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Rational homology cobordisms of plumbed manifolds

PAOLO ACETO

We investigate rational homology cobordisms of 3–manifolds with nonzero first
Betti number. This is motivated by the natural generalization of the slice-ribbon
conjecture to multicomponent links. In particular we consider the problem of which
rational homology S1 � S2 ’s bound rational homology S1 � D3 ’s. We give a
simple procedure to construct rational homology cobordisms between plumbed 3–
manifolds. We introduce a family of plumbed 3–manifolds with b1D 1 . By adapting
an obstruction based on Donaldson’s diagonalization theorem we characterize all
manifolds in our family that bound rational homology S1 �D3 ’s. For all these
manifolds a rational homology cobordism to S1 � S2 can be constructed via our
procedure. Our family is large enough to include all Seifert fibered spaces over
the 2–sphere with vanishing Euler invariant. In a subsequent paper we describe
applications to arborescent link concordance.
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1 Introduction

The study of concordance properties of classical knots and links in the 3–sphere is a
highly active field of research in low-dimensional topology. Problems in this area involve
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a wide range of techniques, from the use of sophisticated combinatorial invariants
derived from knot homology theories to the interplay with 3– and 4–manifold topology.

One of the most famous unsolved problems in this field is the so-called slice-ribbon
conjecture. A knot K � S3 is smoothly slice if it bounds a properly embedded smooth
disk in the 4–ball. A smoothly slice knot is ribbon if the spanning disk D2 � D4

can be chosen so that there are no local maxima of the radial function �W D4! Œ0; 1�

restricted to the image of D2 . The slice ribbon conjecture states that every slice knot
is ribbon. Since it was first formulated by Fox in 1962 (as a question rather than a
conjecture) there have been many efforts towards understanding slice and ribbon knots.
One stimulating aspect of this topic is that it naturally leads to several related questions
on 3–manifold topology.

In [7], Lisca proved that the slice ribbon conjecture holds true for 2–bridge knots.
He used an obstruction based on Donaldson’s diagonalization theorem to determine
which lens spaces bound rational homology balls. This technique has been used by
Lecuona [5] to prove that the slice ribbon conjecture holds true for an infinite family of
Montesinos knots. In [2], Donald refined the obstruction used by Lisca to determine
which connected sums of lens spaces embed smoothly in S4 . The starting point of
this work is an adaption of these ideas to the study of slice links with more than one
component.

The basic idea of [7] can be described as follows. If a knot K is slice its branched
double cover †.K/ is a rational homology sphere that bounds a rational homology
ball W . If K is a 2–bridge knot then †.K/ is a lens space, say L.p; q/. Each
lens space is the boundary of a canonical plumbed 4–manifold X.p; q/ with negative
definite intersection form. By taking the union X 0DX.p; q/[�W we obtain a smooth
closed oriented 4–manifold with unimodular, negative definite intersection form, and
by Donaldson’s diagonalization theorem this intersection form is diagonalizable over
the integers. The inclusion X.p; q/ ,! X 0 induces an embedding of intersection
lattices .H2.X.p; q/IZ/;QX.p;q// ,! .ZN ;�IN /. This fact turns out to be a powerful
obstruction which eventually leads to a complete list of lens spaces that bound rational
homology balls.

A link L� S3 is (smoothly) slice if it bounds a disjoint union of properly embedded
disks in the 4–ball, one for each component of L. Let L be a slice link with n

components (n>1). The first observation is that †.L/ is a 3–manifold with b1Dn�1
which bounds a smooth 4–manifold W with the rational homology of a boundary
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connected sum of n� 1 copies of S1 �D3 (see Proposition 3.1). Motivated by this
fact and focusing on the case nD 2 we are led to the following general problem:

Question 1.1 Which rational homology S1�S2’s bound rational homology S1�D3’s?

In Section 4 we introduce a general procedure which allows one to construct rational
homology cobordisms between plumbed 3–manifolds. For any plumbed 3–manifold Y
our procedure gives infinitely many plumbed 3–manifolds which are rational homology
cobordant to Y . We then introduce a family of plumbed 3–manifolds with b1 D 1.
This family includes, up to orientation reversal, all Seifert fibered spaces over the
2–sphere with vanishing Euler invariant. We prove that if a given Y in our family
bounds a rational homology S1 �D3 then Y can be constructed with our procedure
(see Theorem 5.1). This gives us a complete list of the 3–manifolds in our family
that bound a rational S1 �D3 . By specializing Theorem 5.1 to star-shaped plumbing
graphs, we obtain the following characterization for the Seifert fibered spaces over the
2–sphere which bound rational homology S1 �D3 ’s:

Theorem 1.2 A Seifert fibered manifold Y D .0I bI .˛1; ˇ1/; : : : ; .˛h; ˇh// bounds a
QH �S1 �D3 if and only if the Seifert invariants occur in complementary pairs and
e.Y /D 0.

Two pairs of Seifert invariants .˛i ; ˇi / and . j̨ ; ǰ / are complementary if they can be
chosen so that ˇi=˛iC ǰ = j̨ D�1, ie if ˛i D j̨ and ˇiC ǰ D�˛i (see Section 2.4
for precise definitions).

This result (as well as Theorem 5.1) is obtained by using an obstruction based on
Donaldson’s theorem. Roughly speaking we proceed as follows. Each Y in our
family bounds a negative semidefinite plumbed 4–manifold X. If Y bounds a rational
homology S1 �D3 , say W , we can form the closed 4–manifold X 0 D X [ �W .
The intersection form QX 0 will again be negative definite and this fact provides the
constraints we need for our analysis.

In a subsequent paper [1], we will describe the applications of our work on arborescent
link concordance. To each Y we can associate the family L.Y / of arborescent links
whose branched double cover is Y . In general, the family L.Y / contains many
nonisotopic links. However, these links are all related to each other by Conway
mutation. In [1] we will prove the following:

Algebraic & Geometric Topology, Volume 20 (2020)



1076 Paolo Aceto

Theorem 1.3 Let L be a link in L.Y / for some Y described by a plumbing graph
satisfying the hypothesis of Theorem 5.1 (eg any Montesinos link ). The following
conditions are equivalent :

� Y bounds a rational homology S1 �D3 .

� There exists L0 2 L.Y / that bounds a properly embedded smooth surface S
in D4 with �.S/D 2 without local maxima.

In particular , if L is a 2–component slice link then it has a ribbon mutant.

This paper is organized as follows. In Section 2 we provide an introduction to plumbed
manifolds following Neumann and Raymond [9; 10; 11]. We also introduce some new
terminology that will be useful later on. In Section 3 we give some motivation for our
work relating rational homology cobordism of 3–manifolds and link concordance. We
also state our lattice-theoretical obstruction. In Section 4 we introduce a method that
allows one to construct rational homology cobordisms between plumbed 3–manifolds.
In Section 5 we state our main theorem (Theorem 5.1) and give a proof modulo a
technical result (Theorem 7.1). Sections 6–10 are dedicated to the technical analysis
needed to prove Theorem 7.1.

Acknowledgements
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this topic, and Giulia Cervia for her constant encouragement and her help in drawing
pictures. I acknowledge partial support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 674978).

2 Plumbed manifolds

In this section, following [9; 10; 11], we review the basic definitions and properties of
plumbed 3–manifolds. We recall Neumann’s normal form of a plumbing graph, and
the generalized continued fraction associated to a plumbing graph. We show how these
data behave with respect to orientation reversal. We briefly recall the definitions of lens
spaces and Seifert manifolds viewed as special plumbed manifolds.

Definition 2.1 A plumbing graph � is a finite tree where every vertex has an integral
weight assigned to it.
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To every plumbing graph � we can associate a smooth oriented 4–manifold P� with
boundary @P� in the following way. For each vertex take a disc bundle over the
2–sphere with Euler number prescribed by the weight of the vertex. Whenever two
vertices are connected by an edge we identify the trivial bundles over two small discs
(one in each sphere) by exchanging the role of the fiber and the base coordinates. We
call P� (resp. @P� ) a plumbed 4–manifold (resp. plumbed 3–manifold).

This definition can be extended to reducible 3–manifolds; if the graph is a finite forest
(ie a disjoint union of trees), we take the boundary connected sum of the plumbed
4–manifolds associated to each connected component of � . Unless otherwise stated,
by a plumbing graph we will always mean a connected one, as in Definition 2.1.

Every plumbed 4–manifold has a nice surgery description which can be obtained
directly from the plumbing graph. To every vertex we associate an unknotted circle
framed according to the weight of the vertex. Whenever two vertices are connected
by an edge, the corresponding circles are linked in the simplest possible way, ie like
the Hopf link. The framed link obtained in this way also gives an integral surgery
presentation for the corresponding plumbed 3–manifold. The group H2.P.�/IZ/ is a
free abelian group generated by the zero sections of the sphere bundles (ie by vertices
of the graph). Moreover, with respect to this basis, the intersection form of P.�/,
which we indicate by Q� , is described by the matrix M� whose entries .aij / are
defined as follows:

� ai;i equals the Euler number of the corresponding disc bundle;

� ai;j D 1 if the corresponding vertices are connected;

� ai;j D 0 otherwise.

Finally note that M� is also a presentation matrix for the group H1.@P�IZ/.

2.1 The normal form of a plumbing graph

We will be mainly interested in plumbed 3–manifolds. There are some elementary
operations on the plumbing graph which alter the 4–manifold but not its boundary.
Following [9], we will state a theorem which establishes the existence of a unique
normal form for the graph of a plumbed 3–manifold. In [9] these results are stated in a
more general context. Here we extrapolate only what we need in order to deal with
plumbed manifolds.

First consider the blowdown operation. It can be performed in any of three situations
depicted below:
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(1) We can add or remove an isolated vertex with weight "2f˙1g from any plumbing
graph.

� t
"
�  ! �

(2) A vertex with weight " 2 f˙1g linked to a single vertex of a plumbing graph
can be removed as shown below:

a "
� �  !

a� "
�

From now on we use three edges coming out of a vertex to indicate that any
number of edges may be linked to that vertex.

(3) Finally, if a ˙1–weighted vertex is linked to exactly two vertices it can be
removed, as shown below:

a " b
� � �  !

a� " b� "
� �

Next we have the 0–chain absorption move. A 0–weighted vertex linked to two
vertices can be removed and the plumbing graph changes as shown:

a 0 b
� � �  !

aC b
�

The splitting move can be applied in the following situation. Given a plumbing graph
with a 0–weighted vertex which is linked to a single vertex v , we may remove both
vertices (and all the corresponding edges) obtaining a disjoint union of plumbing trees.
We may depict this move by

�1
�

0 a �

� � �

�

�

�k

 ! �1 t � � � t�k :

Proposition 2.2 [9] Applying any of the above operations and their inverses to a
plumbing graph does not change the oriented diffeomorphism type of the corresponding
plumbed 3–manifold.
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Before discussing the normal form of a plumbing graph we need some terminology. A
linear chain of a plumbing graph is a portion of the graph consisting of some vertices
v1; : : : ; vk (k � 1) such that

� each vi with 1 < i < k is linked only to vi�1 and viC1 ;

� v1 and vk are linked to at most two vertices.

A linear chain is maximal if it is not contained in any larger linear chain. A vertex of a
plumbing graph is said to be

(1) isolated if it is not linked to any other vertex;

(2) final if it is linked exactly to one vertex;

(3) internal otherwise.

Note that isolated and final vertices always belong to some linear chain, while an
internal vertex belongs to some linear chain if and only if it is linked to exactly two
vertices.

Definition 2.3 A plumbing graph � is said to be in normal form if one of the following
holds:

(1) � D¿ or � D
0
� .

(2) Every vertex of a linear chain has weight less than or equal to �2.

Theorem 2.4 [9] Every plumbing graph can be reduced to a unique normal form via
a sequence of blowdowns , 0–chain absorptions , splittings and their inverses. Moreover ,
two oriented plumbed 3–manifolds are diffeomorphic (preserving the orientation) if
and only if their plumbing graphs have the same normal form.

Remark 2.5 Using this theorem, one can specify a certain class of plumbed 3–
manifolds simply by describing the shape of the plumbing graph in its normal form.
In particular we will see at the end of this section that lens spaces and some Seifert
manifolds admit such a description.

2.2 The continued fraction of a plumbing graph

In this section, following [10] we introduce some additional data associated to a
plumbing graph. As we have seen to any plumbing graph � we can associate an
integral symmetric bilinear form Q� . All the usual invariants of Q� will be denoted
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referring only to the graph. In particular, rank, signature and determinant will be
denoted respectively by rk� , .bC�; b��; b0�/ and det� .

