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Unboundedness of some higher Euler classes

KATHRYN MANN

We study Euler classes in groups of homeomorphisms of Seifert-fibered 3–manifolds.
In contrast to the familiar Euler class for Homeo0.S

1/ as a discrete group, we show
that these Euler classes for Homeo0.M

3/ as a discrete group are unbounded classes.
In fact, we give examples of flat topological M –bundles over a genus 3 surface
whose Euler class takes arbitrary values.

57R20; 57M60, 57S25

1 Introduction

For a topological group G, let Gı denote G with the discrete topology, and H�.GIR/D

H�.BGıIR/ the group cohomology of G with RD Z or R coefficients. When G

is the group of homeomorphisms or diffeomorphisms of a manifold M, elements
of H�.GIR/ are characteristic classes of flat or foliated M –bundles with structure
group Gı. One says that a class is bounded if it has a cocycle representative taking
a bounded set of values on all k –chains of the form .gi ; : : : ;gk/ 2Gk. Determining
which classes are bounded is an interesting and often difficult question in its own right
(see Monod [20] for an introduction to this and related problems in bounded cohomol-
ogy) but particularly motivated in the case where G is a subgroup of Homeo.M /. In
this case, bounds on characteristic classes give obstructions for topological M –bundles
to be flat. On the flipside, showing that a class has no bounded representative often
amounts to constructing new examples of flat bundles.

The best known and perhaps earliest example of a bounded class comes from Milnor [18],
who gave a bound on the Euler number of SL.2;R/–bundles over surfaces with discrete
structure group. Wood [23] generalized this argument to topological circle bundles
(Homeo0.S

1/ naturally contains SL.2;R/ as a subgroup), to obtain a complete charac-
terization of the oriented, topological circle bundles over surfaces that admit a foliation
transverse to the fibers.1 In modern language, their results can be reframed as follows:

1In the smooth setting, this is equivalent to admitting a flat connection; hence, even in the topological
case such bundles are called “flat”. This is equivalent to the condition that the structure group reduces to a
discrete group.
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Milnor–Wood inequality [18; 23] The real Euler class in H 2.Homeo0.S
1/IR/ is

bounded, and has (Gromov) norm equal to 1
2

.

More generally, when G is a real algebraic subgroup of GL.n;R/, it follows from
Gromov [9] that the elements of H�.GIR/ obtained by the map BG! BGı have
bounded representatives, and explicit bounds on their norms have been computed in
several cases. See eg Bucher and Gelander [3], Clerc and Ørsted [5] and Domic and
Toledo [6]. However, much less is known for large, nonlinear groups, in particular
homeomorphism groups of manifolds.

The first natural case to consider is that of any manifold M such that �1.Homeo0.M //

is either isomorphic to Z or has a Z summand. (Here Homeo0.M / denotes the
identity component of Homeo.M /.) In this case H 2.BHomeo0.M /IZ/ has a Z

summand, generated by an Euler class for topological M –bundles. This pulls back to
a discrete Euler class in H 2.Homeo0.M /IZ/, and we may ask which such classes are
bounded. The Milnor–Wood inequality is a positive answer to this question in the case
M DS1. The only other known results are in dimension 2: For M DR2, we also have
that �1.Homeo0.R

2//D Z, and Calegari [4] showed that the discrete Euler class of
topological R2 –bundles is unbounded. (In fact, he also showed unboundedness of its
pullback to H 2.Diff0.R

2/IR/.) In the case of the 2–torus, �1.Homeo0.T
2//DZ�Z,

and an argument in Mann and Rosendal [15] shows that discrete Euler classes are
unbounded.

