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REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS

SUN-SIG BYUN AND JEHAN OH

We consider a wide class of functionals with the property of changing their growth and ellipticity properties
according to the modulating coefficients in the framework of Musielak—Orlicz spaces. In particular, we
provide an optimal condition on the modulating coefficient to establish the Holder regularity and Harnack
inequality for quasiminimizers of the generalized double phase functional with (G, H)-growth for two
Young functions G and H.

1. Introduction

There have been systematic and extensive research activities on the variational problems with nonstandard
growth. In particular, functionals whose structure exhibits a phase transition have attracted increasing
attention over the last couple of decades. These functionals intervene in the homogenization of strongly
anisotropic materials [Zhikov 1986; Zhikov et al. 1994] and in the Lavrentiev phenomenon [Zhikov 1993;
1995]. In this paper, we are concerned with the functionals of the type

ve WH(Q) - F(u, Q) = / [G(IDv]) +a(x)H (| Dv])]dx, -1y
Q

where G, H : [0, 00) — [0, o0) are Young functions satisfying a suitable gap condition, see (2-24),
a: 2 — [0, 00) is a continuous function, and €2 is a bounded domain in R” with n > 2.

The main feature of the functional (1-1) is that the energy density changes its growth and ellipticity
properties according to the modulating coefficient a( - ). The double phase functional (1-1) is a natural
generalization of the one with (p, g)-type

ve WH(Q) — / [|Dv|” +a(x)|Dv|?]dx, q>p>1, (1-2)
Q
and the one in a borderline case
ve WH(Q) / [|Dv|? +a(x)|Dv|? In(1 + |Dv|)]dx, p>1. (1-3)
Q

Zhikov [1986; 1994] first introduced a family of functionals including (1-2) for the purpose of describing
a feature of strongly anisotropic materials: the modulating coefficient a(-) presents the geometry of
the mixture of two different materials. As shown in [Esposito et al. 2004; Fonseca et al. 2004; Zhikov
1995; 1997], such functionals exhibit Lavrentiev phenomenon whereby minimizers are irregular and even
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discontinuous. On the other hand, the functionals (1-2) and (1-3) belong to the class of functionals having
(p, g)-growth condition. These are functionals of the type

ve W) +—>/QF(x, Dv) dx, (1-4)

where the energy density F(x, &) satisfies
EIP S F(x, &) SET+1, g>p>1. (1-5)

This (p, g)-growth condition was first treated by Marcellini [1986; 1989; 1991] and extensively studied in
recent years; see [Breit 2012; Esposito et al. 1999; 2002; 2004; Fonseca et al. 2004; Fusco and Sbordone
1990; Schmidt 2008; 2009].

In the case p > n, itis clear from the Sobolev embedding theorem that quasiminimizers of the functionals
(1-2) and (1-3) are locally bounded and Holder continuous. Recently, Baroni, Colombo and Mingione
[Baroni et al. 2015a; Colombo and Mingione 2015a; 2015b] found that when p < n, the optimal condition
for Holder continuity of quasiminimizers of the functional (1-2) isa(-) € C 0.2(Q), with « € (0, 1] and
q < p + «. For the functional (1-3), the log-Holder continuity of a(-) is sufficient in order to obtain
the Holder continuity of quasiminimizers; see [Baroni et al. 2015a; 2015b]. These results show that the
regularity of the modulating coefficient a( - ) is closely related to how to control the size of the associated
phase transition. In addition, C'-#-regularity results for minimizers of the double phase functionals (1-2)
and (1-3) have been obtained in [Baroni et al. 2015b; 2018; Colombo and Mingione 2015a; 2015b] and
the regularity of the modulating coefficient is directly linked to the gap between two phases. For further
regularity results including C!-regularity for minimizers of functionals with general (p, g)-growth, we
refer the reader to [Beck and Mingione 2018; Cupini et al. 2017; 2018; Esposito et al. 2006].

The main object of this paper is to investigate an optimal condition on the modulating coefficient
a(-) in the functional (1-1) under which the Hélder regularity result holds for local quasiminimizers.
We provide a reasonable condition on the modulus of continuity of a(-), see (4-6), and prove local
boundedness, Holder continuity via De Giorgi’s method and the Harnack inequality under this condition.
Harjulehto, Histo and Toivanen [Harjulehto et al. 2017] considered a general setting and developed a set
of assumptions on the energy density. Some of the assumptions in [Harjulehto et al. 2017] are the same as
ours in the setting of the double phase functionals, see Remark 3.3, but we introduce refined conditions
on G and H, and prove that these are sharp conditions for the absence of the Lavrentiev phenomenon, see
Theorem 3.1, which also yields the regularity of local quasiminimizers for the generalized double phase
functionals. The results in [Harjulehto et al. 2017] and ours complement each other. We also remark that
our condition agrees with the known one in the classical case, see Remark 3.2, and serves the natural
assumption for the modulating coefficient in a wide variety of double phase functionals such as

ver’l(Q)H/[lelp +a(x)|Dv|’[In(1 + |Dv)] 1dx, p>1, y >0,
Q
and
veW“(Q)r—>[[|Dv|” +a(x)|Dv|” Inln(e + |Dv))]dx, p>1;
Q

see Remark 4.13.
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The method used in this paper is influenced by [Baroni et al. 2015b; 2018; Colombo and Mingione
2015a; 2015b]. For the Holder continuity of quasiminimizers, we first derive a Caccioppoli-type inequality
which is similar to the one that holds for the functional v — fQ G (|Dv|) dx by using the condition (4-8) on
the modulus of continuity of a(-). We then consider a sequence of nested and shrinking balls { By-i, }7°,
in order to control the oscillation of quasiminimizers along the sequence of balls. Here we should verify for
each ball whether the condition (4-8) holds true. If this condition holds true for every ball, then we obtain
the Holder continuity of quasiminimizers. Otherwise, we reduce the oscillation until we reach the exit time
for ball B4-j,,, and then we use the existing regularity theory, see Lemma 4.11, for the frozen functional

ve W (Byjp) > [G(IDv|) +agH (|Dv)]dx, ag= sup a(-).
By=in, By=i,

For the proof of the Harnack inequality, we first deduce the weak Harnack inequality and the local
sup-estimates under the assumption (4-8). Then we apply the exit-time argument as above to obtain the
desired inequality.

This paper is organized as follows. In the next section, we introduce some background and investigate
the gap conditions. Section 3 deals with the Lavrentiev phenomenon. In Section 4, we establish the local
boundedness and the Holder continuity for (1-1). Section 5 is devoted to proving the Harnack inequality.

2. Preliminaries

Notation. We start this section with introducing notation that will be used in this paper.

Let B,(y) = {x € R" : |[x — y| < p} be the open ball in R" centered at y € R" with radius p > 0. If the
center is clear in the context, we shall denote it by B, = B, (y).

For a function v, we write vy := max{zwv, 0}.

For k € R, p > 0 and a quasiminimizer u of the functional F, we set

Alk,p):={xeBy:u(x)>k} and A (k,p):={x e B,:u(x) <k}

Hereafter, for the sake of the convenience, we employ the letter ¢ to denote any universal constants
which can be explicitly computed in terms of known quantities, and so ¢ might vary from line to line.

Orlicz spaces and Musielak—Orlicz spaces. A Young function @ : [0, co) — [0, 00) is an increasing
convex function satisfying

d O(t
o (0) =0, tlim d(t) =00, lim ﬁ =0, lim L =
—00

t—0+ f t—oo f

Q.

Definition 2.1. Let ® be a Young function:

(1) @ is said to satisfy the A,-condition, denoted by ® € A,, if there exists a positive number A, (D)
such that ®(21) < Ay (D)P(¢) for all ¢t > 0.

(2) @ is said to satisfy the V,-condition, denoted by @ € V5, if there exists a positive number V,(®) > 1
such that ®(V,(P)1) > 2V,(P)D(¢) for all £ > 0.