Let .�; v/ be a connected rooted plumbing graph, ie a plumbing graph together with
the choice of a particular vertex. If we remove from � the vertex v and all the
corresponding edges, we obtain a plumbing graph �v which is the disjoint union of
some trees �1; : : : ; �k (k is the valency of v ). Every such tree has a distinguished
vertex vj , which is the one adjacent to v .

Definition 2.6 With the notation above we define the continued fraction of � as

cf.�/ WD
det�
det�v

2Q[f1g:

We put ˛=0D1 for each ˛ 2Q.

Remark 2.7 This value cf.�/ depends on the rooted plumbing graph .�; v/. By
abusing notation we do not indicate this dependence explicitly. In the sequel, it will
always be clear from the context which vertex has been chosen.

Proposition 2.8 [10] If the weight of the distinguished vertex is b 2 Z then

det� D b � det�v �
kX
iD1

�
det.�i /vi

Y
j¤i

det�j

�
and

cf.�/D b�
kX
iD1

1

cf.�i /
:

2.3 Reversing the orientation

Let � be a plumbing graph in normal form. In this section, following [9], we explain
how to compute the normal form for the plumbed manifold �@P� , ie @P� with
reversed orientation. We call this plumbing graph the dual graph of � and we denote
it by �� .

For a vertex v of a plumbing graph which is not on a linear chain we define the
quantity c.v/ to be the number of linear chains adjacent to v , ie the number of vertices
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belonging to a linear chain that are linked to v . For instance, in the graph

� �

� �

� �

both the trivalent vertices have c D 2. We indicate with . : : : ;�2Œa�; : : : / a portion of
a string with a �2–chain of length a > 0, ie a linear chain consisting of a vertices
each with weight �2.

Theorem 2.9 [9] Let � be a plumbing graph in normal form. Its dual graph �� can
be obtained as follows. The weight w.v/ of every vertex which is not on a linear chain
is replaced with �w.v/� c.v/, and every maximal linear chain of the form

a1 a2 an
: : : � � : : : � : : :

is replaced with

b1 b2 bm
: : : � � : : : � : : :

where the weights are determined as follows. If

.a1; : : : ; an/D .�2
Œn0�;�m1� 3;�2

Œn1�;�m2� 3; : : : ;�ms � 3;�2
Œns�/

with ni � 0, mi � 0 and s > 0, then

.b1; : : : ; bm/D .�n0� 2;�2
Œm1�;�n1� 3; : : : ;�ns�1� 3;�2

Œms�;�ns � 2/:

If .a1; : : : ; an0
/D .�2Œn0�/ then .b1/D .�n0� 1/.

The reason why we are interested in this construction of the dual graph of a plumbing
graph in normal form will be clear in Section 5. Essentially we are trying to detect
nullcobordant 3–manifolds using obstructions based on Donaldson’s diagonalization
theorem. Since the property we want to detect does not depend on the orientation
of a given 3–manifold, it is natural to examine both a plumbing graph � and its
dual �� . Moreover, the normal form is specifically defined to give a plumbing graph
that minimizes the quantity bC.�/ among all plumbing graphs representing @P� (see
[10, Theorem 1.2]).

We now introduce a quantity that will play an important role in the analysis developed
in Sections 6–9.
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Definition 2.10 Let � be a plumbing graph in normal form, and let v1; : : : ; vn be its
vertices. We define

I.�/ WD

nX
iD1

�3�w.vi /:

The following proposition is proved in [7]. It can also be proved directly using
Theorem 2.9.

Proposition 2.11 Let � be a linear plumbing graph in normal form. We have

I.�/C I.��/D�2:

2.4 Lens spaces and Seifert manifolds

We briefly recall the plumbing description for lens spaces and Seifert manifolds.

In this context it is convenient to define a lens space as a closed 3–manifold whose
Heegaard genus is � 1. The difference with the usual definition is that we are including
S3 and S1�S2 . It is well known that every lens space has a plumbing graph which is
either empty (S3 ) or a linear plumbing graph and that every linear plumbing graph
represents a lens space. It follows from Theorem 2.4 that the normal form of a plumbing
graph representing a lens space other than S3 or S1 �S2 is a linear plumbing graph

a1 a2 an
� � : : : �

where ai � �2 for each i . It is easy to check that given a linear plumbing graph as
above we have

cf.�/D a1�
1

a2�
1

a3����

DW Œa1; : : : ; an�
�:

This fact justifies the name continued fraction. Note that cf.�/ < �1. The usual
notation for a lens space L.p; q/, defined as �p

q
–surgery on the unknot, can recovered

from the continued fraction as follows. Write cf.�/ D p
�q

, so that p > q � 1 and
.p; q/D 1. Then @P� D L.p; q/.

Remark 2.12 If � is a nonempty linear plumbing graph in normal form which is not
a 0–weighted single vertex, then det� ¤ 0. We will make extensive use of this fact
throughout this work without further reference.
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b

˛1=ˇ1 ˛2=ˇ2 ˛k=ˇk

Figure 1: A surgery description for the Seifert fibered manifold .0I bI .˛1; ˇ1/; : : : ; .˛k ; ˇk// .

A closed Seifert fibered manifold (see [11]) can be described by its unnormalized
Seifert invariants

.gI bI .˛1; ˇ1/; : : : ; .˛k; ˇk//;

where g � 0 is the genus of the base surface, b 2 Z, ˛i > 1 and .˛i ; ˇi /D 1. This
data (which is not unique) uniquely determines the manifold. When g D 0 a surgery
description for such a manifold is depicted in Figure 1. The following theorem is
proved in [11]:

Theorem 2.13 Let � be the following star-shaped plumbing graph in normal form:

a11 a1n1
� : : : �

b a21 a2n2
� � : : : �

:::ak1 aknk
� : : : �

Then @P� is a Seifert manifold with unnormalized Seifert invariants

.0; bI .˛1; ˇ1/; : : : ; .˛k; ˇk//;

where
˛i

ˇi
D Œai1; : : : ; a

i
ni
��:

The quantity

e.Y / WD b�

kX
iD1

ˇi

˛i

is called the Euler number of Y . It is easy to check that

(1) e.Y /D cf.�/;

where � is the plumbing graph in normal form associated to Y .
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Definition 2.14 Let �1 and �2 be two linear plumbing graphs in normal form:

�1 WD
a1 a2 an
� � : : : �

�2 WD b1 b2 bm
� � : : : �

�1 and �2 are said to be complementary if �2 D ��1 .

Proposition 2.15 With the notation of Definition 2.14 the following conditions are
equivalent :

(1) �1 and �2 are complementary.

(2) @P
�
bm b1 �1 a1 an
� : : : � � � : : : �

�
Š S1 �S2 .

(3) 1=cf.�1/C 1=cf.�2/D�1.

Proof (1)D) (2) This can be checked directly using Theorem 2.9. A series of
�1–blowdowns will turn the linear graph above into a 0–weighted single vertex.

(2)D) (3) Consider the continued fraction of the graph representing S1 �S2 with
respect to the only �1–weighted vertex. We have

0D
det
�
bm b1 �1 a1 an
� : : : � � � : : : �

�
det.�1/ det.�2/

D�1�
1

cf.�1/
�

1

cf.�2/
:

The first equality above holds because for any plumbing graph we have b1.@P�/D
b0.�/.

(3)D) (1) By the same formula used above we obtain

det
�
bm b1 �1 a1 an
� : : : � � � : : : �

�
D 0:

After a �1–blowdown we obtain

det
�
bm b1C 1 a1C 1 an
� : : : � � : : : �

�
D 0I

therefore, this plumbing graph is not in normal form, which means that at least one
weight among a1 and b1 is �2. Suppose, for instance, that a1 D�2.

If nD 1, it is easy to see that mD 1 as well, and b1D�2, from which the conclusion
follows. Therefore we may assume that n > 1.

If mD 1, by blowing down the vertex whose weight is a1C 1 we obtain

b1C 2 a2C 1 an
� � : : : �

Algebraic & Geometric Topology, Volume 20 (2020)



Rational homology cobordisms of plumbed manifolds 1085

Again, this graph has vanishing determinant and therefore is not in normal form. If
b1D�3, we blow down the vertex whose weight is b1C2. It follows easily that a2D�2
and that nD 2. If b1 < �3, then a2 D�2; we blow down the vertex whose weight
is a2C 1 and we iterate the argument. This shows that .a1; : : : ; an/D .�2; : : : ;�2/
and that nD�b1� 1.

If m> 1, we claim that b1 � �3. To see this, assume by contradiction that b1 D�2.
By blowing down the vertex whose weight is a1C 1 we obtain

bm b2 0 a2C 1 an
� : : : � � � : : : �

which, by 0–chain absorption, becomes

bm b2C a2C 1 a3 an
� : : : � � : : : �

This last graph is in normal form, which contradicts the fact that its determinant is zero.
This proves the claim.

Now the argument can be iterated. Each time we blow down a �1–vertex we obtain
a new linear graph which has exactly one �1–vertex. By repeatedly blowing down
�1–vertices we will eventually obtain the graph

bm �1 an
� � �

Since the determinant must vanish, it is easy to verify that an D bm D�2 and that

@P
�
bm �1 an
� � �

�
D S1 �S2:

This proves (2) and, by Theorem 2.9, also (1). In fact, by induction on the number
of blowup operations one can verify that each linear graph corresponds to a pair of
complementary strings. This can be done by starting with the last graph we obtained
above and then going backwards via blowups.

Remark 2.16 Strictly speaking, the definition of complementary linear graphs should
involve an extra bit of data. In Definition 2.14 we implicitly fixed an initial vertex and
a final one on each graph (as suggested by the indexing of the weights). Only in this
way does the condition �2 D ��1 make sense.

It is useful to extend in the obvious way the notion of complementary linear graphs to
that of complementary legs in a star-shaped plumbing graph. We also say that a pair of
Seifert invariants are complementary if they correspond to complementary legs in the
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associated star-shaped plumbing graph in normal form. It follows by Proposition 2.15
that pairs of complementary legs correspond to pairs of Seifert invariants .˛i ; ˇi / and
. j̨ ; ǰ / that satisfy

ˇi

˛i
C

ǰ

j̨
D�1:

Note that, in general, this formula does not hold if we do not compute the Seifert
invariants from the weights of a star-shaped plumbing graph in normal form as in
Theorem 2.13.

2.5 The linear complexity of a tree

Let � be a plumbing graph in normal form. Let lc.�/ be the cardinality of the smallest
subset of vertices we need to remove from � in order to obtain a linear graph. We
call lc.�/ the linear complexity of � and we set lc.¿/D�1. We stress the fact that
because of the uniqueness of the normal form of a plumbing graph it makes sense to
talk about the linear complexity of a plumbed 3–manifold. Note that:

� lc.�/D 0 if and only if @P� is a lens space.

� If @P� is a Seifert manifold then lc.�/D 1.

� lc.�1 t�2/D lc.�1/C lc.�2/.

Proposition 2.17 Let � be a plumbing graph in normal form such that lc.�/D 1 and
for at least one choice of a vertex v 2 � the graph �v is linear and negative definite.
Then

det� D 0 () cf� D 0:

Proof The proof follows directly from Definition 2.6 and we omit the details.

In Section 5 we will deal mainly with plumbed 3–manifolds with lc.�/D 1. A generic
plumbing graph � with lc.�/D 1 looks like the one shown below:

� : : : � � : : : �

�

� : : : � � : : : �

� � �

� �

� �

� � : : : �

� : : : � �

� : : : �
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Such a graph is made of a distinguished vertex v and several linear components. These
linear components are joined to v via a final vertex (on the left-hand side of the picture
above) or via an internal vertex (right-hand side).

3 Motivations and obstructions

In this section we start dealing with rational homology cobordisms. As a motivation,
we first explain in Proposition 3.1 how rational homology cobordisms of 3–manifolds
are relevant for link concordance problems. Then, in Proposition 3.3, we state our
lattice-theoretical obstruction, which will be used in the proof of Theorem 5.1.

Two closed, oriented 3–manifolds Y1 and Y2 are rational homology cobordant (or
QH –cobordant) if there exists a smooth compact 4–manifold W such that

� @W D Y1[�Y2 ;

� both inclusions Yi !W induce isomorphisms H�.Yi IQ/ŠH�.W IQ/.