Here we address the same question for 3–manifolds. Following work of Hatcher [10],
Ivanov [13], McCullough and Soma [17] and Bamler and Kleiner [1] on the generalized
Smale conjecture, the inclusion Isom0.M /!Homeo0.M / is known to be a homotopy
equivalence on almost all geometric manifolds M (the one open case is that where
M is non-Haken infranil). In particular, this implies that for many closed, prime
Seifert-fibered 3–manifolds, rotation of the fibers gives either a homotopy equivalence
SO.2/! Homeo0.M /, or at least a Z factor in �1.Homeo0.M //, hence an Euler
class for M –bundles. Our main result is that all of these discrete Euler classes are
unbounded. Precisely, we show:

Theorem 1.1 Let M be a closed Seifert-fibered 3–manifold such that the inclu-
sion SO.2/ ,! Homeo0.M / induces an inclusion of �1.SO.2// as a direct factor in
�1.Homeo0.M //. Then any class ˛ 2 H 2.Homeo0.M /IR/ with nonzero image in
H 2.SO.2/IR/ is unbounded.

This is a direct consequence of the following stronger result:
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Theorem 1.2 Let M be as in Theorem 1.1 and let e 2 H 2.Homeo0.M /IZ/ have
nonzero image in H 2.SO.2/IZ/. Then, for any k , there exists a homomorphism
� from the fundamental group of a genus 3 surface † to Homeo0.M / such that
h��.e/; Œ†�i D k .

Our proof is fundamentally different than Calegari’s proof of unboundedness of the
Euler class for Homeo0.R

2/–bundles with discrete structure group, which uses non-
compactness of R2 in an essential way. It also differs considerably from the existing
argument for unboundedness of cohomology classes in Homeo0.T

2/, which used
the fact that H 2.Homeo0.T

2/IZ/Š Z2 has a GL.2;Z/–action of the mapping class
group of T 2.

Section 2 contains some brief background on bounded cohomology, Gromov norm
and cohomology of homeomorphism groups, giving the tools to derive Theorem 1.1
from Theorem 1.2. The proof of Theorem 1.2 is an explicit construction described in
Section 3.

Measure-preserving homeomorphisms We contrast our results with the measure-
preserving case. Let M be as in Theorem 1.1, and let G be a subgroup of Homeo0.M /

that preserves a probability measure, or more generally a content on M. In contrast to
Theorem 1.1, work of Hirsch and Thurston implies that Euler classes pull back trivially
to H 2.GIZ/. Their main theorem is the following:

Theorem 1.3 (Hirsch and Thurston [11]) Suppose E! B is a foliated bundle with
structure group consisting of homeomorphisms that preserve a content on the fiber.
Then the induced map H�.B;R/!H�.E;R/ is injective.

To derive the vanishing result stated above, take any foliated M –bundle pW E! B.
The pullback bundle p�.E/!E has a section, so p���.e/ 2H 2.p�EIZ/ is zero.
But if E has content-preserving holonomy (ie its holonomy � factors through a
group G as above), then Hirsch–Thurston implies that p� is injective on cohomology,
so ��.e/D 0.

Note that, by averaging any content over the SO.2/–action on a Seifert-fibered mani-
fold M, one may assume that it is invariant under rotation of fibers, and SO.2/ includes
in the group of content-preserving homeomorphisms. This gives analogs of the Euler
class in the group of content-preserving homeomorphisms as in Theorem 1.1; the
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remark above states that these are zero. In particular, for the special case of the 2–
dimensional torus, since �1.T

2/D Z2 is amenable (so any action on a manifold M

has an invariant probability measure), this gives:

Corollary 1.4 For M as in Theorem 1.1, any M –bundle over T 2 with structure
group Homeo0.M /ı has zero Euler class.

Note that this statement would be implied by boundedness of e2H 2.Homeo0.M /ıIZ/.

Acknowledgements The author thanks the referees for pointing out the references to
Bamler–Kleiner and Hirsch–Thurston, including the argument given above. Thanks
also to Benson Farb, who first asked the author about analogs of Milnor–Wood (or
its failure) in higher dimensions, and to Bena Tshishiku, Sam Nariman and Wouter
Van Limbeek for discussions and comments on this problem. The author was partially
supported by NSF grant DMS-1606254.

