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Columnar vortices are stationary solutions of the three-dimensional Euler equations with axial symmetry,
where the velocity field only depends on the distance to the axis and has no component in the axial
direction. Stability of such flows was first investigated by Lord Kelvin in 1880, but despite a long history
the only analytical results available so far provide necessary conditions for instability under either planar
or axisymmetric perturbations. The purpose of this paper is to show that columnar vortices are spectrally
stable with respect to three-dimensional perturbations with no particular symmetry. Our result applies to a
large family of velocity profiles, including the most common models in atmospheric flows and engineering
applications. The proof is based on a homotopy argument which allows us, when analyzing the spectrum
of the linearized operator, to concentrate on a small neighborhood of the imaginary axis, where unstable
eigenvalues can be excluded using integral identities and a careful study of the so-called critical layers.
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1. Introduction

An interesting open question in hydrodynamic stability theory is whether the balance between the
centrifugal force and the pressure gradient in axisymmetric vortex flows may lead to an instability even
if the vorticity profile is monotone and the velocity field has no axial component. For incompressible
perfect fluids, partial answers have been obtained under additional symmetry assumptions. For instance,
in the restricted framework of two-dimensional flows, radially symmetric vortices are known to be stable
if the vorticity distribution is a monotone function of the distance to the vortex center [Rayleigh 1879;
Marchioro and Pulvirenti 1994], but even in that idealized situation no sharp stability criterion seems
to be available. In the three-dimensional case, the simplest vortex-like equilibria are columnar vortices,
namely axisymmetric flows with no vertical velocity and no dependence upon the vertical coordinate.
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In such flows, all streamlines are horizontal circles centered on the vertical symmetry axis. According
to a celebrated result of [Rayleigh 1917], columnar vortices are stable with respect to axisymmetric
perturbations if the square of the velocity circulation along the streamlines is a nondecreasing function
of the distance to the symmetry axis, and that condition is actually sharp [Synge 1933].

A natural question arises from these centennial results: When the vorticity profile is monotone and
Rayleigh’s condition is satisfied, are columnar vortices stable against three-dimensional perturbations with
no particular symmetry ? Although instabilities have never been observed experimentally or numerically
for such vortices in the absence of axial flow, we could not find in the literature even a plausible formal
argument supporting the affirmative answer; see Section 1C below for a short historical discussion. In
the present paper, we give a rigorous proof of spectral stability for a large family of inviscid columnar
vortices without imposing any symmetry assumption on the class of allowed perturbations. We thus
provide an answer to an important question that dates back to the pioneering work of Lord Kelvin [1880],
who was the first to investigate the three-dimensional stability of vortex columns.

Before stating our results, we first describe the precise framework. We start from the incompressible
Euler equation in the whole space R3:

∂t u+ (u · ∇)u =−∇ p, div u = 0, (1-1)

where u = u(x, t) ∈ R3 denotes the fluid velocity and p = p(x, t) ∈ R the internal pressure. We mainly
consider the vorticity ω(x, t)= curl u(x, t), which describes the local rotation of the fluid particles. Since
we are interested in the stability of axially symmetric flows, it is convenient to use cylindrical coordinates
(r, θ, z) defined by x1 = r cos θ , x2 = r sin θ , and x3 = z. The velocity and vorticity fields are then
decomposed as

u = ur (r, θ, z, t)er + uθ (r, θ, z, t)eθ + uz(r, θ, z, t)ez,

ω = ωr (r, θ, z, t)er +ωθ (r, θ, z, t)eθ +ωz(r, θ, z, t)ez,

where er , eθ , ez are unit vectors in the radial, azimuthal, and vertical directions, respectively. In these
coordinates, the vorticity equation ∂tω+ (u · ∇)ω− (ω · ∇)u = 0 becomes

∂tωr + (u · ∇)ωr − (ω · ∇)ur = 0,

∂tωθ + (u · ∇)ωθ − (ω · ∇)uθ =
1
r
(urωθ − uθωr ),

∂tωz + (u · ∇)ωz − (ω · ∇)uz = 0,

(1-2)

where u ·∇ = ur∂r + (1/r)uθ∂θ +uz∂z and ω ·∇ = ωr∂r + (1/r)ωθ∂θ +ωz∂z . The velocity field satisfies
the incompressibility condition

1
r
∂r (rur )+

1
r
∂θuθ + ∂zuz = 0, (1-3)

and can be expressed in terms of the vorticity by solving the linear elliptic system

1
r
∂θuz − ∂zuθ = ωr , ∂zur − ∂r uz = ωθ ,

1
r
∂r (ruθ )−

1
r
∂θur = ωz. (1-4)
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1A. Columnar vortices. Columnar vortices are stationary solutions of (1-1)–(1-4) of the particular form

u = V (r)eθ , ω =W (r)ez, p = P(r), (1-5)

where V is the velocity profile and W the vorticity distribution. The pressure P inside the vortex is
determined, up to an irrelevant additive constant, by the centrifugal balance r P ′(r) = V (r)2. Instead
of V, we prefer using the angular velocity �(r)= V (r)/r , which has the same physical dimension as the
vorticity W. As a consequence of (1-4), we have

W (r)= 1
r
∂r (r V (r))= r�′(r)+ 2�(r). (1-6)

Here are typical examples that are often considered in the literature:

(1) The Rankine vortex:

�(r)=
{

1 if r ≤ 1,
r−2 if r ≥ 1,

W (r)=
{

2 if r < 1,
0 if r > 1.

(1-7)

As is clear from (1-7), the flow of Rankine’s vortex corresponds to a rigid rotation for r < 1 and an
irrotational motion for r > 1. Although nonphysical because of the singularity at r = 1, this flow is
relatively easy to analyze mathematically due to the very simple form of the vorticity distribution W,
which is a piecewise constant function. The dynamical stability of Rankine’s vortex was first investigated
in [Kelvin 1880].

(2) The Kaufmann–Scully vortex:

�(r)= 1
1+r2 , W (r)= 2

(1+r2)2
, r > 0. (1-8)

This smooth vortex is characterized by a relatively slow decay of the vorticity distribution as r→∞. It
has also a very simple analytical form, and is often used as a model for vortices that appear in atmospheric
flows or in laboratory experiments; see, e.g., [Alekseenko et al. 2007, Section 3.3.4].

(3) The Lamb–Oseen vortex:

�(r)= 1
r2 (1− e−r2

), W (r)= 2e−r2
, r > 0. (1-9)

Among all solutions of the form (1-5), the Lamb–Oseen vortex plays a distinguished role in connection
with the long-time asymptotics of viscous planar flows. Indeed, if viscosity is taken into account, it is
known that all localized distributions of vorticity evolve toward a Gaussian vorticity profile as t→+∞;
see [Gallay and Wayne 2005]. In particular, the Lamb–Oseen vortex is the only one in the above family
which corresponds to a self-similar solution of the Navier–Stokes equations.

Remark 1.1. Throughout this paper, it is understood that all independent and dependent variables in the
Euler equations (1-1) are dimensionless. Examples (1-7)–(1-9) are normalized so that the vortex core has
a diameter of size O(1), but that choice can be modified by a simple rescaling. Also, we assume without
loss of generality that all vortices are normalized so that �(0)= 1, which implies W (0)= 2.
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To study the dynamical stability of the columnar vortex (1-5), we look for solutions of (1-2), (1-3) of
the form

u(r, θ, z, t)= r�(r)eθ + ũ(r, θ, z, t), ω(r, θ, z, t)=W (r)ez + ω̃(r, θ, z, t),

where � = V/r is the angular velocity of the vortex and W the vorticity distribution given by (1-6).
Inserting this ansatz into (1-2), neglecting the quadratic terms in ũ and ω̃, and finally dropping the tildes
for notational simplicity, we arrive at the linearized evolution equations

∂tωr +�(r) ∂θωr =W (r) ∂zur ,

∂tωθ +�(r) ∂θωθ =W (r) ∂zuθ + r�′(r)ωr ,

∂tωz +�(r) ∂θωz =W (r) ∂zuz −W ′(r)ur ,

(1-10)

which are the starting point of our analysis. Of course, the linear relations (1-3), (1-4) still hold for the
perturbed velocity and vorticity.

It is a classical observation that (1-10) can be considered as a self-contained evolution system for the
vorticity ω, provided the velocity u is expressed in terms of ω by solving the linear elliptic system (1-3),
(1-4). Once this is done, we can rewrite (1-10) in the compact form

∂tω = Lω, (1-11)

where L is a vector-valued, nonlocal, first-order differential operator. Our purpose is to study the spectral
properties of that operator, and to show that L has no spectrum outside the imaginary axis under general
assumptions on the angular velocity � or the vorticity distribution W.

Another fundamental remark is that system (1-2)–(1-4) is invariant under rotations about the vertical
axis, and under translations along that axis. Using a Fourier series expansion with respect to the angular
variable θ and a Fourier transform in the vertical variable z, we are led to consider velocities and vorticities
of the particular form

u(r, θ, z, t)= um,k(r, t)eimθeikz, ω(r, θ, z, t)= ωm,k(r, t)eimθeikz, (1-12)

where m ∈ Z is the angular Fourier mode and k ∈ R is the vertical wave number. Here u, ω are complex-
valued functions, but we impose that ūm,k = u−m,−k and ω̄m,k = ω−m,−k so as to obtain real functions
after summing over all possible values of m, k. Dropping the subscripts m, k for notational simplicity, we
see that the perturbation equations (1-10) translate into

(∂t + im�(r))ωr =W (r)ikur ,

(∂t + im�(r))ωθ =W (r)ikuθ + r�′(r)ωr ,

(∂t + im�(r))ωz =W (r)ikuz −W ′(r)ur .

(1-13)

In addition, the following relations hold:

ωr =
im
r

uz − ikuθ , ωθ = ikur − ∂r uz, ωz =
1
r
∂r (ruθ )−

im
r

ur ,

1
r
∂r (rur )+

im
r

uθ + ikuz = 0.
(1-14)



SPECTRAL STABILITY OF INVISCID COLUMNAR VORTICES 1781

As before, we can rewrite (1-13) in the compact form

∂tω = Lm,kω, (1-15)

assuming that the velocity u = um,k in (1-13) is expressed in terms of the vorticity ω = ωm,k by solving
the linear relations (1-14) with appropriate boundary conditions. The main properties of the Biot–Savart
map ωm,k 7→ um,k obtained in this way will be recalled in Section A1. Being an integral operator acting
on functions of the sole variable r , the generator Lm,k in (1-15) is of course easier to study than the
original three-dimensional differential operator L in (1-11).

1B. Statement of the results. To state our results in a precise way, we first specify our hypotheses on
the unperturbed columnar vortex. We find it convenient to formulate these assumptions at the level of the
vorticity profile W. Note that, in view of (1-6), the angular velocity � can be expressed in terms of W by
the formula

�(r)=
1
r2

∫ r

0
W (s)s ds, r > 0, (1-16)

and the derivative of � is in turn given by

�′(r)=
W (r)− 2�(r)

r
=

1
r3

∫ r

0
W ′(s)s2 ds, r > 0. (1-17)

In what follows, we set R+ = (0,∞) and R+ = [0,∞).

Assumption H1. The vorticity profile W : R+→ R+ is a C1 function satisfying W ′(0)= 0, W ′(r) < 0
for all r > 0, and the total circulation

2π0 = 2π
∫
∞

0
W (r)r dr (1-18)

of the columnar vortex is finite.

Under Assumption H1 the angular velocity profile � ∈ C1(R+)∩ C2(R+) given by (1-16) is positive
and satisfies �(0) = W (0)/2, �′(0) = 0, �′(r) < 0 for all r > 0, and �(r) ∼ 0/r2 as r →∞. In
particular, the Rayleigh function 8 : [0,∞)→ R defined by

8(r)= 2�(r)W (r), r ≥ 0, (1-19)

is positive everywhere. As a matter of fact, in our framework Assumption H1 corresponds exactly to
the combination of Rayleigh’s condition [1917] and of the two-dimensional stability criterion [Rayleigh
1879; Marchioro and Pulvirenti 1994]. We supplement it with the following:

Assumption H2. The C1 function J : R+→ R+ defined by

J (r)=
8(r)
�′(r)2

, r > 0, (1-20)

satisfies J ′(r) < 0 for all r > 0 and r J ′(r)→ 0 as r→∞.
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This second assumption is more technical in nature, and certainly more difficult to justify. We first
observe that it is satisfied for the Kaufmann–Scully vortex (1-8), because J (r)= 1+ 1/r2 in that case,
and a direct calculation that can be found in Section A7 below reveals that Assumption H2 also holds for
the Lamb–Oseen vortex (1-9). A quantity corresponding to (1-20) appears in the work of G. I. Taylor
[1931] on the stability of stratified shear flows; in that context it is called the local Richardson number;
see, e.g., [Drazin and Reid 1981, Chapter 6]. Its relevance for stability was confirmed in [Miles 1961;
Howard 1961]. The ideas of Howard were translated into the columnar vortex framework in [Howard and
Gupta 1962], where the quantity (1-20) is also shown to play an important role in the stability analysis
for perturbations with nonzero angular Fourier mode m and nonzero vertical wave number k. Indeed, it is
proved in [Howard and Gupta 1962] that the linear operator Lm,k in (1-15) has no unstable eigenvalue if

k2

m2 J (r)≥
1
4

for all r > 0; (1-21)

see also Proposition 3.4 below. Note that, in the case of the Lamb–Oseen vortex, inequality (1-21) is
always violated for large r > 0 because J (r)→ 0 as r→∞, whereas (1-21) holds for the Kaufmann–
Scully vortex if and only if m2

≤ 4k2. Although Howard and Gupta’s result alone is not sufficient, it
plays a crucial role in our stability analysis in Section 4, where we have to distinguish two spatial regions
according to whether the local Richardson number (k2/m2)J (r) is greater or smaller than 1

4 . It turns out
to be important for our approach that inequality (1-21) either holds for all r ≥ 0, or is satisfied if and only
if r ≤ r∗ for some r∗ > 0. The only way to enforce that property for all possible values of m and k is to
assume that the function J in (1-20) is decreasing. However, there is no evidence that Assumption H2 is
more than a technical limitation, and we hope that this question will be clarified in the future.

Remark 1.2. Although this is not immediately obvious, Assumption H2 implies the existence of a
nonnegative number `∞ ≥ 0 such that

lim
r→∞

r4W (r)= `∞, lim
r→∞

r5W ′(r)=−4`∞; (1-22)

see Section A4 below.

Next, we specify the function space in which we study the linearized operator Lm,k defined in (1-13),
(1-15). Since we used a Fourier decomposition to reduce our analysis to functions of the form (1-12), it is
natural to work in L2-based function spaces. Given m ∈ Z and k ∈ R, we thus define the enstrophy space

Xm,k =

{
ω ∈ L2(R+, r dr)3

∣∣∣ 1
r
∂r (rωr )+

im
r
ωθ + ikωz = 0

}
, (1-23)

equipped with the norm

‖ω‖2L2 =

∫
∞

0
|ω(r)|2r dr, where |ω|2 = |ωr |

2
+ |ωθ |

2
+ |ωz|

2.

It is not difficult to verify that the generator Lm,k of the linearized evolution equation (1-15) defines a
bounded linear operator in the space Xm,k if k 6= 0; see Proposition 2.1 below. With this observation in
mind, we can formulate our first main result:
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Theorem 1.3. Consider a columnar vortex whose vorticity profile W satisfies Assumptions H1, H2 above.
Given m ∈ Z and k 6= 0, let Lm,k be the generator of the linearized evolution (1-15). Then the spectrum of
Lm,k in the enstrophy space Xm,k satisfies

σ(Lm,k)⊂ iR. (1-24)

Remark 1.4. The proof actually shows that, under the normalization condition W (0) = 2, σ(Lm,k)

consists of an essential spectrum filling the closed interval {−imb | 0≤ b ≤ 1} ⊂ iR, and of a countable
family of simple, purely imaginary eigenvalues that accumulate only at −im ∈ iR. These eigenvalues are
well studied in the physical literature (a brief account is given in Section 1C below), and the corresponding
eigenfunctions are referred to as Kelvin vibration modes. The main contribution of the present paper is
to show that the operator Lm,k has no eigenvalue outside the imaginary axis if the vorticity profile W
satisfies Assumptions H1, H2. It is interesting to note that this result remains valid for the Rankine vortex
(1-7), which does not satisfy our hypotheses; see Section A2 below.

Remark 1.5. The particular case k = 0, which corresponds to two-dimensional perturbations, is excluded
in Theorem 1.3 because the function space Xm,k is not appropriate in that situation. This is essentially
due to the fact that the two-dimensional Biot–Savart law is ill-defined for vorticities in the enstrophy
space. The problem can be eliminated by introducing a radial weight that ensures a faster decay of ω(r)
as r→∞, or alternatively by working in the energy space as mentioned in Remark 1.7 below. However,
since the two-dimensional stability of radially symmetric vortices is already well documented, we chose
to ignore these technical issues and to concentrate here on the genuinely three-dimensional case k 6= 0,
which was essentially unexplored until now.

According to Theorem 1.3, for any s ∈ C with Re(s) 6= 0, the resolvent operator (s − Lm,k)
−1 is

well-defined and bounded in the space Xm,k if m ∈Z and k 6= 0. Actually, one can prove that the resolvent
is uniformly bounded for all m ∈ Z and for all nonzero k in the one-dimensional lattice Zk0, where
k0 > 0 is arbitrary. Returning to the full linearized evolution (1-11), this proves spectral stability of the
generator L in the space

L̇2
σ,per,h =

{
ω ∈ L2(R2

×Th)
3
∣∣∣∣ divω = 0,

∫ h

0
ω(x1, x2, x3) dx3 = 0

}
, (1-25)

where Th = R/(Zh) and h = 2π/k0 is the vertical period. We can thus state our second main result:

Theorem 1.6. Under the assumptions of Theorem 1.3, let L denote the full linearized operator in (1-11).
Then, for any h > 0, the spectrum of L in the space L̇2

σ,per,h satisfies

σ(L)= iR. (1-26)

Remark 1.7. The reason for restricting ourselves to functions with zero average in the vertical direction
was explained in Remark 1.5. The same technical limitation prevents us from considering perturbations in
the enstrophy space L2

σ (R
3), without assuming periodicity in the vertical direction, because in that case

all values of the vertical wave number k ∈ R have to be taken into account. In a subsequent work [Gallay
and Smets 2019], we use Theorem 1.3 to obtain an analogue of Theorem 1.6 for the Euler equation in
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velocity formulation. There we consider perturbations in the energy space, and we also obtain semigroup
estimates for the linearized operator at a columnar vortex.

In the proof of Theorems 1.3 and 1.6, we find it convenient to normalize our velocity and vorticity
profiles so that �(0)= 1 and W (0)= 2. This leads to the following definition:

Definition 1.8. We denote by W the class of all vorticity profiles W :R+→R+ satisfying the Assumptions
H1, H2 above, as well as the normalizing condition W (0)= 2.

It is worth emphasizing here that Assumption H2 involves the function J defined in (1-20), which
depends nonlinearly on the vorticity profile W. As a consequence, our family of admissible profiles is not
a vector space, and the class W introduced in Definition 1.8 is not even a convex set. However, we shall
prove in Section A4 that any profile W ∈W is entirely determined by the auxiliary function

Q(r)=
1

√
1+ J (r)

, r > 0, (1-27)

and that the class W can be described by simple linear constraints at the level of the function Q. This
makes it possible to perform continuous interpolation and approximation within the class W , and such
tools will play a crucial role in the proof of Theorem 1.3.

Remark 1.9. If we equip the class W with the topology of C1
b(R+), the Banach space of all bounded

continuously differentiable functions on R+ with bounded derivative, it is easily verified that the linear
operator Lm,k ∈ L(Xm,k) depends continuously on the vorticity profile W ∈W ; see Lemma 4.1 below. In
particular, isolated eigenvalues of Lm,k outside the imaginary axis (if there are any) vary continuously
when W is perturbed in that topology. This implies that the conclusion (1-24) of Theorem 1.3 remains
valid for any vorticity profile that belongs to the closure of the class W in C1

b(R+). This larger class
contains vorticities W that are not strictly decreasing functions of the radius r , and may even be compactly
supported.

