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Relative recognition principle

RENATO VASCONCELLOS VIEIRA

We prove the recognition principle for relative N –loop pairs of spaces for 3�N �1 .
If 3�N <1 , this states that a pair of spaces homotopy equivalent to CW–complexes
.Xc ; Xo/ is homotopy equivalent to .Y SN ;HFib.�/S

N�1
/ for a functorially deter-

mined relative space �W B ! Y if and only if .Xc ; Xo/ is a grouplike SCN –space,
where SCN is any cofibrant resolution of the Swiss-cheese relative operad SCN . The
relative recognition principle for relative 1–loop pairs of spaces states that a pair
of spaces .Xc ; Xo/ homotopy equivalent to CW–complexes is homotopy equivalent
to .Y0;HFib.�0// for a functorially determined relative spectrum ��W B�% Y�C1 if
and only if .Xc ; Xo/ is a grouplike E! –algebra, where E! is a contractible cofibrant
relative operad or equivalently a cofibrant resolution of the terminal relative operad
Com! of continuous homomorphisms of commutative monoids. These principles are
proved as equivalences of homotopy categories.

55P35, 55P48, 55R15; 55P42

1 Introduction

For 1�N �1 a recognition principle is a specification of conditions under which a
space is of the homotopy type of an N –loop space. The concept of operad was central
to establishing recognition principles. A topological operad P consists of a sequence
of spaces P.n/ 2

Q
N Top and composition maps. The points p 2 P.n/ are abstract

operations of n arguments, and a P–algebra is a pointed space X 2 Top� equipped
with concrete realizations of these operations as maps in XX

n

. Formally a topological
operad P determines a monad P in the category of pointed topological spaces Top�
via the coend construction.

If N D 1, Stasheff proved in [42; 43] that a pointed space X is of the weak homotopy
type of a 1–loop space if and only if X is a grouplike A1–algebra, where A1 is the
operad of associahedra. Though Stasheff didn’t use the term “operad” for the sequence
of associahedra, the structure he used was what is now called an operad structure.

In [31], May established the term “operad” and used the little N –cubes operad CN ,
introduced by Boardman and Vogt in [5] in the language of PROPs, in order to prove a
recognition principle for connected N –loop spaces. All N –loop spaces are natural
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CN –algebras. A sufficient condition for a pointed space of the homotopy type of a CW–
complex X to be homotopic to an N –loop space is for it to be a grouplike CN –algebra.
To get a necessary condition CN must be substituted by a cofibrant resolution CN .
If N D 1, an E1–operad E can be used, which is a cofibrant operad with each
space contractible, or equivalently a cofibrant resolution of the terminal operad Com
of commutative topological monoids. For an overview including the nonconnected
cases, see Frankhuizen [12].

These recognition principles can be expressed as equivalences of homotopy categories.
For N 2N the N –loop space functor �N is part of an equivalence between the ho-
motopy category of .N�1/–connected spaces and the homotopy category of grouplike
CN –algebras. The 1–loop space functor �1 is part of an equivalence between the
homotopy category of connective spectra and the homotopy category of grouplike
E –algebras for any E1–operad E.

In this article a recognition principle for relative N –loop pairs of spaces for 3�N �1
is proved. The case N D 1 was proved by Hoefel, Livernet and Stasheff in [19]. For
�W B ! Y 2 Top!� a map of pointed spaces the homotopy fiber HFib.�/ is the space
of pairs .b; 
/ 2 B �Y I such that 
.0/D �.b/ and 
.1/D y0 . For 1 �N <1 the
relative N –loop pair of spaces functor is �N2 .�/ WD .Y

SN ;HFib.�/S
N�1

/. The domain
of the relative 1–loop pair of spaces functor �12 is the category Sp% of relative
spectra ��W B� % Y�C1 , which are spectra maps with a shift in the degree, and it is
�12 .��/ WD colim�!1.Y S�C1

�C1 ;HFib.��/S
�

/.

The theory of colored operads is a generalization of the theory of operads where
operations on multiple spaces are allowed. In this article relative operads are used,
which are a kind of operad in two colors. A topological relative operad Q consists of a
sequence of spaces Q.l/ 2

Q
N Top, a bisequence of spaces Q.m; n/ 2

Q
N2 Top and

composition maps. A relative operad Q determines a monad Q on the category of pairs
of pointed spaces Top2� . The category of Q–algebras is denoted by QŒTop�. Central
to the relative recognition principle is the N –Swiss-cheese relative operad SCN . The
underlying spaces of SCN are SCN .l/ D CN .l/ and SCN .m; n/ is the subspace of
CN .mCn/ with the first coordinate base of the N –dimensional cube embeddings
indexed by the last n indices being mapped to the first coordinate base of the codomain
N –dimensional cube (see Figure 1 for an example). All relative N –loop pairs of
spaces are natural SCN –algebras.