It is well known that if a rational homology sphere is obtained as the branched double
cover along a slice knot then it bounds a rational homology ball. In the next proposition
we make an analogous observation concerning branched double covers along slice links
with more than one component.

Proposition 3.1 Let L� S3 be a link. Let S �D4 be a properly embedded smooth
surface without closed components such that @S D L. Let W be the double cover
of D4 branched along S. Assume that

b1.@W /� �.S/� 1:

Then b1.W /D �.S/� 1 and b2.W /D b3.W /D 0. In particular, if b1.@W / > 0, we
have an isomorphism

H�.W IQ/ŠH�

� �.S/�1
\
iD1

S1 �D3IQ

�
:

Proof As shown in [6], we have a long exact sequence

� � � !Hi .D
4; S [S3/!Hi .W; @W /!Hi .D

4; S3/!Hi�1.D
4; S [S3/! � � � ;

from which we obtain an isomorphism H1.D
4; S [ S3/ Š H1.W; @W /. It follows

from the exact sequence of the pair that H1.D4; S [ S3/ D 0. We conclude that
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0 D H1.W; @W / D H 3.W /. From the exact sequence of the pair .W; @W / with
rational coefficients we get

� � � !H1.@W /!H1.W /! 0:

We obtain
b1.W /� b1.@W /� �.S/� 1:

Since

�.W /D 2�.B4/��.S/D 2��.S/ D) 1� b1.W /C b2.W /D 2��.S/;

we see that b1.W /D �.S/� 1 and b2.W /D 0.

Corollary 3.2 Let L be a slice link with n components (n > 1). Let W be the
branched double cover of the four-ball branched along a collection of slicing discs
for L. We have an isomorphism

H�.W IQ/ŠH�

� n�1
\
iD1

S1 �D3IQ

�

Proof It is well known that b1.@W /D jLj�1 (see for instance [4]). Here jLj denotes
the number of components of the link L. Then we may apply Proposition 3.1.

Motivated by Proposition 3.1, we investigate QH –cobordisms of plumbed 3–manifolds
with b1 � 1. Note that if a 3–manifold Y bounds a QH � \n S

1 �D3 , then b1.Y /
equals the number of S1 �D3 summands.

Proposition 3.3 Let Y be a connected 3–manifold with b1.Y /D n. Suppose that Y
bounds smooth 4–manifolds X and W with the following properties:

� X is simply connected , negative semidefinite and rkQX D b2.X/�n.

� H�.W IQ/DH�
�
\
n

iD1
S1 �D3IQ

�
.

Then there exists a morphism of integral lattices

..H2.X/IZ/;QX /! .Zb2.X/�n;�Id/:

In particular, for every definite sublattice .G;QG/ � .H2.X/;QX / whose rank is
b2.X/�n, we obtain an embedding of integral lattices

.G;QG/! .Zb2.X/�n;�Id/:
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Proof Consider the smooth 4–manifold X 0 WDX [Y �W . The Mayer–Vietoris exact
sequence with integral coefficients reads

!H3.X
0/!H2.Y /!H2.X/˚H2.W /!H2.X

0/!H1.Y /!H1.W /!H1.X
0/!0:

Note that b1.Y /D b1.W /; moreover, the map H1.Y IQ/!H1.W IQ/ is an isomor-
phism. It follows that b1.X 0/D 0. The group H2.W / is finite. Note that b3.X 0/D 0.
If we consider the above exact sequence with rational coefficients, we obtain

0!H2.Y IQ/!H2.X IQ/!H2.X
0
IQ/! 0I

therefore, b2.X 0/D b2.X/�b2.Y /D b2.X/�n. Now note that, by Novikov additivity,
�.X 0/D �.X/. This shows that X 0 is a smooth, closed, negative definite 4–manifold.
By Donaldson’s diagonalization theorem its intersection form is equivalent to the
standard negative definite form on Zb2.X

0/ . The inclusion X!X 0 induces the desired
morphism of integral lattices.

The last assertion follows easily. The map

'W .G;QG/! .Zb2.X/�n;�Id/

preserves the intersection form. Since QG is negative definite, ' must be injective
and is therefore an embedding of integral lattices.

4 Constructing QH –cobordisms

In this section we introduce a procedure for constructing rational homology cobordisms
between plumbed 3–manifolds; our method is explained in Proposition 4.5. We then
introduce some elementary building blocks which are sufficient to produce all manifolds
satisfying the hypotheses of Theorem 5.1 which bound rational homology S1 �D3 ’s.

Recall that a rooted plumbing graph .�; v/ is a plumbing graph with a distinguished
vertex. In particular, a rooted plumbing graph is necessarily nonempty.

Definition 4.1 Let .�1; v1/ and .�2; v2/ be two rooted plumbing graphs. Let � be
the plumbing graph obtained from �1t�2 by identifying the two distinguished vertices
and taking the sum of the corresponding weights. We say that � is obtained by joining
together �1 and �2 along v1 and v2 and we write

� WD �1 _v1;v2
�2:
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The following proposition follows immediately from Proposition 2.8:

Proposition 4.2 With the above notation we have

cf.�1 _v1;v2
�2/D cf.�1/C cf.�2/

provided that the continued fractions on the right are computed with respect to the
vertices v1 and v2 , and the continued fraction on the left is computed with respect to
the vertex resulting from joining v1 and v2 .

Lemma 4.3 Let W be a connected 4–dimensional handlebody without 3–handles. If
H�.@W IQ/DH�.S3IQ/ then H1.W IQ/D 0.

In particular, if W is built using a single 1–handle h1 and a single 2–handle h2 , then
the algebraic intersection of these handles does not vanish.

Proof The homology exact sequence of the pair .W; @W / with rational coefficients
reads

� � � !H1.@W /!H1.W /!H1.W; @W /! 0:

Since H1.@W /D0 and by Lefschetz duality H1.W; @W /DH 3.W /D0 the conclusion
follows. If there are only two handles h1 and h2 , the attaching sphere of h2 must have
nonzero intersection number with the belt sphere of h1 , otherwise h1 would represent
a nontrivial element in H1.W /.

The following lemma is an immediate consequence of the splitting move:

Lemma 4.4 Let .a1; : : : ; an/ and .b1; : : : ; bm/ be strings (where each coefficient
is � �2). The 3–manifold described by the plumbing graph

bm b1
� : : : �

�1 0
� �

a1 an
� : : : �

is a rational homology sphere.

Proposition 4.5 Let .�; v/ be a rooted plumbing graph such that @P.�/D S1 �S2

and @P.� n fvg/ is a rational homology sphere. Let .� 0; v0/ be any rooted plumbing
graph.

Then b1.@P.� 0//D b1.@P.� 0 _v0;v �// and these manifolds are QH –cobordant.
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Figure 2: A rational homology cobordism between @P� 0 and @P.� 0 _v0;v �/ .

Proof In Figure 2(a) we have a surgery description for @P� 0. First we attach a 4–
dimensional 1–handle to @P� 0 � I as shown in Figure 2(b). In Figure 2(c) we draw
the boundary of the four manifold obtained after the 1–handle attachment. This is just
@P� 0]S1�S2 . In Figure 2(d) we draw the same manifold replacing the 0–framed circle
with the surgery diagram associated to the graph � . Now we attach a 4–dimensional 2–
handle as shown in Figure 2(e). Via a zero-absorption move the result of this 2–handle
attachment is a 4–manifold whose bottom boundary is @P.� 0 _v0;v �/. This is shown
in Figure 2(f). We have constructed a cobordism W between @P� 0 and @P.� 0_v0;v�/
which consists of one 1–handle and one 2–handle. In order to prove that W is in
fact a QH –cobordism it suffices to check that the algebraic intersection between the
attaching sphere of the 2–handle and the belt sphere of the 1–handle does not vanish.

Let us write ˛ for the attaching sphere of the 2–handle. The first homology group
of @P� 0 ] S1 �S2 is Qb1.@P�

0/˚Q. Our algebraic intersection number is nonzero
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if and only if ˛ represents a nontrivial element when projected into H1.S1 � S2/.
Note that in H1.@P� 0 ] S1 �S2/ the curve ˛ is homologous to the pair of curves ˛1
and ˛2 shown in Figure 3. This means that the projection of ˛ in H1.S1 � S2/ is
equivalent to ˛2 . The fact that ˛2 is a nontrivial element in H1.S1 � S2/ follows
immediately from our hypotheses on .�; v/. To see this, let zL be the link that gives
a surgery description for S1 �S2 in Figure 2(d). Applying the splitting move on the
link ˛2[ zL we see that the 3–manifold described by this link is precisely @P.� nfvg/,
which by our assumption is a rational homology sphere. This fact ensures that ˛2
represents a nontrivial element in H1.S1 �S2IQ/.

It follows that b1.@P� 0/D b1.@P.� 0 _v0;v �// and that W is a QH –cobordism.

Remark 4.6 The 2–handle attachment used in Proposition 4.5 can also be described
in terms of plumbing graphs as follows. We start with @P.� 0 t �/, which has the
description

w.v0/
�

a1 an
� : : : �

�1
�

b1 bm
� : : : �

where, for simplicity, we have chosen � as in Lemma 4.4. The 2–handle then appears
as an additional vertex as shown below:

a1 an
� : : : �

w.v0/ 0 �1
� � �

b1 bm
� : : : �

This last level of the cobordism can be described also by the following plumbing graph,
using the 0–chain absorption move:

a1 an
� : : : �

w.v0/� 1
�

b1 bm
� : : : �

Example 4.7 Let .a1; : : : ; an/ and .b1; : : : ; bm/ be two complementary strings. The
plumbing graph associated to the string .an; : : : ; a1;�1;b1; : : : ;bm/ represents S1�S2.
By the previous proposition all lens spaces associated to strings of the form

.an; : : : ; a1;�2; b1; : : : ; bm/
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... ...... ...

k
0

h

˛

k
0 0

h

˛1 ˛2

Figure 3: The thick curve on the leftmost diagram is homologous to the sum
of the two thick curves on the rightmost diagram.

are QH –cobordant to S3 . In fact, the corresponding plumbing graph is obtained by
joining together a �1–weighted vertex and a graph as in Lemma 4.4.

Example 4.8 Choose strings .aini
; : : : ; ai1;�1; b

i
1; : : : ; b

i
mi
/, where i D 1; : : : ; k , as

in the previous example. Consider the plumbed 3–manifold described by the star-shaped
plumbing graph

a11 a1n1
� : : : �

b11 b1m1
� : : : �

�k
:::

� :::
ak1 aknk
� : : : �

bk1 bkmk
� : : : �

By Proposition 4.5 such a manifold is QH –cobordant to S1 �S2 and thus it bounds
a QH �S1 �D3 . In Section 5 we will see that these are the only Seifert manifolds
over the 2–sphere with this property.

4.1 Elementary building blocks

In the previous example we have used the graph

�1 WD
an a1 �1 b1 bm
� : : : � � � : : : �

as a building block for constructing rational homology cobordisms of 3–manifolds.
This is somehow the simplest way to use Proposition 4.5. The process can be iterated
by constructing more complicated pieces to be used as building blocks.
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Keeping in mind that we are interested in plumbed manifolds with lc D 1, we may
introduce three more building blocks. The graph �1 can be slightly modified, obtaining

�2 WD

an a1 �2 b1 bm
� : : : � � � : : : �

�
�1

Another building block can be obtained starting with

�2 �2 �2 �1 �n
� � : : : � � �

where n� 1 is the length of the �2–chain (n � 2). This is just a special case of �1 .
Now we join this graph with �1 along the vertices of weight �n and �1. We obtain
our third building block,

�3 WD

a1 an
� : : : �

�2 �2 �1 �n� 1
� : : : � � �

b1 bm
� : : : �

Note that @P�3D S1�S2 . A fourth building block can be constructed as follows. We
start with

�2 �1 �2
� � �

and then we attach to the final vertices of this graph two linear graphs like �1 . We
obtain

�4 WD

a0
n0 a01 a1 an
� : : : � � : : : �

�3 �1 �3
� � �

b0
m0 b01 b1 bm
� : : : � � : : : �

Note that this last graph does not represent S1 � S2 since its normal form can be
obtained by blowing down the �1–vertex. Each of the four building blocks we have
introduced has a distinguished �1–weighted vertex. From now on we will implicitly
consider each of these graphs as a rooted plumbing graph where the preferred vertex is
the one whose weight is �1.

