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Rational homology cobordisms of plumbed manifolds

PAOLO ACETO

We investigate rational homology cobordisms of 3—manifolds with nonzero first
Betti number. This is motivated by the natural generalization of the slice-ribbon
conjecture to multicomponent links. In particular we consider the problem of which
rational homology S! x §2’s bound rational homology S! x D3’s. We give a
simple procedure to construct rational homology cobordisms between plumbed 3—
manifolds. We introduce a family of plumbed 3-manifolds with b; = 1. By adapting
an obstruction based on Donaldson’s diagonalization theorem we characterize all
manifolds in our family that bound rational homology S! x D3’s. For all these
manifolds a rational homology cobordism to S x $? can be constructed via our
procedure. Our family is large enough to include all Seifert fibered spaces over
the 2—sphere with vanishing Euler invariant. In a subsequent paper we describe
applications to arborescent link concordance.
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1 Introduction

The study of concordance properties of classical knots and links in the 3—sphere is a
highly active field of research in low-dimensional topology. Problems in this area involve
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a wide range of techniques, from the use of sophisticated combinatorial invariants
derived from knot homology theories to the interplay with 3— and 4—-manifold topology.

One of the most famous unsolved problems in this field is the so-called slice-ribbon
conjecture. A knot K C S3 is smoothly slice if it bounds a properly embedded smooth
disk in the 4-ball. A smoothly slice knot is ribbon if the spanning disk D? C D*
can be chosen so that there are no local maxima of the radial function p: D* — [0, 1]
restricted to the image of D?. The slice ribbon conjecture states that every slice knot
is ribbon. Since it was first formulated by Fox in 1962 (as a question rather than a
conjecture) there have been many efforts towards understanding slice and ribbon knots.
One stimulating aspect of this topic is that it naturally leads to several related questions
on 3—-manifold topology.

In [7], Lisca proved that the slice ribbon conjecture holds true for 2-bridge knots.
He used an obstruction based on Donaldson’s diagonalization theorem to determine
which lens spaces bound rational homology balls. This technique has been used by
Lecuona [5] to prove that the slice ribbon conjecture holds true for an infinite family of
Montesinos knots. In [2], Donald refined the obstruction used by Lisca to determine
which connected sums of lens spaces embed smoothly in S*. The starting point of
this work is an adaption of these ideas to the study of slice links with more than one
component.

The basic idea of [7] can be described as follows. If a knot K is slice its branched
double cover X (K) is a rational homology sphere that bounds a rational homology
ball W. If K is a 2-bridge knot then X(K) is a lens space, say L(p,q). Each
lens space is the boundary of a canonical plumbed 4-manifold X (p, g) with negative
definite intersection form. By taking the union X’ = X(p, q) U—W we obtain a smooth
closed oriented 4—-manifold with unimodular, negative definite intersection form, and
by Donaldson’s diagonalization theorem this intersection form is diagonalizable over
the integers. The inclusion X(p,q) <> X’ induces an embedding of intersection
lattices (H2(X(p.q):Z), Ox(p.q)) = (ZN, —1Iy). This fact turns out to be a powerful
obstruction which eventually leads to a complete list of lens spaces that bound rational
homology balls.

Alink L C S3 is (smoothly) slice if it bounds a disjoint union of properly embedded
disks in the 4-ball, one for each component of L. Let L be a slice link with n
components (7 > 1). The first observation is that X (L) is a 3—manifold with b} =n—1
which bounds a smooth 4—manifold W with the rational homology of a boundary
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Rational homology cobordisms of plumbed manifolds 1075

connected sum of n — 1 copies of S! x D3 (see Proposition 3.1). Motivated by this
fact and focusing on the case n = 2 we are led to the following general problem:

Question 1.1 Which rational homology S x.5?2’s bound rational homology S!xD3’s?

In Section 4 we introduce a general procedure which allows one to construct rational
homology cobordisms between plumbed 3-manifolds. For any plumbed 3-manifold Y
our procedure gives infinitely many plumbed 3—manifolds which are rational homology
cobordant to Y. We then introduce a family of plumbed 3—manifolds with b; = 1.
This family includes, up to orientation reversal, all Seifert fibered spaces over the
2—sphere with vanishing Euler invariant. We prove that if a given Y in our family
bounds a rational homology S! x D3 then Y can be constructed with our procedure
(see Theorem 5.1). This gives us a complete list of the 3—manifolds in our family
that bound a rational S! x D3. By specializing Theorem 5.1 to star-shaped plumbing
graphs, we obtain the following characterization for the Seifert fibered spaces over the
2—sphere which bound rational homology S! x D3’s:

Theorem 1.2 A Seifert fibered manifold Y = (0; b; («1, B1), ..., (@p, Bp)) bounds a
QH — S' x D3 if and only if the Seifert invariants occur in complementary pairs and
e(Y)=0.

Two pairs of Seifert invariants («;, B;) and («;, B;) are complementary if they can be
chosen so that B; /a; + B /aj = —1,ieif o; = and B; + B; = —; (see Section 2.4
for precise definitions).

This result (as well as Theorem 5.1) is obtained by using an obstruction based on
Donaldson’s theorem. Roughly speaking we proceed as follows. Each Y in our
family bounds a negative semidefinite plumbed 4—manifold X. If ¥ bounds a rational
homology S! x D3, say W, we can form the closed 4—manifold X’ = X U —W.
The intersection form Qy- will again be negative definite and this fact provides the
constraints we need for our analysis.

In a subsequent paper [1], we will describe the applications of our work on arborescent
link concordance. To each Y we can associate the family L(Y') of arborescent links
whose branched double cover is Y. In general, the family L(Y) contains many
nonisotopic links. However, these links are all related to each other by Conway
mutation. In [1] we will prove the following:
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Theorem 1.3 Let L be a link in L(Y) for some Y described by a plumbing graph
satisfying the hypothesis of Theorem 5.1 (eg any Montesinos link). The following
conditions are equivalent:

e Y bounds a rational homology S! x D3.

e There exists L' € L(Y) that bounds a properly embedded smooth surface S
in D* with y(S) = 2 without local maxima.

In particular, if L is a 2—component slice link then it has a ribbon mutant.

This paper is organized as follows. In Section 2 we provide an introduction to plumbed
manifolds following Neumann and Raymond [9; 10; 11]. We also introduce some new
terminology that will be useful later on. In Section 3 we give some motivation for our
work relating rational homology cobordism of 3—manifolds and link concordance. We
also state our lattice-theoretical obstruction. In Section 4 we introduce a method that
allows one to construct rational homology cobordisms between plumbed 3—manifolds.
In Section 5 we state our main theorem (Theorem 5.1) and give a proof modulo a
technical result (Theorem 7.1). Sections 6—10 are dedicated to the technical analysis
needed to prove Theorem 7.1.
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2 Plumbed manifolds

In this section, following [9; 10; 11], we review the basic definitions and properties of
plumbed 3—manifolds. We recall Neumann’s normal form of a plumbing graph, and
the generalized continued fraction associated to a plumbing graph. We show how these
data behave with respect to orientation reversal. We briefly recall the definitions of lens
spaces and Seifert manifolds viewed as special plumbed manifolds.

Definition 2.1 A plumbing graph T is a finite tree where every vertex has an integral
weight assigned to it.
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To every plumbing graph I" we can associate a smooth oriented 4—manifold PI" with
boundary dPT in the following way. For each vertex take a disc bundle over the
2—sphere with Euler number prescribed by the weight of the vertex. Whenever two
vertices are connected by an edge we identify the trivial bundles over two small discs
(one in each sphere) by exchanging the role of the fiber and the base coordinates. We
call PT (resp. dPT') a plumbed 4—manifold (resp. plumbed 3—manifold).

This definition can be extended to reducible 3—manifolds; if the graph is a finite forest
(ie a disjoint union of trees), we take the boundary connected sum of the plumbed
4-manifolds associated to each connected component of I". Unless otherwise stated,
by a plumbing graph we will always mean a connected one, as in Definition 2.1.

Every plumbed 4-manifold has a nice surgery description which can be obtained
directly from the plumbing graph. To every vertex we associate an unknotted circle
framed according to the weight of the vertex. Whenever two vertices are connected
by an edge, the corresponding circles are linked in the simplest possible way, ie like
the Hopf link. The framed link obtained in this way also gives an integral surgery
presentation for the corresponding plumbed 3-manifold. The group H»(P(I');Z) is a
free abelian group generated by the zero sections of the sphere bundles (ie by vertices
of the graph). Moreover, with respect to this basis, the intersection form of P(I"),
which we indicate by Qr, is described by the matrix M whose entries (a;;) are
defined as follows:

* a;; equals the Euler number of the corresponding disc bundle;
e a; ; =1 if the corresponding vertices are connected;
e aj; ; =0 otherwise.

Finally note that Mt is also a presentation matrix for the group H{(0PT;Z).

2.1 The normal form of a plumbing graph

We will be mainly interested in plumbed 3—manifolds. There are some elementary
operations on the plumbing graph which alter the 4—manifold but not its boundary.
Following [9], we will state a theorem which establishes the existence of a unique
normal form for the graph of a plumbed 3-manifold. In [9] these results are stated in a
more general context. Here we extrapolate only what we need in order to deal with
plumbed manifolds.

First consider the blowdown operation. It can be performed in any of three situations
depicted below:
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(1) We can add or remove an isolated vertex with weight ¢ € {21} from any plumbing
graph.
FlUe «— T

(2) A vertex with weight ¢ € {£1} linked to a single vertex of a plumbing graph
can be removed as shown below:

a—¢&
(]

%

~_.
—

From now on we use three edges coming out of a vertex to indicate that any
number of edges may be linked to that vertex.

(3) Finally, if a +1-weighted vertex is linked to exactly two vertices it can be
removed, as shown below:

e

Next we have the O—chain absorption move. A 0-weighted vertex linked to two

o s e v
/ ~ ~

vertices can be removed and the plumbing graph changes as shown:

— Ty
N /

The splitting move can be applied in the following situation. Given a plumbing graph

o

SN o
/

/N

with a 0—weighted vertex which is linked to a single vertex v, we may remove both
vertices (and all the corresponding edges) obtaining a disjoint union of plumbing trees.

We may depict this move by
I

e

° - <«— Tu---uly.

N

1y

[ N

Proposition 2.2 [9] Applying any of the above operations and their inverses to a
plumbing graph does not change the oriented diffeomorphism type of the corresponding
plumbed 3—manifold.
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Before discussing the normal form of a plumbing graph we need some terminology. A
linear chain of a plumbing graph is a portion of the graph consisting of some vertices
U1,...,V (k> 1) such that
e cach v; with 1 <i <k is linked only to v;—; and v;41;
e v and vy are linked to at most two vertices.
A linear chain is maximal if it is not contained in any larger linear chain. A vertex of a
plumbing graph is said to be
(1) isolated if it is not linked to any other vertex;
(2) final if it is linked exactly to one vertex;
(3) internal otherwise.
Note that isolated and final vertices always belong to some linear chain, while an

internal vertex belongs to some linear chain if and only if it is linked to exactly two
vertices.

Definition 2.3 A plumbing graph I is said to be in normal form if one of the following
holds:

() T=gorT =+,

(2) Every vertex of a linear chain has weight less than or equal to —2.

Theorem 2.4 [9] Every plumbing graph can be reduced to a unique normal form via
a sequence of blowdowns, 0—chain absorptions, splittings and their inverses. Moreover,
two oriented plumbed 3—manifolds are diffeomorphic (preserving the orientation) if
and only if their plumbing graphs have the same normal form.

Remark 2.5 Using this theorem, one can specify a certain class of plumbed 3—
manifolds simply by describing the shape of the plumbing graph in its normal form.
In particular we will see at the end of this section that lens spaces and some Seifert
manifolds admit such a description.

