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REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS

SUN-SIG BYUN AND JEHAN OH

We consider a wide class of functionals with the property of changing their growth and ellipticity properties
according to the modulating coefficients in the framework of Musielak–Orlicz spaces. In particular, we
provide an optimal condition on the modulating coefficient to establish the Hölder regularity and Harnack
inequality for quasiminimizers of the generalized double phase functional with (G, H)-growth for two
Young functions G and H.

1. Introduction

There have been systematic and extensive research activities on the variational problems with nonstandard
growth. In particular, functionals whose structure exhibits a phase transition have attracted increasing
attention over the last couple of decades. These functionals intervene in the homogenization of strongly
anisotropic materials [Zhikov 1986; Zhikov et al. 1994] and in the Lavrentiev phenomenon [Zhikov 1993;
1995]. In this paper, we are concerned with the functionals of the type

v ∈W 1,1(�) 7→ F(v,�) :=
∫
�

[G(|Dv|)+ a(x)H(|Dv|)] dx, (1-1)

where G, H : [0,∞)→ [0,∞) are Young functions satisfying a suitable gap condition, see (2-24),
a :�→ [0,∞) is a continuous function, and � is a bounded domain in Rn with n ≥ 2.

The main feature of the functional (1-1) is that the energy density changes its growth and ellipticity
properties according to the modulating coefficient a( · ). The double phase functional (1-1) is a natural
generalization of the one with (p, q)-type

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|q ] dx, q > p > 1, (1-2)

and the one in a borderline case

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p ln(1+ |Dv|)] dx, p > 1. (1-3)

Zhikov [1986; 1994] first introduced a family of functionals including (1-2) for the purpose of describing
a feature of strongly anisotropic materials: the modulating coefficient a( · ) presents the geometry of
the mixture of two different materials. As shown in [Esposito et al. 2004; Fonseca et al. 2004; Zhikov
1995; 1997], such functionals exhibit Lavrentiev phenomenon whereby minimizers are irregular and even
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discontinuous. On the other hand, the functionals (1-2) and (1-3) belong to the class of functionals having
(p, q)-growth condition. These are functionals of the type

v ∈W 1,1(�) 7→

∫
�

F(x, Dv) dx, (1-4)

where the energy density F(x, ξ) satisfies

|ξ |p . F(x, ξ). |ξ |q + 1, q > p > 1. (1-5)

This (p, q)-growth condition was first treated by Marcellini [1986; 1989; 1991] and extensively studied in
recent years; see [Breit 2012; Esposito et al. 1999; 2002; 2004; Fonseca et al. 2004; Fusco and Sbordone
1990; Schmidt 2008; 2009].

In the case p>n, it is clear from the Sobolev embedding theorem that quasiminimizers of the functionals
(1-2) and (1-3) are locally bounded and Hölder continuous. Recently, Baroni, Colombo and Mingione
[Baroni et al. 2015a; Colombo and Mingione 2015a; 2015b] found that when p≤ n, the optimal condition
for Hölder continuity of quasiminimizers of the functional (1-2) is a( · ) ∈ C0,α(�), with α ∈ (0, 1] and
q ≤ p+ α. For the functional (1-3), the log-Hölder continuity of a( · ) is sufficient in order to obtain
the Hölder continuity of quasiminimizers; see [Baroni et al. 2015a; 2015b]. These results show that the
regularity of the modulating coefficient a( · ) is closely related to how to control the size of the associated
phase transition. In addition, C1,β-regularity results for minimizers of the double phase functionals (1-2)
and (1-3) have been obtained in [Baroni et al. 2015b; 2018; Colombo and Mingione 2015a; 2015b] and
the regularity of the modulating coefficient is directly linked to the gap between two phases. For further
regularity results including C0,1-regularity for minimizers of functionals with general (p, q)-growth, we
refer the reader to [Beck and Mingione 2018; Cupini et al. 2017; 2018; Esposito et al. 2006].

The main object of this paper is to investigate an optimal condition on the modulating coefficient
a( · ) in the functional (1-1) under which the Hölder regularity result holds for local quasiminimizers.
We provide a reasonable condition on the modulus of continuity of a( · ), see (4-6), and prove local
boundedness, Hölder continuity via De Giorgi’s method and the Harnack inequality under this condition.
Harjulehto, Hästö and Toivanen [Harjulehto et al. 2017] considered a general setting and developed a set
of assumptions on the energy density. Some of the assumptions in [Harjulehto et al. 2017] are the same as
ours in the setting of the double phase functionals, see Remark 3.3, but we introduce refined conditions
on G and H, and prove that these are sharp conditions for the absence of the Lavrentiev phenomenon, see
Theorem 3.1, which also yields the regularity of local quasiminimizers for the generalized double phase
functionals. The results in [Harjulehto et al. 2017] and ours complement each other. We also remark that
our condition agrees with the known one in the classical case, see Remark 3.2, and serves the natural
assumption for the modulating coefficient in a wide variety of double phase functionals such as

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p[ln(1+ |Dv|)]γ ] dx, p > 1, γ > 0,

and
v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p ln ln(e+ |Dv|)] dx, p > 1;

see Remark 4.13.
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The method used in this paper is influenced by [Baroni et al. 2015b; 2018; Colombo and Mingione
2015a; 2015b]. For the Hölder continuity of quasiminimizers, we first derive a Caccioppoli-type inequality
which is similar to the one that holds for the functional v 7→

∫
�

G(|Dv|) dx by using the condition (4-8) on
the modulus of continuity of a( · ). We then consider a sequence of nested and shrinking balls {B4−i r0}

∞

i=0
in order to control the oscillation of quasiminimizers along the sequence of balls. Here we should verify for
each ball whether the condition (4-8) holds true. If this condition holds true for every ball, then we obtain
the Hölder continuity of quasiminimizers. Otherwise, we reduce the oscillation until we reach the exit time
for ball B4− j r0 , and then we use the existing regularity theory, see Lemma 4.11, for the frozen functional

v ∈W 1,1(B4− j r0) 7→

∫
B f− j r0

[G(|Dv|)+ a0 H(|Dv|)] dx, a0 = sup
B4− j r0

a( · ).

For the proof of the Harnack inequality, we first deduce the weak Harnack inequality and the local
sup-estimates under the assumption (4-8). Then we apply the exit-time argument as above to obtain the
desired inequality.

This paper is organized as follows. In the next section, we introduce some background and investigate
the gap conditions. Section 3 deals with the Lavrentiev phenomenon. In Section 4, we establish the local
boundedness and the Hölder continuity for (1-1). Section 5 is devoted to proving the Harnack inequality.

2. Preliminaries

Notation. We start this section with introducing notation that will be used in this paper.
Let Bρ(y)= {x ∈ Rn

: |x − y|< ρ} be the open ball in Rn centered at y ∈ Rn with radius ρ > 0. If the
center is clear in the context, we shall denote it by Bρ ≡ Bρ(y).

For a function v, we write v± :=max{±v, 0}.
For k ∈ R, ρ > 0 and a quasiminimizer u of the functional F, we set

A(k, ρ) := {x ∈ Bρ : u(x) > k} and A−(k, ρ) := {x ∈ Bρ : u(x)≤ k}.

Hereafter, for the sake of the convenience, we employ the letter c to denote any universal constants
which can be explicitly computed in terms of known quantities, and so c might vary from line to line.

Orlicz spaces and Musielak–Orlicz spaces. A Young function 8 : [0,∞)→ [0,∞) is an increasing
convex function satisfying

8(0)= 0, lim
t→∞

8(t)=∞, lim
t→0+

8(t)
t
= 0, lim

t→∞

8(t)
t
=∞.

Definition 2.1. Let 8 be a Young function:

(1) 8 is said to satisfy the 12-condition, denoted by 8 ∈12, if there exists a positive number 12(8)

such that 8(2t)≤12(8)8(t) for all t ≥ 0.

(2) 8 is said to satisfy the ∇2-condition, denoted by 8 ∈∇2, if there exists a positive number ∇2(8) > 1
such that 8(∇2(8)t)≥ 2∇2(8)8(t) for all t ≥ 0.

(3) We write 8 ∈12 ∩∇2 if 8 ∈12 and 8 ∈ ∇2.
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We note that if 8 ∈12, then 12(8) > 2. Indeed, by the convexity of 8, we get

8(2t)≤12(8)8(t)≤
12(8)

2
8(2t) for all t ≥ 0, (2-1)

and hence 12(8)≥ 2. If 12(8)= 2, then it follows from (2-1) that 8(2t)= 28(t) for all t ≥ 0, and so
8(t)≡8(1)t is not a Young function. Thus 12(8) > 2.

For a given Young function 8, we define the complementary Young function 8∗ of 8 by

8∗(t)= sup{st −8(s) : s ≥ 0}.

We remark that 8∗ satisfies all the conditions to be a Young function and that (8∗)∗ = 8. Moreover,
8 ∈ ∇2 if and only if 8∗ ∈12 with 2∇2(8)=12(8

∗).
We will use the following basic properties of Young functions satisfying 12 and ∇2 conditions; see for

instance [Adams and Fournier 2003; Ok 2016; Rao and Ren 1991].

Lemma 2.2. Let 8 be a Young function with 8 ∈12 ∩∇2:

(1) For any 1≤3<∞ and t ≥ 0, we have

8(3t)≤12(8)3
log2 12(8)8(t). (2-2)

(2) For any 0< λ≤ 1 and t ≥ 0, we have

8(λt)≤ 2∇2(8)λ
1+log∇2(8)

2
8(t). (2-3)

(3) (Young’s inequality) For any ε ∈ (0, 1], there exists a positive constant c depending only on 12(8),
∇2(8) and ε such that

st ≤ ε8(s)+ c8∗(t) for all s, t ≥ 0. (2-4)

(4) If 8 ∈ C1([0,∞)), then for any t ≥ 0, we have

c−1
1 8(t)≤ t8′(t)≤ c18(t) (2-5)

and

8∗(8′(t))≤ c28(t) (2-6)

for some constants c1, c2 > 1 depending only on 12(8) and ∇2(8).