The 2–Swiss-cheese relative operad SC2 was introduced by Voronov [45] as a model of
the moduli space of genus-zero Riemann surfaces appearing in the open–closed string
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Figure 1: An element of SC2.3; 2/ .

theory studied by Zwiebach [47]. In Voronov’s original version of the 2–Swiss-cheese
relative operad the spaces SC2.m; 0/ were taken to be empty, which is not assumed
in the present article. Kontsevich used the Swiss-cheese relative operad in his work
on deformation quantization to describe actions of C�.CN /–algebras on C�.CN�1/–
algebras [23]. Related to Kontsevich’s approach to deformation quantization and
Zwiebach’s open–closed string field theory, Kajiura and Stasheff introduced open–
closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) in [22],
which are the algebras over operads that can be obtained from the homology of the
Swiss-cheese operad, as has been shown by Hoefel [16] and Hoefel and Livernet [18].

The Swiss-cheese relative operad itself has been the subject of intense study recently by
several authors. Livernet has shown that unlike the little cubes operads the Swiss-cheese
relative operads is not formal [27], and Willwacher has shown that extended Swiss-
cheese relative operads are also not formal [46]. Idrissi has found a model of SC2 in the
category of groupoids [21], and in general Quesney has found combinatorial models for
SCN in the category of sets and used them to exhibit models for relative loop spaces
in dimension 2 [37]. Ducoulombier proved that totalizations of certain cosimplicial
spaces are SC2–algebras and that there are SCN –algebra structures on pairs of spaces
weakly equivalent to a pair composed of the space of embeddings of RN�1 in RD

and the manifold calculus limit of .l/–immersions of RN�1 in RD [10; 11].

An Erel
1–operad is a cofibrant relative operad E! with each space contractible, or

equivalently a cofibrant resolution of the terminal relative operad Com! of continuous
homomorphisms of commutative topological monoids.

The relative recognition principle, Theorem 4.3.8, will be proved in the form of
equivalences of homotopy categories. These equivalences are not induced by Quillen
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equivalences, as is common in model category theory, but by a weaker machinery
introduced in Section 2.

Theorem Let 3 � N <1 and SCN be a cofibrant resolution of SCN . There is
an equivalence between the homotopy category of grouplike SCN –algebras and the
homotopy category of relative spaces with domain .N�2/–connected and codomain
.N�1/–connected.

Let E! be an Erel
1–operad. There is an equivalence between the homotopy category of

grouplike E! –algebras and the homotopy category of relative spectra with connective
domain and codomain.

1.1 Structure of the article

In Section 2 generalizations of Quillen adjunctions and idempotent Quillen (co)monads
are introduced and will be the underlying machinery in the proof of the main theorem.
The homotopy theory of relative loop spaces is presented in the language of monoidal
model categories, in particular the category of relative spectra and its model structure
are defined.

In Section 3 the theory of relative operads and their algebras is presented, including a
description of the Swiss-cheese relative operads SCN , the SCN –algebra structure of
relative N –loop pairs of spaces and some model-theoretical technical results.

The main results are proved in Section 4.

In the appendix a resolution of relative operads is introduced and used to construct
explicit cofibrant resolutions of the Swiss-cheese relative operads out of the Fulton–
MacPherson relative operads.

1.2 Notation and terminology

Throughout the language of category theory in Mac Lane [30] will be used. The theory
of model categories as presented by Goerss and Jardine [14] and Hirschhorn [15], as
well as the theory of monoidal model categories as presented by Hovey [20], is assumed.

By convention in diagrams in a model category T the morphisms in the class of
weak equivalences W are denoted by arrows marked with a tilde ��! , the ones
in the class of cofibrations C by hooked arrows ,! and the ones in the class of
fibrations F by double-headed arrows �. The functorial weak factorization systems
are denoted by .FatC;F\W ;�C ;�F\W / and .FatC\W;F ;�C\W ;�F / such that a
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morphism f 2 T .X; Y / is factored for instance as

X
fC,�! FatC;F\W .f /

fF\W
�
���� Y:

The notation CW T ! T and cofW C) Id is used for the cofibrant resolution functor
CX D FatC;F\W .∅X / and the associated natural trivial fibration cofX D .∅X /F\W ,
and the notation FW T ! T and fibW Id) F is used for the fibrant resolution functor
FX D FatC\W;F .�X / and the associated natural trivial cofibration fibX D .�X /C\W ,
where ∅X and �X are the unique morphisms associated with the initial and terminal
objects, respectively.

