

ANALYSIS & PDE

Volume 13

No. 5

2020

SUN-SIG BYUN AND JEHAN OH

**REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE
FUNCTIONALS**

REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS

SUN-SIG BYUN AND JEHAN OH

We consider a wide class of functionals with the property of changing their growth and ellipticity properties according to the modulating coefficients in the framework of Musielak–Orlicz spaces. In particular, we provide an optimal condition on the modulating coefficient to establish the Hölder regularity and Harnack inequality for quasiminimizers of the generalized double phase functional with (G, H) -growth for two Young functions G and H .

1. Introduction

There have been systematic and extensive research activities on the variational problems with nonstandard growth. In particular, functionals whose structure exhibits a phase transition have attracted increasing attention over the last couple of decades. These functionals intervene in the homogenization of strongly anisotropic materials [Zhikov 1986; Zhikov et al. 1994] and in the Lavrentiev phenomenon [Zhikov 1993; 1995]. In this paper, we are concerned with the functionals of the type

$$v \in W^{1,1}(\Omega) \mapsto \mathcal{F}(v, \Omega) := \int_{\Omega} [G(|Dv|) + a(x)H(|Dv|)] dx, \quad (1-1)$$

where $G, H : [0, \infty) \rightarrow [0, \infty)$ are Young functions satisfying a suitable gap condition, see (2-24), $a : \Omega \rightarrow [0, \infty)$ is a continuous function, and Ω is a bounded domain in \mathbb{R}^n with $n \geq 2$.

The main feature of the functional (1-1) is that the energy density changes its growth and ellipticity properties according to the modulating coefficient $a(\cdot)$. The double phase functional (1-1) is a natural generalization of the one with (p, q) -type

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^q] dx, \quad q > p > 1, \quad (1-2)$$

and the one in a borderline case

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p \ln(1 + |Dv|)] dx, \quad p > 1. \quad (1-3)$$

Zhikov [1986; 1994] first introduced a family of functionals including (1-2) for the purpose of describing a feature of strongly anisotropic materials: the modulating coefficient $a(\cdot)$ presents the geometry of the mixture of two different materials. As shown in [Esposito et al. 2004; Fonseca et al. 2004; Zhikov 1995; 1997], such functionals exhibit Lavrentiev phenomenon whereby minimizers are irregular and even

MSC2010: primary 49N60; secondary 35B65, 35J20.

Keywords: double phase functional, Lavrentiev phenomenon, nonstandard growth, quasiminimizer, regularity.

discontinuous. On the other hand, the functionals (1-2) and (1-3) belong to the class of functionals having (p, q) -growth condition. These are functionals of the type

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} F(x, Dv) dx, \quad (1-4)$$

where the energy density $F(x, \xi)$ satisfies

$$|\xi|^p \lesssim F(x, \xi) \lesssim |\xi|^q + 1, \quad q > p > 1. \quad (1-5)$$

This (p, q) -growth condition was first treated by Marcellini [1986; 1989; 1991] and extensively studied in recent years; see [Breit 2012; Esposito et al. 1999; 2002; 2004; Fonseca et al. 2004; Fusco and Sbordone 1990; Schmidt 2008; 2009].

In the case $p > n$, it is clear from the Sobolev embedding theorem that quasiminimizers of the functionals (1-2) and (1-3) are locally bounded and Hölder continuous. Recently, Baroni, Colombo and Mingione [Baroni et al. 2015a; Colombo and Mingione 2015a; 2015b] found that when $p \leq n$, the optimal condition for Hölder continuity of quasiminimizers of the functional (1-2) is $a(\cdot) \in C^{0,\alpha}(\Omega)$, with $\alpha \in (0, 1]$ and $q \leq p + \alpha$. For the functional (1-3), the log-Hölder continuity of $a(\cdot)$ is sufficient in order to obtain the Hölder continuity of quasiminimizers; see [Baroni et al. 2015a; 2015b]. These results show that the regularity of the modulating coefficient $a(\cdot)$ is closely related to how to control the size of the associated phase transition. In addition, $C^{1,\beta}$ -regularity results for minimizers of the double phase functionals (1-2) and (1-3) have been obtained in [Baroni et al. 2015b; 2018; Colombo and Mingione 2015a; 2015b] and the regularity of the modulating coefficient is directly linked to the gap between two phases. For further regularity results including $C^{0,1}$ -regularity for minimizers of functionals with general (p, q) -growth, we refer the reader to [Beck and Mingione 2018; Cupini et al. 2017; 2018; Esposito et al. 2006].

The main object of this paper is to investigate an optimal condition on the modulating coefficient $a(\cdot)$ in the functional (1-1) under which the Hölder regularity result holds for local quasiminimizers. We provide a reasonable condition on the modulus of continuity of $a(\cdot)$, see (4-6), and prove local boundedness, Hölder continuity via De Giorgi's method and the Harnack inequality under this condition. Harjulehto, Hästö and Toivanen [Harjulehto et al. 2017] considered a general setting and developed a set of assumptions on the energy density. Some of the assumptions in [Harjulehto et al. 2017] are the same as ours in the setting of the double phase functionals, see Remark 3.3, but we introduce refined conditions on G and H , and prove that these are sharp conditions for the absence of the Lavrentiev phenomenon, see Theorem 3.1, which also yields the regularity of local quasiminimizers for the generalized double phase functionals. The results in [Harjulehto et al. 2017] and ours complement each other. We also remark that our condition agrees with the known one in the classical case, see Remark 3.2, and serves the natural assumption for the modulating coefficient in a wide variety of double phase functionals such as

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p[\ln(1 + |Dv|)]^{\gamma}] dx, \quad p > 1, \quad \gamma > 0,$$

and

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p \ln \ln(e + |Dv|)] dx, \quad p > 1;$$

see Remark 4.13.

The method used in this paper is influenced by [Baroni et al. 2015b; 2018; Colombo and Mingione 2015a; 2015b]. For the Hölder continuity of quasiminimizers, we first derive a Caccioppoli-type inequality which is similar to the one that holds for the functional $v \mapsto \int_{\Omega} G(|Dv|) dx$ by using the condition (4-8) on the modulus of continuity of $a(\cdot)$. We then consider a sequence of nested and shrinking balls $\{B_{4^{-i}r_0}\}_{i=0}^{\infty}$ in order to control the oscillation of quasiminimizers along the sequence of balls. Here we should verify for each ball whether the condition (4-8) holds true. If this condition holds true for every ball, then we obtain the Hölder continuity of quasiminimizers. Otherwise, we reduce the oscillation until we reach the exit time for ball $B_{4^{-j}r_0}$, and then we use the existing regularity theory, see Lemma 4.11, for the frozen functional

$$v \in W^{1,1}(B_{4^{-j}r_0}) \mapsto \int_{B_{f^{-j}r_0}} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad a_0 = \sup_{B_{4^{-j}r_0}} a(\cdot).$$

For the proof of the Harnack inequality, we first deduce the weak Harnack inequality and the local sup-estimates under the assumption (4-8). Then we apply the exit-time argument as above to obtain the desired inequality.

This paper is organized as follows. In the next section, we introduce some background and investigate the gap conditions. Section 3 deals with the Lavrentiev phenomenon. In Section 4, we establish the local boundedness and the Hölder continuity for (1-1). Section 5 is devoted to proving the Harnack inequality.

2. Preliminaries

Notation. We start this section with introducing notation that will be used in this paper.

Let $B_{\rho}(y) = \{x \in \mathbb{R}^n : |x - y| < \rho\}$ be the open ball in \mathbb{R}^n centered at $y \in \mathbb{R}^n$ with radius $\rho > 0$. If the center is clear in the context, we shall denote it by $B_{\rho} \equiv B_{\rho}(y)$.

For a function v , we write $v_{\pm} := \max\{\pm v, 0\}$.

For $k \in \mathbb{R}$, $\rho > 0$ and a quasiminimizer u of the functional \mathcal{F} , we set

$$A(k, \rho) := \{x \in B_{\rho} : u(x) > k\} \quad \text{and} \quad A^-(k, \rho) := \{x \in B_{\rho} : u(x) \leq k\}.$$

Hereafter, for the sake of the convenience, we employ the letter c to denote any universal constants which can be explicitly computed in terms of known quantities, and so c might vary from line to line.

Orlicz spaces and Musielak–Orlicz spaces. A Young function $\Phi : [0, \infty) \rightarrow [0, \infty)$ is an increasing convex function satisfying

$$\Phi(0) = 0, \quad \lim_{t \rightarrow \infty} \Phi(t) = \infty, \quad \lim_{t \rightarrow 0^+} \frac{\Phi(t)}{t} = 0, \quad \lim_{t \rightarrow \infty} \frac{\Phi(t)}{t} = \infty.$$

Definition 2.1. Let Φ be a Young function:

- (1) Φ is said to satisfy the Δ_2 -condition, denoted by $\Phi \in \Delta_2$, if there exists a positive number $\Delta_2(\Phi)$ such that $\Phi(2t) \leq \Delta_2(\Phi)\Phi(t)$ for all $t \geq 0$.
- (2) Φ is said to satisfy the ∇_2 -condition, denoted by $\Phi \in \nabla_2$, if there exists a positive number $\nabla_2(\Phi) > 1$ such that $\Phi(\nabla_2(\Phi)t) \geq 2\nabla_2(\Phi)\Phi(t)$ for all $t \geq 0$.
- (3) We write $\Phi \in \Delta_2 \cap \nabla_2$ if $\Phi \in \Delta_2$ and $\Phi \in \nabla_2$.

We note that if $\Phi \in \Delta_2$, then $\Delta_2(\Phi) > 2$. Indeed, by the convexity of Φ , we get

$$\Phi(2t) \leq \Delta_2(\Phi)\Phi(t) \leq \frac{\Delta_2(\Phi)}{2}\Phi(2t) \quad \text{for all } t \geq 0, \quad (2-1)$$

and hence $\Delta_2(\Phi) \geq 2$. If $\Delta_2(\Phi) = 2$, then it follows from (2-1) that $\Phi(2t) = 2\Phi(t)$ for all $t \geq 0$, and so $\Phi(t) \equiv \Phi(1)t$ is not a Young function. Thus $\Delta_2(\Phi) > 2$.

For a given Young function Φ , we define the complementary Young function Φ^* of Φ by

$$\Phi^*(t) = \sup\{st - \Phi(s) : s \geq 0\}.$$

We remark that Φ^* satisfies all the conditions to be a Young function and that $(\Phi^*)^* = \Phi$. Moreover, $\Phi \in \nabla_2$ if and only if $\Phi^* \in \Delta_2$ with $2\nabla_2(\Phi) = \Delta_2(\Phi^*)$.

We will use the following basic properties of Young functions satisfying Δ_2 and ∇_2 conditions; see for instance [Adams and Fournier 2003; Ok 2016; Rao and Ren 1991].

Lemma 2.2. *Let Φ be a Young function with $\Phi \in \Delta_2 \cap \nabla_2$:*

(1) *For any $1 \leq \Lambda < \infty$ and $t \geq 0$, we have*

$$\Phi(\Lambda t) \leq \Delta_2(\Phi)\Lambda^{\log_2 \Delta_2(\Phi)}\Phi(t). \quad (2-2)$$

(2) *For any $0 < \lambda \leq 1$ and $t \geq 0$, we have*

$$\Phi(\lambda t) \leq 2\nabla_2(\Phi)\lambda^{1+\log_{\nabla_2(\Phi)} 2}\Phi(t). \quad (2-3)$$

(3) *(Young's inequality) For any $\varepsilon \in (0, 1]$, there exists a positive constant c depending only on $\Delta_2(\Phi)$, $\nabla_2(\Phi)$ and ε such that*

$$st \leq \varepsilon\Phi(s) + c\Phi^*(t) \quad \text{for all } s, t \geq 0. \quad (2-4)$$

(4) *If $\Phi \in C^1([0, \infty))$, then for any $t \geq 0$, we have*

$$c_1^{-1}\Phi(t) \leq t\Phi'(t) \leq c_1\Phi(t) \quad (2-5)$$

and

$$\Phi^*(\Phi'(t)) \leq c_2\Phi(t) \quad (2-6)$$

for some constants $c_1, c_2 > 1$ depending only on $\Delta_2(\Phi)$ and $\nabla_2(\Phi)$.

(5) *(a modified form of Young's inequality) If $\Phi \in C^1([0, \infty))$, then for any $\varepsilon \in (0, 1]$, there exists a positive constant c depending only on $\Delta_2(\Phi)$, $\nabla_2(\Phi)$ and ε such that*

$$s\Phi'(t) \leq \varepsilon\Phi(s) + c\Phi(t) \quad \text{for all } s, t \geq 0. \quad (2-7)$$

For a Young function Φ , the Orlicz class $K^\Phi(\Omega; \mathbb{R}^N)$, $N \in \mathbb{N}$, consists of all measurable functions $v : \Omega \rightarrow \mathbb{R}^N$ satisfying

$$\int_{\Omega} \Phi(|v(x)|) dx < +\infty.$$

The Orlicz space $L^\Phi(\Omega; \mathbb{R}^N)$ is the vector space generated by the Orlicz class $K^\Phi(\Omega; \mathbb{R}^N)$. If $\Phi \in \Delta_2$, then $K^\Phi(\Omega; \mathbb{R}^N) = L^\Phi(\Omega; \mathbb{R}^N)$ and this space is a Banach space under the Luxemburg norm

$$\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} = \inf \left\{ \sigma > 0 : \int_{\Omega} \Phi \left(\frac{|v(x)|}{\sigma} \right) dx \leq 1 \right\}.$$

For $N = 1$, we simply write $L^\Phi(\Omega) := L^\Phi(\Omega; \mathbb{R})$.

We state some relevant inequalities regarding the Luxemburg norm; see [Rao and Ren 1991].