1C. Previous results and perspectives. The first historical contribution regarding the stability of colum-
nar vortices in incompressible fluids is of course the seminal work [Kelvin 1880]. In that study, the
focus is put on neutral modes, namely eigenmodes of the linearized Euler equation that correspond to
purely imaginary eigenvalues; these were later termed “Kelvin vibration modes”. As Kelvin expresses
it: “The problem thus solved is the finding of the periodic disturbance in the motion of rotating liquid
[. . .]”. The computations in [Kelvin 1880] are performed in situations where the underlying axisymmetric
flow has piecewise constant vorticity; this exactly corresponds to what was called the Rankine vortex in
Section 1A above. However, Kelvin waves are observed to play an important role in the dynamics of the
Euler equation for a much wider variety of profiles, and were actively studied in the literature since then
(in most cases numerically, or using asymptotic expansions combined with physical arguments). In the
case of the Lamb–Oseen vortex, important contributions were made in particular by Le Dizès and Lacaze
[2005] and Fabre, Sipp and Jacquin [Fabre et al. 2006], both in the inviscid case and in the vanishing
viscosity limit. Unlike Kelvin (who had no computer account!), the authors of [Le Dizès and Lacaze
2005; Fabre et al. 2006] also consider the possibility of eigenvalues off the imaginary axis. One of the
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conclusions of [Fabre et al. 2006] based on their numerical findings is that “[. . .]no amplified modes were
found, a result which demonstrates the stability of the Lamb–Oseen vortex.”

In a different direction, Rayleigh [1879; 1917] initiated the study of necessary conditions for columnar
vortex instability.1 Although it may certainly be found physically convincing, the original argument
[Rayleigh 1917] leading to Rayleigh’s criterion cannot be easily transposed into rigorous mathematical
terms. Instead, the approach followed in [Howard and Gupta 1962], which we consider one of the most
interesting and important contributions so far, is both rigorous and elementary. This remarkable work
contains most importantly an inconclusive but enlightening section called “Remarks on the nonaxisym-
metric case”, in which the partial stability criterion (1-21) can be found. The authors write: “The overall
conclusion of this consideration of the nonaxisymmetric case is thus essentially negative: the methods used
to derive the Richardson number and semicircle results in the axisymmetric case reproduce the known
results of Rayleigh for two-dimensional perturbations and pure axial flow, but seem to give very little more.
In fact the present situation with regard to nonaxisymmetric perturbations seems to be very unsatisfactory
from a theoretical point of view.”

Attempts have been made to derive necessary conditions for instability extending Rayleigh’s criterion to
nonaxisymmetric perturbations. One such criterion was proposed in [Billant and Gallaire 2005], following
[Leibovich and Stewartson 1983], and applies in a given Fourier sector. It is relatively simple to state
but requires a number of a posteriori checks which could be more difficult to perform. As the authors
mention, in all the situations they tested the most unstable modes were always the axisymmetric ones
(this is reminiscent of Squire’s theorem in the context of viscous shear flows), and therefore, in practice,
Rayleigh’s criterion appears to be sufficient to detect potential instabilities. Yet, a priori estimates on the
possible growth in a given Fourier sector are certainly interesting per se.

Spectral stability of course does not imply stability of the flow for a Hamiltonian system such as
(1-1). In celebrated works, Arnold [1965; 1966] derived a nonlinear stability criterion for stationary
solutions of the Euler equations, which are viewed as critical points of the kinetic energy functional
over the manifold of isovortical vector fields, and he treated in detail the case of two-dimensional flows.
His approach was subsequently extended in [Szeri and Holmes 1988] and applied to axisymmetric
perturbations of columnar vortices. A few years later, Rouchon [1991] proved that the conditions
in Arnold’s criterion are never satisfied if one considers genuinely three-dimensional perturbations
of nontrivial stationary flows. An intermediate step between spectral and nonlinear stability is linear
stability, which consists in controlling the growth of the semigroup generated by the linearized operator
in Theorem 1.6. Preliminary results in that direction can be found in the subsequent work [Gallay and
Smets 2019].

We close this section by mentioning that a number of interesting phenomena are known to arise, as far
as instabilities are concerned, when the base flow possesses an additional axial component. Some of the
works already quoted, and many others, do consider that situation as well. Since we did not investigate it
at all in this work, we keep that discussion for another occasion.

1Or equivalently sufficient conditions for their stability; in the present work stability is only understood in the spectral sense,
meaning the absence of eigenvalues with positive real part.
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1D. Organization of the paper. Our strategy to prove Theorems 1.3 and 1.6 can be explained as follows.
In a first step, we show in Section 2 that the essential spectrum of the operator Lm,k is purely imaginary.
The rest of the spectrum consists of isolated eigenvalues with finite multiplicity, and the corresponding
eigenfunctions are solutions of a second-order differential equation involving a complex potential that
depends on m, k, and the spectral parameter s. The eigenvalue equation is difficult to study in general,
but using techniques that date back to [Rayleigh 1879; 1917] it is easy to verify that it has no nontrivial
solution with Re(s) 6= 0 when the perturbations are either axisymmetric (m = 0) or two-dimensional
(k = 0). In Section 3, we establish a few preliminary results in the case where m 6= 0 and k 6= 0. In
particular, we derive useful identities satisfied by any nontrivial eigenfunction, and we recover the stability
criterion (1-21) of Howard and Gupta. The core of the proof of Theorem 1.3 is Section 4. We construct a
suitable homotopy between the vorticity profile W ∈ W and a reference profile for which stability in the
corresponding Fourier sector Xm,k is known by Howard and Gupta’s criterion. By a continuity argument,
this strategy allows us to reduce the problem to proving the absence of unstable eigenvalues arbitrarily
close to the imaginary axis for a one-parameter family of profiles in the class W . A delicate combination
of integral identities and comparison arguments relying on Assumption H2 are then used to perform
such a “critical layer analysis” and hence to preclude the existence of unstable eigenvalues. Finally, in
Section 5, we prove uniform resolvent estimates for the linear operator Lm,k outside the imaginary axis,
which imply that the full linearization L has indeed no spectrum in that region when acting on the space
L̇2
σ,per,h for any h > 0. This is precisely the conclusion of Theorem 1.6. The last section is an Appendix

where several auxiliary results are established. In particular, we give useful estimates for the Biot–Savart
law in the Fourier sector indexed by m, k, we prove the stability of Rankine’s vortex (1-7), which is not
covered by Theorem 1.3, and we explain how to perform continuous interpolation and approximation in
the nonlinear class W .

2. Formulation of the spectral problem

Let W be a vorticity profile in the class W , and let � be the corresponding angular velocity defined
by (1-16). For a fixed value of the angular Fourier mode m ∈ Z and of the vertical wave number
k ∈ R, we consider the linear operator Lm,k introduced in (1-15). In view of (1-13), we have the natural
decomposition

Lm,k = Am + Bm,k, (2-1)

where Am is the multiplication operator defined by

Amω =−im�(r)ω+ r�′(r)ωr eθ , (2-2)

and Bm,k is the nonlocal perturbation

Bm,kω = ikW (r)u−W ′(r)ur ez. (2-3)

Here u = (ur , uθ , uz) denotes the velocity obtained from the vorticity ω = (ωr , ωθ , ωz) by solving the
linear PDE system (1-14) with appropriate boundary conditions. We refer the reader to Section A1 below
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for a discussion of the map ω 7→ u, which we call the Biot–Savart law in the Fourier subspace indexed by
m and k. Our main goal in this paper is to study the spectral properties of the operator Lm,k acting on the
enstrophy space Xm,k defined by (1-23).

The following simple result is the starting point of our analysis.

Proposition 2.1. Fix m ∈ Z and k ∈ R \ {0}:

(1) The linear operator Am defined by (2-2) is bounded in Xm,k with spectrum given by

σ(Am)= {z ∈ C | z =−imb for some b ∈ [0, 1]}. (2-4)

This spectrum is purely continuous if m 6= 0, and reduces to a single eigenvalue if m = 0.

(2) The linear operator Bm,k defined by (2-3) is compact in Xm,k .

Proof. Given s ∈ C and f = ( fr , fθ , fz) ∈ Xm,k , the resolvent equation (s− Am)ω = f is equivalent to
the linear system

(s+ im�(r))ωr = fr , (s+ im�(r))ωθ = fθ + r�′(r)ωr , (s+ im�(r))ωz = fz. (2-5)

As W ∈W , we know that � : [0,∞)→R+ is strictly decreasing with �(0)= 1 and �(r)→ 0 as r→∞.
Thus, if s 6= −imb for all b ∈ [0, 1], the quantity |s+ im�(r)| is bounded away from zero, and it follows
that system (2-5) has a unique solution ω ∈ Xm,k satisfying ‖ω‖L2 ≤ C(s)‖ f ‖L2 . On the other hand, if
m 6= 0 and s =−imb for some b ∈ [0, 1], it is easy to verify that the operator s− Am is one-to-one but
not onto (its range is dense but strictly contained in Xm,k), so that s belongs to the continuous spectrum
of Am . Finally, if m = 0, it is clear that s = 0 is an eigenvalue of Am with infinite multiplicity. This
proves the first part.

We next consider the operator Bm,k . If ω ∈ Xm,k and ‖ω‖L2 ≤ 1, Proposition A.1 shows that the
associated velocity field u satisfies ‖∂r u‖L2 +‖ku‖L2 ≤ C for some universal constant C > 0. This gives
a uniform bound on u in H 1(R+, r dr) since we assume that k 6= 0. By the Fréchet–Kolmogorov theorem,
we deduce that the map ω 7→ Bm,kω = ikW (r)u−W ′(r)ur ez is compact in Xm,k , because the functions
W and W ′ are bounded and converge to zero as r→∞. �

Proposition 2.1 shows in particular that, for any m ∈ Z and any k ∈ R \ {0}, the linearization Lm,k =

Am + Bm,k defines a bounded operator in the space Xm,k . Moreover, as Bm,k is compact, the essential
spectrum of Lm,k is the same as the (essential) spectrum of Am , namely the closed interval Im =

{−imb | 0≤b≤ 1}⊂ iR; see [Edmunds and Evans 2018, Theorem I.4.1]. Note that, in the present case, the
various definitions of the essential spectrum listed in [Edmunds and Evans 2018, Section I.4] all coincide.
This implies that the spectrum of Lm,k outside the interval Im entirely consists of isolated eigenvalues
with finite multiplicities, which can accumulate only on the essential spectrum. The proof of Theorem 1.3
is thus reduced to showing that all isolated eigenvalues of Lm,k actually lie on the imaginary axis.

Remark 2.2. As the functions �, W are real-valued, it is not difficult to verify, using the definitions (2-2),
(2-3) and the relations (1-14) between u and ω, that the spectrum of Lm,k in Xm,k has the symmetries

σ(Lm,k)= σ(Lm,−k)=−σ(L−m,k) and σ(Lm,k)=−σ(Lm,k). (2-6)
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The corresponding mappings between eigenspaces are also easy to establish. In particular, the last relation
in (2-6) means that the spectrum of σ(Lm,k) is symmetric with respect to the imaginary axis, a property
that will be used later on.

As a first step in the proof of Theorem 1.3, we derive an equation for the eigenfunctions of the operator
Lm,k corresponding to eigenvalues outside the essential spectrum. In what follows, we thus assume that
s ∈ C is an isolated eigenvalue of Lm,k with eigenfunction ω = (ωr , ωθ , ωz) ∈ Xm,k , and we denote by
u = (ur , uθ , uz) the velocity field associated with ω via the Biot–Savart law; see Section A1. As in
[Drazin and Reid 1981], we define

γ (r)= s+ im�(r), r > 0. (2-7)

Since s does not belong to the essential spectrum of Lm,k by assumption, it follows from Proposition 2.1
that γ (r) 6= 0 for all r > 0.

In view of (1-13), the eigenvalue equation is given by

γ (r)ωr = ikW (r)ur ,

γ (r)ωθ = ikW (r)uθ + r�′(r)ωr ,

γ (r)ωz = ikW (r)uz −W ′(r)ur ,

(2-8)

where r�′(r)=W (r)− 2�(r) by (1-6). If we express the vorticity ω in terms of u using the relations
(1-14), we obtain the equivalent system

ikW (r)ur + ikγ (r)uθ −
imγ (r)

r
uz = 0, (2-9)

ikγ (r)ur − 2ik�(r)uθ − ∂r (γ (r)uz)= 0, (2-10)(
W ′(r)− imγ (r)

r

)
ur + γ (r)

1
r
∂r (ruθ )− ikW (r)uz = 0. (2-11)

Assuming for the moment that k 6= 0, it is straightforward to verify that the relations (2-9)–(2-11) together
imply the incompressibility condition

1
r
∂r (rur )+

im
r

uθ + ikuz = 0. (2-12)

To reduce system (2-9)–(2-12) to a single equation, we first express the azimuthal velocity uθ in terms
of ur , uz using (2-9), and replace it into (2-10), (2-12) to obtain the 2× 2 system(

∂∗r −
imW (r)
rγ (r)

)
ur + ik

(
1+

m2

k2r2

)
uz = 0, (2-13)(

∂r +
imW (r)
rγ (r)

)
uz − ik

(
1+

8(r)
γ (r)2

)
ur = 0, (2-14)

where 8= 2�W is the Rayleigh function and ∂∗r = ∂r + 1/r . Next, observing that the coefficient of uz

in (2-13) does not vanish, we can divide (2-13) by that coefficient and apply the differential operator
∂r + imW/(rγ ) to obtain, with the help of (2-14), the following second-order differential equation for



SPECTRAL STABILITY OF INVISCID COLUMNAR VORTICES 1789

the radial velocity:(
∂r +

imW (r)
rγ (r)

)
r2

m2+ k2r2

(
∂∗r −

imW (r)
rγ (r)

)
ur =

(
1+

8(r)
γ (r)2

)
ur . (2-15)

If we expand the product in the left-hand side, we find after straightforward calculations

−∂r

(
r2∂∗r ur

m2+ k2r2

)
+

{
1+

1
γ (r)2

k2r28(r)
m2+ k2r2 +

imr
γ (r)

∂r

(
W (r)

m2+ k2r2

)}
ur = 0; (2-16)

see also [Drazin and Reid 1981, equation (15.26)]. This is the desired eigenvalue equation, which will
be our main concern in the rest of this paper. It is formulated in terms of the radial velocity ur , which
satisfies ur ∈ H 1(R+, r dr) according to Proposition A.1. In fact, we also have ur ∈ H 2

loc(R+) in view of
the divergence-free condition (2-12).

Remark 2.3. In the case where k = 0, a much simpler calculation shows that the eigenvalue equation is
still given by (2-16) if m 6= 0, although the derivation above is not correct. If k =m = 0, equation (2-16) is
of course meaningless, but in that case it is obvious that system (2-8) has no nontrivial solution for s 6= 0.

Summarizing the arguments developed so far, the proof of Theorem 1.3 can be reduced to showing that,
for all m ∈Z and all k ∈R\{0}, the eigenvalue equation (2-16) has no nontrivial solution ur ∈H 1(R+, r dr)
if the spectral parameter s ∈C satisfies Re(s) 6= 0. This is a difficult task in general, which we postpone to
Sections 3 and 4. For the time being, we just mention two important particular cases which are relatively
easy to handle.

2A. The axisymmetric case. In the axisymmetric case m = 0, Proposition 2.1 asserts that the essential
spectrum of L0,k is reduced to zero, and therefore away from the origin there may only exist eigenvalues
with finite multiplicity. The spectral function (2-7) is constant in that case, and the stability equation (2-16)
reduces to

−∂r∂
∗

r ur + k2
(

1+
8(r)

s2

)
ur = 0. (2-17)

The following classical result dates back to [Rayleigh 1917], and is reproduced here for the reader’s
convenience.

Proposition 2.4. Assume that the Rayleigh function8 is nonnegative. Then the eigenvalue equation (2-17)
has no nontrivial solution ur ∈ H 1(R+, r dr) if Re(s) 6= 0.

Proof. According to Remark 2.3, we can suppose that k 6= 0. Assume that ur ∈ H 1(R+, r dr) is a
nontrivial solution of (2-17) for some s ∈ C \ {0}. Multiplying both sides of (2-17) by r ūr and integrating
the resulting expression over R+, we obtain the useful relation∫

∞

0

{
|∂∗r ur |

2
+ k2

(
1+

8(r)
s2

)
|ur |

2
}

r dr = 0. (2-18)

By assumption we have
∫
∞

0 8|ur |
2r dr > 0, because ur is a nontrivial solution of (2-17) and 8 is a

nonnegative function with 8(0) > 0. Thus taking the imaginary part of (2-18) we deduce that Im(s2)= 0;
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hence s ∈R or s ∈ iR. The first possibility is excluded by taking the real part of (2-18); hence we conclude
that s ∈ iR. �

Remark 2.5. Actually it was observed in [Synge 1933] that the Rayleigh stability criterion 8≥ 0 is not
only sufficient, but also necessary in the axisymmetric case. Indeed, we know that 8(0)=W (0)2 > 0,
and for localized vortices we always have 8(r)→ 0 as r→∞. Now, assume that 8(r̄) < 0 for some
r̄ > 0, and consider the Schrödinger equation

−s2∂r∂
∗

r ur + k2(s2
+8(r))ur = Eur , r > 0, (2-19)

in the semiclassical limit where 0< s� 1. As the potential term s2
+8(r) takes negative values near

r = r̄ , it is well known that the operator in (2-19) has negative eigenvalues E if s > 0 is sufficiently small;
see, e.g., [Simon 1983; Helffer and Sjöstrand 1984]. In fact, the number of negative eigenvalues increases
unboundedly as s→ 0, and this implies by continuity that (2-19) with E = 0, or equivalently (2-17), has
a nontrivial solution ur ∈ H 1(R+, r dr) for a sequence of values of s > 0 that converges to zero.

We also note that the analogue of Synge’s observation used for s ∈ iR instead of s ∈ R implies in
contrast that, when the Rayleigh function is nonnegative, the linearized operator L0,k does possess nonzero
eigenvalues on the imaginary axis, which correspond to Kelvin modes.

2B. The two-dimensional case. Although it is not included in Theorem 1.3, the two-dimensional case
k = 0 is worth mentioning too. When m 6= 0, the eigenvalue equation (2-16) reduces to

−∂r (r2∂∗r ur )+

(
m2
+

imr W ′(r)
γ (r)

)
ur = 0. (2-20)

A well-known sufficient condition for stability is that the vorticity profile W be a monotone function; see,
e.g., [Marchioro and Pulvirenti 1994], but unlike in the axisymmetric case no sharp criterion has been
established so far. Again, for the reader’s convenience, we reproduce here the easy argument showing
spectral stability if W ′ has a constant sign.

Proposition 2.6. Assume that the vorticity profile W is monotone. Then the eigenvalue equation (2-20)
has no nontrivial solution ur ∈ H 1(R+, r dr) if Re(s) 6= 0.

Proof. Assume that ur ∈ H 1(R+, r dr) is a nontrivial solution of (2-20) for some s ∈ C with Re(s) 6= 0.
Multiplying both members of (2-20) by r ūr and integrating over R+, we obtain the relation∫

∞

0

{
|∂r (rur )|

2
+

(
m2
+

imr W ′(r)
γ (r)

)
|ur |

2
}

r dr = 0. (2-21)

In particular, taking the imaginary part and using (2-7), we find

m Re(s)
∫
∞

0

W ′(r)
|γ (r)|2

|ur |
2r2 dr = 0,

and since W is monotone we conclude that ur is supported in the set where W ′ vanishes. This is clearly
impossible if W is not identically constant, because ur is a nontrivial solution of the second-order ODE
(2-20). But if W is a constant, (2-21) immediately gives the desired contradiction. �
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3. The eigenvalue equation for m 6= 0 and k 6= 0

In this section we begin our study of the eigenvalue equation (2-16) in the general case where m 6= 0 and
k 6= 0. In view of the symmetries (2-6), we can assume without loss of generality that m ≥ 1 and k > 0.
We write the spectral parameter as s = m(a− ib), where a, b ∈ R, and we take the decomposition

γ (r)= s+ im�(r)= imγ?(r), where γ?(r)=�(r)− b− ia. (3-1)

According to Proposition 2.1, the essential spectrum of the operator Lm,k is the set of all s = m(a− ib)
such that a = 0 and b ∈ [0, 1]. Outside that set, the function γ? is bounded away from zero for all r > 0
and the eigenvalue equation (2-16) becomes

−∂r (A(r)∂∗r ur )+B(r)ur = 0, (3-2)

where ∂∗r = ∂r + 1/r and

A(r)=
r2

m2+ k2r2 , B(r)= 1−
k2

m2

A(r)8(r)
γ?(r)2

+
r

γ?(r)
∂r

(
W (r)

m2+ k2r2

)
. (3-3)

3A. Asymptotic behavior at the origin and at infinity. Our first goal is to determine the asymptotic
behavior of the solutions of the complex ODE (3-2) as r → 0 and r →∞, assuming that a 6= 0 or
b /∈ [0, 1]. We start with the behavior at the origin. If ur is a solution of (3-2), we set

ur (r)=
1
r
v
(

log 1
r

)
, r > 0,

or equivalently v(x) = e−x ur (e−x) for x = log(1/r) ∈ R. The new function v : R→ R satisfies the
equation

v′′(x)+ 2k2A(e−x)v′(x)− C(x)v(x)= 0, where C(x)= e−2x B(e
−x)

A(e−x)
. (3-4)

In view of (3-3) we have A(e−x)=O(e−2x) and C(x)=m2
+O(e−2x)+O(e−x

|W ′(e−x)|) as x→+∞.
Thus applying, e.g., [Coddington and Levinson 1955, Theorem 3.8.1], we deduce that (3-4) has a unique
solution v such that emxv(x)→ 1 as x→+∞. Returning to the original variables, we conclude that (3-2)
has a unique solution ur such that r1−mur (r)→ 1 as r→ 0. This solution ur and its first derivative u′r
depend continuously on the various parameters in (3-2), including the vorticity profile W ∈ C1

b(R+) and
the spectral parameter s = m(a− ib) ∈ C, uniformly in r on any bounded interval of the form (0, R).
Any linearly independent solution of (3-2) blows up like r−1−m as r → 0, and is therefore not square
integrable near the origin.