The homotopy category of T with objects the bifibrant objects of T and with morphisms
between bifibrant objects X and Y the set T .X; Y /=' of homotopy classes of maps
[20, Section 1.2] is denoted by Ho T , and �T W T ! Ho T denotes the homotopy
localization functor with �TX D CFX.

The prototypical example of monoidal model category used is the closed cartesian
category Top of compactly generated, weakly Hausdorff spaces as presented by Strick-
land [44] equipped with the mixed model structure where weak equivalences are weak
homotopy equivalences, fibrations are Hurewicz fibrations and cofibrations are maps
homotopy equivalent to retracts of relative CW–complexes in Cole [9, Theorem 2.1.16].
In Top all spaces are fibrant and cofibrant spaces are the spaces homotopy equivalent
to CW–complexes. The cofibrantly generated Quillen model structure [38] will be
assumed when defining the model structure for relative operads. When distinctions are
necessary, (co)fibrations in the Strøm model structure are referred to as h–(co)fibrations
and (co)fibrations in the Quillen model structure are referred to as q–(co)fibrations.

The theory of monads and their algebras as presented by May [31, Section 9] is assumed.

Acknowledgements
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2 Homotopy theory of relative loop spaces

In this section a generalization of the notion of Quillen adjunctions between model
categories is introduced, which is referred to as weak Quillen quasiadjunctions, where
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instead of unit and counit morphisms there is a unit span and a counit cospan, and it is
shown that they induce adjunctions on the homotopy categories. The relative N –loop
pair of spaces functors �N2 for N 2N are then defined and it is shown they admit a
weak Quillen left adjoint functor †N! , and that this adjunction induces a new model
structure with cofibrant objects the .N�1/–connected relative CW–complexes. A
generalization of left (right) Bousfield localizations via idempotent Quillen (co)monads
is presented, which is used in the recognition principle to pick out the subcategory of
grouplike algebras and connective relative spectra. The category of relative spectra, its
stable model structure, the base pair of spaces functor ƒ12 and the relative 1–loop
pair of spaces functor �12 are also defined and it is shown that ƒ12 admits a weak
Quillen left adjoint functor †1! .

2.1 Weak Quillen quasiadjunctions

Functors between model categories that are compatible with the model structures
induce functors between their respective homotopy categories. Let T and A be model
categories and S W T !A and ƒW A! T be functors. If S preserves cofibrant objects
and weak equivalences between cofibrant objects then S is left derivable and the right
Kan extension LS W Ho T !HoA of �ASC along �T with LSX D FSX is the left
derived functor of S . If ƒ preserves fibrant objects and weak equivalences between
fibrant objects then ƒ is right derivable and the left Kan extension RƒW HoA!Ho T
of �TƒF along �A with RƒY DCƒY is the right derived functor of ƒ. An adjunction
.S a ƒ/W T • A is a weak Quillen adjunction if S is left derivable and ƒ is right
derivable.

The standard fact that weak Quillen adjunctions induce adjunctions between homo-
topy categories is a special case of Theorem 2.1.2. The more common notion of
morphism between model categories in the literature, which by Ken Brown’s lemma
[20, Lemma 1.1.12] is strictly stronger than that of weak Quillen adjunction, is that
of Quillen adjunction, which are adjunctions where the left adjoint preserves (trivial)
cofibrations and the right adjoint preserves (trivial) fibrations. Not all adjunctions
between homotopy categories are induced by Quillen adjunctions or even weak Quillen
adjunctions. The following definition, which is central to the relative recognition
principle, is a generalization where a pair of functors admit a unit span and a counit
cospan:

Definition 2.1.1 Let T and A be model categories. A weak Quillen quasiadjunction
between T and A, denoted by .S aC ;F ƒ/W T • A, is a quadruple of functors
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S W T ! A, the left Quillen quasiadjoint, ƒW A! T , the right Quillen quasiadjoint,
C W T !T and F W A!A equipped with a natural span �0X W CX)X and �X W CX)
ƒSX and a natural cospan �0Y W Y )FY and �Y W SƒY )FY such that

(i) S is left derivable;

(ii) ƒ is right derivable;

(iii) C and F preserve both cofibrant and fibrant objects;

(iv) �0 and �0 are natural weak equivalences;

(v) if X 2 T is cofibrant then �SXS�X ' �0SXS�
0
X ;

(vi) if Y 2A is fibrant then ƒ�Y �ƒY 'ƒ�0Y �
0
ƒY .