Definition 4.9 The four families of rooted plumbing graphs introduced above will be
called building blocks of the first, second, third and fourth type, respectively.

The following proposition is an immediate consequence of Proposition 4.5:
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Proposition 4.10 Let � be a plumbing graph obtained by joining together two or
more building blocks of any type along their �1–vertices. Then:

(1) � is in normal form.

(2) lc.�/D 1.

(3) @P� bounds a QH �S1 �D3 .

Our main result, Theorem 5.1, should be thought of as a converse of this last proposition.

5 Main results

In this section we state our main result, Theorem 5.1. We give a proof modulo a
technical result, Theorem 7.1, whose statement and proof are postponed to the next
sections. We explain how to specialize our result to Seifert fibered spaces over the
2–sphere in Theorem 5.2.

First we introduce some terminology. Let � be a plumbing graph in normal form such
that lc.�/D 1. Choose v 2 � such that z� WD � n fvg is linear. The linear graph z�
is a disjoint union of connected linear graphs �1; : : : ; �k . We call �i a final leg or
an internal leg according to whether v is linked to a final vertex of �i or an internal
one. We indicate with i.�; v/ and f .�; v/ the number of internal and final legs of � .
Finally, each internal leg of � has a distinguished vertex which is 3–valent in � . We
call these vertices the nodes of � , and we indicate with N.�/ the set of all the nodes.
Note that, in some cases, these definitions depend on the choice of the vertex v . This
is the case for three-legged star-shaped plumbing graphs (there are four choices for the
vertex v ) and plumbing graphs like

: : : � � : : :

� �

: : : � � : : :

where there are two possible choices for the vertex v .

Theorem 5.1 Let � be a plumbing graph in normal form with lc.�/D 1. Choose a
vertex v 2 � such that z� WD � n fvg is linear. Suppose that each node of � has weight
less than or equal to �2 and that

(2) I.z�/� �f .�; v/� 2i.�; v/�
X

u2N.�/

maxf0;w.u/C 3g:

The following conditions are equivalent :
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� the 3–manifold @P� bounds a QH �S1 �D3 ;

� equality holds in (2) and � is obtained by joining together building blocks along
�1–vertices.

Now we present a proof of this theorem that relies on a technical result, Theorem 7.1,
which will be proved in the following sections.

Proof If @P� is obtained by joining together building blocks along �1–vertices then
the conclusion follows from Proposition 4.10.

Let � be a plumbing graph in normal form satisfying the hypotheses of the theorem and
let W be a QH�S1�D3 such that @W D@P� . Let N be the number of vertices of � .
Note that b0.�/D b1.@P�/D 1; moreover, H2.P�IZ/ contains a free subgroup of
rank N � 1 on which Q� is negative definite (it is the subgroup Zz� spanned by all
vertices in z� ). It follows that Q� is negative semidefinite; more precisely,

.b0.�/; b�.�/; bC.�//D .1;N � 1; 0/:

Therefore we are in the situation described in Proposition 3.3. There exists a morphism
of integral lattices

ˆW
�
H2.X.�/IZ/;Q�

�
! .ZN�1;�Id/:

Precomposing this map with the inclusion .Zz�;Qz�/ ,!
�
H2.X.�/IZ/;Q�

�
, we

obtain an embedding of integral lattices

ẑ W .Zz�;Qz�/! .ZN�1;�Id/:

Let us write fv1; : : : ; vN�1g for the set of vertices of z� . Now consider the subset
S WD fˆ.v1/; : : : ; ˆ.vN�1/g � ZN�1 . The extra vector ˆ.v/ is linked once to each
connected component of z� and is orthogonal to every other vector. The subset S
satisfies all the hypotheses of Theorem 7.1 and the conclusion follows.

Even though the class of plumbed manifolds that satisfy the hypotheses of Theorem 5.1
is quite large (it includes, up to orientation reversal, all Seifert fibered spaces over the 2–
sphere with vanishing Euler invariant) some of the assumptions on the plumbing graph
are rather technical and unnatural. The need for these hypotheses can be explained as
follows.

The fact that every vertex in z� has weight less or equal to �2 allows us to avoid
indefinite plumbing graphs. Consider, for instance, the following plumbing graph:
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� WD

�2 �2
� �1 �

�1 � �2
� �

�2 �2
� �1 �

� �2
�

Note that � is in normal form. We have

.b0�; bC�; b��/D .1; 1; 7/:

Moreover, this plumbing graph is selfdual, meaning that ��D� , therefore reversing the
orientation does not help. Theorem 5.1 does not say if @P� bounds a QH �S1�D3 .
However, in this particular case @P� does bound a QH � S1 �D3 . This can be
checked easily using Proposition 4.5. By splitting off three building blocks of the first
type and then applying the splitting move, we obtain a 0–weighted single vertex. It
follows that @P� is QH –cobordant to S1 �S2 .

The reason why we need the condition (2) can be explained as follows. In the proof
of Theorem 5.1 we have shown that z� gives rise to a subset S D fv1; : : : ; vng � Zn

with certain properties. The starting point of our analysis is that these subsets are well
understood provided that I.S/ < 0. We use the known results on such subsets, as
developed in [7; 8], to show that the possible graphs of S [fvg, where v is the vector
that corresponds to the extra vertex in � , are obtained by joining together building
blocks along �1–vertices.

5.1 Seifert manifolds

As we show in the next theorem, the assumption I.z�/ < 0 in Theorem 5.1 can be
avoided when both � and �� are negative semidefinite. This is not true for every
graph with lc.�/ D 1 and b0.�/ D 1. It is true, however, if we restrict ourselves
to star-shaped plumbing graphs. The following theorem should be compared with
Theorem 1.3 in [2] (in fact the same technique is used for the proof).

Theorem 5.2 A Seifert fibered manifold Y D .0I bI .˛1; ˇ1/; : : : ; .˛h; ˇh// bounds a
QH �S1 �D3 if and only if the Seifert invariants occur in complementary pairs and
e.Y /D 0.

Proof Assume that the Seifert invariants occur in complementary pairs and that
e.Y / D 0. By Theorem 2.13, we may write Y D @P� , where � is the following
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plumbing graph in normal form:
a11 a1n1
� : : : �

b11 b1m1
� : : : �

b
:::

� :::
ak1 aknk
� : : : �

bk1 bkmk
� : : : �

Here the legs are pairwise complementary. Call �a1 ; �
b
1 ; : : : ; �

a
k
; �b
k

the legs of � .
The condition e.Y /D 0 implies that b D�k . Indeed,

0D e.Y /D cf.�/D b�
kX
iD1

�
1

cf.�ai /
C

1

cf.�bi /

�
D bC

kX
iD1

1:

The conclusion follows from Proposition 4.5, as explained in Example 4.8.

Now assume that Y bounds a QH � S1 �D3 . Then, so does �Y . Let � and ��

be their plumbing graphs in normal form, and let z� and z�� be the graphs obtained
from � and �� by removing the central vertices. Note that z�� is in fact the dual of z� ,
so there is no ambiguity with this notation. By Proposition 2.11 we have

I.z�/C I.z��/D�k;

where k is the number of pairs of legs in � . In particular we may assume, for instance,
that I.z�/��k . Since for a star-shaped graph we have no nodes and no internal legs,
condition (2) becomes I.z�/��f .z�/D�k . Therefore we may apply Theorem 5.1.
� is obtained by joining together building blocks along their �1–vertices. Since �
is star-shaped, only building blocks of the first type may occur, which means that Y
belongs to the family described in Example 4.8.

6 The language of linear subsets

In this section we start our technical analysis needed to complete the proof of Theorem
5.1. We begin providing a brief introduction to the language of good subsets and we
prove Lemma 6.5, which will be used extensively throughout the rest of the paper. In
Section 7 we state the main technical results, Theorems 7.1 and 7.2, and explain the
strategy of the proofs. In Section 8 we carry out a detailed analysis of certain good
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subsets and we conclude by proving Theorem 7.2. In Section 9 we prove what we need
to fill the gap between Theorem 7.1 and Theorem 7.2. Finally, in Section 10 we give
the proof of Theorem 7.1.

An intersection lattice is a pair .G;QG/ of a free abelian group G together with a
Z–valued symmetric bilinear form on it. We indicate with .ZN ;�Id/ the intersection
lattice with the standard negative definite form defined by

ei � ej D�ıij :

We will always work with ZN with the above form on it, so in most cases we will omit
the form and indicate the intersection lattice simply by ZN. Let SDfv1; : : : ; vN g�ZN

be such that

� vi � vi � �2;

� vi � vj 2 f0; 1g if i ¤ j .

Define the intersection graph of S as the graph having a vertex for each element of S
and an edge for every pair .vi ; vj / such that vi �vj D 1. We indicate this graph with �S .
The graph �S can be given integral weights on its vertices: the weight of the vertex
corresponding to vi is vi � vi .

Definition 6.1 A subset S �ZN satisfying the above properties is said to be a linear
subset whenever �S is a linear graph. We will also say that S is treelike whenever its
graph is a tree. In this case we require that vi � vi ��2 only when vi corresponds to a
vertex on a linear chain.

Note that the graph of a treelike subset is a plumbing graph in normal form. We will
use all the terminology we have introduced for plumbing graphs and intersection forms
in this new context without stating the obvious definitions. For example, given a linear
subset S, a vector v 2 S can be isolated, internal or final just like the vertex of a
plumbing graph.

Given v 2 ZN and some basis vector ei , we say that ei hits v (or that v hits ei ) if
v �ei ¤ 0. Two vectors v;w 2ZN are linked if there exists a basis vector that hits both
of them. A subset S � ZN is irreducible if for every pair of vectors v;w 2 S there
exists a sequence of vectors in S,

v0 D v; v1; : : : ; vn D w;

such that vi and viC1 are linked for i D 0; : : : ; n�1. A subset which is not irreducible
is said to be reducible. A linear irreducible subset is called a good subset. A good
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subset whose graph is connected is a standard subset. We indicate with c.S/ the
number of connected components of �S . This should not be confused with the number
of irreducible components, for which we do not introduce any symbol. In general an
irreducible component may have a graph consisting of several connected components.

There are some elementary operations that, under certain assumptions, can be per-
formed on a linear subset in order to obtain a smaller linear subset. Here we restrict
ourselves to �2–final expansions and �2–final contractions because these are the
only operations that we need. In [7] a more general notion of expansions and contrac-
tions is used. We indicate with �hW ZN ! ZN�1 the projection onto the subgroup
he1; : : : ; eh�1; ehC1; : : : ; eN i.

Definition 6.2 Let S D fv1; : : : ; vng � Zn be a linear subset. Suppose that there
exists ei such that

� ei only hits two vectors vh and vk ;

� both of these vectors are final;

� vh � vh D�2 and vk � vk < �2.

We say that the subset S 0 WD �h.S nfvhg/ is obtained from S by �2–final contraction
and we write S & S 0. We also say that S is obtained from S 0 by �2–final expansion
and we write S 0% S.

If we think of a subset S � Zn�1 as a square matrix whose columns are the vectors
v1; : : : ; vn , then a �2–final contraction consists in removing one column and one row
provided that the above conditions are satisfied. Note that a �2–final contraction (or
expansion) of a linear subset S is again a linear subset S 0 whose graph �S 0 has the same
number of components as �S provided that the vector vh in Definition 6.2 is not isolated.

Definition 6.3 Let S 0 D fv1; : : : ; vN g � ZN with N � 3 be a good subset. Let
C 0 D fvs�1; vs; vsC1g � S

0 be such that �C 0 is a connected component of �S 0 with
vs�1 � vs�1 D vsC1 � vsC1 D�2 and vs � vs < �2. Suppose that there exists ej which
hits all the vectors in C 0 and no other vector of S 0. Let S be a subset obtained from S 0

via a sequence of �2–final expansions performed on C 0. The component C � S
corresponding to C 0 � S 0 is called a bad component of the good subset S.

We indicate the number of bad components of a good subset with b.S/. Given elements
v1; : : : ; vj of a linear subset we also define

E.v1; : : : ; vj / WD jfk j ek � v1 ¤ 0; : : : ; ek � vj ¤ 0gj:
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The situation we need to study is that of a linear subset together with an extra vector v
which is orthogonal to all but one vector, say wi , of each connected component Si
of S and v �wi D 1. This last condition is expressed by saying that v is linked once
to wi .

The following lemmas will be used several times in the next sections.

