on n, m and ˛. Taking ı > 0 smaller, if necessary, such that cı � inf@B1=2 u1,
it follows from the maximum principle that

u1.x/� c0ıjxj
2�n in B1=2 n f0g;

proving the asymptotic lower bound in (1-19). The asymptotic upper bound in (1-19) is established in
Lemma 7.7. Hence, the theorem is proved. �

Remark 7.9. As mentioned in the beginning of this section, the proof of Theorem 1.5(iii) can also be
deduced by considering the functionwDu1Cu2C� � �Cum� 0. Thenw satisfies C1w˛ ���w�C2w˛

in B1 n f0g, where C1; C2 > 0 depend on n, m and ˛ only, and the claim in Theorem 1.5(iii) follows now
from existing results in the literature, such as [Lions 1980, Theorem 2 and Remark 2].

7D. Case ˛D n
n�2

. The analysis of the lower critical exponent, ˛ D n
n�2

, exhibits its own subtlety, due
to the multiplicity of components in (1-1), as with the upper critical case, ˛ D nC2

n�2
. To briefly discuss

this point, let us first give the asymptotic upper bound.

Lemma 7.10 [Aviles 1987, Lemma 1]. Let u be a nonnegative solution of (1-1) with ˛D n
n�2

in B1 nf0g.
Then for each 1� i �m,

Nui .r/�

�
.n� 2/2

2

�n�2
2

r2�n.� log r/
2�n
2 as r! 0; (7-20)

where Nui is the average of ui over the sphere @Br .

Proof. Note that for each 1� i �m, Nui satisfies, for 0 < r < 1,

PNui C
n� 1

r
PNui C Nu

n
n�2

i D 0;

whence the conclusion follows directly from [Aviles 1987, Lemma 1]. �

Let us remark that the constant
�
1
2
.n� 2/2

�.n�2/=2 in (7-20) is exact in view of (1-20). Due to the fact
that u consists of multiple components, there is not an easy way to prove that j Nuj also satisfies (7-20)
with exactly the same constant. This prevents us from applying the argument in [Aviles 1987, Section 2],
which deals with the scalar version of (1-1) with ˛ D n

n�2
. Instead, we mainly follow [Aviles 1987,

Section 3], where a sign-changing problem is considered. The idea is to consider several refinements of
the usual monotonicity formula ‰.t; v/ introduced in (2-5).
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Due to the refined upper bound (7-20), we shall consider a new cylindrical transformation � defined
so as to satisfy

u.x/D jxj2�n.� log jxj/
2�n
2 �

�
� log jxj;

x

jxj

�
: (7-21)

Then the problem (1-1)
�
with ˛ D n

n�2

�
can be reformulated in terms of � as

@t t�C .n� 2/

�
1�

1

t

�
@t�C���D

n� 2

2t

�
n� 2�

n

2t

�
��

1

t
j�j

2
n�2�: (7-22)

Remark 7.11. Due to the asymptotic radial symmetry (1-16) of u, we know � satisfies j�� N�jDO.e�
t /
as t!1, for some 
 > 0, where N�.t/ is the average of �.t; �/ over � 2 Sn�1. In particular, one has (by
arguing much as in the derivation of (6-6))

jr��.t; �/j � Ce
�
t in .t0;1/�Sn�1 (7-23)

for some large t0 and C independent of t . Moreover, it follows from the sharp estimate (7-20) and the
gradient estimate (5-33) that

j�.t; �/jC j@t�.t; �/j � C in .t0;1/�Sn�1: (7-24)

In comparison with (1-3), we obtain the first refinement of the monotonicity formula ‰.t; v/, given as

E.t;�/D
1

n!n

Z
Sn�1

�
t j@t�j

2
�t jr��j

2
C
n�2

n�1
j�j

2n�2
n�2

�
d��

n�2

2n!n

�
n�2�

n

2t

�Z
Sn�1
j�j2d�: (7-25)

Note that E.t;�/ is well-defined for any t whenever �.t; � / is defined on Sn�1, due to the smoothness
of u.

The next lemma is concerned with the monotonicity of E.t;�/.

Lemma 7.12. Let u be a nonnegative solution of (1-1) in B1 nf0g with ˛D n
n�2

, and � be the cylindrical
transformation as in (7-21). Then

E 0.t;�/D�
.2n� 4/t � 2nC 3

n!n

Z
Sn�1
j@t�j

2 d��
1

n!n

Z
Sn�1

�
jr��j

2 d�C
n.n� 2/

4t2
j�j2

�
d�: (7-26)

In particular, E.t;�/ is nonincreasing for t > 2n�3
2n�4

, and E.1;�/ exists.

Proof. The proof of (7-26) follows easily from taking the inner product of (7-22) with t@t� and integrating
the both sides over Sn�1. We omit the details.

