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Columnar vortices are stationary solutions of the three-dimensional Euler equations with axial symmetry,
where the velocity field only depends on the distance to the axis and has no component in the axial
direction. Stability of such flows was first investigated by Lord Kelvin in 1880, but despite a long history
the only analytical results available so far provide necessary conditions for instability under either planar
or axisymmetric perturbations. The purpose of this paper is to show that columnar vortices are spectrally
stable with respect to three-dimensional perturbations with no particular symmetry. Our result applies to a
large family of velocity profiles, including the most common models in atmospheric flows and engineering
applications. The proof is based on a homotopy argument which allows us, when analyzing the spectrum
of the linearized operator, to concentrate on a small neighborhood of the imaginary axis, where unstable
eigenvalues can be excluded using integral identities and a careful study of the so-called critical layers.
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1. Introduction

An interesting open question in hydrodynamic stability theory is whether the balance between the
centrifugal force and the pressure gradient in axisymmetric vortex flows may lead to an instability even
if the vorticity profile is monotone and the velocity field has no axial component. For incompressible
perfect fluids, partial answers have been obtained under additional symmetry assumptions. For instance,
in the restricted framework of two-dimensional flows, radially symmetric vortices are known to be stable
if the vorticity distribution is a monotone function of the distance to the vortex center [Rayleigh 1879;
Marchioro and Pulvirenti 1994], but even in that idealized situation no sharp stability criterion seems
to be available. In the three-dimensional case, the simplest vortex-like equilibria are columnar vortices,
namely axisymmetric flows with no vertical velocity and no dependence upon the vertical coordinate.
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In such flows, all streamlines are horizontal circles centered on the vertical symmetry axis. According
to a celebrated result of [Rayleigh 1917], columnar vortices are stable with respect to axisymmetric
perturbations if the square of the velocity circulation along the streamlines is a nondecreasing function
of the distance to the symmetry axis, and that condition is actually sharp [Synge 1933].

A natural question arises from these centennial results: When the vorticity profile is monotone and
Rayleigh’s condition is satisfied, are columnar vortices stable against three-dimensional perturbations with
no particular symmetry ? Although instabilities have never been observed experimentally or numerically
for such vortices in the absence of axial flow, we could not find in the literature even a plausible formal
argument supporting the affirmative answer; see Section 1C below for a short historical discussion. In
the present paper, we give a rigorous proof of spectral stability for a large family of inviscid columnar
vortices without imposing any symmetry assumption on the class of allowed perturbations. We thus
provide an answer to an important question that dates back to the pioneering work of Lord Kelvin [1880],
who was the first to investigate the three-dimensional stability of vortex columns.

Before stating our results, we first describe the precise framework. We start from the incompressible
Euler equation in the whole space R>:

oru+ (u-Vyu=—-Vp, divu =0, (1-1)

where u = u(x, t) € R? denotes the fluid velocity and p = p(x, t) € R the internal pressure. We mainly
consider the vorticity w (x, t) = curl u(x, t), which describes the local rotation of the fluid particles. Since
we are interested in the stability of axially symmetric flows, it is convenient to use cylindrical coordinates
(r, 0, z) defined by x; = rcosf, x, = rsiné, and x3 = z. The velocity and vorticity fields are then
decomposed as

u= u}’(r7 99 Z’ t)er +u9(rv 97 Z’ Z)eG +uz(r90a Za t)627

w=w(r,0,z,t)e, +wo(r,0,z,t)eg +w,(r,0, 7, t)e;,

where e,, eg, e, are unit vectors in the radial, azimuthal, and vertical directions, respectively. In these
coordinates, the vorticity equation d;w + (u - V)w — (w - V)u = 0 becomes

0wy + (u-V)w, — (w-V)u, =0,
oo + (- V)og — (@ Vutg = Ly — g, (1-2)
0w, + (u-Vyw, — (w-Vu, =0,
where u -V =u, 9, + (1/r)ugdyg +u,0, and -V = w, 0, + (1/r)wy 9y + w, 9. The velocity field satisfies
the incompressibility condition

Lo rur) + Lopus + .z =0, (1-3)

and can be expressed in terms of the vorticity by solving the linear elliptic system

1

1 1
;30Mz—3z140 =wr, O;ur —0rll; = wy, ;ar(rMO)_;aeur = ;. (1-4)
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1A. Columnar vortices. Columnar vortices are stationary solutions of (1-1)—(1-4) of the particular form
u=Vre, w=W(re, p=P(), (1-5)

where V is the velocity profile and W the vorticity distribution. The pressure P inside the vortex is
determined, up to an irrelevant additive constant, by the centrifugal balance r P'(r) = V (r)%. Instead
of V, we prefer using the angular velocity €2(r) = V (r)/r, which has the same physical dimension as the
vorticity W. As a consequence of (1-4), we have

W) = %Br(rV(r)) =rQ'(r)+2Q(). (1-6)

Here are typical examples that are often considered in the literature:
(1) The Rankine vortex:

1 ifr <1,
sz(r)={_2 =

r ifr>1,

2 ifr<l1
W(r) = ’ 1-7
") {o ifr>1. (17

As is clear from (1-7), the flow of Rankine’s vortex corresponds to a rigid rotation for r < 1 and an
irrotational motion for r > 1. Although nonphysical because of the singularity at r = 1, this flow is
relatively easy to analyze mathematically due to the very simple form of the vorticity distribution W,
which is a piecewise constant function. The dynamical stability of Rankine’s vortex was first investigated
in [Kelvin 1880].

(2) The Kaufmann—Scully vortex:

1 2

Q(”)=m, W(r)=m,

r>0. (1-8)

This smooth vortex is characterized by a relatively slow decay of the vorticity distribution as r — oo. It
has also a very simple analytical form, and is often used as a model for vortices that appear in atmospheric
flows or in laboratory experiments; see, e.g., [Alekseenko et al. 2007, Section 3.3.4].

(3) The Lamb—Oseen vortex:
Q) = riz(l —e™), W) =2", r>0. (1-9)

Among all solutions of the form (1-5), the Lamb—Oseen vortex plays a distinguished role in connection
with the long-time asymptotics of viscous planar flows. Indeed, if viscosity is taken into account, it is
known that all localized distributions of vorticity evolve toward a Gaussian vorticity profile as t — 4-o00;
see [Gallay and Wayne 2005]. In particular, the Lamb—Oseen vortex is the only one in the above family
which corresponds to a self-similar solution of the Navier—Stokes equations.

Remark 1.1. Throughout this paper, it is understood that all independent and dependent variables in the
Euler equations (1-1) are dimensionless. Examples (1-7)—(1-9) are normalized so that the vortex core has
a diameter of size O(1), but that choice can be modified by a simple rescaling. Also, we assume without
loss of generality that all vortices are normalized so that €2(0) = 1, which implies W (0) = 2.
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To study the dynamical stability of the columnar vortex (1-5), we look for solutions of (1-2), (1-3) of
the form
u(ra 97 Z’ t) = ”Q(”)ee +I/’2(r7 97 Za t)a a)(r’ 99 Z7 t) = W(r)ez +J)(r7 95 Z? t)’

where Q2 = V/r is the angular velocity of the vortex and W the vorticity distribution given by (1-6).
Inserting this ansatz into (1-2), neglecting the quadratic terms in # and @, and finally dropping the tildes
for notational simplicity, we arrive at the linearized evolution equations

0rwr +Q2(r) dgw, = W(r) ou,,
0w + Q(r) dgawg = W(r) d,ug +rQ (rw,, (1-10)
dw, +Q(r) g, = W(r) du, — W' (ru,,

which are the starting point of our analysis. Of course, the linear relations (1-3), (1-4) still hold for the
perturbed velocity and vorticity.

It is a classical observation that (1-10) can be considered as a self-contained evolution system for the
vorticity w, provided the velocity u is expressed in terms of w by solving the linear elliptic system (1-3),
(1-4). Once this is done, we can rewrite (1-10) in the compact form

d0=Lo, (1-11)

where L is a vector-valued, nonlocal, first-order differential operator. Our purpose is to study the spectral
properties of that operator, and to show that L has no spectrum outside the imaginary axis under general
assumptions on the angular velocity €2 or the vorticity distribution W.

Another fundamental remark is that system (1-2)—(1-4) is invariant under rotations about the vertical
axis, and under translations along that axis. Using a Fourier series expansion with respect to the angular
variable 6 and a Fourier transform in the vertical variable z, we are led to consider velocities and vorticities
of the particular form

u(r, 0, 2,1) =ty 1 (r, ™ 0(r, 0,2, 1) = Wi (r, )™ e, (1-12)

where m € Z is the angular Fourier mode and k € R is the vertical wave number. Here u, v are complex-
valued functions, but we impose that it,, y = u_,, —x and @, x = w_, —k SO as to obtain real functions
after summing over all possible values of m, k. Dropping the subscripts m, k for notational simplicity, we
see that the perturbation equations (1-10) translate into

0 +imQ(r)w, = Wr)iku,,
O +imQ(r))ws = W(r)ikug +rQ (r)w,, (1-13)
O +imQ(r))w, = W(r)iku, — W (r)u,.

In addition, the following relations hold:

Wy = @uz —ikug, wp=1iku,—oru;, w;= l8,(;’149) -0y,
r r r
1 . (1-14)
;Br(rur) + %ue +iku, =0.
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As before, we can rewrite (1-13) in the compact form
0w =Ly, ro, (1-15)

assuming that the velocity u = u,, ; in (1-13) is expressed in terms of the vorticity @ = w,, x by solving
the linear relations (1-14) with appropriate boundary conditions. The main properties of the Biot—Savart
map wy, x — Un x obtained in this way will be recalled in Section Al. Being an integral operator acting
on functions of the sole variable r, the generator L,, ; in (1-15) is of course easier to study than the
original three-dimensional differential operator L in (1-11).

1B. Statement of the results. To state our results in a precise way, we first specify our hypotheses on
the unperturbed columnar vortex. We find it convenient to formulate these assumptions at the level of the
vorticity profile W. Note that, in view of (1-6), the angular velocity 2 can be expressed in terms of W by
the formula

Q(r)= rlz /Or W(s)sds, r >0, (1-16)

and the derivative of 2 is in turn given by
W(r)—2Q 1 [
Q'(r) = W) —280) = —3f W' (s)s?ds, r>0. (1-17)
r r 0
In what follows, we set Ry = (0, oo) and @Jr = [0, 00).
Assumption H1. The vorticity profile W : Ry — Ry is a C! function satisfying W (0) =0, W'(r) <0
for all r > 0, and the total circulation

o0
271F=271/ W (r)r dr (1-18)
0

of the columnar vortex is finite.

Under Assumption H1 the angular velocity profile Q € C!'(R,) NC%(R, ) given by (1-16) is positive
and satisfies Q(0) = W(0)/2, Q' (0) =0, Q' (r) <0 forall »r >0, and Q) ~I'/r> as r — oo. In
particular, the Rayleigh function ® : [0, c0) — R defined by

O(r)=2Qr)W(r), r=0, (1-19)

is positive everywhere. As a matter of fact, in our framework Assumption H1 corresponds exactly to
the combination of Rayleigh’s condition [1917] and of the two-dimensional stability criterion [Rayleigh
1879; Marchioro and Pulvirenti 1994]. We supplement it with the following:

Assumption H2. The C' function J : R, — R, defined by

Q(r)

J(r):W’

r>0, (1-20)

satisfies J'(r) < Oforallr >0andrJ'(r) — 0asr — oo.
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This second assumption is more technical in nature, and certainly more difficult to justify. We first
observe that it is satisfied for the Kaufmann—Scully vortex (1-8), because J(r) =1+ 1/ r2 in that case,
and a direct calculation that can be found in Section A7 below reveals that Assumption H2 also holds for
the Lamb—Oseen vortex (1-9). A quantity corresponding to (1-20) appears in the work of G. I. Taylor
[1931] on the stability of stratified shear flows; in that context it is called the local Richardson number;
see, e.g., [Drazin and Reid 1981, Chapter 6]. Its relevance for stability was confirmed in [Miles 1961;
Howard 1961]. The ideas of Howard were translated into the columnar vortex framework in [Howard and
Gupta 1962], where the quantity (1-20) is also shown to play an important role in the stability analysis
for perturbations with nonzero angular Fourier mode m and nonzero vertical wave number k. Indeed, it is
proved in [Howard and Gupta 1962] that the linear operator L,, ; in (1-15) has no unstable eigenvalue if

k2 1
—ZJ(r) > 1 for all » > O; (1-21)
m

see also Proposition 3.4 below. Note that, in the case of the Lamb—Oseen vortex, inequality (1-21) is
always violated for large r > 0 because J (r) — 0 as r — oo, whereas (1-21) holds for the Kaufmann—
Scully vortex if and only if m? < 4k*. Although Howard and Gupta’s result alone is not sufficient, it
plays a crucial role in our stability analysis in Section 4, where we have to distinguish two spatial regions
according to whether the local Richardson number (k2 / m?)J(r) is greater or smaller than %. It turns out
to be important for our approach that inequality (1-21) either holds for all » > 0, or is satisfied if and only
if r <r, for some r, > 0. The only way to enforce that property for all possible values of m and k is to
assume that the function J in (1-20) is decreasing. However, there is no evidence that Assumption H2 is
more than a technical limitation, and we hope that this question will be clarified in the future.

Remark 1.2. Although this is not immediately obvious, Assumption H2 implies the existence of a
nonnegative number £, > 0 such that

lim F*W(r) =L, lim PW (r) = —40s; (1-22)
r— 00

r—0o0

see Section A4 below.

Next, we specify the function space in which we study the linearized operator L,, s defined in (1-13),
(1-15). Since we used a Fourier decomposition to reduce our analysis to functions of the form (1-12), it is
natural to work in L2-based function spaces. Given m € Z and k € R, we thus define the enstrophy space

Xopp = {a) e ARy, rdr)® %8,(1’0),) + Py + koo, = 0}, (1-23)
equipped with the norm
o0
lol7. = / o ()Prdr,  where |of® = |o, > + s |* + |o |*.
0

It is not difficult to verify that the generator L,, x of the linearized evolution equation (1-15) defines a
bounded linear operator in the space X,, x if k # 0; see Proposition 2.1 below. With this observation in
mind, we can formulate our first main result:
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Theorem 1.3. Consider a columnar vortex whose vorticity profile W satisfies Assumptions H1, H2 above.
Givenm € Z and k # 0, let L,, x be the generator of the linearized evolution (1-15). Then the spectrum of
Ly,  in the enstrophy space X,, i satisfies

o (L) CiR. (1-24)

Remark 1.4. The proof actually shows that, under the normalization condition W(0) = 2, o (L, x)
consists of an essential spectrum filling the closed interval {—imb |0 < b < 1} C iR, and of a countable
family of simple, purely imaginary eigenvalues that accumulate only at —im € iR. These eigenvalues are
well studied in the physical literature (a brief account is given in Section 1C below), and the corresponding
eigenfunctions are referred to as Kelvin vibration modes. The main contribution of the present paper is
to show that the operator L,, ; has no eigenvalue outside the imaginary axis if the vorticity profile W
satisfies Assumptions H1, H2. It is interesting to note that this result remains valid for the Rankine vortex
(1-7), which does not satisfy our hypotheses; see Section A2 below.

Remark 1.5. The particular case kK = 0, which corresponds to two-dimensional perturbations, is excluded
in Theorem 1.3 because the function space X,,  is not appropriate in that situation. This is essentially
due to the fact that the two-dimensional Biot—Savart law is ill-defined for vorticities in the enstrophy
space. The problem can be eliminated by introducing a radial weight that ensures a faster decay of w(r)
as r — 00, or alternatively by working in the energy space as mentioned in Remark 1.7 below. However,
since the two-dimensional stability of radially symmetric vortices is already well documented, we chose
to ignore these technical issues and to concentrate here on the genuinely three-dimensional case k # O,
which was essentially unexplored until now.

According to Theorem 1.3, for any s € C with Re(s) # 0, the resolvent operator (s — Lm,k)_1 is
well-defined and bounded in the space X, x if m € Z and k # 0. Actually, one can prove that the resolvent
is uniformly bounded for all m € Z and for all nonzero k in the one-dimensional lattice Zko, where
ko > 0 is arbitrary. Returning to the full linearized evolution (1-11), this proves spectral stability of the
generator L in the space

h
Li,per,h = {w e L*(R* x Tj)? | divo =0, /0 w(x1, X2, x3) dxz = 0}, (1-25)

where T, = R/(Zh) and h = 27 / kg is the vertical period. We can thus state our second main result:

Theorem 1.6. Under the assumptions of Theorem 1.3, let L denote the full linearized operator in (1-11).

2
o,per,

Then, for any h > 0, the spectrum of L in the space L , satisfies

o(L) =iR. (1-26)

Remark 1.7. The reason for restricting ourselves to functions with zero average in the vertical direction
was explained in Remark 1.5. The same technical limitation prevents us from considering perturbations in
the enstrophy space L2 (R*), without assuming periodicity in the vertical direction, because in that case
all values of the vertical wave number k € R have to be taken into account. In a subsequent work [Gallay
and Smets 2019], we use Theorem 1.3 to obtain an analogue of Theorem 1.6 for the Euler equation in
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velocity formulation. There we consider perturbations in the energy space, and we also obtain semigroup
estimates for the linearized operator at a columnar vortex.

In the proof of Theorems 1.3 and 1.6, we find it convenient to normalize our velocity and vorticity
profiles so that €2(0) = 1 and W(0) = 2. This leads to the following definition:

Definition 1.8. We denote by # the class of all vorticity profiles W : R, — R satisfying the Assumptions
H1, H2 above, as well as the normalizing condition W (0) = 2.

It is worth emphasizing here that Assumption H2 involves the function J defined in (1-20), which
depends nonlinearly on the vorticity profile W. As a consequence, our family of admissible profiles is not
a vector space, and the class # introduced in Definition 1.8 is not even a convex set. However, we shall
prove in Section A4 that any profile W € # is entirely determined by the auxiliary function

1
NIEION

and that the class # can be described by simple linear constraints at the level of the function Q. This

0(r) = r>0, (1-27)

makes it possible to perform continuous interpolation and approximation within the class %, and such
tools will play a crucial role in the proof of Theorem 1.3.