Lemma 6.4 Let � be a linear plumbing graph in normal form with connected compo-
nents �1; : : : ; �k . Choose vertices vi 2 �i for 1� i � k . Let � 0 be the graph obtained
from � by adding a new vertex v with weight w.v/� �1 and new edges for the pairs
.v; vi /. If det� 0 D 0, then one of the following holds:

� w.v/ > �k .

� w.vj /D�2 for some j 2 f1; : : : ; kg.

Proof Since det� 0 D 0 and det� ¤ 0, by Proposition 2.17 we must have cf� 0 D 0.
Computing cf� 0 with respect to the vertex v , using Proposition 2.8, we obtain

w.v/�

kX
iD1

1

w.vi /� 1=˛i � 1=ˇi
D 0;

where ˛i and ˇi are the continued fractions of the two components of �i nfvig, rooted
at the vertices adjacent to vi . Note that, if vi is final, there is only one component. In
this case we set 1=ˇi D 0. Suppose that for each 1 � j � k we have w.vj / � �3.
We need to prove that w.v/ > �k . Each ˛i (and ˇi if vi is internal) is the continued
fraction of a linear connected plumbing graph in normal form rooted at a final vertex.
Therefore ˛i ; ˇi < �1 and, since w.vj /� �3, we have

w.vi /�
1

˛i
�
1

ˇi
< �1 D)

kX
iD1

1

w.vi /� 1=˛i � 1=ˇi
> �k:

Combining this fact with the expression for cf� we obtain w.v/ > �k and we are
done.

Lemma 6.5 Let S � ZN be a linear subset. Let S1; : : : ; Sn be the connected com-
ponents of S. Suppose there is a vector v 2 ZN which is linked once to a vector of
each Si , say vi (ie v �vi D 1), and is orthogonal to every other vector of Si nvi . Then

v � v >

nX
iD1

vi � vi :
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Proof Let M be the N � N matrix whose columns are the elements of S. The
conditions on the extra vector v can be expressed as a linear system of equations,
namely

(3) tMv D

nX
iD1

eki
;

where the .ki /th column of M is vi . Multiplying both sides of (3) by M, we get

(4) M tMv DM

nX
iD1

eki
D

nX
iD1

vi :

The matrix M tM is conjugated to tMM ; in particular, they have the same eigenvalues.
The matrix �tMM represents the intersection form of P�S . It consists of n blocks,
one for each connected component of S. Each block can be diagonalized as shown
in Chapter V of [3]; the kth eigenvalue is given by the negative continued fractions
corresponding to the first k diagonal entries. In particular, it is easy to prove by
induction that, for each eigenvalue �, we have � < �1. It follows that

kvk2 < kM tMvk2 D





 nX
iD1

vi





2 D nX
iD1

kvik
2;

where k � k denotes the usual Euclidean norm. Rewriting the above inequality using
the standard negative definite product in ZN, we obtain

v � v > .M tMv/ � .M tMv/D

� nX
iD1

vi

�
�

� nX
iD1

vi

�
D

nX
iD1

vi � vi :

7 Main technical results and strategy of the proof

The key technical result that will complete the proof of Theorem 5.1 is the following:

Theorem 7.1 Let S �ZN be a linear subset. Suppose that there exists v 2ZN which
is linked once to a vector of each connected component of S and is orthogonal to any
other vector of S. Assume also that

(5) I.�S /� �f .�S[fvg; v/� 2i.�S[fvg; v/�
X

u2N.�S[fvg/

maxf0; u �uC 3g:

Then �S[fvg can be obtained by joining together two or more building blocks along
their �1–vertices.
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The main ingredient for the proof of Theorem 7.1 is the following result, which explains
that the irreducible components of the given subset together with the corresponding
extra vector give rise to building blocks:

Theorem 7.2 Let S � ZN be a good subset such that I.S/ C c.S/ � 0 and
I.S/C b.S/ < 0. Suppose there exists v 2 ZN which is linked once to a vector
of each connected component of S and is orthogonal to all the other vectors of S. Then
v � v D�1 and �S[fvg is a building block.

The idea of the proof of Theorem 7.2 is the following. The assumptions on S are
chosen so that, by the results of [8] the subset S falls in one of the following classes:

(1) c.S/D 1, so that the graph of S is a single linear component

� � : : : �

In this case we will prove that the extra vector v is linked to a internal vector
of S and that the graph of S [fvg, which is of the form

� : : : � : : : �

ı

is a building block of the second type. Here the extra vector v has been depicted
with a white dot and the edges coming out of it are dashed.

(2) c.S/D 2. In this case the graph of S consists of two linear components. There
are three possible graphs for S [fvg according to whether v is linked to a pair
of final vectors, to a final vector and an internal one or to two internal vectors.
We will prove that

� in the first case b.S/D 0 and �S[fvg is a building block of the first type;
� in the second case b.S/ D 1 and �S[fvg is a building block of the third

type;
� in the third case b.S/D 2 and �S[fvg is a building block of the fourth type.

The graphs corresponding to these three possibilities are the following:

� : : : � ı � : : : �

� : : : �

� ı � : : : �

� : : : �
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� : : : � � : : : �

� ı �

� : : : � � : : : �

The analysis required by the above four cases may be sketched as follows. We may
think of S as a square matrix where each column is an element of S. The condition on
the extra vector v may be translated into a matrix equation, namely

tSv D ei for some i �N

for the first case, and

tSv D ei C ej for some i; j �N

for the other cases. In each case there is an obvious solution to the above equations,
which gives rise to a subset whose graph is a building block. Using this language, the
content of Theorem 7.2 amounts to saying that the only integral solutions to the above
systems of equations are the obvious ones. This fact will be proved by assuming that
there is a nonobvious solution and then finding a contradiction with the constraints
provided by Lemma 6.5.

8 Irreducible subsets

In this section we collect all the results we need to prove Theorem 7.2. As explained at
the end of the previous section, we will need to examine several cases.

Proposition 8.1 Let S D fv1; : : : ; vng � Zn be a standard subset. Suppose there
exists v 2Zn which is linked once to a vector , say vk , of S and is orthogonal to every
other vector of S. Then:

� vk is internal and vk � vk D�2.

� v � v D�1.

� �S[fvg is a building block of the second type.

� I.S/D�3.

Proof Assume by contradiction that vk is final. Then, �S[fvg is a linear plumbing
graph consisting of nC 1 linearly dependent vectors and, as in Proposition 2.17, it is
easy to see that cf.�S[fvg/D 0, which means that

cf.�S[fvg/D v � v�
1

cf.�S /
D 0:
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This is impossible because cf.�S / < �1 and v � v � �1. It follows that vk is internal.
By Proposition 2.17 the continued fraction associated to S [fvg must vanish and it
can be written as

vk � vk �
q1

p1
�
q2

p2
�

1

v � v
D 0;

where the pi=qi are the continued fractions associated to the linear graphs obtained
from S by deleting vk . Since 0 <�qi=pi < 1, it follows that vk �vk 2 f�1;�2g. The
case vk � vk D�1 cannot occur because S is standard; therefore, vk � vk D�2.

By Lemma 6.5, we have v � v > vk � vk D �2; therefore, v � v D �1. We may write
v D et for some t 2 f1; : : : ; ng. Since v is orthogonal to every vector of S n fvkg, we
can perform the transformation

S [fvg 7! S 0 WD �t .S/:

At the level of graphs this is just a blowdown move. Since n D jS 0j � Zn�1 we
see that det�S 0 D 0. It follows that cf.�S 0/D 0, which means that condition (3) of
Proposition 2.15 holds, where �1 and �2 are the connected components of S 0nf�s.vk/g.
This shows that �S 0 is a building block of the first type and �S[fvg is a building block
of the second type.

Since S n fvkg consists of two complementary legs, we have I.S n fvkg/D�2 and so
I.S/D�3.

In the next proposition we make explicit a characterization of certain good subsets
which is contained in [8]. Following the proof of the main theorem in [8] in the first
case (S irreducible), one can see that each subcase corresponds to one of the items
listed in the following proposition. We also note, for future reference, that given a
linear graph the operation of �2–final expansion commutes with taking the dual.

Proposition 8.2 Let S be a good subset such that I.S/Cc.S/�0 and I.S/Cb.S/<0.
Then c.S/� 2. Assume c.S/D 2.

(1) If b.S/D 0 then �S consists of two complementary legs.

(2) If b.S/D 1 then one of the following holds:
� �S is obtained from the graph

�2 �.nC 1/ �2 �2 �2 �2
� � � � � : : : �

(the �2–chain has length n� 1 and n� 2) via a finite number of �2–final
expansions performed on the leftmost component.
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� �S D �1 t�2 , where �1 is obtained from the graph

�2 �a �2
� � �

with a � 3

via a finite number of �2–final expansions and �2 is dual to a graph obtained
from the one above via a finite number of �2–final expansions.

(3) If b.S/D 2 then �S D �1 t�2 , where each �i is obtained from

�2 �3 �2
� � �

via a finite sequence of �2–final expansions.

Remark 8.3 It may be useful to explain how the graph of a linear subset changes via
�2–final expansions. Suppose that S is a linear subset and that, for some index i ,
ei hits only two final vectors v1 and v2 . If v1 and v2 belong to the same connected
component of �S , then a �2–final expansion changes the graph as follows:

v1 v2
� � : : : �

!
ei C ej v1 v2� ej
� � � : : : �

where we are assuming that v1D�eiC� � � and v2D eiC� � � . An analogous operation
can be performed when v1 and v2 belong to different connected components.

Proposition 8.4 Let S D S1[S2 be a good subset with no bad components such that
I.S/ < 0 and c.S/D 2. Let v be an element of, say, S1 .

(1) If v is internal and v�v��3, there exists a vector v02S2 such that E.v; v0/D2.

(2) If v is internal and v � v D�k < �3, there exists a �2–chain in S2 of the form

.: : : ; e1� e2; e2� e3; : : : ; ek�3� ek�2; : : : /

and jei � vj D 1 for each i � k� 2.

(3) If v is final and v � v D�k < �2, there exists a �2–chain in S2 of the form

.e1� e2; e2� e3; : : : ; ek�2� ek�1; : : : /

and jei � vj D 1 for each 1� i � k� 2.

Proof It is shown in [8] (in the proof of Theorem 1.1, first case and first subcase) that
a subset S satisfying our hypothesis is obtained via a sequence of �2–final expansions
as described in Lemma 4.7 in [8] from a subset of the form fe1 � e2; e1 C e2g. In
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particular, jei � vj 2 f0; 1g for each i and every v 2 S. This means that we can always
write

v D

jv�vjX
iD1

"iei ; where "i 2 f˙1g:

If v is internal and v � v D�2, write v D e1C e2 . Again by Lemma 4.7 in [8], every
basis vector that hits an internal vector hits exactly three vectors of S. It follows that
e1 hits two more vectors, say v0 and v00. Suppose that e2 does not hit any of these
vectors. Then we must have v0 � v D v00 � v D 1. Now e2 must hit some vector, say v000.
Since e1 does not hit v000, we would have v000 � v D 1. But then v would be adjacent to
three vectors, which is impossible. The same argument works if v � v D�3; we omit
the details.

If v � v D k � �4, write v D
Pk
iD1 ei . It is clear from the proof of the main theorem

in [8] (again first case and first subcase) that the subset S is obtained by �2–final
expansions from a subset S 0 whose associated graph is

�2 �2 �3
� � �

Then the assertion is easily proved by induction on the number of expansions needed
to obtain S from S 0 ; we omit the details.

The third assertion is proved similarly. If v � v D�k < �2 then S originates from a
subset S 0 via k� 2 �2–final expansions. Similarly, v originates from a final vector
v0 2 S 0, with v0 � v0 D �2. Each �2–final expansion creates a new �2–final vector
in S2 linked to the one resulting from the previous expansion.

8.1 First case: b.S/ D 0

In this subsection we examine the subset in Proposition 8.2 with no bad components.
We will need the following lemma:

Lemma 8.5 Let S be a good subset such that I.S/ < 0, c.S/ D 2 and b.S/ D 0.
Let vi and vj be two vectors in S. We have:

� If vi � vj D 1 then E.vi ; vj /D 1.

� If vi � vj D 0 then E.vi ; vj / 2 f0; 2g.

Proof The lemma clearly holds for the subset S3 whose graph is

�2 �2 �3
� � �
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By [8] we know that the subset S is obtained by �2–final expansions from S3 via a
sequence of �2–final expansions

S3% S4% � � � % Sn D S:

Suppose the lemma holds for Sn�1 . The conclusion follows easily from the fact that
the new vector which has been introduced has square �2.