(3) Wewrite ® e AyNVyif & € Ay and ® € V,.
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We note that if ® € A,, then A,(P) > 2. Indeed, by the convexity of ®, we get
Ay (D)
2

and hence Ay(®) > 2. If Ap(P) =2, then it follows from (2-1) that & (2¢) = 2P (¢) for all > 0, and so
@ () = O (1)t is not a Young function. Thus A, (P) > 2.
For a given Young function @, we define the complementary Young function ®* of ® by

Q(21) < A (P)P(1) =

®(21) forallt >0, 2-1)

®*(t) = sup{st — P(s) : s > 0}.

We remark that ®* satisfies all the conditions to be a Young function and that (®*)* = ®. Moreover,
® € V, if and only if ®* € A, with 2V, (D) = A (d*).

We will use the following basic properties of Young functions satisfying A, and V, conditions; see for
instance [Adams and Fournier 2003; Ok 2016; Rao and Ren 1991].

Lemma 2.2. Let ® be a Young function with ® € A, N V;:
(1) Forany 1 < A <ooandt > 0, we have
D(AL) < Ap(D)A2 22D P (p), (2-2)
(2) Forany0 <A <1landt >0, we have
®(At) < 2Va(P)A T80 2 (1), (2-3)

(3) (Young’s inequality) For any ¢ € (0, 1], there exists a positive constant c depending only on Ay (®P),
Vo (®) and & such that

st <e®(s)+cd*() foralls,t>0. (2-4)
@) If ® € C'([0, 00)), then for any t > 0, we have
@) <td (1) < 1P (1) (2-5)

and
O (D'(1)) < 2@ (1) (2-6)

for some constants cy, ¢, > 1 depending only on A>(®P) and V(D).

(5) (a modified form of Young’s inequality) If ® € C' ([0, 00)), then for any € € (0, 1], there exists a
positive constant ¢ depending only on Ay(®), Vo(®) and € such that

s®'(t) <e®(s)+cd(t) foralls,t>D0. 2-7)

For a Young function ®, the Orlicz class K ®(Q: RN), N € N, consists of all measurable functions
v:Q — RV satisfying

/ D(Jlv(x)]) dx < +o0.
Q
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The Orlicz space L®(Q2; RY) is the vector space generated by the Orlicz class K®(Q2; RV). If ® € A,,
then K®(Q; RY) = L®(Q; R") and this space is a Banach space under the Luxemburg norm

vl Lo @iry) :inf{o =0 :f q>(|”(x)|> dx < 1}_
Q o2

For N = 1, we simply write L®(Q) := L*(Q; R).
We state some relevant inequalities regarding the Luxemburg norm; see [Rao and Ren 1991].

Lemma 2.3. Let ® be a Young function with ® € Ay:
M) Jollpo@pn <1 = /ch(lvl)dxs Il o @smv.
@) lollo@pn > 1 = /chqvndxz Il o @smr
(3) Ioll oy <1 < /Q<1><|v|)dx51.

v
(4) 0< ||U||L®(Q;|RN) <X = f (I)(L) dle
o \lvlre@ry)

(5) (Hélder’s inequality) For any v € L®(Q) and w € LY (Q),

/ owldx < 2wl @ llwll 1o . (2-8)
Q

We now introduce a partial order relation between Young functions, see [Verde 2011], and present a
series of lemmas which will be used frequently throughout the paper.

Definition 2.4. Let ®;, ®, be Young functions. We shall write
Cbl < q)z
if &30 ¢'1_1 is a Young function.

Lemma 2.5. Let ®, ®, be Young functions with ®| < ©,. Then

Di(2) < Dy(t) forallt > <I>f1(1). (2-9)

(@207 (D)
Proof. We first note that for a Young function @, there holds
O(l)s < d(s) foralls>1.
Indeed, this follows from the convexity of ®. Since ®; < ®,, we have
(@207 (1)s < (P20 ®;)(s) foralls > 1.

Setting t = <I>1_1 (s), we obtain the desired conclusion (2-9). Il
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Corollary 2.6. Let |, ©; be Young functions with ®; < ;. Then
D1(t) <c(Dr(t)+1) forallt >0, (2-10)
where c is a positive constant depending only on ® and .

Lemma 2.7. Let @, @, be Young functions with ®| < ®,. Then the function

t > (E)(I) el)
@, (1)

is nondecreasing.

Proof. We first note that the function ®,/®; is nondecreasing if and only if the function (®,/P) o d>1_1
is nondecreasing, as t — ®1(¢) is increasing and continuous. Since ®; < ¥,, we see that $, o <I>]_1 isa
Young function. Hence, it follows from the convexity of ®; o CDl_l that the function

(> (% o q>1-1> (= 222200 cfl_l)m
is nondecreasing. (|
The following lemma and its proof can be found in [Lieberman 1991; Rao and Ren 1991, Chapter II].
Lemma 2.8. Let ® € C'([0, 00)) N C((0, 00)) be a Young function satisfying
1 - td" (1)

o= 0 <ce forallt>0, 2-11)
for some cy > 1. Then:
(1) ® € Ay N\ Vy, and the constants Ar (D), Vo(P) depend only on ce.
2) Forany 1 < A <ooandt > 0, we have
O (Ar) < AT D). (2-12)
3) Forany0 <A <1landt >0, we have
d(ar) < Aot g (p). (2-13)

Lemma 2.9. Let ® be a Young function with ® € C' ([0, 00)) N C?((0, 00)). If

1@ (1)
@'(1)

<cgp forallt >0,

for some co > 1, then t — ® (/1)) is a concave function.

Proof. Set ¢(t) := & (¢!/(1+<)) for t > 0. Then we have

1
(ﬂ/(t) — —qD/(tl/(l-i-C(b))t—Cq>/(1+cq>)’
1 +C¢>
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and hence

1 . . . Cop N . .

" _ 11/ (14co) —cop/(1+cp)\2 1 1/ (I+cap)y s—ca/(1+cep)—1
pt)="7T———7D( )t ) — o )t
(1+co)? (1+coe)?
_ : +1 )2t—Cq>/(1+Cq>)—l[tl/(l+c¢)q>//(tl/(l+c‘<p)) — @' (11/0Fe0)) < 0

Cop

for all ¢ > 0. O

We now introduce the Musielak—Orlicz spaces which generalize the Orlicz spaces. Let & : 2 x [0, c0) —
[0, co) be a function satisfying the following conditions:

(1) ®(x,-) is a Young function for every x € Q.
(2) ®(-, 1) is a measurable function for every ¢ > 0.

Such a function ®(x, ¢) is called a Musielak—Orlicz function. As before, we present some definitions and
properties regarding Musielak—Orlicz functions.

Definition 2.10. Let ® be a Musielak—Orlicz function:

(1) @ is said to satisfy the A,-condition, denoted by ® € A,, if there exists a positive number A, (D)
such that ®(x, 2t) < Ar(P)D(x,¢t) forall x € 2 and ¢ > 0.

(2) @ is said to satisfy the V,-condition, denoted by ® € V,, if there exists a positive number V,(P) > 1
such that & (x, Vo (P)1) > 2V (P)P(x, t) forall x € Q and r > 0.

(3) We write ® e AyNVyif & € Ay and ® € V,.

For a given Musielak—Orlicz function &, we define the complementary ®* of ® by, for each x € €,
®*(x, ) = sup{st — ®(x, s) : s > 0}.

Then ®* satisfies all the conditions to be a Musielak—Orlicz function. Also we note that (®*)* = ® and
that ® € V; if and only if ®* € A, with 2V,(D) = Ay (P*).

The following lemma can be directly obtained from the definitions of A,-condition, V;-condition and
the complementary of Musielak—Orlicz function.