We next study the behavior at infinity. If ur is a solution of (3-2), we define w(r) = r1/2ur (r) and
obtain for w the equation

w′′(r)+
A′(r)
A(r)

w′(r)−D(r)w(r)= 0, where D(r)=
B(r)
A(r)

+
3

4r2 −
1
2r

A′(r)
A(r)

. (3-5)

We have A′(r)/A(r) = O(r−3) and D(r) = k2
+ O(r−2) as r → ∞, because Remark 1.2 implies

W (r) = O(r−4), W ′(r) = O(r−5), and 8(r) = O(r−6) in that limit. Invoking again [Coddington and



1792 THIERRY GALLAY AND DIDIER SMETS

Levinson 1955, Theorem 3.8.1], we deduce that (3-5) has a unique solution w such that ekrw(r)→ 1 as
r→∞; hence (3-2) has a unique solution satisfying r1/2ekr ur (r)→ 1 as r→∞. This solution and its
first derivative depend continuously on the parameters in (3-2), uniformly on the interval (R,∞) for any
R > 0. Any linearly independent solution of (3-2) grows like r−1/2ekr as r→∞, and is therefore not
square integrable.

Summarizing, we have shown:

Lemma 3.1. If m 6=0 and k 6=0, any eigenvalue of the linear operator Lm,k ∈L(Xm,k) outside the essential
spectrum (2-4) is necessarily simple. Moreover, if ur is the radial velocity profile of the corresponding
eigenfunction, there exist α, β ∈ C such that

lim
r→0

r1−|m|ur (r)= α and lim
r→∞

r1/2e|k|r ur (r)= β.

3B. Eigenvalues on the imaginary axis: Kelvin waves. In a second step, we consider the eigenvalues of
the linearized operator Lm,k on the imaginary axis. The corresponding eigenfunctions describe “vibration
modes” of the columnar vortex and were first studied by Kelvin [1880] in the particular case of Rankine’s
vortex. Strictly speaking, this subsection is not part of the proof of Theorem 1.3, but in view of the physical
relevance of the Kelvin waves it is worth mentioning a few results that can be rigorously established.

In what follows, we thus assume that a = 0 and b /∈ (0, 1), so that γ?(r) 6= 0 for all r > 0. In that case
(3-2) has real coefficients, and its solutions can be studied using standard ODE techniques. For simplicity
we suppose here that the vorticity profile W ∈ W is the restriction to R+ of a smooth even function on R

satisfying W ′′(0) < 0, as is the case for the Kaufmann–Scully vortex (1-8) or the Lamb–Oseen vortex
(1-9). We consider separately the regimes where b ≥ 1 and b ≤ 0.

Lemma 3.2. For any m 6= 0 and k 6= 0, the set of all b > 1 such that (3-2) with a = 0 has a nontrivial
solution in H 1(R+, r dr) is a countable family which accumulates only at 1. Moreover, (3-2) has no
nontrivial solution in H 1(R+, r dr) if a = 0 and b = 1.

Proof. When b > 1, we apply to (3-2) the change of variables ur = rmA(r)−1/2v, where A(r) is as in
(3-3). A direct calculation shows that the new function v satisfies

−∂2
r v−

2m+1
r

∂rv+ (k2
+F(r)+G(r))v = 0, r > 0, (3-6)

where

F(r)=
k2A(r)

r2 (−2+ 3k2A(r)), G(r)=−
k2

m2

8(r)
γ?(r)2

+
r

A(r)γ?(r)
∂r

(
W (r)

m2+ k2r2

)
.

We assume that b = 1+ h2 for some small h > 0, and we expand

−γ?(r)= 1+ h2
−�(r)= h2

+ ρr2
+O(r4) as r→ 0,

where ρ =−�′′(0)/2=−W ′′(0)/8> 0. If r = hs, it is straightforward to verify that

h4(k2
+F(hs)+G(hs))=−

4k2

m2

1
(1+ ρs2)2

+O(h2) as h→ 0,
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uniformly for all s>0. Thus the new functionw defined by settingw(s)= v(hs) satisfies the semiclassical
Schrödinger equation

Lhw := −h2
(
∂2

sw+
2m+1

s
∂sw

)
−

4k2

m2

w

(1+ ρs2)2
+U (s, h)w = 0, (3-7)

for all s > 0, where U (s, h)=O(h2) as h→ 0, uniformly in s. Since the principal part of the potential
term in (3-7) is negative, standard results in semiclassical analysis [Simon 1983; Helffer and Sjöstrand
1984] show that the operator Lh has negative eigenvalues if h is sufficiently small, and that the number of
these bound states is O(h−1) as h→ 0. Moreover, since F(r)+G(r)→ 0 as r→∞, the bottom of the
essential spectrum of Lh is k2h4 > 0 for any h > 0. These two observations together imply that Lh has a
zero eigenvalue for a countable sequence hn→ 0, and returning to the original variables we conclude
that (3-2) with a = 0 has a nontrivial solution in H 1(R+, r dr) for a sequence bn = 1+ h2

n→ 1.
When b = 1, namely h = 0, the leading term in the function B(r)/A(r) satisfies

k2

m2

8(r)
γ?(r)2

=
22

r4 (1+O(r2)) as r→ 0, where 22
=

4k2

m2ρ2 .

To investigate the behavior of the solutions of (3-2) near r = 0 in that case, it is useful make the change
of variables ur (r)= r−1/2U (1/r). Setting x = 1/r , this leads to an equation of the form

U ′′(x)+ C̃
(

1
x

)
U ′(x)+ D̃

(
1
x

)
U (x)= 0, x > 0, (3-8)

where C̃(r) = O(r3) and D̃(r) = 22
+ O(r2) as r → 0. Using [Coddington and Levinson 1955,

Theorem 3.8.1], we deduce that (3-8) has two linearly independent solutions satisfying U±(x) =
e±i2x(1+O(1/x)) as x → +∞. If we now return to the original variables, we conclude that (3-2)
has two linearly independent solutions φ± such that

φ±(r)=
1
√

r
e±i2/r (1+O(r)) as r→ 0. (3-9)

As is easily verified, no nontrivial linear combination of φ+ and φ− can belong to H 1(R+, r dr), which
means that (3-2) has no nontrivial solution if a = 0 and b = 1. �

The situation is completely different when b ≤ 0.

Lemma 3.3. For any m 6= 0 and k 6= 0, the set of all b ≤ 0 such that (3-2) with a = 0 has a nontrivial
solution in H 1(R+, r dr) is finite. Moreover:

(1) This set is nonempty for a finite number of values of m only.

(2) For both the Kaufmann–Scully vortex (1-8) and the Lamb–Oseen vortex (1-9), equation (3-2) has no
nontrivial solution when a = 0 and b ≤ 0 if |m| ≥ 2.

Proof. If a = 0 and b ≤ 0, then γ?(r) = �(r)− b = �(r)+ |b| > 0. In this region, it is easy to verify
that the coefficient B(r) < 1 defined in (3-3) is an increasing function of both parameters |m| and |b|.
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Moreover, using the bounds on �, W, and 8 which follow from Assumptions H1, H2, see Remark 1.2,
we obtain the estimate

sup
r>0
(1−B(r))≤

C
m2 sup

r>0

(
8(r)

(�(r)+ |b|)2
+

W (r)+ r |W ′(r)|
�(r)+ |b|

)
≤

C
m2

1
1+ |b|

,

where the constant C depends only on the vorticity profile. As a consequence, we see that B(r)≥ 0 when
|m| or |b| is large enough, and this implies that (3-2) has no nontrivial solution; see (3-10) below. It
follows that the linearized operator Lm,k can have eigenvalues s = m(a− ib) with a = 0 and b ≤ 0 only
for a finite number of values of m ∈ Z, and using Sturm–Liouville theory we also conclude that, for any
m ∈ Z, there exist only finitely many eigenvalues with a = 0 and b ≤ 0. Interestingly enough, for both
the Kaufmann–Scully vortex (1-8) and the Lamb–Oseen vortex (1-9), an explicit calculation, which is
reproduced in Section A7, shows that B(r)≥ 1− 4/m2, so that there are no eigenvalues in this region
when |m| ≥ 2. �

As a final comment, we mention that when m =±1 there are always eigenvalues with a = 0 and b≤ 0.
Indeed, due to translation invariance, the operator Lm,0 has a zero eigenvalue with eigenfunction

u =−im�er + (W−�)eθ , ω =W ′ez.

That eigenvalue bifurcates out of the essential spectrum as the parameter k varies, so that Lm,k has at
least one eigenvalue s =−imb with b < 0 if |m| = 1 and |k| is small enough.

3C. Eigenvalues outside the imaginary axis: Howard identities. For our next step in the study of the
eigenvalue equation (3-2), we use a classical method originally due to Rayleigh [1879] to show that the
linearized operator Lm,k has no spectrum in large regions of the complex plane, which are depicted in
Figure 1. The idea is to derive integral identities satisfied by the hypothetical eigenfunctions, which
eventually lead to a contradiction.

Assume thus that the eigenvalue equation (3-2) has a nontrivial solution ur ∈ H 1(R+, r dr) for some
s = m(a− ib) ∈ C, where a 6= 0. Multiplying both sides of (3-2) by r ūr and integrating over R+, we
easily obtain, using the results of Section 3A∫

∞

0
(A(r)|∂∗r ur |

2
+B(r)|ur |

2)r dr = 0. (3-10)

Note that the function B is complex-valued if a 6= 0, so that (3-10) gives two integral relations for the
radial velocity ur . For instance, taking the imaginary part of (3-10) and using the expression (3-3) of B,
we obtain the identity

a
∫
∞

0

{
2(b−�(r))

(a2+ (�−b)2)2
k2

m2A(r)8(r)+
r

a2+ (�−b)2
∂r

(
W (r)

m2+ k2r2

)}
|ur |

2r dr = 0. (3-11)

This relation is identically satisfied if a = 0, but gives useful information if a 6= 0. For instance, if b ≤ 0,
then b−�(r) < 0 for all r > 0, and Assumption H1 implies

8(r) > 0 and ∂r

(
W (r)

m2+ k2r2

)
< 0 for all r > 0.
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Figure 1. Right: The information obtained so far on the spectrum of the linearized
operator (2-1), using the parametrization s = m(a − ib). Kelvin modes are located
on the imaginary axis a = 0, and accumulate only at the upper edge of the essential
spectrum, which fills the segment a = 0, b ∈ [0, 1]. The rest of the spectrum, if any,
consists of isolated eigenvalues which can accumulate only on the essential spectrum,
and are contained in a region of the form |a|≤M , b∈[0, 1] according to Proposition 3.4.
Left: The angular velocity profile � and the critical radius r̄ associated with a spectral
point a = 0, b = b̄ inside the essential spectrum.

Thus the integrand in (3-11) is nonpositive and not identically zero; hence equality (3-11) cannot hold.
We conclude that the operator Lm,k has no eigenvalue s = m(a− ib) with a 6= 0 and b ≤ 0; see Figure 1.
Unfortunately, we do not know how to use the relation (3-10) to preclude the existence of eigenvalues of
Lm,k in other regions of the complex plane.

The following approach, due to [Howard 1961; Howard and Gupta 1962], provides other identities
similar to (3-10), which give further information on the possible eigenvalues. Define ur = q(r)vr , where
q is a (real- or complex-valued) weight function satisfying q(r) 6= 0 for all r > 0. Then vr is a solution to

−∂r (q(r)2A(r)∂∗r vr )+ E(r)vr = 0, (3-12)

where

E(r)= q(r)2B(r)− q(r)q ′(r)
(
A′(r)−

A(r)
r

)
− q(r)q ′′(r)A(r).

Multiplying both sides of (3-12) by r v̄r and integrating over R+, we deduce∫
∞

0
(q(r)2A(r)|∂∗r vr |

2
+ E(r)|vr |

2)r dr = 0. (3-13)

If q is real-valued, then q2
|vr |

2
= |ur |

2 and taking the imaginary part of (3-13) we recover (3-11), but the
real part gives new information. If q is complex, both the real and the imaginary parts of (3-13) provide
new information.

Following [Howard and Gupta 1962], we now consider in more detail some interesting particular cases
of (3-13).
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Case 1: q(r)= γ?(r). We then have

E(r)= γ?(r)2−
k2

m2A(r)8(r)+rγ?(r)∂r

(
W (r)

m2+ k2r2

)
−γ?(r)γ ′?(r)

(
A′(r)−

A(r)
r

)
−γ?(r)γ ′′? (r)A(r).

Since rγ ′?(r)= r�′(r)=W (r)− 2�(r), we observe that

γ ′?(r)
(
A′(r)−

A(r)
r

)
+ γ ′′? (r)A(r)= r∂r

(
γ ′?(r)A(r)

r

)
= r∂r

(
W (r)− 2�(r)

m2+ k2r2

)
, (3-14)

and we deduce the following simpler expression of E(r):

E(r)= γ?(r)2−
k2

m2A(r)8(r)+ 2rγ?(r)∂r

(
�(r)

m2+ k2r2

)
.

In particular, taking the imaginary part of (3-13), we obtain the identity

2a
∫
∞

0

{
(b−�(r))(A(r)|∂∗r vr |

2
+ |vr |

2)− r∂r

(
�(r)

m2+ k2r2

)
|vr |

2
}

r dr = 0. (3-15)

If we now assume that b ≥ 1, so that b−�(r) > 0 for all r > 0, we see that all terms in the integrand of
(3-15) are nonnegative, which leads to a contradiction if a 6= 0. We conclude that the linear operator Lm,k

has no eigenvalue s = m(a− ib) if a 6= 0 and b ≥ 1; see Figure 1.

Case 2: q(r)= γ?(r)1/2. Proceeding as above, we find

E(r)=γ?(r)−
k2

m2

A(r)8(r)
γ?(r)

+r∂r

(
W (r)

m2+ k2r2

)
−

1
2
γ ′?(r)

(
A′(r)−

A(r)
r

)
−

1
2
γ ′′? (r)A(r)+

1
4
γ ′?(r)

2

γ?(r)
A(r).

Using again (3-14), we deduce that

E(r)= γ?(r)−
k2

m2

A(r)8(r)
γ?(r)

+
r
2
∂r

(
W (r)+ 2�(r)

m2+ k2r2

)
+

1
4
�′(r)2

γ?(r)
A(r).

In particular, taking the imaginary part of (3-13), we obtain the identity

−a
∫
∞

0

{
A(r)|∂∗r vr |

2
+ |vr |

2
+

A(r)
a2+ (�− b)2

(
k28(r)

m2 −
�′(r)2

4

)
|vr |

2
}

r dr = 0. (3-16)

As a consequence, if we assume that

J (r)≡
8(r)
�′(r)2

≥
m2

4k2 for all r > 0, (3-17)

we see that all terms in the integrand of (3-16) are nonnegative, which leads to a contradiction if a 6= 0.
We conclude that (3-17) is a sufficient condition for spectral stability. Unfortunately, condition (3-17) is
never met for the Lamb–Oseen vortex, because J (r)→ 0 as r →+∞ in that case. In the case of the
Kaufmann–Scully vortex, it is satisfied only if m2

≤ 4k2.
The results obtained by Howard’s approach can thus be summarized as follows.

Proposition 3.4. Assume that the vorticity profile W satisfies Assumption H1 in Section 1B. Then for any
m 6= 0 and k 6= 0 the following hold:
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(i) The linearized operator Lm,k has no eigenvalue s = m(a− ib) with a 6= 0 and b(1− b)≤ 0.

(ii) If condition (3-17) is satisfied, then Lm,k has no eigenvalue outside the imaginary axis.

3D. Critical layers and embedded eigenvalues. We assume here that a = 0 and 0 < b < 1, which
means that the spectral parameter s = m(a− ib) is contained in the essential spectrum of the linearized
operator Lm,k and does not coincide with one of its endpoints. The natural extension of the eigenvalue
equation (3-2) to this situation2 is

−∂r (A(r)∂∗r ur )+

[
1−

k2

m2

A(r)8(r)
(�(r)− b)2

+
r

(�(r)− b)
∂r

(
W (r)

m2+ k2r2

)]
ur = 0. (3-18)

Since the value of b belongs to the range of the angular velocity �, both denominators in (3-18) vanish at
exactly one point r̄ > 0, characterized by �(r̄)= b, so that (3-18) becomes singular at that point. In the
physical literature, singularities of the eigenvalue equation are usually avoided by allowing the variable r
to take slightly complex values, a procedure that is referred to as “critical layer analysis” in this context
[Drazin and Reid 1981].

To perform such an analysis, we restrict our attention in the rest of this section to vorticity profiles W
which satisfy Assumption H1 and, in addition, are real-analytic on (0,∞), so that the angular velocity �
and the Rayleigh function 8 are analytic too. According to the usual terminology, the point r̄ is then a
regular singular point of (3-18); see, e.g., [Coddington and Levinson 1955, Chapter 4] or Section A3 below.
Extending the range of the variable r to a neighborhood of (0,∞) in C allows us to make a connection
between solutions of (3-18) defined on the interval (0, r̄) and others defined on (r̄ ,∞). In a neighborhood
of r̄ , the behavior of the solutions of (3-18) is determined by the roots d of the indicial equation

d(d − 1)+
k2

m2 J (r̄)= 0. (3-19)

We distinguish three cases.

Case 1: 0< J (r̄) < m2/(4k2). The roots of (3-19) are real and simple:

d± :=
1
2
±

(1
4
−

k2

m2 J (r̄)
)1/2

.

In particular, we have 0 < d− < 1
2 < d+ < 1. The Frobenius method [Coddington and Levinson 1955,

Section 4.8] can be used to construct two real-valued analytic functions V± on (0,∞) such that V±(r̄)= 1
and such that the functions φ± defined by

φ±(r)= |b−�(r)|d±e(iπ/2)(1−sgn(b−�(r)))d±V±(r), r > 0, (3-20)

are independent solutions of (3-18) on both intervals (0, r̄) and (r̄ ,∞). Note that φ± are real-valued on
(r̄ ,∞), but complex-valued (although with a constant phase) on the interval (0, r̄).

2We emphasize that the derivation of (3-2) from the spectral problem was performed in Section 2 under the assumption that
s = m(a− ib) does not belong to the essential spectrum.
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Case 2: J (r̄) > m2/(4k2). The roots of (3-19) are complex conjugate:

d± :=
1
2
± iδ, where δ =

( k2

m2 J (r̄)− 1
4

)1/2
.

Similarly, the Frobenius method yields the existence of two independent solutions φ±, which we write in
the form

φ±(r)= |b−�(r)|1/2e±iδ log |b−�(r)|e(iπ/2)(1−sgn(b−�(r)))d±V±(r). (3-21)

Case 3: J (r̄) = m2/(4k2). Equation (3-19) possesses the unique root 1
2 with multiplicity 2, and two

independent solutions of (3-18) can be constructed such that

φ+(r)= |b−�(r)|1/2e(iπ/4)(1−sgn(b−�(r)))V+(r),

φ−(r)= |b−�(r)|1/2e(iπ/4)(1−sgn(b−�(r)))

×
[(

log |b−�(r)| + iπ
2 (1− sgn(b−�(r)))

)
V+(r)+ V−(r)

]
.