Remark 1.9. If we equip the class # with the topology of Cg (R,), the Banach space of all bounded
continuously differentiable functions on R, with bounded derivative, it is easily verified that the linear
operator L,, » € L(X,, x) depends continuously on the vorticity profile W € #; see Lemma 4.1 below. In
particular, isolated eigenvalues of L,, ; outside the imaginary axis (if there are any) vary continuously
when W is perturbed in that topology. This implies that the conclusion (1-24) of Theorem 1.3 remains
valid for any vorticity profile that belongs to the closure of the class # in Cg (R,). This larger class
contains vorticities W that are not strictly decreasing functions of the radius r, and may even be compactly
supported.

1C. Previous results and perspectives. The first historical contribution regarding the stability of colum-
nar vortices in incompressible fluids is of course the seminal work [Kelvin 1880]. In that study, the
focus is put on neutral modes, namely eigenmodes of the linearized Euler equation that correspond to
purely imaginary eigenvalues; these were later termed “Kelvin vibration modes”. As Kelvin expresses
it: “The problem thus solved is the finding of the periodic disturbance in the motion of rotating liquid
[...]". The computations in [Kelvin 1880] are performed in situations where the underlying axisymmetric
flow has piecewise constant vorticity; this exactly corresponds to what was called the Rankine vortex in
Section 1A above. However, Kelvin waves are observed to play an important role in the dynamics of the
Euler equation for a much wider variety of profiles, and were actively studied in the literature since then
(in most cases numerically, or using asymptotic expansions combined with physical arguments). In the
case of the Lamb—Oseen vortex, important contributions were made in particular by Le Dizes and Lacaze
[2005] and Fabre, Sipp and Jacquin [Fabre et al. 2006], both in the inviscid case and in the vanishing
viscosity limit. Unlike Kelvin (who had no computer account!), the authors of [Le Dizes and Lacaze
2005; Fabre et al. 2006] also consider the possibility of eigenvalues off the imaginary axis. One of the
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conclusions of [Fabre et al. 2006] based on their numerical findings is that “[...]no amplified modes were
found, a result which demonstrates the stability of the Lamb—Oseen vortex.”

In a different direction, Rayleigh [1879; 1917] initiated the study of necessary conditions for columnar
vortex instability.! Although it may certainly be found physically convincing, the original argument
[Rayleigh 1917] leading to Rayleigh’s criterion cannot be easily transposed into rigorous mathematical
terms. Instead, the approach followed in [Howard and Gupta 1962], which we consider one of the most
interesting and important contributions so far, is both rigorous and elementary. This remarkable work
contains most importantly an inconclusive but enlightening section called “Remarks on the nonaxisym-
metric case”, in which the partial stability criterion (1-21) can be found. The authors write: “The overall
conclusion of this consideration of the nonaxisymmetric case is thus essentially negative: the methods used
to derive the Richardson number and semicircle results in the axisymmetric case reproduce the known
results of Rayleigh for two-dimensional perturbations and pure axial flow, but seem to give very little more.
In fact the present situation with regard to nonaxisymmetric perturbations seems to be very unsatisfactory
from a theoretical point of view.”

Attempts have been made to derive necessary conditions for instability extending Rayleigh’s criterion to
nonaxisymmetric perturbations. One such criterion was proposed in [Billant and Gallaire 2005], following
[Leibovich and Stewartson 1983], and applies in a given Fourier sector. It is relatively simple to state
but requires a number of a posteriori checks which could be more difficult to perform. As the authors
mention, in all the situations they tested the most unstable modes were always the axisymmetric ones
(this is reminiscent of Squire’s theorem in the context of viscous shear flows), and therefore, in practice,
Rayleigh’s criterion appears to be sufficient to detect potential instabilities. Yet, a priori estimates on the
possible growth in a given Fourier sector are certainly interesting per se.

Spectral stability of course does not imply stability of the flow for a Hamiltonian system such as
(1-1). In celebrated works, Arnold [1965; 1966] derived a nonlinear stability criterion for stationary
solutions of the Euler equations, which are viewed as critical points of the kinetic energy functional
over the manifold of isovortical vector fields, and he treated in detail the case of two-dimensional flows.
His approach was subsequently extended in [Szeri and Holmes 1988] and applied to axisymmetric
perturbations of columnar vortices. A few years later, Rouchon [1991] proved that the conditions
in Arnold’s criterion are never satisfied if one considers genuinely three-dimensional perturbations
of nontrivial stationary flows. An intermediate step between spectral and nonlinear stability is linear
stability, which consists in controlling the growth of the semigroup generated by the linearized operator
in Theorem 1.6. Preliminary results in that direction can be found in the subsequent work [Gallay and
Smets 2019].

We close this section by mentioning that a number of interesting phenomena are known to arise, as far
as instabilities are concerned, when the base flow possesses an additional axial component. Some of the
works already quoted, and many others, do consider that situation as well. Since we did not investigate it
at all in this work, we keep that discussion for another occasion.

Tor equivalently sufficient conditions for their stability; in the present work stability is only understood in the spectral sense,
meaning the absence of eigenvalues with positive real part.
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1D. Organization of the paper. Our strategy to prove Theorems 1.3 and 1.6 can be explained as follows.
In a first step, we show in Section 2 that the essential spectrum of the operator L,, x is purely imaginary.
The rest of the spectrum consists of isolated eigenvalues with finite multiplicity, and the corresponding
eigenfunctions are solutions of a second-order differential equation involving a complex potential that
depends on m, k, and the spectral parameter s. The eigenvalue equation is difficult to study in general,
but using techniques that date back to [Rayleigh 1879; 1917] it is easy to verify that it has no nontrivial
solution with Re(s) # 0 when the perturbations are either axisymmetric (m = 0) or two-dimensional
(k = 0). In Section 3, we establish a few preliminary results in the case where m % 0 and k # 0. In
particular, we derive useful identities satisfied by any nontrivial eigenfunction, and we recover the stability
criterion (1-21) of Howard and Gupta. The core of the proof of Theorem 1.3 is Section 4. We construct a
suitable homotopy between the vorticity profile W € # and a reference profile for which stability in the
corresponding Fourier sector X,,  is known by Howard and Gupta’s criterion. By a continuity argument,
this strategy allows us to reduce the problem to proving the absence of unstable eigenvalues arbitrarily
close to the imaginary axis for a one-parameter family of profiles in the class 7. A delicate combination
of integral identities and comparison arguments relying on Assumption H2 are then used to perform
such a “critical layer analysis” and hence to preclude the existence of unstable eigenvalues. Finally, in
Section 5, we prove uniform resolvent estimates for the linear operator L,, ; outside the imaginary axis,
which imply that the full linearization L has indeed no spectrum in that region when acting on the space
L ¢2r,per,h
where several auxiliary results are established. In particular, we give useful estimates for the Biot—Savart

for any & > 0. This is precisely the conclusion of Theorem 1.6. The last section is an Appendix

law in the Fourier sector indexed by m, k, we prove the stability of Rankine’s vortex (1-7), which is not
covered by Theorem 1.3, and we explain how to perform continuous interpolation and approximation in
the nonlinear class 7.

2. Formulation of the spectral problem

Let W be a vorticity profile in the class #, and let Q2 be the corresponding angular velocity defined
by (1-16). For a fixed value of the angular Fourier mode m € Z and of the vertical wave number
k € R, we consider the linear operator L,, ; introduced in (1-15). In view of (1-13), we have the natural
decomposition

Ly t=Am~+ Bk, 2-1)
where A,, is the multiplication operator defined by
Apw=—imQr)o+rQ (rw,eg, (2-2)
and By, ; is the nonlocal perturbation
B =ikW(r)u — W (r)uye;. (2-3)

Here u = (u,, up, u;) denotes the velocity obtained from the vorticity w = (@,, wy, ;) by solving the
linear PDE system (1-14) with appropriate boundary conditions. We refer the reader to Section Al below
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for a discussion of the map w + u, which we call the Biot—Savart law in the Fourier subspace indexed by
m and k. Our main goal in this paper is to study the spectral properties of the operator L,, ; acting on the
enstrophy space X,, x defined by (1-23).

The following simple result is the starting point of our analysis.

Proposition 2.1. Fixm € Z and k € R\ {0}:
(1) The linear operator A, defined by (2-2) is bounded in X,, j with spectrum given by

o0(Ay) ={z€C|z=—imb forsomeb €0, 1]}. 2-4)

This spectrum is purely continuous if m # 0, and reduces to a single eigenvalue if m = 0.

(2) The linear operator By, i defined by (2-3) is compact in X, .

Proof. Given s € C and f = (f;, fo, f2) € Xm.k, the resolvent equation (s — A, )w = f is equivalent to
the linear system

(s +imQr)or = fr,  (s+imQr)wp = fo+rQ (o, (s +imQr)o, = f;. (2-5)

As W e %, we know that Q : [0, o0) — Ry is strictly decreasing with 2(0) =1 and Q(r) — 0 as r — oo.
Thus, if s = —imb for all b € [0, 1], the quantity |s +im2(r)| is bounded away from zero, and it follows
that system (2-5) has a unique solution w € X,, ; satisfying ||w||;2 < C(s)|| fll 2. On the other hand, if
m # 0 and s = —imb for some b € [0, 1], it is easy to verify that the operator s — A,, is one-to-one but
not onto (its range is dense but strictly contained in X,, ), so that s belongs to the continuous spectrum
of A,,. Finally, if m = 0, it is clear that s = 0 is an eigenvalue of A,, with infinite multiplicity. This
proves the first part.

We next consider the operator B, ;. If ® € X, and |lwl||;2 < 1, Proposition A.1 shows that the
associated velocity field u satisfies ||9,u|| 2 + ||ku]| ;2 < C for some universal constant C > 0. This gives
a uniform bound on u in H'(R,, r dr) since we assume that k # 0. By the Fréchet—Kolmogorov theorem,
we deduce that the map @ > By, yw = ikW (r)u — W/ (r)u,e, is compact in X,, x, because the functions
W and W’ are bounded and converge to zero as r — 00. (Il

Proposition 2.1 shows in particular that, for any m € Z and any k € R\ {0}, the linearization L,, x =
Ay + By, i defines a bounded operator in the space X, x. Moreover, as By, ; is compact, the essential
spectrum of L, i is the same as the (essential) spectrum of A,,, namely the closed interval [, =
{—=imb|0<b <1} CiR; see [Edmunds and Evans 2018, Theorem 1.4.1]. Note that, in the present case, the
various definitions of the essential spectrum listed in [Edmunds and Evans 2018, Section 1.4] all coincide.
This implies that the spectrum of L,, x outside the interval I,, entirely consists of isolated eigenvalues
with finite multiplicities, which can accumulate only on the essential spectrum. The proof of Theorem 1.3
is thus reduced to showing that all isolated eigenvalues of L,,  actually lie on the imaginary axis.

Remark 2.2. As the functions €2, W are real-valued, it is not difficult to verify, using the definitions (2-2),
(2-3) and the relations (1-14) between u and w, that the spectrum of L,, ; in X,, ; has the symmetries

U(Lt71,k) = O'(Lm,fk) =—0 (Lfm,k) and O_(Lm,k) = _G(Lt71,k)- (2'6)
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The corresponding mappings between eigenspaces are also easy to establish. In particular, the last relation
in (2-6) means that the spectrum of o (L,, ) is symmetric with respect to the imaginary axis, a property
that will be used later on.

As a first step in the proof of Theorem 1.3, we derive an equation for the eigenfunctions of the operator
L, x corresponding to eigenvalues outside the essential spectrum. In what follows, we thus assume that
s € C is an isolated eigenvalue of L,, ; with eigenfunction w = (w,, wg, ®;) € X, k, and we denote by
u = (ur, up, uy) the velocity field associated with w via the Biot—Savart law; see Section Al. As in
[Drazin and Reid 1981], we define

y(r)=s+imQr), r>0. 2-7)

Since s does not belong to the essential spectrum of L,, ; by assumption, it follows from Proposition 2.1
that y (r) # 0O for all » > 0.
In view of (1-13), the eigenvalue equation is given by
y(r)w, =ikW(r)u,,
y(rws =ikW@)ug +rQ (row,, (2-8)
Yo, =ikW@r)u, — W (r)u,,

where rQ'(r) = W(r) —2Q(r) by (1-6). If we express the vorticity w in terms of u using the relations
(1-14), we obtain the equivalent system

iKW (), + iky (Fug — muz —0, (2-9)
iky(ru, —2ikQ(r)ug — 0, (y (r)u;) =0, (2-10)
(W’(r) — @)u,juy(r)%ar(m@) — kW (r)u, = 0. (2-11)

Assuming for the moment that k # 0, it is straightforward to verify that the relations (2-9)—(2-11) together
imply the incompressibility condition

%a,(ru,) + %ue +iku, =0. (2-12)

To reduce system (2-9)—(2-12) to a single equation, we first express the azimuthal velocity uy in terms
of u,, u, using (2-9), and replace it into (2-10), (2-12) to obtain the 2 x 2 system

. imW(r) . m? _

(ar - )u,+lk<l+m>u2_0, (2-13)
(a + imW(r)) ’k<l+ CD(F)) 0 (2-14)
R U, — I — Ju, =0, -

ry(r) y(r)?

where ® =2QW is the Rayleigh function and 9 = 9, 4+ 1/r. Next, observing that the coefficient of u,
in (2-13) does not vanish, we can divide (2-13) by that coefficient and apply the differential operator
dr +imW /(ry) to obtain, with the help of (2-14), the following second-order differential equation for
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the radial velocity:

imW 2 imW P
<3r+lm (r)> : r : 2<3r*—lm (r))ur= (H_i)z)ur_ (2-15)
ry(r) Jm*+ker ry(r) y(r)
If we expand the product in the left-hand side, we find after straightforward calculations
r2ofu 1 Kr2®(r)  imr W (r)
-0 1 9 = 0; 2-16
r(mz +k2r2) i { Ty m e Ty r<m2+k2r2)}ur (210

see also [Drazin and Reid 1981, equation (15.26)]. This is the desired eigenvalue equation, which will
be our main concern in the rest of this paper. It is formulated in terms of the radial velocity u,, which
satisfies u, € H' (R, r dr) according to Proposition A.1. In fact, we also have u, € HI%)C(RJr) in view of
the divergence-free condition (2-12).

Remark 2.3. In the case where k = 0, a much simpler calculation shows that the eigenvalue equation is
still given by (2-16) if m # 0, although the derivation above is not correct. If k =m =0, equation (2-16) is
of course meaningless, but in that case it is obvious that system (2-8) has no nontrivial solution for s # 0.

Summarizing the arguments developed so far, the proof of Theorem 1.3 can be reduced to showing that,
for all m € Z and all k € R\ {0}, the eigenvalue equation (2-16) has no nontrivial solution u, € H' (R, r dr)
if the spectral parameter s € C satisfies Re(s) # 0. This is a difficult task in general, which we postpone to
Sections 3 and 4. For the time being, we just mention two important particular cases which are relatively
easy to handle.

2A. The axisymmetric case. In the axisymmetric case m = 0, Proposition 2.1 asserts that the essential
spectrum of L x is reduced to zero, and therefore away from the origin there may only exist eigenvalues
with finite multiplicity. The spectral function (2-7) is constant in that case, and the stability equation (2-16)
reduces to

_ * 2 CD(I") _
0,0 ur +k°| 14 5 Jur = 0. 2-17)
S

The following classical result dates back to [Rayleigh 1917], and is reproduced here for the reader’s
convenience.

Proposition 2.4. Assume that the Rayleigh function ® is nonnegative. Then the eigenvalue equation (2-17)
has no nontrivial solution u, € H (R4, r dr) if Re(s) # 0.

Proof. According to Remark 2.3, we can suppose that k # 0. Assume that u, € H' (R, rdr) is a
nontrivial solution of (2-17) for some s € C\ {0}. Multiplying both sides of (2-17) by ri, and integrating
the resulting expression over R, we obtain the useful relation

o0 P
f {|a,*u,|2+k2(1+#)|u,|2}rdr=o. (2-18)
0 A

By assumption we have fooo ®|u,|?r dr > 0, because u, is a nontrivial solution of (2-17) and ® is a
nonnegative function with ®(0) > 0. Thus taking the imaginary part of (2-18) we deduce that Im(s?) =0;
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hence s € R or s € iR. The first possibility is excluded by taking the real part of (2-18); hence we conclude
that s € iR. ]

Remark 2.5. Actually it was observed in [Synge 1933] that the Rayleigh stability criterion ® > 0 is not
only sufficient, but also necessary in the axisymmetric case. Indeed, we know that ®(0) = W(0)? > 0,
and for localized vortices we always have ®(r) — 0 as r — oo. Now, assume that & (r) < 0 for some
r > 0, and consider the Schrodinger equation

—5%0,0%u, +k*(s* + ®(r)u, = Eu,, r>0, (2-19)

in the semiclassical limit where 0 < s < 1. As the potential term s> + ®(r) takes negative values near
r =r, it is well known that the operator in (2-19) has negative eigenvalues E if s > 0 is sufficiently small;
see, e.g., [Simon 1983; Helffer and Sjostrand 1984]. In fact, the number of negative eigenvalues increases
unboundedly as s — 0, and this implies by continuity that (2-19) with E = 0, or equivalently (2-17), has
a nontrivial solution u, € H'(R,, r dr) for a sequence of values of s > 0 that converges to zero.

We also note that the analogue of Synge’s observation used for s € iR instead of s € R implies in
contrast that, when the Rayleigh function is nonnegative, the linearized operator L x does possess nonzero
eigenvalues on the imaginary axis, which correspond to Kelvin modes.

2B. The two-dimensional case. Although it is not included in Theorem 1.3, the two-dimensional case
k = 0 is worth mentioning too. When m # 0, the eigenvalue equation (2-16) reduces to

ier/(r))
— Ju, =0.
y(r)

A well-known sufficient condition for stability is that the vorticity profile W be a monotone function; see,

—3,(r*d%u,) + (mz + (2-20)

e.g., [Marchioro and Pulvirenti 1994], but unlike in the axisymmetric case no sharp criterion has been
established so far. Again, for the reader’s convenience, we reproduce here the easy argument showing
spectral stability if W’ has a constant sign.