2.2 The continued fraction of a plumbing graph

In this section, following [10] we introduce some additional data associated to a
plumbing graph. As we have seen to any plumbing graph I" we can associate an
integral symmetric bilinear form Qr. All the usual invariants of Qr will be denoted
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referring only to the graph. In particular, rank, signature and determinant will be
denoted respectively by rk ", (b4 T',b_T,bol") and det .

Let (I, v) be a connected rooted plumbing graph, ie a plumbing graph together with
the choice of a particular vertex. If we remove from I' the vertex v and all the
corresponding edges, we obtain a plumbing graph I3, which is the disjoint union of
some trees 17,..., 1 (k is the valency of v). Every such tree has a distinguished
vertex v;, which is the one adjacent to v.

Definition 2.6 With the notation above we define the continued fraction of I" as

detI”

0= Gart,
v

€ QU {o0}.
We put /0 = oo for each o € Q.

Remark 2.7 This value cf(I") depends on the rooted plumbing graph (I",v). By
abusing notation we do not indicate this dependence explicitly. In the sequel, it will
always be clear from the context which vertex has been chosen.

Proposition 2.8 [10] If the weight of the distinguished vertex is b € Z then

k

detT' = b-det T}, — Z(det(n)v,. [ ] det Fj)
i=1 J#i
and

k
1
i=1 !

2.3 Reversing the orientation

Let I' be a plumbing graph in normal form. In this section, following [9], we explain
how to compute the normal form for the plumbed manifold —dPT, ie dPT" with
reversed orientation. We call this plumbing graph the dual graph of I" and we denote
itby I'*.

For a vertex v of a plumbing graph which is not on a linear chain we define the
quantity c(v) to be the number of linear chains adjacent to v, ie the number of vertices
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belonging to a linear chain that are linked to v. For instance, in the graph

.\. ./.
7 N

both the trivalent vertices have ¢ = 2. We indicate with (..., —2lal .) a portion of
a string with a —2—chain of length a > 0, ie a linear chain consisting of a vertices
each with weight —2.

Theorem 2.9 [9] Let ' be a plumbing graph in normal form. Its dual graph T'* can
be obtained as follows. The weight w(v) of every vertex which is not on a linear chain
is replaced with —w(v) — c¢(v), and every maximal linear chain of the form

aq arn an

° ° . °
is replaced with

by by bm

[ ] [ ] e °

where the weights are determined as follows. If
(@i, ... an) = (=210l —py =3, 2] _ppy 3 —my—3, 201y
withn; >0, m; >0 and s > 0, then
(b1, ... bm) = (—ng—2,=2M1 _p, =3, —ng_y =3, =201 _pg—2).

If (a1....,an,) = (=2 then (by) = (—=ng—1).

The reason why we are interested in this construction of the dual graph of a plumbing
graph in normal form will be clear in Section 5. Essentially we are trying to detect
nullcobordant 3—manifolds using obstructions based on Donaldson’s diagonalization
theorem. Since the property we want to detect does not depend on the orientation
of a given 3—manifold, it is natural to examine both a plumbing graph I" and its
dual T'*. Moreover, the normal form is specifically defined to give a plumbing graph
that minimizes the quantity b4 (I") among all plumbing graphs representing dPI" (see
[10, Theorem 1.2]).

We now introduce a quantity that will play an important role in the analysis developed
in Sections 6-9.
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Definition 2.10 Let I' be a plumbing graph in normal form, and let vy, ..., v, be its
vertices. We define

I(T):=Y"-3—w(v).

i=1

The following proposition is proved in [7]. It can also be proved directly using
Theorem 2.9.

Proposition 2.11 Let I' be a linear plumbing graph in normal form. We have

I(T) + I(T*) = —2.

2.4 Lens spaces and Seifert manifolds

We briefly recall the plumbing description for lens spaces and Seifert manifolds.

In this context it is convenient to define a lens space as a closed 3—manifold whose
Heegaard genus is < 1. The difference with the usual definition is that we are including
S3 and S x S2. It is well known that every lens space has a plumbing graph which is
either empty (S3) or a linear plumbing graph and that every linear plumbing graph
represents a lens space. It follows from Theorem 2.4 that the normal form of a plumbing
graph representing a lens space other than S3 or S x $2 is a linear plumbing graph

a as an
° ° °

where a; < —2 for each i. It is easy to check that given a linear plumbing graph as

above we have
1

T = [ai,...,an]".
_a3_.-.

cf(l')=a; —
as

This fact justifies the name continued fraction. Note that cf(I') < —1. The usual
notation for a lens space L(p,q), defined as —g—surgery on the unknot, can recovered
from the continued fraction as follows. Write cf(I") = _%, so that p > ¢ > 1 and

(p,q)=1.Then dPT = L(p,q).

Remark 2.12 If I' is a nonempty linear plumbing graph in normal form which is not
a 0—weighted single vertex, then detI" # 0. We will make extensive use of this fact
throughout this work without further reference.

Algebraic € Geometric Topology, Volume 20 (2020)



Rational homology cobordisms of plumbed manifolds

Sy

ar/B1 " az/Ba

Figure 1: A surgery description for the Seifert fibered manifold (0; b; (a1, B1)

1083

(ok, Br))-

A closed Seifert fibered manifold (see [11]) can be described by its unnormalized

Seifert invariants

(g;b;(al,,gl),---,(O(k,,Bk)),

where g > 0 is the genus of the base surface, b € Z, «; > 1 and (¢4, ;) = 1. This

data (which is not unique) uniquely determines the manifold. When g = 0 a surgery

description for such a manifold is depicted in Figure 1. The following theorem is

proved in [11]:

Theorem 2.13 Let I' be the following star-shaped plumbing graph in normal form:

b / a%
Y Y e
\a’f : ay,
o e
Then OPT is a Seifert manifold with unnormalized Seifert invariants

(O,b;(al,ﬂl),...,(ak,ﬂk)),

where
o ——
—=[a1,...,a;,l_] .

Bi
The quantity
e(Y):=b— Zﬂ’

i=1

is called the Euler number of Y. It is easy to check that
(1 e(Y) = cf(I'),

where I' is the plumbing graph in normal form associated to Y.
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Definition 2.14 Let I'1 and I, be two linear plumbing graphs in normal form:

I = 0.1761.27 —aon [Z:= bol b.zi 7b:n

I'l and I3 are said to be complementary if I = I'y".

Proposition 2.15 With the notation of Definition 2.14 the following conditions are
equivalent:

(1) Iy and I are complementary.

@ P(bp_br ol A e gl g2,

3) 1/ctf(I7)+ 1/ct(Iz) =—1.
Proof (1) = (2) This can be checked directly using Theorem 2.9. A series of
—1-blowdowns will turn the linear graph above into a 0—weighted single vertex.

(2) = (3) Consider the continued fraction of the graph representing S! x S? with
respect to the only —1—weighted vertex. We have

godelp L R QL)1
det(TY) det(D>) f(Ty)  cf(D)’

The first equality above holds because for any plumbing graph we have b (0PT") =
bo(T).

(3) = (1) By the same formula used above we obtain

det( b:n, N by -1 a1 an ) =0.

After a —1-blowdown we obtain

" 1 an \ — 0

det(bp_ byt adl = G)=0

therefore, this plumbing graph is not in normal form, which means that at least one
weight among aq and by is —2. Suppose, for instance, that a; = —2.

If n =1, itis easy to see that m = 1 as well, and b; = —2, from which the conclusion

follows. Therefore we may assume that n > 1.
If m =1, by blowing down the vertex whose weight is a1 + 1 we obtain

b1 +2 a, +1 dan
[ [ ) PR
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Again, this graph has vanishing determinant and therefore is not in normal form. If
b1 =—3, we blow down the vertex whose weight is b1 +2. It follows easily that a, =—2
and that n = 2. If by < —3, then a; = —2; we blow down the vertex whose weight
is ap + 1 and we iterate the argument. This shows that (ay,...,a,) =(-2,...,-2)
and that n = —by — 1.

If m > 1, we claim that b; < —3. To see this, assume by contradiction that b; = —2.
By blowing down the vertex whose weight is a; + 1 we obtain

bm b2 0 a2+l dn
'Y o

which, by 0—chain absorption, becomes

bm by +ap+1 as Qn
° °

This last graph is in normal form, which contradicts the fact that its determinant is zero.
This proves the claim.

Now the argument can be iterated. Each time we blow down a —1—vertex we obtain
a new linear graph which has exactly one —1-vertex. By repeatedly blowing down
—I—vertices we will eventually obtain the graph

bm —1 dp
° ° °

Since the determinant must vanish, it is easy to verify that a, = b, = —2 and that

OP(bm_ 1 ) =glxg§2

This proves (2) and, by Theorem 2.9, also (1). In fact, by induction on the number
of blowup operations one can verify that each linear graph corresponds to a pair of
complementary strings. This can be done by starting with the last graph we obtained
above and then going backwards via blowups. a

Remark 2.16 Strictly speaking, the definition of complementary linear graphs should
involve an extra bit of data. In Definition 2.14 we implicitly fixed an initial vertex and
a final one on each graph (as suggested by the indexing of the weights). Only in this
way does the condition I = I']" make sense.

It is useful to extend in the obvious way the notion of complementary linear graphs to
that of complementary legs in a star-shaped plumbing graph. We also say that a pair of
Seifert invariants are complementary if they correspond to complementary legs in the
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associated star-shaped plumbing graph in normal form. It follows by Proposition 2.15
that pairs of complementary legs correspond to pairs of Seifert invariants («;, 8;) and
(oj, Bj) that satisfy

b b

o o

=—1.

Note that, in general, this formula does not hold if we do not compute the Seifert
invariants from the weights of a star-shaped plumbing graph in normal form as in
Theorem 2.13.

2.5 The linear complexity of a tree

Let I" be a plumbing graph in normal form. Let Ic(I") be the cardinality of the smallest
subset of vertices we need to remove from I' in order to obtain a linear graph. We
call 1c(T") the linear complexity of I' and we set Ic(@) = —1. We stress the fact that
because of the uniqueness of the normal form of a plumbing graph it makes sense to
talk about the linear complexity of a plumbed 3—manifold. Note that:

e lc(I') =0 if and only if dPT is a lens space.
e If OPT is a Seifert manifold then Ic(I") = 1.
o Ic(Iulz) =Ilcy) +Ic(I3).

Proposition 2.17 Let I be a plumbing graph in normal form such that 1c(I') = 1 and
for at least one choice of a vertex v € I' the graph T, is linear and negative definite.
Then

detI' =0 < cf[' =0.

Proof The proof follows directly from Definition 2.6 and we omit the details. |

In Section 5 we will deal mainly with plumbed 3—manifolds with 1c(I") = 1. A generic
plumbing graph I' with Ic(I") = 1 looks like the one shown below:

N
7 N
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Such a graph is made of a distinguished vertex v and several linear components. These
linear components are joined to v via a final vertex (on the left-hand side of the picture
above) or via an internal vertex (right-hand side).

3 Motivations and obstructions

In this section we start dealing with rational homology cobordisms. As a motivation,
we first explain in Proposition 3.1 how rational homology cobordisms of 3—manifolds
are relevant for link concordance problems. Then, in Proposition 3.3, we state our
lattice-theoretical obstruction, which will be used in the proof of Theorem 5.1.

Two closed, oriented 3—manifolds Y; and Y, are rational homology cobordant (or
Q H —cobordant) if there exists a smooth compact 4—manifold W such that

e W =Y{U-Y>;
¢ Dboth inclusions Y¥; — W induce isomorphisms H(Y;; Q) = H.(W;Q).