Lemma 2.3. *Let Φ be a Young function with $\Phi \in \Delta_2$:*

- (1) $\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} \leq 1 \implies \int_{\Omega} \Phi(|v|) dx \leq \|v\|_{L^\Phi(\Omega; \mathbb{R}^N)}$.
- (2) $\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} \geq 1 \implies \int_{\Omega} \Phi(|v|) dx \geq \|v\|_{L^\Phi(\Omega; \mathbb{R}^N)}$.
- (3) $\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} \leq 1 \iff \int_{\Omega} \Phi(|v|) dx \leq 1$.
- (4) $0 < \|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} < \infty \implies \int_{\Omega} \Phi \left(\frac{|v|}{\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)}} \right) dx = 1$.
- (5) (*Hölder's inequality*) For any $v \in L^\Phi(\Omega)$ and $w \in L^{\Phi^*}(\Omega)$,

$$\int_{\Omega} |vw| dx \leq 2\|v\|_{L^\Phi(\Omega)}\|w\|_{L^{\Phi^*}(\Omega)}. \quad (2-8)$$

We now introduce a partial order relation between Young functions, see [Verde 2011], and present a series of lemmas which will be used frequently throughout the paper.

Definition 2.4. Let Φ_1, Φ_2 be Young functions. We shall write

$$\Phi_1 \prec \Phi_2$$

if $\Phi_2 \circ \Phi_1^{-1}$ is a Young function.

Lemma 2.5. *Let Φ_1, Φ_2 be Young functions with $\Phi_1 \prec \Phi_2$. Then*

$$\Phi_1(t) \leq \frac{1}{(\Phi_2 \circ \Phi_1^{-1})(1)} \Phi_2(t) \quad \text{for all } t \geq \Phi_1^{-1}(1). \quad (2-9)$$

Proof. We first note that for a Young function Φ , there holds

$$\Phi(1)s \leq \Phi(s) \quad \text{for all } s \geq 1.$$

Indeed, this follows from the convexity of Φ . Since $\Phi_1 \prec \Phi_2$, we have

$$(\Phi_2 \circ \Phi_1^{-1})(1)s \leq (\Phi_2 \circ \Phi_1^{-1})(s) \quad \text{for all } s \geq 1.$$

Setting $t = \Phi_1^{-1}(s)$, we obtain the desired conclusion (2-9). \square

Corollary 2.6. *Let Φ_1, Φ_2 be Young functions with $\Phi_1 \prec \Phi_2$. Then*

$$\Phi_1(t) \leq c(\Phi_2(t) + 1) \quad \text{for all } t \geq 0, \quad (2-10)$$

where c is a positive constant depending only on Φ_1 and Φ_2 .

Lemma 2.7. *Let Φ_1, Φ_2 be Young functions with $\Phi_1 \prec \Phi_2$. Then the function*

$$t \mapsto \left(\frac{\Phi_2}{\Phi_1} \right)(t) = \frac{\Phi_2(t)}{\Phi_1(t)}$$

is nondecreasing.

Proof. We first note that the function Φ_2/Φ_1 is nondecreasing if and only if the function $(\Phi_2/\Phi_1) \circ \Phi_1^{-1}$ is nondecreasing, as $t \mapsto \Phi_1(t)$ is increasing and continuous. Since $\Phi_1 \prec \Phi_2$, we see that $\Phi_2 \circ \Phi_1^{-1}$ is a Young function. Hence, it follows from the convexity of $\Phi_2 \circ \Phi_1^{-1}$ that the function

$$t \mapsto \left(\frac{\Phi_2}{\Phi_1} \circ \Phi_1^{-1} \right)(t) = \frac{(\Phi_2 \circ \Phi_1^{-1})(t)}{t}$$

is nondecreasing. \square

The following lemma and its proof can be found in [Lieberman 1991; Rao and Ren 1991, Chapter II].

Lemma 2.8. *Let $\Phi \in C^1([0, \infty)) \cap C^2((0, \infty))$ be a Young function satisfying*

$$\frac{1}{c_\Phi} \leq \frac{t\Phi''(t)}{\Phi'(t)} \leq c_\Phi \quad \text{for all } t > 0, \quad (2-11)$$

for some $c_\Phi \geq 1$. Then:

- (1) $\Phi \in \Delta_2 \cap \nabla_2$, and the constants $\Delta_2(\Phi), \nabla_2(\Phi)$ depend only on c_Φ .
- (2) For any $1 \leq \Lambda < \infty$ and $t \geq 0$, we have

$$\Phi(\Lambda t) \leq \Lambda^{c_\Phi+1} \Phi(t). \quad (2-12)$$

- (3) For any $0 < \lambda \leq 1$ and $t \geq 0$, we have

$$\Phi(\lambda t) \leq \lambda^{(1/c_\Phi)+1} \Phi(t). \quad (2-13)$$

Lemma 2.9. *Let Φ be a Young function with $\Phi \in C^1([0, \infty)) \cap C^2((0, \infty))$. If*

$$\frac{t\Phi''(t)}{\Phi'(t)} \leq c_\Phi \quad \text{for all } t > 0,$$

for some $c_\Phi \geq 1$, then $t \mapsto \Phi(t^{1/(1+c_\Phi)})$ is a concave function.

Proof. Set $\varphi(t) := \Phi(t^{1/(1+c_\Phi)})$ for $t \geq 0$. Then we have

$$\varphi'(t) = \frac{1}{1+c_\Phi} \Phi'(t^{1/(1+c_\Phi)}) t^{-c_\Phi/(1+c_\Phi)},$$

and hence

$$\begin{aligned}\varphi''(t) &= \frac{1}{(1+c_\Phi)^2} \Phi''(t^{1/(1+c_\Phi)})(t^{-c_\Phi/(1+c_\Phi)})^2 - \frac{c_\Phi}{(1+c_\Phi)^2} \Phi'(t^{1/(1+c_\Phi)}) t^{-c_\Phi/(1+c_\Phi)-1} \\ &= \frac{1}{(1+c_\Phi)^2} t^{-c_\Phi/(1+c_\Phi)-1} [\Phi''(t^{1/(1+c_\Phi)}) - c_\Phi \Phi'(t^{1/(1+c_\Phi)})] \leq 0\end{aligned}$$

for all $t > 0$. \square

We now introduce the Musielak–Orlicz spaces which generalize the Orlicz spaces. Let $\Phi : \Omega \times [0, \infty) \rightarrow [0, \infty)$ be a function satisfying the following conditions:

- (1) $\Phi(x, \cdot)$ is a Young function for every $x \in \Omega$.
- (2) $\Phi(\cdot, t)$ is a measurable function for every $t \geq 0$.

Such a function $\Phi(x, t)$ is called a Musielak–Orlicz function. As before, we present some definitions and properties regarding Musielak–Orlicz functions.

Definition 2.10. Let Φ be a Musielak–Orlicz function:

- (1) Φ is said to satisfy the Δ_2 -condition, denoted by $\Phi \in \Delta_2$, if there exists a positive number $\Delta_2(\Phi)$ such that $\Phi(x, 2t) \leq \Delta_2(\Phi)\Phi(x, t)$ for all $x \in \Omega$ and $t \geq 0$.
- (2) Φ is said to satisfy the ∇_2 -condition, denoted by $\Phi \in \nabla_2$, if there exists a positive number $\nabla_2(\Phi) > 1$ such that $\Phi(x, \nabla_2(\Phi)t) \geq 2\nabla_2(\Phi)\Phi(x, t)$ for all $x \in \Omega$ and $t \geq 0$.
- (3) We write $\Phi \in \Delta_2 \cap \nabla_2$ if $\Phi \in \Delta_2$ and $\Phi \in \nabla_2$.

For a given Musielak–Orlicz function Φ , we define the complementary Φ^* of Φ by, for each $x \in \Omega$,

$$\Phi^*(x, t) = \sup\{st - \Phi(x, s) : s \geq 0\}.$$

Then Φ^* satisfies all the conditions to be a Musielak–Orlicz function. Also we note that $(\Phi^*)^* = \Phi$ and that $\Phi \in \nabla_2$ if and only if $\Phi^* \in \Delta_2$ with $2\nabla_2(\Phi) = \Delta_2(\Phi^*)$.

The following lemma can be directly obtained from the definitions of Δ_2 -condition, ∇_2 -condition and the complementary of Musielak–Orlicz function.

Lemma 2.11. Let Φ be a Musielak–Orlicz function with $\Phi \in \Delta_2 \cap \nabla_2$:

- (1) For any $1 \leq \Lambda < \infty$, $t \geq 0$ and $x \in \Omega$, we have

$$\Phi(x, \Lambda t) \leq \Delta_2(\Phi)\Lambda^{\log_2 \Delta_2(\Phi)}\Phi(x, t). \quad (2-14)$$

- (2) For any $0 < \lambda \leq 1$, $t \geq 0$ and $x \in \Omega$, we have

$$\Phi(x, \lambda t) \leq 2\nabla_2(\Phi)\lambda^{1+\log_2 \nabla_2(\Phi)}\Phi(x, t). \quad (2-15)$$

- (3) (Young's inequality) For any $\varepsilon \in (0, 1]$, there exists a positive constant c depending only on $\Delta_2(\Phi)$, $\nabla_2(\Phi)$ and ε such that

$$st \leq \varepsilon\Phi(x, s) + c\Phi^*(x, t) \quad (2-16)$$

for all $s, t \geq 0$ and $x \in \Omega$.

For a Musielak–Orlicz function Φ , the Musielak–Orlicz class $K^\Phi(\Omega; \mathbb{R}^N)$, $N \in \mathbb{N}$, consists of all measurable functions $v : \Omega \rightarrow \mathbb{R}^N$ satisfying

$$\int_{\Omega} \Phi(x, |v(x)|) dx < +\infty.$$

The Musielak–Orlicz space $L^\Phi(\Omega; \mathbb{R}^N)$ is the vector space generated by $K^\Phi(\Omega; \mathbb{R}^N)$. If $\Phi \in \Delta_2$, then $K^\Phi(\Omega; \mathbb{R}^N) = L^\Phi(\Omega; \mathbb{R}^N)$ and this space is a Banach space under the Luxemburg norm

$$\|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} = \inf \left\{ \sigma > 0 : \int_{\Omega} \Phi \left(x, \frac{|v(x)|}{\sigma} \right) dx \leq 1 \right\}.$$

The Musielak–Orlicz–Sobolev space $W^{1,\Phi}(\Omega; \mathbb{R}^N)$ is the function space of all measurable functions $v \in L^\Phi(\Omega; \mathbb{R}^N)$ such that its distributional gradient vector Dv belongs to $L^\Phi(\Omega; \mathbb{R}^{Nn})$. For $v \in W^{1,\Phi}(\Omega; \mathbb{R}^N)$, we define its norm to be

$$\|v\|_{W^{1,\Phi}(\Omega; \mathbb{R}^N)} = \|v\|_{L^\Phi(\Omega; \mathbb{R}^N)} + \|Dv\|_{L^\Phi(\Omega; \mathbb{R}^{Nn})}.$$

The space $W_0^{1,\Phi}(\Omega; \mathbb{R}^N)$ is defined as the closure of $C_0^\infty(\Omega; \mathbb{R}^N)$ in $W^{1,\Phi}(\Omega; \mathbb{R}^N)$. For $N = 1$, we simply write $L^\Phi(\Omega) := L^\Phi(\Omega; \mathbb{R})$ and $W^{1,\Phi}(\Omega) := W^{1,\Phi}(\Omega; \mathbb{R})$. For a detailed discussion of the Musielak–Orlicz space and the associated Sobolev space, we refer the reader to [Benkirane and Sidi El Vally 2014; Diening 2005; Fan 2012; Fan and Guan 2010; Harjulehto et al. 2016; Musielak 1983; Sidi El Vally 2013].

Gap conditions. We now consider the double phase functional

$$\mathcal{F}(v, \Omega) = \int_{\Omega} [G(|Dv|) + a(x)H(|Dv|)] dx, \quad v \in W^{1,1}(\Omega),$$

and investigate gap conditions on two Young functions G and H .

In the rest of the paper we shall use the notation

$$\Psi(x, \xi) := G(|\xi|) + a(x)H(|\xi|), \quad (2-17)$$

when $x \in \Omega$ and $\xi \in \mathbb{R}^n$. By abuse of notation, we will continue to write $\Psi(x, \xi)$ also when $x \in \Omega$ and $\xi \in \mathbb{R}$.

Proposition 2.12. *Let $G, H : [0, \infty) \rightarrow [0, \infty)$ be Young functions. Suppose that the function $a = a(\cdot) : \Omega \rightarrow [0, \infty)$ has a modulus of continuity ω satisfying*

$$\limsup_{\rho \rightarrow 0+} \omega(\rho) \frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}} < \infty. \quad (2-18)$$

If $H \succ G^\kappa$ for some $\kappa > 1 + 1/n$, then $a(\cdot)$ is a constant function.

Proof. It follows from the condition (2-18) that there exists a constant $L > 0$ such that

$$\omega(\rho) \frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}} \leq L$$

for all $0 < \rho \leq 1$. Since $H \succ G^\kappa$, we have

$$\omega(\rho) \frac{(G^\kappa \circ G^{-1})(\rho^{-n})}{\rho^{-n}} \leq c\omega(\rho) \frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}} \leq cL \quad (2-19)$$

for all small $\rho > 0$. Here, we see that

$$\omega(\rho) \frac{(G^\kappa \circ G^{-1})(\rho^{-n})}{\rho^{-n}} = \omega(\rho) \frac{[(G \circ G^{-1})(\rho^{-n})]^\kappa}{\rho^{-n}} = \omega(\rho) \rho^{-n(\kappa-1)}. \quad (2-20)$$

Combining (2-19) with (2-20) yields

$$\omega(\rho) \leq cL \rho^{n(\kappa-1)} \quad \text{for all } \rho \leq \rho_0, \quad (2-21)$$

for some small $\rho_0 > 0$. Then we conclude from the definition of the modulus of continuity that

$$\frac{|a(x) - a(y)|}{|x - y|} \leq cL|x - y|^{n(\kappa-1)-1} \quad (2-22)$$

for every $x, y \in \Omega$ with $0 < |x - y| \leq \rho_0$. Since $n(\kappa - 1) - 1 > 0$, it follows immediately that $a(\cdot)$ is a constant function. \square

Proposition 2.13. *Let $G, H : [0, \infty) \rightarrow [0, \infty)$ be Young functions. Suppose that the function $a = a(\cdot) : \Omega \rightarrow [0, \infty)$ has a modulus of continuity ω satisfying*

$$\limsup_{\rho \rightarrow 0^+} \omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} < \infty. \quad (2-23)$$

If $H \succ G^\kappa$ for some $\kappa > 2$, then $a(\cdot)$ is a constant function.