Proposition 8.6 Let S � ZN be a good subset such that c.S/ D 2 and b.S/ D 0.
Suppose that there exists a vector v 2 ZN that is linked once to a vector of each
connected component of S and is orthogonal to all the remaining vectors of S. Then:

� v is linked to a pair of final vectors.

� v � v D�1.

� The graph of S [fvg is a building block of the first type.

� I.S/D�2.

Proof Write SDS1[S2 and w1 and w2 for the two vectors linked once with v . First
note that if both w1 and w2 are final vectors then the graph associated to S [fvg is
linear and, since det�S[fvgD 0, the corresponding plumbed manifold is diffeomorphic
to S1 �S2 . This means that �S[fvg cannot be in normal form, which is only possible
if v � v D �1. By Proposition 2.15, the graph �S[fvg is a building block of the first
type. Also by Proposition 2.15, the two components of S are complementary and so
I.S/D�2. Therefore it is enough to show that both w1 and w2 are final.

Assume by contradiction that w1 is an internal vector. Then we have v � v < �1. To
see this note that if v � v D �1 then, by Lemma 4.7 in [8], the vector v can only hit
final vectors. By Lemma 6.4, at least one vector among w1 and w2 has square �2.

We have two possibilities:

First case (the vector w2 is final) The graph �S[fvg has the form

� : : : �

� : : : � � �

� : : : �

It is a star-shaped plumbing graph in normal form with three legs. Since det�S[fvgD 0,
the weight of the central vertex, which is w1 , can only be �1 or �2. Since S is a
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good subset, we have w1 �w1 D �2. We may write w1 D e1 C e2 . Recall that by
Lemma 6.5 we must have

(6) kvk2 < 2Ckw2k
2:

Moreover, we claim that

(7) E.w1; w2/D 0:

To see this note that since w1 �w2D 0 and w1 �w1D�2 we have E.w1; w2/ 2 f0; 2g.
If both e1 and e2 hit w2 then, by Lemma 4.7(3) in [8], at least one of them hits exactly
two vectors in S. But then, again by Lemma 4.7(2) in [8], these two vectors are not
internal. This contradicts the fact that w1 is internal.

Now we proceed by distinguishing several cases according to the weight of w2 .

First subcase (w2 �w2 D�2) By (7) we may write

w1 D e1C e2; w2 D e3C e4:

Note that (6) tells us that kvk2 < 4; in particular, jv � ei j � 1 for each ei . Therefore,
since 1 D v �w1 D v � e1 C v � e2 , either v � e1 D 0 or v � e2 D 0. Similarly, either
v � e3 D 0 or v � e4 D 0. Without loss of generality we may write v D�e1� e3C v0,
where v0 � ei D 0 for i � 4. By (6), we have kv0k2 � 1. Since w1 is internal, by
Lemma 4.7 in [8] we know that e1 hits exactly three vectors in S, say w1 , u1 and u2 .
The condition v � u1 D v � u2 D 0 shows that v0 ¤ 0; say v0 D e5 . We obtain the
expression v D �e1 � e3C e5 . We have v � ui D �e1 � ui C e5 � ui D 0 for i D 1; 2.
Therefore we may write ui D "i .e1C e5/Cu0i with u0i � e1 D u

0
i � e5 D 0 and "i D˙1

for i D 1; 2. This fact together with ju1 �u2j � 1 implies that E.u1; u2/ > 2, which
contradicts Lemma 8.5.

Second subcase (w2 �w2 D�3) By (7) we may write

w1 D e1C e2; w2 D e3C e4C e5:

By Lemma 4.7 in [8], there exists a final vector w3 which, without loss of generality,
we can write as w3 D e3� e4 . Now let us write

v D v0C˛1e1C˛2e2C˛3e3C˛4e4C˛5e5;

where v0 �ei D 0 for each i � 5. Since at least two ˛i are nonzero, it follows by (6) that
j˛i j � 1 for each i � 5 and that

P5
iD1 j˛i j< 5. In particular, at least one coefficient

is zero. The conditions v �w1 D v �w2 D 1 and v �w3 D 0 quickly imply:
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� .˛1; ˛2/ 2 f.�1; 0/; .0;�1/g.

� .˛3; ˛4/ 2 f.0; 0/; .1; 1/; .�1;�1/g.

� ˛5 2 f�1; 1g.

If .˛3; ˛4/D .1; 1/ then kvk2 D 4Ckv0k2 and therefore v0 D 0. We can write

v D ˛2e2C˛3e3C˛4e4C˛5e5:

Let w4 be the vector of S1 such that w3 � w4 D 1. We may write this vector as
w4 D w

0
4 C e4 , and since w4 �w2 D 0 we may write w4 D w004 C e4 � e5 . Clearly

ei �w
00
4 D 0 when 3 � i � 5. Assume that e2 �w004 D 0. Then, since v �w4 D 0, we

would have ˛4 D ˛5 , which does not match with the previous conditions we obtained
for these coefficients. If je2 �w004 j D 1 then E.v;w4/D 3, which contradicts the fact
that v �w4 D 0.

If .˛3; ˛4/D .�1;�1/, the argument is analogous.

Therefore we may assume that .˛3; ˛4/D .0; 0/. In this situation we may perform a
�2–final contraction on S that has the effect of deleting the vector w3 and decreasing
the norm of w2 by 1. The extra vector v is not affected by this operation and all the
hypothesis that we need remain valid. In this situation v is linked to a final vector
whose weight is �2 and therefore we may repeat the argument given in the first subcase.

Third subcase (w2 � w2 < �3) We may write w2 D
Pk
iD1 ei , with k � 4. By

Proposition 8.4 there is a �2–chain of the form

.e1� e2; e2� e3; : : : ; ek�2� ek�1; : : : /:

By (7) we know that w1 does not belong to this chain. Therefore v must be orthogonal
to every vector in this chain. It follows that either v hits all of the vectors in the set
fe1; : : : ; ek�1g or it does not hit any of them.

If v hits all of the vectors in the set fe1; : : : ; ek�1g, we can write, without loss of
generality,

v D v0C˛

k�1X
iD1

ei ;

where v0 � ei D 0 for i � k � 1 and ˛ 2 Z n f0g. But then the condition v �w2 D 1
implies v � ek D ˛.k� 1/C 1 and therefore

kvk2 � ˛2.k� 1/C .˛.k� 1/C 1/2 � k� 1C k2 � kC 2;

and this contradicts (6).
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If v does not hit any of the vectors in the set fe1; : : : ; ek�2g, we can perform a series
of �2–final contractions that will eliminate these vectors. These contractions do not
alter the vector v . Let w02 be the image of w2 after these contractions are performed.
Since w02 �w

0
2 D�2, we can apply the argument given in the first subcase.

Second case (the vector w2 is internal) The graph �S[fvg has the form

� : : : � � : : : �

� � �

� : : : � � : : : �

Recall that we have shown that v � v < �1. By Lemma 6.4, we may assume, as in
the first case, that one of the vectors w1 and w2 — say w1 — has square �2. As a
consequence, (6) holds. Note that if w2 �w2 D�2, the argument given in the first case
works as well in this situation. Therefore we may assume that w2 �w2 � �3.

Let es be a base vector that hits two final vectors of S. It is easy to see that if es �vD 0
then the �2–final contraction S & S 0 associated to es does not affect the vector v .
In this situation the subset S 0 satisfies all the hypotheses in the statement and the
conclusions hold for S 0 if and only if they hold for S. This process may be iterated,
via a sequence of �2–final contractions S& � � �& S, until one of the following holds:

(1) the image in S of one vector among w1 and w2 is a final vector;

(2) no more contractions can be performed on S without affecting the vector v .

If the first condition holds, we may apply the argument given in the first case. Assume
the second condition holds. The subset S has two �2–final vectors of the form ej1

�ej2

and ej3
� ej4

. By our assumption,

(8) v � eji
¤ 0 for each 1� i � 4:

Now we distinguish two cases:

First subcase (w2 �w2 D�3) In this case (8) contradicts (6).

Second subcase (w2 �w2 <�3) By Proposition 8.4, there is a �2–chain of the form

.: : : ;�e1C � � � ; e1� e2; e2� e3; : : : ; ek�3� ek�2; ek�2C � � � ; : : : /

and w2 D
Pk
iD1 ei . Since v is orthogonal to every vector in the �2–chain, either

v �ei ¤ 0 for each i � k�2 or v �ei D 0 for each i � k�2. In the first case we quickly
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obtain a contradiction with (6) (by taking into account (8)). In the second case we may
remove the whole �2–chain performing the transformation

.: : : ;�e1C � � � ; e1� e2; : : : ; ek�3� ek�2; ek�2C � � � ; : : : /

! .: : : ;�e1C � � � ; e1C � � � ; : : : /:

The image of the vector w2 under this transformation is Sw2 D e1C ek�1C ek . Since
Sw2 � Sw2 D�3, we may argue as in the first subcase, and we are done.

8.2 Second case: b.S/ D 1

In this section we deal with the subsets of Theorem 7.2 having a single bad component.
As stated in Proposition 8.2, there are two different classes of such subsets. First we
show that for one of these classes it is not possible to find an extra vector v satisfying
the hypothesis of Theorem 7.2. Then we deal with the other class of subsets, which
will give rise to building block of the third type.

Proposition 8.7 Let S 0 be a good subset such that b.S 0/D 1 and its graph �S 0 is of
the form

�2 �a �2 �3 �2 �2 �3
� � � � � � � � � �

where a � 3 and the �2–chain has length a � 3. Let S be a good subset which is
obtained via �2–final expansions from S 0 as explained in Proposition 8.2. Then there
exists no vector v 2ZN linked once to a vector of each connected component of S and
orthogonal to all the other vectors of S.

Proof Assume by contradiction that there exists v 2 ZN linked once to a vector
of each connected component of S and orthogonal to all the other vectors of S.
We write S D S1 [ S2 , where S1 is obtained from the bad component of S 0 via
�2–final expansions and S2 is obtained from the nonbad component of S 0 in a
similar way. Note that the only vector of S1 which is linked to a vector of S2 is the
central one. Call this vector w . More precisely, we may choose base vectors of ZN

fe1; : : : ; ek; ekC1; : : : ; eN g so that

� if i � kC 1 we have ei �uD 0 for each u 2 S2 ;

� if i � kC 2 we have ei �uD 0 for each u 2 S1 n fwg;

� ekC1 �w ¤ 0 and for some j � kC 2 we have ej �w ¤ 0.

Algebraic & Geometric Topology, Volume 20 (2020)



Rational homology cobordisms of plumbed manifolds 1113

Note that jS1j D k C 2 and jS2j D N � k � 2. Now we proceed by distinguishing
several cases:

First case (w � v D 0) We can write v D v1 C v2 such that v1 is spanned by
fe1; : : : ; ekC1g and v2 by fekC2; : : : ; eN g. In particular, v1 (resp. v2 ) is orthogonal
to every element of S2 (resp. S1 ), and moreover both v1 and v2 are nonzero. The
subset zS1 WD .S1 n fwg/� ZkC1 consists of two complementary linear components,
T1 and T2 . Since w � v D 0, the vector v1 is linked once to a vector of, say, T1 and is
orthogonal to the other vectors of zS1 . The graph �zS1[fv1g

is given by the disjoint union
�T1[fv1g

t�T2
, where �T1[fv1g

is either star-shaped with three legs or linear and �T2

is linear. It is easy to see that �T1[fv1g
cannot be linear. Indeed, since det�T1[fv1g

D 0,
we would have v1 � v1 D�1, which is easily seen to be impossible. Therefore we may
assume that �T1[fv1g

is star-shaped with three legs. Since det�zS1[fv1g
D 0, we have

0D det�zS1[fv1g
D det.�T1[fv1g

t�T2
/D det�T1[fv1g

det�T2
:

Since det�T2
¤ 0, we must have det�T1[fvg D 0. It follows that, as in the proof of

Proposition 8.1, v is linked once to a vector of T1 with �2 square. This quickly leads
to a contradiction with Lemma 6.5.