It is well known that if a rational homology sphere is obtained as the branched double
cover along a slice knot then it bounds a rational homology ball. In the next proposition
we make an analogous observation concerning branched double covers along slice links
with more than one component.

Proposition 3.1 Let L C S be alink. Let S C D* be a properly embedded smooth
surface without closed components such that 0S = L. Let W be the double cover
of D* branched along S. Assume that

b1(@W) < x(S)— 1.
Then by (W) = x(S)—1 and by (W) = b3(W) = 0. In particular, if by (W) > 0, we

have an isomorphism

x(8)—1
Hy(W:Q) =~ H*( u St x D3;Q).

i=1
Proof As shown in [6], we have a long exact sequence
o= Hi(D*,SUS?) — H;(W,0W) - H;(D* S — H;_{(D*,SUS?) — .-,

from which we obtain an isomorphism H{(D*, S U S3) = H{(W,dW). It follows
from the exact sequence of the pair that Hy(D*, S U S3) = 0. We conclude that
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0= H{(W,0W) = H3(W). From the exact sequence of the pair (W, W) with
rational coefficients we get
cee—> H1(8W) — Hl(W) — 0.
We obtain
by(W) < b1(0W) = x(S) - L.
Since
AW =2x(BY) = x(S) =2~ x(S) = 1=b1(W)+ba(W) =2~ x(S),

we see that b1 (W) = x(S)—1 and b (W) =0. m|

Corollary 3.2 Let L be a slice link with n components (n > 1). Let W be the
branched double cover of the four-ball branched along a collection of slicing discs
for L. We have an isomorphism

nalSl X D3;Q)

i=1

Hy(W: Q) = H*(

Proof Tt is well known that by (0W) = |L|—1 (see for instance [4]). Here |L| denotes
the number of components of the link L. Then we may apply Proposition 3.1. a

Motivated by Proposition 3.1, we investigate Q H —cobordisms of plumbed 3—manifolds
with b > 1. Note that if a 3-manifold ¥ bounds a QH —f] S'x D3, then by (Y)
equals the number of S x D3 summands.

Proposition 3.3 Let Y be a connected 3—manifold with by (Y) = n. Suppose that Y
bounds smooth 4—manifolds X and W with the following properties:
e X is simply connected, negative semidefinite and tk Qx = ba(X) —n.
« H.(W:Q) = Hi(f);_, S' x D% Q).
Then there exists a morphism of integral lattices
(H2(X): Z). Qx) — (27207 —1d).

In particular, for every definite sublattice (G, Qg) C (H2(X), Qx) whose rank is
by(X) —n, we obtain an embedding of integral lattices

(G, Qg) — (2> _1q).
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Proof Consider the smooth 4—manifold X’ := X Uy —W. The Mayer—Vietoris exact
sequence with integral coefficients reads

Note that b1 (Y) = b1 (W); moreover, the map H,(Y; Q) — H{(W;Q) is an isomor-
phism. It follows that b1 (X’) = 0. The group H,(W) is finite. Note that b3(X’) = 0.
If we consider the above exact sequence with rational coefficients, we obtain

0— Hy(Y;Q) > Hx(X:Q) »> H(X;Q) — 0;

therefore, by (X') = by (X)—bo(Y) = ba(X)—n. Now note that, by Novikov additivity,
0(X’) = o(X). This shows that X’ is a smooth, closed, negative definite 4—manifold.
By Donaldson’s diagonalization theorem its intersection form is equivalent to the
standard negative definite form on 72(X")  The inclusion X — X" induces the desired
morphism of integral lattices.

The last assertion follows easily. The map
¢: (G.Qg) — (270, —1d)

preserves the intersection form. Since Q¢ is negative definite, ¢ must be injective
and is therefore an embedding of integral lattices. m|

4 Constructing Q H —cobordisms

In this section we introduce a procedure for constructing rational homology cobordisms
between plumbed 3—manifolds; our method is explained in Proposition 4.5. We then
introduce some elementary building blocks which are sufficient to produce all manifolds
satisfying the hypotheses of Theorem 5.1 which bound rational homology S x D3’s.

Recall that a rooted plumbing graph (I', v) is a plumbing graph with a distinguished
vertex. In particular, a rooted plumbing graph is necessarily nonempty.

Definition 4.1 Let (I'1,v1) and (I3, v2) be two rooted plumbing graphs. Let I' be
the plumbing graph obtained from I' U I by identifying the two distinguished vertices
and taking the sum of the corresponding weights. We say that I" is obtained by joining
together I'1 and I3 along vy and v, and we write

I' =11V, 0, 2.

Algebraic € Geometric Topology, Volume 20 (2020)



1090 Paolo Aceto

The following proposition follows immediately from Proposition 2.8:

Proposition 4.2 With the above notation we have
cf(Ty Vo, v, [2) = cf(I7) + cf(T2)

provided that the continued fractions on the right are computed with respect to the
vertices v, and v;, and the continued fraction on the left is computed with respect to
the vertex resulting from joining v, and v;.

Lemma 4.3 Let W be a connected 4—dimensional handlebody without 3—handles. If
H(W:Q) = Hi (S Q) then Hi(W;Q) =0.

In particular, if W is built using a single 1—handle h' and a single 2—handle h?, then
the algebraic intersection of these handles does not vanish.

Proof The homology exact sequence of the pair (W, 0W) with rational coefficients

reads
coo—> Hi(OW) - H{(W) - H{(W,0W) — 0.

Since H1(dW) =0 and by Lefschetz duality H{(W, W)= H3(W) =0 the conclusion
follows. If there are only two handles 2! and /2, the attaching sphere of 4% must have
nonzero intersection number with the belt sphere of /!, otherwise 4! would represent
a nontrivial element in Hqy(W). m]

The following lemma is an immediate consequence of the splitting move:

Lemma 4.4 Let (a1,...,an) and (by,...,by) be strings (where each coeftficient
is < —2). The 3-manifold described by the plumbing graph

bm by
°

ai an _—
[ ] [ ]
is a rational homology sphere.

Proposition 4.5 Let (I, v) be a rooted plumbing graph such that dP(I') = S x §2
and 0P (T \ {v}) is a rational homology sphere. Let (I'',v’) be any rooted plumbing

graph.
Then by (3P (T"')) = b1 (AP (I’ vy » I')) and these manifolds are Q H —cobordant.
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Figure 2: A rational homology cobordism between dPT" and dP (I vy, ).

Proof In Figure 2(a) we have a surgery description for dPI". First we attach a 4—
dimensional 1-handle to PT x I as shown in Figure 2(b). In Figure 2(c) we draw
the boundary of the four manifold obtained after the 1-handle attachment. This is just
OPT’#S!xS2. In Figure 2(d) we draw the same manifold replacing the O—framed circle
with the surgery diagram associated to the graph I". Now we attach a 4—dimensional 2—
handle as shown in Figure 2(e). Via a zero-absorption move the result of this 2—handle
attachment is a 4—manifold whose bottom boundary is dP(I"" V44, I'). This is shown
in Figure 2(f). We have constructed a cobordism W between dPT” and 0P (I'' V4, ')
which consists of one 1-handle and one 2—handle. In order to prove that W is in
fact a Q H —cobordism it suffices to check that the algebraic intersection between the
attaching sphere of the 2—handle and the belt sphere of the 1-handle does not vanish.

Let us write o for the attaching sphere of the 2—handle. The first homology group
of dPT/# 8! x §2 is Qb1(@P " @ Q. Our algebraic intersection number is nonzero
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if and only if « represents a nontrivial element when projected into Hy(S! x §2).
Note that in H1(0PT’#S! x §2) the curve o is homologous to the pair of curves a;
and a shown in Figure 3. This means that the projection of o in H{(S! x §?) is
equivalent to ap. The fact that «p is a nontrivial element in H; (S 1 % §2) follows
immediately from our hypotheses on (I', v). To see this, let L be the link that gives
a surgery description for S! x S2 in Figure 2(d). Applying the splitting move on the
link o, U L we see that the 3—-manifold described by this link is precisely dP (I"\ {v}),
which by our assumption is a rational homology sphere. This fact ensures that o,
represents a nontrivial element in H{(S! x S2; Q).

It follows that b1 (0PT') = b1 (0P(I'" V4, I')) and that W is a Q H —cobordism. O

Remark 4.6 The 2-handle attachment used in Proposition 4.5 can also be described
in terms of plumbing graphs as follows. We start with dP(I'" U T"), which has the
description
aq (7%
o .

\U(v/) _.1/
_— \b.li b

where, for simplicity, we have chosen I' as in Lemma 4.4. The 2-handle then appears
as an additional vertex as shown below:

s R R
— oy

ai dan
° . °

This last level of the cobordism can be described also by the following plumbing graph,
using the O—chain absorption move:

/ \b.l - b:,,

Example 4.7 Let (ay,...,a,) and (by,..., by ) be two complementary strings. The
plumbing graph associated to the string (ay, ...,a1,—1,b1,...,by) represents S1xs2,
By the previous proposition all lens spaces associated to strings of the form

(anv"'7a17_27b17"'7bm)
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Figure 3: The thick curve on the leftmost diagram is homologous to the sum
of the two thick curves on the rightmost diagram.

are Q H—cobordant to S3. In fact, the corresponding plumbing graph is obtained by
joining together a —1—weighted vertex and a graph as in Lemma 4.4.

Example 4.8 Choose strings (af”, ... ,a"l, —l,b’i, ... ,b,inl,), where i =1,...,k, as
in the previous example. Consider the plumbed 3—manifold described by the star-shaped
plumbing graph
al ay,
[ ] [ ]
/ b b’l’“
° - °
_k/ )
o .
: k
\aj{ a,z .
k
i L

By Proposition 4.5 such a manifold is Q H —cobordant to S! x $? and thus it bounds
a QH — S! x D3. In Section 5 we will see that these are the only Seifert manifolds
over the 2—sphere with this property.

4.1 Elementary building blocks

In the previous example we have used the graph

I := dn ai —1 b1 bm

as a building block for constructing rational homology cobordisms of 3—manifolds.
This is somehow the simplest way to use Proposition 4.5. The process can be iterated
by constructing more complicated pieces to be used as building blocks.
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Keeping in mind that we are interested in plumbed manifolds with Ic = 1, we may
introduce three more building blocks. The graph Iy can be slightly modified, obtaining

dp ai -2 b1 b

o — ... — o ° e — ... — o
FzZ: ‘
[ ]

—1
Another building block can be obtained starting with

-2 -2 -2 -1 —n
° ° . °

where n — 1 is the length of the —2—chain (n > 2). This is just a special case of I7.
Now we join this graph with Iy along the vertices of weight —n and —1. We obtain
our third building block,

aq an
o —— — e
ry:= =2 —2 -1 —n—-1_—
. [ ° [ ] [ ]
b
\.17”‘

Note that dPT3 = S x §2. A fourth building block can be constructed as follows. We
start with

bm
[

-2 —1 -2
° °

and then we attach to the final vertices of this graph two linear graphs like I7. We

obtain
a, a) ap an
® — ... — @ e — ... ——— O
b;n’ bi/ \bl bm
o — — e e — ... — @

Note that this last graph does not represent S' x §2 since its normal form can be
obtained by blowing down the —1—vertex. Each of the four building blocks we have
introduced has a distinguished —1-weighted vertex. From now on we will implicitly
consider each of these graphs as a rooted plumbing graph where the preferred vertex is
the one whose weight is —1.

Definition 4.9 The four families of rooted plumbing graphs introduced above will be
called building blocks of the first, second, third and fourth type, respectively.