Lemma 2.11. Let ® be a Musielak—Orlicz function with ® € A, N V!
(1) Forany1 < A <oo, t > 0and x € Q, we have

D (x, At) < Ag(D)APL 2P D (x, 1), (2-14)
(2) Forany0 <A <1, t >0and x € 2, we have

D (x, M) < 2Vo(P)A Mm@ 2 (x| 7). (2-15)

(3) (Young’s inequality) For any ¢ € (0, 1], there exists a positive constant ¢ depending only on Ay (®P),
Vo (®) and & such that
st <ed(x,s)+cdP"(x,1) (2-16)
foralls,t > 0and x € Q.
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For a Musielak—Orlicz function ®, the Musielak—Orlicz class K ‘b(Q; RN ), N € N, consists of all
measurable functions v :  — R" satisfying

/ D(x, |v(x)])dx < +oo.
Q

The Musielak—Orlicz space L®(Q; RY) is the vector space generated by K ®(Q; RY). If ® € A, then
K®(Q; RY) = L®(Q; RY) and this space is a Banach space under the Luxemburg norm

10l 2o (emm) :inf{a > o:/ c1>(x, |v(x)|)dx < 1}.
Q g

The Musielak-Orlicz—Sobolev space W' ®(Q2; RV) is the function space of all measurable functions v €
L®(Q:; RN) such that its distributional gradient vector Dv belongs to L®(Q; RN™). Forve WH®(Q; RVY),
we define its norm to be

lvllwre@ryy = lIV]iLo@:rYy + 1DV Lo (@ rNny -

The space W, ®(2; RY) is defined as the closure of C$°(2; RY) in W ®(Q; RV). For N = 1, we simply
write L®(Q) := L®(Q; R) and W' ®(Q) := W!®(Q; R). For a detailed discussion of the Musielak—Orlicz
space and the associated Sobolev space, we refer the reader to [Benkirane and Sidi El Vally 2014; Diening
2005; Fan 2012; Fan and Guan 2010; Harjulehto et al. 2016; Musielak 1983; Sidi El Vally 2013].

Gap conditions. We now consider the double phase functional
F, Q) = / [G(IDv|) +a(x)H(IDv])]dx, veW"'(Q),
Q

and investigate gap conditions on two Young functions G and H.
In the rest of the paper we shall use the notation

V(x,§) =G +alx)H(E], (2-17)
when x €  and £ € R". By abuse of notation, we will continue to write W (x, &) also when x € Q2 and & e R.

Proposition 2.12. Let G, H : [0, 00) — [0, 00) be Young functions. Suppose that the function a = a(-) :
Q — [0, 00) has a modulus of continuity w satisfying

(Ho G H(p™")
<X

—n

lim sup w(p) (2-18)

p—0+

If H > G* for some k > 1+ 1/n, then a(-) is a constant function.
Proof. It follows from the condition (2-18) that there exists a constant L > 0 such that

(HoG H(p™) <1

—n

w(p)
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forall 0 < p < 1. Since H > G*, we have

K -1 —n
(G oG )(p )Sc

—n

-1 —n
(HoG™')(p )Sc

—n

w(p)

w(p)

L (2-19)

for all small p > 0. Here, we see that

(G0 G (p™) [(GoG™H(p™)* e
(p) — =w(p) _— =w(p)p™" V. (2-20)
Combining (2-19) with (2-20) yields
w(p) <cLp"*~V forall p < po, (2-21)

for some small pg > 0. Then we conclude from the definition of the modulus of continuity that

IG(X) —a(Y)| < CL|)C _ yln(/(—l)—l
lx —yl

for every x, y € Q with 0 < |[x — y| < pg. Since n(x — 1) — 1 > 0, it follows immediately that a(-) is a

(2-22)

constant function. O

Proposition 2.13. Let G, H : [0, 00) — [0, 00) be Young functions. Suppose that the functiona = a(-) :
Q — [0, 00) has a modulus of continuity w satisfying

lim sup @ (p) H('O_ll)
p—0+ G(pi )

< 00. (2-23)

If H > G* for some k > 2, then a(-) is a constant function.

Proof. It follows from the condition (2-23) that there exists a constant L > 0 such that
—1

H(p™") <

G(p™)

for all 0 < p < 1. We note from the convexity of G that

w(p)

G(1)s <G(s) foralls>1.
Since H > G*, we get

[G(p~ DI _ Hep™) _ .
G~ ~ Gip™) ~

for all small p > 0. As in the previous proof, we conclude that a( -) is a constant function if x > 2. [J

w(P)p~ "V < co(p)[G(p ) ! = cw(p) cw(p) L

Remark 2.14. If G(¢) > t", then it follows from Lemmas 2.5 and 2.7 that
(HoG™ ) (p™) HY | _ H - H(p™"
- == )G ™) = (= Jlep™) e,
p" G G G(p™")
and hence the condition (2-23) implies (2-18). On the contrary, if G(¢) < t”", then

Hp™) _(H\, 1 _(HY o1y onyy = (HoGH(™
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and consequently the condition (2-18) implies (2-23). These agree with the known results in the classical
case; see Remark 3.2 below.

From this point of view, we shall assume that G, H : [0, c0) — [0, 0o) are Young functions with
G,H e AyNV, and
G~<H<~<G'n, (2-24)

We remark that W € A, N V,. To get regularity results, we shall concentrate on nice Young functions, or
the N-functions. Thus we further assume that G, H € C' ([0, c0)) N C%((0, 00)) and there exist constants

cG, cy > 1 such that

1 tG' (¢ 1 tH' (¢
- ()SCG and - < ()

cc — G'() cy — H'(@)

<cy (2-25)

hold for all > O.

3. Lavrentiev phenomenon

When considering the functionals of the type

ver’l(Q)H/ F(x, Dv)dx,
Q
with
GIEDSF(x,&) SH(ED+1, G<H,

the Lavrentiev phenomenon

inf / F(x,Dv)dx < inf / F(x,Dv)dx
veWl6(Q) Jo veWlH(Q) Jq

may occur. However, for the functional F defined in (1-1), there is no Lavrentiev phenomenon under a
suitable condition on the modulating coefficient a(-).

Theorem 3.1. Let F be the functional defined in (1-1):
(1) If the modulating coefficient a( -) has a modulus of continuity w satisfying

(HoG H(p™)
<

—n

lim sup w (p) 00, (3-1)

p—0+

then for every function v € WIL’CI (2) and balls B € B € Q with F(v, E) < 00, there exists a sequence
{vi} € WE°(B) such that

v — v inwWh9(B) and  F(v, B) — F(v, B). (3-2)

(2) If the modulating coefficient a( - ) has a modulus of continuity w satisfying

i H(p™")
im sup w(p) :
p—0+ G(/O_ )

< 00, (3-3)
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then for every function v € WIL’Cl ()N LY. (2) and balls B € B € Q with F(v, E) < 00, there exists
a sequence {vi} C W (B) such that

v —v inWh9(B) and  F(v, B) = F(v, B). (3-4)

Proof. Let R > 0 be the radius of the ball B. Take gy € (0, 1) in such a way that B = Bgr €@ Bry, € BeQ.
Let ¢ € C§°(B)) be a mollifier with ¢ > 0, [, ¢ dx =1, and set

1 X
P (x) 1= —,,w(—)
& &

for x € B, with ¢ > 0. Then it is obvious that ¢, € CSO(BE), fRn edx =1, 0 < ¢, <c(n)e™™ and
|D@;| < c(n)e~ "D, Now we define, for 0 < ¢ < &,

Ve(x) := (V@) (x), @e(x):= yeigf(x)a(y), We(x,8) :=G(|§]) +ac(x)H(&])
for x € Bg and & € R"

(1) It follows from Jensen’s inequality that

G(|1Dve(x)]) = G(|Dv s e (x)]) < /Rn G(IDv(x = y)Dee(y) dy < ce™

for every x € Bg. By the definitions of a.(-), we obtain
W (x, Dve(x)) < la(x) —as(x)|H(|Dvg(x)]) + W (x, Dve(x))
<cw(e)H(|Dv:(x)|) + Ve (x, Dvg(x)).
We now observe from Lemmas 2.2 and 2.7 that
H
H(|Dve(x)]) = (E)(IDUS(X)I)G(IDUE(X)I)

(Ho G H(ce™)

H
=< (E>(G_](08_”))G(|Dva(X)|) = G(|Dve(x)])

-1 —n
<c(HOG )(Ee™)

o —1 —n
G(Dv ()] < G ED

gn gn

W, (x, Dv.(x)).