Proof. It follows from the condition (2-23) that there exists a constant $L > 0$ such that

$$\omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} \leq L$$

for all $0 < \rho \leq 1$. We note from the convexity of G that

$$G(1)s \leq G(s) \quad \text{for all } s \geq 1.$$

Since $H \succ G^\kappa$, we get

$$\omega(\rho) \rho^{-(\kappa-1)} \leq c\omega(\rho) [G(\rho^{-1})]^{\kappa-1} = c\omega(\rho) \frac{[G(\rho^{-1})]^\kappa}{G(\rho^{-1})} \leq c\omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} \leq cL$$

for all small $\rho > 0$. As in the previous proof, we conclude that $a(\cdot)$ is a constant function if $\kappa > 2$. \square

Remark 2.14. If $G(t) \succ t^n$, then it follows from Lemmas 2.5 and 2.7 that

$$\frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}} = \left(\frac{H}{G}\right)(G^{-1}(\rho^{-n})) \leq \left(\frac{H}{G}\right)(c\rho^{-1}) \leq c \frac{H(\rho^{-1})}{G(\rho^{-1})},$$

and hence the condition (2-23) implies (2-18). On the contrary, if $G(t) \prec t^n$, then

$$\frac{H(\rho^{-1})}{G(\rho^{-1})} = \left(\frac{H}{G}\right)(\rho^{-1}) \leq \left(\frac{H}{G}\right)(cG^{-1}(\rho^{-n})) \leq c \frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}},$$

and consequently the condition (2-18) implies (2-23). These agree with the known results in the classical case; see Remark 3.2 below.

From this point of view, we shall assume that $G, H : [0, \infty) \rightarrow [0, \infty)$ are Young functions with $G, H \in \Delta_2 \cap \nabla_2$ and

$$G \prec H \prec G^{1+1/n}. \quad (2-24)$$

We remark that $\Psi \in \Delta_2 \cap \nabla_2$. To get regularity results, we shall concentrate on nice Young functions, or the N-functions. Thus we further assume that $G, H \in C^1([0, \infty)) \cap C^2((0, \infty))$ and there exist constants $c_G, c_H \geq 1$ such that

$$\frac{1}{c_G} \leq \frac{tG''(t)}{G'(t)} \leq c_G \quad \text{and} \quad \frac{1}{c_H} \leq \frac{tH''(t)}{H'(t)} \leq c_H \quad (2-25)$$

hold for all $t > 0$.

3. Lavrentiev phenomenon

When considering the functionals of the type

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} F(x, Dv) dx,$$

with

$$G(|\xi|) \lesssim F(x, \xi) \lesssim H(|\xi|) + 1, \quad G \prec H,$$

the Lavrentiev phenomenon

$$\inf_{v \in W^{1,G}(\Omega)} \int_{\Omega} F(x, Dv) dx < \inf_{v \in W^{1,H}(\Omega)} \int_{\Omega} F(x, Dv) dx$$

may occur. However, for the functional \mathcal{F} defined in (1-1), there is no Lavrentiev phenomenon under a suitable condition on the modulating coefficient $a(\cdot)$.

Theorem 3.1. *Let \mathcal{F} be the functional defined in (1-1):*

(1) *If the modulating coefficient $a(\cdot)$ has a modulus of continuity ω satisfying*

$$\limsup_{\rho \rightarrow 0+} \omega(\rho) \frac{(H \circ G^{-1})(\rho^{-n})}{\rho^{-n}} < \infty, \quad (3-1)$$

then for every function $v \in W_{\text{loc}}^{1,1}(\Omega)$ and balls $B \Subset \widetilde{B} \Subset \Omega$ with $\mathcal{F}(v, \widetilde{B}) < \infty$, there exists a sequence $\{v_k\} \subset W^{1,\infty}(B)$ such that

$$v_k \rightarrow v \quad \text{in } W^{1,G}(B) \quad \text{and} \quad \mathcal{F}(v_k, B) \rightarrow \mathcal{F}(v, B). \quad (3-2)$$

(2) *If the modulating coefficient $a(\cdot)$ has a modulus of continuity ω satisfying*

$$\limsup_{\rho \rightarrow 0+} \omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} < \infty, \quad (3-3)$$

then for every function $v \in W_{\text{loc}}^{1,1}(\Omega) \cap L_{\text{loc}}^\infty(\Omega)$ and balls $B \Subset \widetilde{B} \Subset \Omega$ with $\mathcal{F}(v, \widetilde{B}) < \infty$, there exists a sequence $\{v_k\} \subset W^{1,\infty}(B)$ such that

$$v_k \rightarrow v \quad \text{in } W^{1,G}(B) \quad \text{and} \quad \mathcal{F}(v_k, B) \rightarrow \mathcal{F}(v, B). \quad (3-4)$$

Proof. Let $R > 0$ be the radius of the ball B . Take $\varepsilon_0 \in (0, 1)$ in such a way that $B \equiv B_R \Subset B_{R+\varepsilon_0} \Subset \widetilde{B} \Subset \Omega$. Let $\varphi \in C_0^\infty(B_1)$ be a mollifier with $\varphi \geq 0$, $\int_{\mathbb{R}^n} \varphi \, dx = 1$, and set

$$\varphi_\varepsilon(x) := \frac{1}{\varepsilon^n} \varphi\left(\frac{x}{\varepsilon}\right)$$

for $x \in B_\varepsilon$ with $\varepsilon > 0$. Then it is obvious that $\varphi_\varepsilon \in C_0^\infty(B_\varepsilon)$, $\int_{\mathbb{R}^n} \varphi_\varepsilon \, dx = 1$, $0 \leq \varphi_\varepsilon \leq c(n)\varepsilon^{-n}$ and $|D\varphi_\varepsilon| \leq c(n)\varepsilon^{-(n+1)}$. Now we define, for $0 < \varepsilon < \varepsilon_0$,

$$v_\varepsilon(x) := (v * \varphi_\varepsilon)(x), \quad a_\varepsilon(x) := \inf_{y \in B_\varepsilon(x)} a(y), \quad \Psi_\varepsilon(x, \xi) := G(|\xi|) + a_\varepsilon(x)H(|\xi|)$$

for $x \in B_R$ and $\xi \in \mathbb{R}^n$.

(1) It follows from Jensen's inequality that

$$G(|Dv_\varepsilon(x)|) = G(|Dv * \varphi_\varepsilon(x)|) \leq \int_{\mathbb{R}^n} G(|Dv(x-y)|) \varphi_\varepsilon(y) \, dy \leq c\varepsilon^{-n}$$

for every $x \in B_R$. By the definitions of $a_\varepsilon(\cdot)$, we obtain

$$\begin{aligned} \Psi(x, Dv_\varepsilon(x)) &\leq |a(x) - a_\varepsilon(x)|H(|Dv_\varepsilon(x)|) + \Psi_\varepsilon(x, Dv_\varepsilon(x)) \\ &\leq c\omega(\varepsilon)H(|Dv_\varepsilon(x)|) + \Psi_\varepsilon(x, Dv_\varepsilon(x)). \end{aligned}$$

We now observe from Lemmas 2.2 and 2.7 that

$$\begin{aligned} H(|Dv_\varepsilon(x)|) &= \left(\frac{H}{G}\right)(|Dv_\varepsilon(x)|)G(|Dv_\varepsilon(x)|) \\ &\leq \left(\frac{H}{G}\right)(G^{-1}(c\varepsilon^{-n}))G(|Dv_\varepsilon(x)|) = \frac{(H \circ G^{-1})(c\varepsilon^{-n})}{c\varepsilon^{-n}}G(|Dv_\varepsilon(x)|) \\ &\leq c \frac{(H \circ G^{-1})(\varepsilon^{-n})}{\varepsilon^{-n}}G(|Dv_\varepsilon(x)|) \leq c \frac{(H \circ G^{-1})(\varepsilon^{-n})}{\varepsilon^{-n}}\Psi_\varepsilon(x, Dv_\varepsilon(x)). \end{aligned}$$

Therefore, we see from (3-1) that

$$\begin{aligned} \Psi(x, Dv_\varepsilon(x)) &\leq c\omega(\varepsilon) \frac{(H \circ G^{-1})(\varepsilon^{-n})}{\varepsilon^{-n}}\Psi_\varepsilon(x, Dv_\varepsilon(x)) + \Psi_\varepsilon(x, Dv_\varepsilon(x)) \\ &\leq c\Psi_\varepsilon(x, Dv_\varepsilon(x)). \end{aligned} \quad (3-5)$$

By Jensen's inequality, we have

$$\begin{aligned} \Psi_\varepsilon(x, Dv_\varepsilon(x)) &\leq \int_{B_\varepsilon(x)} \Psi_\varepsilon(x, Dv(y))\varphi_\varepsilon(x-y) \, dy \leq \int_{B_\varepsilon(x)} \Psi(y, Dv(y))\varphi_\varepsilon(x-y) \, dy \\ &= [\Psi(\cdot, Dv(\cdot)) * \varphi_\varepsilon](x) =: [\Psi(\cdot, Dv(\cdot))]_\varepsilon(x). \end{aligned} \quad (3-6)$$

Combining (3-5) and (3-6), we deduce that

$$\Psi(x, Dv_\varepsilon(x)) \leq c[\Psi(\cdot, Dv(\cdot))]_\varepsilon(x). \quad (3-7)$$

Using the fact that $[\Psi(\cdot, Dv(\cdot))]_\varepsilon \rightarrow \Psi(\cdot, Dv(\cdot))$ strongly in $L^1(B_R)$, we can apply a generalized version of the Lebesgue dominated convergence theorem to obtain a sequence of functions $\{v_k\} := \{v_{\varepsilon_k}\} \subset C_0^\infty(B_R)$ satisfying (3-2) for a suitable sequence $\varepsilon_k \rightarrow 0$.

(2) Since v is locally bounded in Ω , we have

$$\begin{aligned} |Dv_\varepsilon(x)| &= |v * D\varphi_\varepsilon(x)| \leq \int_{\mathbb{R}^n} |v(x-y)| |D\varphi_\varepsilon(y)| dy \leq \|v\|_{L^\infty(\tilde{B})} \int_{B_\varepsilon} |D\varphi_\varepsilon(y)| dy \\ &\leq \|v\|_{L^\infty(\tilde{B})} c(n) \varepsilon^{-(n+1)} |B_\varepsilon| \leq c \varepsilon^{-1} \end{aligned}$$

for every $x \in B_R$. Then we obtain from Lemmas 2.2 and 2.7 that

$$\begin{aligned} H(|Dv_\varepsilon(x)|) &= \left(\frac{H}{G}\right)(|Dv_\varepsilon(x)|)G(|Dv_\varepsilon(x)|) \\ &\leq \left(\frac{H}{G}\right)(c\varepsilon^{-1})G(|Dv_\varepsilon(x)|) = \frac{H(c\varepsilon^{-1})}{G(c\varepsilon^{-1})}G(|Dv_\varepsilon(x)|) \\ &\leq c \frac{H(\varepsilon^{-1})}{G(\varepsilon^{-1})}G(|Dv_\varepsilon(x)|) \leq c \frac{H(\varepsilon^{-1})}{G(\varepsilon^{-1})}\Psi_\varepsilon(x, Dv_\varepsilon(x)). \end{aligned}$$

As in the proof of (1), it follows from (3-3) and (3-6) that

$$\begin{aligned} \Psi(x, Dv_\varepsilon(x)) &\leq c\omega(\varepsilon)H(|Dv_\varepsilon(x)|) + \Psi_\varepsilon(x, Dv_\varepsilon(x)) \\ &\leq c\omega(\varepsilon) \frac{H(\varepsilon^{-1})}{G(\varepsilon^{-1})}\Psi_\varepsilon(x, Dv_\varepsilon(x)) + \Psi_\varepsilon(x, Dv_\varepsilon(x)) \\ &\leq c\Psi_\varepsilon(x, Dv_\varepsilon(x)) \leq c[\Psi(\cdot, Dv(\cdot))]_\varepsilon(x). \end{aligned}$$

Again, by a generalized version of the Lebesgue dominated convergence theorem, we get a sequence of functions $\{v_k\} := \{v_{\varepsilon_k}\} \subset C_0^\infty(B_R)$ satisfying (3-4) for a suitable sequence $\varepsilon_k \rightarrow 0$. \square

Remark 3.2. In the special case $(G(t), H(t)) = (t^p, t^q)$ with $1 < p < q$, and $a(\cdot) \in C^{0,\alpha}(\Omega)$ with $\alpha \in (0, 1]$, a simple computation shows that

$$\text{the condition (3-1)} \iff \frac{q}{p} \leq 1 + \frac{\alpha}{n},$$

and

$$\text{the condition (3-3)} \iff q \leq p + \alpha.$$

Therefore, Theorem 3.1 generalizes [Colombo and Mingione 2015a, Proposition 3.6; 2015b, Theorem 4.1]. In addition, as in Remark 2.14 and [Colombo and Mingione 2015b], one can check that the condition (3-3) implies the condition (3-1) if $G(t) \succ t^n$, and that the condition (3-1) implies the condition (3-3) if $G(t) \prec t^n$.

Moreover, in the case $(G(t), H(t)) = (t^p, t^p \ln(1+t))$ with $p > 1$, we see that the condition (3-1) and the condition (3-3) are equivalent to

$$\limsup_{\rho \rightarrow 0+} \omega(\rho) \ln\left(\frac{1}{\rho}\right) < \infty.$$

This shows that when $a(\cdot)$ is log-Hölder continuous, the functional

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p \ln(1+|Dv|)] dx, \quad p > 1,$$

has no Lavrentiev phenomenon.