The following proposition is an immediate consequence of Proposition 4.5:
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Proposition 4.10 Let I be a plumbing graph obtained by joining together two or
more building blocks of any type along their —1—vertices. Then:

(1) T isin normal form.
2) Ie(I')=1.
(3) OPT boundsa QH —S! x D3.

Our main result, Theorem 5.1, should be thought of as a converse of this last proposition.

5 Main results

In this section we state our main result, Theorem 5.1. We give a proof modulo a
technical result, Theorem 7.1, whose statement and proof are postponed to the next
sections. We explain how to specialize our result to Seifert fibered spaces over the
2—sphere in Theorem 5.2.

First we introduce some terminology. Let " be a plumbing graph in normal form such
that Ic(I") = 1. Choose v € I such that " := I' \ {v} is linear. The linear graph T’
is a disjoint union of connected linear graphs I7,...,[}. We call I; a final leg or
an internal leg according to whether v is linked to a final vertex of [; or an internal
one. We indicate with i(I", v) and f (T, v) the number of internal and final legs of I".
Finally, each internal leg of I" has a distinguished vertex which is 3—valent in I'. We
call these vertices the nodes of I', and we indicate with N(I") the set of all the nodes.
Note that, in some cases, these definitions depend on the choice of the vertex v. This
is the case for three-legged star-shaped plumbing graphs (there are four choices for the
vertex v) and plumbing graphs like

where there are two possible choices for the vertex v.

Theorem 5.1 Let I' be a plumbing graph in normal form with 1c(I"') = 1. Choose a
vertex v € T such that T := T'\ {v} is linear. Suppose that each node of T has weight
less than or equal to —2 and that

) IT) <= f(C.v)=2i(T.v)— Y max{0, w(u)+3}.
ueN()
The following conditions are equivalent:
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e the 3—manifold dPT boundsa QH — S x D3;

e equality holds in (2) and T" is obtained by joining together building blocks along
—1—vertices.

Now we present a proof of this theorem that relies on a technical result, Theorem 7.1,
which will be proved in the following sections.

Proof If OPT is obtained by joining together building blocks along —1—vertices then
the conclusion follows from Proposition 4.10.

Let I" be a plumbing graph in normal form satisfying the hypotheses of the theorem and
let W bea QH —S!x D3 suchthat 9W =9PT. Let N be the number of vertices of T".
Note that bo(I") = b1 (dPT") = 1; moreover, Ho(PT'; Z) contains a free subgroup of
rank N —1 on which Qr is negative definite (it is the subgroup ZT spanned by all
vertices in I). It follows that Or is negative semidefinite; more precisely,

(bo(T"), b—(I), b4(I)) = (1, N = 1,0).

Therefore we are in the situation described in Proposition 3.3. There exists a morphism
of integral lattices

®: (H2(X(D); Z), Or) — (ZN 1, —1d).

Precomposing this map with the inclusion (Zf, Ofp) < (HZ(X(I‘); 7), Qr), we
obtain an embedding of integral lattices

®: (ZT, Q) — (ZN 7', -1d).

Let us write {vy,...,vy—1} for the set of vertices of . Now consider the subset
S :={®(vy),...,P(vy_1)} C Z¥ 1. The extra vector ®(v) is linked once to each
connected component of [ and is orthogonal to every other vector. The subset S
satisfies all the hypotheses of Theorem 7.1 and the conclusion follows. a

Even though the class of plumbed manifolds that satisfy the hypotheses of Theorem 5.1
is quite large (it includes, up to orientation reversal, all Seifert fibered spaces over the 2—
sphere with vanishing Euler invariant) some of the assumptions on the plumbing graph
are rather technical and unnatural. The need for these hypotheses can be explained as
follows.

The fact that every vertex in T has weight less or equal to —2 allows us to avoid
indefinite plumbing graphs. Consider, for instance, the following plumbing graph:
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2 =2
—1
\ g <—2

:=_2/ \1

Note that I" is in normal form. We have
(b, b T,b_T)=(1,1,7).

Moreover, this plumbing graph is selfdual, meaning that T'* =T", therefore reversing the
orientation does not help. Theorem 5.1 does not say if dPT bounds a Q H — S x D3.
However, in this particular case dPT" does bound a QH — S x D3. This can be
checked easily using Proposition 4.5. By splitting off three building blocks of the first
type and then applying the splitting move, we obtain a 0—weighted single vertex. It
follows that dPT is Q H —cobordant to S! x §2.

The reason why we need the condition (2) can be explained as follows. In the proof
of Theorem 5.1 we have shown that T gives rise to a subset S = {vy,...,v,} C Z"
with certain properties. The starting point of our analysis is that these subsets are well
understood provided that /(S) < 0. We use the known results on such subsets, as
developed in [7; 8], to show that the possible graphs of S U {v}, where v is the vector
that corresponds to the extra vertex in I', are obtained by joining together building
blocks along —1—vertices.

5.1 Seifert manifolds

As we show in the next theorem, the assumption / (f) < 0 in Theorem 5.1 can be
avoided when both T" and I'* are negative semidefinite. This is not true for every
graph with Ic(I") = 1 and bo(I") = 1. It is true, however, if we restrict ourselves
to star-shaped plumbing graphs. The following theorem should be compared with
Theorem 1.3 in [2] (in fact the same technique is used for the proof).

Theorem 5.2 A Seifert fibered manifold Y = (0;b; («1, B1), ..., (ay, Bp)) bounds a
QH — S' x D3 if and only if the Seifert invariants occur in complementary pairs and
e(Y)=0.

Proof Assume that the Seifert invariants occur in complementary pairs and that
e(Y) = 0. By Theorem 2.13, we may write ¥ = dPT", where T is the following
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plumbing graph in normal form:

o
/ } &
[ ] [ ]
b /
[ ]
[ ] [
k
g o
Here the legs are pairwise complementary. Call I'?, I‘lb, N F]f the legs of I'.

The condition e(Y) = 0 implies that b = —k . Indeed,

0=e(Y)=cf(l)=h— Z(Cf(F") cf(Fb)) +Z1

i=1

The conclusion follows from Proposition 4.5, as explained in Example 4.8.

Now assume that ¥ bounds a QH — S x D3. Then, so does —Y. Let I" and T'*
be their plumbing graphs in normal form, and let T and T'* be the graphs obtained
from I" and I'* by removing the central vertices. Note that ['* is in fact the dual of T,
so there is no ambiguity with this notation. By Proposition 2.11 we have

I(T) + I(T*) = —k,

where k is the number of pairs of legs in I". In particular we may assume, for instance,
that / (f‘) < —k. Since for a star-shaped graph we have no nodes and no internal legs,
condition (2) becomes /(') < — f (T) = —k. Therefore we may apply Theorem 5.1.
I' is obtained by joining together building blocks along their —1-vertices. Since I
is star-shaped, only building blocks of the first type may occur, which means that ¥
belongs to the family described in Example 4.8. |

6 The language of linear subsets

In this section we start our technical analysis needed to complete the proof of Theorem
5.1. We begin providing a brief introduction to the language of good subsets and we
prove Lemma 6.5, which will be used extensively throughout the rest of the paper. In
Section 7 we state the main technical results, Theorems 7.1 and 7.2, and explain the
strategy of the proofs. In Section 8 we carry out a detailed analysis of certain good
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subsets and we conclude by proving Theorem 7.2. In Section 9 we prove what we need
to fill the gap between Theorem 7.1 and Theorem 7.2. Finally, in Section 10 we give
the proof of Theorem 7.1.

An intersection lattice is a pair (G, Qg) of a free abelian group G together with a
Z—valued symmetric bilinear form on it. We indicate with (ZN, —Id) the intersection
lattice with the standard negative definite form defined by

ej-ej =—0jj.

We will always work with Z~ with the above form on it, so in most cases we will omit
the form and indicate the intersection lattice simply by ZV. Let S ={vy,..., vy} CZ¥
be such that

* Vv =2

e v;i-v; {0, 1}ifiF#j.
Define the intersection graph of S as the graph having a vertex for each element of S
and an edge for every pair (v;, vj) such that v; -v; = 1. We indicate this graph with I's.

The graph I's can be given integral weights on its vertices: the weight of the vertex
corresponding to v; is v; - v;.

Definition 6.1 A subset S C Z/ satisfying the above properties is said to be a linear
subset whenever ['s is a linear graph. We will also say that S is treelike whenever its
graph is a tree. In this case we require that v; - v; < —2 only when v; corresponds to a
vertex on a linear chain.

Note that the graph of a treelike subset is a plumbing graph in normal form. We will
use all the terminology we have introduced for plumbing graphs and intersection forms
in this new context without stating the obvious definitions. For example, given a linear
subset S, a vector v € S can be isolated, internal or final just like the vertex of a
plumbing graph.

Given v € Z¥ and some basis vector ¢;, we say that e; hits v (or that v hits ¢; ) if
v-e; #0. Two vectors v, w € Z are linked if there exists a basis vector that hits both
of them. A subset S C Z¥ is irreducible if for every pair of vectors v,w € S there
exists a sequence of vectors in S,

Vo=0V,V1,...,0p =W,

such that v; and v; 41 are linked for i =0,...,n—1. A subset which is not irreducible
is said to be reducible. A linear irreducible subset is called a good subset. A good
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subset whose graph is connected is a standard subset. We indicate with ¢(S) the
number of connected components of I's. This should not be confused with the number
of irreducible components, for which we do not introduce any symbol. In general an
irreducible component may have a graph consisting of several connected components.

There are some elementary operations that, under certain assumptions, can be per-
formed on a linear subset in order to obtain a smaller linear subset. Here we restrict
ourselves to —2—final expansions and —2—final contractions because these are the
only operations that we need. In [7] a more general notion of expansions and contrac-
tions is used. We indicate with j,: ZV¥ — ZN~1 the projection onto the subgroup

(€1, vlh—1,€ht1s---+EN)-

Definition 6.2 Let S = {v1,...,v,} C Z" be a linear subset. Suppose that there
exists e; such that

e ¢; only hits two vectors vy and v ;
¢ both of these vectors are final;
o vp-vp=-—2and v v <-—2.

We say that the subset S” := 75, (S \ {vy}) is obtained from S by —2—final contraction
and we write S N\ S’. We also say that S is obtained from S’ by —2—final expansion
and we write S" ' S.

If we think of a subset S C Z"~! as a square matrix whose columns are the vectors
v1,..., Uy, then a —2—final contraction consists in removing one column and one row
provided that the above conditions are satisfied. Note that a —2—final contraction (or
expansion) of a linear subset S is again a linear subset S’ whose graph Ts has the same
number of components as I's provided that the vector vy in Definition 6.2 is not isolated.

Definition 6.3 Let S’ = {vy,...,vn} C ZN with N > 3 be a good subset. Let
C’ = {vs—1,v5,v5+1} C S’ be such that I'cs is a connected component of T'ss with
Us—1*Vs—1 = Us+1-VUs+1 = —2 and vy - vy < —2. Suppose that there exists e; which
hits all the vectors in C’ and no other vector of S’. Let S be a subset obtained from S’
via a sequence of —2—final expansions performed on C’. The component C C S
corresponding to C’ C S is called a bad component of the good subset S.

We indicate the number of bad components of a good subset with 5(.S). Given elements
v1,...,v; of alinear subset we also define

E(i,...,vj):={k|ex-v1 #0, ..., ex-vj #0}].
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The situation we need to study is that of a linear subset together with an extra vector v
which is orthogonal to all but one vector, say w;, of each connected component S;
of § and v-w; = 1. This last condition is expressed by saying that v is linked once

to wj.

The following lemmas will be used several times in the next sections.