With (7-26) at hand, we know that E.t;�/ is nonincreasing for t > 2n�3
2n�4

. Thus, the existence of
E.1;�/ follows immediately from the fact that E.t;�/ is uniformly bounded from below as t !1.
However, (7-23) yields

lim
t!1

Z
Sn�1

t jr��j
2 d� D 0;

which along with (7-24) ensures that

lim inf
t!1

E.t;�/ > �1;

as desired. �
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In order to have the full strength of the existence of E.1;�/, we shall prove the following, which is
the system version of [Aviles 1987, Lemma 3.2]. Although the proof is almost identical, we shall present
the argument for the sake of completeness.

Lemma 7.13 (essentially due to [Aviles 1987]). Let � be as in Lemma 7.12. Then

lim
t!1

Z
Sn�1

t j@t�j
2 d� D 0: (7-27)

Proof. By (7-23) and (7-24), one may integrate the both sides of (7-26) from t0 D
2n�3
2n�4

to1, and use
the existence of E.1; �/ to deduce thatZ 1

t0

Z
Sn�1

� j@��j
2 d� d� <1: (7-28)

Hence, it is sufficient to prove that
R

Sn�1
t j@t�j

2 d� is a Cauchy sequence in t !1.
In order to do so, we differentiate (7-22) in t and find that  D @t� solves

@t t C .n� 2/

�
1�

1

t

�
@t �

n� 2

2t

�
n� 2�

nC 4

2t

�
 C�� 

D�
n� 2

2t2

�
n� 2�

n

t

�
�C

1

t
j�j

2
n�2

�
1

t
��

2

n� 2

� � 

j�j2
�� 

�
: (7-29)

Taking the inner product of (7-29) with t@t and integrating over Sn�1, one may verify after some
computation that the functional

J.t; /D
1

n!n

Z
Sn�1

�
t j@t j

2
� t jr� j

2
�
n� 2

2

�
n� 2�

nC 4

2t

�
j j2

�
d�

�
1

n!n

Z 1
t

Z
Sn�1

n� 2

�

�
n� 2�

n

�

�
� � @� d� d�

C
1

n!n

Z 1
t

Z
Sn�1
j�j

2
n�2

�
1

�
��

2

n� 2

� � 

j�j2
�� 

�
� @� d� d�

(7-30)

satisfies

J 0.t; /D�
.2n� 4/t � 2nC 3

n!n

Z
Sn�1
j@t j

2 d�

�
1

n!n

Z
Sn�1

�
jr� j

2
C
.nC 4/.n� 2/

t2

Z
Sn�1
j j2

�
d�; (7-31)

provided that the last two double integrals in (7-30) are finite, i.e., J.t; / is well-defined for all t large.
Assuming for the moment that J.t;  / is well-defined for all t large, one may proceed as in the proof

of [Aviles 1987, Lemma 3.2]. Note that (7-31) implies the monotonicity of J.t; / for t � t0 D 2n�3
2n�4

.
Analogous to Remark 7.11, the asymptotic radial symmetry (1-16) implies the exponential decay of
jr� j as well as the uniform boundedness of j j and j@t j. Hence, one may deduce as in the proof
of Lemma 7.12 that J.t; / is uniformly bounded from below as t !1. As J.t; / is nonincreasing
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in t � t0, J.1; / exists, and thus, integrating (7-30) from t0 to1 yields thatZ 1
t0

Z
Sn�1

� j@� j
2 d� d� <1: (7-32)

Noting that ˇ̌̌̌
d

dt

�
t

Z
Sn�1
j@t�j

2 d�

�ˇ̌̌̌
�

Z
Sn�1

.j@t�j
2
C t j@t�j

2
C t j@t t�j

2/ d�;

we conclude from (7-28) and (7-32) that t
R

Sn�1
j@t�j

2 d� is a Cauchy sequence in t !1. Thus, (7-27)
follows from (7-28).

To this end, we are only left with verifying the well-definedness of J.t; / for all t � t0 with some t0
large. As noted above, this boils down to proving that the last two double integrals in (7-30) are finite.
Due to the upper estimate (7-20) and (7-28), it suffices to show thatZ 1

t0

1

t

Z
Sn�1

.j�jC j j/j@t j d� dt <1: (7-33)

Owing to (7-23) and (7-24), we have, in (7-22) (recall that  D @t�),

j@t j D .n� 2/j jCO

�
1

t

�
; (7-34)

so multiplying (7-34) by 1
t
j�j yieldsZ 1

t0

1

t

Z
Sn�1
j�jj@t j d� dt � .n� 2/

Z 1
t0

1

t

Z
Sn�1
j�jj j d� dt CO.1/

�
n� 2

2

Z 1
t0

Z
Sn�1
j j2 d� dt CO.1/ <1; (7-35)

where the second inequality follows from

j�jj j �
1

2t
j�j2C

t

2
j j2;

while the last inequality is derived from (7-28). On the other hand, multiplying (7-34) by 1
t
j j, we deduce

from (7-28) that Z 1
t0

1

t

Z
Sn�1
j jj@t j d� dt � .n� 2/

Z 1
t0

1

t

Z
Sn�1
j j2 d� dt <1: (7-36)

The claim (7-33) follows readily from (7-35) and (7-36). �

Finally we have the classification of the blowup limit via the limiting energy levels E.1;�/.