Second case (w � v D 1) We may write v D v1C v2 as in the first case. Since v1 is
orthogonal to the vectors of S1 n fwg, we must have v1 D 0 (because v1 is orthogonal
to kC 1 linearly independent vectors in ZkC1 ). Consider the good subset

zS WD .S nS1/[f�kC1.w/g:

The vector v D v2 is linked once to a vector of each connected component of zS and
is orthogonal to the other vectors of zS. The graph �zS[fvg is either star-shaped with
three legs (if v is linked once to an internal vector of S2 ) or linear (if v is linked
once to a final vector of S2 ). The latter possibility cannot occur. To see this, suppose
that �zS[fvg is linear. Since det�zS[fvg D 0, we must have v � v D�1. Moreover, by
Proposition 2.15 the two components of zS are complementary. Since one of these
components consists of a single vertex, the other one must be a �2–chain, which is
not the case. Therefore we may assume that the graph �zS[fvg is star-shaped with three
legs. The subset zS is obtained via �2–final expansions (performed on the rightmost
component) from a subset whose graph is

�aC 1 �3 �2 �2 �3
� � � : : : � �
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where a � 3 and the �2–chain has length a� 3. Up to automorphisms of the integral
lattice Za this subset may be written as

(9) zzS WD

�a�1X
iD1

ei

�
[fe1� e2C ea; e2� e3; : : : ; ea�2� ea�1; ea�1C ea � e1g:

Note that, as in the proof of Proposition 8.1, the vector v must be linked to a �2–
vector — say u — of zS n f�kC1.w/g. We have two possibilities, which we examine
separately.

First subcase (the vector u is not affected by the series of �2–final contractions
from zS to zzS ) In this case the vector u belongs to the �2–chain that appears in (9).
By Lemma 6.5, we must have v �v <�a�2. Write uD ek�ekC1 with 2� k � a�1.
It is easy to see that v can be written as

v D v0C˛

kX
iD2

ei C .1C˛/

a�1X
iDkC1

ei ;

where ˛ 2 Z n f0;�1g. This expression quickly leads to a contradiction with the
inequality v � v < �a� 2.

Second subcase (the vector u is the result of one of the �2–final expansions from zzS
to zS ) Write uD esC et . We have either es � v ¤ 0 or et � v ¤ 0, and it is easy to see
that v must hit at least another base vector which is not in fe1; : : : ; ea�1g. Moreover,
since w �vD 1, the vector v hits at least one vector among fe1; : : : ; ea�1g. Since v is
orthogonal to all the vectors in the �2–chain in (9), we see that e2 � v D � � � D ea�1 � v .
If e2 �v¤ 0 then we quickly obtain a contradiction with Lemma 6.5 by computing e1 �v .
If e2 �vD 0, we may write vD v0� e1C ea , where ej �v0 D 0 for each j � a . In this
situation we can change the subset zS by removing the coordinate vectors appearing in
the �2–chain of zzS and the vector w . We call this new subset T ; it is obtained from
the subset

fe1� ea; e1C eag

via �2–final expansions. The vector v is not affected by this transformation. Note
that T is a good subset with two complementary connected components and that v
is linked once to a vector of one connected component and is orthogonal to any other
vector. The graph �T[fvg is the disjoint union of a three-legged star-shaped graph and
a linear one. Now we can argue as in the first case. Since det�T[fvg D 0, the vector v
must be linked to a �2–weighted vertex, which quickly leads to a contradiction with
Lemma 6.5.
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Proposition 8.8 Let S D S1 [ S2 be a good subset such that c.S/ D 2, b.S/ D 1
and I.S/ < 0. Suppose that �S is obtained from

�2 �.nC 1/ �2 �2 �2 �2
� � � � � : : : �

(where the �2–chain has length n� 1 and n � 2) via a finite number of �2–final
expansions performed on the leftmost component. Assume that there exists v 2 ZN

linked once to a vector of each connected component of S and orthogonal to any other
vector of S. Then:

� v is linked to the central vector of the bad component of S and to a final vector
of the �2–chain.

� v � v D�1.

� The graph �S[fvg is a building block of the third type.

� I.S/D�3.

Proof The vectors corresponding to the �2–chain can be written as

.e1� e2; e2� e3; : : : ; en�1� en/:

The vectors corresponding to the bad component (before the �2–final expansions are
performed) can be written as

S3 D

�
�enC1� enC2;

nC1X
jD1

ej ;�enC1C enC2

�
:

Note that the central vector is not altered by �2–final expansions and the same holds
for one of the two final vectors.

Claim The extra vector v is linked to a final vector of the �2–chain.

To see this, suppose v is linked to an internal vector — say ei � eiC1 — where
1 < i < n� 1. Then we can write

(10) v D v0C˛

iX
jD1

ej C .1C˛/

nX
jDiC1

ej ; where ˛ 2 Z n f0;�1g;

and v0 � ei D 0 for 1 � i � n. Now v must be linked to some vector of the bad
component; first assume v is linked to the central vector whose weight is nC 1. In
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this case, Lemma 6.5 implies that kvk2 < nC 3. Using the expression for v in (10)
we obtain

kv0k2C i˛2C .n� i/.1C˛/2 < nC 3;

which is impossible when ˛ … f0;�1g. If ˛ 2 f0;�1g, it is easy to see that the vector v
cannot be orthogonal nor linked once to the central vector of the bad component.

Now assume v is linked to some vector — say w — of the bad component other than
the central one. If n� 3 the claim is satisfied so we may assume that n > 3. It follows
by Lemma 6.5 that

kv0k2C i˛2C .n� i/.1C˛/2 < 2Ckwk2:

In particular,
kwk2 > 3 and kwk2�kv0k2 > 2:

We can write wD
Pk
hD1 ejh

, where k � 4. The relevant portion of the bad component
can be written as�

: : : ; uC ej1
� ej2

; ej2
� ej3

; : : : ; ejk�2
� ejk�1

Cu0; : : : ;

kX
hD1

ejh
; : : :

�
:

In particular, there is a �2–chain of length k� 3. If v0 hits one of the basis vectors in
this chain then it hits them all, and this would contradict the inequality kwk2�kv0k2>2.
Therefore we may assume that ej2

� v D � � � D ejk�2
� v D 0. In this situation we can

change the bad component by removing the vectors ej2
; : : : ; ejk�2

. The relevant portion
of this new component can be written as

.: : : ; uC ej1
� ej2

; ej2
� ejk�1

Cu0; : : : ; ej1
C ej2

C ejk�1
C ejk

; : : : /:

Everything we said so far holds for this new component; in particular, the inequality
kwk2�kv0k2 > 2 now implies kv0k2 D 1, which is easily seen to be impossible and
the claim is proved.

We can write vD�e1Cv0, where v0 does not hit any vector in the �2–chain. Note that
if v is linked to the central vector of the bad component then we must have v0D 0. This
is because �e1 is linked once to a final vector of the �2–chain and once to the central
vector of the bad component and there is at most one vector in ZN with this property
(the conditions on v can be expressed as a nonsingular n�n system of equations).

In this case the plumbing graph corresponding to S [ fvg is a building block of the
third type.
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Therefore, in order to conclude we need to show that v0 D 0. Assume v0 ¤ 0; then v
must be linked to some vector of the bad component — say w — other than the central
one. By Lemma 6.5 we have kvk2 D 1Ckv0k2 < 2Ckwk2 ; therefore,

(11) kv0k2 � kwk2:

We can write w D
Pk
hD1 ejh

; again the relevant portion of the bad component can be
written as�

: : : ; uC ej1
� ej2

; ej2
� ej3

; : : : ; ejk�2
� ejk�1

Cu0; : : : ;

kX
hD1

ejh

�
:

If k D 2 then w D ej1
� ej2

and v0 can be written as

v0 D ˛ej1
C .1C˛/ej2

with ˛ 2 Z n f0;�1g;

but then kv0k2 � 5, which contradicts (11). If k D 3, write w D ej1
C ej2

C ej3
. It is

easy to show that again the possible expressions for v0 contradict (11) (one needs to
distinguish the three possibilities where v0 hits one, two or all of the vectors among
fej1

; ej2
; ej3
g). If k � 4, there is a �2–chain associated to w whose length is k � 3

and either v0 hits every vector in this chain or it does not hit any of them. If v0 hits
every vector in the �2–chain, it is easy to see that this would contradict again (11).
If v0 does not hit any vector in the �2–chain, the chain can be contracted as we did
before, and we are back to the case k D 3. The fact that I.S/D�3 follows from [8].
It can also be checked directly by observing that �2–final expansions do not alter the
quantity I.S/.

8.3 Third case: b.S/ D 2

In this subsection we examine the good subsets with two bad components satisfying
the hypothesis of Theorem 7.2 and we show that they give rise to building blocks of
the fourth type.

Proposition 8.9 Let S be a good subset such that c.S/D b.S/D 2 and I.S/ < 0.
Suppose that there exists v 2 ZN which is linked once to a vector of each connected
component of S and is orthogonal to the other vectors of S. Then:

� v is linked to the central vectors of each bad component of S.
� v � v D�1.
� The graph �S[fvg is a building block of the fourth type.
� I.S/D�4.
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Proof Write S D S1 [ S2 . By Proposition 8.2, the string associated to S is of the
form s1[ s2 , where each si is obtained from .2; 3; 2/ via �2–final expansions.

First let us assume that the extra vector v is linked to both the central vectors of the
two bad components. Then note that det.�S[fvg/ D 0. By Proposition 2.17, this is
equivalent to cf.�S[fvg/D 0; therefore,

0D cf.�S[fvg/D v � v�
1

cf.�S1
/
�

1

cf.�S2
/
;

where each �Si
is rooted at its central vector. The graph obtained from �Si

by removing
the central vector consists of two components which are dual of each other. Therefore,
cf.�Si

/D�2, which implies v � v D�1.

It is clear that the graph �S[fvg is a building block of the fourth type. To see this first
blow down the extra vector and split the graph along one of its trivalent vertices. The
fact that I.S/D�4 is a straightforward computation.

In order to conclude we need to rule out the possibility of v being linked to a noncentral
vector. Let w1 2 S1 and w2 2 S2 be the two vectors of S which are linked to v .
Suppose w1 is noncentral.

Claim Possibly after a sequence of contractions which do not alter the extra vector v ,
we may assume that kvk2 � kw1k2 .

We prove the claim in three steps, which correspond to the three cases w1 �w1 D�2,
w1 �w1 D �3 and w1 �w1 � �4. If w1 �w1 D �2, we can write w1 D e1C e2 and
assume e1 � v ¤ 0. If e2 � v ¤ 0, we are done. If e2 � v D 0, note that e1 must hit
some other vector u 2 S1 . Since u � v D 0, we see that v must hit some basis vector
other than e1 and therefore kvk2 � 2 D kw1k2 . If w1 � w1 D �3, we may write
w1 D e1C e2C e3 and assume e1 � v ¤ 0. If e2 � v ¤ 0 and e3 � v ¤ 0 we are done. If
this is not the case, it is easy to find two more basis vectors that hit v arguing just like
above. If w1 �w1 ��4, we may write w1D

Pk
iD1 ei ; in this case there is a �2–chain

associated to w1 . The relevant portion of S can be written as�
: : : ; uCe1�e2; e2�e3; e3�e4; : : : ; ek�2�ek�1; ek�1�ekCu

0; : : : ;

kX
iD1

ei ; : : :

�
:

Note that either v hits every vector in the �2–chain or it does not hit any of them. If
v hits every vector in the �2–chain, the inequality kvk2 � kw1k2 follows easily. If v
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does not hit any vector in the �2–chain, we remove from S the �2–chain. We obtain
a new subset zS � ZN�kC3 . The relevant portion of zS can be written as

.: : : ; uC e1� ek�1; ek�1� ekCu
0; : : : ; e1C ek�1C ek; : : : /:

Now we can repeat the argument we used for the case w1 �w1 D�2 and the claim is
proved. There are two possibilities, according as whether w2 is central or not. If w2 is
not central, we may repeat the argument used in the claim; we obtain the inequality
kvk2 � kw1k

2C kw2k
2 , which contradicts Lemma 6.5. If w2 is central, it is easy

again to contradict Lemma 6.5.

8.4 Conclusion

Now we are ready to prove Theorem 7.2.

Proof of Theorem 7.2 By Proposition 4.10 in [8] we have c.S/� 2. If c.S/D 1 then
S is standard and the conclusion follows from Proposition 8.1. If c.S/D 2, there are
four possibilities as explained in Proposition 8.2. If b.S/D 0, the conclusion follows
from Proposition 8.6. If b.S/D1, the two different cases are settled by Propositions 8.7
and 8.8. When b.S/D 2 we can apply Proposition 8.9.