Therefore, we see from (3-1) that

W(x, Dvg(x)) < cw(e) W, (x, Dvg(x)) + We(x, Dvg(x))

(HoG )(e™")
< W, (x, Dve(x)). (3-5)

By Jensen’s inequality, we have

\Ifg(x,Dva(X))S/B( )\Ps(x,Dv(y))ws(x—y)dyS/B( )\IJ(y,Dv(y))%(x—y)dy

=[W(, Dv(-)) *@e](x) = [W(-, Dv(-))]e(x). (3-6)
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Combining (3-5) and (3-6), we deduce that
W(x, Dve(x)) <c[W(-, Du(-))]s(x). (3-7)

Using the fact that [W(-, Dv(-))]e — W(-, Dv(-)) strongly in L'(Bg), we can apply a generalized
version of the Lebesgue dominated convergence theorem to obtain a sequence of functions {vi} := {vg, } C
C(° (Bg) satisfying (3-2) for a suitable sequence &; — 0.

(2) Since v is locally bounded in €2, we have

|Dvg<x>|=|v*D<ps<x)|s/ G = V) 1Dg ()| dy < ||v||m§)/ Dg. ()] dy
R~ B,
< ll g e@me " TV|B| < ce™

for every x € Bg. Then we obtain from Lemmas 2.2 and 2.7 that

H
H(|Dv(x)|) = (6>(|Dvs(x)|)G(|Dve(x)|)

< (E)(CEI)G(IDUS(-X)D _ Hiee _I)G(|Dvs(x)|)
—\G G(ce™h)

<cH(8_1)G(|Dv )] < HED (x. D, (x))
— G(8_1) &€ — G(8_1) & ’ &€ .

As in the proof of (1), it follows from (3-3) and (3-6) that

W(x, Dve(x)) < co(e) H(|Dve(x)|) + We(x, Dvg(x))
-1
<cw(e) (( ))\I/ (x, Dvg(x)) + W (x, Dvg(x))

<cW.(x, Dvg(x)) <c[¥(-, Dv(-))]:(x).

Again, by a generalized version of the Lebesgue dominated convergence theorem, we get a sequence of
functions {vi} := {ve, } C C3°(BR) satisfying (3-4) for a suitable sequence & — 0. O

Remark 3.2. In the special case (G(t), H(¢)) = (t”,t?) with 1 < p < ¢, and a(-) € C%*(Q) with
a € (0, 1], a simple computation shows that

the condition 3-1) = L <142,
p
and
the condition (3-3) <<= ¢ <p+o.

Therefore, Theorem 3.1 generalizes [Colombo and Mingione 2015a, Proposition 3.6; 2015b, Theorem 4.1].
In addition, as in Remark 2.14 and [Colombo and Mingione 2015b], one can check that the condition
(3-3) implies the condition (3-1) if G(¢) > t", and that the condition (3-1) implies the condition (3-3) if
G(t) <t
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Moreover, in the case (G(t), H(t)) = (t”, t? In(1 +1¢)) with p > 1, we see that the condition (3-1) and
the condition (3-3) are equivalent to
1
lim sup w(p) ln(—) < 00.
p—0+ P

This shows that when a( -) is log-Ho6lder continuous, the functional
ve WhH(Q) > / [|Dv|” +a(x)|Dv|? In(1 + |Dv])]dx, p>1,
Q

has no Lavrentiev phenomenon.

Remark 3.3. In the setting of the generalized double phase functionals, the conditions (A1) and (A1-n)
in [Harjulehto et al. 2017] are same as the conditions (3-1) and (3-3), respectively. From this, it is to be
expected that the functionals of the general type (1-4) satisfying the conditions introduced in [Harjulehto
et al. 2017] have no Lavrentiev phenomenon.

Remark 3.4. The conditions in Theorem 3.1 are sharp for the absence of the Lavrentiev phenomenon.
Indeed, for any ball B C €2, there exist Young functions G, H satisfying (2-24), a nonnegative coefficient
a(-) which has a modulus of continuity o satisfying

. H(p™")
1 = 3-8
8P G oY
and a boundary datum vg € WG (B) N L*®(B) such that
inf F(v, B) < inf F(v, B). (3-9)

vevg+W, ¢ (B) vevo+W, ¢ (BNW,.H (B)

loc
That is, local minimizers of F do not belong to Wli)’cH (B) in general. Moreover, they can be discontinuous.
To see this, let us consider the classical case G(1) =t?, H(t) =14 and a(-) € C**(Q) with 1 < p < ¢,
a € (0, 1] satisfying
l<p<n<n+4a<gyg. (3-10)

Then it follows from [Colombo and Mingione 2015b, Theorem 4.1; Esposito et al. 2004, Section 3] that
there exists a coefficient function a(-) € C%*(Q) and a boundary datum vg € W7 (B) N L>(B) such
that the Lavrentiev phenomenon (3-9) occurs. Also we deduce from Remark 3.2 and (3-10) that the
coefficient function a( -) has a modulus of continuity w satisfying (3-8). Furthermore, the modulus of
continuity w does not satisfy the condition (3-1).

4. Local boundedness and Holder continuity

In the following, we deal with local quasiminimizers of F.

Definition 4.1. We say thatu Wlf)’cl (2) is a local quasiminimizer of F for Q > 1, or a local Q-minimizer

of F, if for any v € WIL’CI (2) with K :=supp(u —v) € €2, we have F(u, K) < 400 and
F(u, K) < QF(v, K).

If QO =1, we say that u is a local minimizer of F.
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We remark that if u € Wllo’c1 (€2) is a local minimizer of the functional

Ve WI’I(Q) — / F(x,v, Dv)dx
Q

under the assumption that
aW(x, &) < F(x,z,8) <V (x,§)

forall x € Q, z € R, £ € R" with some constants 0 < ¢; <1 < ¢, then u is also a local quasiminimizer
of the functional (1-1) with Q =c/c; > 1.

To prove the local boundedness of quasiminimizers of 7, we derive the following growth condition on
the energy density W (x, &) of F.

Lemma 4.2. Suppose that the gap condition (2-24) holds. If a € L*°(L2), then
G(I§) < W(x,§) <c(1+[G(EDI™™) (4-1)
forall x € Q and & € R", where c is a positive constant depending only on n, G, H and ||a|| L~ ().

Proof. Since a(-) > 0, it is clear that

G(s) =G5 +ax)H(E]) =V(x, §)
for all x € Q and & € R". Moreover, it follows from Corollary 2.6 and (2-24) that

W(x,£) =G(&) +ax)H(&]) < GE]) + llall L) H (€])
< (GUENT" + 1) +cllall (@ (G (DT + 1)
<c(IG(ENTT" 4+ 1)

for all x € Q and & € R" O

We notice that

1 1 .
I1+-<1+ =17,
n n—1
where 1% is the Sobolev exponent of 1. The local boundedness of quasiminimizers of F now follows
from the result of [Cupini et al. 2015, Theorem 2.1].

Theorem 4.3 (local boundedness). Letu € Wli)’cl (2) be a local quasiminimizer of F under the assumption
(2-24), with a € L}, (2). Then u is locally bounded in <.

Once the local boundedness of quasiminimizers has been obtained, we can prove the Holder continuity
of u without the assumption (2-24). Therefore, we shall consider an a priori bounded quasiminimizer
ue le’cl () N LY (€2) of F from Lemma 4.7 on.

Let us start the proof of the Holder continuity of locally bounded quasiminimizers of F. First, we

present some technical lemmas.
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Lemma 4.4 [Ladyzhenskaya and Uraltseva 1968]. Let {Y;}°, be a sequence of nonnegative numbers
satisfying the recursive inequalities

Yio <CHY™ i=0,1,2,..., (4-2)
where C, b > 1 and § > 0 are given numbers. If
Yo < C™Vop=1, (4-3)
thenY; — 0 asi — oo.

Lemma 4.5 [Ladyzhenskaya and Uraltseva 1968]. Let v € W“(Bp). For any | > k, we have

B
(—k)|B,N{v> 1" < _ Bl
|Bp \ {v > k}| B,N{k<v=l}

|Dv|dx
for some positive constant ¢ depending only on n.
We now state and prove the following Caccioppoli-type inequality.