(5) (a modified form of Young’s inequality) If 8 ∈ C1([0,∞)), then for any ε ∈ (0, 1], there exists a
positive constant c depending only on 12(8), ∇2(8) and ε such that

s8′(t)≤ ε8(s)+ c8(t) for all s, t ≥ 0. (2-7)

For a Young function 8, the Orlicz class K8(�;RN ), N ∈ N, consists of all measurable functions
v :�→ RN satisfying ∫

�

8(|v(x)|) dx <+∞.
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The Orlicz space L8(�;RN ) is the vector space generated by the Orlicz class K8(�;RN ). If 8 ∈12,
then K8(�;RN )= L8(�;RN ) and this space is a Banach space under the Luxemburg norm

‖v‖L8(�;RN ) = inf
{
σ > 0 :

∫
�

8

(
|v(x)|
σ

)
dx ≤ 1

}
.

For N = 1, we simply write L8(�) := L8(�;R).
We state some relevant inequalities regarding the Luxemburg norm; see [Rao and Ren 1991].

Lemma 2.3. Let 8 be a Young function with 8 ∈12:

(1) ‖v‖L8(�;RN ) ≤ 1 =⇒
∫
�

8(|v|) dx ≤ ‖v‖L8(�;RN ).

(2) ‖v‖L8(�;RN ) ≥ 1 =⇒
∫
�

8(|v|) dx ≥ ‖v‖L8(�;RN ).

(3) ‖v‖L8(�;RN ) ≤ 1 ⇐⇒
∫
�

8(|v|) dx ≤ 1.

(4) 0< ‖v‖L8(�;RN ) <∞ =⇒

∫
�

8

(
|v|

‖v‖L8(�;RN )

)
dx = 1.

(5) (Hölder’s inequality) For any v ∈ L8(�) and w ∈ L8
∗

(�),∫
�

|vw| dx ≤ 2‖v‖L8(�)‖w‖L8∗ (�). (2-8)

We now introduce a partial order relation between Young functions, see [Verde 2011], and present a
series of lemmas which will be used frequently throughout the paper.

Definition 2.4. Let 81, 82 be Young functions. We shall write

81 ≺82

if 82 ◦8
−1
1 is a Young function.

Lemma 2.5. Let 81, 82 be Young functions with 81 ≺82. Then

81(t)≤
1

(82 ◦8
−1
1 )(1)

82(t) for all t ≥8−1
1 (1). (2-9)

Proof. We first note that for a Young function 8, there holds

8(1)s ≤8(s) for all s ≥ 1.

Indeed, this follows from the convexity of 8. Since 81 ≺82, we have

(82 ◦8
−1
1 )(1)s ≤ (82 ◦8

−1
1 )(s) for all s ≥ 1.

Setting t =8−1
1 (s), we obtain the desired conclusion (2-9). �
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Corollary 2.6. Let 81, 82 be Young functions with 81 ≺82. Then

81(t)≤ c(82(t)+ 1) for all t ≥ 0, (2-10)

where c is a positive constant depending only on 81 and 82.

Lemma 2.7. Let 81, 82 be Young functions with 81 ≺82. Then the function

t 7→
(
82

81

)
(t)=

82(t)
81(t)

is nondecreasing.

Proof. We first note that the function 82/81 is nondecreasing if and only if the function (82/81) ◦8
−1
1

is nondecreasing, as t 7→81(t) is increasing and continuous. Since 81 ≺82, we see that 82 ◦8
−1
1 is a

Young function. Hence, it follows from the convexity of 82 ◦8
−1
1 that the function

t 7→
(
82

81
◦8−1

1

)
(t)=

(82 ◦8
−1
1 )(t)

t

is nondecreasing. �

The following lemma and its proof can be found in [Lieberman 1991; Rao and Ren 1991, Chapter II].

Lemma 2.8. Let 8 ∈ C1([0,∞))∩C2((0,∞)) be a Young function satisfying

1
c8
≤

t8′′(t)
8′(t)

≤ c8 for all t > 0, (2-11)

for some c8 ≥ 1. Then:

(1) 8 ∈12 ∩∇2, and the constants 12(8), ∇2(8) depend only on c8.

(2) For any 1≤3<∞ and t ≥ 0, we have

8(3t)≤3c8+18(t). (2-12)

(3) For any 0< λ≤ 1 and t ≥ 0, we have

8(λt)≤ λ(1/c8)+18(t). (2-13)

Lemma 2.9. Let 8 be a Young function with 8 ∈ C1([0,∞))∩C2((0,∞)). If

t8′′(t)
8′(t)

≤ c8 for all t > 0,

for some c8 ≥ 1, then t 7→8(t1/(1+c8)) is a concave function.

Proof. Set ϕ(t) :=8(t1/(1+c8)) for t ≥ 0. Then we have

ϕ′(t)=
1

1+ c8
8′(t1/(1+c8)) t−c8/(1+c8),
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and hence

ϕ′′(t)=
1

(1+ c8)2
8′′(t1/(1+c8))(t−c8/(1+c8))2−

c8
(1+ c8)2

8′(t1/(1+c8))t−c8/(1+c8)−1

=
1

(1+ c8)2
t−c8/(1+c8)−1

[t1/(1+c8)8′′(t1/(1+c8))− c88′(t1/(1+c8))] ≤ 0

for all t > 0. �

We now introduce the Musielak–Orlicz spaces which generalize the Orlicz spaces. Let8 :�×[0,∞)→
[0,∞) be a function satisfying the following conditions:

(1) 8(x, · ) is a Young function for every x ∈�.

(2) 8( · , t) is a measurable function for every t ≥ 0.

Such a function 8(x, t) is called a Musielak–Orlicz function. As before, we present some definitions and
properties regarding Musielak–Orlicz functions.

Definition 2.10. Let 8 be a Musielak–Orlicz function:

(1) 8 is said to satisfy the 12-condition, denoted by 8 ∈12, if there exists a positive number 12(8)

such that 8(x, 2t)≤12(8)8(x, t) for all x ∈� and t ≥ 0.

(2) 8 is said to satisfy the ∇2-condition, denoted by 8 ∈∇2, if there exists a positive number ∇2(8) > 1
such that 8(x,∇2(8)t)≥ 2∇2(8)8(x, t) for all x ∈� and t ≥ 0.

(3) We write 8 ∈12 ∩∇2 if 8 ∈12 and 8 ∈ ∇2.

For a given Musielak–Orlicz function 8, we define the complementary 8∗ of 8 by, for each x ∈�,

8∗(x, t)= sup{st −8(x, s) : s ≥ 0}.

Then 8∗ satisfies all the conditions to be a Musielak–Orlicz function. Also we note that (8∗)∗ =8 and
that 8 ∈ ∇2 if and only if 8∗ ∈12 with 2∇2(8)=12(8

∗).
The following lemma can be directly obtained from the definitions of 12-condition, ∇2-condition and

the complementary of Musielak–Orlicz function.

Lemma 2.11. Let 8 be a Musielak–Orlicz function with 8 ∈12 ∩∇2:

(1) For any 1≤3<∞, t ≥ 0 and x ∈�, we have

8(x,3t)≤12(8)3
log2 12(8)8(x, t). (2-14)

(2) For any 0< λ≤ 1, t ≥ 0 and x ∈�, we have

8(x, λt)≤ 2∇2(8)λ
1+log∇2(8)

2
8(x, t). (2-15)

(3) (Young’s inequality) For any ε ∈ (0, 1], there exists a positive constant c depending only on 12(8),
∇2(8) and ε such that

st ≤ ε8(x, s)+ c8∗(x, t) (2-16)

for all s, t ≥ 0 and x ∈�.
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For a Musielak–Orlicz function 8, the Musielak–Orlicz class K8(�;RN ), N ∈ N, consists of all
measurable functions v :�→ RN satisfying∫

�

8(x, |v(x)|) dx <+∞.

The Musielak–Orlicz space L8(�;RN ) is the vector space generated by K8(�;RN ). If 8 ∈12, then
K8(�;RN )= L8(�;RN ) and this space is a Banach space under the Luxemburg norm

‖v‖L8(�;RN ) = inf
{
σ > 0 :

∫
�

8

(
x,
|v(x)|
σ

)
dx ≤ 1

}
.

The Musielak–Orlicz–Sobolev space W 1,8(�;RN ) is the function space of all measurable functions v∈
L8(�;RN ) such that its distributional gradient vector Dv belongs to L8(�;RNn). For v ∈W 1,8(�;RN ),
we define its norm to be

‖v‖W 1,8(�;RN ) = ‖v‖L8(�;RN )+‖Dv‖L8(�;RNn).

The space W 1,8
0 (�;RN ) is defined as the closure of C∞0 (�;R

N ) in W 1,8(�;RN ). For N = 1, we simply
write L8(�) := L8(�;R) and W 1,8(�) :=W 1,8(�;R). For a detailed discussion of the Musielak–Orlicz
space and the associated Sobolev space, we refer the reader to [Benkirane and Sidi El Vally 2014; Diening
2005; Fan 2012; Fan and Guan 2010; Harjulehto et al. 2016; Musielak 1983; Sidi El Vally 2013].

Gap conditions. We now consider the double phase functional

F(v,�)=
∫
�

[G(|Dv|)+ a(x)H(|Dv|)] dx, v ∈W 1,1(�),

and investigate gap conditions on two Young functions G and H.
In the rest of the paper we shall use the notation

9(x, ξ) := G(|ξ |)+ a(x)H(|ξ |), (2-17)

when x ∈� and ξ ∈Rn. By abuse of notation, we will continue to write9(x, ξ) also when x ∈� and ξ ∈R.