(3-22)

The following technical lemma emphasizes the relevance of the singular functions φ± for the approxi-
mation of solutions of (3-18) by nonsingular solutions of (3-2). In the statement, the vorticity profile W,
the spectral parameter s =−imb and the corresponding singular radius r̄ are defined as above. However,
we consider a sequence (un)n∈N of smooth solutions of the eigenvalue equation (3-2) where the spectral
parameter s is replaced by some complex number sn with nonzero real part (so that sn does not belong to
the essential spectrum), and where also the vorticity profile W is replaced by some function Wn that is
allowed to depend on n.3 We assume that sn→ s and Wn→W as n→∞. In what follows, for ρ > 0
we denote by D(r̄ , ρ)⊂ C the open disc of radius ρ centered at r̄ + 0i . When no confusion is possible,
we also use the same symbols for functions of the real variable r ∈ (0,∞) and their analytic extensions
into (part of) the complex plane.

Lemma 3.5. Let (un)n∈N be a sequence of solutions of (3-2) corresponding to a sequence of spectral
parameters sn = m(an − ibn) and of real-valued analytic profiles Wn . Suppose that

(i) an > 0 for all n, and an→ 0, bn→ b ∈ (0, 1) as n→∞;

(ii) Wn→W in C1
b(R+) as n→∞;

(iii) there exists ρ > 0 such that, for all n ∈ N, the radius of analyticity of Wn at r̄ is at least equal to ρ,
and Wn→W uniformly in D(r̄ , ρ).

If un(r) and u′n(r) have a limit as n→∞ for some r ∈ (0,∞) \ {r̄}, then there exist α± ∈ C such that
un→ α+φ++α−φ− in the C1 topology on compact subsets of (0,∞)\ {r̄}, where φ± are given by (3-20),
(3-21) or (3-22) depending on the roots of the indicial equation.

The proof of Lemma 3.5 is postponed to Section A3 below where we also establish the main properties
of φ±, in particular the analyticity of V± across the singularity r̄ and the fact these functions are real-valued.
For the moment, we observe that the implicit determination of logarithms we opted for in constructing the
solutions φ± is directly related to the assumption that an > 0 in Lemma 3.5. An approximation procedure

3The reason for the latter will become clear in Section 4.
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valid for negative values of an would involve the complex conjugates of the functions φ± defined in
(3-20)–(3-22).

Remark 3.6. The expressions (3-20)–(3-22) show in particular that no nontrivial solution of (3-18) lies
in H 2(r̄ − ε, r̄ + ε) if ε > 0. As we know that the radial velocity ur associated with any vorticity vector
ω ∈ Xm,k belongs to H 1(R+, r dr)∩ H 2

loc(R+), we deduce from the observation above that the linear
operator Lm,k acting on Xm,k has no nonzero eigenvalue s embedded in the continuous spectrum (2-4).

Finally, repeating the proof of Lemma 3.1 for (3-18), we easily obtain:

Lemma 3.7. If m 6= 0, k 6= 0, and 0< b < 1, there exist a unique solution ψ0 of (3-18) on (0, r̄) and a
unique solution ψ∞ of (3-18) on (r̄ ,∞) such that

lim
r→0

r1−|m|ψ0(r)= 1 and lim
r→∞

r1/2e|k|rψ∞(r)= 1.

Moreover, both ψ0 and ψ∞ are real-valued.

Since (3-18) is a linear equation, we infer the existence of constants α0
±
, α∞
±
∈ C such that

ψ0 = α
0
−
φ−+α

0
+
φ+ on (0, r̄), ψ∞ = α

∞

−
φ−+α

∞

+
φ+ on (r̄ ,∞), (3-23)

where φ± are defined in (3-20)–(3-22).

4. The homotopy argument

This section is the core of the proof of Theorem 1.3. We concentrate on the situation where the angular
Fourier mode m and the vertical wave number k are both nonzero, because the cases m = 0 and k = 0
have already been treated in Sections 2A and 2B, respectively. In view of the symmetry properties (2-6),
we can assume without loss of generality that m ≥ 1 and k > 0.

The argument is by contradiction: given a vorticity profile W satisfying Assumptions H1, H2 in
Section 1B, we assume that there exist an integer m ≥ 1 and a real number k > 0 such that the linearized
operator Lm,k has at least one eigenvalue outside the imaginary axis. The strategy is then to perform a
homotopy between the vorticity profile W0 :=W and a reference profile W1 for which we know a priori
that the corresponding linearized operator has no eigenvalue with nonzero real part. Since eigenvalues
outside the imaginary axis depend continuously on the vorticity profile, in an appropriate topology, this
implies in our situation that all eigenvalues necessarily merge into the essential spectrum as the homotopy
parameter varies from 0 to 1. We eventually reach a contradiction by showing that such a merger is
impossible. This is achieved by a careful asymptotic analysis of the solutions of the complex ODE (3-2)
in the limit where the real part of the eigenvalue s = m(a− ib) vanishes. Our approach combines the
results of Section 3D on critical layers, the integral identities obtained by Howard’s method in Section 3C,
and new ingredients which rely on the monotonicity Assumption H2.

Since we have to consider various vorticity profiles in the course the proof, the linearized operator (2-1)
will sometimes be denoted by LW

m,k instead of Lm,k , to avoid any ambiguity. The following continuity
property plays an essential role in our argument.
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Lemma 4.1. The (linear) mapping W 7→ LW
m,k is continuous from C1

b(R+) into L(Xm,k).

Proof. As can be seen from definitions (2-1)–(2-3), the linearized operator LW
m,k has variable coefficients

depending (linearly) on the functions �, r�′, W, and W ′. Now, we have the estimate

‖�‖L∞(R+)+‖r�
′
‖L∞(R+) ≤ C‖W‖L∞(R+),

which follows from the representation formula (1-16) and the identity r�′=W−2�. Thus all coefficients
of LW

m,k are L∞ functions that depend continuously on W in the topology of C1
b(R+), and since the

Biot–Savart map ω 7→ u is bounded in Xm,k by Proposition A.1 below, we obtain the desired result. �

4A. Reduction to a real analytic vorticity profile. We now present the contradiction argument in detail.
We fix m ≥ 1, k > 0, and we assume that there exists a vorticity profile W0 ∈W such that the associated
linear operator LW0

m,k ∈ L(Xm,k) has at least one (isolated) eigenvalue outside the imaginary axis. Our goal
is to prove that this is impossible, which is exactly the conclusion of Theorem 1.3.

In a first step, we show that one can assume without loss of generality that the profile W0 ∈W is real
analytic on R+. By this we mean more precisely that W0 is the restriction to R+ of a real analytic even
function defined on the whole real line. Indeed, we know from Proposition 2.1 that, for any W ∈W , the
spectrum of LW

m,k outside the imaginary axis consists of isolated eigenvalues with finite multiplicity, which
are in fact simple as asserted by Lemma 3.1. Invoking Lemma 4.1 and classical perturbation theory [Kato
1966, Chapter 4, §3.5], we observe that these (hypothetical) eigenvalues depend continuously on the
vorticity profile W in the topology of C1

b(R+). In particular, if W is close enough to W0 in that topology,
we are sure that the operator LW

m,k has at least one eigenvalue with nonzero real part.
We next invoke a density result that will be established in Section A4 below.

Lemma 4.2. The subset W ω of W consisting of vorticity profiles which are also real analytic on R+ is
dense in W for the topology of C1

b(R+).

The proof of Lemma 4.2 is not straightforward because the definition of the class W involves the
quantity J, introduced in (1-20), which depends in a nonlinear way on the vorticity profile W. Thus, given
W ∈ W , we cannot construct an approximation Wε ∈ W ω just by taking the convolution of W with a real
analytic mollifier. To avoid this difficulty, we prove in Section A4 that all quantities �, W, 8 are entirely
determined by the auxiliary function J, and we even provide explicit reconstruction formulas. Then, at
the level of J, we use a nonlinear approximation scheme of the form

1
√

1+ Jε
= Gε ∗

1
√

1+ J
, ε > 0,

where Gε denotes the heat kernel on the half-line R+ with Dirichlet boundary condition at r = 0. This
provides an approximation procedure within the class W which allows us to prove Lemma 4.2; see
Section A4 for details.

Taking advantage of Lemma 4.2 we assume from now on that the initial vorticity profile W0 in our
contradiction argument is real analytic, namely W0 ∈W ω.



SPECTRAL STABILITY OF INVISCID COLUMNAR VORTICES 1801

4B. Construction of the homotopy. In the particular example of the Kaufmann–Scully vortex (1-8), the
function (1-20) reduces to J (r)= 1+ 1/r2

≥ 1. By a simple rescaling we deduce that, for the vorticity
profile W1 ∈W ω defined by

W1(r)=
2

(1+ 4k2r2/m2)2
=

2m4

(m2+ 4k2r2)2
, r ≥ 0, (4-1)

the stability condition (3-17) is satisfied, so that the linear operator LW1
m,k has no eigenvalue outside the

imaginary axis as a consequence of Proposition 3.4. To interpolate in the class W between the initial
profile W0 ∈W ω and the reference profile (4-1), we use the following result, whose proof is also postponed
to Section A4.

Lemma 4.3. If W0,W1 ∈W , there exists a Lipschitz function H : [0, 1] → C1
b(R+) such that H(0)=W0,

H(1) = W1, and Wt := H(t) ∈ W for any t ∈ [0, 1]. Moreover, if W0,W1 ∈ W ω, then Wt ∈ W ω for all
t ∈ [0, 1]. In that case, if W ′′1 (0) < 0, then W ′′t (0) < 0 for all t ∈ (0, 1].

Since the class W is not convex, the linear interpolation H(t)= (1− t)W0+ tW1 is not appropriate
here. Instead, we use again the fact that a vorticity profile W ∈W is entirely determined by the auxiliary
function (1-20), and at the level of J we define the homotopy H by the nonlinear interpolation procedure

1
√

1+ Jt
=

1− t
√

1+ J0
+

t
√

1+ J1
for all t ∈ [0, 1]. (4-2)

If J0 and J1 are real analytic, so is Jt for all t ∈ [0, 1], and it follows that Wt ∈W ω for all t ∈ [0, 1]. We
refer to Section A4 for details.

4C. The bifurcation point. For any t ∈ [0, 1], we denote by Wt ∈W ω the vorticity profile obtained from
Lemma 4.3, where W0 ∈W ω is the initial vorticity defined in Section 4A and W1 is given by (4-1). We
also introduce the associated angular velocity

�t(r)=
1
r2

∫ r

0
Wt(s)s ds, r > 0,

and we define 8t = 2�t Wt and Jt = 8t/(�
′
t)

2 as in (1-19), (1-20). We consider the family of linear
operators LWt

m,k , indexed by the homotopy parameter t ∈ [0, 1], which is uniformly bounded in L(Xm,k)

by Lemma 4.1. For each t ∈ [0, 1], it follows from Proposition 2.1 and Lemma 3.1 that the spectrum
of LWt

m,k outside the imaginary axis consists of simple isolated eigenvalues. If s = m(a− ib) is such an
eigenvalue, we know from Proposition 3.4 that 0< b < 1, and by uniform boundedness there exists a
constant M > 0 (independent of t) such that 0< |a| ≤ M .

As the homotopy parameter t varies, the isolated eigenvalues of LWt
m,k move continuously in the complex

plane, as described, e.g., in [Kato 1966, Chapter 4, §3.5], and we chose our reference profile W1 so that
the associated linearized operator has no eigenvalue with nonzero real part. This implies that, when t
increases from 0 to 1, all isolated eigenvalues of LWt

m,k eventually merge into the essential spectrum on the
imaginary axis. In particular, we can define the bifurcation point

t∗ = inf{t ∈ (0, 1] | σ(LWτ

m,k)⊂ iR for all τ ∈ [t, 1]}.
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Our assumption on W0 and the continuity of the eigenvalues imply that t∗>0 and σ(LWt∗
m,k)⊂ iR. Moreover,

there exist an increasing sequence tn→ t∗ and a sequence of isolated eigenvalues sn = m(an − ibn) of
LWtn

m,k such that an 6= 0, 0< bn < 1, and

an + ibn→ i b̄ as n→∞ (4-3)

for some b̄ ∈ [0, 1]. In view of the second identity in (2-6), we can assume without loss of generality that
an > 0 for all n ∈ N. Associated with b̄, we also introduce the critical radius

r̄ =
{
�−1

t∗ (b̄) if b̄ > 0,
+∞ if b̄ = 0.

(4-4)

As Wt∗ ∈ W ω by construction, we recall that �t∗ : R+→ R+ is real analytic, strictly decreasing on R+,
and satisfies �t∗(0)= 1 and �t∗(r)→ 0 as r→∞, so that r̄ ∈ [0,∞] is well-defined; see Figure 1.

In the sequel, for notational simplicity, we write W instead of Wt∗ and Wn instead of Wtn . Note in
particular that, after this redefinition, the symbol W no longer refers to the vorticity profile that appears
in the statement of Theorem 1.3! Similarly, we write

�=�t∗, 8=8t∗, J = Jt∗ and �n =�tn , 8n =8tn , Jn = Jtn .

Finally, we also set Lm,k = LW
m,k and Ln

m,k = LWn
m,k . We observe that Wn→W in C1

b(R+) as n→∞, due
to the continuity properties of the homotopy defined in Lemma 4.3.

As is recalled at the beginning of Section 3, for each n ∈ N we may associate to the eigenvalue
sn =m(an− ibn) of Ln

m,k a nontrivial solution un ∈ H 1(R+, r dr)∩ H 2
loc(R+) of the complex differential

equation

−∂r (A(r)∂∗r un)+

[
1−

k2

m2

A(r)8n(r)
γn(r)2

+
r

γn(r)
∂r

(
Wn(r)

m2+ k2r2

)]
un = 0, (4-5)

where γn(r) = �n(r)− bn − ian . As Wn ∈ W ω, it is clear that un is in fact real analytic for all n ∈ N.
According to Lemma 3.1 there exist nonzero complex numbers αn , βn such that

αn = lim
r→0+

r−m+1un(r) and βn = lim
r→∞

r1/2 exp(kr)un(r). (4-6)

In what follows, we often normalize un so that βn = 1 for all values of n.
As n→∞, the ODE (4-5) becomes singular at the point r = r̄ , because γn(r̄)→�(r̄)− b̄= 0 in view

of (4-3) and (4-4). As is explained in Section 3B, the nature of the critical layer near r = r̄ depends upon
whether the quantity J (r̄) is larger or smaller than m2/(4k2). This motivates the following definition:

r∗ =

{
J−1

(
m2

4k2

)
if inf J < m2

4k2 ,

+∞ otherwise.
(4-7)

Note that J : (0,∞)→ R+ is strictly decreasing by Assumption H2, so that r∗ is uniquely defined.
Moreover,

r∗ > 0, J (r) > m2

4k2 for r < r∗ and J (r) < m2

4k2 for r > r∗. (4-8)
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Also, since t∗ > 0 we deduce from (4-2) and from our choice (4-1) of W1 that

J (∞) > 0. (4-9)

In the rest of the proof of Theorem 1.3, to reach the desired contradiction, we consider various cases
according to whether the critical radius r̄ is larger, smaller or equal to 0, r∗, or +∞.

4D. The situation 0 < r̄ < r∗ is excluded. In this case, a contradiction is obtained from identity (3-16),
or rather from its analogue for the solutions of (4-5) where the vorticity profile Wn and the spectral
parameter sn = m(an − ibn) depend on n. In terms of the weighted function

vn(r)=
un(r)

(bn + ian −�n(r))1/2
=
−iun(r)
γn(r)1/2

, r > 0, (4-10)

the identity becomes, after dividing by an 6= 0,∫
∞

0

{
A(r)|∂∗r vn|

2
+ |vn|

2
+

A(r)�′n(r)2

a2
n + (�n(r)− bn)2

(
k2

m2 Jn(r)−
1
4

)
|vn|

2
}

r dr = 0. (4-11)

We choose here to normalize the solutions un of (4-5) so that βn = 1 in (4-6) for all n ∈N. This implies,
in view of the analysis in Sections 3A and 3D and of the definitions in Section 4C, that un(r)→ ψ∞(r)
and u′n(r)→ ψ ′

∞
(r) locally uniformly on (r̄ ,∞] as n→∞, where ψ∞ is the solution of the limiting

equation (3-18) introduced in Lemma 3.7. Moreover, for any ε > 0, the sequence (un) is uniformly
bounded in H 1([r̄ + ε,∞), r dr), and so is the sequence (vn) since |γn(r)| is bounded away from zero
when r ≥ r̄ + ε. This uniform H 1 bound means that the restriction of the integral in (4-11) to the interval
[r̄ + ε,∞) is uniformly bounded for all n ∈ N. As the integral over (0,+∞) is equal to zero, we deduce
that the integral over (0, r̄ + ε) is also uniformly bounded, namely

sup
n∈N

∫ r̄+ε

0

{
A(r)|∂∗r vn|

2
+ |vn|

2
+

A(r)�′n(r)2

a2
n + (�n(r)− bn)2

(
k2

m2 Jn(r)−
1
4

)
|vn|

2
}

r dr <∞. (4-12)

Now comes into play the assumption that r̄ < r∗. If we choose ε > 0 small enough so that r̄ + ε < r∗,
we observe that, due to the definition of r∗ in (4-7), the integrand in (4-12) is nonnegative when n is
sufficiently large. Moreover, for all r > r̄ , we know from (4-10) that vn(r)→ ψ∞(r)(b̄−�(r))−1/2 as
n→∞. So restricting the integral to the interval (r̄ , r̄ + ε) and invoking Fatou’s lemma, we deduce from
(4-12) that ∫ r∗

r̄

A(r)�′(r)2

(b̄−�(r))3

(
k2

m2 J (r)−
1
4

)
|ψ∞(r)|2r dr <∞. (4-13)

The inequality r̄ < r∗ also means that the roots of the indicial equation (3-19) are complex conjugate
so that, according to what we called Case 2 in Section 3D, we have the decomposition ψ∞(r) =
α∞
−
φ−(r)+ α∞+ φ+(r) for r > r̄ , where φ± are given by (3-21). From these expressions, it is easy to

deduce that (4-13) cannot hold if ψ∞ is replaced by either φ+ or φ−, because the integrand is positive
and behaves like (r − r̄)−2 in a neighborhood of r̄ . In the general case where both coefficients α∞

±
are

nonzero, there may be cancellations between the contributions of φ+ and φ−, but due to the logarithmic



1804 THIERRY GALLAY AND DIDIER SMETS

phases in the expressions (3-21) of φ± the function ψ∞ cannot vanish on large sets. More precisely, given
α∞
±
∈ C, there exist ε > 0 and 0< ρ0 < r∗− r̄ such that, for any ρ ∈ (0, ρ0),

1
ρ

meas
(
{r ∈ (r̄ , r̄ + ρ) such that |ψ∞(r)|2 ≥ ε|r − r̄ |}

)
≥

1
2
,

and the same argument as above shows that (4-13) is impossible.

4E. The situation r̄ = 0 is excluded. This case is treated by the same argument as in the previous section
up to and including inequality (4-13). The only difference at that level is the asymptotic behavior of the
functions φ±(r) as r→ r̄ , because r̄ = 0 is now an irregular singular point of the ODE (3-18). According
to (3-9), we have the expansion

φ±(r)=
1
√

r
exp

(
±16ik

mW ′′(0)r

)
(1+O(r)) as r→ 0+. (4-14)

The contradiction then follows exactly as in Section 4D, the integrand of (4-13) being even more singular
here since it behaves like r−4 in a neighborhood of 0.