Proposition 2.6. Assume that the vorticity profile W is monotone. Then the eigenvalue equation (2-20)
has no nontrivial solution u, € Hl([F\RJr, rdr) if Re(s) #0.

Proof. Assume that u, € H'(R., r dr) is a nontrivial solution of (2-20) for some s € C with Re(s) # 0.
Multiplying both members of (2-20) by ru, and integrating over R, we obtain the relation

x . W/
f {|a,(ru,)|2+ (m2+u>|u,|2}rdr:o. (2-21)
0 y(r)
In particular, taking the imaginary part and using (2-7), we find
W
mRe(s) | ") Bt dr =0,

y()|?
and since W is monotone we conclude that u, is supported in the set where W’ vanishes. This is clearly
impossible if W is not identically constant, because u, is a nontrivial solution of the second-order ODE
(2-20). But if W is a constant, (2-21) immediately gives the desired contradiction. U
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3. The eigenvalue equation for m # 0 and k # 0

In this section we begin our study of the eigenvalue equation (2-16) in the general case where m # 0 and
k # 0. In view of the symmetries (2-6), we can assume without loss of generality that m > 1 and k > 0.
We write the spectral parameter as s = m(a — ib), where a, b € R, and we take the decomposition

y(r)=s+imQ(r)=imy,(r), where y,(r)=Q(r)—>b—ia. (3-1)

According to Proposition 2.1, the essential spectrum of the operator L,, x is the set of all s =m(a —ib)
such that @ = 0 and b € [0, 1]. Outside that set, the function y, is bounded away from zero for all » > 0
and the eigenvalue equation (2-16) becomes

=03, (A(r)d u,) + B(r)u, =0, (3-2)
where 9 =0, +1/r and
o AN | r W (r)
A(r) - m2 +k2}’2’ B(r) - 1 - W )/*(r)z + )/*(r) ar (m2 +k2r2> (3'3)

3A. Asymptotic behavior at the origin and at infinity. Our first goal is to determine the asymptotic
behavior of the solutions of the complex ODE (3-2) as r — 0 and r — oo, assuming that a # 0 or
b ¢ [0, 1]. We start with the behavior at the origin. If u, is a solution of (3-2), we set

u,(r)= lv(log l), r >0,
r r

or equivalently v(x) = e *u,(e™™) for x = log(1/r) € R. The new function v : R — R satisfies the
equation
«Ble™)

A(e™)’
In view of (3-3) we have A(e™) = O(e™>) and C(x) = m> + O(e ?*) + O(e*|W(e™)|) as x — +o00.
Thus applying, e.g., [Coddington and Levinson 1955, Theorem 3.8.1], we deduce that (3-4) has a unique
solution v such that e"*v(x) — 1 as x — +00. Returning to the original variables, we conclude that (3-2)
has a unique solution u, such that r!~"u, (r) — 1 as r — 0. This solution u, and its first derivative u,
depend continuously on the various parameters in (3-2), including the vorticity profile W € Cg (Ry) and

V' (x) 4+ 2k* A(e ) (x) = C(x)v(x) =0, where C(x) = e~ > (3-4)

the spectral parameter s = m(a — ib) € C, uniformly in » on any bounded interval of the form (0, R).
Any linearly independent solution of (3-2) blows up like !~ as r — 0, and is therefore not square
integrable near the origin.

We next study the behavior at infinity. If u, is a solution of (3-2), we define w(r) = r12u,(r) and
obtain for w the equation

A _ _Bh 3 1A®
A0 w' () —Dr)w) =0, where D(r)= ) + 220 A

We have A'(r)/A(r) = O@(r~3) and D(r) = k* + O(r~?) as r — oo, because Remark 1.2 implies
W) =04, W) =0@F), and ®(r) = O(~°) in that limit. Invoking again [Coddington and

w’(r) + (3-5)
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Levinson 1955, Theorem 3.8.1], we deduce that (3-5) has a unique solution w such that " w(r) — 1 as

r — oo; hence (3-2) has a unique solution satisfying r12ekmy, (ry — 1 as r — o0o. This solution and its

first derivative depend continuously on the parameters in (3-2), uniformly on the interval (R, oo) for any

—1/2¢kr a5 r — 00, and is therefore not

R > 0. Any linearly independent solution of (3-2) grows like r
square integrable.

Summarizing, we have shown:

Lemma 3.1. Ifm #0 and k #0, any eigenvalue of the linear operator L, x € L(X, k) outside the essential
spectrum (2-4) is necessarily simple. Moreover, if u, is the radial velocity profile of the corresponding
eigenfunction, there exist o, B € C such that

lim r' ="y, (ry=a and  lim rY2e% 7y, r) = B.
r—0 r—00

3B. Eigenvalues on the imaginary axis: Kelvin waves. In a second step, we consider the eigenvalues of
the linearized operator L, ; on the imaginary axis. The corresponding eigenfunctions describe “vibration
modes” of the columnar vortex and were first studied by Kelvin [1880] in the particular case of Rankine’s
vortex. Strictly speaking, this subsection is not part of the proof of Theorem 1.3, but in view of the physical
relevance of the Kelvin waves it is worth mentioning a few results that can be rigorously established.

In what follows, we thus assume that a = 0 and b ¢ (0, 1), so that y,(r) 7% 0 for all » > 0. In that case
(3-2) has real coefficients, and its solutions can be studied using standard ODE techniques. For simplicity
we suppose here that the vorticity profile W € # is the restriction to R, of a smooth even function on R
satisfying W”(0) < 0, as is the case for the Kaufmann—Scully vortex (1-8) or the Lamb—Oseen vortex
(1-9). We consider separately the regimes where » > 1 and b < 0.

Lemma 3.2. For any m # 0 and k # 0, the set of all b > 1 such that (3-2) with a = 0 has a nontrivial
solution in H' (R, r dr) is a countable family which accumulates only at 1. Moreover, (3-2) has no
nontrivial solution in H' (R, r dr) ifa =0 and b = 1.

—-1/2

Proof. When b > 1, we apply to (3-2) the change of variables u, = r" A(r) v, where A(r) is as in

(3-3). A direct calculation shows that the new function v satisfies

—afu—@a,vﬂk%ﬂrwg(r))u:o, r>0, (3-6)
where
_KRA®r) 5 ke r W(r)
‘F(r) - ]"2 (_2+3k A(r))’ g(r) — _W )/*(r)Z + A(r)’y*(}”) 8F(m2 —{—k2r2>

We assume that b = 1 4+ 42 for some small /& > 0, and we expand
—y(r)=1 +h2—Qr) = +pr’+ 0% asr— 0,

where p = —Q"(0)/2 = —W"(0)/8 > 0. If r = hs, it is straightforward to verify that

2

h* (k> + F(hs) + G(hs)) = 4 +0Oh? ash— 0,

m2 (1+ ps?)2
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uniformly for all s > 0. Thus the new function w defined by setting w(s) = v(hs) satisfies the semiclassical
Schrodinger equation

2m+1 4k>
mt ) Y UG hw =0, (3-7)

o 2( a2
‘iﬂhw =—h (Bsw—i—Taxw —Wm

for all s > 0, where U (s, h) = O(h?) as h — 0, uniformly in s. Since the principal part of the potential
term in (3-7) is negative, standard results in semiclassical analysis [Simon 1983; Helffer and Sjostrand
1984] show that the operator ¢, has negative eigenvalues if / is sufficiently small, and that the number of
these bound states is O(h~') as h — 0. Moreover, since F(r) + G(r) — 0 as r — oo, the bottom of the
essential spectrum of ., is k>h* > 0 for any i > 0. These two observations together imply that .%;, has a
zero eigenvalue for a countable sequence £, — 0, and returning to the original variables we conclude
that (3-2) with a = 0 has a nontrivial solution in H'! (R4, rdr) for a sequence b, =1+ h% — 1.
When b = 1, namely & = 0, the leading term in the function B(r)/.A(r) satisfies

4k?
m2p?’

K or) 6?2

o = r_“(l +0@?) asr—0, where ®=

To investigate the behavior of the solutions of (3-2) near » = 0 in that case, it is useful make the change
of variables u,(r) = r~/2U(1/r). Setting x = 1/r, this leads to an equation of the form

1

U’ (x) —I—g(%)U’(x) —I—ﬁ(;)U(x) =0, x>0, (3-8)

where C(r) = O@3) and D(r) = O + O@F?) as r — 0. Using [Coddington and Levinson 1955,
Theorem 3.8.1], we deduce that (3-8) has two linearly independent solutions satisfying Ui (x) =
eTO%(1 + O(1/x)) as x — +oo. If we now return to the original variables, we conclude that (3-2)
has two linearly independent solutions ¢4 such that

1 .
b (r) = —=eFO"(14+0@r)) asr— 0. (3-9)
Jr
As is easily verified, no nontrivial linear combination of ¢4 and ¢_ can belong to H YRy, r dr), which
means that (3-2) has no nontrivial solution if a =0 and b = 1. [l

The situation is completely different when b < 0.

Lemma 3.3. For any m # 0 and k # 0, the set of all b < 0 such that (3-2) with a = 0 has a nontrivial
solution in H' (R_., r dr) is finite. Moreover:
(1) This set is nonempty for a finite number of values of m only.

(2) For both the Kaufmann—Scully vortex (1-8) and the Lamb—Oseen vortex (1-9), equation (3-2) has no
nontrivial solution when a =0 and b <0 if |m| > 2.

Proof. If a=0and b <0, then y,(r) = Q) —b = Q(r) + |b| > 0. In this region, it is easy to verify
that the coefficient B(r) < 1 defined in (3-3) is an increasing function of both parameters |m| and |b|.
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Moreover, using the bounds on 2, W, and ® which follow from Assumptions H1, H2, see Remark 1.2,
we obtain the estimate

C
sup(1 — B(r)) < — sup

r>0 m= >0

( (1) +W(r>+r|W/<r>|)<£1
QN +1bD2 " Q)+l ) T m2 1+ bl

where the constant C depends only on the vorticity profile. As a consequence, we see that B(r) > 0 when
|m| or |b| is large enough, and this implies that (3-2) has no nontrivial solution; see (3-10) below. It
follows that the linearized operator L,, ; can have eigenvalues s = m(a —ib) witha =0 and b < 0 only
for a finite number of values of m € Z, and using Sturm-Liouville theory we also conclude that, for any
m € Z, there exist only finitely many eigenvalues with @ = 0 and b < 0. Interestingly enough, for both
the Kaufmann—Scully vortex (1-8) and the Lamb—Oseen vortex (1-9), an explicit calculation, which is
reproduced in Section A7, shows that B(r) > 1 —4/m?, so that there are no eigenvalues in this region
when |m| > 2. [l

As a final comment, we mention that when m = =1 there are always eigenvalues witha =0 and b <0.
Indeed, due to translation invariance, the operator L,, ¢ has a zero eigenvalue with eigenfunction

u=—imQe, + (W—Q)ey, w=We,.

That eigenvalue bifurcates out of the essential spectrum as the parameter k varies, so that L,, ; has at
least one eigenvalue s = —imb with b < 0 if |m| =1 and |k| is small enough.

3C. Eigenvalues outside the imaginary axis: Howard identities. For our next step in the study of the
eigenvalue equation (3-2), we use a classical method originally due to Rayleigh [1879] to show that the
linearized operator L,, x has no spectrum in large regions of the complex plane, which are depicted in
Figure 1. The idea is to derive integral identities satisfied by the hypothetical eigenfunctions, which
eventually lead to a contradiction.

Assume thus that the eigenvalue equation (3-2) has a nontrivial solution u, € H' (R, r dr) for some
s =m(a —ib) € C, where a # 0. Multiplying both sides of (3-2) by ru, and integrating over R, we
easily obtain, using the results of Section 3A

/ (A)3Fu,* + B(r)|uy|*)r dr =0, (3-10)
0

Note that the function B is complex-valued if a # 0, so that (3-10) gives two integral relations for the
radial velocity u,. For instance, taking the imaginary part of (3-10) and using the expression (3-3) of B,
we obtain the identity

00 _ 2
a/o {%%A(ﬁd}'(ﬂ L (;_b)za, (mzvi(grz)} uPrdr=0.  (3-11)
This relation is identically satisfied if a = 0, but gives useful information if a # 0. For instance, if b <0,
then b — Q(r) < 0 for all » > 0, and Assumption H1 implies

W(r)
m? + k?r?

®(r)>0 and 8,( )<0 for all r > 0.
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Kelvin modes — ¢

essential spectrum —

Q(r)

- < hypothetical
unstable modes

b

la

S

Figure 1. Right: The information obtained so far on the spectrum of the linearized
operator (2-1), using the parametrization s = m(a — ib). Kelvin modes are located
on the imaginary axis a = 0, and accumulate only at the upper edge of the essential
spectrum, which fills the segment a =0, b € [0, 1]. The rest of the spectrum, if any,
consists of isolated eigenvalues which can accumulate only on the essential spectrum,
and are contained in a region of the form |a| < M, b € [0, 1] according to Proposition 3.4.
Left: The angular velocity profile €2 and the critical radius r associated with a spectral
point a = 0, b = b inside the essential spectrum.

Thus the integrand in (3-11) is nonpositive and not identically zero; hence equality (3-11) cannot hold.
We conclude that the operator L, x has no eigenvalue s = m(a —ib) with a # 0 and b < 0; see Figure 1.
Unfortunately, we do not know how to use the relation (3-10) to preclude the existence of eigenvalues of
L, r in other regions of the complex plane.

The following approach, due to [Howard 1961; Howard and Gupta 1962], provides other identities
similar to (3-10), which give further information on the possible eigenvalues. Define u, = g (r)v,, where
q is a (real- or complex-valued) weight function satisfying ¢ (r) # O for all » > 0. Then v, is a solution to

—3,(q(r)*A(r)d}v,) + Er)v, =0, (3-12)

where
2 / / 'A(r) /"
Er)=q(r)"B(r)—q(r)q (r)(A (r)— — ) —q(r)q (r)A(r).

Multiplying both sides of (3-12) by rv, and integrating over R, we deduce

/ @A + EOIPr dr =0, (3-13)
0

If g is real-valued, then ¢2|v,|> = |u,|* and taking the imaginary part of (3-13) we recover (3-11), but the
real part gives new information. If ¢ is complex, both the real and the imaginary parts of (3-13) provide
new information.

Following [Howard and Gupta 1962], we now consider in more detail some interesting particular cases

of (3-13).
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Case 1: g(r) = y.(r). We then have

k> w A
E(r) = 74 (r)? = —5 A D () + 1y, ()9, (%) — (VL) (A’(r) - ﬁ) — (YL (AW
m m* + k*r r
Since ry)(r) =rQ'(r) = W(r) — 2Q2(r), we observe that
, / A(r) p . Ya(AT)\ W(r) —28(r) )
m(r)(A (r) - 7) + 7 (NAX) = rar(—r ) ~ ra,(—m2 i ) (3-14)

and we deduce the following simpler expression of £(r):

kZ Q(l")
Er) = yu(r)* — ﬁA(F)CD(r) +2ryu(r)d, (W)

In particular, taking the imaginary part of (3-13), we obtain the identity

2a /Oo (b — Q) (AF) |0 v > + v 1> — rd _R0) lv-)? frdr=0 (3-15)

0 r vr r r m2 + k2r2 r .
If we now assume that b > 1, so that b — Q(r) > 0 for all » > 0, we see that all terms in the integrand of
(3-15) are nonnegative, which leads to a contradiction if a # 0. We conclude that the linear operator L,, i

has no eigenvalue s = m(a —ib) if a # 0 and b > 1; see Figure 1.

Case 2: g(r) = ys ()72 Proceeding as above, we find

k* A(r)®(r) W (r) 1 A 1 1y/(r)?
g =Y R R ; N _ - / / _ TNy = 1/ _*— .
(V=)= 5= (m2 - k2r2> Zmr)(A (n-= ) S OACHZ A
Using again (3-14), we deduce that
k> A(r)®(r) r W(r)+2Q(r) 1 Q/(r)?
ET)=yu(r) — ————+ =0, - .
O=rO=e e e ( 2 K2 ) iy
In particular, taking the imaginary part of (3-13), we obtain the identity
> A(r) o)  Qr)?
x 12 2 2 —
_a/O {A(r)|8, Ur |+ vy +a2+(§2—b)2< T2 |v.|=¢rdr =0. (3-16)
As a consequence, if we assume that
o) _m?
J(@r)= Q) > 2 for all r > 0, (3-17)

we see that all terms in the integrand of (3-16) are nonnegative, which leads to a contradiction if a # 0.
We conclude that (3-17) is a sufficient condition for spectral stability. Unfortunately, condition (3-17) is
never met for the Lamb—Oseen vortex, because J(r) — 0 as r — 400 in that case. In the case of the
Kaufmann—Scully vortex, it is satisfied only if m? < 4k?.

The results obtained by Howard’s approach can thus be summarized as follows.

Proposition 3.4. Assume that the vorticity profile W satisfies Assumption HI in Section 1B. Then for any
m # 0 and k # 0 the following hold:
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(i) The linearized operator Ly,  has no eigenvalue s = m(a — ib) with a # 0 and b(1 —b) < 0.

(i1) If condition (3-17) is satisfied, then L,, ;. has no eigenvalue outside the imaginary axis.

3D. Critical layers and embedded eigenvalues. We assume here that a = 0 and 0 < b < 1, which
means that the spectral parameter s = m(a — ib) is contained in the essential spectrum of the linearized
operator L,, ; and does not coincide with one of its endpoints. The natural extension of the eigenvalue
equation (3-2) to this situation? is

m2 Q) — b2 (@) —b) " \m2 k22 (3-18)

o (A + |:1 A N r ; ( W(r) )]ur _o.
Since the value of b belongs to the range of the angular velocity €2, both denominators in (3-18) vanish at
exactly one point 7 > 0, characterized by €2 () = b, so that (3-18) becomes singular at that point. In the
physical literature, singularities of the eigenvalue equation are usually avoided by allowing the variable r
to take slightly complex values, a procedure that is referred to as “critical layer analysis” in this context
[Drazin and Reid 1981].