2 Preliminaries

We quickly review the standard theory of bounded cohomology, as in Gromov [9],
and set up notation. A reader who is well acquainted with the subject can skip to
Section 2.1, where we discuss cohomology of homeomorphism groups.

For M a manifold and a 2 H�.M IR/ an element of singular homology, there is a
pseudonorm

kak WD inf
˚P
jci j W

�P
ci�i

�
D a

	
;

where the infimum is taken over all real singular chains representing a in homology.
The L1 norm on singular chains used in this definition gives a dual L1 norm on
singular cochains; and the set of bounded cochains forms a subcomplex of C �.M /.
The cohomology of this complex is the bounded cohomology H�

b
.M IR/ of M. The

(pseudo)norm, k˛k, of a cohomology class ˛ is the infimum of the L1 norms of
representative cocycles; and if k˛k is finite, we say that it is a bounded class.

One can extend these definitions quite naturally to the Eilenberg–Mac Lane group coho-
mology. Recall that, for a discrete group G, the set of inhomogeneous k –chains, Ck.G/,
is the free abelian group generated by k –tuples .g1; : : : ;gk/ 2Gk with an appropriate
boundary operator. The homology of this complex is the (integral) group homology
Hk.GIZ/; and Hk.GIR/ is the homology of the complex C�.G/˝R. The homology
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of the dual complexes Hom.Ck ;Z/ and Hom.Ck ;R/ give the group cohomology
H k.GIZ/ and H k.GIR/, respectively. As in the singular homology case above, there
is a natural L1 norm on k –chains given by



P si.gi;1; : : : ;gi;k/


DP jsi j, which

descends to a pseudonorm on homology by taking the infimum over representative
cycles. We also have a dual L1 norm on C k.G/, and for ˛ 2H�.GIR/ we define

k˛k WD inffkck1 W Œc�D ˛g:

Again, bounded (co)cycles are those with finite norm. Note that k˛k is finite if and only
if there exists D such that j˛.g1;g2; : : : ;gk/j<D holds for all .g1;g2; : : : ;gk/2Gk.

A remarkable theorem of Gromov allows one to pass between groups and spaces:

Theorem 2.1 [9] There is a natural isometric isomorphism H�
b
.�1.M /IR/ !

H�
b
.M IR/.

Computing norms In degree two, there is an effective means of estimating the norm
of a cohomology class through representations of surface groups. For any space X, a
class c 2H2.X IZ/ can always be represented as the image of a map from an orientable
(possibly disconnected) surface † into X. If X is a K.G; 1/, then we may assume
† has no S2 components. Supposing additionally that † is connected, such a map
induces a homomorphism �W �1.†/!G. Thus, on the level of group cohomology we
have c D ��.Œ†�/ and

h˛; ci D h��.˛/; Œ†�i:

It is easy to verify that Œ†� has norm �2�.†/ (See [9, Section 2] for the computation.)
Hence, we have kck � �2�.†/. Thus, to show a cohomology class ˛ is unbounded,
it suffices to show that

sup
�W�1.†/!G

h��.˛/; Œ†�i

2�.†/
D1;

where the supremum is taken over all homomorphisms from surface groups into G.

Although our goal here only requires us to show unboundedness of some classes, the
above can actually be used to compute the norm of a class ˛ in second bounded
cohomology. Matsumoto and Morita [16] and Ivanov [14] showed (independently)
that, for any topological space X, Gromov’s seminorm on H 2

b
.X IR/ is in fact a norm.

Hence H 2
b
.X IR/ is a Banach space, with the quotient of H2.X IR/ by the zero-norm

subspace as its dual; and in integral cohomology, the zero-norm subspace is precisely
the chains representable by maps of surfaces consisting of S2 and T 2 components.
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Returning to our situation, if † is a connected surface of genus g � 1, the quantity
h��.˛/; Œ†�i of interest can be easily read off from a central extension. Recall that, for
any abelian group A, there is correspondence between H 2.GIA/ and central extensions
of G by A. If ˛ 2H 2.GIZ/ is represented by the extension 0! Z! yG!G! 1,
then ��.˛/ is represented by the pullback 0 ! Z ! ��. yG/ ! �1.†/ ! 1. The
fundamental group of † has a standard presentation