Lemma 6.4 Let I be a linear plumbing graph in normal form with connected compo-
nents I, ..., T}. Choose vertices v; € I; for 1 <i <k. Let T be the graph obtained
from I' by adding a new vertex v with weight w(v) < —1 and new edges for the pairs
(v,v;). If detT"" = 0, then one of the following holds:

o w(v)>—k.

e w(vj)=-2forsome j €{l,...,k}.
Proof Since detI =0 and detT" # 0, by Proposition 2.17 we must have cf "' = 0.

Computing cf I with respect to the vertex v, using Proposition 2.8, we obtain

k
1
v _; w(v) — /o —1/i

07

where «; and f; are the continued fractions of the two components of I \ {v; }, rooted
at the vertices adjacent to v;. Note that, if v; is final, there is only one component. In
this case we set 1/8; = 0. Suppose that for each 1 < j < k we have w(v;) < -3.
We need to prove that w(v) > —k. Each «; (and f; if v; is internal) is the continued
fraction of a linear connected plumbing graph in normal form rooted at a final vertex.
Therefore «;, B; < —1 and, since w(v;) < —3, we have

k
1 1 1
w(Ui)—J——_<—l=>i=glw(vi)_1/ai_1/ﬂi>—k.

l 1
Combining this fact with the expression for cfI" we obtain w(v) > —k and we are

done. O

Lemma 6.5 Let S C ZV be a linear subset. Let Si,...,S, be the connected com-
ponents of S. Suppose there is a vector v € Z" which is linked once to a vector of
each S;, say v; (ie v-v; = 1), and is orthogonal to every other vector of S; \ v;. Then

n
V-V > E Vi * Vj.

i=1
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Proof Let M be the N x N matrix whose columns are the elements of S. The
conditions on the extra vector v can be expressed as a linear system of equations,
namely

n
3) My =) e,

i=1

where the (k;)™ column of M is v;. Multiplying both sides of (3) by M, we get

n n
4) MMv=MY e, =) v
i=1 i=1

The matrix M ‘M is conjugated to ‘M M ; in particular, they have the same eigenvalues.
The matrix —'M M represents the intersection form of PT. It consists of n blocks,
one for each connected component of S. Each block can be diagonalized as shown
in Chapter V of [3]; the k™ eigenvalue is given by the negative continued fractions
corresponding to the first £ diagonal entries. In particular, it is easy to prove by
induction that, for each eigenvalue A, we have A < —1. It follows that

2 n
2
=3 il

i=1

n

>

i=1

lvl? < 1M 'Mv|* =

where || - || denotes the usual Euclidean norm. Rewriting the above inequality using
the standard negative definite product in Z%, we obtain

n n

v-v>(MtMv)-(M’Mv):(Zvi)-(Zvi):Zvi-vi. m|

i=1 i=1 i=1
7 Main technical results and strategy of the proof

The key technical result that will complete the proof of Theorem 5.1 is the following:

Theorem 7.1 Let S C Z" be a linear subset. Suppose that there exists v € Z~ which
is linked once to a vector of each connected component of S and is orthogonal to any
other vector of S. Assume also that

(5) I(Ts) = —f(Tsugyv) —2i(Tsygpy. v) — Z max{0, u -u + 3}.
ueNTsugvy)

Then T'sygyy can be obtained by joining together two or more building blocks along
their —1 —vertices.
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The main ingredient for the proof of Theorem 7.1 is the following result, which explains
that the irreducible components of the given subset together with the corresponding
extra vector give rise to building blocks:

Theorem 7.2 Let S C ZV be a good subset such that I(S) + ¢(S) < 0 and
I(S) + b(S) < 0. Suppose there exists v € ZN which is linked once to a vector
of each connected component of S and is orthogonal to all the other vectors of S. Then
v-v =—1 and Tgyg is a building block.

The idea of the proof of Theorem 7.2 is the following. The assumptions on S are
chosen so that, by the results of [8] the subset S falls in one of the following classes:

(1) ¢(S) =1, so that the graph of S is a single linear component

In this case we will prove that the extra vector v is linked to a internal vector
of S and that the graph of S U {v}, which is of the form

[ ]
|
|
|
o

is a building block of the second type. Here the extra vector v has been depicted
with a white dot and the edges coming out of it are dashed.

(2) ¢(S)=2. In this case the graph of S consists of two linear components. There
are three possible graphs for S U {v} according to whether v is linked to a pair
of final vectors, to a final vector and an internal one or to two internal vectors.
We will prove that

* in the first case b(S) = 0 and I'gyyy,) is a building block of the first type;
* in the second case b(S) = 1 and I'sy(yy is a building block of the third
type;
* in the third case b(S) = 2 and I'syyy) is a building block of the fourth type.
The graphs corresponding to these three possibilities are the following:

° [ Y [0 JE—, ° °
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The analysis required by the above four cases may be sketched as follows. We may
think of S as a square matrix where each column is an element of S. The condition on
the extra vector v may be translated into a matrix equation, namely

'Sv=e; forsomei <N

for the first case, and
ISv=e¢; +e;j forsome i,j <N

for the other cases. In each case there is an obvious solution to the above equations,
which gives rise to a subset whose graph is a building block. Using this language, the
content of Theorem 7.2 amounts to saying that the only integral solutions to the above
systems of equations are the obvious ones. This fact will be proved by assuming that
there is a nonobvious solution and then finding a contradiction with the constraints
provided by Lemma 6.5.

8 Irreducible subsets

In this section we collect all the results we need to prove Theorem 7.2. As explained at
the end of the previous section, we will need to examine several cases.

Proposition 8.1 Let S = {vy,...,v,} C Z" be a standard subset. Suppose there
exists v € Z" which is linked once to a vector, say vy, of S and is orthogonal to every
other vector of S. Then:

e vy isinternal and vy - v = —2.

e v-v=-—1I.

e T[sugy} is a building block of the second type.

o I(S)=-3.

Proof Assume by contradiction that vy is final. Then, Isygyy is a linear plumbing
graph consisting of n + 1 linearly dependent vectors and, as in Proposition 2.17, it is
easy to see that cf(I'sygyy) = 0, which means that

1
— =0
cf(I's)

cf(Tsugy) =v-v
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This is impossible because cf(I's) < —1 and v-v < —1. It follows that vy is internal.
By Proposition 2.17 the continued fraction associated to S U {v} must vanish and it
can be written as

g1 42 1

Vg Vg —— — — — — =0,

pr p2 vV
where the p;/q; are the continued fractions associated to the linear graphs obtained
from S by deleting vy . Since 0 < —q;/p; < 1, it follows that vy - vg € {—1,—2}. The

case vg - v = —1 cannot occur because S is standard; therefore, vy - v = —2.

By Lemma 6.5, we have v -v > v - vy = —2; therefore, v-v = —1. We may write
v =¢; for some ¢ € {1,...,n}. Since v is orthogonal to every vector of S \ {vg}, we
can perform the transformation

SU{vt S = m(S).

At the level of graphs this is just a blowdown move. Since n = |S’| C Z"~! we
see that detI'sy = 0. It follows that cf(I's/) = 0, which means that condition (3) of
Proposition 2.15 holds, where I and I3 are the connected components of S\ {75 (vi)}.
This shows that I's- is a building block of the first type and I'syyy} is a building block
of the second type.

Since S \ {vg} consists of two complementary legs, we have (S \ {vg}) = —2 and so
I1(S) =-3. |

In the next proposition we make explicit a characterization of certain good subsets
which is contained in [8]. Following the proof of the main theorem in [8] in the first
case (S irreducible), one can see that each subcase corresponds to one of the items
listed in the following proposition. We also note, for future reference, that given a
linear graph the operation of —2—final expansion commutes with taking the dual.

Proposition 8.2 Let S be a good subset such that I(S)+c(S) <0 and I(S)+b(S)<0.
Then c(S) < 2. Assume c(S) =2.

(1) Ifb(S) =0 then I's consists of two complementary legs.
(2) Ifb(S) =1 then one of the following holds:
e T is obtained from the graph

-2 —(n+1) -2 -2 -2 -2
° ° ° ° ° o °

(the —2—chain has length n — 1 and n > 2) via a finite number of —2—final
expansions performed on the leftmost component.
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e I'¢ =17 UI%, where I is obtained from the graph

-2 —a -2 .
R o R with a > 3

via a finite number of —2—final expansions and 13 is dual to a graph obtained
from the one above via a finite number of —2—final expansions.

(3) If b(S) =2 then I's = I'y U T, where each I is obtained from

-2 =3 -2
° ° °

via a finite sequence of —2—final expansions.

Remark 8.3 It may be useful to explain how the graph of a linear subset changes via
—2—final expansions. Suppose that S is a linear subset and that, for some index i,
e; hits only two final vectors vy and v;. If v; and v, belong to the same connected
component of Iy, then a —2—final expansion changes the graph as follows:

U1 U2 e +e; vy vy —ej
[ ) [ ) . e [ ] - o [} o [N o
where we are assuming that v{ = —e; +--- and vy =e¢; +---. An analogous operation

can be performed when v; and v, belong to different connected components.
Proposition 8.4 Let S = S; U S, be a good subset with no bad components such that
1(S) <0 and c(S) =2. Let v be an element of, say, S .
(1) If v is internal and v-v > —3, there exists a vector v’ € S such that E(v,v’) =2.
(2) If v isinternal and v-v = —k < —3, there exists a —2—chain in S, of the form
(’el _629e2_e37'-'7ek—3_ek—27"')
and |e; -v| =1 foreachi <k —2.
(3) If v isfinal and v-v = —k < —2, there exists a —2—chain in S, of the form
(el —€2,62—€3,...,6k_2 —€k_1,.. ')
and le;-v| =1 foreach 1 <i <k —2.
Proof It is shown in [8] (in the proof of Theorem 1.1, first case and first subcase) that

asubset S satisfying our hypothesis is obtained via a sequence of —2—final expansions
as described in Lemma 4.7 in [8] from a subset of the form {e; —ez,e1 +e2}. In
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particular, |e; - v| € {0, 1} for each i and every v € S. This means that we can always

write
[v-v]
v = Zsiei, where ¢; € {+1}.
i=1
If v is internal and v -v = —2, write v = ej + e. Again by Lemma 4.7 in [8], every

basis vector that hits an internal vector hits exactly three vectors of S. It follows that
e hits two more vectors, say v’ and v”. Suppose that e, does not hit any of these
vectors. Then we must have v'-v = v”-v = 1. Now e, must hit some vector, say v’
Since e does not hit v"”, we would have v"””-v = 1. But then v would be adjacent to
three vectors, which is impossible. The same argument works if v-v = —3; we omit
the details.

Ifv-v=k <—4, write v = Zle e; . It is clear from the proof of the main theorem
in [8] (again first case and first subcase) that the subset S is obtained by —2—final
expansions from a subset S’ whose associated graph is

-2 -2 -3
° °

Then the assertion is easily proved by induction on the number of expansions needed
to obtain S from S’; we omit the details.

The third assertion is proved similarly. If v-v = —k < —2 then S originates from a
subset S’ via k —2 —2-final expansions. Similarly, v originates from a final vector
v’ € §’, with v"- v’ = —2. Each —2-final expansion creates a new —2-final vector
in S linked to the one resulting from the previous expansion. O

8.1 Firstcase: b(S) =0

In this subsection we examine the subset in Proposition 8.2 with no bad components.
We will need the following lemma:

Lemma 8.5 Let S be a good subset such that I(S) <0, ¢(S) =2 and b(S) = 0.
Let v; and v; be two vectors in S. We have:

e Ifv;-v; =1 then E(v;,v;) =1.
e Ifv;-v; =0 then E(v;,v;) € {0,2}.

Proof The lemma clearly holds for the subset S3 whose graph is

—2 -2 -3
[ ) [ )
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By [8] we know that the subset S is obtained by —2—final expansions from S3 via a
sequence of —2—final expansions

S3,/ S84/ Sp=S.