To perform such an analysis, we restrict our attention in the rest of this section to vorticity profiles W
which satisfy Assumption H1 and, in addition, are real-analytic on (0, c0), so that the angular velocity €2
and the Rayleigh function & are analytic too. According to the usual terminology, the point 7 is then a
regular singular point of (3-18); see, e.g., [Coddington and Levinson 1955, Chapter 4] or Section A3 below.
Extending the range of the variable r to a neighborhood of (0, co) in C allows us to make a connection
between solutions of (3-18) defined on the interval (0, 7) and others defined on (7, 00). In a neighborhood
of 7, the behavior of the solutions of (3-18) is determined by the roots d of the indicial equation

k2
d(d—l)—l——zJ(f‘):O. (3-19)
m

We distinguish three cases.

Case 1: 0 < J(7) < m?/(4k?). The roots of (3-19) are real and simple:

1 1 k2 \1/2

=y (3= /D)
In particular, we have 0 < d_ < % < d; < 1. The Frobenius method [Coddington and Levinson 1955,
Section 4.8] can be used to construct two real-valued analytic functions V. on (0, co) such that V() =1

and such that the functions ¢4 defined by
$+(r) = |b— Q(r)|F TR C=RONE Y, (1) >0, (3-20)

are independent solutions of (3-18) on both intervals (0, 7) and (7, 0o). Note that ¢4 are real-valued on
(r, 00), but complex-valued (although with a constant phase) on the interval (0, r).

ZWe emphasize that the derivation of (3-2) from the spectral problem was performed in Section 2 under the assumption that
s = m(a — ib) does not belong to the essential spectrum.
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Case 2: J (i) > m?/(4k?). The roots of (3-19) are complex conjugate:

d'—lzl:'S here § = sz_ L)/2

+1=5 i6, where _<W (r)—Z> .

Similarly, the Frobenius method yields the existence of two independent solutions ¢+, which we write in
the form

¢i (r) = |b o) (r)|1/28ii610g \b—SZ(r)|e(in/Z)(l—sgn(b—Q(r)))di Vi (r). (3-21)

Case 3: J(F) = m?/(4k?). Equation (3-19) possesses the unique root % with multiplicity 2, and two
independent solutions of (3-18) can be constructed such that

by (r) = [b—Q(r)| 2/ AC= 2Oy, (1),
b_(r)=|b— Q(,.)|1/26(1'71/4)(1—Sgn(b—ﬂ(r))) (3-22)
x [(log1b— Q(r)| + Z (1 —sgn(b — Q) V4 (r) + V_(r)].

The following technical lemma emphasizes the relevance of the singular functions ¢4 for the approxi-
mation of solutions of (3-18) by nonsingular solutions of (3-2). In the statement, the vorticity profile W,
the spectral parameter s = —imb and the corresponding singular radius 7 are defined as above. However,
we consider a sequence (i, ),en Of smooth solutions of the eigenvalue equation (3-2) where the spectral
parameter s is replaced by some complex number s, with nonzero real part (so that s, does not belong to
the essential spectrum), and where also the vorticity profile W is replaced by some function W, that is
allowed to depend on n.3 We assume that s, — s and W,, — W as n — oo. In what follows, for p0>0
we denote by D(r, p) C C the open disc of radius p centered at r 4+ 0i. When no confusion is possible,
we also use the same symbols for functions of the real variable r € (0, co) and their analytic extensions
into (part of) the complex plane.

Lemma 3.5. Let (u,)nen be a sequence of solutions of (3-2) corresponding to a sequence of spectral
parameters s, = m(a, — ib,) and of real-valued analytic profiles W,,. Suppose that
(1) a, >0 foralln,and a, — 0, b, — b € (0, 1) as n — oo;
) W, —> Win C,l(@Jr) as n — oo,
(iii) there exists p > 0 such that, for all n € N, the radius of analyticity of W, at r is at least equal to p,
and W,, — W uniformly in D(r, p).

If un(r) and u),(r) have a limit as n — oo for some r € (0, 00) \ {r}, then there exist ay. € C such that
Uy — oy +a_¢_ inthe C' topology on compact subsets of (0, 00) \ {F}, where ¢ are given by (3-20),
(3-21) or (3-22) depending on the roots of the indicial equation.

The proof of Lemma 3.5 is postponed to Section A3 below where we also establish the main properties
of ¢, in particular the analyticity of V4 across the singularity 7 and the fact these functions are real-valued.
For the moment, we observe that the implicit determination of logarithms we opted for in constructing the
solutions ¢ is directly related to the assumption that a, > 0 in Lemma 3.5. An approximation procedure

3The reason for the latter will become clear in Section 4.
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valid for negative values of a, would involve the complex conjugates of the functions ¢, defined in
(3-20)—(3-22).

Remark 3.6. The expressions (3-20)—(3-22) show in particular that no nontrivial solution of (3-18) lies
in H>(7 — e, 7 +¢) if € > 0. As we know that the radial velocity u, associated with any vorticity vector
o € Xy belongs to H 1([RR+, rdr)n HI%C(IRLL), we deduce from the observation above that the linear
operator L, x acting on X,, x has no nonzero eigenvalue s embedded in the continuous spectrum (2-4).

Finally, repeating the proof of Lemma 3.1 for (3-18), we easily obtain:

Lemma 3.7. Ifm #0, k #0, and 0 < b < 1, there exist a unique solution g of (3-18) on (0, r) and a
unique solution ¥~ of (3-18) on (r, 0o) such that

limr!' " "yg(ry =1 and lim r'2e* Y (r) = 1.
r—0 r—>00

Moreover, both Yy and Y~ are real-valued.

Since (3-18) is a linear equation, we infer the existence of constants a3, 3 € C such that
vo=a’¢_+aley on(0,7), Voo =a®¢_+aP¢, on (7, 00), (3-23)

where ¢ are defined in (3-20)—(3-22).

4. The homotopy argument

This section is the core of the proof of Theorem 1.3. We concentrate on the situation where the angular
Fourier mode m and the vertical wave number k are both nonzero, because the cases m =0 and k =0
have already been treated in Sections 2A and 2B, respectively. In view of the symmetry properties (2-6),
we can assume without loss of generality that m > 1 and k > 0.

The argument is by contradiction: given a vorticity profile W satisfying Assumptions H1, H2 in
Section 1B, we assume that there exist an integer m > 1 and a real number k£ > 0 such that the linearized
operator L, ; has at least one eigenvalue outside the imaginary axis. The strategy is then to perform a
homotopy between the vorticity profile Wy := W and a reference profile W; for which we know a priori
that the corresponding linearized operator has no eigenvalue with nonzero real part. Since eigenvalues
outside the imaginary axis depend continuously on the vorticity profile, in an appropriate topology, this
implies in our situation that all eigenvalues necessarily merge into the essential spectrum as the homotopy
parameter varies from 0 to 1. We eventually reach a contradiction by showing that such a merger is
impossible. This is achieved by a careful asymptotic analysis of the solutions of the complex ODE (3-2)
in the limit where the real part of the eigenvalue s = m(a — ib) vanishes. Our approach combines the
results of Section 3D on critical layers, the integral identities obtained by Howard’s method in Section 3C,
and new ingredients which rely on the monotonicity Assumption H2.

Since we have to consider various vorticity profiles in the course the proof, the linearized operator (2-1)
will sometimes be denoted by anf’ « instead of L, x, to avoid any ambiguity. The following continuity
property plays an essential role in our argument.
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Lemma 4.1. The (linear) mapping W +— anf,k is continuous from C,; (@+) into L(X 1)

Proof. As can be seen from definitions (2-1)—(2-3), the linearized operator LHVK « has variable coefficients
depending (linearly) on the functions €2, 2, W, and W’. Now, we have the estimate

121z ®) + IrQ lLom,) < CIWllLe®,),

which follows from the representation formula (1-16) and the identity r Q' = W — 2. Thus all coefficients
of anz , are L functions that depend continuously on W in the topology of Cg (Ry), and since the
Biot—Savart map w — u is bounded in X,, ; by Proposition A.1 below, we obtain the desired result. []

4A. Reduction to a real analytic vorticity profile. We now present the contradiction argument in detail.
We fix m > 1, k > 0, and we assume that there exists a vorticity profile Wy € # such that the associated
linear operator anzok € L(X,,. 1) has at least one (isolated) eigenvalue outside the imaginary axis. Our goal
is to prove that this is impossible, which is exactly the conclusion of Theorem 1.3.

In a first step, we show that one can assume without loss of generality that the profile Wy € # is real
analytic on R, . By this we mean more precisely that Wy is the restriction to R, of a real analytic even
function defined on the whole real line. Indeed, we know from Proposition 2.1 that, for any W € #, the
spectrum of LXK « outside the imaginary axis consists of isolated eigenvalues with finite multiplicity, which
are in fact simple as asserted by Lemma 3.1. Invoking Lemma 4.1 and classical perturbation theory [Kato
1966, Chapter 4, §3.5], we observe that these (hypothetical) eigenvalues depend continuously on the
vorticity profile W in the topology of C,l (R,). In particular, if W is close enough to W in that topology,
we are sure that the operator L ,‘fl/ ;. has at least one eigenvalue with nonzero real part.

We next invoke a density result that will be established in Section A4 below.

Lemma 4.2. The subset W of W consisting of vorticity profiles which are also real analytic on R, is
dense in W for the topology of C,l R,).

The proof of Lemma 4.2 is not straightforward because the definition of the class % involves the
quantity J, introduced in (1-20), which depends in a nonlinear way on the vorticity profile W. Thus, given
W € #, we cannot construct an approximation W, € #'® just by taking the convolution of W with a real
analytic mollifier. To avoid this difficulty, we prove in Section A4 that all quantities 2, W, & are entirely
determined by the auxiliary function J, and we even provide explicit reconstruction formulas. Then, at
the level of J, we use a nonlinear approximation scheme of the form

1 1
- —G.x ,
N2 Sy

where G. denotes the heat kernel on the half-line Ry with Dirichlet boundary condition at » = 0. This

€ >0,

provides an approximation procedure within the class % which allows us to prove Lemma 4.2; see
Section A4 for details.

Taking advantage of Lemma 4.2 we assume from now on that the initial vorticity profile Wy in our
contradiction argument is real analytic, namely Wy € #'“.
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4B. Construction of the homotopy. In the particular example of the Kaufmann—Scully vortex (1-8), the
function (1-20) reduces to J(r) = 1 4+ 1/r% > 1. By a simple rescaling we deduce that, for the vorticity
profile Wi € #“ defined by

2 2m*
>0, 4-1)

W = = s
)= a2y = e ey T

the stability condition (3-17) is satisfied, so that the linear operator anz ' has no eigenvalue outside the
imaginary axis as a consequence of Proposition 3.4. To interpolate in the class # between the initial
profile W € #“ and the reference profile (4-1), we use the following result, whose proof is also postponed
to Section A4.

Lemma 4.3. If Wy, W, € ¥, there exists a Lipschitz function H : [0, 1] — Cg (@+) such that H(0) = Wy,
H) = Wy, and W, :=H(t) € # for any t € |0, 1]. Moreover, if Wy, W) € #“, then W, € W for all
t € [0, 1. In that case, if W|'(0) < 0, then W/'(0) <0 for all t € (0, 1].

Since the class # is not convex, the linear interpolation H(¢) = (1 —t) Wy 4t W, is not appropriate
here. Instead, we use again the fact that a vorticity profile W € # is entirely determined by the auxiliary
function (1-20), and at the level of J we define the homotopy # by the nonlinear interpolation procedure

1 =1 t
VI+T \/1+Jo+\/1+J1
If Jp and J; are real analytic, so is J; for all ¢ € [0, 1], and it follows that W; € #'“ for all ¢ € [0, 1]. We
refer to Section A4 for details.

for all ¢ € [0, 1]. (4-2)

4C. The bifurcation point. For any ¢t € [0, 1], we denote by W, € #'“ the vorticity profile obtained from
Lemma 4.3, where Wy € #/¢ is the initial vorticity defined in Section 4A and W is given by (4-1). We
also introduce the associated angular velocity

1 r
Qt(r):r_z/() Wi (s)sds, r >0,

and we define &, =2Q, W, and J, = CID,/(Q;)2 as in (1-19), (1-20). We consider the family of linear
Wi
m,k’

by Lemma 4.1. For each ¢ € [0, 1], it follows from Proposition 2.1 and Lemma 3.1 that the spectrum

operators L indexed by the homotopy parameter ¢ € [0, 1], which is uniformly bounded in £(X,, ¢)
of L:f” ¢ outside the imaginary axis consists of simple isolated eigenvalues. If s = m(a —ib) is such an
eigenvalue, we know from Proposition 3.4 that 0 < b < 1, and by uniform boundedness there exists a
constant M > 0 (independent of ¢) such that 0 < |a| < M.

As the homotopy parameter ¢ varies, the isolated eigenvalues of Ln‘:/”  move continuously in the complex
plane, as described, e.g., in [Kato 1966, Chapter 4, §3.5], and we chose our reference profile W so that
the associated linearized operator has no eigenvalue with nonzero real part. This implies that, when ¢
increases from 0 to 1, all isolated eigenvalues of L}Zj . eventually merge into the essential spectrum on the
imaginary axis. In particular, we can define the bifurcation point

t, =inf{t € (0, 1] | o(L)") CiR forall 7 € [1, 1]}.
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Our assumption on Wy and the continuity of the eigenvalues imply that 7, > 0 and o (L ,:/ ") CiR. Moreover,

there exist an increasing sequence f, — t, and a sequence of isolated eigenvalues s, = m(a, —ib,) of
W,

L,"% suchthata, #0, 0 <b, <1, and

an +ib, — ib asn— oo (4-3)

for some b € [0, 1]. In view of the second identity in (2-6), we can assume without loss of generality that
a, > 0 for all n € N. Associated with b, we also introduce the critical radius
_ {9;1(5) if b > 0,
r =

- 4-4

As W, € #® by construction, we recall that Q,, : R, — R, is real analytic, strictly decreasing on R,
and satisfies €2,,(0) =1 and €2,,(r) — 0 as r — 00, so that r € [0, oc] is well-defined; see Figure 1.

In the sequel, for notational simplicity, we write W instead of W;, and W, instead of W, . Note in
particular that, after this redefinition, the symbol W no longer refers to the vorticity profile that appears
in the statement of Theorem 1.3! Similarly, we write

Q=Q,, d=d,, J=J, and Q,=9,, O, =D,, Jo=J,.

Finally, we also set L, x = anr,k and LZq’k = L,V:fk. We observe that W,, — W in Cg (@Jr) as n — o0, due
to the continuity properties of the homotopy defined in Lemma 4.3.

As is recalled at the beginning of Section 3, for each n € N we may associate to the eigenvalue
sp =m(a, —ib,) of L:ln,k a nontrivial solution u, € H' (R, r dr) N H1%,C(R+) of the complex differential
equation

2
K ANP0) 1 a( Wi (r) )} " (4-5)

—0,(A(r)d* 1—— R
(“)””+[ e y? ) \m? ki
where y,(r) = Q,(r) — b, —ia,. As W, € #“, it is clear that u,, is in fact real analytic for all n € N.
According to Lemma 3.1 there exist nonzero complex numbers «;,, 3, such that

o, = lim 77"y, (r) and B, = lim r'/? expkr)u, (r). (4-6)
r—>04 r—00

In what follows, we often normalize u,, so that 8, = 1 for all values of n.

As n — oo, the ODE (4-5) becomes singular at the point r = 7, because y,, () = Q(r) — b =0 in view
of (4-3) and (4-4). As is explained in Section 3B, the nature of the critical layer near r = v depends upon
whether the quantity J (7) is larger or smaller than m?/(4k?). This motivates the following definition:

2 2

(N s inf m-
m:{J<%» L e @)

+00 otherwise.
Note that J : (0, o0) — Ry is strictly decreasing by Assumption H2, so that r, is uniquely defined.
Moreover,
0, J m d J m 4-8

ry >0, (r)>m orr <r, an (r)<m Or 1 > 7y. (4-8)
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Also, since t, > 0 we deduce from (4-2) and from our choice (4-1) of W, that
J(00) > 0. (4-9)

In the rest of the proof of Theorem 1.3, to reach the desired contradiction, we consider various cases
according to whether the critical radius 7 is larger, smaller or equal to 0, r,, or +o0c.