�1.†/D

�
a1; b1; : : : ; ag; bg

ˇ̌̌ gY
iD1

Œai ; bi �

�
and the integer h��.˛/; Œ†�i can be computed as follows. Take lifts zai and zbi of the
generators ai and bi to elements of ��. yG/. Since this is a central extension, the value
of any commutator Œzai ; zbi � is independent of the choice of lifts zai and zbi . The product
of commutators

Qg
iD1

Œzai ; zbi � projects to the identity in �1.†/, so can be identified
with an element n 2 Z. One checks easily from the definition that nD h��.˛/; Œ†�i.

We note that, although not framed in the language of bounded cohomology, this
strategy for computation is already present in Milnor and Wood’s work in [18] and [23],
respectively.

2.1 Euler classes of homeomorphism groups

This section describes the known analogs of the Euler class in Homeo0.M / for various
manifolds M, explaining and justifying some of the remarks made in the introduction.
For simplicity, we always assume manifolds are closed.

As mentioned in the introduction, whenever M is a manifold with a circle action
SO.2/ ! Homeo0.M / such that the induced map on �1 is inclusion of a direct
factor, BHomeo0.M / has a BSO.2/DCP1 factor, giving an Euler class in second
cohomology. While we are primarily concerned with the cohomology of discrete groups,
a remarkable theorem of Thurston says that, in the very special case of homeomorphism
groups of manifolds, this agrees with the cohomology of BHomeo.

Theorem 2.2 (Thurston [21]) Let M be a differentiable manifold. Then the map

BHomeo.M /ı! B Homeo.M /

induced by the identity map Homeo.M /ı!Homeo.M / is an isomorphism on homol-
ogy.
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It follows from the theorem that the same statement holds for the identity components
Homeo0.M /ı!Homeo0.M /. Note that Thurston’s theorem implies, in particular, the
Euler class and its powers are the only characteristic classes of flat, oriented topological
circle bundles.

Unfortunately, there are not very many other manifolds where the homotopy type of
(or at least the cohomology of) the identity component of their homeomorphism group
is known. In dimension 2, we know that Homeo0.†/ is contractible for any compact
surface of negative Euler characteristic by [7]. As mentioned in the introduction,
SO.2/ ! Homeo0.R

2/ is a homotopy equivalence, but unlike the M D S1 case,
the Euler class of Homeo0.R

2/ı is unbounded by [4]. For M D T 2 D S1 � S1,
the inclusion SO.2/ � SO.2/ ! Homeo0.T

2/ is a homotopy equivalence. Thus
Z2 ŠH 2.BHomeo.T 2/IZ/ŠH 2.Homeo.T 2/IZ/. A direct computation, given in
[15, Section 4.2], shows that both generators of H 2.Homeo.T 2/IZ/ are unbounded.

The Seifert-fibered 3–manifold case, of interest to us, provides essentially the only
other examples where the homotopy type of Homeo0.M / is both known and known
to have a homotopically nontrivial SO.2/ subgroup. For Haken manifolds, this is due
to the following theorem of Hatcher and Ivanov:

Theorem 2.3 [10; 13] Suppose M is a closed, orientable, Haken, Seifert-fibered
3–manifold. Then the inclusion S1 ! Homeo0.M / by rotations of the fibers is a
homotopy equivalence, except in the case M D T 3, where Homeo0.T

3/Š T 3.

We remark that Hatcher’s original proof was in the PL category, but (as noted by
Hatcher) this is equivalent to the topological category by the triangulation theorems
of Bing [2] and Moise [19]. Ivanov’s proof of the theorem above is for groups of
diffeomorphisms, but an argument due to Cerf, together with Hatcher’s later proof of
the Smale conjecture, implies that the inclusion of Diff.M 3/ into Homeo.M 3/ is a
homotopy equivalence; this makes the smooth category equivalent as well.