Note that the definition of weak Quillen adjunction is recovered if C , F , �0 and �0

are all identities and if the homotopy equations (v) and (vi) are strict equations. Note
also that since �0 and �0 are natural weak equivalences the 2-out-of-3 property implies
that C and F preserve weak equivalences.

Theorem 2.1.2 A weak Quillen quasiadjunction .S aC ;F ƒ/W T • A induces a
derived adjunction between the homotopy categories .LS aRƒ/W Ho T •HoA.

Proof The unit of the adjunction is the composition

Œz��X WDX
Œ.�0cofC /X ��1 +3 RCX

ŒC.ƒfibS�/X � +3 RƒLSX

and the counit is the composition

Œz��Y WD LSRƒY
ŒF.�Scofƒ/Y � +3 LFY

Œ.fibF�
0/Y �
�1

+3 Y:

That the unit–counit equations hold follows from the commutativity of the diagrams

FSX
ŒFS�0X �

�1

uu

FSCX

ŒFScofCX ��1
��

ŒFS�X �
))

FFSX

ŒF�0SX �
�1

OO

ŒFFfibSX �
))

FFSX

Œ�0FSX �
�1

ii

FSCCX

ŒFSC�X �

��

FSƒSX

ŒFSƒfibSX �
))

ŒF�SX �

OO

FFFSX

ŒfibFFSX �
�1

OO

FSCƒSX

ŒFScofƒSX �

55

ŒFSCƒfibSX �
// FSCƒFSX

ŒFScofƒFSX �

// FSƒFSX

ŒF�FSX �

OO
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in HoA for all X 2Ho T and
CƒY

Œ�0CƒY �
�1

tt

ŒC�0ƒY �
�1

��

CCƒY

ŒcofCCƒY �
�1

��

CCƒY

ŒC�ƒY �
��

CƒFY

ŒCƒ�0Y �
�1

jj

CCCƒY

ŒC�CƒY �

��

ŒCC cofƒY �

55

CƒSƒY

ŒCƒfibSƒY �
))

ŒCƒ�Y �

55

CƒFFY

ŒCƒfibFY �
�1

OO

CƒSCƒY

ŒCƒScofƒY �

55

ŒCƒfibSCƒY �

// CƒFSCƒY
ŒCƒFScofƒY �

// CƒFSƒY

ŒCƒF�Y �

OO

in Ho T for all Y 2HoA.

The following corollary follows immediately:

Corollary 2.1.3 Let .S aC ;F ƒ/W T • A be a weak Quillen quasiadjunction. If
ƒfibSX�X 2 WT for every cofibrant X 2 T and �Y ScofƒY 2 WA for every fibrant
Y 2A, then

.LS aRƒ/W Ho T •HoA

is an equivalence of categories.

2.2 Finite relative loop pairs of spaces

For T a monoidal model category the pointed category T� of objects under the terminal
object inherits a monoidal model structure with tensor product the smash product
Y ^XDY˝XtY˝�t�˝X� and exponential the pointed exponential Y X DY X�Y ��
with the pushout and the pullback taken in T . The unit of the smash product is �t1.
A morphism f is in WT� , CT� or FT� if it is in WT , CT or FT , respectively. In
the induced model structure on Top� all pointed spaces are fibrant and the cofibrant
pointed spaces are the based spaces that are homotopy equivalent to CW–complexes
and with the basepoint map a Hurewicz cofibration.

As a special case of the fact that for X 2 T a cofibrant object in a monoidal model
category the adjunction .�˝X a�X / is a Quillen adjunction the N–suspension/N–loop
space adjunction

.†N a�N / WD .�^SN a �S
N

/W Top�• Top�
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is a Quillen adjunction, where SN WD IN=@IN with I the real interval Œ0; 1� and
the basepoint the equivalence class of the border. Note that trivially †N preserves
fibrant objects and that �N preserves cofibrant objects by Fritsch and Piccinini
[13, Corollary 5.3.7]. This is a nice advantage of working in the mixed model structure
when studying loop spaces.