Proposition 2.12. Let G, H : [0,∞)→ [0,∞) be Young functions. Suppose that the function a = a( · ) :
�→ [0,∞) has a modulus of continuity ω satisfying

lim sup
ρ→0+

ω(ρ)
(H ◦G−1)(ρ−n)

ρ−n <∞. (2-18)

If H � Gκ for some κ > 1+ 1/n, then a( · ) is a constant function.

Proof. It follows from the condition (2-18) that there exists a constant L > 0 such that

ω(ρ)
(H ◦G−1)(ρ−n)

ρ−n ≤ L



REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS 1277

for all 0< ρ ≤ 1. Since H � Gκ, we have

ω(ρ)
(Gκ
◦G−1)(ρ−n)

ρ−n ≤ cω(ρ)
(H ◦G−1)(ρ−n)

ρ−n ≤ cL (2-19)

for all small ρ > 0. Here, we see that

ω(ρ)
(Gκ
◦G−1)(ρ−n)

ρ−n = ω(ρ)
[(G ◦G−1)(ρ−n)]κ

ρ−n = ω(ρ)ρ−n(κ−1). (2-20)

Combining (2-19) with (2-20) yields

ω(ρ)≤ cLρn(κ−1) for all ρ ≤ ρ0, (2-21)

for some small ρ0 > 0. Then we conclude from the definition of the modulus of continuity that

|a(x)− a(y)|
|x − y|

≤ cL|x − y|n(κ−1)−1 (2-22)

for every x, y ∈� with 0< |x − y| ≤ ρ0. Since n(κ − 1)− 1> 0, it follows immediately that a( · ) is a
constant function. �

Proposition 2.13. Let G, H : [0,∞)→ [0,∞) be Young functions. Suppose that the function a = a( · ) :
�→ [0,∞) has a modulus of continuity ω satisfying

lim sup
ρ→0+

ω(ρ)
H(ρ−1)

G(ρ−1)
<∞. (2-23)

If H � Gκ for some κ > 2, then a( · ) is a constant function.

Proof. It follows from the condition (2-23) that there exists a constant L > 0 such that

ω(ρ)
H(ρ−1)

G(ρ−1)
≤ L

for all 0< ρ ≤ 1. We note from the convexity of G that

G(1)s ≤ G(s) for all s ≥ 1.

Since H � Gκ, we get

ω(ρ)ρ−(κ−1)
≤ cω(ρ)[G(ρ−1)]κ−1

= cω(ρ)
[G(ρ−1)]κ

G(ρ−1)
≤ cω(ρ)

H(ρ−1)

G(ρ−1)
≤ cL

for all small ρ > 0. As in the previous proof, we conclude that a( · ) is a constant function if κ > 2. �

Remark 2.14. If G(t)� tn, then it follows from Lemmas 2.5 and 2.7 that

(H ◦G−1)(ρ−n)

ρ−n =

(
H
G

)
(G−1(ρ−n))≤

(
H
G

)
(cρ−1)≤ c

H(ρ−1)

G(ρ−1)
,

and hence the condition (2-23) implies (2-18). On the contrary, if G(t)≺ tn, then

H(ρ−1)

G(ρ−1)
=

(
H
G

)
(ρ−1)≤

(
H
G

)
(cG−1(ρ−n))≤ c

(H ◦G−1)(ρ−n)

ρ−n ,
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and consequently the condition (2-18) implies (2-23). These agree with the known results in the classical
case; see Remark 3.2 below.

From this point of view, we shall assume that G, H : [0,∞)→ [0,∞) are Young functions with
G, H ∈12 ∩∇2 and

G ≺ H ≺ G1+1/n. (2-24)

We remark that 9 ∈12 ∩∇2. To get regularity results, we shall concentrate on nice Young functions, or
the N-functions. Thus we further assume that G, H ∈ C1([0,∞))∩C2((0,∞)) and there exist constants
cG, cH ≥ 1 such that

1
cG
≤

tG ′′(t)
G ′(t)

≤ cG and
1

cH
≤

t H ′′(t)
H ′(t)

≤ cH (2-25)

hold for all t > 0.

3. Lavrentiev phenomenon

When considering the functionals of the type

v ∈W 1,1(�) 7→

∫
�

F(x, Dv) dx,

with

G(|ξ |). F(x, ξ). H(|ξ |)+ 1, G ≺ H,

the Lavrentiev phenomenon

inf
v∈W 1,G(�)

∫
�

F(x, Dv) dx < inf
v∈W 1,H (�)

∫
�

F(x, Dv) dx

may occur. However, for the functional F defined in (1-1), there is no Lavrentiev phenomenon under a
suitable condition on the modulating coefficient a( · ).

Theorem 3.1. Let F be the functional defined in (1-1):

(1) If the modulating coefficient a( · ) has a modulus of continuity ω satisfying

lim sup
ρ→0+

ω(ρ)
(H ◦G−1)(ρ−n)

ρ−n <∞, (3-1)

then for every function v ∈W 1,1
loc (�) and balls B b B̃ b� with F(v, B̃) <∞, there exists a sequence

{vk} ⊂W 1,∞(B) such that

vk→ v in W 1,G(B) and F(vk, B)→ F(v, B). (3-2)

(2) If the modulating coefficient a( · ) has a modulus of continuity ω satisfying

lim sup
ρ→0+

ω(ρ)
H(ρ−1)

G(ρ−1)
<∞, (3-3)
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then for every function v ∈W 1,1
loc (�)∩ L∞loc(�) and balls B b B̃ b� with F(v, B̃) <∞, there exists

a sequence {vk} ⊂W 1,∞(B) such that

vk→ v in W 1,G(B) and F(vk, B)→ F(v, B). (3-4)

Proof. Let R> 0 be the radius of the ball B. Take ε0 ∈ (0, 1) in such a way that B≡ BR b BR+ε0 b B̃b�.
Let ϕ ∈ C∞0 (B1) be a mollifier with ϕ ≥ 0,

∫
Rn ϕ dx = 1, and set

ϕε(x) :=
1
εn ϕ

(
x
ε

)
for x ∈ Bε with ε > 0. Then it is obvious that ϕε ∈ C∞0 (Bε),

∫
Rn ϕε dx = 1, 0 ≤ ϕε ≤ c(n)ε−n and

|Dϕε| ≤ c(n)ε−(n+1). Now we define, for 0< ε < ε0,

vε(x) := (v ∗ϕε)(x), aε(x) := inf
y∈Bε(x)

a(y), 9ε(x, ξ) := G(|ξ |)+ aε(x)H(|ξ |)

for x ∈ BR and ξ ∈ Rn.

(1) It follows from Jensen’s inequality that

G(|Dvε(x)|)= G(|Dv ∗ϕε(x)|)≤
∫

Rn
G(|Dv(x − y)|)ϕε(y) dy ≤ cε−n

for every x ∈ BR . By the definitions of aε( · ), we obtain

9(x, Dvε(x))≤ |a(x)− aε(x)|H(|Dvε(x)|)+9ε(x, Dvε(x))

≤ cω(ε)H(|Dvε(x)|)+9ε(x, Dvε(x)).

We now observe from Lemmas 2.2 and 2.7 that

H(|Dvε(x)|)=
(

H
G

)
(|Dvε(x)|)G(|Dvε(x)|)

≤

(
H
G

)
(G−1(cε−n))G(|Dvε(x)|)=

(H ◦G−1)(cε−n)

cε−n G(|Dvε(x)|)

≤ c
(H ◦G−1)(ε−n)

ε−n G(|Dvε(x)|)≤ c
(H ◦G−1)(ε−n)

ε−n 9ε(x, Dvε(x)).

Therefore, we see from (3-1) that

9(x, Dvε(x))≤ cω(ε)
(H ◦G−1)(ε−n)

ε−n 9ε(x, Dvε(x))+9ε(x, Dvε(x))

≤ c9ε(x, Dvε(x)). (3-5)

By Jensen’s inequality, we have

9ε(x, Dvε(x))≤
∫

Bε(x)
9ε(x, Dv(y))ϕε(x − y) dy ≤

∫
Bε(x)

9(y, Dv(y))ϕε(x − y) dy

= [9( · , Dv( · )) ∗ϕε](x)=: [9( · , Dv( · ))]ε(x). (3-6)
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Combining (3-5) and (3-6), we deduce that

9(x, Dvε(x))≤ c[9( · , Dv( · ))]ε(x). (3-7)

Using the fact that [9( · , Dv( · ))]ε → 9( · , Dv( · )) strongly in L1(BR), we can apply a generalized
version of the Lebesgue dominated convergence theorem to obtain a sequence of functions {vk} := {vεk } ⊂

C∞0 (BR) satisfying (3-2) for a suitable sequence εk→ 0.

(2) Since v is locally bounded in �, we have

|Dvε(x)| = |v ∗ Dϕε(x)| ≤
∫

Rn
|v(x − y)||Dϕε(y)| dy ≤ ‖v‖L∞(B̃)

∫
Bε
|Dϕε(y)| dy

≤ ‖v‖L∞(B̃)c(n)ε
−(n+1)

|Bε| ≤ cε−1

for every x ∈ BR . Then we obtain from Lemmas 2.2 and 2.7 that

H(|Dvε(x)|)=
(

H
G

)
(|Dvε(x)|)G(|Dvε(x)|)

≤

(
H
G

)
(cε−1)G(|Dvε(x)|)=

H(cε−1)

G(cε−1)
G(|Dvε(x)|)

≤ c
H(ε−1)

G(ε−1)
G(|Dvε(x)|)≤ c

H(ε−1)

G(ε−1)
9ε(x, Dvε(x)).