4D. The situation 0 < r < r, is excluded. In this case, a contradiction is obtained from identity (3-16),
or rather from its analogue for the solutions of (4-5) where the vorticity profile W, and the spectral
parameter s, = m(a, —ib,) depend on n. In terms of the weighted function

un(r) . _iun(r)
(bn +iay — QN2 y,(r)1/2°

the identity becomes, after dividing by a, # 0,

®© A (r)? k? 1
fO {A(r)la;kvn|2+ |vn|2+ a2+((;) (:)(r_)b )2 <an(r)— Z)|vn|2}rdr =0. (4-11)

v (r) = r>0, (4-10)

We choose here to normalize the solutions u,, of (4-5) so that 8, =1 in (4-6) for all n € N. This implies,
in view of the analysis in Sections 3A and 3D and of the definitions in Section 4C, that u,(r) — Yoo (1)
and u,, (r) — Y. (r) locally uniformly on (7, 0o] as n — 0o, where ¥/ is the solution of the limiting
equation (3-18) introduced in Lemma 3.7. Moreover, for any € > 0, the sequence (u,) is uniformly
bounded in H'([F + €, 00), r dr), and so is the sequence (v,) since |y, (r)| is bounded away from zero
when r > 7 + €. This uniform H' bound means that the restriction of the integral in (4-11) to the interval
[r 4 €, 0o) is uniformly bounded for all n € N. As the integral over (0, +00) is equal to zero, we deduce
that the integral over (0, r 4 €) is also uniformly bounded, namely

A, (r)? <k2
ayzl + (Qn(r) - bn)z

r+e
sup/ {A<r>|afvn|2+|vn|2+
0

neN

— Ju(r) — l)|u,,|2}rdr <oco. (412
m 4

Now comes into play the assumption that 7 < r,. If we choose € > 0 small enough so that 7 + € < r,,
we observe that, due to the definition of r, in (4-7), the integrand in (4-12) is nonnegative when # is
sufficiently large. Moreover, for all » > r, we know from (4-10) that v, (r) - V¥ (b =) 2 as
n — 00. So restricting the integral to the interval (7, 7 + €) and invoking Fatou’s lemma, we deduce from
(4-12) that

AR (r)? (K

1
;G- (WJ "= Z) Vo) dr < co. @13)

The inequality r < r, also means that the roots of the indicial equation (3-19) are complex conjugate
so that, according to what we called Case 2 in Section 3D, we have the decomposition V¥ (r) =
aX¢_(r) +apy (r) for r > 7, where ¢+ are given by (3-21). From these expressions, it is easy to
deduce that (4-13) cannot hold if 1/, is replaced by either ¢4 or ¢p_, because the integrand is positive
and behaves like (r —7)~2 in a neighborhood of 7. In the general case where both coefficients «° are
nonzero, there may be cancellations between the contributions of ¢ and ¢_, but due to the logarithmic
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phases in the expressions (3-21) of ¢4 the function ¥, cannot vanish on large sets. More precisely, given
af® € C, there exist € > 0 and 0 < pg < r —r such that, for any p € (0, po),

%meas({r € (7, 7 + p) such that | (r)|* > €|r — F[}) > %

and the same argument as above shows that (4-13) is impossible.

4E. The situation r = 0 is excluded. This case is treated by the same argument as in the previous section
up to and including inequality (4-13). The only difference at that level is the asymptotic behavior of the
functions ¢+ (r) as r — 7, because » = 0 is now an irregular singular point of the ODE (3-18). According
to (3-9), we have the expansion

¢i(r)_ﬁeXp(mW//(O)r>( +0(r)) asr— 0. (4-14)

The contradiction then follows exactly as in Section 4D, the integrand of (4-13) being even more singular
here since it behaves like #~* in a neighborhood of 0.

4F. The situation r, < r < oo is excluded. In that case, we cannot get a contradiction from identity
(4-11), because the various terms in the integrand now have different signs in a neighborhood of the
singular point 7. Instead, our argument relies on a detailed analysis of the solutions of (4-5) near r, and
on monotonicity properties that follow from Assumption H2

As in the previous section, we normalize the solutions u,, of (4-5) so that 8, =1 in (4-6) for all n € N.
In particular, for any r > 7, we know that u,, (r) — Yoo (r) and u),(r) — Y. (r) as n — oo, where Yo is
as in Lemma 3.7. Applying Lemma 3.5, whose assumptions are satisfied by construction of the homotopy
argument, we deduce that

up(r) = aX¢_(r) +ae (r) and u,(r) — a>¢" (r)+a¢ (r) (4-15)

for all r € (0, 00) \ 7, where a3° € C and ¢ are the solutions of (3-18) given by (3-20). Note that the
roots d4 of the indicial equation (3-19) are now real and distinct, so that we are in the situation referred
to as Case 1 in Section 3D. The convergence (4-15) for some r < r implies, in view of the results in
Section 3A concerning the solutions of (3-2) near the origin, that the normalizing constants «,, in (4-6)
converge to some limit o, € C as n — 0o. We deduce that

apo(r) ifre(0,r),
Yoo (r) if r € (r, 00).

Now, the functions V¥, ¢—, ¢4 are all real-valued on (¥, c0), and we know from (3-20) that ¢ (r) =~

a®¢_(r) +aPi(r) = { (4-16)

(r—F)* asr — 7y, where 0 < d_ < % < dy < 1. These observations imply that both coefficients
a2 and «$° are necessarily real. On the other hand, we deduce from (4-16) that the complex function
a>¢_ +a¢p, must have a constant phase (modulo 7) on the interval (0, 7), as it is equal to the product
of the real function 1 by the complex constant c... This, however, is impossible if both coefficients a$°
are nonzero, because by (3-20) the complex functions ¢+ have different phases when r < r and vanish
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at different rates as r — r_. More precisely, since ¢ (r)/¢p_(r) — 0 as r — r_, it follows from (4-16),
(3-20) that

,  where A = lim Yo(r)

o0 —iﬂd,)\‘ _ c
=7 b= Q-

o =age

If > # 0, then A # 0 and o, = «®A~1e/™¢~, so using (4-16) and (3-20) again we obtain
0=Im@Pe "¢, (r) =aPsin(m(di—d_)Vi(r), 0<r<Fr.

As Vo (r) # 0 for r sufficiently close to 7, we conclude that «{° sin(r(d+—d_)) = 0, and this implies
a3 =0since 0 <dy —d- < 1. Therefore, we must have «®a{” = 0.

In the rest of this section, using totally different arguments which rely on Assumption H2, we show
that necessarily «>°a2° # 0 in (4-16), and this will give the desired contradiction. To that purpose, we
introduce the auxiliary functions

Urs(r)= b —-Qr)%*, r>F, 4-17)
and we denote by . = —09, A(r)9d; 4+ B(r) the linear operator in (3-18). We claim that:

Lemma 4.4 (upper solutions). There exists y > 0 such that £ (Uy) > yU > 0 on (i, 00).

Proof. For notational simplicity we write U instead of Uy, d instead of d., and b instead of b. Computing

2(U) when U = (b — Q)% we obtain after elementary rearrangements of terms
ZWU)=b- (T + T+ Ty),

where

k2
T = —AQ” (a’(d ~ D+ —21),
m

(- (o

Ts= A - a2 +a( 2+ ) - L W
3= A r A \m24+k2r2))

Since d is a solution of the indicial equation (3-19), we may rewrite

k2
Tv(r) = A(F)Q’z(r)ﬁ(f(f) —J(r), (4-18)

and our Assumption H2 on J implies 77 > 0 on (7, 00). Next, using the definition of .4 and the fact that

m? > 1, we observe that
/ 2 122
o (AY ook
r (m2 —|—k2r2)2

so that 7, > 0 on (0, c0). As for T3, we expand

A 1 3 2k*r r ( W )_W’ 2k*W

+-=—— =0 i —
A r o m2+k2r2 AT\ m2 4 k22 ro m?4k%?
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and we use the identities W = r Q' +2Q and W' = rQ” 4+ 3Q' to derive the alternative expression

T3=Ab—-Q)(d-1) W + 2 (W —drQ)

= - —)—+————(W—dr .

3 ro m24k3r?

Since 0 <d < 1, and since W > 0, W’ < 0 and ' < 0 by Assumption H1, we deduce that T3 as well is
positive on (7, 00). Altogether, we have shown that £ (U) > 0 on (', 00).

To conclude the proof, we fix ry > 7 large enough so that [(A/r)'| < % for r > ry. In that region, we
have Z(U) > (b— Q) 2T, > (b — Q)d/2 > U’ if y > 0 is small enough. On the other hand, using
(4-18) and the fact that J'(7) < 0, Q) = b, and Q'(¥) < 0, we can find y; > 0 small enough so that

J(F) = J(r) k>
Ti(r) = —A(F)Q/2(F)—2(b —Q(r) = yid(b— Q)| ()]
b—Q(r) m
for all r in the compact interval [r, ro]. This implies £ (U) > y1U’ on [F, r¢], and taking y = min(yy, 1)
we obtained the desired conclusion. U

Corollary 4.5. The solutions ¢+ (r) of (3-18) given by (3-20) are unbounded as r — 0.

Proof. Assume that ¢ is a solution of £ (¢) = 0 on (', o), which is decomposed as ¢ = UV, where U
is one of the functions U4 defined in (4-17). The equation satisfied by V is

0=2UV)=—-AUV" — (ZAU/Jr (A/ + é)U) V' + 2U)V, reF,o0). (4-19)
r

We interpret the right-hand side of (4-19) as the action on the function V of a second-order differential
operator ¢y whose coefficients depend on U. Since AU is positive on (¥, 00) by construction, and .£Z(U)
is positive on (¥, c0) by Lemma 4.4, we observe that the maximum principle holds for the operator .%;;.
As a consequence, the function V which satisfies £ (V) = 0 cannot have a positive maximum nor a
negative minimum on the interval (7, 00).

We first choose ¢ = ¢, U = U_, and we claim that ¢, is unbounded on (7, o). Indeed, in the
opposite case, the function V (r) = ¢ (r)/U_(r) would tend to zero both as r — r4 and as r — oo,
so that V = 0 by the maximum principle, which is clearly absurd. As a second application, we take
¢ =¢_, U=U_, and we claim again that ¢_ is unbounded on (7, o). If not, by the maximum principle
the function V (r) = ¢_(r)/U—(r) would be nonincreasing on (r, o) with V(r) — 1 as r — r4 and
V(r) = 0 as r — co. Note that V coincides with the function V_ in (3-20) and is therefore analytic up
to the singular point 7. Thus, using (4-19) and Lemma 4.4, we can compute

Z2U)yV-AUV" ZWU
V(i) = lim V() = lim —2 )V —A —im ZY . v
r—rq r—rq ZAU/—F(.A/-F.A/F)U r—rg ZAU/ 2/4(7')
and this contradicts the claim that V is nonincreasing. ]

As ¥ is bounded on the interval (7, co0), whereas both ¢, ¢_ are unbounded by Corollary 4.5, the
relation Yoo = a®¢_ + a¢p, can hold only if both coefficients «>, «{” are nonzero. This gives the
desired contradiction in the case where r, < r < 00.
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4G. The situation r = r, < oo is excluded. We proceed here as in Section 4F, the only essential
difference being that the exponents d_ = dy = % are no longer distinct. We are thus in the situation
referred to as Case 3 in Section 3D, where the solutions ¢+ are given by the expressions (3-22). Applying
Corollary 4.5, we obtain as above that ¢4 is unbounded on the interval (7, co), but the argument does not
apply to the second solution ¢_ which contains a logarithmic correction; see (3-22). Nevertheless, we
deduce that the coefficient @ in the representation (4-16) is necessarily nonzero, and this turns out to be
enough to obtain the desired contradiction. Indeed, due to the logarithmic term, it is easy to verify that,
if 0(r) =arg(@a®¢_(r) +aP¢(r)), then tan(0(r)) ~ — ] log(r —r) as r — r, which shows that the
left-hand side of (4-16) cannot have a constant phase for r € (0, 7).

4H. The situation r, < i = oo is excluded. We next consider the case where b = 0 in (4-3), so that
7 = 400 according to (4-4). In that situation, the “critical layer” occurs at very large values of r, in a
region where the eigenvalue equation (4-5) is already in some asymptotic regime. Here we cannot use
the same arguments as in Section 4F to obtain a contradiction, because the location of the critical layer
changes as n is increased. However, it is possible to obtain an accurate representation of the solution of
(4-5) that decays to zero as r — oo by comparing it with the explicit solution of a model problem, (4-25)
below, which can be expressed in terms of modified Bessel functions. This approximation turns out to be
sufficient to derive a contradiction when combined with the identity (3-11).

Our starting point is the equation (3-5) for w,(r) = r12u, (r), which reads
/
w;{(r) + A w,’l r)—D,Nw,(r)=0, r>0, (4-20)
A(r)
where, in view of (3-3),
i k2+m2+% 1Ay k2 Du(r) r W, (r) 42l
n\l') = - - r . -
22 A My A \m? ke

We recall that y,(r) = Q,(#) — b, — ia,, and we observe that the function r — |y, (r)| reaches its
minimum at r = r,, where r, = Q;'(b,). As b, — 0, it is clear that r, — 00 as n — oo, and
since 122, (r) converges uniformly on Ry to r2Q(r) (by the results of Section A4), we even have
lim,, o0 72b, = lim, oo r?Q(r) = I' > 0; hence

r
r,% =-" foralln e N, where I, —=<> I (4-22)
n
Similarly we have Q) (r,) = —dnbz/2 for all n € N, where d,, — 2I' "'/ as n — oo.

Equation (4-20) has asymptotically constant coefficients, in the sense that A’ (r)/A(r) = O(r~3) and
D, (r) — k* as r — oco. However, in general, the convergence of D, (r) toward its limit k? is not uniform
with respect to n € N, because of the “critical layer” that may occur at r = r,,. Indeed, if we expand the
expression ¥, (r) around that point, we obtain to leading order

Yn(r) = Q,(r) — Q,(rp) —ia, = Q;(rn)(r — 1y tic,), (4-23)
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where
a 1 a,

Q) da b

(4-24)

Cp =

It follows that, for r close to r;,

D, (r) ~ Jn(ry) D, (ry)
iy —7> where J,(r,) = p 5
Yn(r) (r—rn+icy) Qn(rn)

We know that J,(r,) — J(0c0) as n — oo, where 0 < J(00) < mz/(4k2) (by (4-9) and because r, < 00).
Thus, the term involving y, ()~ in (4-21) converges to zero as r — oo uniformly in n € N only if
¢, — 00 as n — 00, which is the case if a, > bg/ 2 Otherwise, that term plays an important role and has
to be taken into account.

Our strategy is thus to compare for large r the solutions of (4-20) with those of the simplified equation

2
w(r) — (k2 — k— In(ra)

m? (r —r,+icy)?
which can be solved explicitly in terms of modified Bessel functions. In particular, the unique solution of

>wn (r)y=0, (4-25)

(4-25) such that w,, (r) ~ e %= as r — 00 is given by

wn(r) = xn(r) == \/g(r —ra4ic)?K,, (k(r —r, +ic,), >0, (4-26)

where K, is the modified Bessel function of the second kind [Abramowitz and Stegun 1964, Section 9.6],
and the parameter v, € (0, 1) is determined by the relation

, 1K
To perform a rigorous analysis, we rewrite (4-20) in the equivalent form

A'(r) k* Ja(rn)
1 / _ k2__ nvns R =0, 4-28
W)+ S S w0 e 1 0) LT (4-28)

where the remainder R, is defined by
K2 Jy(r

Ro(r) = Dy(r) — k2 Il (4-29)

m2(r—ry,+icy)?’

The idea is now to look for a solution of (4-28) in the form

Wa(r) = fu()xn(r), r >0,

where x, is as in (4-26), and f,(r) — 1 as r — oo. The equation satisfied by f;, is easily found to be

(A £1(0) = (A Ra () = A o () 2400) fu(0), 7= 0.

Integrating both sides over (r, 00), we first obtain

fn(r) = —m /rw(A(S)xn(S)an(S) — A'($) xn () X, (8)) fu () ds,
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and a second integration, combined with an application of Fubini’s theorem, gives the representation
formula

fu(r)=1 +foo Ka(r,s) fu(s) ds, (4-30)

where the integral kernel /C,, (r, s) has the expression

N 1
K (r, S)=(A(S)xn(S)an(S)—A’(S)xn(S)x[,(S))/ mdt- (4-31)

We now use the following estimate, whose proof is postponed to Section A5:

Lemma 4.6. For any § € (0, 1), there exists a constant C > 0 such that

°° 1
sup / |K(r, 5)|ds < Cb1/? (1 +log, b—) (4-32)
r n

r>4r,
for all sufficiently large n € N, where log (x) = max(log(x), 0).

Assuming (4-32) for the moment, we easily deduce that the solution of (4-30) satisfies

1
sup | f,(r) — 1| < Cb,/? (1 +log, b—) ——0. (4-33)

r>8ry

Also, differentiating (4-30) and using similar estimates as in the proof of Lemma 4.6, we obtain

/ 12 by
sup | f,(r)| < Cb,/"(1+log, — ). (4-34)

r>8r, an
These estimates imply that the solution w, = f, x, of (4-28) is very close for large n € N to its approxi-
mation y, defined by (4-26), uniformly on the interval [8r,, o) for any (small) § > 0. In particular, in
view of (A-44), there exist positive constants Cy, C; such that

_k(r_rn)

lw,(r)| < Ce forr >r,—1,

—k(r—ry) (4_35)

|lwy, (r)] = Cae for ér, <r <1 —98)r,.

To reach the desired contradiction, we now show that these bounds are incompatible with identity
(3-11), which has to be satisfied for all n € N by the function u, (r) = r~12w,(r). In terms of w,,, identity
(3-11) becomes

[ 2A0) (by — ) K r Wa(r) 2
2 22 2 2 20\ a2, (| we (DI dr =0.
o L(a;+(—=by)?)"m a; + (82, —by) m=+k°r
The second term in the integrand is obviously negative, because W, (r) is a decreasing function of r. It
follows that Z,, | + 7, » < 7,3, where

@, (r) +

. _[”*.MHQAH—M)
" e @ (Qu(r)—by)2)?
. 'ﬂ/WH AG) (2 (r) — by)
"2 ) @2 (Qu()—by)?)?
. _/w A (by — 2(r))
"3 ) @+ (Qu(r)—by)?)?

@, (r)|wy, ()| dr, (4-36)

@, (r)|wy, ()| dr, (4-37)

n

®,(r)|w(r)|? dr. (4-38)

n
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Since 2, (r) — b, is positive for r < r, and negative for r > r,, the quantities Z,, ; and Z, 3 are positive,
whereas 7, » has no obvious sign.

We first estimate 7, 3. As b, — Q2,(r) = Q,(rn) — Q2,(r) > Q,(ry) — 2, (rp,+1) > C|Q'(r,)]| for
r >r,+ 1, we have

bn = ) Pu(r) _ CPu(r) _ CIn(r) _ 3
(@7 + (Qu()=b)H? ~ Q)P ~ 1) T "

’ rZrn+15

and using (4-35), (4-38) we deduce that Z,, 3 < Cb,, 32 Next, we bound Z, | from below by restricting
the integral in (4-36) to the region where dr, <r < (1—38)r, for some small § > 0. In that region we have
€1b, < Qu(r) — by < ey, and |2, (r)| > 63b2/2 for some €, €7, €3 > 0 depending on §; hence

(€2, (r) = bp) Pu(r) €152 2, (r)* Ju (r) - Cb,

@+ ()b = @+ (b2 = @by Om=r=0=onm

and using (4-35) we deduce that

Cch?
q)n(r)|wn(r)|2 dr > n €2k(1—8)rn.