McCullough and Soma [17] proved Homeo0.M /Š S1 for the small Seifert-fibered
non-Haken manifolds with H2�R and fSL.2;R/ geometries. For spherical manifolds,
Bamler and Kleiner’s recent proof of the Smale conjecture [1] shows that the inclusion
Isom.M /! Homeo.M / is always a homotopy equivalence (and gives a new proof
of contractibility of Homeo0.M / when M is hyperbolic). This gives many examples
of manifolds satisfying the condition of Theorem 1.1, including various families of
lens spaces and several manifolds with noncyclic fundamental group. See [12] for a
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table of homotopy types of isometry groups for spherical manifolds, as well as a good
exposition on the problem and a proof (independent of Bamler–Kleiner) applicable in
many specific cases.

3 Proof of Theorems 1.1 and 1.2

Let M be a Seifert-fibered 3–manifold, and let G DHomeo0.M /. Let �W SO.2/!G

be the action of rotating the fibers, and suppose that � induces an inclusion Z Š

�1.SO.2// ! �1.G/ as a factor in a splitting as a direct product. Let zG be the
covering group of G corresponding to the subgroup �1.G/=�.Z/ � �1.G/. (Recall
that G is locally contractible by Cernavskii [22] or Edwards and Kirby [8], so standard
covering space theory applies here.) If � is also surjective on �1 , for instance a
homotopy equivalence, then zG is the universal covering group of G. In general, it is a
central extension 0! Z! zG!G! 1.

We will show that this central extension represents a class e in H 2.Homeo0.M /ıIZ/Š

H 2.BHomeo0.M /IZ/ Š Z that is unbounded. This will prove Theorem 1.1. Fol-
lowing the framework discussed in Section 2, to show that e is unbounded, it suf-
fices to construct representations of surface groups �W �1.†/! Homeo0.M / with
h��.e/; Œ†�i=�.†/ arbitrarily large. Although, in using this strategy, a priori one may
need to vary the genus of surface to construct representations with increasingly large
values of h��.e/; Œ†�i=�.†/, in this case we need only to work with a surface of
genus 3.

Put otherwise, we will show how to construct commutators Œai ; bi � with ai and bi 2G

(for i D 1; 2; 3) such that
Q3

iD1Œai ; bi �D id, but where the product of lifts
Q3

iD1Œzai ; zbi �

to zG represent unbounded covering transformations. This will prove Theorem 1.2.

The first step is a local construction of bump functions.

Definition 3.1 A standard bump function on D2 is a function D2!R, which, after
conjugation by some h 2 Homeo0.D

2/ agrees with

f .rei� /D

8<:
1 if r < 1

3
;

2� 3r if 1
3
� r � 2

3
;

0 if r > 2
3
:

What we have in mind as particular examples are piecewise linear (or piecewise smooth)
functions f W D2 Š Œ�1; 1�� Œ�1; 1�!R that are identically 0 on a neighborhood of
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the boundary, identically 1 on a neighborhood of .0; 0/, and with the level sets f �1.p/

for p 2 .0; 1/ given by piecewise linear (or piecewise smooth) curves. Moreover, these
should have the property that some line � from 0 to @.Œ�1; 1�� Œ�1; 1�/ is transverse to
each level set of f , with f monotone along �. In this case, one can easily construct the
conjugacy h to the function above defined on the round disc as follows. For p 2 .0; 1/,
let p̀ be the total arc length of f �1.p/ and, for x 2 f �1.p/, let p̀.x/ denote the
arc length of the segment of f �1.p/ (oriented as the boundary of f �1.Œp; 1�/) from
�\f �1.p/ to x . Then, for x 2 f �1.p/, set h.x/D 2�p

3
ei`p.x/=`.p/ . One may then

extend h arbitrarily to a homeomorphism defined on f �1.0/ and f �1.1/.