As in the proof of (1), it follows from (3-3) and (3-6) that

9(x, Dvε(x))≤ cω(ε)H(|Dvε(x)|)+9ε(x, Dvε(x))

≤ cω(ε)
H(ε−1)

G(ε−1)
9ε(x, Dvε(x))+9ε(x, Dvε(x))

≤ c9ε(x, Dvε(x))≤ c[9( · , Dv( · ))]ε(x).

Again, by a generalized version of the Lebesgue dominated convergence theorem, we get a sequence of
functions {vk} := {vεk } ⊂ C∞0 (BR) satisfying (3-4) for a suitable sequence εk→ 0. �

Remark 3.2. In the special case (G(t), H(t)) = (t p, tq) with 1 < p < q, and a( · ) ∈ C0,α(�) with
α ∈ (0, 1], a simple computation shows that

the condition (3-1) ⇐⇒
q
p
≤ 1+

α

n
,

and

the condition (3-3) ⇐⇒ q ≤ p+α.

Therefore, Theorem 3.1 generalizes [Colombo and Mingione 2015a, Proposition 3.6; 2015b, Theorem 4.1].
In addition, as in Remark 2.14 and [Colombo and Mingione 2015b], one can check that the condition
(3-3) implies the condition (3-1) if G(t)� tn, and that the condition (3-1) implies the condition (3-3) if
G(t)≺ tn.
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Moreover, in the case (G(t), H(t))= (t p, t p ln(1+ t)) with p > 1, we see that the condition (3-1) and
the condition (3-3) are equivalent to

lim sup
ρ→0+

ω(ρ) ln
(

1
ρ

)
<∞.

This shows that when a( · ) is log-Hölder continuous, the functional

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p ln(1+ |Dv|)] dx, p > 1,

has no Lavrentiev phenomenon.

Remark 3.3. In the setting of the generalized double phase functionals, the conditions (A1) and (A1-n)
in [Harjulehto et al. 2017] are same as the conditions (3-1) and (3-3), respectively. From this, it is to be
expected that the functionals of the general type (1-4) satisfying the conditions introduced in [Harjulehto
et al. 2017] have no Lavrentiev phenomenon.

Remark 3.4. The conditions in Theorem 3.1 are sharp for the absence of the Lavrentiev phenomenon.
Indeed, for any ball B ⊂�, there exist Young functions G, H satisfying (2-24), a nonnegative coefficient
a( · ) which has a modulus of continuity ω satisfying

lim
ρ→0+

ω(ρ)
H(ρ−1)

G(ρ−1)
=∞ (3-8)

and a boundary datum v0 ∈W 1,G(B)∩ L∞(B) such that

inf
v∈v0+W 1,G

0 (B)
F(v, B) < inf

v∈v0+W 1,G
0 (B)∩W 1,H

loc (B)
F(v, B). (3-9)

That is, local minimizers of F do not belong to W 1,H
loc (B) in general. Moreover, they can be discontinuous.

To see this, let us consider the classical case G(t)= t p, H(t)= tq and a( · )∈C0,α(�) with 1< p< q ,
α ∈ (0, 1] satisfying

1< p < n < n+α < q. (3-10)

Then it follows from [Colombo and Mingione 2015b, Theorem 4.1; Esposito et al. 2004, Section 3] that
there exists a coefficient function a( · ) ∈ C0,α(�) and a boundary datum v0 ∈ W 1,p(B)∩ L∞(B) such
that the Lavrentiev phenomenon (3-9) occurs. Also we deduce from Remark 3.2 and (3-10) that the
coefficient function a( · ) has a modulus of continuity ω satisfying (3-8). Furthermore, the modulus of
continuity ω does not satisfy the condition (3-1).

4. Local boundedness and Hölder continuity

In the following, we deal with local quasiminimizers of F.

Definition 4.1. We say that u ∈W 1,1
loc (�) is a local quasiminimizer of F for Q≥ 1, or a local Q-minimizer

of F, if for any v ∈W 1,1
loc (�) with K := supp(u− v)b�, we have F(u, K ) <+∞ and

F(u, K )≤ QF(v, K ).

If Q = 1, we say that u is a local minimizer of F.
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We remark that if u ∈W 1,1
loc (�) is a local minimizer of the functional

v ∈W 1,1(�) 7→

∫
�

F(x, v, Dv) dx

under the assumption that

c19(x, ξ)≤ F(x, z, ξ)≤ c29(x, ξ)

for all x ∈�, z ∈ R, ξ ∈ Rn with some constants 0< c1 ≤ 1≤ c2, then u is also a local quasiminimizer
of the functional (1-1) with Q = c2/c1 ≥ 1.

To prove the local boundedness of quasiminimizers of F, we derive the following growth condition on
the energy density 9(x, ξ) of F.

Lemma 4.2. Suppose that the gap condition (2-24) holds. If a ∈ L∞(�), then

G(|ξ |)≤9(x, ξ)≤ c(1+ [G(|ξ |)]1+1/n) (4-1)

for all x ∈� and ξ ∈ Rn, where c is a positive constant depending only on n,G, H and ‖a‖L∞(�).

Proof. Since a( · )≥ 0, it is clear that

G(|ξ |)≤ G(|ξ |)+ a(x)H(|ξ |)=9(x, ξ)

for all x ∈� and ξ ∈ Rn. Moreover, it follows from Corollary 2.6 and (2-24) that

9(x, ξ)= G(|ξ |)+ a(x)H(|ξ |)≤ G(|ξ |)+‖a‖L∞(�)H(|ξ |)

≤ ([G(|ξ |)]1+1/n
+ 1)+ c‖a‖L∞(�)([G(|ξ |)]1+1/n

+ 1)

≤ c([G(|ξ |)]1+1/n
+ 1)

for all x ∈� and ξ ∈ Rn. �

We notice that

1+
1
n
< 1+

1
n− 1

= 1∗,

where 1∗ is the Sobolev exponent of 1. The local boundedness of quasiminimizers of F now follows
from the result of [Cupini et al. 2015, Theorem 2.1].

Theorem 4.3 (local boundedness). Let u ∈W 1,1
loc (�) be a local quasiminimizer of F under the assumption

(2-24), with a ∈ L∞loc(�). Then u is locally bounded in �.

Once the local boundedness of quasiminimizers has been obtained, we can prove the Hölder continuity
of u without the assumption (2-24). Therefore, we shall consider an a priori bounded quasiminimizer
u ∈W 1,1

loc (�)∩ L∞loc(�) of F from Lemma 4.7 on.
Let us start the proof of the Hölder continuity of locally bounded quasiminimizers of F. First, we

present some technical lemmas.



REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS 1283

Lemma 4.4 [Ladyzhenskaya and Uraltseva 1968]. Let {Yi }
∞

i=0 be a sequence of nonnegative numbers
satisfying the recursive inequalities

Yi+1 ≤ Cbi Y 1+δ
i , i = 0, 1, 2, . . . , (4-2)

where C, b > 1 and δ > 0 are given numbers. If

Y0 ≤ C−1/δb−1/δ2
, (4-3)

then Yi → 0 as i→∞.

Lemma 4.5 [Ladyzhenskaya and Uraltseva 1968]. Let v ∈W 1,1(Bρ). For any l > k, we have

(l − k)|Bρ ∩ {v > l}|1−1/n
≤

c|Bρ |
|Bρ \ {v > k}|

∫
Bρ∩{k<v≤l}

|Dv| dx

for some positive constant c depending only on n.

We now state and prove the following Caccioppoli-type inequality.

Lemma 4.6 (Caccioppoli inequality). Let u∈W 1,1
loc (�) be a Q-minimizer of F. Then there exists a constant

c = c(Q,12(G),12(H)) > 0 such that for any concentric balls Bρ′ ⊂ Bρ ⊂ � with 0 < ρ ′ < ρ <∞,
and k ∈ R, we have ∫

Bρ′
9(x, D(u− k)±) dx ≤ c

∫
Bρ
9

(
x,
(u− k)±
ρ− ρ ′

)
dx . (4-4)

Proof. We note that it suffices to prove the version with (u−k)+, as−u is also a Q-minimizer of F. Let η∈
C∞0 (Bρ) be a cut-off function with 0≤η≤1, η≡1 on Bρ′ , and |Dη|≤2/(ρ−ρ ′). We set v :=u−η(u−k)+,
to be used as a competitor. Note that supp(u− v)⊂ A(k, ρ). Then the Q-minimality of u gives∫

A(k,ρ′)
9(x, Du) dx ≤ Q

∫
A(k,ρ)

9(x, Dv) dx

= Q
∫

A(k,ρ)
9(x, (1− η)Du− (u− k)+Dη) dx

≤ c∗

(∫
A(k,ρ)\A(k,ρ′)

9(x, Du) dx +
∫

A(k,ρ)
9

(
x,

u− k
ρ− ρ ′

)
dx
)

for some constant c∗ = c∗(Q,12(9)) = c∗(Q,12(G),12(H)) ≥ 1. We now use the “hole-filling”
method; that is, we add to both sides the quantity

c∗

∫
A(k,ρ′)

9(x, Du) dx,

and divide by c∗+ 1. Then we discover that∫
A(k,ρ′)

9(x, Du) dx ≤ ϑ
∫

A(k,ρ)
9(x, Du) dx +

∫
A(k,ρ)

9

(
x,

u− k
ρ− ρ ′

)
dx, (4-5)

where ϑ = c∗/(c∗+ 1) < 1, for any 0< ρ ′ < ρ <∞ with Bρ ⊂�.
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Now fix ρ ′ < ρ and consider a sequence