Remark 3.3. In the setting of the generalized double phase functionals, the conditions (A1) and (A1-n) in [Harjulehto et al. 2017] are same as the conditions (3-1) and (3-3), respectively. From this, it is to be expected that the functionals of the general type (1-4) satisfying the conditions introduced in [Harjulehto et al. 2017] have no Lavrentiev phenomenon.

Remark 3.4. The conditions in Theorem 3.1 are sharp for the absence of the Lavrentiev phenomenon. Indeed, for any ball $B \subset \Omega$, there exist Young functions G, H satisfying (2-24), a nonnegative coefficient $a(\cdot)$ which has a modulus of continuity ω satisfying

$$\lim_{\rho \rightarrow 0+} \omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} = \infty \quad (3-8)$$

and a boundary datum $v_0 \in W^{1,G}(B) \cap L^{\infty}(B)$ such that

$$\inf_{v \in v_0 + W_0^{1,G}(B)} \mathcal{F}(v, B) < \inf_{v \in v_0 + W_0^{1,G}(B) \cap W_{\text{loc}}^{1,H}(B)} \mathcal{F}(v, B). \quad (3-9)$$

That is, local minimizers of \mathcal{F} do not belong to $W_{\text{loc}}^{1,H}(B)$ in general. Moreover, they can be discontinuous.

To see this, let us consider the classical case $G(t) = t^p$, $H(t) = t^q$ and $a(\cdot) \in C^{0,\alpha}(\Omega)$ with $1 < p < q$, $\alpha \in (0, 1]$ satisfying

$$1 < p < n < n + \alpha < q. \quad (3-10)$$

Then it follows from [Colombo and Mingione 2015b, Theorem 4.1; Esposito et al. 2004, Section 3] that there exists a coefficient function $a(\cdot) \in C^{0,\alpha}(\Omega)$ and a boundary datum $v_0 \in W^{1,p}(B) \cap L^{\infty}(B)$ such that the Lavrentiev phenomenon (3-9) occurs. Also we deduce from Remark 3.2 and (3-10) that the coefficient function $a(\cdot)$ has a modulus of continuity ω satisfying (3-8). Furthermore, the modulus of continuity ω does not satisfy the condition (3-1).

4. Local boundedness and Hölder continuity

In the following, we deal with local quasiminimizers of \mathcal{F} .

Definition 4.1. We say that $u \in W_{\text{loc}}^{1,1}(\Omega)$ is a local quasiminimizer of \mathcal{F} for $Q \geq 1$, or a local Q -minimizer of \mathcal{F} , if for any $v \in W_{\text{loc}}^{1,1}(\Omega)$ with $K := \text{supp}(u - v) \Subset \Omega$, we have $\mathcal{F}(u, K) < +\infty$ and

$$\mathcal{F}(u, K) \leq Q \mathcal{F}(v, K).$$

If $Q = 1$, we say that u is a local minimizer of \mathcal{F} .

We remark that if $u \in W_{\text{loc}}^{1,1}(\Omega)$ is a local minimizer of the functional

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} F(x, v, Dv) dx$$

under the assumption that

$$c_1 \Psi(x, \xi) \leq F(x, z, \xi) \leq c_2 \Psi(x, \xi)$$

for all $x \in \Omega$, $z \in \mathbb{R}$, $\xi \in \mathbb{R}^n$ with some constants $0 < c_1 \leq 1 \leq c_2$, then u is also a local quasiminimizer of the functional (1-1) with $Q = c_2/c_1 \geq 1$.

To prove the local boundedness of quasiminimizers of \mathcal{F} , we derive the following growth condition on the energy density $\Psi(x, \xi)$ of \mathcal{F} .

Lemma 4.2. *Suppose that the gap condition (2-24) holds. If $a \in L^{\infty}(\Omega)$, then*

$$G(|\xi|) \leq \Psi(x, \xi) \leq c(1 + [G(|\xi|)]^{1+1/n}) \quad (4-1)$$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$, where c is a positive constant depending only on n , G , H and $\|a\|_{L^{\infty}(\Omega)}$.

Proof. Since $a(\cdot) \geq 0$, it is clear that

$$G(|\xi|) \leq G(|\xi|) + a(x)H(|\xi|) = \Psi(x, \xi)$$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, it follows from Corollary 2.6 and (2-24) that

$$\begin{aligned} \Psi(x, \xi) &= G(|\xi|) + a(x)H(|\xi|) \leq G(|\xi|) + \|a\|_{L^{\infty}(\Omega)}H(|\xi|) \\ &\leq ([G(|\xi|)]^{1+1/n} + 1) + c\|a\|_{L^{\infty}(\Omega)}([G(|\xi|)]^{1+1/n} + 1) \\ &\leq c([G(|\xi|)]^{1+1/n} + 1) \end{aligned}$$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$. □

We notice that

$$1 + \frac{1}{n} < 1 + \frac{1}{n-1} = 1^*,$$

where 1^* is the Sobolev exponent of 1. The local boundedness of quasiminimizers of \mathcal{F} now follows from the result of [Cupini et al. 2015, Theorem 2.1].

Theorem 4.3 (local boundedness). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a local quasiminimizer of \mathcal{F} under the assumption (2-24), with $a \in L_{\text{loc}}^{\infty}(\Omega)$. Then u is locally bounded in Ω .*

Once the local boundedness of quasiminimizers has been obtained, we can prove the Hölder continuity of u without the assumption (2-24). Therefore, we shall consider an a priori bounded quasiminimizer $u \in W_{\text{loc}}^{1,1}(\Omega) \cap L_{\text{loc}}^{\infty}(\Omega)$ of \mathcal{F} from Lemma 4.7 on.

Let us start the proof of the Hölder continuity of locally bounded quasiminimizers of \mathcal{F} . First, we present some technical lemmas.

Lemma 4.4 [Ladyzhenskaya and Uraltseva 1968]. *Let $\{Y_i\}_{i=0}^\infty$ be a sequence of nonnegative numbers satisfying the recursive inequalities*

$$Y_{i+1} \leq Cb^i Y_i^{1+\delta}, \quad i = 0, 1, 2, \dots, \quad (4-2)$$

where $C, b > 1$ and $\delta > 0$ are given numbers. If

$$Y_0 \leq C^{-1/\delta} b^{-1/\delta^2}, \quad (4-3)$$

then $Y_i \rightarrow 0$ as $i \rightarrow \infty$.

Lemma 4.5 [Ladyzhenskaya and Uraltseva 1968]. *Let $v \in W^{1,1}(B_\rho)$. For any $l > k$, we have*

$$(l-k)|B_\rho \cap \{v > l\}|^{1-1/n} \leq \frac{c|B_\rho|}{|B_\rho \setminus \{v > k\}|} \int_{B_\rho \cap \{k < v \leq l\}} |Dv| dx$$

for some positive constant c depending only on n .

We now state and prove the following Caccioppoli-type inequality.

Lemma 4.6 (Caccioppoli inequality). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a Q -minimizer of \mathcal{F} . Then there exists a constant $c = c(Q, \Delta_2(G), \Delta_2(H)) > 0$ such that for any concentric balls $B_{\rho'} \subset B_\rho \subset \Omega$ with $0 < \rho' < \rho < \infty$, and $k \in \mathbb{R}$, we have*

$$\int_{B_{\rho'}} \Psi(x, D(u-k)_\pm) dx \leq c \int_{B_\rho} \Psi\left(x, \frac{(u-k)_\pm}{\rho - \rho'}\right) dx. \quad (4-4)$$

Proof. We note that it suffices to prove the version with $(u-k)_+$, as $-u$ is also a Q -minimizer of \mathcal{F} . Let $\eta \in C_0^\infty(B_\rho)$ be a cut-off function with $0 \leq \eta \leq 1$, $\eta \equiv 1$ on $B_{\rho'}$, and $|D\eta| \leq 2/(\rho - \rho')$. We set $v := u - \eta(u-k)_+$, to be used as a competitor. Note that $\text{supp}(u - v) \subset A(k, \rho)$. Then the Q -minimality of u gives

$$\begin{aligned} \int_{A(k, \rho')} \Psi(x, Du) dx &\leq Q \int_{A(k, \rho)} \Psi(x, Dv) dx \\ &= Q \int_{A(k, \rho)} \Psi(x, (1-\eta)Du - (u-k)_+ D\eta) dx \\ &\leq c_* \left(\int_{A(k, \rho) \setminus A(k, \rho')} \Psi(x, Du) dx + \int_{A(k, \rho)} \Psi\left(x, \frac{u-k}{\rho - \rho'}\right) dx \right) \end{aligned}$$

for some constant $c_* = c_*(Q, \Delta_2(\Psi)) = c_*(Q, \Delta_2(G), \Delta_2(H)) \geq 1$. We now use the “hole-filling” method; that is, we add to both sides the quantity

$$c_* \int_{A(k, \rho')} \Psi(x, Du) dx,$$

and divide by $c_* + 1$. Then we discover that

$$\int_{A(k, \rho')} \Psi(x, Du) dx \leq \vartheta \int_{A(k, \rho)} \Psi(x, Du) dx + \int_{A(k, \rho)} \Psi\left(x, \frac{u-k}{\rho - \rho'}\right) dx, \quad (4-5)$$

where $\vartheta = c_*/(c_* + 1) < 1$, for any $0 < \rho' < \rho < \infty$ with $B_\rho \subset \Omega$.

Now fix $\rho' < \rho$ and consider a sequence

$$\rho_0 := \rho' \quad \text{and} \quad \rho_{i+1} = (1 - \lambda)\lambda^i(\rho - \rho') + \rho_i, \quad i = 0, 1, 2, \dots,$$

where $\lambda \in (0, 1)$ is to be chosen later. Applying (4-5) inductively, we obtain from (2-14) that

$$\begin{aligned} \int_{A(k, \rho')} \Psi(x, Du) dx &\leq \vartheta \int_{A(k, \rho_1)} \Psi(x, Du) dx + \int_{A(k, \rho_1)} \Psi\left(x, \frac{u - k}{(1 - \lambda)(\rho - \rho')}\right) dx \\ &\leq \vartheta^2 \int_{A(k, \rho_2)} \Psi(x, Du) dx + \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{(1 - \lambda)(\rho - \rho')}\right) dx \\ &\quad + \vartheta \int_{A(k, \rho_2)} \Psi\left(x, \frac{u - k}{(1 - \lambda)\lambda(\rho - \rho')}\right) dx \\ &\leq \vartheta^2 \int_{A(k, \rho_2)} \Psi(x, Du) dx + \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{(1 - \lambda)(\rho - \rho')}\right) dx \\ &\quad + \Delta_2(\Psi) \vartheta \lambda^{-\log_2 \Delta_2(\Psi)} \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{(1 - \lambda)(\rho - \rho')}\right) dx \\ &\leq \vartheta^i \int_{A(k, \rho_i)} \Psi(x, Du) dx \\ &\quad + \Delta_2(\Psi) \sum_{j=0}^{i-1} (\vartheta \lambda^{-\log_2 \Delta_2(\Psi)})^j \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{(1 - \lambda)(\rho - \rho')}\right) dx \\ &\leq \vartheta^i \int_{A(k, \rho_i)} \Psi(x, Du) dx \\ &\quad + \frac{\Delta_2(\Psi)}{(1 - \lambda)^{\log_2 \Delta_2(\Psi)}} \sum_{j=0}^{i-1} (\vartheta \lambda^{-\log_2 \Delta_2(\Psi)})^j \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{\rho - \rho'}\right) dx. \end{aligned}$$

Finally, choosing $\lambda = \lambda(Q, \Delta_2(\Psi)) = \lambda(Q, \Delta_2(G), \Delta_2(H)) \in (0, 1)$ in such a way that $\vartheta \lambda^{-\log_2 \Delta_2(\Psi)} < 1$ and passing to the limit for $i \rightarrow \infty$, we get

$$\int_{A(k, \rho')} \Psi(x, Du) dx \leq \frac{\Delta_2(\Psi)}{(1 - \lambda)^{\log_2 \Delta_2(\Psi)}(1 - \vartheta \lambda^{-\log_2 \Delta_2(\Psi)})} \int_{A(k, \rho)} \Psi\left(x, \frac{u - k}{\rho - \rho'}\right) dx,$$

which proves the lemma. \square

For the Hölder continuity of local quasiminimizers of \mathcal{F} , we assume that the modulating coefficient $a(\cdot)$ has a modulus of continuity ω satisfying

$$\limsup_{\rho \rightarrow 0+} \omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} < \infty, \quad (4-6)$$

or, in other words

$$\omega(\rho) \frac{H(\rho^{-1})}{G(\rho^{-1})} \leq L \quad \text{for every } 0 < \rho \leq 1, \quad (4-7)$$

for some $L > 0$.

We remark that when $(G(t), H(t)) = (t^p, t^q)$ with $1 < p < q$, and $a(\cdot) \in C^{0,\alpha}(\Omega)$ with $\alpha \in (0, 1]$, the condition (4-6) is equivalent to $q \leq p + \alpha$. In addition, when $(G(t), H(t)) = (t^p, t^p \ln(1+t))$ with

$p > 1$, the condition (4-6) is equivalent to

$$\limsup_{\rho \rightarrow 0^+} \omega(\rho) \ln\left(\frac{1}{\rho}\right) < \infty.$$

Therefore, the condition (4-6) agrees with the classical ones essentially used in [Baroni et al. 2015a; 2015b; Colombo and Mingione 2015a; 2015b].

In addition, the condition (4-7) ensures that quasiminimizers of \mathcal{F} satisfy the following Caccioppoli-type inequality provided the modulating coefficient $a(\cdot)$ is suitably small in the right scale.