4F. The situation r∗ < r̄ <∞ is excluded. In that case, we cannot get a contradiction from identity
(4-11), because the various terms in the integrand now have different signs in a neighborhood of the
singular point r̄ . Instead, our argument relies on a detailed analysis of the solutions of (4-5) near r̄ , and
on monotonicity properties that follow from Assumption H2

As in the previous section, we normalize the solutions un of (4-5) so that βn = 1 in (4-6) for all n ∈ N.
In particular, for any r > r̄ , we know that un(r)→ ψ∞(r) and u′n(r)→ ψ ′

∞
(r) as n→∞, where ψ∞ is

as in Lemma 3.7. Applying Lemma 3.5, whose assumptions are satisfied by construction of the homotopy
argument, we deduce that

un(r)→ α∞
−
φ−(r)+α∞+ φ+(r) and u′n(r)→ α∞

−
φ′
−
(r)+α∞

+
φ′
+
(r) (4-15)

for all r ∈ (0,∞) \ r̄ , where α∞
±
∈ C and φ± are the solutions of (3-18) given by (3-20). Note that the

roots d± of the indicial equation (3-19) are now real and distinct, so that we are in the situation referred
to as Case 1 in Section 3D. The convergence (4-15) for some r < r̄ implies, in view of the results in
Section 3A concerning the solutions of (3-2) near the origin, that the normalizing constants αn in (4-6)
converge to some limit α∗ ∈ C as n→∞. We deduce that

α∞
−
φ−(r)+α∞+ φ+(r)=

{
α∗ψ0(r) if r ∈ (0, r̄),
ψ∞(r) if r ∈ (r̄ ,∞).

(4-16)

Now, the functions ψ∞, φ−, φ+ are all real-valued on (r̄ ,∞), and we know from (3-20) that φ±(r)≈
(r − r̄)d± as r → r̄+, where 0 < d− < 1

2 < d+ < 1. These observations imply that both coefficients
α∞
−

and α∞
+

are necessarily real. On the other hand, we deduce from (4-16) that the complex function
α∞
−
φ−+α

∞
+
φ+ must have a constant phase (modulo π ) on the interval (0, r̄), as it is equal to the product

of the real function ψ0 by the complex constant α∗. This, however, is impossible if both coefficients α∞
±

are nonzero, because by (3-20) the complex functions φ± have different phases when r < r̄ and vanish
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at different rates as r→ r̄−. More precisely, since φ+(r)/φ−(r)→ 0 as r→ r̄−, it follows from (4-16),
(3-20) that

α∞
−
= α∗e−iπd−λ, where λ= lim

r→r̄−

ψ0(r)
|b̄−�(r)|d−

∈ R.

If α∞
−
6= 0, then λ 6= 0 and α∗ = α∞− λ

−1eiπd− , so using (4-16) and (3-20) again we obtain

0= Im(α∞
+

e−iπd−φ+(r))= α∞+ sin(π(d+−d−))V+(r), 0< r < r̄ .

As V+(r) 6= 0 for r sufficiently close to r̄ , we conclude that α∞
+

sin(π(d+−d−)) = 0, and this implies
α∞
+
= 0 since 0< d+− d− < 1. Therefore, we must have α∞

−
α∞
+
= 0.

In the rest of this section, using totally different arguments which rely on Assumption H2, we show
that necessarily α∞

−
α∞
+
6= 0 in (4-16), and this will give the desired contradiction. To that purpose, we

introduce the auxiliary functions

U±(r)= (b̄−�(r))d±, r > r̄ , (4-17)

and we denote by L =−∂rA(r)∂∗r +B(r) the linear operator in (3-18). We claim that:

Lemma 4.4 (upper solutions). There exists γ > 0 such that L (U±)≥ γU ′
±
> 0 on (r̄ ,∞).

Proof. For notational simplicity we write U instead of U±, d instead of d±, and b instead of b̄. Computing
L (U ) when U = (b−�)d, we obtain after elementary rearrangements of terms

L (U )= (b−�)d−2(T1+ T2+ T3),

where

T1 =−A�′
2
(

d(d − 1)+
k2

m2 J
)
,

T2 =

(
1−

(
A
r

)′ )
(b−�)2,

T3 =A(b−�)
(

d�′′+ d
(
A′

A
+

1
r

)
�′−

r
A
∂r

(
W

m2+ k2r2

))
.

Since d is a solution of the indicial equation (3-19), we may rewrite

T1(r)=A(r)�′2(r)
k2

m2 (J (r̄)− J (r)), (4-18)

and our Assumption H2 on J implies T1 > 0 on (r̄ ,∞). Next, using the definition of A and the fact that
m2
≥ 1, we observe that

1−
(
A
r

)′
= 1−

m2
− k2r2

(m2+ k2r2)2
≥ 0,

so that T2 ≥ 0 on (0,∞). As for T3, we expand

A′

A
+

1
r
=

3
r
−

2k2r
m2+ k2r2 ,

r
A
∂r

(
W

m2+ k2r2

)
=

W ′

r
−

2k2W
m2+ k2r2 ,
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and we use the identities W = r�′+ 2� and W ′ = r�′′+ 3�′ to derive the alternative expression

T3 =A(b−�)
(
(d − 1)

W ′

r
+

2k2

m2+ k2r2 (W − dr�′)
)
.

Since 0< d < 1, and since W > 0, W ′ < 0 and �′ < 0 by Assumption H1, we deduce that T3 as well is
positive on (r̄ ,∞). Altogether, we have shown that L (U ) > 0 on (r̄ ,∞).

To conclude the proof, we fix r0 > r̄ large enough so that |(A/r)′| ≤ 1
2 for r ≥ r0. In that region, we

have L (U )≥ (b−�)d−2T2 ≥ (b−�)d/2≥ γ0U ′ if γ0 > 0 is small enough. On the other hand, using
(4-18) and the fact that J ′(r̄) < 0, �(r̄)= b, and �′(r̄) < 0, we can find γ1 > 0 small enough so that

T1(r)=
J (r̄)− J (r)
b−�(r)

A(r)�′2(r)
k2

m2 (b−�(r))≥ γ1d(b−�(r))|�′(r)|

for all r in the compact interval [r̄ , r0]. This implies L (U )≥ γ1U ′ on [r̄ , r0], and taking γ =min(γ0, γ1)

we obtained the desired conclusion. �

Corollary 4.5. The solutions φ±(r) of (3-18) given by (3-20) are unbounded as r→∞.

Proof. Assume that φ is a solution of L (φ)= 0 on (r̄ ,∞), which is decomposed as φ =U V , where U
is one of the functions U± defined in (4-17). The equation satisfied by V is

0=L (U V )=−AU V ′′−
(

2AU ′+
(
A′+

A
r

)
U
)

V ′+L (U )V, r ∈ (r̄ ,∞). (4-19)

We interpret the right-hand side of (4-19) as the action on the function V of a second-order differential
operator LU whose coefficients depend on U. Since AU is positive on (r̄ ,∞) by construction, and L (U )
is positive on (r̄ ,∞) by Lemma 4.4, we observe that the maximum principle holds for the operator LU .
As a consequence, the function V which satisfies LU (V ) = 0 cannot have a positive maximum nor a
negative minimum on the interval (r̄ ,∞).

We first choose φ = φ+, U = U−, and we claim that φ+ is unbounded on (r̄ ,∞). Indeed, in the
opposite case, the function V (r) = φ+(r)/U−(r) would tend to zero both as r → r̄+ and as r →∞,
so that V ≡ 0 by the maximum principle, which is clearly absurd. As a second application, we take
φ = φ−, U =U−, and we claim again that φ− is unbounded on (r̄ ,∞). If not, by the maximum principle
the function V (r) = φ−(r)/U−(r) would be nonincreasing on (r̄ ,∞) with V (r)→ 1 as r → r̄+ and
V (r)→ 0 as r→∞. Note that V coincides with the function V− in (3-20) and is therefore analytic up
to the singular point r̄ . Thus, using (4-19) and Lemma 4.4, we can compute

V ′(r̄)= lim
r→r̄+

V ′(r)= lim
r→r̄+

L (U )V −AU V ′′

2AU ′+ (A′+A/r)U
= lim

r→r̄+

L (U )
2AU ′

≥
γ

2A(r̄)
> 0,

and this contradicts the claim that V is nonincreasing. �

As ψ∞ is bounded on the interval (r̄ ,∞), whereas both φ+, φ− are unbounded by Corollary 4.5, the
relation ψ∞ = α∞− φ−+ α

∞
+
φ+ can hold only if both coefficients α∞

−
, α∞
+

are nonzero. This gives the
desired contradiction in the case where r∗ < r̄ <∞.
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4G. The situation r̄ = r∗ < ∞ is excluded. We proceed here as in Section 4F, the only essential
difference being that the exponents d− = d+ = 1

2 are no longer distinct. We are thus in the situation
referred to as Case 3 in Section 3D, where the solutions φ± are given by the expressions (3-22). Applying
Corollary 4.5, we obtain as above that φ+ is unbounded on the interval (r̄ ,∞), but the argument does not
apply to the second solution φ− which contains a logarithmic correction; see (3-22). Nevertheless, we
deduce that the coefficient α∞

−
in the representation (4-16) is necessarily nonzero, and this turns out to be

enough to obtain the desired contradiction. Indeed, due to the logarithmic term, it is easy to verify that,
if θ(r)= arg(α∞

−
φ−(r)+α∞+ φ+(r)), then tan(θ(r))∼−π−1 log(r̄ − r) as r→ r̄ , which shows that the

left-hand side of (4-16) cannot have a constant phase for r ∈ (0, r̄).

4H. The situation r∗ < r̄ = ∞ is excluded. We next consider the case where b̄ = 0 in (4-3), so that
r̄ = +∞ according to (4-4). In that situation, the “critical layer” occurs at very large values of r , in a
region where the eigenvalue equation (4-5) is already in some asymptotic regime. Here we cannot use
the same arguments as in Section 4F to obtain a contradiction, because the location of the critical layer
changes as n is increased. However, it is possible to obtain an accurate representation of the solution of
(4-5) that decays to zero as r→∞ by comparing it with the explicit solution of a model problem, (4-25)
below, which can be expressed in terms of modified Bessel functions. This approximation turns out to be
sufficient to derive a contradiction when combined with the identity (3-11).

Our starting point is the equation (3-5) for wn(r)= r1/2un(r), which reads

w′′n(r)+
A′(r)
A(r)

w′n(r)−Dn(r)wn(r)= 0, r > 0, (4-20)

where, in view of (3-3),

Dn(r)= k2
+

m2
+

3
4

r2 −
1
2r

A′(r)
A(r)

−
k2

m2

8n(r)
γn(r)2

+
r

A(r)γn(r)
∂r

(
Wn(r)

m2+ k2r2

)
. (4-21)

We recall that γn(r) = �n(r) − bn − ian , and we observe that the function r 7→ |γn(r)| reaches its
minimum at r = rn , where rn = �−1

n (bn). As bn → 0, it is clear that rn → ∞ as n → ∞, and
since r2�n(r) converges uniformly on R+ to r2�(r) (by the results of Section A4), we even have
limn→∞ r2

n bn = limr→∞ r2�(r)= 0 > 0; hence

r2
n =

0n

bn
for all n ∈ N, where 0n n→∞−−−→ 0. (4-22)

Similarly we have �′n(rn)=−dnb3/2
n for all n ∈ N, where dn→ 20−1/2 as n→∞.

Equation (4-20) has asymptotically constant coefficients, in the sense that A′(r)/A(r)=O(r−3) and
Dn(r)→ k2 as r→∞. However, in general, the convergence of Dn(r) toward its limit k2 is not uniform
with respect to n ∈ N, because of the “critical layer” that may occur at r = rn . Indeed, if we expand the
expression γn(r) around that point, we obtain to leading order

γn(r)=�n(r)−�n(rn)− ian ≈�
′

n(rn)(r − rn + icn), (4-23)
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where

cn =−
an

�′n(rn)
=

1
dn

an

b3/2
n
. (4-24)

It follows that, for r close to rn ,

8n(r)
γn(r)2

≈
Jn(rn)

(r − rn + icn)2
, where Jn(rn)=

8n(rn)

�′n(rn)2
.

We know that Jn(rn)→ J (∞) as n→∞, where 0< J (∞) < m2/(4k2) (by (4-9) and because r∗ <∞).
Thus, the term involving γn(r)−2 in (4-21) converges to zero as r →∞ uniformly in n ∈ N only if
cn→∞ as n→∞, which is the case if an � b3/2

n . Otherwise, that term plays an important role and has
to be taken into account.

Our strategy is thus to compare for large r the solutions of (4-20) with those of the simplified equation

w′′n(r)−
(

k2
−

k2

m2

Jn(rn)

(r − rn + icn)2

)
wn(r)= 0, (4-25)

which can be solved explicitly in terms of modified Bessel functions. In particular, the unique solution of
(4-25) such that wn(r)∼ e−k(r−rn) as r→∞ is given by

wn(r)= χn(r) :=
√

2
π
(r − rn + icn)

1/2Kνn (k(r − rn + icn)), r > 0, (4-26)

where Kν is the modified Bessel function of the second kind [Abramowitz and Stegun 1964, Section 9.6],
and the parameter νn ∈

(
0, 1

2

)
is determined by the relation

ν2
n =

1
4
−

k2

m2 Jn(rn). (4-27)

To perform a rigorous analysis, we rewrite (4-20) in the equivalent form

w′′n(r)+
A′(r)
A(r)

w′n(r)−
(

k2
−

k2

m2

Jn(rn)

(r − rn + icn)2
+Rn(r)

)
wn(r)= 0, (4-28)

where the remainder Rn is defined by

Rn(r)= Dn(r)− k2
+

k2

m2

Jn(rn)

(r − rn + icn)2
, r > 0. (4-29)

The idea is now to look for a solution of (4-28) in the form

wn(r)= fn(r)χn(r), r > 0,

where χn is as in (4-26), and fn(r)→ 1 as r→∞. The equation satisfied by fn is easily found to be

d
dr
(
A(r)χn(r)2 f ′n(r)

)
=
(
A(r)χn(r)2Rn(r)−A′(r)χn(r)χ ′n(r)

)
fn(r), r > 0.

Integrating both sides over (r,∞), we first obtain

f ′n(r)=−
1

A(r)χn(r)2

∫
∞

r

(
A(s)χn(s)2Rn(s)−A′(s)χn(s)χ ′n(s)

)
fn(s) ds,
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and a second integration, combined with an application of Fubini’s theorem, gives the representation
formula

fn(r)= 1+
∫
∞

r
Kn(r, s) fn(s) ds, (4-30)

where the integral kernel Kn(r, s) has the expression

Kn(r, s)=
(
A(s)χn(s)2Rn(s)−A′(s)χn(s)χ ′n(s)

) ∫ s

r

1
A(t)χn(t)2

dt. (4-31)

We now use the following estimate, whose proof is postponed to Section A5:

Lemma 4.6. For any δ ∈ (0, 1), there exists a constant C > 0 such that

sup
r≥δrn

∫
∞

r
|Kn(r, s)| ds ≤ Cb1/2

n

(
1+ log+

1
bn

)
(4-32)

for all sufficiently large n ∈ N, where log+(x)=max(log(x), 0).

Assuming (4-32) for the moment, we easily deduce that the solution of (4-30) satisfies

sup
r≥δrn

| fn(r)− 1| ≤ Cb1/2
n

(
1+ log+

1
bn

)
n→∞−−−→ 0. (4-33)

Also, differentiating (4-30) and using similar estimates as in the proof of Lemma 4.6, we obtain

sup
r≥δrn

| f ′n(r)| ≤ Cb1/2
n

(
1+ log+

bn

an

)
. (4-34)

These estimates imply that the solution wn = fnχn of (4-28) is very close for large n ∈ N to its approxi-
mation χn defined by (4-26), uniformly on the interval [δrn,∞) for any (small) δ > 0. In particular, in
view of (A-44), there exist positive constants C1,C2 such that

|wn(r)| ≤ C1e−k(r−rn) for r ≥ rn − 1,

|wn(r)| ≥ C2e−k(r−rn) for δrn ≤ r ≤ (1− δ)rn.
(4-35)

To reach the desired contradiction, we now show that these bounds are incompatible with identity
(3-11), which has to be satisfied for all n ∈N by the function un(r)= r−1/2wn(r). In terms of wn , identity
(3-11) becomes∫

∞

0

{
2A(r)(bn −�n)

(a2
n + (�n−bn)2)2

k2

m28n(r)+
r

a2
n + (�n−bn)2

∂r

(
Wn(r)

m2+ k2r2

)}
|wn(r)|2 dr = 0.

The second term in the integrand is obviously negative, because Wn(r) is a decreasing function of r . It
follows that In,1+ In,2 ≤ In,3, where

In,1 =

∫ rn−1

0

A(r)(�n(r)− bn)

(a2
n + (�n(r)−bn)2)2

8n(r)|wn(r)|2 dr, (4-36)

In,2 =

∫ rn+1

rn−1

A(r)(�n(r)− bn)

(a2
n + (�n(r)−bn)2)2

8n(r)|wn(r)|2 dr, (4-37)

In,3 =

∫
∞

rn+1

A(r)(bn −�n(r))
(a2

n + (�n(r)−bn)2)2
8n(r)|wn(r)|2 dr. (4-38)
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Since �n(r)− bn is positive for r < rn and negative for r > rn , the quantities In,1 and In,3 are positive,
whereas In,2 has no obvious sign.

We first estimate In,3. As bn − �n(r) = �n(rn) − �n(r) ≥ �n(rn) − �n(rn+1) ≥ C |�′(rn)| for
r ≥ rn + 1, we have

(bn −�n(r))8n(r)
(a2

n + (�n(r)−bn)2)2
≤

C8n(r)
|�′(rn)|3

≤
C Jn(r)
|�′(rn)|

≤ Cb−3/2
n , r ≥ rn + 1,

and using (4-35), (4-38) we deduce that In,3 ≤ Cb−3/2
n . Next, we bound In,1 from below by restricting

the integral in (4-36) to the region where δrn ≤ r ≤ (1−δ)rn for some small δ > 0. In that region we have
ε1bn ≤�n(r)− bn ≤ ε2bn and |�′n(r)| ≥ ε3b3/2

n for some ε1, ε2, ε3 > 0 depending on δ; hence

(�n(r)− bn)8n(r)
(a2

n + (�n(r)−bn)2)2
≥
ε1bn�

′
n(r)

2 Jn(r)
(a2

n + (ε2bn)2)2
≥

Cb4
n

(a2
n + b2

n)
2 , δrn ≤ r ≤ (1−δ)rn,

and using (4-35) we deduce that

In,1 ≥

∫ (1−δ)rn

δrn

A(r)(bn −�n(r))
(a2

n + (�n(r)−bn)2)2
8n(r)|wn(r)|2 dr ≥

Cb4
n

(a2
n + b2

n)
2 e2k(1−δ)rn .

Finally, when |r − rn| ≤ 1, we have �n(r)− bn ≈ (r−rn)�
′
n(rn); hence

|�n(r)− bn|8n(r)
(a2

n + (�n(r)−bn)2)2
≤

C |�′(rn)|
3
|r − rn|

(a2
n +�

′(rn)2(r−rn)2)2
Jn(rn)≤

C
|�′(rn)|

|r − rn|

((r−rn)2+ c2
n)

2 ,

and using (4-35) we obtain the crude estimate

|In,2| ≤ C
∫ rn+1

rn−1

b−3/2
n |r − rn|

((r−rn)2+ c2
n)

2 dr ≤ C
∫
∞

−∞

b−3/2
n |x |

(x2+ c2
n)

2 dx ≤
Cb−3/2

n

c2
n
≤

Cb3/2
n

a2
n
.

As In,1 ≤ |In,2| + In,3, the estimates obtained so far show that

C3b4
n

(a2
n + b2

n)
2 e2k(1−δ)rn ≤ C4b−3/2

n

(
1+

b3
n

a2
n

)
(4-39)

for some positive constants C3,C4. If an ≥ bn for a sequence of integers n, then multiplying both sides of
(4-39) by (a2

n + b2
n)

2 we clearly obtain an inequality that cannot be satisfied for large n if an→ 0. Thus
we can assume that an ≤ bn for all n ∈ N, in which case (4-39) implies

C3b3/2
n e2k(1−δ)rn ≤ 4C4

(
1+

b3
n

a2
n

)
; hence a2

n ≤ Cb3/2
n e−2k(1−δ)rn . (4-40)

Since rn=O(b−1/2
n ), this means that an is exponentially small when compared to bn . With this information

at hand, it is possible to compute explicitly the quantity In,2 to leading order as n→∞. Indeed, in
this parameter regime, the main contribution to the integral (4-37) comes from an extremely small
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neighborhood of the critical point rn , so that

In,2 ≈−
A(rn)8n(rn)

|�′(rn)|3

∫ rn+1

rn−1

r − rn

(c2
n + (r−rn)2)2

|wn(r)|2 dr

≈−
2A(rn)Jn(rn)

π |�′(rn)|

∫ rn+1

rn−1

r − rn

(c2
n + (r−rn)2)3/2

|Kνn (k(r − rn + icn))|
2 dr, (4-41)

where in the second line we used the fact that the solution wn of (4-20) is well approximated for large n by
the function χn in (4-26) in view of (4-33) and (4-34). Now, an explicit calculation which is reproduced
in Section A6 shows that, for any ν ∈

(
0, 1

2

)
and any ε > 0,

Jν := lim
a→0+

∫ ε

−ε

−ax
(a2+ x2)3/2

|Kν(x + ia)|2 dx =
2π cos(νπ)

1− 4ν2 . (4-42)

Assuming (4-42) for the moment, we deduce from (4-41) that

In,2 ≈
2A(rn)Jn(rn)

π |�′(rn)|

Jνn

cn
as n→∞,

which means in particular that In,2 > 0 when n is sufficiently large. Thus, for large n we must have

C5e2k(1−δ)rn ≤ In,1 ≤ In,1+ In,2 ≤ In,3 ≤ C6r3
n

for some positive constants C5,C6, which is clearly impossible since rn→∞ as n→∞. So we have
reached a contradiction in that case too.