ρ0 := ρ
′ and ρi+1 = (1− λ)λi (ρ− ρ ′)+ ρi , i = 0, 1, 2, . . . ,

where λ ∈ (0, 1) is to be chosen later. Applying (4-5) inductively, we obtain from (2-14) that∫
A(k,ρ′)

9(x, Du) dx ≤ ϑ
∫

A(k,ρ1)

9(x, Du) dx +
∫

A(k,ρ1)

9

(
x,

u− k
(1− λ)(ρ− ρ ′)

)
dx

≤ ϑ2
∫

A(k,ρ2)

9(x, Du) dx +
∫

A(k,ρ)
9

(
x,

u− k
(1− λ)(ρ− ρ ′)

)
dx

+ϑ

∫
A(k,ρ2)

9

(
x,

u− k
(1− λ)λ(ρ− ρ ′)

)
dx

≤ ϑ2
∫

A(k,ρ2)

9(x, Du) dx +
∫

A(k,ρ)
9

(
x,

u− k
(1− λ)(ρ− ρ ′)

)
dx

+12(9)ϑλ
− log2 12(9)

∫
A(k,ρ)

9

(
x,

u− k
(1− λ)(ρ− ρ ′)

)
dx

≤ ϑ i
∫

A(k,ρi )

9(x, Du) dx

+12(9)

i−1∑
j=0

(ϑλ− log2 12(9)) j
∫

A(k,ρ)
9

(
x,

u− k
(1− λ)(ρ− ρ ′)

)
dx

≤ ϑ i
∫

A(k,ρi )

9(x, Du) dx

+
12(9)

(1− λ)log2 12(9)

i−1∑
j=0

(ϑλ− log2 12(9)) j
∫

A(k,ρ)
9

(
x,

u− k
ρ− ρ ′

)
dx .

Finally, choosing λ= λ(Q,12(9))= λ(Q,12(G),12(H))∈ (0, 1) in such a way that ϑλ− log2 12(9)< 1
and passing to the limit for i→∞, we get∫

A(k,ρ′)
9(x, Du) dx ≤

12(9)

(1− λ)log2 12(9)(1−ϑλ− log2 12(9))

∫
A(k,ρ)

9

(
x,

u− k
ρ− ρ ′

)
dx,

which proves the lemma. �

For the Hölder continuity of local quasiminimizers of F, we assume that the modulating coefficient
a( · ) has a modulus of continuity ω satisfying

lim sup
ρ→0+

ω(ρ)
H(ρ−1)

G(ρ−1)
<∞, (4-6)

or, in other words

ω(ρ)
H(ρ−1)

G(ρ−1)
≤ L for every 0< ρ ≤ 1, (4-7)

for some L > 0.
We remark that when (G(t), H(t)) = (t p, tq) with 1 < p < q, and a( · ) ∈ C0,α(�) with α ∈ (0, 1],

the condition (4-6) is equivalent to q ≤ p+α. In addition, when (G(t), H(t))= (t p, t p ln(1+ t)) with
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p > 1, the condition (4-6) is equivalent to

lim sup
ρ→0+

ω(ρ) ln
(

1
ρ

)
<∞.

Therefore, the condition (4-6) agrees with the classical ones essentially used in [Baroni et al. 2015a;
2015b; Colombo and Mingione 2015a; 2015b].

In addition, the condition (4-7) ensures that quasiminimizers of F satisfy the following Caccioppoli-type
inequality provided the modulating coefficient a( · ) is suitably small in the right scale.

Lemma 4.7 (almost standard Caccioppoli inequality). Let u ∈W 1,1
loc (�) be a locally bounded Q-minimizer

of F under the assumptions (2-25) and (4-7), and let Br b� be a ball with r ≤ 1. Suppose that

sup
x∈Br

a(x)≤ 4ω(r). (4-8)

Then for every r/2≤ r1 < r2 ≤ r and k ∈ R with |k| ≤ ‖u‖L∞(Br ),

–
∫

Br1

G(|D(u− k)±|) dx ≤ c
(

r
r2− r1

)cG+cH+2
–
∫

Br2

G
(
(u− k)±

r

)
dx (4-9)

holds for some constant c = c(Q, cG, cH , L , ‖u‖L∞(Br )) > 0.

Proof. If follows from Lemmas 2.2, 2.7 and 4.6, and (4-8) and (2-12) that∫
Br1

G(|D(u− k)±|) dx ≤
∫

Br1

9(x, D(u− k)±) dx ≤ c
∫

Br2

9

(
x,
(u− k)±
r2− r1

)
dx

= c
∫

Br2

(
1+ a(x)

(
H
G

)(
(u− k)±
r2− r1

))
G
(
(u− k)±
r2− r1

)
dx

≤ c
∫

Br2

(
1+ω(r)

(
H
G

)(
2‖u‖L∞(Br )

r2− r1

))
G
(
(u− k)±

r
r

r2− r1

)
dx

≤ c
(

r
r2− r1

)cG+1(
1+ω(r)

(
H
G

)(
2‖u‖L∞(Br )

r2− r1

))∫
Br2

G
(
(u− k)±

r

)
dx .

We observe from Lemma 2.7, (2-12) and (4-7) that

ω(r)
(

H
G

)(
2‖u‖L∞(Br )

r2− r1

)
≤ ω(r)

(
H
G

)(
2(‖u‖L∞(Br )+ 1)r

r2− r1

1
r

)
≤ ω(r)

(
2(‖u‖L∞(Br )+ 1)r

r2− r1

)cH+1(H
G

)(
1
r

)
≤ c

(
r

r2− r1

)cH+1

ω(r)
H(r−1)

G(r−1)
≤ c

(
r

r2− r1

)cH+1

L ,

which completes the proof. �
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Lemma 4.8. Under the assumptions of Lemma 4.7, we further suppose that the density condition∣∣∣{x ∈ Br/2 : u(x) > sup
Br

u− 1
2

osc
Br

u
}∣∣∣≤ 1

2
|Br/2| (4-10)

holds. Then for any τ ∈ (0, 1), there exists a large natural number m ≥ 3 depending on n, Q, cG , cH , L ,
‖u‖L∞(Br ) and τ such that ∣∣∣{x ∈ Br/2 : u(x) > sup

Br

u− 1
2m osc

Br
u
}∣∣∣≤ τ |Br/2|.

Proof. Let m ≥ 3 be a large natural number as selected below. Define for i = 1, 2, . . . ,m,

ki := sup
Br

u− 1
2i osc

Br
u, Di := A

(
ki ,

r
2

)
\ A
(

ki+1,
r
2

)
,

and

wi (x) :=


ki+1− ki if u(x) > ki+1,

u(x)− ki if ki < u(x)≤ ki+1,

0 if u(x)≤ ki .

We note that G(wi ) ∈ W 1,1(Br/2) and G(wi ) = 0 in Br/2 \ A(k1, r/2) for all i = 1, 2, . . . ,m, and that
|Br/2 \ A(k1, r/2)| ≥ 1

2 |Br/2|. Using Hölder’s inequality, Sobolev’s inequality and a modified form of
Young’s inequality (2-7) with ε ∈ (0, 1), we have∣∣∣A(ki+1,

r
2

)∣∣∣G(ki+1− ki

r/2

)
≤

∫
A(ki ,r/2)

G
(
wi

r/2

)
dx

≤

∣∣∣A(ki ,
r
2

)∣∣∣1/n
(∫

A(ki ,r/2)

[
G
(
wi

r/2

)]n/(n−1)

dx
)(n−1)/n

≤ cr
(∫

A(ki ,r/2)

[
G
(
wi

r/2

)]n/(n−1)

dx
)(n−1)/n

≤ c
∫

Di

G ′
(

u− ki

r/2

)
|Du| dx

≤ ε

∫
Di

G(|Du|) dx + c(ε)
∫

Di

G
(

u− ki

r/2

)
dx . (4-11)

It follows from Lemma 4.7 that∫
Di

G(|Du|) dx ≤ c
∫

A(ki ,r)
G
(∣∣∣∣u− ki

r

∣∣∣∣) dx ≤ c
∫

A(ki ,r)
G
(

1
2ir

osc
Br

u
)

dx

= cG
(

ki+1− ki

r/2

)
|A(ki , r)| ≤ cG

(
ki+1− ki

r/2

)
rn. (4-12)

Also, it is clear that∫
Di

G
(

u− ki

r/2

)
dx ≤

∫
Di

G
(

ki+1− ki

r/2

)
dx = G

(
ki+1− ki

r/2

)
|Di |. (4-13)
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Combining (4-11) with (4-12) and (4-13), we see that, for i = 1, 2, . . . ,m− 1,∣∣∣A(km−1,
r
2

)∣∣∣≤ ∣∣∣A(ki+1,
r
2

)∣∣∣≤ cεrn
+ c(ε)|Di |.

Summing over i from 1 to m− 1 yields that

(m− 1)
∣∣∣A(km−1,

r
2

)∣∣∣≤ c(m− 1)εrn
+ c(ε)

∣∣∣A(k1,
r
2

)∣∣∣
≤ (c(m− 1)ε+ c(ε))rn

and hence ∣∣∣A(km−1,
r
2

)∣∣∣≤ (cε+
c(ε)

m− 1

)
rn
≤ τ |Br/2|

by taking sufficiently small ε = ε(n, Q, cG, cH , L , ‖u‖L∞(Br ), τ ) ∈ (0, 1) and sufficiently large m =
m(n, Q, cG, cH , L , ‖u‖L∞(Br ), τ ) ∈ N. �

Lemma 4.9. Under the assumptions of Lemma 4.8, we further find that there exists a small τ0 =

τ0(n, Q, cG, cH , L , ‖u‖L∞(Br )) ∈ (0, 2−(n+1)) such that if

0< ν < 1
2

osc
Br

u and
∣∣∣A(k0,

r
2

)∣∣∣≤ τ0|Br/2|, (4-14)

where k0 := supBr
u− ν, then

sup
Br/4

u ≤ k0+
ν

2
= sup

Br

u− ν
2
. (4-15)

Proof. We first set the sequences

ρi :=
r
4

(
1+

1
2i

)
and ki := k0+

ν

2

(
1−

1
2i

)
, i = 0, 1, 2, . . . ,

and define

Di+1 := A(ki , ρi+1) \ A(ki+1, ρi+1) and Yi :=
|A(ki , ρi )|

|Br/2|
.