A=r A(r)(by — (1))
7,
n,1 Z/a = (a,%-i—b,%)z

n (a}% + (Qn(r)_bﬂ)2)2
Finally, when |r —r,,| < 1, we have @, (r) — b, ~ (r—r,)2,(r,); hence

|2, (r) — b | D, (1) CIQ (r)Plr — ral C [r —ryl
< Ju(ry) < ,
(a2 4+ (Q2u(r)—by)?)?* = (a2 + Q' (ry)*(r—ra)?)? 1 (r)| ((r—ry)? 4+ ¢2)?

and using (4-35) we obtain the crude estimate

rp+1 b*3/2 rF—r 00 b*3/2 X Cb*3/2 Cb3/2
|I"»2|5Cf %drgcf 3 |2|2dx§ <
rn—1 ((r—=rn) +Cn) oo (¥ +Cn) c;, a;
As 7,1 <|Z,2| + I, 3, the estimates obtained so far show that
Czbﬁ 2k(1-8)r, -3/2 b,
_%"n < Cub32 (1 Lz 4-39
@+ = C4on p 439

for some positive constants C3, C4. If a, > b, for a sequence of integers n, then multiplying both sides of
(4-39) by (a,Z, + b,zl)2 we clearly obtain an inequality that cannot be satisfied for large n if a,, — 0. Thus
we can assume that a, < b, for all n € N, in which case (4-39) implies
b3
C3b32* =0 < 4, (1 + —g>; hence a2 < Ch/?e2k1=0rn, (4-40)
a

n

Since r, =O(b, 1/ 2), this means that a,, is exponentially small when compared to b,,. With this information
at hand, it is possible to compute explicitly the quantity Z, » to leading order as n — oo. Indeed, in
this parameter regime, the main contribution to the integral (4-37) comes from an extremely small
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neighborhood of the critical point r,, so that

Ar)®,(r) [ r—r,
e L (@ —r)?)?
240 ) [T =,
TRl S @ )2

Tna ™ lw, (r)|* dr

| Ky, (k(r = ro +icy))|* dr, (4-41)

where in the second line we used the fact that the solution w,, of (4-20) is well approximated for large n by
the function y, in (4-26) in view of (4-33) and (4-34). Now, an explicit calculation which is reproduced
in Section A6 shows that, for any v € (O, %) and any € > 0,

J ; /«e —ax Ky Gx i )|2d 27 cos(vrr) (4-42)
= lim —_— X +ia X=——" -
T as0y ) (@24 x2)32 1—412
Assuming (4-42) for the moment, we deduce from (4-41) that
~ 2A(ry) Ju(rn) Vi
no N ———————"  asn — 00,

w|Q(r)]

which means in particular that Z, » > 0 when 7 is sufficiently large. Thus, for large n we must have
Cse* 1= < T, | < Ty 1 +Tup < T3 < Cor,

for some positive constants Cs, Cg, which is clearly impossible since r, — 0o as n — co. So we have
reached a contradiction in that case too.

41. The situation r, = r = oo is excluded. Having exhausted all possibilities for which r, < oo, we
finally consider the case where r, = co. According to (4-7), this occurs if and only if J(c0) > m? / (4k?).
Of course, we can assume that ¥ = oo, because when ¥ < oo a contradiction has already been obtained in
Section 4D or 4E. If J (00) > m?/(4k?), then J,,(r) > J,(00) > m?/(4k?) for all » > 0 when n is sufficiently
large, and in that situation we know from Proposition 3.4 that the operator L), ; has no eigenvalue outside
the imaginary axis. However, if J(c0) = mz/(4k2), it is possible that J, (00) < mz/(4k2) forall n e N,
in which case we cannot obtain a contradiction directly from Proposition 3.4. In that situation, we must
have J,,(r,) — m?/(4k?) as n — oco. Two possibilities can occur:

(1) If J,(rn) < m?*/(4k?) for a sequence of integers n, we can get a contradiction by following exactly
the same lines as in Section 4H, the only difference being that the indices v, defined by (4-27) now
converge to zero as n — 00. This is harmless because, as is observed for instance in Remark A.7 below,
all estimates we need hold uniformly in the limit where v — 0. We leave the details to the reader.

(2) If instead J,(r,) > m?/(4k>) for all n € N, we shall prove that the quadratic form given by the
left-hand side of (4-11) is positive definite for sufficiently large values of n, so that (4-11) gives the
desired contradiction. To do that, we use the asymptotic expansions

Ty, 1 , =2r, 1 , 1

340(5). F=—5"+0(5) Lo =o(;) roc @4
r r r r

r3

Q,(r)=
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which are established in Section A4, and we observe that the integrand in (4-11) is nonnegative outside an
interval of the form [r,, r, + 8, ], where 8, — 0 as n — o0. Indeed, the integrand is clearly nonnegative
for r <r,, and for r > r, we have the lower bound
A(r),(r)? k? 1 1 Qr)?
_ADRE) ( Jn(r) ) > LS
a; + (by — 2, (r)) m?* (by — $2,(r))

— - (Jn(r) = Jn(ry)). (4-44)
m 4

In view of (4-43), the last member of (4-44) is bounded from below by —1 if » > r,, + O(|J'(r,,)]), which
proves the claim. If we now restrict the integral in (4-11) to the interval [r, — 1, r;,, 4+ 1], make the change
of variable r = r, + s, and use the lower bound (4-44), we deduce (after a few obvious simplifications)
that it is sufficient for us to show that the quadratic form

1
9, (v) ;:/ {|8sv|2—|—(k2— ;fz)wﬂ}ds, k>0, (4-45)
— c N

1 n

is positive on H Y([—1, 1], ds) for all ¢, # 0 and all sufficiently small ¢, > 0. This in turn is an
easy consequence of the Sobolev embedding theorem. Indeed, decomposing v = v(0)x + w, where
x :[—1, 1] = [0, 1] is smooth, even, and satisfies y (0) = 1, we first observe that

1
/ S0P (s) ds =0,

2 2
1C,+s

by symmetry. Moreover, as w(0) = 0 by construction, we have lw(s)|*> < Cls| ||v||§11. Combining these

1
EnS 2
‘f s—v["ds
—1Cpts

where the constant C > 0 is independent of n. The quadratic form (4-45) is thus positive if €, is sufficiently

observations, we deduce that

2
S Cén”v”Hla

small, and we deduce that (4-11) cannot be satisfied. This concludes the contradiction argument initiated
in Section 4A, and hence also the proof of Theorem 1.3.

5. Uniform resolvent estimates

This section is devoted to the proof of Theorem 1.6. Given any s € C with Re(s) # 0, we already know
from Theorem 1.3 that the resolvent operator (s — L, ©)~! is bounded in the space X, forallm e Z
and all nonzero k € R. It remains to show that, for any ko > 0, the resolvent norm ||(s — L, x) || is
uniformly bounded for all m € Z and all nonzero k € Zky.

Givenm € Z, k #0, and w, f € X, x, the resolvent equation (s — L,, x)w = f takes the form

V(r)wr =ikW(r)u, + fra
y(rwe =ikW@r)ug +rQ' (rw, + fo, (5-1)
vy, =ikW@)u, — W (r)u, + £,

where y(r) = s + imQ(r). Here and in what follows, we assume that Re(s) # 0, which implies
ly(r)| = |Re(s)| > O for all » > 0. In (5-1), it is understood that the velocity u is obtained from the
vorticity @ by the Biot—Savart formula in the Fourier subspace indexed by m and k; see Section A1l below.
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Proceeding as in the derivation of the eigenvalue equation (2-16) in Section 2, we can transform the
resolvent system (5-2) into a single equation for the radial velocity u,. After some calculations, we obtain
the differential equation

—0,(A(r)d u,) + B(r)u, = F(r), (5-2)

where the coefficients in the left-hand side are as in (3-3),

o _ k? imr W (r)
A(V)—m, B(I’)—l‘i‘y() A(V)CD()—F ()8 (m2—|—k2r2>’ (5-3)

and the right-hand side takes the form

) im* W) i 2iQ(r)

]:(r)=—8,(— (r) fr ky(r)z m2 +k2r 2f _k)/(l")f ot k)/(”)z fe

(r)

Of course, if f =0, then 7 =0 and (5-2) reduces to (2-16). The following result will be useful to estimate
the solutions of (5-2) when |k| is large.

(5-4)

Lemma 5.1. For any m € Z and any s € C with Re(s) # 0, there exists a positive constant C = C(m, s)
such that, for any k # 0 and any f € Xy, k, the solution u, of (5-2) satisfies

C(m,s)
Ikl

LA 205wl 2 + Nl 2 < (ot llz2 + 11f 11 22)- (5-5)

Proof. As in Section 3C, we set u,(r) =y (r)"/ 2y(r). The new function v satisfies the equation

3, (A y (NdFv) + v =y (N2 F(r), (5-6)
where
Y/ (r2A®r)
4y (r)

1
£0) = y By — L (A (r) - @) — 37 O)AC) +

k? imr (W(r)+22@0r)\ m>Q(r)?
= R ) 0y — . 5-7
Y () + S AS(M) + = ( e ) o o (5-7)
‘We also observe that
. 2 . .
2r_ m _im W +2Q o 2iQ2 )

Without loss of generality, we assume that a := Re(s) > 0. If we multiply both sides of (5-6) by rv,
integrate the resulting equality over R and take the real part, we obtain the identity

00 A 29/2
a/ {Ala*vl + vl +| |2(k2<1>— )I | }
0

mA © _/ im? W42Q 2iQ
:Re/.g (8*v) 1/2f’rdr+Re/0 v( 2ky32 m? + k2r zfr_kyl/2f9 X 3/2fz)rdr.
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Keeping in mind that ®(r) > 0, |y(r)| > a, and 0 < A(r) < min(1/k?, r*/m?), we can estimate the
various terms in a straightforward way, and we arrive at the inequality

a(| A28 )17, + Ilvli7.)
2

< = vl +
v
= ak2 L2

C
1/2 4%
a2 K] A0 vl 2 Ml frll 2 +—a3/2|k| loll 2Nl frllz +all foll 2 + N fzll22)s

where C > 0 is a universal constant. Applying now Young’s inequality, we conclude that

C(m,a)

IAY23% v 2 + (vl 2 < i

(vlig2 + 112, (5-9)

where the constant depends only on m and a.
Finally, we return to the original function u,(r) = y(MY2u(r). As |y (r)| < |s| + |m| and

; /
A]/Za;kur _ Al/z)/l/z(a:‘v-i- imr2 v),
2ry

we have |AY29%u, |+ |u,| < C(m, s)(|.AY29*v| + |v]). Thus the desired inequality (5-5) follows imme-
diately from (5-9). ]

Equipped with this lemma, we now establish the main result of this section.

Proposition 5.2. Fix any ko > 0. For any s € C with Re(s) # 0, there exists a constant C = C (s, ko) such
that, for all m € Z and all nonzero k € Zky, the following estimate holds for all f € X, x:

(s = L) fll2 < ClLFll 2 (5-10)

Proof. We proceed by contradiction. If (5-10) does not hold, there exist sequences (m,) in Z, (k)
in Z*ko, and @™, f™ in X,, ; such that ||@™| ;2 =1foralln e N, || f™]|;2 — 0as n — oo, and
(s — Lm,k)a)(") = f™ foralln eN, namely

(s +im,Q(r))o™ =ik, W (r)u™ + ™,
(s +im, Q) =ik, W(r)ui” +rQ (no™ + £, (5-11)
(s +im, Q)™ = ik, W(r)ul — W' (ryul™ + f™.

Step 1: We first show that the sequence (m,,) is bounded. Indeed, if this is not the case, we can assume

(after extracting a subsequence) that |m, | — oo as n — co. In view of the first equation in (5-11), this

implies

()
Jr
s+im,2

ik, Wul™
s+im, 2

ol 2 < 0. (5-12)

n—oo

L? L?

Indeed, we know from Proposition A.1 that ||k,u™| ;> < Cllw™];>» < C for all n € N, so that

w
s+im, Q2

ik, Wu™
s+im,Q2

0,

e ™1l 2 < CH

L2_ Lo° s+lan 1,00 n—00
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and the last term in (5-12) is bounded by | Re(s)|™!| fr(") Il 72, a quantity that converges to zero as n — 0o
by assumption. Once (5-12) is known, the same argument applied to the second equation in (5-11) shows
that |y || .2 — 0. Finally, we have

—1 —1
a1l 2 < kg lkaul™ 2 < Chy ',

because |k, | > ko for all n € N. Applying thus the same argument again to the third equation in (5-11), we
conclude that ||a)§") |lz2 — 0, which of course contradicts the hypothesis that o™ || ;2= 1foralln e N.
This means that sequence (m,) must be bounded, and after extracting a subsequence we can therefore
assume that there exists an integer m € Z such that m, = m for all n € N.

Step 2: We next show that the sequence (k,) is bounded. Again, if this is not the case, we can assume
after extracting a subsequence that |k,| — 0o as n — oo. In that situation, we infer from estimate (5-5)
that, for n sufficiently large,

eal (1AL 237l || 2 + 1™ 1 12) < 2Cm, I f PNl 2 = 0. (5-13)

Next, we use the relation
imW mk
k2 A, (a,* — —>u§"> +ikgu™ = —"A, £,
ry ry

which reduces to (2-13) when k,, = k and f,(”) = 0. Invoking (5-13) and using the elementary bounds
0 < A, (r) <min(1/k2, r>/m?), we deduce that

(n)
u
k1l 2 + |m|‘ — 0. (5-14)

n—oo
L2

Finally, with the help of the additional relation

. . (n)
ik, W im

= u™ ik — —u = I
r

v

which reduces to (2-9) when &, = k and f,(") =0, we find that |kn|||ué") lz2 = 0 as n — oo in view of
(5-13), (5-14).

Thus, we have shown that |k, |||« || 12 — 0 as n — oo, and considering successively all three lines in
(5-11) we easily deduce that

0, Nyl —==0, [0™],2——==>0.

(n)
”a)r ”LZ n—oo n—oo

n—oo

This of course contradicts the assumption that | |;> = 1 for all n € N. The sequence (k,) must
therefore be bounded, and after extracting a subsequence we can assume that k, = k for some fixed
k € Z*ko.

Step 3: Assuming that estimate (5-10) does not hold for some s € C with Re(s) # 0, we have reached the
conclusion that, for some m € Z and some k # 0, the operator s — L,,  has no bounded inverse in X, ,
in contradiction with Theorem 1.3. Thus estimate (5-10) must hold, and the proof of Proposition 5.2 is
complete. U
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Appendix

Al. The Biot-Savart law in cylindrical coordinates. The Biot—Savart law defines the velocity field
u = (u,, ug, u;) in terms of the vorticity vector v = (w,, wg, w;) for a fixed value of the angular Fourier
mode m € Z and of the vertical wave number k € R. The velocity is determined by the linear relations

im . . 1 im
wy = —u, —ikug, wy=iku,—oru,, w;,=—-0,(rug)— —u,, (A-1)
r r r

together with the divergence-free condition
%8,(ru,) + %u@ +iku, =0. (A-2)

These equations have to be solved on the half-line » > 0, and we require that the velocity field
ure, + ugeg + u e, be regular at the origin r = 0 and decay to zero as r — oco. More precisely, if
the vorticity w is (for instance) compactly supported in Ry = (0, 0o), the following boundary conditions
hold for the associated velocity u:

» The horizontal velocities u,, ug satisfy the homogeneous Dirichlet condition at » = 0 if m =0 or
|m| > 2, and the homogeneous Neumann condition if [m| =1 (or |m| > 3).

» The vertical velocity u, satisfies the homogeneous Dirichlet condition at r = 0 if [m| > 1, and the
homogeneous Neumann condition if m = 0 (or |m| > 2).

It is possible to give explicit formulas for the velocity u in terms of the vorticity w, but the bounds we
need in this paper are more conveniently obtained by standard energy estimates. We recall that || - || ;2
denotes the usual norm in the Lebesgue space L>(R_, r dr).

Proposition A.1. There exists a constant C > 0 such that, for any m € Z and any k € R, the following

inequality holds:
10,1 17 24110140 172410tz 172 Hk> Ul 17 24 Nt 1 2+ e [172)
2 2 2
u Uy u
+|m2—1|< il (R s )+m2 = =ClorlHlopl7+lw:l7.).  (A-3)
r L2 r L2 LZ

Proof. We assume here for definiteness that k # 0, but the proof is similar (and in fact simpler) when
k = 0. Without loss of generality, we also suppose that w is continuous and compactly supported in R;..
We first observe that the vertical velocity u, satisfies the linear elliptic equation
2 1 m* 1 im
(<02 = Lo+ "5+ )u, = Lo, rwn) - Py (A-4)
r r r r
We multiply both sides of (A-4) by ru, and integrate the resulting expression over Ry . After elementary
calculations, we obtain the estimate

2
||+ lkuelz < Cllorlipa + lepl72), (A-5)
where C > 0 is a universal constant. As iku, =0,u,+wy and ikug = (im/r)u,—w,, it follows immediately
from (A-5) that

5 m
0pz 12 + | 2

lku, 117, + lkuglls > < Cllwr I3, + llopll3 ). (A-6)
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On the other hand, we deduce from (A-2) and the last relation in (A-1) that
1 . . 1 .
8rur+;(”r+1mu9) = —ikug, 8,1494—;(119 —imu,) = ;. (A-T)

We multiply the first equation by rd,u, and the second one by rd,ug. Adding the resulting expressions,
taking the real parts, and integrating over R, we obtain the inequality

13,urll3 + 18rugll3, < Cllkuzl?, + llozl13,) < Cllwr 132 + lwell?s + llol13,). (A-8)
If m = %1, this concludes the proof of (A-3). Otherwise, we deduce from (A-7) that

m2—1

u, = 0,(ur —imug) +iku, +imow,,
(A-9)

—1 ug = 0, (ug +imu,) +kmu, — w,.