Lemma 7.14. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛D n
n�2

, and � be its cylindrical
transform as in (7-21). Also let E.t;�/ be as in (7-25). Then

E.1;�/ 2

�
�

1

n� 1

�
.n� 2/2

2

�n�1
; 0

�
:

Moreover, the following are true:
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(i) E.1;�/D 0 if and only if

ju.x/j D o.jxj2�n.� log jxj/
2�n
2 / as x! 0: (7-37)

(ii) E.1;�/D� 1
n�1

� .n�2/2
2

�n�1 if and only if

ju.x/j D .1C o.1//

�
.n� 2/2

2

�n�2
2

jxj2�n.� log jxj/
2�n
2 : (7-38)

Proof. Due to Lemma 7.12, (7-23), and (7-27), we have

E.1;�/D
1

n!n
lim
t!1

Z
Sn�1

�
n� 2

n� 1
j�j

2n�2
n�2 �

.n� 2/2

2
j�j2

�
d�: (7-39)

In fact, (7-23) implies that whenever �.tj ; �/ converges as tj !1, the limit is independent of � 2 Sn�1.
Hence, along a convergent sequence �.tj ; �/! a (uniformly over � 2Sn�1), we obtain from (7-39) that

E.1;�/D
n� 2

n� 1
jaj

2n�2
n�2 �

.n� 2/2

2
jaj2: (7-40)

Since the right-hand side has at most three nonnegative roots, we conclude that the limit value jaj (under
the uniform convergence of j�.t; �/j on Sn�1 as t !1) is unique.

To compute the limit value jaj, let us take the inner product of (7-22) with � and integrate the both
sides over .t0;1/�Sn�1 (with t0 large). Then one may easily deduce from (7-23), (7-24), and (7-28) thatˇ̌̌̌Z 1

t0

1

n!n�

Z
Sn�1

�
.n� 2/2

2
� j�j

2
n�2

�
j�j2 d� dt

ˇ̌̌̌
<1:

Now that j�j converges to jaj as t !1 uniformly on Sn�1, we must have either jaj D 0 or

jaj D

�
.n� 2/2

2

�n�2
2

:

Inserting this into (7-40), we deduce that either E.1;�/D 0 if and only if jaj D 0, or

E.1;�/D�
1

n� 1

�
.n� 2/2

2

�n�1
:

Obviously, the assertions (7-37) and (7-38) follow immediately via inverse cylindrical transform (7-21). �

We are only left with proving that (7-37) yields the removability of the singularity at the origin.

Lemma 7.15. Let u be a nonnegative solution of (1-1) in B1 n f0g with ˛ D n
n�2

. Suppose further that u
satisfies

ju.x/j D o.jxjn�2.� log jxj/
n�2
2 / as x! 0: (7-41)

Then the origin is a removable singularity.
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Proof. Under the assumption (7-41), we claim that

ju.x/j � cjxj2�nCı in Br0 n f0g (7-42)

for some small ı > 0, where c > 1 and r0 > 0 may depend on u.
Consider the auxiliary function

'�.x/D .C r
�ı
0 jxj

ı
C �.� log jxj/

2�n
2 /jxj2�n in Br0 n f0g;

where C0 > 0 is the (universal) constant chosen from (7-15), r0 > 0 is a small radius to be determined
later, and � > 0 is an arbitrary small number. After some computations, one may verify that

�'� �
C1

jxj2 log jxj
'� in Br0 n f0g;

by choosing ı; r0 > 0 small, C1 > 0 large. Here one may choose ı and C1 to depend only on n.
Due to the assumption (7-41), we have a.x/D juj2=.n�2/ D o.�jxj2 log jxj/, whence '� becomes a

supersolution of �ui D�a.x/ui in Br0 n f0g, by choosing r0 > 0 sufficiently small, where ui is the i -th
component of u. The rest of the proof follows the same argument shown in the proof of Lemma 7.3,
which eventually leads us to ui � '� in Br0 n f0g. Passing to the limit with �! 0, we get

ui .x/� C0r
�ı
0 jxj

2�nCı in Br0 n f0g:

Now that this inequality holds for any 1� i �m, we arrive at (7-42) with c D C0r�ı0
p
m.

Thus, it follows from (7-4) that a.x/D juj2=.n�2/ 2 Ln=.2��/.B1/ for some � > 0. We know from
Lemma 7.1 that ui is a distribution solution of ��ui D a.x/ui in B1 for each 1 � i �m. Hence, the
classical result [Serrin 1964, Theorem 1] implies that ui has a removable singularity at the origin, and the
lemma is proved. �

Theorem 1.5(iv) is now merely a combination of Lemmas 7.14 and 7.15.

Proof of Theorem 1.5.iv/. If u has a nonremovable singularity at the origin, then according to Lemma 7.15,
u does not satisfy (7-41). By Lemma 7.14, we have (1-20), proving the theorem. �
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