We note from the definitions of ki that (u − ki )+ ≤ ν ≤ ‖u‖L∞(Br ). Then we discover from (4-9) and
(4-14) that ∫

A(ki ,ρi+1)

G(|Du|) dx ≤ c2(i+3)(cG+cH+2)
∫

A(ki ,ρi )

G
(
(u− ki )+

r

)
dx

≤ c2i(cG+cH+2)G
(
ν

r

)
|A(ki , ρi )|.

It follows from the convexity of G that

G
(

–
∫

Di+1

|Du| dx
)
≤ –
∫

Di+1

G(|Du|) dx ≤ c2i(cG+cH+2) |A(ki , ρi )|

|Di+1|
G
(
ν

r

)
≤ G

(
c2i(cG+cH+2) |A(ki , ρi )|

|Di+1|

ν

r

)
.
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Therefore, we obtain

–
∫

Di+1

|Du| dx ≤ c2i(cG+cH+2) |A(ki , ρi )|

|Di+1|

ν

r
.

On the other hand, using Lemma 4.5 and the fact that τ0 ∈ (0, 2−(n+1)), we have∫
Di+1

|Du| dx ≥ c(ki+1− ki )|A(ki+1, ρi+1)|
1−1/n
|Bρi+1 \ A(ki , ρi+1)|ρ

−n
i+1

≥ c2−iν|A(ki+1, ρi+1)|
1−1/n(|Br/4| − τ0|Br/2|)r−n

≥ c2−iν|A(ki+1, ρi+1)|
1−1/n

≥ c2−iνrn−1Y 1−1/n
i+1 .

Combining these inequalities gives

Y 1−1/n
i+1 ≤ c2i(cG+cH+3)r−n

|A(ki , ρi )| ≤ c2i(cG+cH+3)Yi ,

and hence

Yi+1 ≤ c∗2n(cG+cH+3)/(n−1)i Y 1+1/(n−1)
i

for some constant c∗ = c∗(n, Q, cG, cH , L , ‖u‖L∞(Br )) > 1.
Consequently, Lemma 4.4 implies that Yi → 0 as i→∞, provided

Y0 =
|A(k0, r/2)|
|Br/2|

≤ τ0 ≤ c−(n−1)
∗

2−n(n−1)(cG+cH+3).

Then we obtain ∣∣∣A(k0+
ν

2
,

r
4

)∣∣∣= 0,

which implies (4-15). �

The following proposition follows from the above lemma in a standard way by taking ν= (1/2m) oscBr u;
see for instance [Baroni et al. 2015b; DiBenedetto 1995].

Proposition 4.10. Under the assumptions of Lemma 4.8, let m ≥ 3 be the natural number determined in
Lemma 4.8 with τ = τ0 ∈ (0, 2−(n+1)) which is given in Lemma 4.9. Then we see that m ∈N depends only
on n, Q, cG, cH , L , ‖u‖L∞(Br ), and we have

osc
Br/4

u ≤
(

1−
1

2m+1

)
osc
Br

u. (4-16)

The following lemma provides the Hölder continuity of quasiminimizers of the functional

v ∈W 1,1(�) 7→ F0(v,�) :=

∫
�

[G(|Dv|)+ a0 H(|Dv|)] dx, (4-17)

where 0≤ a0 ≤ ‖a‖L∞(�) is a fixed constant. For simplicity, we set

90(t) := G(t)+ a0 H(t) (4-18)

for t ≥ 0.
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Lemma 4.11. Let u ∈ W 1,1
loc (�) be a Q-minimizer of F0 under the assumption (2-25). Then there exist

β0 ∈ (0, 1) and c > 0, both depending on n, Q, cG, cH , but independent of a0 and u, such that for any
fixed ball Br0 b�

osc
Br

u ≤ c
(

r
r0

)β0

osc
Br0

u (4-19)

holds for every 0< r ≤ r0.

Proof. We first observe from [Baroni et al. 2015b, Remark 3.1] that

1
2 max{cG, cH }

≤
t9 ′′0 (t)
9 ′0(t)

≤ 2 max{cG, cH } for all t > 0.

We deduce from Theorem 4.3 that u is locally bounded in �. Therefore, the result (4-19) follows from
[Lieberman 1991, Section 6]. �

We are now ready to prove the Hölder continuity of locally bounded quasiminimizers of F.

Theorem 4.12 (Hölder continuity). Let u ∈W 1,1
loc (�) be a locally bounded Q-minimizer of F under the

assumptions (2-25) and (4-7). Then for every open subset �′ b� there exists β ∈ (0, 1), depending on
n, Q, cG, cH , L and ‖u‖L∞(�′), such that

u ∈ C0,β
loc (�

′).

Proof. Since the proof is analogous to that of [Baroni et al. 2015b, Theorem 4.1], we only sketch the
proof. We shall show that for a fixed ball B8r0 ⊂�

′ with 8r0 ≤ 1, there holds

osc
Br

u ≤ c
(

r
r0

)β
osc
Br0

u for all r ∈ (0, r0], (4-20)

for some positive constant c depending only on n, Q, cG, cH , L and ‖u‖L∞(�′).
Let us define

J :=
{

i ∈ N0 : (4-8) does not hold for r =
r0

4i

}
,

and

j :=
{

minJ if J 6=∅,
∞ if J =∅.

If j ≥ 1, then we obtain from Proposition 4.10 that for each r = 4−ir0 with i = 0, . . . , j − 1,

osc
Br/4

u ≤
(

1−
1

2m+1

)
osc
Br

u,

which yields

osc
Br

u ≤ 4
(

r
r0

)β1

osc
Br0

u for all r ∈ (4−( j+1)r0, r0], (4-21)

for some β1 ∈ (0, 1). If j =∞, then (4-21) holds for every r ∈ (0, r0], which is the desired conclusion
(4-20) with β = β1.
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In the case 1≤ j <∞, one can check that u is a (2Q)-minimizer of the functional

v 7→

∫
B4− j r0

[G(|Dv|)+ a0 H(|Dv|)] dx, a0 = sup
B4− j r0

a( · ).

Now, Lemma 4.11 gives

osc
Br

u ≤ c
(

r
4− jr0

)β0

osc
B4− j r0

u (4-22)

for every r ∈ (0, 4− jr0]. Here, β0 ∈ (0, 1) and c > 0 both depend only on n, Q, cG, cH . Combining
(4-21) and (4-22), we conclude that (4-20) holds for β = min{β0, β1}. Finally, if j = 0, then u is a
(2Q)-minimizer of the functional

v 7→

∫
Br0

[G(|Dv|)+ a0 H(|Dv|)] dx, a0 = sup
Br0

a( · ),

and hence we have the desired conclusion (4-20) with β = β0. �

Remark 4.13. Our condition (4-6) provides a characterization of the modulating coefficient a( · ). More
precisely, a modulus of continuity of a( · ) is exactly calibrated to the size of the phase transition. For
example, it is evident that the natural assumption for the modulating coefficient in the functional

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p[ln(1+ |Dv|)]γ ] dx,

with p > 1 and γ > 0, is

lim sup
ρ→0+

ω(ρ)

[
ln
(

1
ρ

)]γ
<∞.

Similarly, for the functional

v ∈W 1,1(�) 7→

∫
�

[|Dv|p + a(x)|Dv|p ln ln(e+ |Dv|)] dx,

with p > 1, the natural assumption for the modulating coefficient is

lim sup
ρ→0+

ω(ρ) ln ln
(

1
ρ

)
<∞.

5. The Harnack inequality

In this section, we prove the Harnack inequality for locally bounded quasiminimizers of F. We first
present some technical tools.

Lemma 5.1 [Ladyzhenskaya and Uraltseva 1968]. Let v ∈W 1,1(Bρ). For any l > k, we have

(l − k)|Bρ ∩ {v < k}|1−1/n
≤

c|Bρ |
|Bρ \ {v < l}|

∫
Bρ∩{k<v≤l}

|Dv| dx

for some positive constant c depending only on n.
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Lemma 5.2 [Giusti 2003]. Let ψ be a bounded nonnegative function in the interval [ρ, r ] such that

ψ(t)≤ ϑψ(s)+
A

(s− t)κ
for every ρ ≤ t < s ≤ r,

with A ≥ 0, κ > 0 and 0≤ ϑ < 1. Then we have

ψ(ρ)≤ c(κ, ϑ)
A

(r − ρ)κ
.

The following lemma provides the weak Harnack inequality of quasiminimizers of the functional F0

in (4-17); see [Lieberman 1991].

Lemma 5.3. Let u ∈W 1,1
loc (�) be a Q-minimizer of F0 under the assumption (2-25), and let B b� be a

ball. Then for any exponent q+ > 0 and every 0< t < s < 1, we have

sup
t B
|u| ≤ c∗

(
–
∫

s B
|u|q+ dx

)1/q+
(5-1)

for some constant c∗ = c∗(n, Q, cG, cH , s− t, q+) > 1. Moreover, if u is nonnegative, then there exists
an exponent q− = q−(n, Q, cG, cH ) ∈ (0, 1) such that for every t, s ∈ (0, 1)

inf
t B

u ≥
1
c∗

(
–
∫

s B
uq− dx

)1/q−
(5-2)

holds for some constant c∗ = c∗(n, Q, cG, cH , t, s) > 1.