If m =0 or |m| > 2, these relations allow us to estimate the L norm of u,/r and ug/r in terms of
quantities that are already controlled by (A-5) or (A-8), and we arrive at (A-3). O

A2. Stability of Rankine’s vortex. We consider here in some detail the particular case of the Rankine
vortex (1-7), which is of historical relevance. We do not use the functional framework of Section 2
because, as is clear from (2-3), the linearization L,, ; does not define a bounded linear operator on X, x if
the vorticity profile W has a discontinuity. Instead we look for solutions of the eigenvalue equation (2-8)
where the velocity field u (and not the vorticity w) belongs to X,, . We always assume that m # 0 and
k # 0, the other cases being similar and in fact simpler. To avoid the essential spectrum, we also suppose
that the spectral parameter s € C satisfies s 7 0 and s +im # 0.

Following Kelvin’s original approach [1880], we eliminate the radial velocity u, in the 2 x 2 system
(2-13)—(2-14) to obtain a closed equation for the vertical velocity u,. In the inner region where 0 <r < 1,
we have y(r) =y :=s+im and ®(r) = W(r)*> = 4, so that u, satisfies the Bessel equation

1 m? 4
2 2 _ g2
——8,(r8ruz)+<ﬁ + 2)uz_O, where g° =k (1+ 2). (A-10)
r r 14

Since u, is regular at the origin, it follows that u, (r) = Al, (Br) for 0 <r < 1, where A € C and [, is
the modified Bessel function of order m [Abramowitz and Stegun 1964, Section 9.6]. In the outer region
where r > 1, we have W(r) = &(r) =0, and system (2-13)—(2-14) reduces to the (somewhat simpler)
Bessel equation
1 ) m?
——0,(royu;) + (k 4——2)uZ =0. (A-11)
r r
As u,(r) decays to zero at infinity, we must have u,(r) = BK,, (kr) for some B € C, where K,, is again
a modified Bessel function.
At the interface r = 1, both velocities u,, u, are continuous, as can be seen from (2-10) and (2-12).
Jump conditions for the first-order derivatives can be deduced from system (2-13)—(2-14) and are found
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to be
2im
8rur(1+):arur(1—)__ur(l)a (A-12)
14
y2 2im .
Our(14) = ———ru(1-) + —u (1)) = iku,(1). (A-13)
y-+4 14
In particular, as u,(r) = Al (8r) forr < 1 and u,(r) = BK,,(kr) for r > 1, we must have
Ay? , 2im ,
Al,(B) = BK,,(k), ita /31m(ﬁ)+71m(/3) = BkK,, (k). (A-14)

This linear system has a nontrivial solution (A, B) if and only if
1B | 2im KKk
Bln(B) ~ vB*  kKu(k)’

where we recall that y = s +im # 0 and 2 = k(1 +4/y?).
It was already observed by Kelvin that the dispersion relation (A-15) is satisfied for a countable set

(A-15)

of purely imaginary values of the spectral parameter s. More precisely, if we define s = —imb, so that
y =im(1 —b), equality (A-15) holds for a decreasing sequence of values of b accumulating at 1, and also
for an increasing sequence accumulating at 1, all solutions being contained in the interval |b — 1| < 2/|m]|
[Kelvin 1880]. The linearized operator at Rankine’s vortex thus has a countable family of purely imaginary
eigenvalues (Kelvin modes). However, it is not easy to verify that the dispersion relation (A-15) has no
solution when s ¢ iR, and there is no such claim in Kelvin’s work,* where only purely imaginary eigenval-
ues are considered. Thus, contrary to what is often asserted in the literature, stability of Rankine’s vortex
was not established by Kelvin, and we could not find any further reference where this point is clarified.

Fortunately, it is quite easy to prove spectral stability of Rankine’s vortex following the approach of
Section 3C. Indeed, taking into account the particular form of the vorticity profile (1-7), it is straightforward
to verify that identity (3-10) becomes

o Y 4k 2 1
/ (A(r)|8r*ur|2+|ur|2)rdr+/ {——;4(;) +—ra,(—2+k2 2)}|u,|2rdr
0 0 m J/* y* m r _ 2A(1)

*

lu- (D% (A-16)

see also Remark A.2 below. Here y, =1 —b —ia, so that y =imy,. We now multiply both sides of
(A-16) by y, and take the imaginary parts. We arrive at the identity

o0 L 412 A(r)
2 2 -
a/o (A5, |~ + |uy| )rdr-l—a/(; m? (1 —b)2 +a?

If a # 0, it follows from (A-17) that u, = 0; hence the eigenvalue equation (2-16) has no nontrivial

luy|2r dr = 0. (A-17)

solution if s =m(a —ib) ¢ iR. This proves that the linearized operator at Rankine’s vortex has no unstable
eigenvalue.

4Except for an ambiguous sentence asserting, without any justification, that the eigenfunctions corresponding to purely
imaginary eigenvalues should form a complete family.
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Remark A.2. Alternatively, one can obtain the relation (A-16) by restricting the eigenvalue equation (2-16)
to the open intervals (0, 1) and (1, 0o), where the vorticity profile is smooth. On each interval, we multiply
(2-16) by ru, and we integrate over r. If we add the resulting expressions and simplify the boundary
terms (which result from partial integrations) using the matching condition (A-12), we arrive at (A-16).

A3. Critical layers and their continuity properties. In this section we present the proof of Lemma 3.5.
We first rewrite (3-2) for u,, in the form

uy (r) + P(r)u, (r) + Qu(r)u, (r) =0, (A-13)
where P(r) = A'(r)/A(r) +1/r and

K @,(r) r ( W, (r) )+77(r) 2
mya(r)? A@)ya(r) " \m? 4 k22

Here, as in Section 4C, we set y, (r) = ,(r) — b,, —ia,, where €2, is the angular velocity associated with

Q,(r) =

r r2

W, as in (1-16). By assumption (ii) and (1-16) we have 2, — Q in C? on compact subsets of (0, 00). In
view of (iii), 2 is analytic in D(r, p) for some p > 0, and 2,, converges uniformly to €2 on that disc as
n — 00. Since Q(7) = b and Q'(7) < 0, it follows from Hurwitz’s theorem that, for sufficiently large n,
there exists a unique 7, € D(r, p) such that Q, (7,) = b, + ia,. Moreover 2, (7,) # 0, /() <0 and

__ bytiay— Q7 _
o =7+ — ()+O(|bn—szn(r)|2+a;f) asn — oo,
§2,(r)

so that r, — 7 and r, € {z € C | Im(z) < 0} when n is sufficiently large. By construction, we also have
Yn(r) =, (Fa)(r — ) + O(r — 7y |?) as r — 7.
Multiplying (A-18) by z? and applying the change of variables z = r — 7, w,(2) = u, (7, +2), we
obtain the canonical form
2wy (2) + 2P (@wy, (2) + Cu (@ w, (2) = (A-19)

where P, (z) = zP(r, +z) and Q,(2) = z°Q, (7, + 2) are analytic inside the disc (0, p/2), if n is large
enough so that |r, — 7| < p/2. In this situation, the Frobenius method [Coddington and Levinson 1955,
Section 4.8], which we briefly recall now, can be used to construct solutions of (A-19) in D(0, p/2) \ R_

of the form
o0

wy,(z) = 7%, (z), where v,(z) = Z cn,kzk and ¢, o =1 for all n. (A-20)
k=0
The coefficients ¢, x for kK > 1 are determined by substituting (A-20) into (A-19) and collecting equal
powers of z. If P,(z) =Y ;o pn,ka and Q,(z) = Z/fioq:l,kzk, one obtains the recursion relations
k—1

—1
n -~ n,j[(dn " n k>1, A-21
k= +k)Zc U+ ) Pag—j + G, (A-21)
where the indicial function f, : R — R is defined by

fu(d) =d(d — 1) +dpy0+ qn.o- (A-22)
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Assuming that f,(d, + k) # 0 for all £k > 1, it is straightforward to verify that the formal series w,(z)
defined by (A-20), (A-21) satisfies

2w (2) + 2Py (2w (2) + 0n (D)W, (2) = fo(dy) 2, (A-23)

and hence is a (formal) solution of (A-19) provided d, is a root of the quadratic polynomial f;.

In our situation we have p, o =0 and g, 0 = (k2 / m?)J,(7,), so that the indicial equation f,(d,) =0
reduces to (3-19) as n — oo. The roots d of f, thus converge to the explicit values ds described in
Section 3D, which are such that |d; —d_| < 1. As a consequence, if n is large enough and d, = d; ord,,
the denominator in (A-21) never vanishes, and even satisfies | f,(d, + k)| > cok? for all k > 1, where
co > 0 is independent of n. This allows us to solve the recursion relations (A-21) if d, = djc, and it is then
straightforward to verify that the series in (A-20) converges for all z € D(0, p/2), and that the sum vff is
uniformly bounded on compact subsets of D(0, p/2) if n is sufficiently large. We denote henceforth by

+ dr +
w, (z) =2 v, (2)

the solution of (A-19) given by (A-20) with d, = d,;t.

By assumption (iii), the quantities p, i, g, x converge as n — oo to the Taylor coefficients of the
functions P(z), Q(z) associated with the limiting profile W and the limiting value of the spectral parameter.
Using the recursion relation (A-21), where each coefficient cff’ « 1s entirely determined by a finite number
of coefficients p, ¢, g,.¢ (namely, those with £ < k), we see that

+ +
Cox —> € asn— 0o, (A-24)

where c,:{IE denote the coefficients of the Frobenius solution w*(z) = z*v*(z) of the limiting equa-
tion (A-19), where P,, Q, are replaced by P, Q. In view of the uniform bounds mentioned above, this
implies that vni (z) converges to v*(z) uniformly on compact subsets of D(0, p/2) as n — o0o. Note that
since P and Q are real-valued on the real axis, the recurrence relation yields that the coefficients c,ic are
real too. The functions V1 which appear in the formulas (3-20)—(3-22) are the only real analytic functions
on R that satisfy

- dy
Va(r) = vi(r —f)(—b — Qr(r)) . re (f - g, Pt g)
That V4 are well-defined and real analytic on the whole half-line R follows from the representation
(3-20) and the ODE (3-18).
Now, consider a sequence (u,,),<n Of solutions of (A-18) as in the statement of Lemma 3.5, and assume

first that d4 # d_, so that ;7 # d~ when n is sufficiently large. Since (A-18) is a second-order differential
equation, there exist complex coefficients ozni such that?

u,(r) =a:w:[(r—Fn)+ocn_wn_(r—Fn) forr € (F—

D

4 g). (A-25)

5Note that D(#y, p/2) contains the real interval (r — p/4, ¥ + p/4) for large values of n.
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By assumption u, (r) and u/,(r) have a limit as n — oo for some r # r, and using elementary continuity
properties for solutions of nonsingular ODEs we deduce that convergence holds locally uniformly for all
r > 7, or for all r < 7. Since the functions w=(r —7,) converge uniformly to w® (r —7) in a neighborhood
of 7, and since the limits w* (r — 7) have genuinely different behaviors as » — 7, this implies that the
coefficients af in (A-25) have finite limits @y € C as n — oo. In particular we have

Un(r) = oy (r =Nt (r =) +o_(r —P)v(r — 7),
uniformly for r € (r, 7 + p/4), and (keeping in mind that Im(r,) < 0)
Un(r) = o™ F =)ot r =P + e (F =TT (r =),

uniformly for r € (r — p/4,r). Since outside the interval (r — p/4,7 + p/4) the ODE (A-18) is
asymptotically regular, this implies the desired conclusion, namely that u,, — o4 ¢+ + o_¢_ where ¢+
are as in (3-20) or (3-21).

We next consider the exceptional situation where d_ = d. Without loss of generality we may assume
that either d, = d,f foralln € N, or d, # d;} for all n € N. In the first case we obtain from (A-20)
only one solution w,, of (A-19), but we can construct a second solution by differentiating (A-23) with
respect to the exponent d,,, taking into account the fact that f,(d,) = 0 since d, = d* is a double root by
assumption. The new solution has the form

3Cn’k
ad,

o0
wh(z) = log(2)wn(2) + 2% Z( )zk, z€D(0, p/2)\R-,

k=0
and its asymptotic behavior as z — 0 is clearly different from that of w,(z). This allows us to conclude
the proof using the same argument as above, and we obtain that u, — o ¢ +o_¢_, where ¢ are as in
(3-22). On the other hand, when d,; # d; for all n € N (but d, — d,;F — 0), the decomposition (A-25) is
not appropriate, because in that case we cannot prove that the coefficients ;" and «;; are bounded, yet
alone have limits as n — oo. Instead, we write

b mN =
w,r(r—ry) —w, (r r,,)) (A-26)

i (1) =an<w;j<r—fn>+w;<r—fn>>+a5( pr

forr € (r — p/4, 7 + p/4), and this new decomposition has the property that both coefficients «;, and ag
necessarily have limits as n — co. We then finish the proof along the same lines as above. (]

Ad. Approximation and interpolation in the class . This section is devoted to the proofs of Lemmas
4.2 and 4.3. If W is a vorticity profile that belongs to the class %, in the sense of Definition 1.8, we
denote by 2 the corresponding angular velocity given by (1-16), and by J the function defined in (1-20).
The first observation is that both €2 and W can be expressed in terms of the auxiliary function J.
Indeed, let ¢ : Ry — R be defined by ¢ (r) = Q(r)/ Q' (r) for all » > 0. According to (1-6), (1-19),
(1-20) we have
O(r)  2rQ(r)  4Q(r)?
J(r) = =
QT Q) Q)

=2rg(r) +4¢(r)? (A-27)
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for all r > 0. Since J(r) > 0 and ¢ (r) < 0 by assumption, we deduce that

60 = i == (VAT 0, (A-28)

Integrating this differential equation and using the normalization condition €2 (0) = 1, which follows from
(1-16) since W(0) = 2, we obtain the representation formula

Q)= exp(— /r 4 ds), r > 0. (A-29)
0 s++/s24+4J(s)

As W) =rQ'(r) +2Q(r), we also have

4
W)= Q(r)<2 + L) = Q(r)(Z - d ) r>0. (A-30)
¢(r) r4r2+4J(r)
Furthermore, if we differentiate (A-30) with respect to » and observe that Q' = /¢, we obtain

W/—9(2+5)+Q(l—ri/>—3(3¢+r—r¢/)
) ¢ ¢ ¢2) ¢? '

Thus, using the expression (A-28) of ¢, we find after elementary calculations

8Q(r) <r_ r2+6J(r) rJ'(r) )
(r+ VT aIO)\ VPHA Paen)

W (r) = (A-31)

As ra/r2 +4J < r?>+6J when J > 0, this formula shows that the vorticity W is strictly decreasing as
soon as the auxiliary function J satisfies J(r) > 0 and J'(r) < O for all » > 0. This observation will be
used later on.

Since W € # by assumption, the angular velocity satisfies Q'(#) — 0 as r — 0, and in view of (1-20)
or (A-28) this implies J(r) — oo as r — 0. It then follows from (A-31) that

_rl'n) 6
T2 I

W'(r) asr — 0,

and since W'(r) vanishes at the origin we deduce that rJ'(r)J (32> 0asr—0. Concerning the
behavior at infinity, we observe that ¢ (r) = —2/r + O(1/r%) as r — oo, and in view of (A-29) this
implies Q(r) = I'/r> + O(1/r*) as r — oo, for some I' > 0. The expression (A-30) also shows that
r*W(r) — 2I'J (00) as r — o0. Finally, one infers from (A-31) that

W (r) ~ 2r 0 1 rJ'(r) 4J(r) o 1
" {74* (r_6>}{\/r2+4f(r)_ 2 <’_3)} T

and since rJ'(r) — 0 as r — oo we also obtain > W'(r) — —8I'J (00) as r — oo.

The properties of J are more conveniently expressed in terms of the new function

0r)=——=—=, r>0. (A-32)
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Definition A.3. We say that a C' function Q : R, — (0, 1] belongs to the class 2 if
(1) Q'(r) > Oforall r > 0;

(i) Q(r) > 0and rQ'(r) —> Oasr — 0;

(i) rQ'(r) > 0 as r — <.

In particular 2 is convex, and if Q € 2 then N (Q) := sup,.r|Q'(r)| < oo.

Lemma A.4. A vorticity profile W belongs to the class W in the sense of Definition 1.8 if and only if the
function Q defined by (A-32), with J as in (1-20), belongs to the class 2.

Proof. If W € %, we have just shown that the C 1 map J : Ry — R defined by (1-20) satisfies J(r) > 0 and
J'(ry<Oforallr >0, J(r) = ooand rJ'(r)J(r)3/* > 0asr — 0, and rJ'(r) — 0 as r — co. These
properties precisely mean that the function Q defined by (A-32) belongs to the class 2. Conversely, if
Q € 2, we define J = Q72 — 1 so that (A-32) holds, and we reconstruct the angular velocity € and the
vorticity W by the formulas (A-29), (A-30). The calculations above then show that W € #. In particular,
since J'(r) < 0, formula (A-31) shows that W/(r) < O for all r > 0. O

The following result expresses the fact that the vorticity profile W € % depends continuously on the
auxiliary function Q € 2, in appropriate topologies.