Lemma 4.6 (Caccioppoli inequality). Letu € Wli)’cl (2) be a Q-minimizer of F. Then there exists a constant

c=c(Q, A (G), Ay(H)) > 0 such that for any concentric balls B, C B, C Q with0 < p’ < p < 00,

and k € R, we have
—k
/ w <x, = “) dx. (4-4)
B p

p—p
Proof. We note that it suffices to prove the version with (« —k), as —u is also a Q-minimizer of F. Letn €
C{°(B)) be a cut-off function with0<n <1, n=1on B,y, and | Dn| <2/(p—p"). Weset v:=u—n(u—k),
to be used as a competitor. Note that supp(u —v) C A(k, p). Then the Q-minimality of u gives

W(x,Du—k)y)dx < c/

o B

/ V(x, Du)dx < Q W (x, Dv)dx
Alk,p") Ak, p)

=0 Y(x, (I =nDu — (u—k)4Dn) dx
Alk.p)

—k
50*(/ \Il(x,Du)dx—i—/ \D(x, “ /)dx)
A(k,p)\A(k,p") A(k,p) pP—=p

for some constant ¢, = c,(Q, A2(V)) = c.(Q, Ax(G), Ar(H)) > 1. We now use the “hole-filling”
method; that is, we add to both sides the quantity

c*/ W(x, Du)dx,
Ak,p")

and divide by c, + 1. Then we discover that

—k
/ W(x, Du)dx < 19/ W(x, Du) dx +/ lIJ<x, “ /) dx, (4-5)
A(k,p") Ak,p) A(k,p) p—p

where ¥ = c¢,/(c,+ 1) < 1, forany 0 < p’ < p < oo with B, C Q.
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Now fix p’ < p and consider a sequence
po:=p" and p=0—-MA(—p)+p, i=01,2,...,

where A € (0, 1) is to be chosen later. Applying (4-5) inductively, we obtain from (2-14) that

—k
/ \IJ(x,Du)dxfﬁf \Il(x,Du)dx—i-/ ‘I/(L u—,)dx
Alk,p') Alk.pr) Alk.p1) (I=M(p—p)
—k
5192/ \Il(x,Du)dx-i-f \I-’(x, u—,) dx
Ak, p2) Ak, p) (I=M(p—p")
u—=k
+ﬂf \Il(x, p )dx
Alk.p2) (I=2)A(p—p")
—k
5192/ W(x,Du)dx-i—/ IIl(x, u—/) dx
Ak, ) Ak, p) (I=2M)(p—p)

—k
+ Ap(W)p o A2) f \Il<x, ”—/) dx
Ak, p) (I=2)(p—p)

< 79"/ W (x, Du) dx
Ak, ;i) i—1 e A u—k
+ Ap(W) (OA~ 082228/ f \I’<x, —/) dx
Z Ak, p) (I=M(p—p")

Jj=0

< 19"/ W (x, Du)dx
A(k#)i) Az(q-’)

(1 — A)logy A2(¥)
j=0

i—1

(917108 209 f W(x, u_k,)dx.
Ak, p) P—p

Finally, choosing A = A(Q, A2(¥)) = A(Q, Ay(G), Ay(H)) € (0, 1) in such a way that 91~ 1082 22(%) < ]
and passing to the limit for i — oo, we get

/ W(x, Du)dx < B2(¥) \11( ”_k>d
x, Du)dx < X, X,
Ak, p) (1 —1)log2 22 (] — gr—loga B2(W)y [, p—p

which proves the lemma. 0

For the Holder continuity of local quasiminimizers of 7, we assume that the modulating coefficient
a(-) has a modulus of continuity w satisfying

, H(p™h
lim sup w (p) — 00, (4-6)
p—0+ (=)
or, in other words
H(p™h
w(p) o< L forevery0<p <1, 4-7)
G(p™)

for some L > 0.
We remark that when (G(¢), H(t)) = (t7,17) with 1 < p < g, and a(-) € C**(Q) with « € (0, 1],
the condition (4-6) is equivalent to ¢ < p + «. In addition, when (G (¢), H(t)) = (t?, t” In(1 4+ 1)) with
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p > 1, the condition (4-6) is equivalent to

1
lim sup w(p) 1n(—> < 00.
p—0+ P

Therefore, the condition (4-6) agrees with the classical ones essentially used in [Baroni et al. 2015a;
2015b; Colombo and Mingione 2015a; 2015b].

In addition, the condition (4-7) ensures that quasiminimizers of F satisfy the following Caccioppoli-type
inequality provided the modulating coefficient a( -) is suitably small in the right scale.

Lemma 4.7 (almost standard Caccioppoli inequality). Let u € W, () be a locally bounded Q-minimizer

of F under the assumptions (2-25) and (4-7), and let B, € Q2 be a ball with r < 1. Suppose that

sup a(x) <4w(r). (4-8)

xXe€B,

Then for everyr/2 <ri <ry <r and k € Rwith |k| < ||ullz~(B,).

cgtep+2 _
][ G(|D<u—k>i|>dx5c( ! ) ][ G(%)dx 4-9)
B ry—r] B, r

r

holds for some constant ¢ = c(Q, c¢g, cu, L, ||ul L=(s,)) > 0.

Proof. If follows from Lemmas 2.2, 2.7 and 4.6, and (4-8) and (2-12) that

| Gupw-spdrs [ wepu-bsdr=e [ w<x,—(”"‘>i>dx
: , .

By, By, rn—=ri

[ (1+a(x)<£)(w))(;(w> i
b G =n ry—r]
Sc/ (1—|—w(r)<£)(2“M||L°°(B,)>>G((u_k):t - )dx
B, G rp—r r ry—r
cg+l1 B
ra—r1 G o — 5, .

We observe from Lemma 2.7, (2-12) and (4-7) that

0)(1”)(2) (M) < (,()(I")(E)(Z(HMHLOC(Br) + 1)’, l)
’ o B G rp—nr r
- ) —r G .

r CH+1 H(r_l) r CH+1
<c w(r) <c L,
ry—ri G ry—r

which completes the proof. O

A
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Lemma 4.8. Under the assumptions of Lemma 4.7, we further suppose that the density condition

Hx € Byj2 i u(x) > supu —
B,

oscuH < %|Br/2| (4-10)

2 B

holds. Then for any t € (0, 1), there exists a large natural number m > 3 depending on n, Q, cg, cg, L,

lullLo(B,) and T such that

2

Hx € By :u(x)>supu— imoBscuH <1|B;pl.
B, -

Proof. Let m > 3 be a large natural number as selected below. Define fori =1,2,...,m,

1
ki == suPu o ogrcu, D, = A(k,-, %) \A(ki+1,

B,
and
kiv1 —ki
w;i(x) = ulx) —k;
0

2)
2 ’

ifu(x) > ki,
itk <u(x) <k,
ifulx) <k;.

We note that G (w;) € W“(Br/z) and G(w;) =01in B, \ A(ky,r/2) foralli =1,2,...,m, and that
| By \ Aky, r/2)| > %lBr/2|. Using Holder’s inequality, Sobolev’s inequality and a modified form of

Young’s inequality (2-7) with ¢ € (0, 1), we have

kiv1—ki
A(k- ,5)‘(; M1 —H
’ i+1 2 r/2

s\A(k,-,

<cr

A

wi
)< 0 S(5) &
A(k;,r/2) r/2
r |1/n
7)
n/(n—1) (n=1)/n
G| — dx
(/A(k,-,r/z)[ (r/2)} >
, u—ki
c G| ——— ||Duldx
D; r/2

w; n/(n—1) (n—1)/n
G| — dx
Ak;,r/2) r/2

wi

— ks
sef G(|Du|)dx+c(s)/ G(u ’)dx. 4-11)
D,' Di I’/Z
It follows from Lemma 4.7 that
u—ki 1
G(|Dul)dx <c G dx <c G| —oscu |dx
D; Alkir) r Aty \2'r B
kit1 —k; kiv1 —k;
=G ") [Ati )] < G =), (4-12)
r/2 r/2
Also, it is clear that
/G " dxf/ G2 M) gy =6 2" )by (4-13)
D; r/2 D; r/2 r/2
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Combining (4-11) with (4-12) and (4-13), we see that, fori =1,2,...,m —1,
A (kn. 5| = |A(Kkis1, 5)| = cer” + @),
Summing over i from 1 to m — 1 yields that

(n = D|A(kn-1, 5)| = cn = Der" +c@)|A (k1. 2|

<(c(m—1De+c()r"
and hence

)A(km—l, %)‘ < (ce—l— nj(j)l)r" <17|B, ]

by taking sufficiently small ¢ = e(n, Q, cg, cH, L, |[ullL~,), T) € (0, 1) and sufficiently large m