Analysis similar to that in the proof of Lemma 4.8 gives the following lemma.

Lemma 5.4. Let u ∈ W 1,1
loc (�) be a nonnegative and locally bounded Q-minimizer of F under the

assumptions (2-25) and (4-7), and let B3r b� be a ball with 3r ≤ 1. Suppose that

sup
x∈B3r

a(x)≤ 12ω(r). (5-3)

For any τ1, τ2 ∈ (0, 1), there exists a large natural number m depending on n, Q, cG , cH , L , ‖u‖L∞(B3r ), τ1

and τ2 such that for any 0< λ≤ ‖u‖L∞(B3r ) if

|{x ∈ Br : u(x)≥ λ}| ≥ τ1|Br | (5-4)

holds, then
|{x ∈ B2r : u(x)≤ 2−mλ}| ≤ τ2|B2r |. (5-5)

Now we can obtain a lower bound of u under some density condition as follows.

Proposition 5.5. Let the assumptions in Lemma 5.4 hold. For any τ ∈ (0, 1), there exists a small
δ1 = δ1(n, Q, cG, cH , L , ‖u‖L∞(B3r ), τ ) > 0 such that for any 0< λ≤ ‖u‖L∞(B3r ), if

|{x ∈ Br : u(x)≥ λ}| ≥ τ |Br | (5-6)

holds, then
inf
Br

u ≥ δ1λ. (5-7)



1292 SUN-SIG BYUN AND JEHAN OH

Proof. We first note that it suffices to prove the proposition for τ ∈ (0, 2−(n+1)). We fix m0 ∈ N, and set
the sequences

ρi := r
(

1+
1
2i

)
and ki :=

(
1
2
+

1
2i

)
2−m0λ, i = 0, 1, 2, . . . .

We also define

D−i+1 := A−(ki , ρi+1) \ A−(ki+1, ρi+1) and Yi :=
|A−(ki , ρi )|

|Bρi |
.

Since u is nonnegative, we have (u− ki )− ≤ 2−m0λ. By (4-9), we get∫
A−(ki ,ρi+1)

G(|Du|) dx ≤ c2(i+3)(cG+cH+2)
∫

A−(ki ,ρi )

G
(
(u− ki )−

2r

)
dx

≤ c2i(cG+cH+2)G
(

2−m0λ

r

)
|A−(ki , ρi )|.

We deduce from the convexity of G that

G
(

–
∫

D−i+1

|Du| dx
)
≤ –
∫

D−i+1

G(|Du|) dx ≤ c2i(cG+cH+2) |A
−(ki , ρi )|

|D−i+1|
G
(

2−m0λ

r

)
≤ G

(
c2i(cG+cH+2) |A

−(ki , ρi )|

|D−i+1|

2−m0λ

r

)
.

Therefore, we obtain
–
∫

D−i+1

|Du| dx ≤ c2i(cG+cH+2) |A
−(ki , ρi )|

|D−i+1|

2−m0λ

r
.

On the other hand, using Lemma 5.1 and the fact that τ ∈ (0, 2−(n+1)), we have∫
D−i+1

|Du| dx ≥ c(ki − ki+1)|A−(ki+1, ρi+1)|
1−1/n
|Bρi+1 \ A−(ki , ρi+1)|ρ

−n
i+1

≥ c2−i
· 2−m0λ|A−(ki+1, ρi+1)|

1−1/n(|B2r | − τ |Br |)r−n

≥ c2−i
· 2−m0λ|A−(ki+1, ρi+1)|

1−1/n

≥ c2−i
· 2−m0λrn−1Y 1−1/n

i+1 .

Combining these inequalities gives

Y 1−1/n
i+1 ≤ c2i(cG+cH+3)r−n

|A−(ki , ρi )| ≤ c2i(cG+cH+3)Yi ,

and hence
Yi+1 ≤ c02in(cG+cH+3)/(n−1)Y 1+1/(n−1)

i

for some constant c0 = c0(n, Q, cG, cH , L , ‖u‖L∞(B3r )) > 1. Here we note from Lemma 5.4 that there
exists a large natural number m0 depending only on n, Q, cG, cH , L , ‖u‖L∞(B3r ) such that

|{x ∈ B2r : u(x)≤ 2−m0λ}| ≤ c−(n−1)
0 2−n(n−1)(cG+cH+3)

|B2r |.

Then it is clear that

Y0 =
|A−(k0, 2r)|
|B2r |

=
|{x ∈ B2r : u(x)≤ 2−m0λ}|

|B2r |
≤ c−(n−1)

0 2−n(n−1)(cG+cH+3),
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and hence Yi → 0 as i→∞ by Lemma 4.4. Consequently, we obtain

|A−(2−(m0+1)λ, r)| = 0,

which implies (5-7) with δ1 = 2−(m0+1). �

Proposition 5.6. Let u ∈ W 1,1
loc (�) be a nonnegative and locally bounded Q-minimizer of F under the

assumptions (2-25) and (4-7), and let B3r b� be a ball with 3r ≤ 1. Suppose that

sup
x∈B3r

a(x) > 12ω(r). (5-8)

For any τ ∈ (0, 1), there exists a small δ2 = δ2(n, Q, cG, cH , L , ‖u‖L∞(B3r ), τ ) > 0 such that if

|{x ∈ Br : u(x)≥ λ}| ≥ τ |Br | (5-9)

for 0< λ≤ ‖u‖L∞(B3r ), then
inf
Br

u ≥ δ2λ. (5-10)

Proof. By (5-8), there exists xM ∈ B3r such that a(xM)= a0 > 12ω(r). Then for every x ∈ B3r

a(xM)− a(x)≤ ω(6r)≤ 6ω(r),

and hence
a0 ≤ 2a0− 12ω(r)≤ 2a(x)≤ 2a0.

Since 9(x, Du) ∈ L1(B3r ), it follows that

G(|Dv|)+ a0 H(|Dv|) ∈ L1(B3r ).

Furthermore, one can see that u is a (2Q)-minimizer of the functional

v 7→

∫
B3r

[G(|Dv|)+ a0 H(|Dv|)] dx, a0 = sup
B3r

a( · ).

Now, using (5-2) in Lemma 5.3 with B ≡ B3r and t = s = 1
3 , we see from (5-9) that

inf
Br

u ≥
τ 1/q−λ

c∗
,

which implies (5-10) with δ2 := τ
1/q−c−1

∗
. �

An immediate consequence of Propositions 5.5 and 5.6 is the following.

Corollary 5.7. Let u ∈ W 1,1
loc (�) be a nonnegative and locally bounded Q-minimizer of F under the

assumptions (2-25) and (4-7), and let B3r b � be a ball with 3r ≤ 1. For any τ ∈ (0, 1), there exists a
small δ = δ(n, Q, cG, cH , L , ‖u‖L∞(B3r ), τ ) > 0 such that if

|{x ∈ Br : u(x)≥ λ}| ≥ τ |Br |

for 0< λ≤ ‖u‖L∞(B3r ), then
inf
Br

u ≥ δλ.
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From Corollary 5.7 and the covering arguments in [Kinnunen and Shanmugalingam 2001, Section 7],
we obtain the following weak Harnack inequality for quasiminimizers of F. For the proof we refer the
reader to [Baroni et al. 2015a, Theorem 3.5; Harjulehto et al. 2008, Theorem 5.7].

Theorem 5.8 (the weak Harnack inequality). Let u ∈ W 1,1
loc (�) be a nonnegative and locally bounded

Q-minimizer of F under the assumptions (2-25) and (4-7), and let B9r ≡ B9r (x0)b� with 9r ≤ 1. Then
there exists an exponent q− > 0 and a constant c> 1, depending on n, Q, cG, cH , L and ‖u‖L∞(B9r ), such
that

inf
Br

u ≥
1
c

(
–
∫

B2r

uq− dx
)1/q−

. (5-11)

To prove the sup-estimate for quasiminimizers of F, we now introduce the scaled functions and the
corresponding functional. Let us define, for R ∈ (0, 1] and r > 0 with Br b�,

u R(x) :=
u(Rx)

R
, aR(x) := a(Rx), x ∈ Br ,

and
FR(v, K ) :=

∫
K
[G(|Dv|)+ aR(x)H(|Dv|)] dx, K b Br .

Lemma 5.9. Let u ∈W 1,1
loc (�) be a Q-minimizer of F. Let R ∈ (0, 1] and suppose that Br b�. Then u R

is a Q-minimizer of FR in Br .

Proof. We first observe that Du R(x)= Du(Rx). Since Br b�, we see that F(u, Br ) <+∞, and hence

FR(u R, Br )=

∫
Br

[G(|Du(Rx)|)+ a(Rx)H(|Du(Rx)|)] dx

=
1

Rn

∫
BRr

[G(|Du(y)|)+ a(y)H(|Du(y)|)] dy

≤
1

Rn

∫
Br

[G(|Du(y)|)+ a(y)H(|Du(y)|)] dy

=
1

Rn F(u, Br ) <+∞.

Furthermore, for any vR ∈W 1,1
loc (Br ) with K := supp(u R − vR)b Br , we have

supp(u− v)= {Rx : x ∈ K } =: RK ,
and

FR(u R, K )=
∫

K
[G(|Du(Rx)|)+ a(Rx)H(|Du(Rx)|)] dx

=
1

Rn

∫
RK
[G(|Du(y)|)+ a(y)H(|Du(y)|)] dy

≤
Q
Rn

∫
RK
[G(|Dv(y)|)+ a(y)H(|Dv(y)|)] dy

= Q
∫

K
[G(|Dv(Rx)|)+ a(Rx)H(|Dv(Rx)|)] dx = QFR(vR, K ).