Suppose the lemma holds for S,,—;. The conclusion follows easily from the fact that
the new vector which has been introduced has square —2. |

Proposition 8.6 Let S C Z" be a good subset such that ¢(S) =2 and b(S) = 0.
Suppose that there exists a vector v € Z" that is linked once to a vector of each
connected component of S and is orthogonal to all the remaining vectors of S. Then:

e v is linked to a pair of final vectors.

e v-v=-—1.

e The graph of S U {v} is a building block of the first type.
o I(S)=-2.

Proof Write S = S7US, and w; and w» for the two vectors linked once with v. First
note that if both wy and wy are final vectors then the graph associated to S U {v} is
linear and, since det I'syy,3 = 0, the corresponding plumbed manifold is diffeomorphic
to S! x §2. This means that I'g u{v} cannot be in normal form, which is only possible
if v-v = —1. By Proposition 2.15, the graph I'syy,; is a building block of the first
type. Also by Proposition 2.15, the two components of S are complementary and so
1(S) = —2. Therefore it is enough to show that both w; and w, are final.

Assume by contradiction that wy is an internal vector. Then we have v-v < —1. To
see this note that if v-v = —1 then, by Lemma 4.7 in [8], the vector v can only hit
final vectors. By Lemma 6.4, at least one vector among w and w, has square —2.

We have two possibilities:

First case (the vector wy is final) The graph I'sy,} has the form

[ ] [ [ ] ./
\

It is a star-shaped plumbing graph in normal form with three legs. Since det I'syg,y =0,
the weight of the central vertex, which is w;, can only be —1 or —2. Since S is a
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good subset, we have wy - w; = —2. We may write w; = e; + e;. Recall that by
Lemma 6.5 we must have

(6) lv]1? <2+ [Jwa .
Moreover, we claim that
(7) E(wl, wz) =0.

To see this note that since w; -wp =0 and wy -wy = —2 we have E(wy, w>) € {0,2}.
If both e; and e, hit w, then, by Lemma 4.7(3) in [8], at least one of them hits exactly
two vectors in S. But then, again by Lemma 4.7(2) in [8], these two vectors are not
internal. This contradicts the fact that w; is internal.

Now we proceed by distinguishing several cases according to the weight of w;.
First subcase (w;-w; = —2) By (7) we may write
wyp =e1+e2, Wy =e3+eq4.

Note that (6) tells us that ||v||? < 4; in particular, |v-e;| <1 for each e;. Therefore,
since ]l =v-w; =v-e1+v-ey,either v-e; =0 or v-ep; = 0. Similarly, either
v-e3 =0 or v-eq = 0. Without loss of generality we may write v = —ej —e3 + v/,
where v'-e; = 0 for i < 4. By (6), we have |[v/||> < 1. Since w; is internal, by
Lemma 4.7 in [8] we know that e; hits exactly three vectors in S, say wy, u; and u,.
The condition v-u; = v-us = 0 shows that v’ # 0; say v/ = e5. We obtain the
expression v = —ej; —e3 +es5. We have v-u; = —ey-u; +e5-u; =0 fori =1,2.
Therefore we may write u; = &; (e1 +es5) +uj; with u;-e; =u}-es =0 and & = %1
for i = 1,2. This fact together with |uj -u;| <1 implies that E(u,u) > 2, which
contradicts Lemma 8.5.

Second subcase (ws-wy; = —3) By (7) we may write
wyp =e1+ex, Wy =e3+eq+es.

By Lemma 4.7 in [8], there exists a final vector w3 which, without loss of generality,
we can write as w3 = e3 —e4. Now let us write

/
V=0V +aie; +azez +a3zes +ageq + oses,

where v’-e; =0 for each i < 5. Since at least two «; are nonzero, it follows by (6) that
|| <1 for each i <5 and that ZI-S=1 |oj| < 5. In particular, at least one coefficient
is zero. The conditions v-w; = v-w3 =1 and v- w3 = 0 quickly imply:
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(0517052) € {(_1’0)’ (O’ _1)}
(053’ 064) € {(O’ O)’ (1’ 1)’ (_1’ _1)}
o5 € {—1, 1}.

If (a3, 4) = (1,1) then ||v]|?> = 4+ ||v’||? and therefore v/ = 0. We can write

UV =0pes + 03es + ogeq + 0s5es.

Let w4 be the vector of S; such that ws - wsq4 = 1. We may write this vector as
w4 = Wy + e4, and since w4 - wy = 0 we may write wy = w) + e4 —es. Clearly
e; -wy =0 when 3 <i <5. Assume that e, - w) = 0. Then, since v- w4 = 0, we
would have o4 = o5, which does not match with the previous conditions we obtained
for these coefficients. If |es - wﬁ{ =1 then E(v,wq) = 3, which contradicts the fact
that v-wgq = 0.

If (a3, a4) = (—1,—1), the argument is analogous.

Therefore we may assume that (a3, a4) = (0,0). In this situation we may perform a
—2—final contraction on S that has the effect of deleting the vector w3 and decreasing
the norm of w, by 1. The extra vector v is not affected by this operation and all the

hypothesis that we need remain valid. In this situation v is linked to a final vector
whose weight is —2 and therefore we may repeat the argument given in the first subcase.

Third subcase (w;: wy < —3) We may write wy = Zf:l ej, with k > 4. By
Proposition 8.4 there is a —2—chain of the form
(e1—e2,e0—€3,...,€_2—€Ck_1s...).

By (7) we know that w; does not belong to this chain. Therefore v must be orthogonal
to every vector in this chain. It follows that either v hits all of the vectors in the set
{e1,...,er_1} orit does not hit any of them.

If v hits all of the vectors in the set {e1,...,er_1}, we can write, without loss of
generality,

k—1
v=v’+a2ei,

i=1
where v'-e; =0 fori <k —1 and o € Z \ {0}. But then the condition v-w, = 1
implies v -ex = a(k — 1) 4+ 1 and therefore

o> > a?(k—1) + @k -1+ 1)2>k—-1+k?>>k+2,

and this contradicts (6).
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If v does not hit any of the vectors in the set {ej,...,ex_»}, we can perform a series
of —2—final contractions that will eliminate these vectors. These contractions do not
alter the vector v. Let w) be the image of w, after these contractions are performed.
Since w) - w5 = —2, we can apply the argument given in the first subcase.

Second case (the vector wy is internal) The graph I'gygy, has the form

\. [ ] ./
/ \

Recall that we have shown that v-v < —1. By Lemma 6.4, we may assume, as in
the first case, that one of the vectors w; and w, —say w; — has square —2. As a
consequence, (6) holds. Note that if w; - w, = —2, the argument given in the first case
works as well in this situation. Therefore we may assume that w, - wp < —3.

Let es be a base vector that hits two final vectors of S. It is easy to see that if e;-v =0
then the —2—final contraction S N\ S’ associated to es; does not affect the vector v.
In this situation the subset S’ satisfies all the hypotheses in the statement and the
conclusions hold for S’ if and only if they hold for S. This process may be iterated,
via a sequence of —2—final contractions S \ --- \ S, until one of the following holds:

(1) the image in S of one vector among w; and ws is a final vector;

(2) no more contractions can be performed on S without affecting the vector v.

If the first condition holds, we may apply the argument given in the first case. Assume
the second condition holds. The subset S has two —2—final vectors of the form ¢}, —e;,
and ej; —e;,. By our assumption,

®) v-ej, #0 foreach 1 <i <4.

Now we distinguish two cases:

First subcase (w,-w; = —3) In this case (8) contradicts (6).

Second subcase (w;-wy <—3) By Proposition 8.4, there is a —2—chain of the form
(...,—e1+---,e1—ez,e0—€3,...,€(_3—€—2,€f—n+ " ,...)

and wy = Zf;l e;. Since v is orthogonal to every vector in the —2—chain, either
v-e; #0 foreach i <k—2 or v-e; =0 foreach i <k —2. In the first case we quickly
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obtain a contradiction with (6) (by taking into account (8)). In the second case we may
remove the whole —2—chain performing the transformation

(.-.,—€1+"' 761_62,~"v€k—3_ek—Zaek—2+"' 7--')
(e —er el d ).

The image of the vector w, under this transformation is wy, = ej + ex—1 + €k . Since
Wy - Wy = —3, we may argue as in the first subcase, and we are done. |

8.2 Second case: b(S) =1

In this section we deal with the subsets of Theorem 7.2 having a single bad component.
As stated in Proposition 8.2, there are two different classes of such subsets. First we
show that for one of these classes it is not possible to find an extra vector v satisfying
the hypothesis of Theorem 7.2. Then we deal with the other class of subsets, which
will give rise to building block of the third type.

Proposition 8.7 Let S’ be a good subset such that b(S’) = 1 and its graph T is of
the form

-2 —a -2 -3 -2 -2 -3
° ° ‘e ° °

where a > 3 and the —2—chain has length a — 3. Let S be a good subset which is
obtained via —2—final expansions from S’ as explained in Proposition 8.2. Then there
exists no vector v € Z" linked once to a vector of each connected component of S and
orthogonal to all the other vectors of S.

Proof Assume by contradiction that there exists v € ZV linked once to a vector
of each connected component of S and orthogonal to all the other vectors of S.
We write S = S; U S, where S is obtained from the bad component of S’ via
—2-final expansions and S, is obtained from the nonbad component of S’ in a
similar way. Note that the only vector of S; which is linked to a vector of S, is the
central one. Call this vector w. More precisely, we may choose base vectors of ZV

{e1,....ek,ek41,...,en} sothat
e ifi <k+1 wehave ¢; -u =0 foreach u € S,;
e ifi >k +2 wehave ¢; -u =0 for each u € S; \ {w};

e ek41-w # 0 and for some j >k +2 we have e; - w # 0.
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Note that |S;| =k + 2 and |S2| = N —k —2. Now we proceed by distinguishing
several cases:

First case (w-v = 0) We can write v = v; + vy such that v; is spanned by
{e1,...,er4+1} and vy by {eg4o,...,en}. In particular, v (resp. v2) is orthogonal
to every element of S, (resp. S7), and moreover both v; and v, are nonzero. The
subset S} := (81 \ {w}) C Z*¥*1 consists of two complementary linear components,
Ty and T3. Since w-v = 0, the vector vy is linked once to a vector of, say, 77 and is
orthogonal to the other vectors of S1. The graph I’ S, U,
I'ryugv,y U I, , where I gy, ) 18 either star-shaped with three legs or linear and I,

) is given by the disjoint union

is linear. It is easy to see that I'r, yy,) cannot be linear. Indeed, since det I'r, ygy,3 =0,
we would have vy - vy = —1, which is easily seen to be impossible. Therefore we may

assume that I'r, ygy,} is star-shaped with three legs. Since det I's = 0, we have

1U{v1}

0=detIy

SUfv} = det(FTlu{vl} u FTz) = det FTIU{vl} detIr,.

Since det I'r, # 0, we must have det 'y, yg,) = 0. It follows that, as in the proof of
Proposition 8.1, v is linked once to a vector of 77 with —2 square. This quickly leads
to a contradiction with Lemma 6.5.

Second case (w-v =1) We may write v = v + v, as in the first case. Since vy is
orthogonal to the vectors of Sy \ {w}, we must have vy = 0 (because v; is orthogonal
to k + 1 linearly independent vectors in Z¥*1). Consider the good subset

S:=(S\ S1) U{mp1(w)}.