O

m(n, Q,cG,cu, L, |lullr~,), T) € N.
Lemma 4.9. Under the assumptions of Lemma 4.8, we further find that there exists a small 1y =
t0(n, Q. cG, cu, L, |ullr=s,)) € (0,2~"D) such that if
0<v<Xoscu and |A<k0, E)‘ < 1!B,2l, (4-14)
2 B, 2
where ko := supp u — v, then
supufko—l—K:supu—E. (4-15)
2 B 2

B4

Proof. We first set the sequences

1 v 1 .
pi - 4<1+21> and k,-:=k0+§(1—§>, i=0,1,2,...,

_ Ak, )]
|Br/2|

We note from the definitions of k; that (u — k;)+ < v < |lu|lL~(p,). Then we discover from (4-9) and

(4-14) that
/ G(|Du)) dx < 2+ (cG+en+2) / <(u ki )+> Ix
Ak, piv1) Alhi.pr) -

< C21(CG+CH+2)G( >|A(k1, pi)l.

and define

Diyy = A(ki, pi41) \ Alkit1, pi+1) and Y;:

It follows from the convexity of G that

G<][ |Du|dx) 5][ G(|Dul|) dx < c2"<“G+L‘H+2>MG(3)
Dity Dty |Dj 1] r

< G( 2!(CG+CH+2) |A(kl’ pz)| V)‘
|IDit1]| r
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Therefore, we obtain

][ |Du|dx < cZi(CG+C”+2)—|A(ki’ pi)l Y
Disi - D1 1

On the other hand, using Lemma 4.5 and the fact that 7y € (0, 2-+D) we have

,/ |Duldx > c(kiys — k)| Akipr, pig D' |Bp,, \ Alkis pig )|y
Diyi i - -
> 27 W[ Akis1, pis)]' " (IBrjal = To| By 2 )r ™"
> 27| Ak, piaD)| V"

i one1ol—1
> 27" lYiJr1 /n

Combining these inequalities gives
YilJr_ll/n < C2i(CG+CH+3)r*n|A(ki’ o) < Czi(CG+CH+3)Yl,’
and hence
Yip < C*zn(cc+cy+3)/(n—1)i Yil+l/(n_l)
for some constant ¢ = c«(n, Q, cg, cH, L, ||ullL=e,)) > 1.
Consequently, Lemma 4.4 implies that ¥; — 0 as i — oo, provided

_ |A(ko, r/2)] <7< C*—(n—l)2—n(n—l)(cc+cﬂ+3)'
|Br/2|

A(ko+ 3. 5)] =0
‘ ko + 22 0
which implies (4-15). Il

Then we obtain

The following proposition follows from the above lemma in a standard way by taking v=(1/2") oscp, u;
see for instance [Baroni et al. 2015b; DiBenedetto 1995].

Proposition 4.10. Under the assumptions of Lemma 4.8, let m > 3 be the natural number determined in
Lemma 4.8 with T = 1y € (0,2~ "D which is given in Lemma 4.9. Then we see that m € N depends only
onn, Q,cg,cy, L, |ullp=s,), and we have

1
(I?LS/EM < (1 — 2m+1) oBsrcu. (4-16)

The following lemma provides the Holder continuity of quasiminimizers of the functional
vE WI’I(SZ) — Fo(v, 2) := / [G(|Dv|) 4+ aoH(|Dv])]dx, 4-17)
Q

where 0 < ag < ||al|=(q) is a fixed constant. For simplicity, we set

Wo(t) :=G(t) +apH (1) (4-18)

fort > 0.
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Lemma 4.11. Letu € WIL’CI (2) be a Q-minimizer of Fo under the assumption (2-25). Then there exist
Bo € (0, 1) and ¢ > 0, both depending on n, Q, cg, cg, but independent of ag and u, such that for any

fixed ball B,, € Q2

7 Bo
oscufc(—) osc u (4-19)

B, ro By,

holds for every 0 < r <ry.

Proof. We first observe from [Baroni et al. 2015b, Remark 3.1] that

1 t\IJ(/)/(t)
= — <2max{cg,cy} forallt > 0.
2max{cg, cy} W (1)

We deduce from Theorem 4.3 that u is locally bounded in €2. Therefore, the result (4-19) follows from
[Lieberman 1991, Section 6]. Il

We are now ready to prove the Holder continuity of locally bounded quasiminimizers of F.

Theorem 4.12 (Holder continuity). Letu € Wllo’cl (2) be a locally bounded Q-minimizer of F under the
assumptions (2-25) and (4-7). Then for every open subset Q' € Q there exists € (0, 1), depending on
n, Q,cg.cH, L and ||ul|pL~ ), such that

ue Q).

loc

Proof. Since the proof is analogous to that of [Baroni et al. 2015b, Theorem 4.1], we only sketch the
proof. We shall show that for a fixed ball Bs,, C Q" with 8ry < 1, there holds

s
oscu < c(1> oscu forall r € (0, rol, (4-20)
By 140) By,

for some positive constant ¢ depending only on n, Q, cg, cy, L and ||u|| Lo (q).
Let us define

J = {i € Np : (4-8) does not hold for r = :T(;}’

and
. |ming it T #2,
T o ifT=o.
If j > 1, then we obtain from Proposition 4.10 that for each r = 47y withi =0, ..., j—1,
<1 1
0sC — 0sc
B,/4u - o+t ) B
which yields
al ~(+D
oscu <4 — ) oscu forallr € 4 Y ry, rol, (4-21)
B, ro By,

for some B € (0, 1). If j = oo, then (4-21) holds for every r € (0, rg], which is the desired conclusion
(4-20) with g = B;.
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In the case 1 < j < 00, one can check that u is a (2Q)-minimizer of the functional

vr—)/ [G(Dv]) +aogH(|Dv])]dx, ag= sup a(-).
B

4= 0 B4_-jr0

Now, Lemma 4.11 gives

» Bo
oscu < c( . 0SC u (4-22)
B, 47Irg) By,

for every r € (0,4 /rg]. Here, By € (0, 1) and ¢ > 0 both depend only on n, Q, ¢G, cy. Combining
(4-21) and (4-22), we conclude that (4-20) holds for § = min{fy, B1}. Finally, if j = 0, then u is a
(2Q)-minimizer of the functional

o [ 1GADUD +aoHDUDIdx,  ao=supaC).
By, By,
and hence we have the desired conclusion (4-20) with 8 = By. O

Remark 4.13. Our condition (4-6) provides a characterization of the modulating coefficient a( -). More
precisely, a modulus of continuity of a(-) is exactly calibrated to the size of the phase transition. For
example, it is evident that the natural assumption for the modulating coefficient in the functional

ve W“(Q)H/[lelp—l-a(x)lDUlp[ln(l+|DU|)]y]dx’
Q

1 14
lim sup w (p) |:1n<—):| < 00.
p—0+ Y

vEWl’l(Q)H/HDvV’ +a(x)|Dv|” Inln(e + | Dv|)] dx,
Q

with p > 1and y > 0, is

Similarly, for the functional

with p > 1, the natural assumption for the modulating coefficient is

1
lim sup w(p) In ln<—> < 00.
p—0+ 1Y

5. The Harnack inequality

In this section, we prove the Harnack inequality for locally bounded quasiminimizers of F. We first
present some technical tools.

Lemma 5.1 [Ladyzhenskaya and Uraltseva 1968]. Let v € Wl-1(B,). For any | > k, we have

B
(= 0)1B, N o < k11 < <150

< |Dv| dx
|Bo \ {v <1} Jp,nk<v<i)

for some positive constant ¢ depending only on n.
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Lemma 5.2 [Giusti 2003]. Let v be a bounded nonnegative function in the interval [p, r] such that

V() <9y (s)+

Y Jorevery p <t <s <r,
5 —

with A >0, k >0and 0 <9V < 1. Then we have
v(p) <cle, ) ——.

(r—p)~

The following lemma provides the weak Harnack inequality of quasiminimizers of the functional F

in (4-17); see [Lieberman 1991].