Lemma 4.7 (almost standard Caccioppoli inequality). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_r \Subset \Omega$ be a ball with $r \leq 1$. Suppose that*

$$\sup_{x \in B_r} a(x) \leq 4\omega(r). \quad (4-8)$$

Then for every $r/2 \leq r_1 < r_2 \leq r$ and $k \in \mathbb{R}$ with $|k| \leq \|u\|_{L^\infty(B_r)}$,

$$\int_{B_{r_1}} G(|D(u - k)_\pm|) dx \leq c \left(\frac{r}{r_2 - r_1} \right)^{c_G + c_H + 2} \int_{B_{r_2}} G\left(\frac{(u - k)_\pm}{r} \right) dx \quad (4-9)$$

holds for some constant $c = c(Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}) > 0$.

Proof. It follows from Lemmas 2.2, 2.7 and 4.6, and (4-8) and (2-12) that

$$\begin{aligned} \int_{B_{r_1}} G(|D(u - k)_\pm|) dx &\leq \int_{B_{r_1}} \Psi(x, D(u - k)_\pm) dx \leq c \int_{B_{r_2}} \Psi\left(x, \frac{(u - k)_\pm}{r_2 - r_1}\right) dx \\ &= c \int_{B_{r_2}} \left(1 + a(x) \left(\frac{H}{G} \right) \left(\frac{(u - k)_\pm}{r_2 - r_1} \right) \right) G\left(\frac{(u - k)_\pm}{r_2 - r_1} \right) dx \\ &\leq c \int_{B_{r_2}} \left(1 + \omega(r) \left(\frac{H}{G} \right) \left(\frac{2\|u\|_{L^\infty(B_r)}}{r_2 - r_1} \right) \right) G\left(\frac{(u - k)_\pm}{r} \frac{r}{r_2 - r_1} \right) dx \\ &\leq c \left(\frac{r}{r_2 - r_1} \right)^{c_G + 1} \left(1 + \omega(r) \left(\frac{H}{G} \right) \left(\frac{2\|u\|_{L^\infty(B_r)}}{r_2 - r_1} \right) \right) \int_{B_{r_2}} G\left(\frac{(u - k)_\pm}{r} \right) dx. \end{aligned}$$

We observe from Lemma 2.7, (2-12) and (4-7) that

$$\begin{aligned} \omega(r) \left(\frac{H}{G} \right) \left(\frac{2\|u\|_{L^\infty(B_r)}}{r_2 - r_1} \right) &\leq \omega(r) \left(\frac{H}{G} \right) \left(\frac{2(\|u\|_{L^\infty(B_r)} + 1)r}{r_2 - r_1} \frac{1}{r} \right) \\ &\leq \omega(r) \left(\frac{2(\|u\|_{L^\infty(B_r)} + 1)r}{r_2 - r_1} \right)^{c_H + 1} \left(\frac{H}{G} \right) \left(\frac{1}{r} \right) \\ &\leq c \left(\frac{r}{r_2 - r_1} \right)^{c_H + 1} \omega(r) \frac{H(r^{-1})}{G(r^{-1})} \leq c \left(\frac{r}{r_2 - r_1} \right)^{c_H + 1} L, \end{aligned}$$

which completes the proof. \square

Lemma 4.8. *Under the assumptions of Lemma 4.7, we further suppose that the density condition*

$$\left| \left\{ x \in B_{r/2} : u(x) > \sup_{B_r} u - \frac{1}{2} \operatorname{osc}_{B_r} u \right\} \right| \leq \frac{1}{2} |B_{r/2}| \quad (4-10)$$

holds. Then for any $\tau \in (0, 1)$, there exists a large natural number $m \geq 3$ depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}$ and τ such that

$$\left| \left\{ x \in B_{r/2} : u(x) > \sup_{B_r} u - \frac{1}{2^m} \operatorname{osc}_{B_r} u \right\} \right| \leq \tau |B_{r/2}|.$$

Proof. Let $m \geq 3$ be a large natural number as selected below. Define for $i = 1, 2, \dots, m$,

$$k_i := \sup_{B_r} u - \frac{1}{2^i} \operatorname{osc}_{B_r} u, \quad D_i := A\left(k_i, \frac{r}{2}\right) \setminus A\left(k_{i+1}, \frac{r}{2}\right),$$

and

$$w_i(x) := \begin{cases} k_{i+1} - k_i & \text{if } u(x) > k_{i+1}, \\ u(x) - k_i & \text{if } k_i < u(x) \leq k_{i+1}, \\ 0 & \text{if } u(x) \leq k_i. \end{cases}$$

We note that $G(w_i) \in W^{1,1}(B_{r/2})$ and $G(w_i) = 0$ in $B_{r/2} \setminus A(k_1, r/2)$ for all $i = 1, 2, \dots, m$, and that $|B_{r/2} \setminus A(k_1, r/2)| \geq \frac{1}{2} |B_{r/2}|$. Using Hölder's inequality, Sobolev's inequality and a modified form of Young's inequality (2-7) with $\varepsilon \in (0, 1)$, we have

$$\begin{aligned} \left| A\left(k_{i+1}, \frac{r}{2}\right) \right| G\left(\frac{k_{i+1} - k_i}{r/2}\right) &\leq \int_{A(k_i, r/2)} G\left(\frac{w_i}{r/2}\right) dx \\ &\leq \left| A\left(k_i, \frac{r}{2}\right) \right|^{1/n} \left(\int_{A(k_i, r/2)} \left[G\left(\frac{w_i}{r/2}\right) \right]^{n/(n-1)} dx \right)^{(n-1)/n} \\ &\leq c r \left(\int_{A(k_i, r/2)} \left[G\left(\frac{w_i}{r/2}\right) \right]^{n/(n-1)} dx \right)^{(n-1)/n} \\ &\leq c \int_{D_i} G'\left(\frac{u - k_i}{r/2}\right) |Du| dx \\ &\leq \varepsilon \int_{D_i} G(|Du|) dx + c(\varepsilon) \int_{D_i} G\left(\frac{u - k_i}{r/2}\right) dx. \end{aligned} \quad (4-11)$$

It follows from Lemma 4.7 that

$$\begin{aligned} \int_{D_i} G(|Du|) dx &\leq c \int_{A(k_i, r)} G\left(\left|\frac{u - k_i}{r}\right|\right) dx \leq c \int_{A(k_i, r)} G\left(\frac{1}{2^i r} \operatorname{osc}_{B_r} u\right) dx \\ &= c G\left(\frac{k_{i+1} - k_i}{r/2}\right) |A(k_i, r)| \leq c G\left(\frac{k_{i+1} - k_i}{r/2}\right) r^n. \end{aligned} \quad (4-12)$$

Also, it is clear that

$$\int_{D_i} G\left(\frac{u - k_i}{r/2}\right) dx \leq \int_{D_i} G\left(\frac{k_{i+1} - k_i}{r/2}\right) dx = G\left(\frac{k_{i+1} - k_i}{r/2}\right) |D_i|. \quad (4-13)$$

Combining (4-11) with (4-12) and (4-13), we see that, for $i = 1, 2, \dots, m-1$,

$$\left|A\left(k_{m-1}, \frac{r}{2}\right)\right| \leq \left|A\left(k_{i+1}, \frac{r}{2}\right)\right| \leq c\varepsilon r^n + c(\varepsilon)|D_i|.$$

Summing over i from 1 to $m-1$ yields that

$$\begin{aligned} (m-1)\left|A\left(k_{m-1}, \frac{r}{2}\right)\right| &\leq c(m-1)\varepsilon r^n + c(\varepsilon)\left|A\left(k_1, \frac{r}{2}\right)\right| \\ &\leq (c(m-1)\varepsilon + c(\varepsilon))r^n \end{aligned}$$

and hence

$$\left|A\left(k_{m-1}, \frac{r}{2}\right)\right| \leq \left(c\varepsilon + \frac{c(\varepsilon)}{m-1}\right)r^n \leq \tau|B_{r/2}|$$

by taking sufficiently small $\varepsilon = \varepsilon(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}, \tau) \in (0, 1)$ and sufficiently large $m = m(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}, \tau) \in \mathbb{N}$. \square

Lemma 4.9. *Under the assumptions of Lemma 4.8, we further find that there exists a small $\tau_0 = \tau_0(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}) \in (0, 2^{-(n+1)})$ such that if*

$$0 < \nu < \frac{1}{2} \operatorname{osc}_{B_r} u \quad \text{and} \quad \left|A\left(k_0, \frac{r}{2}\right)\right| \leq \tau_0|B_{r/2}|, \quad (4-14)$$

where $k_0 := \sup_{B_r} u - \nu$, then

$$\sup_{B_{r/4}} u \leq k_0 + \frac{\nu}{2} = \sup_{B_r} u - \frac{\nu}{2}. \quad (4-15)$$

Proof. We first set the sequences

$$\rho_i := \frac{r}{4}\left(1 + \frac{1}{2^i}\right) \quad \text{and} \quad k_i := k_0 + \frac{\nu}{2}\left(1 - \frac{1}{2^i}\right), \quad i = 0, 1, 2, \dots,$$

and define

$$D_{i+1} := A(k_i, \rho_{i+1}) \setminus A(k_{i+1}, \rho_{i+1}) \quad \text{and} \quad Y_i := \frac{|A(k_i, \rho_i)|}{|B_{r/2}|}.$$

We note from the definitions of k_i that $(u - k_i)_+ \leq \nu \leq \|u\|_{L^\infty(B_r)}$. Then we discover from (4-9) and (4-14) that

$$\begin{aligned} \int_{A(k_i, \rho_{i+1})} G(|Du|) dx &\leq c2^{(i+3)(c_G+c_H+2)} \int_{A(k_i, \rho_i)} G\left(\frac{(u - k_i)_+}{r}\right) dx \\ &\leq c2^{i(c_G+c_H+2)} G\left(\frac{\nu}{r}\right) |A(k_i, \rho_i)|. \end{aligned}$$

It follows from the convexity of G that

$$\begin{aligned} G\left(\int_{D_{i+1}} |Du| dx\right) &\leq \int_{D_{i+1}} G(|Du|) dx \leq c2^{i(c_G+c_H+2)} \frac{|A(k_i, \rho_i)|}{|D_{i+1}|} G\left(\frac{\nu}{r}\right) \\ &\leq G\left(c2^{i(c_G+c_H+2)} \frac{|A(k_i, \rho_i)|}{|D_{i+1}|} \frac{\nu}{r}\right). \end{aligned}$$

Therefore, we obtain

$$\int_{D_{i+1}} |Du| dx \leq c 2^{i(c_G+c_H+2)} \frac{|A(k_i, \rho_i)| \nu}{|D_{i+1}|} \frac{\nu}{r}.$$

On the other hand, using Lemma 4.5 and the fact that $\tau_0 \in (0, 2^{-(n+1)})$, we have

$$\begin{aligned} \int_{D_{i+1}} |Du| dx &\geq c(k_{i+1} - k_i) |A(k_{i+1}, \rho_{i+1})|^{1-1/n} |B_{\rho_{i+1}} \setminus A(k_i, \rho_{i+1})| \rho_{i+1}^{-n} \\ &\geq c 2^{-i} \nu |A(k_{i+1}, \rho_{i+1})|^{1-1/n} (|B_{r/4}| - \tau_0 |B_{r/2}|) r^{-n} \\ &\geq c 2^{-i} \nu |A(k_{i+1}, \rho_{i+1})|^{1-1/n} \\ &\geq c 2^{-i} \nu r^{n-1} Y_{i+1}^{1-1/n}. \end{aligned}$$

Combining these inequalities gives

$$Y_{i+1}^{1-1/n} \leq c 2^{i(c_G+c_H+3)} r^{-n} |A(k_i, \rho_i)| \leq c 2^{i(c_G+c_H+3)} Y_i,$$

and hence

$$Y_{i+1} \leq c_* 2^{n(c_G+c_H+3)/(n-1)i} Y_i^{1+1/(n-1)}$$

for some constant $c_* = c_*(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}) > 1$.

Consequently, Lemma 4.4 implies that $Y_i \rightarrow 0$ as $i \rightarrow \infty$, provided

$$Y_0 = \frac{|A(k_0, r/2)|}{|B_{r/2}|} \leq \tau_0 \leq c_*^{-(n-1)} 2^{-n(n-1)(c_G+c_H+3)}.$$

Then we obtain

$$\left| A\left(k_0 + \frac{\nu}{2}, \frac{r}{4}\right) \right| = 0,$$

which implies (4-15). \square

The following proposition follows from the above lemma in a standard way by taking $\nu = (1/2^m) \operatorname{osc}_{B_r} u$; see for instance [Baroni et al. 2015b; DiBenedetto 1995].

Proposition 4.10. *Under the assumptions of Lemma 4.8, let $m \geq 3$ be the natural number determined in Lemma 4.8 with $\tau = \tau_0 \in (0, 2^{-(n+1)})$ which is given in Lemma 4.9. Then we see that $m \in \mathbb{N}$ depends only on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_r)}$, and we have*

$$\operatorname{osc}_{B_{r/4}} u \leq \left(1 - \frac{1}{2^{m+1}}\right) \operatorname{osc}_{B_r} u. \quad (4-16)$$

The following lemma provides the Hölder continuity of quasiminimizers of the functional

$$v \in W^{1,1}(\Omega) \mapsto \mathcal{F}_0(v, \Omega) := \int_{\Omega} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad (4-17)$$

where $0 \leq a_0 \leq \|a\|_{L^\infty(\Omega)}$ is a fixed constant. For simplicity, we set

$$\Psi_0(t) := G(t) + a_0 H(t) \quad (4-18)$$

for $t \geq 0$.

Lemma 4.11. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a Q -minimizer of \mathcal{F}_0 under the assumption (2-25). Then there exist $\beta_0 \in (0, 1)$ and $c > 0$, both depending on n, Q, c_G, c_H , but independent of a_0 and u , such that for any fixed ball $B_{r_0} \Subset \Omega$*

$$\text{osc}_{B_r} u \leq c \left(\frac{r}{r_0} \right)^{\beta_0} \text{osc}_{B_{r_0}} u \quad (4-19)$$

holds for every $0 < r \leq r_0$.