Lemma 3.2 Let T DD2�S1 be a .p; q/ standard fibered torus, let f be a standard
bump function and let k 2 R. There exist a; b 2 Diff.T / such that the commutator
b�1a�1ba preserves fibers and rotates the fiber fxg �S1 by 2�kf .x/ if x ¤ 0, and
the exceptional fiber by 2�qk .

Proof We take local coordinates to identify D2 with the rectangle Œ�3; 3��Œ�3; 3��R2,
so that the exceptional fiber passes through .0; 0/, and we work in the PL setting. First,
define � to be a standard bump function that is identically 1 on Œ�1; 1�2, zero on
the complement of Œ�2; 2�2, and, in the topological annulus between these regions
of definition, it is linear on each of the four sets cut out by the diagonals of Œ�3; 3�2.
Level sets of a are shown in Figure 1, left. For a point .x; s/ in Œ�3; 3�2 � S1,
define a.x; s/D .x; sC 2�qk�.x// if x ¤ .0; 0/ (ie a rotation of the fiber over x by
2�qk�.x/), and define a to be a rotation by 2�k on the exceptional fiber.

To construct b , first define F W Œ�3; 3�! Œ�3; 3� by

F.u/D

8<:
u if u� 1;
uC2

3
if � 2< u< 1;

3.uC 2/ if � 3� u� �2;

and define b on Œ�3; 3�� Œ�3; 3��S1 by b.u; v; ei� /D .F.u/; v; ei� /.

Since both a and b preserve fibers, ba�1b�1 does as well. Moreover, ba�1b�1

rotates the fiber through a point x 2 Œ�3; 3�2 by �2�qk�.b�1.x// for x ¤ 0, and by
�2�k�.b�1.x// on the exceptional fiber. Composing a ı ba�1b�1 gives a function
which rotates a nonexceptional fiber over a point x by 2�qk

�
�.x/��.b�1.x//

�
; this

gives a standard bump function whose level sets are depicted in Figure 1, right; it is
the result of adding the bump functions of the other figures.
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a ba�1b�1 aba�1b�1

0 k 0 –k 0 k

Figure 1: Level sets of PL bump functions.

The next step is to glue the bump functions given by Lemma 3.2 together into a nice
partition of unity, subordinate to an open cover consisting of only three sets.

Lemma 3.3 Let S be an orientable topological surface. There exists an open cover
OD fO1;O2;O3g of S, with each Oi a union of disjoint homeomorphic open balls,
and a partition of unity �i subordinate to O such that the restriction of �i to any
connected component of Oi is a standard bump function.

Proof Let � D .V;E/ be a degree three graph on S, with polygonal faces. For
example, � may be constructed as the dual graph to a triangulation of S. First we
define the sets in the cover O D fO1;O2;O3g. Let Nı denote the union of the ı–
neighborhoods of the edges in � . Fixing an appropriate metric and PL structure on S,
we may assume that the boundary of Nı , for any sufficiently small ı > 0, consists of
line segments parallel to the edges of � .

Fixing ı , let O1 D S nNı=2 . Choose ı small enough that connected components
of-O1 are in one-to-one correspondence with faces of the graph, each the complement
of a small 1

2
ı–neighborhood of the boundary of the face. For each edge e , let me

denote its midpoint. In a neighborhood of me , Nı has natural local coordinates as
.�ı; ı/�.�1; 1/ with the edge given by 0�.�1; 1/, meD .0; 0/ and lines fpg�.�1; 1/

parallel to the edge. We assume that ı is small enough that we may choose these
neighborhoods of midpoints to be pairwise disjoint and let Ue denote the neighborhood
containing me . Let O2 be the union

S
e2E Ue . Finally, let X be the union of the

subneighborhoods .�ı; ı/�
�
�

1
2
; 1

2

�
and let O3 be the complement of X in Nı . See

Figure 2 for a local picture.
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O1

O2
O3

�
�me

Figure 2: A cover supporting a good partition.

We now construct the desired partition of unity, with �i supported on Oi . Define �1 to
be constant 1 on S nNı , constant 0 on Nı=2 and piecewise linear in the intermediate
regions, with level sets consisting of polygons with edges parallel to the edges of � .