Therefore, u R is a Q-minimizer of FR in Br . �
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From the definition of the scaled function aR( · ), one can directly obtain the following lemma.

Lemma 5.10. Let R ∈ (0, 1] and suppose that B4r ⊂ B1 ⊂�. Then the function aR : B1/R→ [0,∞) has
a modulus of continuity ωR satisfying

ωR(ρ)= ω(Rρ) for all 0< ρ ≤ 1
R
.

Moreover, we have

sup
x∈B3r

a(x)≤ 12ω(r) ⇐⇒ sup
x∈B3r/R

aR(x)≤ 12ωR

(
r
R

)
.

We now prove the sup-estimate for quasiminimizers of F. For this, we consider two cases separately,
as in the proof of the weak Harnack inequality.

Proposition 5.11. Let u ∈W 1,1
loc (�) be a locally bounded Q-minimizer of F under the assumptions (2-25)

and (4-7), and let B4r b� be a ball with 4r ≤ 1. Suppose that

sup
x∈B3r

a(x)≤ 12ω(r).

Then for any exponent q+ > 0, we have the estimate

sup
Br

|u| ≤ c
(

–
∫

B2r

|u|q+ dx
)1/q+

(5-12)

for some constant c > 1 depending on n, Q, cG, cH , L , ‖u‖L∞(B4r ) and q+.

Proof. Let us consider the scaled functions

ur (x)=
u(r x)

r
, ar (x)= a(r x), x ∈ B4.

Then by Lemmas 5.9 and 5.10, we see that the Caccioppoli inequality (4-9) holds for ur . For 1≤ t < s ≤ 2,
we now set the sequences

ρi := t +
s− t

2i and ki := 2d
(

1−
1

2i+1

)
, i = 0, 1, 2, . . . ,

where d > 0 is to be chosen later. We further define

ρ̃i :=
ρi + ρi+1

2
and Yi :=

1
G(d)

∫
Ar (ki ,ρi )

G(ur − ki ) dx,

where

Ar (k, ρ) := {x ∈ Bρ : ur > k}.

Let ηi ∈ C∞0 (Bρ̃i ) be a cut-off function with 0≤ ηi ≤ 1, ηi ≡ 1 on Bρi+1 , and

|Dηi | ≤
4

ρi − ρi+1
.
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Using Hölder’s inequality, Sobolev’s inequality and a modified form of Young’s inequality (2-7) with
ε = 1, we have

G(d)Yi+1 ≤

∫
Bρ̃i

G((ur − ki+1)+ηi ) dx

≤ |Ar (ki+1, ρi )|
1/n
(∫

Bρ̃i

[G((ur − ki+1)+ηi )]
n/(n−1) dx

)(n−1)/n

≤ c|Ar (ki+1, ρi )|
1/n
∫

Bρ̃i

G ′((ur − ki+1)+ηi )[|D(ur − ki+1)+|ηi + (ur − ki+1)+|Dηi |] dx

≤ c|Ar (ki+1, ρi )|
1/n
∫

Bρ̃i

G ′((ur − ki+1)+)|D(ur − ki+1)+| dx

+ c|Ar (ki+1, ρi )|
1/n 2i+3

s− t

∫
Bρ̃i

G ′((ur − ki+1)+)(ur − ki+1)+ dx

≤ c|Ar (ki+1, ρi )|
1/n
[∫

Bρ̃i

G(|D(ur − ki+1)+|) dx +
∫

Bρ̃i

G((ur − ki+1)+) dx
]

+ c|Ar (ki+1, ρi )|
1/n 2i+3

s− t

∫
Bρ̃i

G((ur − ki+1)+) dx

≤ c|Ar (ki+1, ρi )|
1/n
[∫

Bρ̃i

G(|D(ur − ki+1)+|) dx +
2i+3

s− t

∫
Bρ̃i

G((ur − ki+1)+) dx
]

≤ c|Ar (ki+1, ρi )|
1/n
(

2i+3

s− t

)cG+cH+2 ∫
Bρi

G((ur − ki+1)+) dx .

Here we observe from (2-12) that

|Ar (ki+1, ρi )| ≤
1

G(ki+1− ki )

∫
Ar (ki+1,ρi )

G(ur − ki ) dx

=
1

G(d/2i+1)

∫
Ar (ki+1,ρi )

G(ur − ki ) dx

≤
G(d)

G(d/2i+1)
Yi ≤ 2(i+1)(cG+1)Yi ≤ c

(
2i+3

s− t

)cG+cH+2

Yi

and ∫
Bρi

G((ur − ki+1)+) dx =
∫

Ar (ki+1,ρi )

G(ur − ki+1) dx ≤
∫

Ar (ki ,ρi )

G(ur − ki ) dx = G(d)Yi .

Combining these inequalities yields

Yi+1 ≤
c0

(s− t)κ
2iκY 1+1/n

i

for some constant c0 > 1 depending only on n, Q, cG, cH , L and ‖u‖L∞(B4r ), where

κ =
(

1+ 1
n

)
(cG + cH + 2) > 1.
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Applying Lemma 4.4, we have Yi → 0 as i→∞, provided

Y0 =
1

G(d)

∫
Ar (d,s)

G(ur − d) dx ≤
[

c0

(s− t)κ

]−n

2−n2κ . (5-13)

It is clear that (5-13) is satisfied if we choose d > 0 such that

G(d)=
2n2κcn

0

(s− t)nκ

∫
Bs

G((ur )+) dx . (5-14)

Then we obtain ur ≤ 2d in Bt , which together with (5-14) implies

G
(
sup

Bt

(ur )+
)
≤

c
(s− t)nκ

–
∫

Bs

G((ur )+) dx . (5-15)

We note from Lemma 2.9 that there exists γ = γ (cG) > 1 such that t 7→ G(t1/γ ) is a concave function.
Then it follows from (5-15) and Jensen’s inequality that

G
(
sup

Bt

(ur )+
)
≤

c
(s− t)nκ

–
∫

Bs

G((ur )+) dx =
c

(s− t)nκ
–
∫

Bs

G(((ur )
γ
+)

1/γ ) dx

≤
c

(s− t)nκ
G
((

–
∫

Bs

(ur )
γ
+ dx

)1/γ )
≤ G

(
c

(s− t)nκ

(
–
∫

Bs

(ur )
γ
+ dx

)1/γ )
,

and hence

sup
Bt

(ur )+ ≤
c

(s− t)nκ

(
–
∫

Bs

(ur )
γ
+ dx

)1/γ

.

Since −u is also a Q-minimizer of F, we get

sup
Bt

|ur | ≤
c

(s− t)nκ

(
–
∫

Bs

|ur |
γ dx

)1/γ

.

Moreover, for 0< q+ < γ , we obtain from Young’s inequality that

sup
Bt

|ur | ≤
c

(s− t)nκ
[
sup
Bs

|ur |
]1−q+/γ

(
–
∫

Bs

|ur |
q+ dx

)1/γ

≤
1
2

sup
Bs

|ur | +
c

(s− t)nκγ /q+

(
–
∫

B2

|ur |
q+ dx

)1/q+

as 1≤ t < s ≤ 2. Then Lemma 5.2 with ψ(t) := supBt
|ur | yields

sup
B1

|ur | ≤ c
(

–
∫

B2

|ur |
q+ dx

)1/q+
, (5-16)

where c is a positive constant depending on n, Q, cG, cH , L , ‖u‖L∞(B4r ) and q+.
On the other hand, the inequality (5-16) also holds for q+ ≥ γ by Hölder’s inequality. Finally, from

the definition of ur , we obtain the desired conclusion (5-12). �
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Proposition 5.12. Let u ∈W 1,1
loc (�) be a locally bounded Q-minimizer of F under the assumptions (2-25)

and (4-7), and let B4r b� be a ball with 4r ≤ 1. Suppose that

sup
x∈B3r

a(x) > 12ω(r).

Then for any exponent q+ > 0, we have the estimate

sup
Br

|u| ≤ c
(

–
∫

B2r

|u|q+ dx
)1/q+

(5-17)

for some constant c > 1 depending on n, Q, cG, cH , L , ‖u‖L∞(B4r ) and q+.

Proof. As in the proof of Proposition 5.6, we see that u is a (2Q)-minimizer of the functional

v 7→

∫
B3r

[G(|Dv|)+ a0 H(|Dv|)] dx, a0 = sup
B3r

a( · ) > 0.

Therefore, (5-1) in Lemma 5.3 with B ≡ B3r , t = 1
3 and s = 2

3 directly gives (5-17). �

Combining Propositions 5.11 and 5.12 yields the following sup-estimate.

Corollary 5.13. Let u ∈W 1,1
loc (�) be a locally bounded Q-minimizer of F under the assumptions (2-25)

and (4-7), and let B4r b� be a ball with 4r ≤ 1 Then for any exponent q+ > 0, we have the estimate

sup
Br

|u| ≤ c
(

–
∫

B2r

|u|q+ dx
)1/q+

(5-18)

for some constant c > 1 depending on n, Q, cG, cH , L , ‖u‖L∞(B4r ) and q+.

Finally, from Theorem 5.8 and Corollary 5.13 with q+ = q−, we obtain the Harnack inequality of
quasiminimizers of F. We remark that the following theorem has no extra term in (5-19), so it can be
regarded as a refined version of the result in [Harjulehto et al. 2017] for the generalized double phase
case.

Theorem 5.14 (the Harnack inequality). Let u ∈ W 1,1
loc (�) be a nonnegative and locally bounded Q-

minimizer of F under the assumptions (2-25) and (4-7), and let B9r b� be a ball with 9r ≤ 1. Then there
exists a constant c > 1, depending on n, Q, cG, cH , L and ‖u‖L∞(B9r ), such that

sup
Br

u ≤ c inf
Br

u. (5-19)
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