The vector v = v is linked once to a vector of each connected component of S and
is orthogonal to the other vectors of S. The graph Iy, (v} is either star-shaped with
three legs (if v is linked once to an internal vector of S») or linear (if v is linked
once to a final vector of S»). The latter possibility cannot occur. To see this, suppose
that F§u (v} is linear. Since det F§U (w} = O,j we must have v-v = —1. Moreover, by
Proposition 2.15 the two components of S are complementary. Since one of these
components consists of a single vertex, the other one must be a —2—chain, which is
not the case. There~fore we may assume that the graph I'y (v} is star-shaped with three
legs. The subset S is obtained via —2—final expansions (performed on the rightmost
component) from a subset whose graph is

—a+1 -3 -2 -2 -3
° ° e ° °
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where a > 3 and the —2—chain has length a — 3. Up to automorphisms of the integral
lattice Z¢ this subset may be written as

~ a—1
9 S:= {Zei} Ufer —ex+eq.e0—€3,....q-2—€4—1,6a—1+ €5 —e1}.

i=1

Note that, as in the proof of Proposition 8.1, the vector v must be linked to a —2—
vector —say u — of S \ {7k +1(w)}. We have two possibilities, which we examine
separately.
First subcase (the vector u is not affected by the series of —2—final contractions
from S to S) In this case the vector u belongs to the —2—chain that appears in (9).
By Lemma 6.5, we must have v-v < —a —2. Write u = ex —eg 41 With2 <k <a—1.
It is easy to see that v can be written as

k a—1
v = v’—i—aZei +(+a) Z ei,
i=2 i=k+1
where o € Z \ {0,—1}. This expression quickly leads to a contradiction with the
inequality v-v < —a —2.

Second subcase (the vector u is the result of one of the —2—final expansions from S
to S) Write u = eg + e;. We have either e5-v % 0 or e¢; - v # 0, and it is easy to see

that v must hit at least another base vector which is not in {eq,...,es—1}. Moreover,
since w-v = 1, the vector v hits at least one vector among {eq,...,eqs—1}. Since v is
orthogonal to all the vectors in the —2—chain in (9), we see that ey -v =--- =e4_1 - V.

If e5-v # 0 then we quickly obtain a contradiction with Lemma 6.5 by computing e; -v.
If e5-v =0, we may write v = v/ —e; + ¢4, where e; v/ =0 for each j <a. In this
situation we can change the subset S by removing the coordinate vectors appearing in
the —2—chain of S and the vector w. We call this new subset 7'; it is obtained from
the subset

{e1—eq,e1+eq}

via —2-final expansions. The vector v is not affected by this transformation. Note
that T is a good subset with two complementary connected components and that v
is linked once to a vector of one connected component and is orthogonal to any other
vector. The graph I'7ygy) is the disjoint union of a three-legged star-shaped graph and
a linear one. Now we can argue as in the first case. Since det I'ryg,y = 0, the vector v
must be linked to a —2—weighted vertex, which quickly leads to a contradiction with
Lemma 6.5. d
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Proposition 8.8 Let S = S1 U S, be a good subset such that ¢(S) =2, b(S) =1
and I(S) < 0. Suppose that T's is obtained from

2 (41 =2 -2 ) -2
[ ] [ ) [ ) )

(where the —2—chain has length » — 1 and n > 2) via a finite number of —2—final
expansions performed on the leftmost component. Assume that there exists v € Z
linked once to a vector of each connected component of S and orthogonal to any other
vector of S. Then:

v is linked to the central vector of the bad component of S and to a final vector
of the —2—chain.

e p.v=—1.

The graph Ty, is a building block of the third type.
I(S) =-3.

Proof The vectors corresponding to the —2—chain can be written as
(e1—ez,e2—e€3,...,en—1—e€n).

The vectors corresponding to the bad component (before the —2—final expansions are
performed) can be written as

n+1
S3 = {—€n+1 —ep+2, Z ej,—ent+1+entag.
j=1

Note that the central vector is not altered by —2—final expansions and the same holds
for one of the two final vectors.

Claim The extra vector v is linked to a final vector of the —2—chain.

To see this, suppose v is linked to an internal vector—say e; — ej4+1 — where
1 <i <n—1. Then we can write

i n
(10) v:v/+aZej—|—(l—|—a) Z ej, where a € Z\{0,—1},
j=1 j=i+1

and v/ -e¢; =0 for 1 <i <n. Now v must be linked to some vector of the bad
component; first assume v is linked to the central vector whose weight is n + 1. In
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this case, Lemma 6.5 implies that ||v||?> < n + 3. Using the expression for v in (10)
we obtain

V)12 +ia? 4+ (n—i)(1 +a)® <n+3,

which is impossible when « ¢ {0, —1}. If o € {0, —1}, it is easy to see that the vector v
cannot be orthogonal nor linked once to the central vector of the bad component.

Now assume v is linked to some vector—say w — of the bad component other than
the central one. If n < 3 the claim is satisfied so we may assume that n > 3. It follows
by Lemma 6.5 that

V11 +ie? + (n =) (1 + ) <2+ w]]*.
In particular,
lwl*>3 and fw|?—[]v'||* > 2.

We can write w = ZIZZI ej, » where k > 4. The relevant portion of the bad component
can be written as

k
(...,u+e]1 €y, €y —€jay ..., €l 5 ejk_l—i-u,...,g e]h,...).
h=1

In particular, there is a —2—chain of length k — 3. If v’ hits one of the basis vectors in
this chain then it hits them all, and this would contradict the inequality ||w||Z—]||v’||> > 2.
Therefore we may assume that ¢, -v =--- = ¢, _, -v = 0. In this situation we can
change the bad component by removing the vectors ¢;,, ..., e _,. The relevant portion
of this new component can be written as

/
(...utej,—ej.ep,—ej_ +u,....ej +ej+ej_ +ej....).

Everything we said so far holds for this new component; in particular, the inequality
w]|? = [|v’||? > 2 now implies ||v’]|> = 1, which is easily seen to be impossible and
the claim is proved.

We can write v = —ej + v/, where v” does not hit any vector in the —2—chain. Note that
if v is linked to the central vector of the bad component then we must have v’ = 0. This
is because —e; is linked once to a final vector of the —2—chain and once to the central
vector of the bad component and there is at most one vector in Z* with this property
(the conditions on v can be expressed as a nonsingular n x n system of equations).

In this case the plumbing graph corresponding to S U {v} is a building block of the
third type.
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Therefore, in order to conclude we need to show that v/ = 0. Assume v’ # 0; then v
must be linked to some vector of the bad component — say w — other than the central
one. By Lemma 6.5 we have ||[v]|?> =14 ||v’||? <2 + ||w]||?; therefore,

(11) 11 < flwl)®.

We can write w = Z’ZZl ej, ; again the relevant portion of the bad component can be
written as
k
(...,u—i—ejl — €y €jy — €z Cip s — i U, Zejh).
h=1

If k =2 then w =e¢j, —ej, and v’ can be written as
vV =aej, + (1 +a)ej, with a € Z\{0,—1},

but then |[v/||? > 5, which contradicts (11). If k = 3, write w = ¢, + ¢}, + ¢, It is
easy to show that again the possible expressions for v’ contradict (11) (one needs to
distinguish the three possibilities where v’ hits one, two or all of the vectors among
{ej,.ej,,ej5}). If k > 4, there is a —2—chain associated to w whose length is k —3
and either v’ hits every vector in this chain or it does not hit any of them. If v’ hits
every vector in the —2—chain, it is easy to see that this would contradict again (11).
If v does not hit any vector in the —2—chain, the chain can be contracted as we did
before, and we are back to the case k = 3. The fact that /(S) = —3 follows from [8].
It can also be checked directly by observing that —2—final expansions do not alter the
quantity 7(S). |

8.3 Third case: b(S) =2

In this subsection we examine the good subsets with two bad components satisfying
the hypothesis of Theorem 7.2 and we show that they give rise to building blocks of
the fourth type.

Proposition 8.9 Let S be a good subset such that ¢(S) = b(S) =2 and I(S) <O0.
Suppose that there exists v € Z~ which is linked once to a vector of each connected
component of S and is orthogonal to the other vectors of S. Then:

e v is linked to the central vectors of each bad component of S.

e v-v=-—1.

» The graph sy is a building block of the fourth type.

o I(S)=—-4.
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Proof Write S = §1 U S,. By Proposition 8.2, the string associated to S is of the
form s U s5, where each s; is obtained from (2, 3,2) via —2—final expansions.

First let us assume that the extra vector v is linked to both the central vectors of the
two bad components. Then note that det(I'sy(y,3) = 0. By Proposition 2.17, this is
equivalent to cf(I'sygyy) = 0; therefore,
1 1
cf(T's,) cf(Ts,) ’

where each I's; is rooted at its central vector. The graph obtained from I's; by removing

0=cf(T'sygy) =v-v

the central vector consists of two components which are dual of each other. Therefore,
cf(I's,) = —2, which implies v-v = —1.

It is clear that the graph I'syy,} is a building block of the fourth type. To see this first
blow down the extra vector and split the graph along one of its trivalent vertices. The
fact that /(S) = —4 is a straightforward computation.

In order to conclude we need to rule out the possibility of v being linked to a noncentral
vector. Let wy € S1 and w, € S, be the two vectors of S which are linked to v.
Suppose w; is noncentral.

Claim Possibly after a sequence of contractions which do not alter the extra vector v,
we may assume that ||v]|% > ||w]|?.

We prove the claim in three steps, which correspond to the three cases wy - w; = —2,
wi-wp =-—3 and wy-w; < —4. If wy-w; = —2, we can write w; = e1 + e and
assume e -v # 0. If ez - v # 0, we are done. If e; - v = 0, note that e; must hit
some other vector u € S;. Since u -v = 0, we see that v must hit some basis vector
other than e; and therefore |[v]? > 2 = ||wy|?. If wy-w; = —3, we may write
w1 =e1 +ex+e3 and assume e; -v # 0. If ex-v # 0 and e3-v # 0 we are done. If
this is not the case, it is easy to find two more basis vectors that hit v arguing just like
above. If wy-w; < —4, we may write w; = 25;1 e; ; in this case there is a —2—chain
associated to wy. The relevant portion of S can be written as

k
/
(...,u—i—el—ez,ez—e3,e3—e4,...,ek_z—ek_l,ek_l—ek—i-u Ze,)
i=1

Note that either v hits every vector in the —2—chain or it does not hit any of them. If
v hits every vector in the —2—chain, the inequality [v||> > |jw||? follows easily. If v
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does not hit any vector in the —2—chain, we remove from S the —2—chain. We obtain
a new subset § C ZVK+3_ The relevant portion of S can be written as

(..,uteg—ex_y,ep—1—ep+u',...,e1+ex—1 ek, ...).

Now we can repeat the argument we used for the case w; - w1 = —2 and the claim is
proved. There are two possibilities, according as whether w, is central or not. If w, is
not central, we may repeat the argument used in the claim; we obtain the inequality
lv]|> = |lwi||® + ||lwz]|?, which contradicts Lemma 6.5. If w, is central, it is easy
again to contradict Lemma 6.5. a

8.4 Conclusion

Now we are ready to prove Theorem 7.2.