Lemma 5.3. Letu € Wll)’cl (2) be a Q-minimizer of Fy under the assumption (2-25), and let B € 2 be a
ball. Then for any exponent g+ > 0 and every 0 <t <s < 1, we have

1/q+
sup |u] 50*(][ | |9+ dx) (5-1)
tB sB

for some constant ¢c* = c*(n, Q, cg,cy, s —t,qy) > 1. Moreover, if u is nonnegative, then there exists
an exponent q— = q_(n, Q, cg, cg) € (0, 1) such that for every t, s € (0, 1)

1 l/q,
infu > — ][ ul-dx (5-2)
!B Cx \JsB

holds for some constant ¢, = c«(n, Q, cG,cH,t,s) > 1.
Analysis similar to that in the proof of Lemma 4.8 gives the following lemma.

Lemma 54. Let u € WIL’CI(Q) be a nonnegative and locally bounded Q-minimizer of F under the
assumptions (2-25) and (4-7), and let B3, € Q2 be a ball with 3r < 1. Suppose that

sup a(x) < 12w(r). (5-3)

X€B3,
For any t1, 12 € (0, 1), there exists a large natural number m depending onn, Q, cg, cu, L, ||u|l L~ T1
and t such that for any 0 < A < ||u|| LBy, if
l{x € B, :u(x) > A} > 71| By| (5-4)

holds, then
I{x € By 1 u(x) <27"A}| < 12| Boy|. (5-5)

Now we can obtain a lower bound of # under some density condition as follows.
Proposition 5.5. Let the assumptions in Lemma 5.4 hold. For any t € (0, 1), there exists a small

S1=261(n, Q,cg,cu, L, llullL=s;,), T) > 0 such that for any 0 < & < |[ullL>8;,), if
{x € B, 1u(x) = A}| = 7| B;| (5-6)

holds, then
infu > §1A. (5-7)

B,
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Proof. We first note that it suffices to prove the proposition for T € (0, 2="+D). We fix mg € N, and set
the sequences
. 1 .—— 1 1 —mo ] —
Oi ._r(l—i—g) and k; := (§+§>2 A, 0=0,1,2,....
We also define
Diy = A~(ki, o)\ A (Kisr piy1) and Y= 'Al(g—pl’”'

Since u is nonnegative, we have (1 — k;)— <27\, By (4-9), we get

/ G(|Dul)dx < 23 (cten+2) / G (M) Iy
A~ (ki,pi+1) A hip) o

—myg

o 2-moy,
< Rilcetent2) g (—) |A™ (ki, pi)l.
r

We deduce from the convexity of G that

' A (ki, pi 2 Moy
G(][ IDuldx> 5][ G(IDul) dx < c2itco+en+n 14" Ko p )|G( )
i4 D, ;

i+1 o |Dl+1| -
< G(Czi(CG+CH+2) |A_(ki, ,01')| 2—mok>
: Dol

Therefore, we obtain
VA= (ki p)] 2700

|D; 4

][ |Du|dx < c2/coten+2
41
On the other hand, using Lemma 5.1 and the fact that t € (0, 2-0+D)y we have
|Duldx = c(ki = kiz1)|A™ (kig1, piy )1 ™" 1B N\ A™ ki piy )10
> 27 27"OA AT (ki pis )T (| Boy| = 7| B, D"
> c27 - 27MOA AT (ki pi)|' "

> 27 oy ly o,

r

Di+1

Combining these inequalities gives

Yi1+_11/n < c2i<cG+CH+3)r_n|A_(ki, ,Ol)| < Czi(CG+CH+3)Yi,

and hence
Y; 15002""(60“”*3)/(”*1)Yi1+1/("_1)

for some constant ¢y = co(n, Q, ¢g, cu, L, |u|lz=(8;,)) > 1. Here we note from Lemma 5.4 that there
exists a large natural number m( depending only on n, Q, cg, cH, L, ||ullL~(B,,) such that
|(x € Byy 1 u(x) <27} < g T2 Dokt gy |,

Then it is clear that
_ |A™ (ko, 2r)| _ [{x € Byy 1 u(x) <27M0A}] < c—(n—l)z—n(n—l)(CG+cH+3)
| Ba | | B> | N ’
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and hence ¥; — 0 as i — oo by Lemma 4.4. Consequently, we obtain
AT @7 ] =0,
which implies (5-7) with §; = 2~ (mo+D), Il

Proposition 5.6. Let u € Wli)’cl () be a nonnegative and locally bounded Q-minimizer of F under the
assumptions (2-25) and (4-7), and let B3, @ Q2 be a ball with 3r < 1. Suppose that

sup a(x) > 12w(r). (5-8)

X€B3r

For any t € (0, 1), there exists a small 5, = 8,(n, Q, cg, cu, L, |ullr~Bs), T) > 0 such that if

[{x € By tu(x) = M} = 7| B/| (5-9)
for 0 < A < ||lullL>(Bs,), then
igfu > SoA. (5-10)

Proof. By (5-8), there exists x; € B3, such that a(xy) = ag > 12w(r). Then for every x € Bs,

a(xy) —a(x) <w(6r) <6w(r),
and hence
ap <2ap— 120w () <2a(x) <2ay.

Since W (x, Du) € L'(B3,), it follows that
G(IDv|) +aoH(|Dv|) € L' (B3,).
Furthermore, one can see that u is a (2Q)-minimizer of the functional

V> [G(|Dv|)+aoH(|Dv|)]dx, ag=supa(-).

B3, Bs,
Now, using (5-2) in Lemma 5.3 with B= B3, and t =s = % we see from (5-9) that
. rl/a-),
infu > ,
B, Cy
which implies (5-10) with 8, := t1/4-¢_ 1. O

An immediate consequence of Propositions 5.5 and 5.6 is the following.

Corollary 5.7. Let u € WIL’CI (2) be a nonnegative and locally bounded Q-minimizer of F under the
assumptions (2-25) and (4-7), and let B3, € Q2 be a ball with 3r < 1. For any T € (0, 1), there exists a
small § =6(n, Q, cg, cu, L, [u|lro(s,,), T) > 0 such that if

l{x € By tu(x) = A} = 7| By|
for 0 < A < |lullL>(Bs,), then

infu > 5.
B,
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From Corollary 5.7 and the covering arguments in [Kinnunen and Shanmugalingam 2001, Section 7],
we obtain the following weak Harnack inequality for quasiminimizers of F. For the proof we refer the
reader to [Baroni et al. 2015a, Theorem 3.5; Harjulehto et al. 2008, Theorem 5.7].

Theorem 5.8 (the weak Harnack inequality). Let u € Wlij’cl (2) be a nonnegative and locally bounded
Q-minimizer of F under the assumptions (2-25) and (4-7), and let By, = By, (x9) € Q2 with 9r < 1. Then

there exists an exponent g_ > 0 and a constant ¢ > 1, depending onn, Q, cg, cy, L and ||u||p=(p,,), Such

that
1 1/q-
infu > —<][ ul- dx) . (5-11)
Br ¢ B2r

To prove the sup-estimate for quasiminimizers of F, we now introduce the scaled functions and the
corresponding functional. Let us define, for R € (0, 1] and r > 0 with B, € €2,
u(Rx)
R

urp(x):= ar(x) :=a(Rx), xé€ By,

and
Fr(v, K) :=/[G(IDUI)+aR(X)H(|Dv|)]dx, K € B,.
K

Lemma 5.9. Letu € WIL’CI (2) be a Q-minimizer of F. Let R € (0, 1] and suppose that B, € Q2. Then ug
is a Q-minimizer of Fg in B,.
Proof. We first observe that Dug(x) = Du(Rx). Since B, € 2, we see that F(u, B,) < +00, and hence

Fr(ug, By) = / [G(IDu(Rx)]) +a(Rx)H (|Du(Rx)|)]dx
By

1
=&, [G(IDu(y)]) +a(y)H(|Du(y)Dldy

1
< F/B [G(IDu(y)) +a(y)H (| Du(y)Dldy

1
= ﬁf(u’ Br) < +OO

Furthermore, for any vg € Wll’cl (By) with K :=supp(ug — vg) € B,, we have

supp(u —v) ={Rx:x € K} =: RK,
and
Fr(ur, K) =/K[G(IDM(RX)I)+a(RX)H(IDu(RX)|)]dx

1
:ﬁ/ [G(IDu(y)) +a(y)H (| Du(y)Dldy
RK

< % [G(IDv(Y)]) +a(y)H(|Dv(y))]dy
RK

= Q/K[G(IDU(RX)I) +a(Rx)H(IDv(Rx)]dx = QF(vg, K).