9 Orthogonal subsets

In this section we basically fill the gap between Theorems 7.2 and 7.1. Roughly
speaking, we need to remove the technical assumption I.S/C b.S/ < 0, since this is
not a property of the plumbing graph. The main result of this section is Proposition 9.5,
which shows that the subsets that are of interest for us have at most two components.
Given a linear subset S D fv1; : : : ; vng � Zn we define, following [8], pk.S/ as the
number of ei which hit exactly k vectors in S. Thinking of S as a matrix pk.S/ is
the number of rows with k nonzero entries. Note that

nX
iD1

pi .S/D n;(12)

nX
iD1

ipi .S/� �

nX
iD1

vi � vi :(13)

A linear subset S D fv1; : : : ; vng �Zn is said to be orthogonal if vi �vj D 0 whenever
i ¤ j.
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Lemma 9.1 Let S D fv1; : : : ; vng be a good orthogonal subset such that n� 3 and
I.S/D 0. The following conditions are satisfied :

(1) Either there exists v 2 S such that v � v D�2 or v � v D�3 for each v 2 S.

(2) p3.S/D n and pi .S/D 0 for each i ¤ 3.

Proof Assume that there is no vector v 2 S such that v � v D�2, ie that vi � vi � �3
for each 1 � i � n. Since

Pn
iD1 vi � vi D �I.S/� 3n, we see that vi � vi D �3 for

each 1� i � n.

Now we prove that p1.S/ D 0. Assume by contradiction that vj D ˛e1 C �1.vj /
for some vj 2 S and that no other vector in S hits e1 . Since S is irreducible, we
have �1.vj / ¤ 0. Moreover, �1.vj / � vi D 0 for each i ¤ j and, since the vectors
v1; : : : ; vj�1; vjC1; : : : ; vn are independent in Zn�1 , we must have �1.vj /D0, which
is a contradiction; therefore, p1.S/D 0.

Now we show that p2.S/ D 0. Assume by contradiction that p2.S/ ¤ 0. Let ei ,
vj and vh be such that ei only hits vj and vh among the elements of S. We may
assume that, say, vh is such that vh � vh � �3 (otherwise, the set fvh; vj g would
be an irreducible component of S, which is impossible because S is irreducible and
jS j � 3). Either vj � vj � �3 or vj � vj D �2. If vj � vj D �2 then we may write
vj D eiCes and, since ei only hits vh and vj , the same conclusion holds for es . Write
vhD ˛ei �˛esCv

0
h

with ˛¤ 0. Since v0
h

is orthogonal to any vector in S n fvj ; vhg,
it must vanish. Therefore the subset fvj ; vhg is an irreducible component of S. But
this is impossible because S is irreducible and jS j � 3. Therefore we may assume that
vj � vj � �3. Consider the subset

S 0 D S n fvh; vj g[ f�i .vj /g:

It is easy to check that S 0 is an orthogonal subset; moreover, the same argument used
to show that vj � vj � �3 shows that �i .vj / ��i .vj / � �2 and therefore S 0 is good.
We have

I.S 0/D I.S/C vh � vhC 3C vj � vj C 3��i .vj / ��i .vj /� 3

D I.S/C vh � vhC 3C vj � vj ��i .vj / ��i .vj /

� I.S/C vj � vj ��i .vj / ��i .vj /

< I.S/:
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In particular, I.S 0/ < 0. By Lemma 4.9 in [8], we must have c.S 0/ � 2. Since
jS j D c.S/� 3, we have c.S 0/D 2. It is easy to check that S 0 must be of the form

S 0 D fe1C e2; e1� e2g:

Now it is easy to see that S 0 cannot be expanded to a good orthogonal subset S such that
I.S/D 0. In fact there are no good orthogonal subset such that .c.S/; I.S//D .3; 0/.
This is a contradiction and we conclude that p2.S/D 0.

Finally, note that by (12) we have

kX
iD1

.i � 3/pi .S/� 0;

which means that pi .S/D 0 for each i � 4.

Proposition 9.2 Let S be a good orthogonal subset such that I.S/ D 0. Then
c.S/D 4. If, moreover, there exists v 2 S such that v � v D�2 then, up to automor-
phisms of the integral lattice Z4 , S has the matrix0BB@

1 1 1 0

1 �1 �1 0

0 1 �1 1

0 �1 1 1

1CCA :
Proof It is easy to check that jS j> 2. By Lemma 9.1 we have two possibilities:

First case (there exists v 2 S � ZN which can be written as v D e1C e2 ) Since
p3.S/D n, e1 hits two more vectors, say v0 and v00. Since v0 � v D v00 � v D 0, we see
that e2 hits v0 and v00 as well. Writing S as a matrix whose first three columns are v ,
v0 and v00, we have 0BBBBB@

1 1 1 0 � � � 0

1 �1 �1 0 � � � 0

0 � �
:::

:::
:::

0 � �

1CCCCCA ;
where the fact that jv0 � ei j D jv00 � ei j D 1 for i D 1; 2 follows from the fact that each
row of the matrix above has exactly three nonzero entries and therefore 0D I.S/DP
i;j a

2
i;j � 3n� 0, and equality holds if and only if jai;j j � 1. Consider the subset

S 0 D S n fv; v0; v00g[ f�1.v
0/; �1.v

00/g � ZN�1:
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Note that �1.v0/ � �1.v00/ D 1. It is easy to see that S 0 is a good subset. Moreover,
.c.S 0/; I.S 0// D .N � 2;�1/ and b.S 0/ D 0. By Proposition 4.10 in [8] we have
c.S 0/ � 2, which implies N � 4. It is easy to verify that N � 4. We conclude that
N D 4. The matrix description for S follows easily by filling the remaining entries in
the above matrix.

Second case (v � v D �3 for each v 2 S ) In this case we only need to show that
c.S/D 4. Choose a vector — say v1 — of S. We may write v1 D e1C e2C e3 . Since
p1.S/D 0, e1 must hit some other vector — say v2 — of S. Since v1 � v2 D 0, up to
exchanging the role of e2 and e3 we may write v2 D e1� e2C e4 . Since p2.S/D 0,
e1 must hit some other vector of S. Call this vector v3 . It is easy to see that e2 cannot
hit v3 . Since v1 �v3D v2 �v3D 0, we may write v3D e1� e3� e4 . Since p2.S/D 0,
e2 must hit some other vector — say v4 — of S. Now the orthogonality condition
implies v4 D e2 � e3C e4 . Since p3.S/D n, we see that the subset fv1; : : : ; v4g is
irreducible. Since S is irreducible too, we conclude that S D fv1; : : : ; v4g.

Lemma 9.3 Let S D fv1; v2; v3; v4g � Z4 be a subset as in Proposition 9.2. Let
v 2Z4 nf0g be such that , for each i D 1; : : : ; 4, we have v �vi 2 f0; 1g. Then the graph
of S [fvg is one of the following:

�2 �4
�

�1
�

�2
�

�4
� �

�3 �3
�

�1
�

�3
�

�3
� �

Proof Let M be the matrix of S. For each J � f1; 2; 3; 4g consider the linear system
of equations

tMv D�
X
j2J

ej :

The lemma is equivalent to the fact that among these linear systems the only ones
which are solvable in Z4 correspond to the above graphs. We omit the details.

Lemma 9.4 Let S � ZN be a good subset such that �I.S/ D b.S/ D c.S/ D 4.
There exists no vector v 2 ZN linked once to a vector of each connected component
of S and orthogonal to the vectors of S.

Proof Let us write S D B1 [ � � � [ B4 , where each Bi is a bad component. By
definition of bad component there is a sequence of �2–final contractions

S & � � � & zS
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such that zS D zB1[ � � � [ zB4 and each zBi is a bad component whose graph is of the
form

�2 ai �2
� � �

for some ai � �3. For each i D 1; : : : ; 4, let vi 2 Bi be the only vector of Bi that is
linked once to v , and let ui be the central vector of Bi .

Claim vi D ui for each i � 4.

To see this we may argue exactly as in the proof of Proposition 8.8. Indeed, assume by
contradiction that vi ¤ ui . Let v0 be the projection of v onto the subspace generated
by the basis vectors that span the subset S 0i WD Si nui . Note that S 0i is a good subset
consisting of two complementary components. The vector v0 is linked once to a vector
of a connected component and is orthogonal to all the other vectors of S 0i . We have
already observed in the proof of Proposition 8.8 that such a vector does not exist. This
proves the claim.

It is easy to see that E.v;w/D 0 for each w 2S nfu1; : : : ; u4g. Let S WD fxu1; : : : ; xu4g
be the subset obtained by projecting each ui onto the subspace orthogonal to the one
generated by the basis vectors that span the subset S 0i WD Si nui .

We have

�4D I.S/D I. zS/D�8C I.fu1; : : : ; u4g/D�8C 4C I.S/ D) I.S/D 0:

Therefore, S is of the form described in Proposition 9.2 and v �ui D v � xui for each
i D 1; : : : ; 4. The fact that v � xui D 1 for each i � 4 contradicts Lemma 9.3.

Proposition 9.5 Let S � ZN be a good subset such that I.S/C c.S/� 0. Suppose
that there exists v 2 ZN which is linked once to a vector of each connected component
of S and is orthogonal to all the vectors. Then c.S/� 2.

Proof By Proposition 4.10 in [8], if I.S/ < �b.S/ then c.S/ � 2. Assume by
contradiction that c.S/� 3. Then, I.S/� �b.S/ and we have

�b.S/� I.S/� �c.S/� �b.S/I

therefore, I.S/ D �c.S/ D �b.S/. Write S D B1 [ � � � [Bk , where each Bi is a
bad component. Let S 0 be the subset obtained from S via a sequence of �2–final
contractions such that each bad component has been reduced to its minimal configuration
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consisting of three vectors as in Definition 6.3. The graph of S 0 has the form

�2 a1 �2 �2 a2 �2 �2 ak �2
� � � � � � : : : � � �

where ai ��3 for each 1� i � k . Note that S 0 is a good subset and .c.S 0/; I.S 0//D
.c.S/; I.S//. Since I.S 0/D�k , we have

(14)
kX
iD1

ai D�4k:

Each bad component can be written as

e1C e2 �e2Cwi e2� e1
� � �

where wi �e1Dwi �e2D 0 and wi �wi ��2. Consider the subset S 00D fw1; : : : ; wkg.
Its graph is

a1C 1 a2C 1 ak C 1
� � : : : �

Note that this is a good orthogonal subset and by (14) we have

kX
iD1

wi �wi D

kX
iD1

.ai C 1/D�3k:

Therefore, the subset S 00 satisfies the hypotheses of Lemma 9.1 and Proposition 9.2.
In particular, k D 4.

The proof is concluded by using Lemma 9.4, which shows that there exist no subset S
and vector v with the above properties.

10 Conclusion of the proof

Putting together Theorem 7.2 and Proposition 9.5, we can finally prove Theorem 7.1.

Proof of Theorem 7.1 Let S D S1 [ � � � [ Sk be the decomposition of S into its
irreducible components. We may write v D v1 C � � � C vk so that each vi is the
projection of v onto the subspace that corresponds to Si . From (5) we obtain

I.S/C c.S/D

kX
iD1

I.Si /C c.Si /� 0:

We may choose an irreducible component Sj such that I.Sj / C c.Sj / � 0. By
Proposition 9.5, we have c.Sj /� 2. Moreover, I.Sj /C b.Sj /� I.Sj /C c.Sj /� 0.
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We claim that I.Sj /C b.Sj / < 0. Assume by contradiction that I.Sj /D�b.Sj /D
�c.S/ D �2 and write Sj D B1 [B2 . Since it is easy to check that for every bad
component B we have I.B/� �2, we may assume that one of the following holds:

� I.B1/D I.B2/D�1.

� I.B1/D�2 and I.B2/D 0.

Arguing as in the proof of Proposition 9.5 we would get orthogonal subsets whose
associated graph is either

�3 �3
� �

or
�2 �4
� �

It is easy to check that none of these configurations are realizable, and the claim is
proved.

We can now apply Theorem 7.2. The graph �Sj[fvj g
is a building block. Moreover,

(5) holds for the subset S nSj . To see this, one needs to compare the value I.Sj / and
the contribution of �Sj

to the right-hand side of (5). For example, if �Sj
is a building

block of the first type then I.Sj / D �2 and �Sj
contributes to the right-hand side

of (5) with two final legs (ie with a �2). The other cases can be checked similarly.
Therefore we may iterate the argument above with all the irreducible components of S,
and we are done.
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