Proof of Theorem 7.2 By Proposition 4.10 in [8] we have ¢(S) <2. If ¢(S) =1 then
S is standard and the conclusion follows from Proposition 8.1. If ¢(S) = 2, there are
four possibilities as explained in Proposition 8.2. If 5(S) = 0, the conclusion follows
from Proposition 8.6. If b(S) = 1, the two different cases are settled by Propositions 8.7
and 8.8. When b(S) = 2 we can apply Proposition 8.9. |

9 Orthogonal subsets

In this section we basically fill the gap between Theorems 7.2 and 7.1. Roughly
speaking, we need to remove the technical assumption /(S) + b(S) < 0, since this is
not a property of the plumbing graph. The main result of this section is Proposition 9.5,
which shows that the subsets that are of interest for us have at most two components.
Given a linear subset S = {vy,...,v,} C Z" we define, following [8], pr(S) as the
number of e; which hit exactly k£ vectors in S. Thinking of S as a matrix py(S) is
the number of rows with k& nonzero entries. Note that

n
(12) Y pi(S)=n,
i=1
n n
(13) Y ipi(S) <= vi-v.
i=1 i=1
A linear subset S = {vq,...,v,} CZ" is said to be orthogonal if v; -v; = 0 whenever
i #].
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Lemma 9.1 Let S ={vy,...,v,} be a good orthogonal subset such that n > 3 and
1(S) = 0. The following conditions are satisfied:

(1) Either there exists v € S such that v-v=—-2orv-v=-3 foreachv € §.

2) p3(S)=n and p;(S) =0 foreachi # 3.

Proof Assume that there is no vector v € S such that v-v = —2, ie that v; -v; < -3
foreach 1 <i <n. Since Z?:l v; -v; = —1(S)—3n, we see that v; -v; = —3 for
each 1 <i <n.

Now we prove that p1(S) = 0. Assume by contradiction that v; = ae; + m1(v;)
for some v; € § and that no other vector in S hits e;. Since § is irreducible, we
have m1(vj) # 0. Moreover, m1(v;)-v; = 0 for each i # j and, since the vectors
V1,...,Vj—1,Vj41,. .., Vp are independent in Z"~!, we must have 71 (v;) = 0, which
is a contradiction; therefore, p;(S) =0.

Now we show that p,(S) = 0. Assume by contradiction that p,(S) # 0. Let ¢;,
v; and vy be such that e; only hits v; and v, among the elements of S. We may
assume that, say, vy is such that vy, - vy < —3 (otherwise, the set {vy,v;} would
be an irreducible component of S, which is impossible because § is irreducible and
|S| > 3). Either v; -v; <=3 or v; -v; = —2. If v; -v; = —2 then we may write
v; = e; +ey and, since ¢; only hits vy, and v;, the same conclusion holds for e5. Write
vy, = ae; —aes + v, with a # 0. Since vj is orthogonal to any vector in S\ {v;, v},
it must vanish. Therefore the subset {v;, v} is an irreducible component of S. But
this is impossible because S is irreducible and |S| > 3. Therefore we may assume that
vj -v; < —3. Consider the subset

S =8\ {vp, v} U {mi(vj)}.

It is easy to check that S’ is an orthogonal subset; moreover, the same argument used
to show that v; - v; < —3 shows that 7; (v;) - 7; (vj) < —2 and therefore S’ is good.
We have

I(S)y=I(S)+vp-vp +3+vj-v; +3—mi(vj) 7 (vj)—3
=I1(S)+vp-vp+34+vj-v; —mi(vj) - mi(v))
<I(S)+vj-v; —mi(v;) mi(vy)
< 1(S).
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In particular, 7(S’) < 0. By Lemma 4.9 in [8], we must have ¢(S’) < 2. Since
[S| = c(S) >3, we have ¢(S’) = 2. It is easy to check that S” must be of the form

S'={e1 + ez, e1—e2}.

Now it is easy to see that S’ cannot be expanded to a good orthogonal subset S such that
1(S) = 0. In fact there are no good orthogonal subset such that (c(S), 1(S)) = (3,0).
This is a contradiction and we conclude that p,(S) = 0.

Finally, note that by (12) we have
k

> (i =3)pi(S) <0,

i=1

which means that p;(S) =0 for each i > 4. |

Proposition 9.2 Let S be a good orthogonal subset such that I(S) = 0. Then

c(S) = 4. If, moreover, there exists v € S such that v-v = —2 then, up to automor-
phisms of the integral lattice Z*, S has the matrix

1 1 10

1-1-10

0 1-11

0-1 11

Proof It is easy to check that | S| > 2. By Lemma 9.1 we have two possibilities:

First case (there exists v € S C ZY which can be written as v = e; + e») Since
p3(S) = n, ey hits two more vectors, say v’ and v”. Since v'-v =v"-v =0, we see
that e, hits v/ and v” as well. Writing S as a matrix whose first three columns are v,

v’ and v”, we have
1 1 10-.--0
1 -1-10---0

0 * % ,
0 *x =
where the fact that [v"-e;| = |v”-¢;| =1 for i = 1,2 follows from the fact that each

row of the matrix above has exactly three nonzero entries and therefore 0 = I(S) =
Zi’ j al.2 Ik 3n > 0, and equality holds if and only if |a; ;| < 1. Consider the subset

S' =8\ {v, v, v U{m (), m ")} czN L.
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Note that 71 (v’) - 71 (v"") = 1. It is easy to see that S’ is a good subset. Moreover,
(c(S"),1(S")) = (N —2,—1) and b(S’) = 0. By Proposition 4.10 in [8] we have
c(S’) <2, which implies N < 4. It is easy to verify that N > 4. We conclude that
N = 4. The matrix description for S follows easily by filling the remaining entries in
the above matrix.

Second case (v-v = —3 for each v € §) In this case we only need to show that
¢(S) = 4. Choose a vector—say v; —of S. We may write v; = e; + e3 + e3. Since
p1(S) =0, e; must hit some other vector—say v, —of S. Since vy -vy =0, up to
exchanging the role of e, and e3 we may write v, = e — ey + e4. Since p2(S) =0,
e1 must hit some other vector of S. Call this vector vs. It is easy to see that e, cannot
hit v3. Since vy -v3 = vy -v3 =0, we may write v3 =e; —e3 —eq. Since pr(S) =0,
e> must hit some other vector—say v4 —of S. Now the orthogonality condition
implies v4 = ey —e3 + e4. Since p3(S) = n, we see that the subset {vy,...,v4} is
irreducible. Since S is irreducible too, we conclude that S = {vq,..., v4}. |

Lemma 9.3 Let S = {v1,v2,v3,v4} C Z* be a subset as in Proposition 9.2. Let
v € Z*\ {0} be such that, foreachi =1,...,4, we have v-v; € {0, 1}. Then the graph

of S U{v} is one of the following:
-2 —4 -3 -3
[ ) [ ] [ ) [ )
-2 T~ 4 -3 T~ -3
[ ) [ ] [ ) [ ]
Proof Let M be the matrix of S. For each J C {1, 2, 3, 4} consider the linear system
of equations
"My = —Z ej.
JjeJ

The lemma is equivalent to the fact that among these linear systems the only ones
which are solvable in Z# correspond to the above graphs. We omit the details. a

Lemma 9.4 Let S C ZV be a good subset such that —I(S) = b(S) = ¢(S) = 4.
There exists no vector v € ZN linked once to a vector of each connected component
of S and orthogonal to the vectors of S.

Proof Let us write S = By U---U B4, where each B; is a bad component. By
definition of bad component there is a sequence of —2—final contractions

SN\ S

Algebraic € Geometric Topology, Volume 20 (2020)



Rational homology cobordisms of plumbed manifolds 1123

such that § = El U.---u 54 and each 5,- is a bad component whose graph is of the

form
-2 ai -2
[ ] [ ) [ )
for some a; <—3. Foreach i =1,...,4, let v; € B; be the only vector of B; that is

linked once to v, and let u; be the central vector of B;.
Claim v; = u; foreachi <4.

To see this we may argue exactly as in the proof of Proposition 8.8. Indeed, assume by
contradiction that v; # u;. Let v’ be the projection of v onto the subspace generated
by the basis vectors that span the subset S/ :=S; \ u;. Note that S/ is a good subset
consisting of two complementary components. The vector v’ is linked once to a vector
of a connected component and is orthogonal to all the other vectors of S;. We have
already observed in the proof of Proposition 8.8 that such a vector does not exist. This
proves the claim.

It is easy to see that E(v, w) =0 foreach w € S\ {uy,...,us}. Let S:={uy, ..., 4}
be the subset obtained by projecting each u; onto the subspace orthogonal to the one
generated by the basis vectors that span the subset S := S; \ u;.

We have
—4=1(8)=I(S)=—8+I({uy..... us}) =—8+4+1(5) = I(S)=0.
Therefore, S is of the form described in Proposition 9.2 and v-u; = v -u; for each

i =1,...,4. The fact that v-u; = 1 for each i <4 contradicts Lemma 9.3. O

Proposition 9.5 Let S C ZN be a good subset such that 1(S) 4 ¢(S) < 0. Suppose
that there exists v € Z which is linked once to a vector of each connected component
of S and is orthogonal to all the vectors. Then c¢(S) < 2.

Proof By Proposition 4.10 in [8], if I(S) < —b(S) then ¢(S) < 2. Assume by
contradiction that ¢(S) > 3. Then, I(S) > —b(S) and we have
—b(S) < I(S) < —c(S) =—b(S);

therefore, 1(S) = —c(S) = —b(S). Write S = By U---U By, where each B; is a
bad component. Let S’ be the subset obtained from S via a sequence of —2—final
contractions such that each bad component has been reduced to its minimal configuration
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consisting of three vectors as in Definition 6.3. The graph of S’ has the form

-2 ai -2 -2 az -2 -2 Ak -2
) ) ° . ° ° e ) ° °

where a; < —3 foreach 1 <i <k. Note that S’ is a good subset and (c(S”), I(S")) =
(c(S),I(S)). Since I(S") = —k, we have

k
(14) Za,- = —4k.

i=1

Each bad component can be written as

er+e —ex+w; ex—eq
[ ] [ ] [ ]
where w; -e1 = w; -e; =0 and w; -w; < —2. Consider the subset S” = {wy, ..., wx}.
Its graph is
a;+1 a, +1 ap + 1
° ° °

Note that this is a good orthogonal subset and by (14) we have

k k
Zwi-wi IZ(ai +1) = -3k.

i=1 i=1
Therefore, the subset S” satisfies the hypotheses of Lemma 9.1 and Proposition 9.2.
In particular, k = 4.

The proof is concluded by using Lemma 9.4, which shows that there exist no subset §
and vector v with the above properties. a

10 Conclusion of the proof

Putting together Theorem 7.2 and Proposition 9.5, we can finally prove Theorem 7.1.

Proof of Theorem 7.1 Let S = S; U---U S, be the decomposition of S into its
irreducible components. We may write v = v; 4 --- + vg so that each v; is the
projection of v onto the subspace that corresponds to .S; . From (5) we obtain

k
I(S)+¢(S) =Y _I(Si) +¢(S;) 0.
i=1
We may choose an irreducible component §; such that I(S;) + ¢(S;) < 0. By
Proposition 9.5, we have ¢(S;) < 2. Moreover, I(S;) +b(S;) <I1(S;)+c(S;) <0.
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We claim that /(S;) + b(S;) < 0. Assume by contradiction that /(S;) = —b(S;) =
—c(S) = —2 and write §; = B1 U B,. Since it is easy to check that for every bad
component B we have I(B) > —2, we may assume that one of the following holds:

° I(Bl)=1(Bz)=—1.
e I(By)=-2and I(B;)=0.

Arguing as in the proof of Proposition 9.5 we would get orthogonal subsets whose
associated graph is either

-3 3

[ ] [ ]

or
-2 —4
[ ] [ ]

It is easy to check that none of these configurations are realizable, and the claim is
proved.

We can now apply Theorem 7.2. The graph I's; gy, is a building block. Moreover,
(5) holds for the subset S\ S;. To see this, one needs to compare the value /(S;) and
the contribution of I's; to the right-hand side of (5). For example, if I's; is a building
block of the first type then /(S;) = —2 and Is; contributes to the right-hand side
of (5) with two final legs (ie with a —2). The other cases can be checked similarly.
Therefore we may iterate the argument above with all the irreducible components of S,
and we are done. d
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