4I. The situation r∗ = r̄ = ∞ is excluded. Having exhausted all possibilities for which r∗ <∞, we
finally consider the case where r∗ =∞. According to (4-7), this occurs if and only if J (∞)≥ m2/(4k2).
Of course, we can assume that r̄ =∞, because when r̄ <∞ a contradiction has already been obtained in
Section 4D or 4E. If J (∞)>m2/(4k2), then Jn(r)> Jn(∞)>m2/(4k2) for all r >0 when n is sufficiently
large, and in that situation we know from Proposition 3.4 that the operator Ln

m,k has no eigenvalue outside
the imaginary axis. However, if J (∞)= m2/(4k2), it is possible that Jn(∞) < m2/(4k2) for all n ∈ N,
in which case we cannot obtain a contradiction directly from Proposition 3.4. In that situation, we must
have Jn(rn)→ m2/(4k2) as n→∞. Two possibilities can occur:

(1) If Jn(rn) < m2/(4k2) for a sequence of integers n, we can get a contradiction by following exactly
the same lines as in Section 4H, the only difference being that the indices νn defined by (4-27) now
converge to zero as n→∞. This is harmless because, as is observed for instance in Remark A.7 below,
all estimates we need hold uniformly in the limit where ν→ 0. We leave the details to the reader.

(2) If instead Jn(rn) ≥ m2/(4k2) for all n ∈ N, we shall prove that the quadratic form given by the
left-hand side of (4-11) is positive definite for sufficiently large values of n, so that (4-11) gives the
desired contradiction. To do that, we use the asymptotic expansions

�n(r)=
0n

r2 +O
( 1

r4

)
, �′n(r)=

−20n

r3 +O
( 1

r5

)
, J ′n(r)= o

(1
r

)
, r→∞, (4-43)
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which are established in Section A4, and we observe that the integrand in (4-11) is nonnegative outside an
interval of the form [rn, rn + δn], where δn→ 0 as n→∞. Indeed, the integrand is clearly nonnegative
for r ≤ rn , and for r ≥ rn we have the lower bound

A(r)�′n(r)2

a2
n + (bn −�n(r))2

(
k2

m2 Jn(r)−
1
4

)
≥

1
m2

�′n(r)
2

(bn −�n(r))2
(Jn(r)− Jn(rn)). (4-44)

In view of (4-43), the last member of (4-44) is bounded from below by −1 if r ≥ rn+O(|J ′(rn)|), which
proves the claim. If we now restrict the integral in (4-11) to the interval [rn− 1, rn+ 1], make the change
of variable r = rn + s, and use the lower bound (4-44), we deduce (after a few obvious simplifications)
that it is sufficient for us to show that the quadratic form

Qn(v) :=

∫ 1

−1

{
|∂sv|

2
+

(
k2
−

εns
c2

n + s2

)
|v|2

}
ds, k > 0, (4-45)

is positive on H 1([−1, 1], ds) for all cn 6= 0 and all sufficiently small εn > 0. This in turn is an
easy consequence of the Sobolev embedding theorem. Indeed, decomposing v = v(0)χ +w, where
χ : [−1, 1] → [0, 1] is smooth, even, and satisfies χ(0)= 1, we first observe that∫ 1

−1

εns
c2

n + s2 |v(0)|
2χ2(s) ds = 0,

by symmetry. Moreover, as w(0)= 0 by construction, we have |w(s)|2 ≤ C |s|‖v‖2H1 . Combining these
observations, we deduce that ∣∣∣∣∫ 1

−1

εns
c2

n + s2 |v|
2 ds

∣∣∣∣≤ Cεn‖v‖
2
H1,

where the constant C > 0 is independent of n. The quadratic form (4-45) is thus positive if εn is sufficiently
small, and we deduce that (4-11) cannot be satisfied. This concludes the contradiction argument initiated
in Section 4A, and hence also the proof of Theorem 1.3.

5. Uniform resolvent estimates

This section is devoted to the proof of Theorem 1.6. Given any s ∈ C with Re(s) 6= 0, we already know
from Theorem 1.3 that the resolvent operator (s− Lm,k)

−1 is bounded in the space Xm,k for all m ∈ Z

and all nonzero k ∈ R. It remains to show that, for any k0 > 0, the resolvent norm ‖(s − Lm,k)
−1
‖ is

uniformly bounded for all m ∈ Z and all nonzero k ∈ Zk0.
Given m ∈ Z, k 6= 0, and ω, f ∈ Xm,k , the resolvent equation (s− Lm,k)ω = f takes the form

γ (r)ωr = ikW (r)ur + fr ,

γ (r)ωθ = ikW (r)uθ + r�′(r)ωr + fθ ,

γ (r)ωz = ikW (r)uz −W ′(r)ur + fz,

(5-1)

where γ (r) = s + im�(r). Here and in what follows, we assume that Re(s) 6= 0, which implies
|γ (r)| ≥ |Re(s)| > 0 for all r > 0. In (5-1), it is understood that the velocity u is obtained from the
vorticity ω by the Biot–Savart formula in the Fourier subspace indexed by m and k; see Section A1 below.
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Proceeding as in the derivation of the eigenvalue equation (2-16) in Section 2, we can transform the
resolvent system (5-2) into a single equation for the radial velocity ur . After some calculations, we obtain
the differential equation

−∂r (A(r)∂∗r ur )+B(r)ur = F(r), (5-2)

where the coefficients in the left-hand side are as in (3-3),

A(r)=
r2

m2+ k2r2 , B(r)= 1+
k2

γ (r)2
A(r)8(r)+

imr
γ (r)

∂r

(
W (r)

m2+ k2r2

)
, (5-3)

and the right-hand side takes the form

F(r)=−∂r

(
m

krγ (r)
A(r) fr

)
−

im2

kγ (r)2
W (r)

m2+ k2r2 fr −
i

kγ (r)
fθ +

2i�(r)
kγ (r)2

fz. (5-4)

Of course, if f = 0, then F = 0 and (5-2) reduces to (2-16). The following result will be useful to estimate
the solutions of (5-2) when |k| is large.

Lemma 5.1. For any m ∈ Z and any s ∈ C with Re(s) 6= 0, there exists a positive constant C = C(m, s)
such that, for any k 6= 0 and any f ∈ Xm,k , the solution ur of (5-2) satisfies

‖A1/2∂∗r ur‖L2 +‖ur‖L2 ≤
C(m, s)
|k|

(‖ur‖L2 +‖ f ‖L2). (5-5)

Proof. As in Section 3C, we set ur (r)= γ (r)1/2v(r). The new function v satisfies the equation

−∂r (A(r)γ (r)∂∗r v)+ E(r)v = γ (r)1/2F(r), (5-6)

where

E(r)= γ (r)B(r)−
γ ′(r)

2

(
A′(r)−

A(r)
r

)
−

1
2
γ ′′(r)A(r)+

γ ′(r)2A(r)
4γ (r)

= γ (r)+
k2

γ (r)
A(r)8(r)+

imr
2
∂r

(
W (r)+ 2�(r)

m2+ k2r2

)
−

m2�′(r)2

4γ (r)
A(r). (5-7)

We also observe that

γ 1/2F =−∂r

(
m

krγ 1/2A fr

)
−

im2

2kγ 3/2

W + 2�
m2+ k2r2 fr −

i
kγ 1/2 fθ +

2i�
kγ 3/2 fz. (5-8)

Without loss of generality, we assume that a := Re(s) > 0. If we multiply both sides of (5-6) by r v̄,
integrate the resulting equality over R+ and take the real part, we obtain the identity

a
∫
∞

0

{
A|∂∗r v|

2
+ |v|2+

A
|γ |2

(
k28−

m2�′2

4

)
|v|2

}
r dr

= Re
∫
∞

0
(∂∗r v̄)

mA
krγ 1/2 frr dr +Re

∫
∞

0
v̄

(
−

im2

2kγ 3/2

W + 2�
m2+ k2r2 fr −

i
kγ 1/2 fθ +

2i�
kγ 3/2 fz

)
r dr.
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Keeping in mind that 8(r) ≥ 0, |γ (r)| ≥ a, and 0 < A(r) ≤ min(1/k2, r2/m2), we can estimate the
various terms in a straightforward way, and we arrive at the inequality

a(‖A1/2∂∗r v‖
2
L2 +‖v‖

2
L2)

≤
Cm2

ak2 ‖v‖
2
L2 +

C
a1/2|k|

‖A1/2∂∗r v‖L2‖ fr‖L2 +
C

a3/2|k|
‖v‖L2(‖ fr‖L2 + a‖ fθ‖L2 +‖ fz‖L2),

where C > 0 is a universal constant. Applying now Young’s inequality, we conclude that

‖A1/2∂∗r v‖L2 +‖v‖L2 ≤
C(m, a)
|k|

(‖v‖L2 +‖ f ‖L2), (5-9)

where the constant depends only on m and a.
Finally, we return to the original function ur (r)= γ (r)1/2v(r). As |γ (r)| ≤ |s| + |m| and

A1/2∂∗r ur =A1/2γ 1/2
(
∂∗r v+

imr�′

2rγ
v

)
,

we have |A1/2∂∗r ur | + |ur | ≤ C(m, s)(|A1/2∂∗r v| + |v|). Thus the desired inequality (5-5) follows imme-
diately from (5-9). �

Equipped with this lemma, we now establish the main result of this section.

Proposition 5.2. Fix any k0 > 0. For any s ∈C with Re(s) 6= 0, there exists a constant C =C(s, k0) such
that, for all m ∈ Z and all nonzero k ∈ Zk0, the following estimate holds for all f ∈ Xm,k :

‖(s− Lm,k)
−1 f ‖L2 ≤ C‖ f ‖L2 . (5-10)

Proof. We proceed by contradiction. If (5-10) does not hold, there exist sequences (mn) in Z, (kn)

in Z∗k0, and ω(n), f (n) in Xm,k such that ‖ω(n)‖L2 = 1 for all n ∈ N, ‖ f (n)‖L2 → 0 as n →∞, and
(s− Lm,k)ω

(n)
= f (n) for all n ∈ N, namely

(s+ imn�(r))ω(n)r = iknW (r)u(n)r + f (n)r ,

(s+ imn�(r))ω
(n)
θ = iknW (r)u(n)θ + r�′(r)ω(n)r + f (n)θ ,

(s+ imn�(r))ω(n)z = iknW (r)u(n)z −W ′(r)u(n)r + f (n)z .

(5-11)

Step 1: We first show that the sequence (mn) is bounded. Indeed, if this is not the case, we can assume
(after extracting a subsequence) that |mn| →∞ as n→∞. In view of the first equation in (5-11), this
implies

‖ω(n)r ‖L2 ≤

∥∥∥∥ iknW u(n)r

s+ imn�

∥∥∥∥
L2
+

∥∥∥∥ f (n)r

s+ imn�

∥∥∥∥
L2

n→∞−−−→ 0. (5-12)

Indeed, we know from Proposition A.1 that ‖knu(n)‖L2 ≤ C‖ω(n)‖L2 ≤ C for all n ∈ N, so that∥∥∥∥ iknW u(n)r

s+ imn�

∥∥∥∥
L2
≤

∥∥∥∥ W
s+ imn�

∥∥∥∥
L∞
‖knu(n)r ‖L2 ≤ C

∥∥∥∥ W
s+ imn�

∥∥∥∥
L∞

n→∞−−−→ 0,
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and the last term in (5-12) is bounded by |Re(s)|−1
‖ f (n)r ‖L2 , a quantity that converges to zero as n→∞

by assumption. Once (5-12) is known, the same argument applied to the second equation in (5-11) shows
that ‖ω(n)θ ‖L2 → 0. Finally, we have

‖u(n)r ‖L2 ≤ k−1
0 ‖knu(n)r ‖L2 ≤ Ck−1

0 ,

because |kn| ≥ k0 for all n ∈N. Applying thus the same argument again to the third equation in (5-11), we
conclude that ‖ω(n)z ‖L2 → 0, which of course contradicts the hypothesis that ‖ω(n)‖L2 = 1 for all n ∈ N.
This means that sequence (mn) must be bounded, and after extracting a subsequence we can therefore
assume that there exists an integer m ∈ Z such that mn = m for all n ∈ N.

Step 2: We next show that the sequence (kn) is bounded. Again, if this is not the case, we can assume
after extracting a subsequence that |kn| →∞ as n→∞. In that situation, we infer from estimate (5-5)
that, for n sufficiently large,

|kn|
(
‖A1/2

n ∂∗r u(n)r ‖L2 +‖u(n)r ‖L2
)
≤ 2C(m, s)‖ f (n)‖L2 n→∞−−−→ 0. (5-13)

Next, we use the relation

k2
nAn

(
∂∗r −

imW
rγ

)
u(n)r + iknu(n)z =

mkn

rγ
An f (n)r ,

which reduces to (2-13) when kn = k and f (n)r = 0. Invoking (5-13) and using the elementary bounds
0<An(r)≤min(1/k2

n, r
2/m2), we deduce that

|kn|‖u(n)z ‖L2 + |m|
∥∥∥∥u(n)z

r

∥∥∥∥
L2

n→∞−−−→ 0. (5-14)

Finally, with the help of the additional relation

iknW
γ

u(n)r + iknu(n)θ −
im
r

u(n)z =−
f (n)r

γ
,

which reduces to (2-9) when kn = k and f (n)r = 0, we find that |kn|‖u
(n)
θ ‖L2 → 0 as n→∞ in view of

(5-13), (5-14).
Thus, we have shown that |kn|‖u(n)‖L2 → 0 as n→∞, and considering successively all three lines in

(5-11) we easily deduce that

‖ω(n)r ‖L2 n→∞−−−→ 0, ‖ω(n)θ ‖L2 n→∞−−−→ 0, ‖ω(n)z ‖L2 n→∞−−−→ 0.

This of course contradicts the assumption that ‖ω(n)‖L2 = 1 for all n ∈ N. The sequence (kn) must
therefore be bounded, and after extracting a subsequence we can assume that kn = k for some fixed
k ∈ Z∗k0.

Step 3: Assuming that estimate (5-10) does not hold for some s ∈ C with Re(s) 6= 0, we have reached the
conclusion that, for some m ∈ Z and some k 6= 0, the operator s− Lm,k has no bounded inverse in Xm,k ,
in contradiction with Theorem 1.3. Thus estimate (5-10) must hold, and the proof of Proposition 5.2 is
complete. �
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Appendix

A1. The Biot–Savart law in cylindrical coordinates. The Biot–Savart law defines the velocity field
u = (ur , uθ , uz) in terms of the vorticity vector ω = (ωr , ωθ , ωz) for a fixed value of the angular Fourier
mode m ∈ Z and of the vertical wave number k ∈ R. The velocity is determined by the linear relations

ωr =
im
r

uz − ikuθ , ωθ = ikur − ∂r uz, ωz =
1
r
∂r (ruθ )−

im
r

ur , (A-1)

together with the divergence-free condition

1
r
∂r (rur )+

im
r

uθ + ikuz = 0. (A-2)

These equations have to be solved on the half-line r > 0, and we require that the velocity field
ur er + uθeθ + uzez be regular at the origin r = 0 and decay to zero as r → ∞. More precisely, if
the vorticity ω is (for instance) compactly supported in R+ = (0,∞), the following boundary conditions
hold for the associated velocity u:

• The horizontal velocities ur , uθ satisfy the homogeneous Dirichlet condition at r = 0 if m = 0 or
|m| ≥ 2, and the homogeneous Neumann condition if |m| = 1 (or |m| ≥ 3).

• The vertical velocity uz satisfies the homogeneous Dirichlet condition at r = 0 if |m| ≥ 1, and the
homogeneous Neumann condition if m = 0 (or |m| ≥ 2).

It is possible to give explicit formulas for the velocity u in terms of the vorticity ω, but the bounds we
need in this paper are more conveniently obtained by standard energy estimates. We recall that ‖ · ‖L2

denotes the usual norm in the Lebesgue space L2(R+, r dr).

Proposition A.1. There exists a constant C > 0 such that, for any m ∈ Z and any k ∈ R, the following
inequality holds:

‖∂r ur‖
2
L2+‖∂r uθ‖2L2+‖∂r uz‖

2
L2+k2(‖ur‖

2
L2+‖uθ‖2L2+‖uz‖

2
L2)

+|m2
−1|

(∥∥∥∥ur

r

∥∥∥∥2

L2
+

∥∥∥∥uθ
r

∥∥∥∥2

L2

)
+m2

∥∥∥∥uz

r

∥∥∥∥2

L2
≤C(‖ωr‖

2
L2+‖ωθ‖

2
L2+‖ωz‖

2
L2). (A-3)

Proof. We assume here for definiteness that k 6= 0, but the proof is similar (and in fact simpler) when
k = 0. Without loss of generality, we also suppose that ω is continuous and compactly supported in R+.
We first observe that the vertical velocity uz satisfies the linear elliptic equation(

−∂2
r −

1
r
∂r +

m2

r2 + k2
)

uz =
1
r
∂r (rωθ )−

im
r
ωr . (A-4)

We multiply both sides of (A-4) by r ūz and integrate the resulting expression over R+. After elementary
calculations, we obtain the estimate

‖∂r uz‖
2
L2 +

∥∥∥m
r

uz

∥∥∥2

L2
+‖kuz‖

2
L2 ≤ C(‖ωr‖

2
L2 +‖ωθ‖

2
L2), (A-5)

where C>0 is a universal constant. As ikur =∂r uz+ωθ and ikuθ = (im/r)uz−ωr , it follows immediately
from (A-5) that

‖kur‖
2
L2 +‖kuθ‖2L2 ≤ C(‖ωr‖

2
L2 +‖ωθ‖

2
L2). (A-6)
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On the other hand, we deduce from (A-2) and the last relation in (A-1) that

∂r ur +
1
r
(ur + imuθ )=−ikuz, ∂r uθ +

1
r
(uθ − imur )= ωz. (A-7)

We multiply the first equation by r∂r ūr and the second one by r∂r ūθ . Adding the resulting expressions,
taking the real parts, and integrating over R+, we obtain the inequality

‖∂r ur‖
2
L2 +‖∂r uθ‖2L2 ≤ C(‖kuz‖

2
L2 +‖ωz‖

2
L2)≤ C(‖ωr‖

2
L2 +‖ωθ‖

2
L2 +‖ωz‖

2
L2). (A-8)

If m =±1, this concludes the proof of (A-3). Otherwise, we deduce from (A-7) that

m2
−1
r

ur = ∂r (ur − imuθ )+ ikuz + imωz,

m2
−1
r

uθ = ∂r (uθ + imur )+ kmuz −ωz.

(A-9)

If m = 0 or |m| ≥ 2, these relations allow us to estimate the L2 norm of ur/r and uθ/r in terms of
quantities that are already controlled by (A-5) or (A-8), and we arrive at (A-3). �

A2. Stability of Rankine’s vortex. We consider here in some detail the particular case of the Rankine
vortex (1-7), which is of historical relevance. We do not use the functional framework of Section 2
because, as is clear from (2-3), the linearization Lm,k does not define a bounded linear operator on Xm,k if
the vorticity profile W has a discontinuity. Instead we look for solutions of the eigenvalue equation (2-8)
where the velocity field u (and not the vorticity ω) belongs to Xm,k . We always assume that m 6= 0 and
k 6= 0, the other cases being similar and in fact simpler. To avoid the essential spectrum, we also suppose
that the spectral parameter s ∈ C satisfies s 6= 0 and s+ im 6= 0.