Proof. We first observe from [Baroni et al. 2015b, Remark 3.1] that

$$\frac{1}{2 \max\{c_G, c_H\}} \leq \frac{t \Psi_0''(t)}{\Psi_0'(t)} \leq 2 \max\{c_G, c_H\} \quad \text{for all } t > 0.$$

We deduce from Theorem 4.3 that u is locally bounded in Ω . Therefore, the result (4-19) follows from [Lieberman 1991, Section 6]. \square

We are now ready to prove the Hölder continuity of locally bounded quasiminimizers of \mathcal{F} .

Theorem 4.12 (Hölder continuity). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7). Then for every open subset $\Omega' \Subset \Omega$ there exists $\beta \in (0, 1)$, depending on n, Q, c_G, c_H, L and $\|u\|_{L^\infty(\Omega')}$, such that*

$$u \in C_{\text{loc}}^{0,\beta}(\Omega').$$

Proof. Since the proof is analogous to that of [Baroni et al. 2015b, Theorem 4.1], we only sketch the proof. We shall show that for a fixed ball $B_{8r_0} \subset \Omega'$ with $8r_0 \leq 1$, there holds

$$\text{osc}_{B_r} u \leq c \left(\frac{r}{r_0} \right)^\beta \text{osc}_{B_{r_0}} u \quad \text{for all } r \in (0, r_0], \quad (4-20)$$

for some positive constant c depending only on n, Q, c_G, c_H, L and $\|u\|_{L^\infty(\Omega')}$.

Let us define

$$\mathcal{J} := \left\{ i \in \mathbb{N}_0 : (4-8) \text{ does not hold for } r = \frac{r_0}{4^i} \right\},$$

and

$$j := \begin{cases} \min \mathcal{J} & \text{if } \mathcal{J} \neq \emptyset, \\ \infty & \text{if } \mathcal{J} = \emptyset. \end{cases}$$

If $j \geq 1$, then we obtain from Proposition 4.10 that for each $r = 4^{-i} r_0$ with $i = 0, \dots, j-1$,

$$\text{osc}_{B_{r/4}} u \leq \left(1 - \frac{1}{2^{m+1}} \right) \text{osc}_{B_r} u,$$

which yields

$$\text{osc}_{B_r} u \leq 4 \left(\frac{r}{r_0} \right)^{\beta_1} \text{osc}_{B_{r_0}} u \quad \text{for all } r \in (4^{-(j+1)} r_0, r_0], \quad (4-21)$$

for some $\beta_1 \in (0, 1)$. If $j = \infty$, then (4-21) holds for every $r \in (0, r_0]$, which is the desired conclusion (4-20) with $\beta = \beta_1$.

In the case $1 \leq j < \infty$, one can check that u is a $(2Q)$ -minimizer of the functional

$$v \mapsto \int_{B_{4^{-j}r_0}} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad a_0 = \sup_{B_{4^{-j}r_0}} a(\cdot).$$

Now, Lemma 4.11 gives

$$\operatorname{osc}_{B_r} u \leq c \left(\frac{r}{4^{-j}r_0} \right)^{\beta_0} \operatorname{osc}_{B_{4^{-j}r_0}} u \quad (4-22)$$

for every $r \in (0, 4^{-j}r_0]$. Here, $\beta_0 \in (0, 1)$ and $c > 0$ both depend only on n, Q, c_G, c_H . Combining (4-21) and (4-22), we conclude that (4-20) holds for $\beta = \min\{\beta_0, \beta_1\}$. Finally, if $j = 0$, then u is a $(2Q)$ -minimizer of the functional

$$v \mapsto \int_{B_{r_0}} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad a_0 = \sup_{B_{r_0}} a(\cdot),$$

and hence we have the desired conclusion (4-20) with $\beta = \beta_0$. \square

Remark 4.13. Our condition (4-6) provides a characterization of the modulating coefficient $a(\cdot)$. More precisely, a modulus of continuity of $a(\cdot)$ is exactly calibrated to the size of the phase transition. For example, it is evident that the natural assumption for the modulating coefficient in the functional

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p \ln(1 + |Dv|)]^{\gamma} dx,$$

with $p > 1$ and $\gamma > 0$, is

$$\limsup_{\rho \rightarrow 0^+} \omega(\rho) \left[\ln \left(\frac{1}{\rho} \right) \right]^{\gamma} < \infty.$$

Similarly, for the functional

$$v \in W^{1,1}(\Omega) \mapsto \int_{\Omega} [|Dv|^p + a(x)|Dv|^p \ln \ln(e + |Dv|)] dx,$$

with $p > 1$, the natural assumption for the modulating coefficient is

$$\limsup_{\rho \rightarrow 0^+} \omega(\rho) \ln \ln \left(\frac{1}{\rho} \right) < \infty.$$

5. The Harnack inequality

In this section, we prove the Harnack inequality for locally bounded quasiminimizers of \mathcal{F} . We first present some technical tools.

Lemma 5.1 [Ladyzhenskaya and Uraltseva 1968]. *Let $v \in W^{1,1}(B_{\rho})$. For any $l > k$, we have*

$$(l - k)|B_{\rho} \cap \{v < k\}|^{1-1/n} \leq \frac{c|B_{\rho}|}{|B_{\rho} \setminus \{v < l\}|} \int_{B_{\rho} \cap \{k < v \leq l\}} |Dv| dx$$

for some positive constant c depending only on n .

Lemma 5.2 [Giusti 2003]. *Let ψ be a bounded nonnegative function in the interval $[\rho, r]$ such that*

$$\psi(t) \leq \vartheta \psi(s) + \frac{A}{(s-t)^\kappa} \quad \text{for every } \rho \leq t < s \leq r,$$

with $A \geq 0$, $\kappa > 0$ and $0 \leq \vartheta < 1$. Then we have

$$\psi(\rho) \leq c(\kappa, \vartheta) \frac{A}{(r-\rho)^\kappa}.$$

The following lemma provides the weak Harnack inequality of quasiminimizers of the functional \mathcal{F}_0 in (4-17); see [Lieberman 1991].

Lemma 5.3. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a Q -minimizer of \mathcal{F}_0 under the assumption (2-25), and let $B \Subset \Omega$ be a ball. Then for any exponent $q_+ > 0$ and every $0 < t < s < 1$, we have*

$$\sup_{tB} |u| \leq c^* \left(\int_{sB} |u|^{q_+} dx \right)^{1/q_+} \quad (5-1)$$

for some constant $c^* = c^*(n, Q, c_G, c_H, s-t, q_+) > 1$. Moreover, if u is nonnegative, then there exists an exponent $q_- = q_-(n, Q, c_G, c_H) \in (0, 1)$ such that for every $t, s \in (0, 1)$

$$\inf_{tB} u \geq \frac{1}{c_*} \left(\int_{sB} u^{q_-} dx \right)^{1/q_-} \quad (5-2)$$

holds for some constant $c_* = c_*(n, Q, c_G, c_H, t, s) > 1$.

Analysis similar to that in the proof of Lemma 4.8 gives the following lemma.

Lemma 5.4. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a nonnegative and locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{3r} \Subset \Omega$ be a ball with $3r \leq 1$. Suppose that*

$$\sup_{x \in B_{3r}} a(x) \leq 12\omega(r). \quad (5-3)$$

For any $\tau_1, \tau_2 \in (0, 1)$, there exists a large natural number m depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}, \tau_1$ and τ_2 such that for any $0 < \lambda \leq \|u\|_{L^\infty(B_{3r})}$ if

$$|\{x \in B_r : u(x) \geq \lambda\}| \geq \tau_1 |B_r| \quad (5-4)$$

holds, then

$$|\{x \in B_{2r} : u(x) \leq 2^{-m}\lambda\}| \leq \tau_2 |B_{2r}|. \quad (5-5)$$

Now we can obtain a lower bound of u under some density condition as follows.

Proposition 5.5. *Let the assumptions in Lemma 5.4 hold. For any $\tau \in (0, 1)$, there exists a small $\delta_1 = \delta_1(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}, \tau) > 0$ such that for any $0 < \lambda \leq \|u\|_{L^\infty(B_{3r})}$, if*

$$|\{x \in B_r : u(x) \geq \lambda\}| \geq \tau |B_r| \quad (5-6)$$

holds, then

$$\inf_{B_r} u \geq \delta_1 \lambda. \quad (5-7)$$

Proof. We first note that it suffices to prove the proposition for $\tau \in (0, 2^{-(n+1)})$. We fix $m_0 \in \mathbb{N}$, and set the sequences

$$\rho_i := r \left(1 + \frac{1}{2^i} \right) \quad \text{and} \quad k_i := \left(\frac{1}{2} + \frac{1}{2^i} \right) 2^{-m_0} \lambda, \quad i = 0, 1, 2, \dots$$

We also define

$$D_{i+1}^- := A^-(k_i, \rho_{i+1}) \setminus A^-(k_{i+1}, \rho_{i+1}) \quad \text{and} \quad Y_i := \frac{|A^-(k_i, \rho_i)|}{|B_{\rho_i}|}.$$

Since u is nonnegative, we have $(u - k_i)_- \leq 2^{-m_0} \lambda$. By (4-9), we get

$$\begin{aligned} \int_{A^-(k_i, \rho_{i+1})} G(|Du|) dx &\leq c 2^{(i+3)(c_G+c_H+2)} \int_{A^-(k_i, \rho_i)} G\left(\frac{(u - k_i)_-}{2r}\right) dx \\ &\leq c 2^{i(c_G+c_H+2)} G\left(\frac{2^{-m_0} \lambda}{r}\right) |A^-(k_i, \rho_i)|. \end{aligned}$$

We deduce from the convexity of G that

$$\begin{aligned} G\left(\int_{D_{i+1}^-} |Du| dx\right) &\leq \int_{D_{i+1}^-} G(|Du|) dx \leq c 2^{i(c_G+c_H+2)} \frac{|A^-(k_i, \rho_i)|}{|D_{i+1}^-|} G\left(\frac{2^{-m_0} \lambda}{r}\right) \\ &\leq G\left(c 2^{i(c_G+c_H+2)} \frac{|A^-(k_i, \rho_i)|}{|D_{i+1}^-|} \frac{2^{-m_0} \lambda}{r}\right). \end{aligned}$$

Therefore, we obtain

$$\int_{D_{i+1}^-} |Du| dx \leq c 2^{i(c_G+c_H+2)} \frac{|A^-(k_i, \rho_i)|}{|D_{i+1}^-|} \frac{2^{-m_0} \lambda}{r}.$$

On the other hand, using Lemma 5.1 and the fact that $\tau \in (0, 2^{-(n+1)})$, we have

$$\begin{aligned} \int_{D_{i+1}^-} |Du| dx &\geq c(k_i - k_{i+1}) |A^-(k_{i+1}, \rho_{i+1})|^{1-1/n} |B_{\rho_{i+1}} \setminus A^-(k_i, \rho_{i+1})| \rho_{i+1}^{-n} \\ &\geq c 2^{-i} \cdot 2^{-m_0} \lambda |A^-(k_{i+1}, \rho_{i+1})|^{1-1/n} (|B_{2r}| - \tau |B_r|) r^{-n} \\ &\geq c 2^{-i} \cdot 2^{-m_0} \lambda |A^-(k_{i+1}, \rho_{i+1})|^{1-1/n} \\ &\geq c 2^{-i} \cdot 2^{-m_0} \lambda r^{n-1} Y_{i+1}^{1-1/n}. \end{aligned}$$

Combining these inequalities gives

$$Y_{i+1}^{1-1/n} \leq c 2^{i(c_G+c_H+3)} r^{-n} |A^-(k_i, \rho_i)| \leq c 2^{i(c_G+c_H+3)} Y_i,$$

and hence

$$Y_{i+1} \leq c_0 2^{in(c_G+c_H+3)/(n-1)} Y_i^{1+1/(n-1)}$$

for some constant $c_0 = c_0(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}) > 1$. Here we note from Lemma 5.4 that there exists a large natural number m_0 depending only on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}$ such that

$$|\{x \in B_{2r} : u(x) \leq 2^{-m_0} \lambda\}| \leq c_0^{-(n-1)} 2^{-n(n-1)(c_G+c_H+3)} |B_{2r}|.$$

Then it is clear that

$$Y_0 = \frac{|A^-(k_0, 2r)|}{|B_{2r}|} = \frac{|\{x \in B_{2r} : u(x) \leq 2^{-m_0} \lambda\}|}{|B_{2r}|} \leq c_0^{-(n-1)} 2^{-n(n-1)(c_G+c_H+3)},$$

and hence $Y_i \rightarrow 0$ as $i \rightarrow \infty$ by Lemma 4.4. Consequently, we obtain

$$|A^-(2^{-(m_0+1)}\lambda, r)| = 0,$$

which implies (5-7) with $\delta_1 = 2^{-(m_0+1)}$. \square

Proposition 5.6. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a nonnegative and locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{3r} \Subset \Omega$ be a ball with $3r \leq 1$. Suppose that*

$$\sup_{x \in B_{3r}} a(x) > 12\omega(r). \quad (5-8)$$

For any $\tau \in (0, 1)$, there exists a small $\delta_2 = \delta_2(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}, \tau) > 0$ such that if

$$|\{x \in B_r : u(x) \geq \lambda\}| \geq \tau |B_r| \quad (5-9)$$

for $0 < \lambda \leq \|u\|_{L^\infty(B_{3r})}$, then

$$\inf_{B_r} u \geq \delta_2 \lambda. \quad (5-10)$$

Proof. By (5-8), there exists $x_M \in \bar{B}_{3r}$ such that $a(x_M) = a_0 > 12\omega(r)$. Then for every $x \in B_{3r}$

$$a(x_M) - a(x) \leq \omega(6r) \leq 6\omega(r),$$

and hence

$$a_0 \leq 2a_0 - 12\omega(r) \leq 2a(x) \leq 2a_0.$$

Since $\Psi(x, Du) \in L^1(B_{3r})$, it follows that

$$G(|Dv|) + a_0 H(|Dv|) \in L^1(B_{3r}).$$

Furthermore, one can see that u is a $(2Q)$ -minimizer of the functional

$$v \mapsto \int_{B_{3r}} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad a_0 = \sup_{B_{3r}} a(\cdot).$$

Now, using (5-2) in Lemma 5.3 with $B \equiv B_{3r}$ and $t = s = \frac{1}{3}$, we see from (5-9) that

$$\inf_{B_r} u \geq \frac{\tau^{1/q} - \lambda}{c_*},$$

which implies (5-10) with $\delta_2 := \tau^{1/q} - c_*^{-1}$. \square

An immediate consequence of Propositions 5.5 and 5.6 is the following.

