Vol. 14, No. 1, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 9, 1989–2240
Issue 8, 1745–1988
Issue 7, 1485–1744
Issue 6, 1289–1483
Issue 5, 1089–1288
Issue 4, 891–1088
Issue 3, 613–890
Issue 2, 309–612
Issue 1, 1–308

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Scattering matrices and analytic torsions

Martin Puchol, Yeping Zhang and Jialin Zhu

Vol. 14 (2021), No. 1, 77–134

We consider a compact manifold with a piece isometric to a (finite-length) cylinder. By making the length of the cylinder tend to infinity, we obtain an asymptotic gluing formula for the zeta determinant of the Hodge Laplacian and an asymptotic expansion of the torsion of the corresponding long exact sequence of cohomology equipped with L2-metrics. As an application, we give a purely analytic proof of the gluing formula for analytic torsion.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

analytic torsion, scattering theory
Mathematical Subject Classification 2010
Primary: 58J52
Received: 28 June 2018
Revised: 28 August 2019
Accepted: 25 October 2019
Published: 19 February 2021
Martin Puchol
Université Paris-Saclay, CNRS
Laboratoire de Mathématiques d’Orsay
Yeping Zhang
School of Mathematics
Korea Institute for Advanced Study
South Korea
Jialin Zhu
Mathematical Science Research Center
Chongqing University of Technology