Following Kelvin’s original approach [1880], we eliminate the radial velocity ur in the 2× 2 system
(2-13)–(2-14) to obtain a closed equation for the vertical velocity uz . In the inner region where 0< r < 1,
we have γ (r)= γ := s+ im and 8(r)=W (r)2 = 4, so that uz satisfies the Bessel equation

−
1
r
∂r (r∂r uz)+

(
β2
+

m2

r2

)
uz = 0, where β2

= k2
(

1+
4
γ 2

)
. (A-10)

Since uz is regular at the origin, it follows that uz(r)= AIm(βr) for 0< r < 1, where A ∈ C and Im is
the modified Bessel function of order m [Abramowitz and Stegun 1964, Section 9.6]. In the outer region
where r > 1, we have W (r)=8(r)= 0, and system (2-13)–(2-14) reduces to the (somewhat simpler)
Bessel equation

−
1
r
∂r (r∂r uz)+

(
k2
+

m2

r2

)
uz = 0. (A-11)

As uz(r) decays to zero at infinity, we must have uz(r)= BKm(kr) for some B ∈ C, where Km is again
a modified Bessel function.

At the interface r = 1, both velocities uz , ur are continuous, as can be seen from (2-10) and (2-12).
Jump conditions for the first-order derivatives can be deduced from system (2-13)–(2-14) and are found
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to be

∂r ur (1+)= ∂r ur (1−)−
2im
γ

ur (1), (A-12)

∂r uz(1+)=
γ 2

γ 2+ 4

(
∂r uz(1−)+

2im
γ

uz(1)
)
= ikur (1). (A-13)

In particular, as uz(r)= AIm(βr) for r < 1 and uz(r)= BKm(kr) for r > 1, we must have

AIm(β)= BKm(k),
Aγ 2

γ 2+ 4

(
β I ′m(β)+

2im
γ

Im(β)

)
= BkK ′m(k). (A-14)

This linear system has a nontrivial solution (A, B) if and only if

I ′m(β)
β Im(β)

+
2im
γβ2 =

K ′m(k)
kKm(k)

, (A-15)

where we recall that γ = s+ im 6= 0 and β2
= k2(1+ 4/γ 2).

It was already observed by Kelvin that the dispersion relation (A-15) is satisfied for a countable set
of purely imaginary values of the spectral parameter s. More precisely, if we define s =−imb, so that
γ = im(1−b), equality (A-15) holds for a decreasing sequence of values of b accumulating at 1, and also
for an increasing sequence accumulating at 1, all solutions being contained in the interval |b−1| ≤ 2/|m|
[Kelvin 1880]. The linearized operator at Rankine’s vortex thus has a countable family of purely imaginary
eigenvalues (Kelvin modes). However, it is not easy to verify that the dispersion relation (A-15) has no
solution when s /∈ iR, and there is no such claim in Kelvin’s work,4 where only purely imaginary eigenval-
ues are considered. Thus, contrary to what is often asserted in the literature, stability of Rankine’s vortex
was not established by Kelvin, and we could not find any further reference where this point is clarified.

Fortunately, it is quite easy to prove spectral stability of Rankine’s vortex following the approach of
Section 3C. Indeed, taking into account the particular form of the vorticity profile (1-7), it is straightforward
to verify that identity (3-10) becomes∫
∞

0
(A(r)|∂∗r ur |

2
+ |ur |

2)r dr +
∫ 1

0

{
−

4k2A(r)
m2γ 2

?

+
2r
γ?
∂r

(
1

m2+ k2r2

)}
|ur |

2r dr

=
2A(1)
γ?
|ur (1)|2; (A-16)

see also Remark A.2 below. Here γ? = 1− b− ia, so that γ = imγ?. We now multiply both sides of
(A-16) by γ? and take the imaginary parts. We arrive at the identity

a
∫
∞

0
(A(r)|∂∗r ur |

2
+ |ur |

2)r dr + a
∫ 1

0

4k2

m2

A(r)
(1− b)2+ a2 |ur |

2r dr = 0. (A-17)

If a 6= 0, it follows from (A-17) that ur ≡ 0; hence the eigenvalue equation (2-16) has no nontrivial
solution if s=m(a− ib) /∈ iR. This proves that the linearized operator at Rankine’s vortex has no unstable
eigenvalue.

4Except for an ambiguous sentence asserting, without any justification, that the eigenfunctions corresponding to purely
imaginary eigenvalues should form a complete family.
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Remark A.2. Alternatively, one can obtain the relation (A-16) by restricting the eigenvalue equation (2-16)
to the open intervals (0, 1) and (1,∞), where the vorticity profile is smooth. On each interval, we multiply
(2-16) by r ūr and we integrate over r . If we add the resulting expressions and simplify the boundary
terms (which result from partial integrations) using the matching condition (A-12), we arrive at (A-16).

A3. Critical layers and their continuity properties. In this section we present the proof of Lemma 3.5.
We first rewrite (3-2) for un in the form

u′′n(r)+P(r)u′n(r)+Qn(r)un(r)= 0, (A-18)

where P(r)=A′(r)/A(r)+ 1/r and

Qn(r)=
k2

m2

8n(r)
γn(r)2

−
r

A(r)γn(r)
∂r

(
Wn(r)

m2+ k2r2

)
+

P(r)
r
−

2
r2 .

Here, as in Section 4C, we set γn(r)=�n(r)−bn− ian , where �n is the angular velocity associated with
Wn as in (1-16). By assumption (ii) and (1-16) we have �n→� in C2 on compact subsets of (0,∞). In
view of (iii), � is analytic in D(r̄ , ρ) for some ρ > 0, and �n converges uniformly to � on that disc as
n→∞. Since �(r̄)= b and �′(r̄) < 0, it follows from Hurwitz’s theorem that, for sufficiently large n,
there exists a unique r̄n ∈ D(r̄ , ρ) such that �n(r̄n)= bn + ian . Moreover �′n(r̄n) 6= 0, �′n(r̄) < 0 and

r̄n = r̄ +
bn + ian −�n(r̄)

�′n(r̄)
+O(|bn −�n(r̄)|2+ a2

n) as n→∞,

so that r̄n→ r̄ and r̄n ∈ {z ∈ C | Im(z) < 0} when n is sufficiently large. By construction, we also have
γn(r)=�′n(r̄n)(r − r̄n)+O(|r − r̄n|

2) as r→ r̄n .
Multiplying (A-18) by z2 and applying the change of variables z = r − r̄n , wn(z) = un(r̄n + z), we

obtain the canonical form
z2w′′n(z)+ z Pn(z)w′n(z)+ Qn(z)wn(z)= 0, (A-19)

where Pn(z)= zP(r̄n + z) and Qn(z)= z2Qn(r̄n + z) are analytic inside the disc D(0, ρ/2), if n is large
enough so that |r̄n − r̄ |< ρ/2. In this situation, the Frobenius method [Coddington and Levinson 1955,
Section 4.8], which we briefly recall now, can be used to construct solutions of (A-19) in D(0, ρ/2) \R−

of the form

wn(z)= zdnvn(z), where vn(z)=
∞∑

k=0

cn,kzk and cn,0 = 1 for all n. (A-20)

The coefficients cn,k for k ≥ 1 are determined by substituting (A-20) into (A-19) and collecting equal
powers of z. If Pn(z)=

∑
∞

k=0 pn,kzk and Qn(z)=
∑
∞

k=0qn,kzk, one obtains the recursion relations

cn,k =
−1

fn(dn + k)

k−1∑
j=0

cn, j [(dn + j)pn,k− j + qn,k− j ], k ≥ 1, (A-21)

where the indicial function fn : R→ R is defined by

fn(d)= d(d − 1)+ dpn,0+ qn,0. (A-22)
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Assuming that fn(dn + k) 6= 0 for all k ≥ 1, it is straightforward to verify that the formal series wn(z)
defined by (A-20), (A-21) satisfies

z2w′′n(z)+ z Pn(z)w′n(z)+ Qn(z)wn(z)= fn(dn)zdn , (A-23)

and hence is a (formal) solution of (A-19) provided dn is a root of the quadratic polynomial fn .
In our situation we have pn,0 = 0 and qn,0 = (k2/m2)Jn(r̄n), so that the indicial equation fn(dn)= 0

reduces to (3-19) as n→∞. The roots d±n of fn thus converge to the explicit values d± described in
Section 3D, which are such that |d+−d−|< 1. As a consequence, if n is large enough and dn = d+n or d−n ,
the denominator in (A-21) never vanishes, and even satisfies | fn(dn + k)| ≥ c0k2 for all k ≥ 1, where
c0 > 0 is independent of n. This allows us to solve the recursion relations (A-21) if dn = d±n , and it is then
straightforward to verify that the series in (A-20) converges for all z ∈ D(0, ρ/2), and that the sum v±n is
uniformly bounded on compact subsets of D(0, ρ/2) if n is sufficiently large. We denote henceforth by

w±n (z)= zd±n v±n (z)

the solution of (A-19) given by (A-20) with dn = d±n .
By assumption (iii), the quantities pn,k , qn,k converge as n →∞ to the Taylor coefficients of the

functions P(z), Q(z) associated with the limiting profile W and the limiting value of the spectral parameter.
Using the recursion relation (A-21), where each coefficient c±n,k is entirely determined by a finite number
of coefficients pn,`, qn,` (namely, those with ` < k), we see that

c±n,k→ c±k as n→∞, (A-24)

where c±k denote the coefficients of the Frobenius solution w±(z) = zd±v±(z) of the limiting equa-
tion (A-19), where Pn, Qn are replaced by P, Q. In view of the uniform bounds mentioned above, this
implies that v±n (z) converges to v±(z) uniformly on compact subsets of D(0, ρ/2) as n→∞. Note that
since P and Q are real-valued on the real axis, the recurrence relation yields that the coefficients c±k are
real too. The functions V± which appear in the formulas (3-20)–(3-22) are the only real analytic functions
on R+ that satisfy

V±(r)= v±(r − r̄)
( r − r̄

b−�(r)

)d±
, r ∈

(
r̄ −

ρ

2
, r̄ +

ρ

2

)
.

That V± are well-defined and real analytic on the whole half-line R+ follows from the representation
(3-20) and the ODE (3-18).

Now, consider a sequence (un)n∈N of solutions of (A-18) as in the statement of Lemma 3.5, and assume
first that d+ 6= d−, so that d+n 6= d−n when n is sufficiently large. Since (A-18) is a second-order differential
equation, there exist complex coefficients α±n such that5

un(r)= α+n w
+

n (r − r̄n)+α
−

n w
−

n (r − r̄n) for r ∈
(

r̄ −
ρ

4
, r̄ +

ρ

4

)
. (A-25)

5Note that D(r̄n, ρ/2) contains the real interval (r̄ − ρ/4, r̄ + ρ/4) for large values of n.
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By assumption un(r) and u′n(r) have a limit as n→∞ for some r 6= r̄ , and using elementary continuity
properties for solutions of nonsingular ODEs we deduce that convergence holds locally uniformly for all
r > r̄ , or for all r < r̄ . Since the functions w±n (r− r̄n) converge uniformly to w±(r− r̄) in a neighborhood
of r̄ , and since the limits w±(r − r̄) have genuinely different behaviors as r → r̄ , this implies that the
coefficients α±n in (A-25) have finite limits α± ∈ C as n→∞. In particular we have

un(r)→ α+(r − r̄)d+v+(r − r̄)+α−(r − r̄)d−v−(r − r̄),

uniformly for r ∈ (r̄ , r̄ + ρ/4), and (keeping in mind that Im(r̄n) < 0)

un(r)→ α+eiπd+(r̄ − r)d+v+(r − r̄)+α−eiπd−(r̄ − r)d−v−(r − r̄),

uniformly for r ∈ (r̄ − ρ/4, r̄). Since outside the interval (r̄ − ρ/4, r̄ + ρ/4) the ODE (A-18) is
asymptotically regular, this implies the desired conclusion, namely that un→ α+φ++α−φ− where φ±
are as in (3-20) or (3-21).

We next consider the exceptional situation where d− = d+. Without loss of generality we may assume
that either d−n = d+n for all n ∈ N, or d−n 6= d+n for all n ∈ N. In the first case we obtain from (A-20)
only one solution wn of (A-19), but we can construct a second solution by differentiating (A-23) with
respect to the exponent dn , taking into account the fact that f ′n(dn)= 0 since dn = d±n is a double root by
assumption. The new solution has the form

w]n(z)= log(z)wn(z)+ zdn

∞∑
k=0

(
∂cn,k

∂dn

)
zk, z ∈ D(0, ρ/2) \R−,

and its asymptotic behavior as z→ 0 is clearly different from that of wn(z). This allows us to conclude
the proof using the same argument as above, and we obtain that un→ α+φ++α−φ−, where φ± are as in
(3-22). On the other hand, when d−n 6= d+n for all n ∈ N (but d−n − d+n → 0), the decomposition (A-25) is
not appropriate, because in that case we cannot prove that the coefficients α+n and α−n are bounded, yet
alone have limits as n→∞. Instead, we write

un(r)= αn(w
+

n (r − r̄n)+w
−

n (r − r̄n))+α
]
n

(
w+n (r − r̄n)−w

−
n (r − r̄n)

d+n − d−n

)
(A-26)

for r ∈ (r̄ − ρ/4, r̄ + ρ/4), and this new decomposition has the property that both coefficients αn and α]n
necessarily have limits as n→∞. We then finish the proof along the same lines as above. �

A4. Approximation and interpolation in the class W . This section is devoted to the proofs of Lemmas
4.2 and 4.3. If W is a vorticity profile that belongs to the class W , in the sense of Definition 1.8, we
denote by � the corresponding angular velocity given by (1-16), and by J the function defined in (1-20).
The first observation is that both � and W can be expressed in terms of the auxiliary function J.

Indeed, let φ : R+→ R be defined by φ(r) = �(r)/�′(r) for all r > 0. According to (1-6), (1-19),
(1-20) we have

J (r)=
8(r)
�′(r)2

=
2r�(r)
�′(r)

+
4�(r)2

�′(r)2
= 2rφ(r)+ 4φ(r)2 (A-27)
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for all r > 0. Since J (r) > 0 and φ(r) < 0 by assumption, we deduce that

φ(r)=
�(r)
�′(r)

=−
1
4

(
r +

√
r2+ 4J (r)

)
, r > 0. (A-28)

Integrating this differential equation and using the normalization condition �(0)= 1, which follows from
(1-16) since W (0)= 2, we obtain the representation formula

�(r)= exp
(
−

∫ r

0

4

s+
√

s2+ 4J (s)
ds
)
, r > 0. (A-29)

As W (r)= r�′(r)+ 2�(r), we also have

W (r)=�(r)
(

2+
r
φ(r)

)
=�(r)

(
2−

4r

r +
√

r2+ 4J (r)

)
, r > 0. (A-30)

Furthermore, if we differentiate (A-30) with respect to r and observe that �′ =�/φ, we obtain

W ′ =
�

φ

(
2+

r
φ

)
+�

(
1
φ
−

rφ′

φ2

)
=
�

φ2 (3φ+ r − rφ′).

Thus, using the expression (A-28) of φ, we find after elementary calculations

W ′(r)=
8�(r)(

r +
√

r2+ 4J (r)
)2

(
r −

r2
+ 6J (r)√

r2+ 4J (r)
+

r J ′(r)√
r2+ 4J (r)

)
. (A-31)

As r
√

r2+ 4J < r2
+ 6J when J > 0, this formula shows that the vorticity W is strictly decreasing as

soon as the auxiliary function J satisfies J (r) > 0 and J ′(r) < 0 for all r > 0. This observation will be
used later on.

Since W ∈ W by assumption, the angular velocity satisfies �′(r)→ 0 as r→ 0, and in view of (1-20)
or (A-28) this implies J (r)→∞ as r→ 0. It then follows from (A-31) that

W ′(r)∼
r J ′(r)
J (r)3/2

−
6

J (r)1/2
as r→ 0,

and since W ′(r) vanishes at the origin we deduce that r J ′(r)J (r)−3/2
→ 0 as r → 0. Concerning the

behavior at infinity, we observe that φ(r) = −2/r +O(1/r3) as r →∞, and in view of (A-29) this
implies �(r) = 0/r2

+O(1/r4) as r →∞, for some 0 > 0. The expression (A-30) also shows that
r4W (r)→ 20 J (∞) as r→∞. Finally, one infers from (A-31) that

W ′(r)∼
{

20
r4 +O

(
1
r6

)}{
r J ′(r)√

r2+ 4J (r)
−

4J (r)
r
+O

(
1
r3

)}
as r→∞,

and since r J ′(r)→ 0 as r→∞ we also obtain r5W ′(r)→−80 J (∞) as r→∞.
The properties of J are more conveniently expressed in terms of the new function

Q(r)=
1

√
1+ J (r)

, r > 0. (A-32)
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Definition A.3. We say that a C1 function Q : R+→ (0, 1] belongs to the class Q if

(i) Q′(r) > 0 for all r > 0;

(ii) Q(r)→ 0 and r Q′(r)→ 0 as r→ 0;

(iii) r Q′(r)→ 0 as r→∞.

In particular Q is convex, and if Q ∈Q then N (Q) := supr>0 r |Q′(r)|<∞.

Lemma A.4. A vorticity profile W belongs to the class W in the sense of Definition 1.8 if and only if the
function Q defined by (A-32), with J as in (1-20), belongs to the class Q.

Proof. If W ∈W , we have just shown that the C1 map J :R+→R defined by (1-20) satisfies J (r) > 0 and
J ′(r) < 0 for all r > 0, J (r)→∞ and r J ′(r)J (r)−3/2

→ 0 as r→ 0, and r J ′(r)→ 0 as r→∞. These
properties precisely mean that the function Q defined by (A-32) belongs to the class Q. Conversely, if
Q ∈Q, we define J = Q−2

− 1 so that (A-32) holds, and we reconstruct the angular velocity � and the
vorticity W by the formulas (A-29), (A-30). The calculations above then show that W ∈W . In particular,
since J ′(r) < 0, formula (A-31) shows that W ′(r) < 0 for all r > 0. �

The following result expresses the fact that the vorticity profile W ∈W depends continuously on the
auxiliary function Q ∈Q, in appropriate topologies.

Lemma A.5. Assume that Q1, Q2 ∈Q, and take δ > 0 small enough so that

δ ≤min{Q1(1), Q2(1)} ≤max{Q1(1), Q2(1)} ≤
√

1− δ2. (A-33)

Then there exists a constant C > 0, depending only on δ, such that, if W1,W2 denote the vorticity profiles
associated with Q1, Q2 as in Lemma A.4, the following estimates hold:

sup
r>0
(1+ r4)|W1(r)−W2(r)| ≤ C‖Q1− Q2‖L∞(R+), (A-34)

sup
r>0
(1+ r5)|W ′1(r)−W ′2(r)| ≤ CN (Q1− Q2)+C(1+N (Q2))‖Q1− Q2‖L∞(R+). (A-35)

Proof. Let Ji (r)= Qi (r)−2
− 1 for i = 1, 2. We first consider the quantity

2(r)=
1

r +
√

r2+ 4J1
−

1

r +
√

r2+ 4J2
=

4(Q2
1− Q2

2)

(Q112+ Q211)(r Q1+11)(r Q2+12)
,

where we use the shorthand notation 1i (r) = Qi (r)
√

r2+ 4Ji (r) =
√

4+ (r2− 4)Qi (r)2 for i = 1, 2.
We claim that

sup
r>0
(1+ r3)|2(r)| ≤ C‖Q1− Q2‖L∞(R+) (A-36)

for some constant C > 0 depending only on δ. To prove that, we distinguish two cases:

(i) In the region where r ≤ 1, we know from (A-33) that Qi (r)2 ≤ Qi (1)2 ≤ 1− δ2, and this implies
1i (r)≥ 2

√
1− Qi (r)2 ≥ 2δ. It follows that

|2(r)| ≤
4(Q1+ Q2)|Q1− Q2|

8δ3(Q1+ Q2)
≤
|Q1− Q2|

2δ3 , 0< r ≤ 1.
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(ii) When r ≥ 1 we observe that 1i (r)≥ r Qi ≥ rδ by (A-33), so that

|2(r)| ≤
4(Q1+ Q2)|Q1− Q2|

8r3 Q2
1 Q2

2
≤
|Q1− Q2|

δ3r3 , r ≥ 1.