Corollary 5.7. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a nonnegative and locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{3r} \Subset \Omega$ be a ball with $3r \leq 1$. For any $\tau \in (0, 1)$, there exists a small $\delta = \delta(n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{3r})}, \tau) > 0$ such that if*

$$|\{x \in B_r : u(x) \geq \lambda\}| \geq \tau |B_r|$$

for $0 < \lambda \leq \|u\|_{L^\infty(B_{3r})}$, then

$$\inf_{B_r} u \geq \delta \lambda.$$

From Corollary 5.7 and the covering arguments in [Kinnunen and Shanmugalingam 2001, Section 7], we obtain the following weak Harnack inequality for quasiminimizers of \mathcal{F} . For the proof we refer the reader to [Baroni et al. 2015a, Theorem 3.5; Harjulehto et al. 2008, Theorem 5.7].

Theorem 5.8 (the weak Harnack inequality). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a nonnegative and locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{9r} \equiv B_{9r}(x_0) \Subset \Omega$ with $9r \leq 1$. Then there exists an exponent $q_- > 0$ and a constant $c > 1$, depending on n , Q , c_G , c_H , L and $\|u\|_{L^\infty(B_{9r})}$, such that*

$$\inf_{B_r} u \geq \frac{1}{c} \left(\fint_{B_{2r}} u^{q_-} dx \right)^{1/q_-}. \quad (5-11)$$

To prove the sup-estimate for quasiminimizers of \mathcal{F} , we now introduce the scaled functions and the corresponding functional. Let us define, for $R \in (0, 1]$ and $r > 0$ with $B_r \Subset \Omega$,

$$u_R(x) := \frac{u(Rx)}{R}, \quad a_R(x) := a(Rx), \quad x \in B_r,$$

and

$$\mathcal{F}_R(v, K) := \int_K [G(|Dv|) + a_R(x)H(|Dv|)] dx, \quad K \Subset B_r.$$

Lemma 5.9. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a Q -minimizer of \mathcal{F} . Let $R \in (0, 1]$ and suppose that $B_r \Subset \Omega$. Then u_R is a Q -minimizer of \mathcal{F}_R in B_r .*

Proof. We first observe that $Du_R(x) = Du(Rx)$. Since $B_r \Subset \Omega$, we see that $\mathcal{F}(u, B_r) < +\infty$, and hence

$$\begin{aligned} \mathcal{F}_R(u_R, B_r) &= \int_{B_r} [G(|Du(Rx)|) + a(Rx)H(|Du(Rx)|)] dx \\ &= \frac{1}{R^n} \int_{B_{Rr}} [G(|Du(y)|) + a(y)H(|Du(y)|)] dy \\ &\leq \frac{1}{R^n} \int_{B_r} [G(|Du(y)|) + a(y)H(|Du(y)|)] dy \\ &= \frac{1}{R^n} \mathcal{F}(u, B_r) < +\infty. \end{aligned}$$

Furthermore, for any $v_R \in W_{\text{loc}}^{1,1}(B_r)$ with $K := \text{supp}(u_R - v_R) \Subset B_r$, we have

$$\text{supp}(u - v) = \{Rx : x \in K\} =: RK,$$

and

$$\begin{aligned} \mathcal{F}_R(u_R, K) &= \int_K [G(|Du(Rx)|) + a(Rx)H(|Du(Rx)|)] dx \\ &= \frac{1}{R^n} \int_{RK} [G(|Du(y)|) + a(y)H(|Du(y)|)] dy \\ &\leq \frac{Q}{R^n} \int_{RK} [G(|Dv(y)|) + a(y)H(|Dv(y)|)] dy \\ &= Q \int_K [G(|Dv(Rx)|) + a(Rx)H(|Dv(Rx)|)] dx = Q\mathcal{F}_R(v_R, K). \end{aligned}$$

Therefore, u_R is a Q -minimizer of \mathcal{F}_R in B_r . \square

From the definition of the scaled function $a_R(\cdot)$, one can directly obtain the following lemma.

Lemma 5.10. *Let $R \in (0, 1]$ and suppose that $B_{4r} \subset B_1 \subset \Omega$. Then the function $a_R : B_{1/R} \rightarrow [0, \infty)$ has a modulus of continuity ω_R satisfying*

$$\omega_R(\rho) = \omega(R\rho) \quad \text{for all } 0 < \rho \leq \frac{1}{R}.$$

Moreover, we have

$$\sup_{x \in B_{3r}} a(x) \leq 12\omega(r) \iff \sup_{x \in B_{3r/R}} a_R(x) \leq 12\omega_R\left(\frac{r}{R}\right).$$

We now prove the sup-estimate for quasiminimizers of \mathcal{F} . For this, we consider two cases separately, as in the proof of the weak Harnack inequality.

Proposition 5.11. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{4r} \Subset \Omega$ be a ball with $4r \leq 1$. Suppose that*

$$\sup_{x \in B_{3r}} a(x) \leq 12\omega(r).$$

Then for any exponent $q_+ > 0$, we have the estimate

$$\sup_{B_r} |u| \leq c \left(\int_{B_{2r}} |u|^{q_+} dx \right)^{1/q_+} \quad (5-12)$$

for some constant $c > 1$ depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{4r})}$ and q_+ .

Proof. Let us consider the scaled functions

$$u_r(x) = \frac{u(rx)}{r}, \quad a_r(x) = a(rx), \quad x \in B_4.$$

Then by Lemmas 5.9 and 5.10, we see that the Caccioppoli inequality (4-9) holds for u_r . For $1 \leq t < s \leq 2$, we now set the sequences

$$\rho_i := t + \frac{s-t}{2^i} \quad \text{and} \quad k_i := 2d\left(1 - \frac{1}{2^{i+1}}\right), \quad i = 0, 1, 2, \dots,$$

where $d > 0$ is to be chosen later. We further define

$$\tilde{\rho}_i := \frac{\rho_i + \rho_{i+1}}{2} \quad \text{and} \quad Y_i := \frac{1}{G(d)} \int_{A_r(k_i, \rho_i)} G(u_r - k_i) dx,$$

where

$$A_r(k, \rho) := \{x \in B_\rho : u_r > k\}.$$

Let $\eta_i \in C_0^\infty(B_{\tilde{\rho}_i})$ be a cut-off function with $0 \leq \eta_i \leq 1$, $\eta_i \equiv 1$ on $B_{\rho_{i+1}}$, and

$$|D\eta_i| \leq \frac{4}{\rho_i - \rho_{i+1}}.$$

Using Hölder's inequality, Sobolev's inequality and a modified form of Young's inequality (2-7) with $\varepsilon = 1$, we have

$$\begin{aligned}
G(d)Y_{i+1} &\leq \int_{B_{\tilde{\rho}_i}} G((u_r - k_{i+1})_+ \eta_i) dx \\
&\leq |A_r(k_{i+1}, \rho_i)|^{1/n} \left(\int_{B_{\tilde{\rho}_i}} [G((u_r - k_{i+1})_+ \eta_i)]^{n/(n-1)} dx \right)^{(n-1)/n} \\
&\leq c |A_r(k_{i+1}, \rho_i)|^{1/n} \int_{B_{\tilde{\rho}_i}} G'((u_r - k_{i+1})_+ \eta_i) [|D(u_r - k_{i+1})_+| \eta_i + (u_r - k_{i+1})_+ |D\eta_i|] dx \\
&\leq c |A_r(k_{i+1}, \rho_i)|^{1/n} \int_{B_{\tilde{\rho}_i}} G'((u_r - k_{i+1})_+) |D(u_r - k_{i+1})_+| dx \\
&\quad + c |A_r(k_{i+1}, \rho_i)|^{1/n} \frac{2^{i+3}}{s-t} \int_{B_{\tilde{\rho}_i}} G'((u_r - k_{i+1})_+) (u_r - k_{i+1})_+ dx \\
&\leq c |A_r(k_{i+1}, \rho_i)|^{1/n} \left[\int_{B_{\tilde{\rho}_i}} G(|D(u_r - k_{i+1})_+|) dx + \int_{B_{\tilde{\rho}_i}} G((u_r - k_{i+1})_+) dx \right] \\
&\quad + c |A_r(k_{i+1}, \rho_i)|^{1/n} \frac{2^{i+3}}{s-t} \int_{B_{\tilde{\rho}_i}} G((u_r - k_{i+1})_+) dx \\
&\leq c |A_r(k_{i+1}, \rho_i)|^{1/n} \left[\int_{B_{\tilde{\rho}_i}} G(|D(u_r - k_{i+1})_+|) dx + \frac{2^{i+3}}{s-t} \int_{B_{\tilde{\rho}_i}} G((u_r - k_{i+1})_+) dx \right] \\
&\leq c |A_r(k_{i+1}, \rho_i)|^{1/n} \left(\frac{2^{i+3}}{s-t} \right)^{c_G + c_H + 2} \int_{B_{\rho_i}} G((u_r - k_{i+1})_+) dx.
\end{aligned}$$

Here we observe from (2-12) that

$$\begin{aligned}
|A_r(k_{i+1}, \rho_i)| &\leq \frac{1}{G(k_{i+1} - k_i)} \int_{A_r(k_{i+1}, \rho_i)} G(u_r - k_i) dx \\
&= \frac{1}{G(d/2^{i+1})} \int_{A_r(k_{i+1}, \rho_i)} G(u_r - k_i) dx \\
&\leq \frac{G(d)}{G(d/2^{i+1})} Y_i \leq 2^{(i+1)(c_G+1)} Y_i \leq c \left(\frac{2^{i+3}}{s-t} \right)^{c_G + c_H + 2} Y_i
\end{aligned}$$

and

$$\int_{B_{\rho_i}} G((u_r - k_{i+1})_+) dx = \int_{A_r(k_{i+1}, \rho_i)} G(u_r - k_{i+1}) dx \leq \int_{A_r(k_i, \rho_i)} G(u_r - k_i) dx = G(d)Y_i.$$

Combining these inequalities yields

$$Y_{i+1} \leq \frac{c_0}{(s-t)^\kappa} 2^{i\kappa} Y_i^{1+1/n}$$

for some constant $c_0 > 1$ depending only on n, Q, c_G, c_H, L and $\|u\|_{L^\infty(B_{4r})}$, where

$$\kappa = \left(1 + \frac{1}{n}\right)(c_G + c_H + 2) > 1.$$

Applying Lemma 4.4, we have $Y_i \rightarrow 0$ as $i \rightarrow \infty$, provided

$$Y_0 = \frac{1}{G(d)} \int_{A_r(d,s)} G(u_r - d) dx \leq \left[\frac{c_0}{(s-t)^\kappa} \right]^{-n} 2^{-n^2\kappa}. \quad (5-13)$$

It is clear that (5-13) is satisfied if we choose $d > 0$ such that

$$G(d) = \frac{2^{n^2\kappa} c_0^n}{(s-t)^{n\kappa}} \int_{B_s} G((u_r)_+) dx. \quad (5-14)$$

Then we obtain $u_r \leq 2d$ in B_t , which together with (5-14) implies

$$G\left(\sup_{B_t} (u_r)_+\right) \leq \frac{c}{(s-t)^{n\kappa}} \int_{B_s} G((u_r)_+) dx. \quad (5-15)$$

We note from Lemma 2.9 that there exists $\gamma = \gamma(c_G) > 1$ such that $t \mapsto G(t^{1/\gamma})$ is a concave function. Then it follows from (5-15) and Jensen's inequality that

$$\begin{aligned} G\left(\sup_{B_t} (u_r)_+\right) &\leq \frac{c}{(s-t)^{n\kappa}} \int_{B_s} G((u_r)_+) dx = \frac{c}{(s-t)^{n\kappa}} \int_{B_s} G(((u_r)_+^\gamma)^{1/\gamma}) dx \\ &\leq \frac{c}{(s-t)^{n\kappa}} G\left(\left(\int_{B_s} (u_r)_+^\gamma dx\right)^{1/\gamma}\right) \leq G\left(\frac{c}{(s-t)^{n\kappa}} \left(\int_{B_s} (u_r)_+^\gamma dx\right)^{1/\gamma}\right), \end{aligned}$$

and hence

$$\sup_{B_t} (u_r)_+ \leq \frac{c}{(s-t)^{n\kappa}} \left(\int_{B_s} (u_r)_+^\gamma dx\right)^{1/\gamma}.$$

Since $-u$ is also a Q -minimizer of \mathcal{F} , we get

$$\sup_{B_t} |u_r| \leq \frac{c}{(s-t)^{n\kappa}} \left(\int_{B_s} |u_r|^\gamma dx\right)^{1/\gamma}.$$

Moreover, for $0 < q_+ < \gamma$, we obtain from Young's inequality that

$$\begin{aligned} \sup_{B_t} |u_r| &\leq \frac{c}{(s-t)^{n\kappa}} \left[\sup_{B_s} |u_r|\right]^{1-q_+/\gamma} \left(\int_{B_s} |u_r|^{q_+} dx\right)^{1/\gamma} \\ &\leq \frac{1}{2} \sup_{B_s} |u_r| + \frac{c}{(s-t)^{n\kappa\gamma/q_+}} \left(\int_{B_2} |u_r|^{q_+} dx\right)^{1/q_+} \end{aligned}$$

as $1 \leq t < s \leq 2$. Then Lemma 5.2 with $\psi(t) := \sup_{B_t} |u_r|$ yields

$$\sup_{B_1} |u_r| \leq c \left(\int_{B_2} |u_r|^{q_+} dx\right)^{1/q_+}, \quad (5-16)$$

where c is a positive constant depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{4r})}$ and q_+ .

