Vol. 14, No. 2, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 6, 1671–1976
Issue 5, 1333–1669
Issue 4, 985–1332
Issue 3, 667–984
Issue 2, 323–666
Issue 1, 1–322

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
The stability of the Minkowski space for the Einstein–Vlasov system

David Fajman, Jérémie Joudioux and Jacques Smulevici

Vol. 14 (2021), No. 2, 425–531
Abstract

We prove the global stability of the Minkowski space viewed as the trivial solution of the Einstein–Vlasov system. To estimate the Vlasov field, we use the vector field and modified vector field techniques we previously developed in 2017. In particular, the initial support in the velocity variable does not need to be compact. To control the effect of the large velocities, we identify and exploit several structural properties of the Vlasov equation to prove that the worst nonlinear terms in the Vlasov equation either enjoy a form of the null condition or can be controlled using the wave coordinate gauge. The basic propagation estimates for the Vlasov field are then obtained using only weak interior decay for the metric components. Since some of the error terms are not time-integrable, several hierarchies in the commuted equations are exploited to close the top-order estimates. For the Einstein equations, we use wave coordinates and the main new difficulty arises from the commutation of the energy-momentum tensor, which needs to be rewritten using the modified vector fields.

PDF Access Denied

However, your active subscription may be available on Project Euclid at
https://projecteuclid.org/apde

We have not been able to recognize your IP address 3.236.13.53 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
Einstein equations, relativistic kinetic theory, general relativity
Mathematical Subject Classification 2010
Primary: 83C05
Milestones
Received: 8 June 2018
Revised: 5 August 2019
Accepted: 7 October 2019
Published: 20 March 2021
Authors
David Fajman
Faculty of Physics
University of Vienna
Vienna
Austria
Jérémie Joudioux
Albert Einstein Institute
Max Planck Institute for Gravitational Physics
Potsdam
Germany
Jacques Smulevici
Sorbonne Université
CNRS
Université de Paris
Laboratoire Jacques-Louis Lions
Paris
France