Altogether, this proves (A-36).
As an immediate consequence, we see that the angular velocities defined by (A-29) satisfy the estimate
‖�1−�2‖L∞(R+) ≤ C‖Q1− Q2‖L∞(R+). In fact, we have a stronger result:

sup
r>0
(1+ r2)|�1(r)−�2(r)| ≤ C‖Q1− Q2‖L∞(R+). (A-37)

Indeed, it follows from (A-29) that

r2�i (r)=�i (1) exp
∫ r

1

(
2
s
−

4

s+
√

s2+ 4Ji (s)

)
ds, r > 0, i = 1, 2. (A-38)

If we define

Mi (r)=
1
r
−

2

r +
√

r2+ 4Ji
=

4Ji

r(r +
√

r2+ 4Ji )2
=

4(1− Q2
i )

r(r Qi +1i )2
> 0, r > 0,

the same estimates as above show that

sup
0<r≤1

r Mi (r)≤
1
δ2 and sup

r≥1
r3 Mi (r)≤

1
δ2 . (A-39)

This implies in particular that r2�i (r) ≤ e1/δ2
for r ≥ 1; hence (1+ r2)�i (r) ≤ C for some constant

C > 0 depending only on δ. In addition, using (A-36) and (A-38), we obtain

r2
|�1(r)−�2(r)| ≤ e1/δ2

(
|�1(1)−�2(1)| + 4

∫ r

1
|2(s)| ds

)
≤ C‖Q1− Q2‖L∞(R+)

for all r ≥ 1, and this concludes the proof of (A-37).
On the other hand, in view of (A-30), we have Wi (r)= 2r�i (r)Mi (r) for i = 1, 2; hence

W1(r)−W2(r)= 2r(�1(r)−�2(r))M1(r)− 4r�2(r)2(r), r > 0.

Thus using estimates (A-36), (A-37), (A-39) we arrive at (A-34).
Finally, we deduce from (A-31) that W ′1(r)−W ′2(r)=4(r)− 163(r), where 4(r) collects all terms

that do not involve the derivatives J ′1, J ′2, and

3(r)=
�1r Q′1

(r Q1+11)211
−

�2r Q′2
(r Q2+12)212

=31(r)+32(r),

where

31(r)=
�1r(Q′1− Q′2)
(r Q1+11)211

, 32(r)=
�1r Q′2

(r Q1+11)211
−

�2r Q′2
(r Q2+12)212

.

Proceeding exactly as above it is straightforward to verify that

sup
r>0
(1+ r5)|4(r)| ≤ C‖Q1− Q2‖L∞(R+),
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where C > 0 depends only on δ. We thus concentrate on the new term 3, which contains the derivatives
Q′1, Q′2. Again, considering separately the regions where r ≤ 1 and r ≥ 1, and using the appropriate
lower bound on 11(r) in each region, we obtain

|31(r)| ≤ C�1(r)
r |Q′1(r)− Q′2(r)|

1+ r3 ≤ C(1+ r2)�1(r)
N (Q1− Q2)

1+ r5 ,

where we recall that (1+r)2�1(r)≤C for some C > 0 depending only on δ. The quantity32 is estimated
along the same lines:

|32(r)| ≤ C(1+ r2)|�1(r)−�2(r)|
r |Q′2(r)|

1+ r5 +C(1+ r2)�2(r)
r |Q′2(r)|

1+ r5 |Q1(r)− Q2(r)|,

and using (A-37) we find (1+r5)|32(r)| ≤C(1+N (Q2))‖Q1−Q2‖L∞(R+). Combining these estimates
we arrive at (A-35). �

Proof of Lemma 4.2. Let W ∈W , and denote by Q ∈Q the function defined by (A-32) with J as in (1-20).
For any ε > 0 we define

Q(ε)(r)=
1
√
πε

∫
∞

0
(e−(r−s)2/ε

− e−(r+s)2/ε)Q(s) ds, r > 0. (A-40)

In other words, Q(ε) is the restriction to R+ of the real-analytic odd function obtained by extending Q to
an odd function Q : R→ R and applying to Q the heat semigroup on R at time t = ε/4. In particular,
Q(ε) is real-analytic on R+ for any ε > 0. Moreover, as the function s 7→ Q(s) is continuous on R and
converges to finite limits as s→±∞, it is clear that Q(ε) converges uniformly to Q on R+ as ε→ 0. On
the other hand, differentiating (A-40) with respect to r , we obtain the relation

r Q(ε)′(r)=
1
√
πε

∫
∞

0
(e−(r−s)2/ε

− e−(r+s)2/ε)s Q′(s) ds+ Rε(r), r > 0, (A-41)

where

Rε(r)=
1
√
πε

∫
∞

0
((r − s)e−(r−s)2/ε

+ (r + s)e−(r+s)2/ε)Q′(s) ds, r > 0.

As Q′ ∈ L1(R+) and N (Q) <∞, it is straightforward to verify that Rε converges uniformly to zero as
ε→ 0. Moreover, since s Q′(s)→ 0 as s→ 0 and s→∞, it is clear that the integral term in (A-41)
converges uniformly on R+ towards r Q′(r) as ε→ 0. Altogether, this shows that

lim
ε→0

(‖Q(ε)
− Q‖L∞(R+)+ |N (Q

(ε)
− Q)|)= 0. (A-42)

Now, let W (ε)
∈ W be the vorticity profile associated with Q(ε) as in Lemma A.4. By construction W (ε)

is real-analytic on R+ for any ε > 0, and it follows from (A-42) and Lemma A.5 that W (ε)
→W in the

topology of C1
b(R+) as ε→ 0. This is the desired density result. �

Proof of Lemma 4.3. Assume that W0,W1 ∈ W , and let Q1, Q2 ∈ Q be the corresponding functions
defined as in Lemma A.4. For any t ∈ [0, 1], we define Qt ∈Q by the linear interpolation formula

Qt(r)= (1− t)Q0(r)+ t Q1(r), r > 0, (A-43)
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and we denote by Wt ∈W the vorticity profile associated with Qt . As

‖Qt1 − Qt2‖L∞(R+)+N (Qt1 − Qt2)= |t1− t2|(‖Q0− Q1‖L∞(R+)+N (Q0− Q1)),

it follows from Lemma A.5 that Wt is a Lipschitz function of t ∈ [0, 1] in the topology of C1
b(R+). By

construction, if W0,W1 are real analytic on R+, so is Wt for any t ∈ [0, 1]. Moreover, in that case, if
W ′′1 (0)≡−8Q′1(0) < 0, then W ′′t (0)≡−8Q′t(0) < 0 for all t ∈ (0, 1], because W ′′0 (0)≡−8Q′0(0)≤ 0. �

A5. Proof of Lemma 4.6. The proof of estimate (4-32) is lengthy but rather straightforward, and we just
indicate here the main steps. Using classical estimates for the modified Bessel functions Kν [Abramowitz
and Stegun 1964, Section 9.6], we first observe that the approximate solution χn defined in (4-26) satisfies

|χn(r)| ≈min(1, |r−rn+icn|)
1/2−νn e−k(r−rn),

|χ ′n(r)| ≈min(1, |r−rn+icn|)
−1/2−νn e−k(r−rn)

(A-44)

for all r > 0. Here A ≈ B means that the ratio A/B is bounded from above and from below by some
positive constants that are independent of n. A direct consequence of (A-44) is:

Lemma A.6. There exists a constant C > 0 such that, for all n ∈ N and all s > r > 0, the following
estimates hold:

|χn(s)|2
∫ s

r

1
|χn(t)|2

dt ≤ C min(1, |s−rn+icn|)
1−2νn , (A-45)

|χn(s)χ ′n(s)|
∫ s

r

1
|χn(t)|2

dt ≤ C min(1, |s−rn+icn|)
−2νn . (A-46)

Proof. We only prove (A-45), the proof of (A-46) being similar. If cn ≥ 1, the first estimate in (A-44)
simply means that |χn(r)| ≈ e−k(r−rn), and (A-45) follows immediately. Thus we assume henceforth that
0< cn ≤ 1, and for simplicity we set s = rn + τ , so that the proof of (A-45) reduces to showing that

In(τ ) := |χn(rn+τ)|
2
∫ τ

−∞

1
|χn(rn+t)|2

dt ≤ C min(1, |τ+icn|)
1−2νn , τ ∈ R. (A-47)

If τ ≤ −1, we know from (A-44) that |χn(rn+τ)| ≤ Ce−kτ and |χn(rn+t)| ≥ Ce−kt for t ≤ τ ; hence
In(τ )≤ C . If |τ | ≤ 1, then |χn(rn+τ)| ≤ C |τ+icn|)

1/2−νn, and

In(τ )≤ C |τ+icn|
1−2νn

(∫
−1

−∞

e2kt dt +
∫ τ

−1
|t+icn|

2νn−1 dt
)
≤ C |τ+icn|

1−2νn .

Finally, if τ ≥ 1, then

In(τ )≤ Ce−2kτ
(∫

−1

−∞

e2kt dt +
∫ 1

−1
|t+icn|

2νn−1 dt +
∫ τ

1
e2kt dt

)
≤ C,

and this completes the proof of (A-45). We observe that the constant C in the right-hand side is independent
of n because, as can be seen from (4-27), the exponent νn is bounded away from zero as n→∞. �

Remark A.7. In Section 4I we use the fact that if νn → 0 as n→∞, the conclusion of Lemma A.6
remains valid up to a logarithmic correction. Estimates (A-44) are not appropriate in that case, but one
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can use the fact that Kνn (z) is close to K0(z) for n large, where K0(z)≈− log(z) as z→ 0. In particular,
the integral ∫ rn+1

rn−1

1
χn(r)2

dr = π
2

∫ 1

−1

1
(t + icn)Kνn (k(t + icn))2

dt

is uniformly bounded even if νn→ 0 and cn→ 0, because the function t 7→ |t |−1
|K0(kt)|−2 is integrable

over [−1, 1]. We leave the details to the reader.

Returning to the proof of Lemma 4.6, we note that Kn(r, s)= K(1)n (r, s)−K(2)n (r, s), where

K(1)n (r, s)=A(s)χn(s)2Rn(s)
∫ s

r

1
A(t)χn(t)2

dt,

K(2)n (r, s)=A′(s)χn(s)χ ′n(s)
∫ s

r

1
A(t)χn(t)2

dt.

In what follows, we assume that s ≥ r ≥ δrn for some δ > 0, where rn = (0n/bn)
1/2
→∞ as n→∞.

Since A(s)→ 1/k2 and A′(s)=O(s−3) as s→∞, it follows immediately from (A-46) that

sup
r≥δrn

∫
∞

r
|K(2)n (r, s)| ds ≤ C

∫
∞

δrn

s−3 min(1, |s−rn+icn|)
−2νn ds ≤

C
r2

n
≤ Cbn. (A-48)

It thus remains to estimate the kernel K(1)n (r, s), which involves the remainder Rn defined in (4-29). We
can further decompose Rn as Rn =R(1)

n +R(2)
n +R(3)

n , where

R(1)
n (r)=

m2
+

3
4

r2 −
1
2r

A′(r)
A(r)

,

R(2)
n (r)=−

k2

m2

(
8n(r)
γn(r)2

−
Jn(rn)

(r − rn + icn)2

)
,

R(3)
n (r)=

r
A(r)γn(r)

∂r

(
Wn(r)

m2+ k2r2

)
.

We concentrate here on the term R(2)
n , which gives the main contribution to the integral (4-32).

Lemma A.8. For any δ > 0, there exists a constant C > 0 such that

|R(2)
n (r)| ≤

C
r |r−rn+icn|

for all r ≥ δrn. (A-49)

Proof. We first assume that |r − rn| ≤ rn/2. Using the same notation as in (4-23), we have

γn(r)=�n(r)−�n(rn)− ian =�
′

n(rn)(r − rn + icn)+ (�
′(ξ)−�′(rn))(r − rn)

for some ξ ∈ [rn/2, 3rn/2]. As �′n(s)≈ s−3 and �′′n(s)≈ s−4 as s→∞ (see (4-9) and the first part of
Section A4), we have

|�′n(ξ)−�
′

n(rn)| ≤
C
rn
|�′n(rn)||ξ − rn| ≤

C
rn
|�′n(rn)||r − rn|,
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so that γn(r) = �′n(rn)(r − rn + icn)[1+O(ε(r))], where ε(r) = (r − rn)/rn . Recalling that Jn(rn) =

8n(rn)/�
′
n(rn)

2, we obtain the expression

R(2)
n (r)=−

k2

m2

8n(r)[1+O(ε(r))] −8n(rn)

�′(rn)2(r − rn + icn)2
.

Now, it also follows from (4-9) and the first part of Section A4 that 8n(s) ≈ s−6 and 8′n(s) ≈ s−7 as
s→∞. This implies |8n(r)−8n(rn)| ≤ C8n(rn)ε(r), and we deduce

|R(2)
n (r)| ≤ C Jn(rn)

ε(r)
|r−rn+icn|

2 ≤
C

rn|r−rn+icn|
if
|r − rn|

rn
≤

1
2
.

The argument is simpler if |rn − r | ≥ rn/2, because we can estimate both terms in R(2)
n separately.

Straightforward calculations lead to the lower bound

|γn(r)| = |�n(r)−�n(rn)− ian| ≥ C |�′n(r)||r − rn + icn|, (A-50)

whenever r ≥ δrn (here C depends on δ), and this implies

|R(2)
n (r)| ≤ C

8n(r)
|γn(r)|2

+C
Jn(rn)

|r−rn+icn|
2 ≤

C
|r−rn+icn|

2 if
|r − rn|

rn
≥

1
2
.

The proof of (A-49) is thus complete. �

It is now easy to conclude the proof of Lemma 4.6. The term R(3)
n in the remainder is estimated using

the lower bound (A-50), which leads to

|R(3)
n (r)| ≤

C
r3|r−rn+icn|

, r ≥ δrn, (A-51)

whereas |R(1)
n (r)| ≤ C/r2 for all r > 0. In view of (A-45), we thus have

|K(1)n (r, s)| ≤ C min(1, |s−rn+icn|)
1−2νn

(
1
s2 +

1
s|s−rn+icn|

)
, s ≥ r ≥ δrn.

Integrating this bound, we arrive at

sup
r≥δrn

∫
∞

r
|K(1)n (r, s)| ds ≤

C
rn
(1+ log+(rn))≤ Cb1/2

n

(
1+ log+

1
bn

)
, (A-52)

and estimate (4-32) follows immediately from (A-48), (A-52). �

A6. Proof of equality (4-42). Assume that 0< ν < 1
2 . Given any ε > 0 and a > 0, we define

Jν(a)=
∫ ε

−ε

−ax
(a2+ x2)3/2

|Kν(x + ia)|2 dx, (A-53)

where Kν is the modified Bessel function. Our goal is to compute the limit of Jν(a) as a→ 0. We recall
from [Abramowitz and Stegun 1964, Section 9.6] that

Kν(z)=
π

2
I−ν(z)− Iν(z)

sin(νπ)
, where Iν(z)=

1
0(1+ν)

zν

2ν
(1+O(z2)) as z→ 0.
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We thus have
Kν(z)=

cν
zν
(1− dνz2ν

+O(z2)) as z→ 0,

where

cν =
π

sin(νπ)
2ν−1

0(1−ν)
, dν =

1
22ν

0(1−ν)
0(1+ν)

.

It follows that

|Kν(x + ia)|2 =
c2
ν

(a2+ x2)ν
(|1− dν(x + ia)2ν |2+O(x2

+ a2))

=
c2
ν

(a2+ x2)ν

(
1− 2dν(a2

+ x2)ν cos(2ν arg(x + ia))+O((x2
+ a2)2ν)

)
(A-54)

as z = x + ia→ 0. The leading term in (A-54) is even and therefore does not contribute to the integral
(A-53), where it is multiplied by an odd function. The main contribution comes from the next term, so
that

lim
a→0

Jν(a)= 2dνc2
ν lim

a→0

∫ ε

−ε

ax
(a2+ x2)3/2

cos(2ν arg(x + ia)) dx

= 2dνc2
ν

∫
R

y
(1+ y2)3/2

cos(2ν arg(y+ i)) dy, (A-55)

where the second equality is obtained by setting x = ay.
It remains to perform the integration in (A-55). As arg(y+ i)= π

2 − arctan(y), we have

cos(2ν arg(y+ i))= cos(νπ) cos(2ν arctan(y))+ sin(νπ) sin(2ν arctan(y)).

The first term does not contribute to the integral in (A-55), whereas setting y = tan(t) we find∫
R

y
(1+ y2)3/2

sin(2ν arctan(y)) dy = 2
∫ π/2

0
sin(t) sin(2νt) dt =

4ν cos(νπ)
1− 4ν2 .

Summarizing, we have shown that

lim
a→0

Jν(a)= 2dνc2
ν sin(νπ)

4ν cos(νπ)
1− 4ν2 =

2π cos(νπ)
1− 4ν2 .

A7. Explicit calculations in some particular cases. We collect in this section a few results for the
Kaufmann–Scully vortex (1-8) and the Lamb–Oseen vortex (1-9) which can be established by a direct
calculation.

(1) We first show that the vorticity profile W of the Lamb–Oseen vortex satisfies Assumption H2 in
Section 1B, hence belongs to the class W . Indeed, in that case, the function J defined by (1-20) is given by

J (r)=
r4e−r2

(1− e−r2
)

(1− (1+ r2)e−r2
)2
, r > 0,

so that

J ′(r)=
2r3e−r2

(1− (1+ r2)e−r2
)3
(2− r2

− (4− r2
+ r4)e−r2

+ 2e−2r2
), r > 0.
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We want to show that J ′(r) < 0 for all r > 0. Setting s = r2, we have to verify that

s− 2+ (4− s+ s2)e−s
− 2e−2s > 0, s > 0,

or equivalently
s

1− e−s +

(
s

1− e−s

)2

e−s > 2, s > 0.

Since s > 1− e−s, it is sufficient to show that

s
tanh(s/2)

≡
s

1− e−s +
se−s

1− e−s > 2,

which is indeed true because tanh(x) < x for all x > 0.

(2) Next, for the Lamb–Oseen vortex, we establish the inequality B(r)≥ 1−4/m2 when a = 0 and b≤ 0,
where B is defined in (3-3). Indeed, as γ?(r)=�(r)− b ≥�(r), we have

B(r)≥ 1−
1

m2

k2r2

m2+ k2r2

8

�2 +
r
�

W ′

m2+ k2r2 −
2k2r2

�

W
(m2+ k2r2)2

. (A-56)

As 8= 2�W and W ′(r)=−2r W (r) for the Lamb–Oseen vortex, inequality (A-56) can be written in
the equivalent form

B(r)≥ 1−
2W (r)

m2�(r)

{
1+

m2r2

m2+ k2r2 −
m4

(m2+ k2r2)2

}
. (A-57)

Define s=r2>0 and α=m2/(m2
+k2r2)∈ (0, 1). As W =2e−s and�= s−1(1−e−s), it is straightforward

to verify that (A-57) implies the desired inequality B(r)≥ 1− 4/m2 provided

se−s

1− e−s (1+αs−α2)≤ 1, or equivalently es
≥ 1+ s+αs(s−α). (A-58)

But

sup
α∈(0,1)

(1+ s+αs(s−α))=
{

1+ s+ s3/4 if s ≤ 2,
1+ s2 if s ≥ 2,

and we conclude that the last inequality in (A-58) holds in all cases.

(3) Finally, we establish the same inequality B(r)≥ 1− 4/m2 for the Kaufmann–Scully vortex. In that
case W ′(r)=−4r W (r)�(r) by (1-8); hence inequality (A-56) takes the form

B(r)≥ 1−
2W (r)

m2�(r)

{
1+

2r2

1+ r2

m2

m2+ k2r2 −
m4

(m2+ k2r2)2

}
. (A-59)

Setting again α = m2/(m2
+k2r2) and using the fact that W = 2�2

= 2/(1+ r2) in the present case, we
see that the desired inequality B(r)≥ 1− 4/m2 holds provided

1+
2αr2

1+ r2 −α
2
≤ 1+ r2, r > 0. (A-60)

The maximum of the left-hand side, considered as a function of α ∈ (0, 1), is reached at the point
α = r2/(1+ r2), and the resulting inequality becomes (1+ r2)2+ r4

≤ (1+ r2)3, which is of course true.
This concludes the proof.
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