On the other hand, the inequality (5-16) also holds for $q_+ \geq \gamma$ by Hölder's inequality. Finally, from the definition of u_r , we obtain the desired conclusion (5-12). \square

Proposition 5.12. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{4r} \Subset \Omega$ be a ball with $4r \leq 1$. Suppose that*

$$\sup_{x \in B_{3r}} a(x) > 12\omega(r).$$

Then for any exponent $q_+ > 0$, we have the estimate

$$\sup_{B_r} |u| \leq c \left(\int_{B_{2r}} |u|^{q_+} dx \right)^{1/q_+} \quad (5-17)$$

for some constant $c > 1$ depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{4r})}$ and q_+ .

Proof. As in the proof of Proposition 5.6, we see that u is a $(2Q)$ -minimizer of the functional

$$v \mapsto \int_{B_{3r}} [G(|Dv|) + a_0 H(|Dv|)] dx, \quad a_0 = \sup_{B_{3r}} a(\cdot) > 0.$$

Therefore, (5-1) in Lemma 5.3 with $B \equiv B_{3r}$, $t = \frac{1}{3}$ and $s = \frac{2}{3}$ directly gives (5-17). \square

Combining Propositions 5.11 and 5.12 yields the following sup-estimate.

Corollary 5.13. *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{4r} \Subset \Omega$ be a ball with $4r \leq 1$. Then for any exponent $q_+ > 0$, we have the estimate*

$$\sup_{B_r} |u| \leq c \left(\int_{B_{2r}} |u|^{q_+} dx \right)^{1/q_+} \quad (5-18)$$

for some constant $c > 1$ depending on $n, Q, c_G, c_H, L, \|u\|_{L^\infty(B_{4r})}$ and q_+ .

Finally, from Theorem 5.8 and Corollary 5.13 with $q_+ = q_-$, we obtain the Harnack inequality of quasiminimizers of \mathcal{F} . We remark that the following theorem has no extra term in (5-19), so it can be regarded as a refined version of the result in [Harjulehto et al. 2017] for the generalized double phase case.

Theorem 5.14 (the Harnack inequality). *Let $u \in W_{\text{loc}}^{1,1}(\Omega)$ be a nonnegative and locally bounded Q -minimizer of \mathcal{F} under the assumptions (2-25) and (4-7), and let $B_{9r} \Subset \Omega$ be a ball with $9r \leq 1$. Then there exists a constant $c > 1$, depending on n, Q, c_G, c_H, L and $\|u\|_{L^\infty(B_{9r})}$, such that*

$$\sup_{B_r} u \leq c \inf_{B_r} u. \quad (5-19)$$

Acknowledgments

We would like to thank the reviewers for the valuable comments and suggestions which led to improvement of the paper. Byun was supported by NRF-2017R1A2B2003877. Oh was supported by NRF-2015R1A4A1041675.

References

[Adams and Fournier 2003] R. A. Adams and J. J. F. Fournier, *Sobolev spaces*, 2nd ed., Pure Appl. Math. **140**, Elsevier, Amsterdam, 2003. MR Zbl

[Baroni et al. 2015a] P. Baroni, M. Colombo, and G. Mingione, “Harnack inequalities for double phase functionals”, *Nonlinear Anal.* **121** (2015), 206–222. MR Zbl

[Baroni et al. 2015b] P. Baroni, M. Colombo, and G. Mingione, “Nonautonomous functionals, borderline cases and related function classes”, *Algebra i Analiz* **27**:3 (2015), 6–50. MR Zbl

[Baroni et al. 2018] P. Baroni, M. Colombo, and G. Mingione, “Regularity for general functionals with double phase”, *Calc. Var. Partial Differential Equations* **57**:2 (2018), art. id. 62. MR Zbl

[Beck and Mingione 2018] L. Beck and G. Mingione, “Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems”, preprint, 2018. arXiv

[Benkirane and Sidi El Vally 2014] A. Benkirane and M. Sidi El Vally, “Variational inequalities in Musielak–Orlicz–Sobolev spaces”, *Bull. Belg. Math. Soc. Simon Stevin* **21**:5 (2014), 787–811. MR Zbl

[Breit 2012] D. Breit, “New regularity theorems for non-autonomous variational integrals with (p, q) -growth”, *Calc. Var. Partial Differential Equations* **44**:1-2 (2012), 101–129. MR Zbl

[Colombo and Mingione 2015a] M. Colombo and G. Mingione, “Bounded minimisers of double phase variational integrals”, *Arch. Ration. Mech. Anal.* **218**:1 (2015), 219–273. MR Zbl

[Colombo and Mingione 2015b] M. Colombo and G. Mingione, “Regularity for double phase variational problems”, *Arch. Ration. Mech. Anal.* **215**:2 (2015), 443–496. MR Zbl

[Cupini et al. 2015] G. Cupini, P. Marcellini, and E. Mascolo, “Local boundedness of minimizers with limit growth conditions”, *J. Optim. Theory Appl.* **166**:1 (2015), 1–22. MR Zbl

[Cupini et al. 2017] G. Cupini, P. Marcellini, and E. Mascolo, “Regularity of minimizers under limit growth conditions”, *Nonlinear Anal.* **153** (2017), 294–310. MR Zbl

[Cupini et al. 2018] G. Cupini, F. Giannetti, R. Giova, and A. Passarelli di Napoli, “Regularity results for vectorial minimizers of a class of degenerate convex integrals”, *J. Differential Equations* **265**:9 (2018), 4375–4416. MR Zbl

[DiBenedetto 1995] E. DiBenedetto, *Partial differential equations*, Birkhäuser, Boston, 1995. MR Zbl

[Diening 2005] L. Diening, “Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces”, *Bull. Sci. Math.* **129**:8 (2005), 657–700. MR Zbl

[Esposito et al. 1999] L. Esposito, F. Leonetti, and G. Mingione, “Regularity for minimizers of functionals with p - q growth”, *Nonlinear Differential Equations Appl.* **6**:2 (1999), 133–148. MR Zbl

[Esposito et al. 2002] L. Esposito, F. Leonetti, and G. Mingione, “Regularity results for minimizers of irregular integrals with (p, q) growth”, *Forum Math.* **14**:2 (2002), 245–272. MR Zbl

[Esposito et al. 2004] L. Esposito, F. Leonetti, and G. Mingione, “Sharp regularity for functionals with (p, q) growth”, *J. Differential Equations* **204**:1 (2004), 5–55. MR Zbl

[Esposito et al. 2006] L. Esposito, G. Mingione, and C. Trombetti, “On the Lipschitz regularity for certain elliptic problems”, *Forum Math.* **18**:2 (2006), 263–292. MR Zbl

[Fan 2012] X. Fan, “An imbedding theorem for Musielak–Sobolev spaces”, *Nonlinear Anal.* **75**:4 (2012), 1959–1971. MR Zbl

[Fan and Guan 2010] X. Fan and C.-X. Guan, “Uniform convexity of Musielak–Orlicz–Sobolev spaces and applications”, *Nonlinear Anal.* **73**:1 (2010), 163–175. MR Zbl

[Fonseca et al. 2004] I. Fonseca, J. Malý, and G. Mingione, “Scalar minimizers with fractal singular sets”, *Arch. Ration. Mech. Anal.* **172**:2 (2004), 295–307. MR Zbl

[Fusco and Sbordone 1990] N. Fusco and C. Sbordone, “Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions”, *Comm. Pure Appl. Math.* **43**:5 (1990), 673–683. MR Zbl

[Giusti 2003] E. Giusti, *Direct methods in the calculus of variations*, World Sci., River Edge, NJ, 2003. MR Zbl

[Harjulehto et al. 2008] P. Harjulehto, T. Kuusi, T. Lukkari, N. Marola, and M. Parviainen, “Harnack’s inequality for quasiminimizers with nonstandard growth conditions”, *J. Math. Anal. Appl.* **344**:1 (2008), 504–520. MR Zbl

[Harjulehto et al. 2016] P. Harjulehto, P. Hästö, and R. Klén, “Generalized Orlicz spaces and related PDE”, *Nonlinear Anal.* **143** (2016), 155–173. MR Zbl

[Harjulehto et al. 2017] P. Harjulehto, P. Hästö, and O. Toivanen, “Hölder regularity of quasiminimizers under generalized growth conditions”, *Calc. Var. Partial Differential Equations* **56**:2 (2017), art. id. 22. MR Zbl

[Kinnunen and Shanmugalingam 2001] J. Kinnunen and N. Shanmugalingam, “Regularity of quasi-minimizers on metric spaces”, *Manuscripta Math.* **105**:3 (2001), 401–423. MR Zbl

[Ladyzhenskaya and Ural'tseva 1968] O. A. Ladyzhenskaya and N. N. Ural'tseva, *Linear and quasilinear elliptic equations*, Academic Press, New York, 1968. MR Zbl

[Lieberman 1991] G. M. Lieberman, “The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations”, *Comm. Partial Differential Equations* **16**:2-3 (1991), 311–361. MR Zbl

[Marcellini 1986] P. Marcellini, “On the definition and the lower semicontinuity of certain quasiconvex integrals”, *Ann. Inst. H. Poincaré Anal. Non Linéaire* **3**:5 (1986), 391–409. MR Zbl

[Marcellini 1989] P. Marcellini, “Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions”, *Arch. Ration. Mech. Anal.* **105**:3 (1989), 267–284. MR Zbl

[Marcellini 1991] P. Marcellini, “Regularity and existence of solutions of elliptic equations with p, q -growth conditions”, *J. Differential Equations* **90**:1 (1991), 1–30. MR Zbl

[Musielak 1983] J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Math. **1034**, Springer, 1983. MR Zbl

[Ok 2016] J. Ok, “Gradient estimates for elliptic equations with $L^{p(\cdot)} \log L$ growth”, *Calc. Var. Partial Differential Equations* **55**:2 (2016), art. id. 26. MR Zbl

[Rao and Ren 1991] M. M. Rao and Z. D. Ren, *Theory of Orlicz spaces*, Monogr. Textbooks Pure Appl. Math. **146**, Dekker, New York, 1991. MR Zbl

[Schmidt 2008] T. Schmidt, “Regularity of minimizers of $W^{1,p}$ -quasiconvex variational integrals with (p, q) -growth”, *Calc. Var. Partial Differential Equations* **32**:1 (2008), 1–24. MR Zbl

[Schmidt 2009] T. Schmidt, “Regularity of relaxed minimizers of quasiconvex variational integrals with (p, q) -growth”, *Arch. Ration. Mech. Anal.* **193**:2 (2009), 311–337. MR Zbl

[Sidi El Vally 2013] M. Sidi El Vally, “Strongly nonlinear elliptic problems in Musielak–Orlicz–Sobolev spaces”, *Adv. Dyn. Syst. Appl.* **8**:1 (2013), 115–124. MR

[Verde 2011] A. Verde, “Calderón–Zygmund estimates for systems of ϕ -growth”, *J. Convex Anal.* **18**:1 (2011), 67–84. MR Zbl

[Zhikov 1986] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, *Izv. Akad. Nauk SSSR Ser. Mat.* **50**:4 (1986), 675–710. In Russian; translated in *Math. USSR-Izv.* **29**:1 (1987), 33–66. MR

[Zhikov 1993] V. Zhikov, “Lavrentiev phenomenon and homogenization for some variational problems”, *C. R. Acad. Sci. Paris Sér. I Math.* **316**:5 (1993), 435–439. MR Zbl

[Zhikov 1995] V. V. Zhikov, “On Lavrentiev’s phenomenon”, *Russian J. Math. Phys.* **3**:2 (1995), 249–269. MR Zbl

[Zhikov 1997] V. V. Zhikov, “On some variational problems”, *Russian J. Math. Phys.* **5**:1 (1997), 105–116. MR Zbl

[Zhikov et al. 1994] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, *Homogenization of differential operators and integral functionals*, Springer, 1994. MR Zbl

Received 15 Aug 2017. Revised 30 Apr 2019. Accepted 11 Jun 2019.

SUN-SIG BYUN: byun@snu.ac.kr

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul, South Korea

JEHAN OH: jehan.oh@knu.ac.kr

Department of Mathematics, Kyungpook National University, Daegu, South Korea

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard

patrick.gerard@math.u-psud.fr

Université Paris Sud XI

Orsay, France

BOARD OF EDITORS

Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstädt	Universität Bonn, Germany ursula@math.uni-bonn.de	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachusetts Inst. of Tech., USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2020 is US \$340/year for the electronic version, and \$550/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

 mathematical sciences publishers
nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 13 No. 5 2020

Regularity results for generalized double phase functionals SUN-SIG BYUN and JEHAN OH	1269
Epsilon-regularity for p -harmonic maps at a free boundary on a sphere KATARZYNA MAZOWIECKA, RÉMY RODIAC and ARMIN SCHIKORRA	1301
Uniform Sobolev estimates for Schrödinger operators with scaling-critical potentials and applications HARUYA MIZUTANI	1333
When does a perturbed Moser–Trudinger inequality admit an extremal? PIERRE-DAMIEN THIZY	1371
Well-posedness of the hydrostatic Navier–Stokes equations DAVID GÉRARD-VARET, NADER MASMOUDI and VLAD VICOL	1417
Sharp variation-norm estimates for oscillatory integrals related to Carleson’s theorem SHAOMING GUO, JORIS ROOS and PO-LAM YUNG	1457
Federer’s characterization of sets of finite perimeter in metric spaces PANU LAHTI	1501
Spectral theory of pseudodifferential operators of degree 0 and an application to forced linear waves YVES COLIN DE VERDIÈRE	1521
Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities ROBERT JENKINS, JIAQI LIU, PETER PERRY and CATHERINE SULEM	1539
Unconditional existence of conformally hyperbolic Yamabe flows MARIO B. SCHULZ	1579
Sharpening the triangle inequality: envelopes between L^2 and L^p spaces PAATA IVANISVILI and CONNOR MOONEY	1591

2157-5045(2020)13:5;1-9