Therefore, 1 is a O-minimizer of F in B,. O
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From the definition of the scaled function ag( - ), one can directly obtain the following lemma.

Lemma 5.10. Let R € (0, 1] and suppose that By, C By C Q2. Then the function ag : B1/g — [0, 00) has
a modulus of continuity wg satisfying

wr(p) =w(Rp) forall)<p< %
Moreover, we have

sup a(x) < 12w(r) <=  sup ar(x) < 12wg (%)

X€E€B3, xEBgr/R

We now prove the sup-estimate for quasiminimizers of F. For this, we consider two cases separately,
as in the proof of the weak Harnack inequality.

Proposition 5.11. Letu € whl(Q) bea locally bounded Q-minimizer of F under the assumptions (2-25)

loc

and (4-7), and let Bs, € Q2 be a ball with 4r < 1. Suppose that

sup a(x) < 12w(r).

X€B3,

Then for any exponent q+ > 0, we have the estimate

1/q+
sup |u| < c<][ | |9+ dx) (5-12)
B, Boy

for some constant ¢ > 1 depending onn, Q, cg, cH, L, |lullL>,,) and q+.

Proof. Let us consider the scaled functions

u,(x) = u(rx), a,(x) =a(rx), x € By.
r

Then by Lemmas 5.9 and 5.10, we see that the Caccioppoli inequality (4-9) holds for u,. For 1 <t <s <2,
we now set the sequences

s—t 1 i
,0,-:=t+7 and k,-:=2d<1—ﬁ>, i=0,1,2,...,

where d > 0 is to be chosen later. We further define

~ . PitPitl

0i - — and Y;: G, —k;)dx,

- G(d) Ja, .o
where
A (k,p):={xeB,:u, >k}

Letn; € Cgo(B[;i) be a cut-off function with0 <n; <1, n; =1on B,_, and

|Dn;i| £ ——.
Pi — Pi+1
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Using Holder’s inequality, Sobolev’s inequality and a modified form of Young’s inequality (2-7) with
e =1, we have

Gy < / GGy —kis1)anp) dx
B;,

(n—1)/n
< |Ar(kiv1, p)IV" ( / [G((uy — kiv1)n)] D dx)
Bj,

<c|A, (kit1, p»W”/ G'((ur — kis )40 Dy — kit1)1ni + (uy — k1) Dmi|1 dx

Bj,
< c|A ki1, p)I'" / G'((ur —kiz1) )| D@y —kiy1)4] dx
By | 2i+3
+clAp ki1, oIV =— | G'((ur — kis1) 1)y — kig1)4 dx
§—1Jp;
sc|Ar<k,-+1,p,->|”"[/ G(|D(ur—k,-+1)+|)dx+/ G((u,—ki+1>+>dx]
B;. B;.
hi hi 2i+3
+C|Ar(ki+1,pi)|1/n—st G((uy — kit1)4) dx
~1 Iy,
. 2i+3
< c|Ay ki1, p)I'" [f G(UDu, —kiy)+)dx + - G((ur —kiv1)4) dx]
Bﬁi - B/Si
2i+3 cgrey+2
<clA (kiy1, pi)]|" <ﬁ> / G((uyr —kiz1)4)dx.
_ 5,
Here we observe from (2-12) that
1
|A (kiv1, p)| < ——— G(uy —k;) dx
T Gl — k) Jawpy
1
- Gu, —k;) dx
G(d/zlJrl) Ay (kit1,0i) l
i+3\cc+eu+2
S G(d) Yi S 2(i+1)(CG+1)Yi S c 2 Yi
G(d/2i+1) s—1

and

/ G((ur —kiz1)4)dx = / G(u, —kiy1)dx < / Gu, —kj)dx =G(d)Y;.
Ap(kiy1,p00) Ap(ki,pi)

By,

Combining these inequalities yields

(&)) i 1+1/n
Yigg < ——2%Y.
i+1 = (S—t)K i

for some constant ¢y > 1 depending only on n, Q, cg, ¢y, L and ||u|| ~(B,,), Where

P (1+%)(cG+cH+2)> 1.
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Applying Lemma 4.4, we have ¥; — 0 as i — oo, provided

1
G(d) Ja, @)

It is clear that (5-13) is satisfied if we choose d > 0 such that

Yo = G(ur—d)dx§|: <0 } Pl

(s =)«

I’l2K n

Gd)=—"2 [ G((u,))dx.
D= /B ()4 dx
Then we obtain u, < 2d in B;, which together with (5-14) implies

c
G supun)s) = ][ G () dx.

t
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(5-13)

(5-14)

(5-15)

We note from Lemma 2.9 that there exists ¥ = y(cg) > 1 such that  — G(¢!/7) is a concave function.

Then it follows from (5-15) and Jensen’s inequality that

G (sup(u,)4) < G Ct)nk][ G((u,)4)dx = ﬁﬁs G ()7 dx

B,

<—° ¢ "d " <6(——— nd "
T (s -0 ((JiS(M’)+ x) )‘ ((s—t)”“(fifurh x) )

and hence
¢ y 1/y
Sgtp(ur)Jr < m( . () dx) .

Since —u is also a Q-minimizer of F, we get

1y
swpli | = M(f ol dx)

Moreover, for 0 < g4+ < y, we obtain from Young’s inequality that

1/y
sup|ur|< )nk[ up lu,|]' W(][ |uy |q+dx)

G-

1/q+
1. ______fi______ q+
S L R (][ i x)

as 1 <t <s <2. Then Lemma 5.2 with ¥ () := supg |u,| yields

1/q4
sup |u,| §c< lu, |9+ dx) ,
B B,

where c is a positive constant depending on n, Q, ¢g, ¢y, L, ||ullr~B,,) and g4.

(5-16)

On the other hand, the inequality (5-16) also holds for g4+ > y by Holder’s inequality. Finally, from

the definition of u,, we obtain the desired conclusion (5-12).

g
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Proposition 5.12. Letu € WIL’CI (2) be a locally bounded Q-minimizer of F under the assumptions (2-25)
and (4-7), and let Bs, € Q2 be a ball with 4r < 1. Suppose that

sup a(x) > 12w(r).

xX€B3,

Then for any exponent g1 > 0, we have the estimate

1/q+
sup |u| < c<][ o |7+ dx) (5-17)
B, By

for some constant ¢ > 1 depending onn, Q, cg,cn, L, ||ullL~,) and q+.

Proof. As in the proof of Proposition 5.6, we see that u is a (2Q)-minimizer of the functional

V> [G(Dv|)+aoH(|Dv|)]dx, ag=supa(-)>0.
B3, Bs,

Therefore, (5-1) in Lemma 5.3 with B = B3, t = % and s = % directly gives (5-17). U
Combining Propositions 5.11 and 5.12 yields the following sup-estimate.

Corollary 5.13. Letu € Wlf)’cl (2) be a locally bounded Q-minimizer of F under the assumptions (2-25)
and (4-7), and let Bs, € Q2 be a ball with 4r < 1 Then for any exponent g > 0, we have the estimate

1/q+
sup |u| §c<][ | |9+ dx) (5-18)
B, By

for some constant ¢ > 1 depending onn, Q, cg,cn, L, ||ullL~,) and q+.

Finally, from Theorem 5.8 and Corollary 5.13 with g = g_, we obtain the Harnack inequality of
quasiminimizers of F. We remark that the following theorem has no extra term in (5-19), so it can be
regarded as a refined version of the result in [Harjulehto et al. 2017] for the generalized double phase
case.

Theorem 5.14 (the Harnack inequality). Let u € Wli)’cl(Q) be a nonnegative and locally bounded Q-

minimizer of F under the assumptions (2-25) and (4-7), and let Bo, € Q2 be a ball with 9r < 1. Then there
exists a constant ¢ > 1, depending onn, Q, cg, ¢y, L and ||u| LB, ), such that

supu < cinfu. (5-19)
B, B,
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