Let gD 1��1 ; this is a function supported on O2[O3 . Define �2 to agree with g on
the complement of

S
e2E Ue . In the coordinates Ue D .�ı; ı/� .�1; 1/ given above,

define the restriction of �2 to Ue to agree with g on .�ı; ı/�
�
�

1
2
; 1

2

�
, to be given

by �2.x;y/D 2.1� jyj/g.x;y/ on .�ı; ı/�
�
�1;�1

2

�
[ .�ı; ı/�

�
1
2
; 1
�
, and then

extend �2 to be 0 elsewhere. This gives a continuous (in fact piecewise linear) bump
function supported on O2 . Finally, let �3 D 1��1��2 , which is supported on O3 .
It is easily verified that this is a standard bump function, as in the example discussed
after Definition 3.1.

To finish the proof of Theorem 1.2, let M be a Seifert-fibered 3–manifold and let S

be the base orbifold. Take a cover O D fO1;O2;O3g of S as given by Lemma 3.3.
Using the construction from Lemma 3.3 starting with a graph on S, we may arrange
for each exceptional fiber to be contained in only one set in O, and also to have each
connected component of each element of O contain at most one exceptional fiber. Let
f�ig be the partition of unity subordinate to this cover consisting of standard bump
functions.

Fix a connected component B of some set Oi 2 O and let B � S1 be the union
of fibers over B. By construction this is a .p; q/ standard fibered torus for some p

and q . Fix K 2 Z. Lemma 3.2 constructs homeomorphisms aB; bB 2 Homeo0.M
3/

supported on B �S1 such that the commutator ŒaB; bB � rotates each (nonexceptional)
fiber over fxg � S1 by 2�K�i.x/. There is a natural path aB.t/ from the identity
in Homeo0.M / to aB.1/ D aB by applying the construction of Lemma 3.2 to give
rotations of a (nonexceptional) fiber through x by 2�qtK�i.x/ at time t .
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Then ŒaB.t/; bB � gives a path from the identity to ŒaB; bB � that rotates (nonexceptional)
fibers by 2�qtK�i.x/ at time t . Moreover, if bB.t/ is any path from bB to the identity
supported on B, then ŒaB.t/; bB � is homotopic rel endpoints to ŒaB.t/; bB.t/�. Let

ai D

Y
B

aB and ai.t/D
Y
B

aB.t/;

where the product is taken over all connected components of Oi . Similarly, let

bi D

Y
B

bB and bi.t/D
Y
B

bB.t/:

Let zG be the covering group of G D Homeo0.M / as given at the beginning of this
section, ie the central extension 0!Z! zG!G! 1. One definition of this covering
group is as the set of equivalence classes of paths based at the identity in G, where
two paths are equivalent if they have the same endpoint and their union is an element
of �1.G/ that belongs to the subgroup �1.G/=�.Z/. The group operation is pointwise
multiplication, or, equivalently, concatenation. In this interpretation, the inclusion
of n 2 Z into zG is given by a path gt in G for t 2 Œ0; 1� that rotates (nonexceptional)
fibers by an angle of 2�nt at time t .

Now we return to the machinery of Section 2. Consider the map of a genus 3 surface
group into G where the images of the standard generators are ai and bi as defined
above. The paths ai.t/ and bi.t/ give lifts of ai and bi to zG, with commutator
Œai.t/; bi.t/� a path from the identity to a map that rotates fibers by 2�K�i.x/. Hence,Q3

iD1Œai.t/; bi.t/� represents K 2 Z. Thus, if � is the associated map of the surface
group and e the Euler class in H 2.G;Z/, this means that h��.†/; ei DK. Since K

can be chosen arbitrarily, this proves Theorem 1.2.

Remark 3.4 The constructions above can likely be realized in the smooth category
(ie with a homomorphism �1.†3/! Diff0.M /); however, some more care is needed
in the construction of the bump functions, as not all convex, smooth bump functions
on a disc are smoothly conjugate.
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