Lemma A.5. Assume that Q1, Q> € 2, and take § > 0 small enough so that
8 <min{Q;(1), Q2(1)} < max{Q (1), Q2(1)} <V 182 (A-33)

Then there exists a constant C > 0, depending only on 8, such that, if Wi, W, denote the vorticity profiles
associated with Q1, Q» as in Lemma A.4, the following estimates hold:

5218(1 + )W) = Wa ()| < Cl1 Q1 — O2llL~@.)- (A-34)
flilg(l + )W (r) = W5(r)| < CN(Q1 — Q2) + C(A + N ()01 — Oall=(r. ). (A-35)
Proof. Let J;(r) = Q;(r)~% — 1 for i = 1, 2. We first consider the quantity
o) = 1 ! 401 - 03

r 214l r4Vrian Q1A+ QAN QI+ AN Qa+ A

where we use the shorthand notation A;(r) = Qi (r)v/r2 +4J;(r) = 4+ (2 —4)Q;(r)2 fori =1, 2.
We claim that
sup(1+r)0()| < Cl1Q1 = Q2llrxm,) (A-36)

r>0
for some constant C > 0 depending only on §. To prove that, we distinguish two cases:
(i) In the region where r < 1, we know from (A-33) that Q; (r)?> < Q;(1)> < 1 — 82, and this implies
Ai(r) >24/1— Q;(r)? > 2. It follows that

4(01+ 02)101 — 02| - |01 — Q2]
883(Q1+ 02 - 28

@) =

, O<r<l.
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(i) When r > 1 we observe that A;(r) > rQ; > ré by (A-33), so that

401+ 02)101 — 02| - |01 — 0o
8r30103 -8

©)| = r>1.
Altogether, this proves (A-36).
As an immediate consequence, we see that the angular velocities defined by (A-29) satisfy the estimate
121 = Q2llLew,) < CllQ1 — Q2llL~w,). In fact, we have a stronger result:
sup(1 +r)[Q1(r) — ()| < C1Q1 — QallL~@,)- (A-37)

r>0

Indeed, it follows from (A-29) that

T2 4
rZQi(r)ZQi(l)exp/ (—— )ds, r>0,i=1,2. (A-38)
1 \S  s+/s2+4J;(s)

If we define

M) 1 2 4J; 41— 0% 0 0
i(r)y=-—— = = >0, r>90,
l T Jr2+4T r(r+r2+40)2 Qi+ A)?

the same estimates as above show that

1 1
sup rM;(r) < — and supr3M,-(r) < (A-39)

0<r<l1 82 r>1 - 82 ‘
This implies in particular that r2Qi(r) < el 5 for r > 1; hence (1 4+ r2)Q;(r) < C for some constant

C > 0 depending only on §. In addition, using (A-36) and (A-38), we obtain

P2Q1(r) — Qa(r)] < eV (|91<1> —Q(1)] +4/1 19(s)| ds) <ClQi— Qalir~m,)

for all » > 1, and this concludes the proof of (A-37).
On the other hand, in view of (A-30), we have W;(r) = 2r2; (r)M;(r) fori =1, 2; hence

Wi(r) = Wa(r) =2r(Q1(r) — Q(r)Mi(r) —4r2(rO (), r>0.

Thus using estimates (A-36), (A-37), (A-39) we arrive at (A-34).
Finally, we deduce from (A-31) that W{(r) — W;(r) = E(r) — 16 A(r), where E(r) collects all terms
that do not involve the derivatives J{, J}, and

_ Qir Q) Qor Q)
C(rQ1+ADAT (rQa+ A2)A

_ Qir(Q]— 05%) _ QirQ, B Qr Q)
(rQ1+AD2AL (rQ1+A1D2A1  (rQ2+A2)2A;°

Proceeding exactly as above it is straightforward to verify that

A(r) =A1(r)+ Ax(r),

where

Ay (r) Ao (r)

sup(147r2)|E(r)| < Cl1Q1 — Oz2llL=®.),

r>0
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where C > 0 depends only on §. We thus concentrate on the new term A, which contains the derivatives
0/, Q). Again, considering separately the regions where r < 1 and r > 1, and using the appropriate
lower bound on A (r) in each region, we obtain

rlQ\(r) — Q5(r)|
1473

N(Q1— 02)
1473

A1 (r)| = CQ(r) <C(14r)Q(r)

9’

where we recall that (1+7)?Q;(r) < C for some C > 0 depending only on 8. The quantity A, is estimated
along the same lines:

IA>(r)| < C(1+r3)|Q(r) — Qz(r)|r|1Q;(r5)| +C(1 +r2)92(r)M|Q1(r) — 0>,
+r 1+r
and using (A-37) we find (1 +7°)|A2(r)| < CA+N(Q2) Q1 — 0>l z=®,). Combining these estimates
we arrive at (A-35). O

Proof of Lemma 4.2. Let W € #, and denote by Q € 2 the function defined by (A-32) with J as in (1-20).
For any € > 0 we define

1 o0
09 =—— / (e /e o=t 0 (s)ds, > 0. (A-40)
LY, 0

In other words, Q€ is the restriction to R, of the real-analytic odd function obtained by extending Q to
an odd function Q : R — R and applying to Q the heat semigroup on R at time 7 = /4. In particular,
0 is real-analytic on @Jr for any € > 0. Moreover, as the function s — Q(s) is continuous on R and
converges to finite limits as s — =00, it is clear that Q€ converges uniformly to Q on Ry as € — 0. On
the other hand, differentiating (A-40) with respect to r, we obtain the relation

1 0
Q9 == / (e~ — =950/ (5)ds + Re(r), r >0, (A-41)
A/ 0
where
Rer) = —— [ (= )T 4 (r 59~ 0/ (5)d 0
c\r)= — r—s)e : r S)e h S S, r > U.
A/TTE Jo

As Q' € L'(Ry) and N (Q) < o0, it is straightforward to verify that R, converges uniformly to zero as
€ — 0. Moreover, since sQ'(s) — 0 as s — 0 and s — 00, it is clear that the integral term in (A-41)
converges uniformly on R, towards r Q'(r) as € — 0. Altogether, this shows that

lim (10" = Qll~r,) +IN(QV = Q))) =0. (A-42)

Now, let W€ € # be the vorticity profile associated with Q(¢) as in Lemma A.4. By construction W€
is real-analytic on R, for any € > 0, and it follows from (A-42) and Lemma A.5 that W© — W in the
topology of Cg (R,) as € — 0. This is the desired density result. ]

Proof of Lemma 4.3. Assume that Wy, W| € #, and let Q1, Q> € 2 be the corresponding functions
defined as in Lemma A.4. For any ¢ € [0, 1], we define Q; € 2 by the linear interpolation formula

Qi(N=010-0Qo(r)+10:(r), r=>0, (A-43)
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and we denote by W, € # the vorticity profile associated with Q;. As

101 — Qi llLe@y) +N(Qn — Q) =1ti —12|(1Qo — QillL=m,) + N (Qo— Q1)),

it follows from Lemma A.5 that W; is a Lipschitz function of ¢ € [0, 1] in the topology of C; (R,). By
construction, if Wy, W are real analytic on @+, so is W; for any ¢ € [0, 1]. Moreover, in that case, if
W{(0)=—-8Q7(0) <0, then W,/ (0) = —-80Q;(0) <0 forall 7 € (0, 1], because W (0) = —8Q,(0) <0. [

AS5. Proof of Lemma 4.6. The proof of estimate (4-32) is lengthy but rather straightforward, and we just
indicate here the main steps. Using classical estimates for the modified Bessel functions K, [Abramowitz
and Stegun 1964, Section 9.6], we first observe that the approximate solution yx, defined in (4-26) satisfies

| Xn (r)| 2 min(L, [r—r,+ic, )/~ 0=, (A-44)
|X,/,(’”)| ~ min(1, |r—rn+icn|)_1/2_V"e_k(r—rn)

for all » > 0. Here A & B means that the ratio A/B is bounded from above and from below by some
positive constants that are independent of n. A direct consequence of (A-44) is:

Lemma A.6. There exists a constant C > 0 such that, for all n € N and all s > r > 0, the following

estimates hold:

N
1
|Xn(s)|2f P (t)|2 dt < Cmin(1, [s—r,+ic,|)' 72", (A-45)
n

dt < Cmin(l, [s—rp+icy|) 2" (A-46)

PROYAO] f
S | Xn ()2
Proof. We only prove (A-45), the proof of (A-46) being similar. If ¢, > 1, the first estimate in (A-44)

simply means that | x,(r)| & e ¥~ and (A-45) follows immediately. Thus we assume henceforth that
0 < ¢, <1, and for simplicity we set s = r,, + 7, so that the proof of (A-45) reduces to showing that

T () := | xn (ra+1) |2 / < Cmin(l, |[t4ic,)' ™", teR. (A-47)

|Xn(rn+t)|2

If T < —1, we know from (A-44) that |y, (r,+7)| < Ce ™ and |x,(r,+1)| > Ce ™ for t < t; hence
T,(t) < C.If || < 1, then | x, (r,+T7)| < C|t+ic,|)!/>~", and

T, (t) < Clr+icy | ( f

-1
ek dt—i—/ |t+lcn|2""_1dt> < Clt+icy| 72"
o0

Finally, if > 1, then

—1 1 T
T,(t) < Ce k7 (/ ekt dt+/ |t+icn|2""—1dt+/ ekt dt) <C,
—00 —1 1

and this completes the proof of (A-45). We observe that the constant C in the right-hand side is independent
of n because, as can be seen from (4-27), the exponent v, is bounded away from zero as n — o0. O

Remark A.7. In Section 41 we use the fact that if v, — 0 as n — oo, the conclusion of Lemma A.6
remains valid up to a logarithmic correction. Estimates (A-44) are not appropriate in that case, but one
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can use the fact that K, (z) is close to K¢(z) for n large, where Ko (z) ~ —log(z) as z — 0. In particular,
the integral

rp+1 1 T 1 1
[,
rn—1 Xn(r) 2 ) (@ +icy) Ky, (k(t +icy))

is uniformly bounded even if v, — 0 and ¢, — 0, because the function ¢ — [t~V Ko(kt)| 2 is integrable
over [—1, 1]. We leave the details to the reader.

Returning to the proof of Lemma 4.6, we note that C,,(r, s) = K,ﬁl)(r, s)— IC,(f) (r, s), where
K“mszmmwﬁam/ﬂ—J——w,
" r AWM X (0)?
M%nwzﬂmeu%wft—l——m.
" S A® X ()2

In what follows, we assume that s > r > 8r, for some § > 0, where r,, = (I',/b,)!/*> — 00 as n — 0.
Since A(s) — 1/k* and A'(s) = O(s™3) as s — oo, it follows immediately from (A-46) that

oo oo
C
sup / P (r, 5)| ds < cf s min(1, |s—ry+ic,) " ds < = < Cb,. (A-48)

r>8r, Jr orp n

It thus remains to estimate the kernel IC,(ZI)(r, s), which involves the remainder R,, defined in (4-29). We
can further decompose R, as R,, = Rf,l) + Rilz) + R,(f), where

m*+3 1A
r2 2r A(r)’

R9m=_ﬁ(%“> In(ra) )

m2\ya(r)2  (r —ry+icy)?

3N r Wy (r) )
R"“°‘¢M0mm0&<ml+ﬂﬂ '

We concentrate here on the term R,(f), which gives the main contribution to the integral (4-32).

R (r) =

Lemma A.8. For any § > 0, there exists a constant C > 0 such that

C
IRP(r)| < ———————  forallr > 5r,. (A-49)
rlr—rp+ic,]

Proof. We first assume that |r —r,| <r,/2. Using the same notation as in (4-23), we have
Vn(r) = Qn(”') - Qn(rn) —ia, = Q;(rn)(r — I +lcn) + (Q/(S) - Q/(rn))(r —7rp)

for some £ € [r,/2, 3r,/2]. As Q,(s) ~ s> and Q//(s) ~ s~* as s — oo (see (4-9) and the first part of
Section A4), we have

/ ’ C / C /
|Qn(5) _Qn(rn)| = r_|Qn(rﬂ)||‘§ _rn| =< r_IQn(rn)llr_rn s
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so that y, (r) = §, (ry)(r — rp +ic,)[1 + O(e(r))], where €(r) = (r —r,)/r,. Recalling that J, (r,) =
@, (r,)/ Q2 (ry)?, we obtain the expression

ﬁ D, (r)[1+O(e(r))] — Pu(rn)
m?2 Q)2 —rp+icy)?

RO (r) = —

Now, it also follows from (4-9) and the first part of Section A4 that ®,(s) & s7% and D! (s) =~ s~ as
s — oo. This implies |®,(r) — ©,(r,)| < CP,(r,)e(r), and we deduce

ey _ ¢ ol L

RAP ()| < CI(r
IRy (D] = CJn n)lr—rn+icn|2 T rplr—rpticy| n

The argument is simpler if |r, — r| > r,/2, because we can estimate both terms in Rflz) separately.
Straightforward calculations lead to the lower bound

[Vn ()] = [2(r) = 2 (ra) — ian| = C12, ()| |r — 1y +icyl, (A-50)

whenever r > ér,, (here C depends on §), and this implies

RO =D yo Il € ylrmnl L
[Yn ()] lr—rnticyl |r—rp+ical T'n 2
The proof of (A-49) is thus complete. ]

It is now easy to conclude the proof of Lemma 4.6. The term Rf) in the remainder is estimated using
the lower bound (A-50), which leads to

IR (r)| < . r>0r, (A-51)

r3|r—rn+icn|

whereas |Rf,1)(r)| <C/ r? for all r > 0. In view of (A-45), we thus have

) . =2, (] 1
Iy (ry )] < Cmin(l, [s—rp+icy) " | 5 +———F— ), s=r=dr.
s2 0 s|s—rpticy]
Integrating this bound, we arrive at
> 1 C 1/2 1
sup f KD (r, s)| ds < —(1+1log_ (r,)) < Ch)/ (1 +log, —), (A-52)
r>8r, Jr 'n by,
and estimate (4-32) follows immediately from (A-48), (A-52). [l

A6. Proof of equality (4-42). Assume that 0 < v < % Given any € > 0 and a > 0, we define

€ —ax .
ju(a)=/_€m|Ku(x+la)|de, (A-53)

where K, is the modified Bessel function. Our goal is to compute the limit of 7, (a) as a — 0. We recall
from [Abramowitz and Stegun 1964, Section 9.6] that

I_, -1,
K,(z) = %% where 1,(z) =

z¥ 2
La+o 0,
D)2 TORD) sz
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‘We thus have
_ Cv 2v 2
K,(z) = _Z”(l_dvz +0(z%) asz—0,

where
m vt 1 T'(1-v)
Cy = — s v = j .
sin(vr) I'(1—v) 22V I'(14v)
It follows that
2
. c ,
1Ky (x +ia))* = mm —dy(x +ia)”*+ O +a?))
62
= @y +”x2)v (1 —2d,(a*+x?)" cos@Quarg(x +ia)) + O((x* +a»)?))  (A-54)

as z=x +ia — 0. The leading term in (A-54) is even and therefore does not contribute to the integral
(A-53), where it is multiplied by an odd function. The main contribution comes from the next term, so
that

) . € ax .
311% Tv(a) = 2d,c? ahi% /_ @ cos(2v arg(x +ia)) dx

= 2d,c> /R ﬁ cos(2v arg(y + i) dy, (A-55)

where the second equality is obtained by setting x = ay.
It remains to perform the integration in (A-55). As arg(y +1i) = % — arctan(y), we have

cos(2v arg(y +i)) = cos(v) cos(2v arctan(y)) + sin(vm) sin(2v arctan(y)).

The first term does not contribute to the integral in (A-55), whereas setting y = tan(¢) we find

4v cos(vrmr)

/2
/R (lerW sin(2v arctan(y)) dy = 2 /0 sin(1) sin(2vr) di = —— -
Summarizing, we have shown that

4v cos(vrr) _ 27 cos(vir)
1—4v2  1—42

lir% Ty (a) = 2d,c? sin(vrr)
a—

A7. Explicit calculations in some particular cases. We collect in this section a few results for the
Kaufmann—Scully vortex (1-8) and the Lamb—Oseen vortex (1-9) which can be established by a direct
calculation.

(1) We first show that the vorticity profile W of the Lamb—Oseen vortex satisfies Assumption H2 in
Section 1B, hence belongs to the class 7. Indeed, in that case, the function J defined by (1-20) is given by
r4e_r2(1 — e_’z)

J(r) = (1 _ (1 +r2)e_r2)2’

r>0,
so that
2r3e™"

T = 0 ey

Q-r—@G—rt4rhe 27, r>o0.
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We want to show that J'(r) < 0 for all » > 0. Setting s = r2, we have to verify that

s—24@A—s5s+5D)e ™ —22>0, s>0,

2
s s s
l—e—“'+<1—e—s> e’>2 s>0.

Since s > 1 — e~ it is sufficient to show that

or equivalently

K _ s 4 se”*
tanh(s/2) l—e™s 1—e*

which is indeed true because tanh(x) < x for all x > 0.

> 2,

(2) Next, for the Lamb—Oseen vortex, we establish the inequality B(r) > 1 —4/m? when a =0 and b < 0,
where B is defined in (3-3). Indeed, as y,(r) = Q) —b > Q(r), we have
N S 4 2k*r? W
Bor)zl—— st e 21 12,202
m* m*~+k*r= Q Qm*+ k*r Q  (m*+k*r?)
As ® =2QW and W'(r) = —2r W(r) for the Lamb—Oseen vortex, inequality (A-56) can be written in
the equivalent form

(A-56)

B@r)>1 (A-57)

2W(r) m?r? m*
mZQ(I’) m2 + k2r2 (m2 + k2r2)2 ’

Define s =72 >0and @ =m?/(m>*4+k*r?) € (0, 1). As W =2¢* and Q=s5""(1—e™), it is straightforward

to verify that (A-57) implies the desired inequality B(r) > 1 —4/m? provided

se”*

1 - (I14+as— az) <1, orequivalently e’ >1+4s+as(s—a). (A-58)
— e_>

But

sup (I+s+4as(s —a)) =

{1 +s+53/4 ifs <2,
ae(0,1)

1+ 57 if s > 2,
and we conclude that the last inequality in (A-58) holds in all cases.

(3) Finally, we establish the same inequality B(r) > 1 —4/m? for the Kaufmann—Scully vortex. In that
case W'(r) = —4rW(r)Q2(r) by (1-8); hence inequality (A-56) takes the form

By > 1 2W(r) 1+ 2r? m? m* (A-59)
"= m2Q(r) 14+r2m24+k2r2  m?2+k2r2)? )’

Setting again a = m?/(m?>+k*r?) and using the fact that W = 2Q? =2/(1 +r?) in the present case, we
see that the desired inequality B(r) > 1 —4/m? holds provided

2 2
1ir2—a251+r2, r>0. (A-60)
-

The maximum of the left-hand side, considered as a function of @ € (0, 1), is reached at the point
o =r%/(14r?), and the resulting inequality becomes (1 + r2)? +r* < (1+4r?)3, which is of course true.

This concludes the proof.
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