If T is a model category then the category of morphisms and commutative squares T !

inherits the projective model structure where a commutative square

.e; f / 2 T !.�W A!X; �W B! Y /

is in WT ! or FT ! if e and f are both in WT or FT , respectively, and .e; f / is
in CT ! if e and .f; �/ 2 T .X tAB; Y / are both in CT . An object in T ! is fibrant if
it is a morphism between fibrant objects and it is cofibrant if it is a cofibration between
cofibrant objects. For instance, in Top!� all maps are fibrant and the cofibrant maps are
homotopy equivalent to inclusions of pointed CW–pairs.

For N 2 N , relative N –loop spaces are .N�1/–loop spaces of homotopy fibers of
maps. They come equipped with a natural inclusion of the N –loop space of the
codomain. Let I 2 Top� be the interval with 1 as the basepoint. For �W B! Y 2 Top!�
the homotopy fiber of � is the pullback HFib.�/ WD B �Y Y I in Top� induced by �
and the evaluation at 0 map, ie .b; 
/ 2 HFib.�/ if b 2 B and 
 2 Y I (in particular,

.1/D y0 ) and 
.0/D �.b/.

Definition 2.2.1 The relative N –loop pair of spaces functor is

�N2 D .�
N
c ; �

N
o /W Top!�! Top2�; .�W B! Y / 7! .Y SN ;HFib.�/S

N�1

/:

Note that there is always a natural map

� 2 Top�.Y
SN ;HFib.�/S

N�1

/; �.
/.s/ WD .b0; s
0
7! 
.s0; s//:

This map will be studied as part of the structure described by the Swiss-cheese relative
operads. The functor �N2 admits a weak Quillen left adjoint.

Definition 2.2.2 The relative N –suspension functor is

†N! W Top2�! Top!�;

.Xc ; Xo/ 7!

�
j 0Xo ^ 1SN�1 W Xo ^ S

N�1
! ..Xo ^ I /_ .Xc ^ S

1//^ SN�1

Œxo; s� 7! Œxo; 0; s�

�
:
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Proposition 2.2.3 There is a weak Quillen adjunction .†N! a�
N
2 /.

Proof The unit is

�N.Xc ;Xo/2Top2�..Xc ; Xo/;�
N
2 †

N
! .Xc ; Xo//;

Xc
�NXc
��!

�
..Xo^I /_.Xc^S

1//^SN�1
�SN

; �NXc .xc/.t/ WD Œxc ; t �;

Xo
�NXo
��!HFib.j 0Xo^1SN�1/

SN�1 ; �NXo.xo/.s/ WD.Œxo; s�; s
0
7! Œxo; s

0; s�/;

and the counit is
�N� 2 Top!.†N! �

N
2 �; �/;

HFib.�/S
N�1

^SN�1

j 0
HFib.�/SN�1

^1
SN�1

��

�NB
// B

�

��

..HFib.�/S
N�1

^ I /_ .Y SN ^S1//^SN�1
�NY

// Y

�NB .Œ.ˇ; 
/; s�/ WD ˇ.s/;

�
�NY .Œ.ˇ; 
/; s

0; s�/ WD 
.s/.s0/;

�NY .Œ˛; s
00; s�/ WD ˛.s00; s/:

It is trivial to check that the unit–counit equations are satisfied.

Wedging by cofibrant objects preserves cofibrations, so the functors �^SN�1 , �^SN

and �^ I in particular preserve cofibrant objects, and therefore since cofibrations are
closed under coproducts the images of †N! on cofibrant objects are maps between
cofibrant objects. The inclusion of a cofibrant object into the base of its cone is
a cofibration, therefore †N! preserves cofibrant objects. Ken Brown’s lemma and
the fact that wedging by cofibrant objects preserves trivial cofibrations imply that
�^ SN preserves weak equivalences between cofibrant objects, and closure of trivial
cofibrations under coproducts and Ken Brown’s lemma imply that weak equivalences
between cofibrant objects are closed under coproducts, and therefore †N! preserves
weak equivalences between cofibrant objects.

Clearly �N2 preserves fibrant objects. There is a natural exact sequence of pointed
spaces

BSN
! Y SN

! HFib.�/S
N�1

! BSN�1
! Y SN�1

for all relative space �W B ! Y that induces a natural exact sequence of homotopy
groups [36, Section 8.6], and therefore �N2 preserves weak equivalences by the five
lemma and the fact that the functors �S

q

preserve weak equivalences.
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Note that †N! preserves cofibrations and trivial cofibrations between cofibrant objects.
The adjunction .†N! a �

N
2 / and the cofibrantly generated Quillen model structure

induces a new model structure on Top!� as in Berger and Moerdijk [1, page 6].

Definition 2.2.4 Let 1�m<1. A relative spaces map

.e; f / 2 Top!�.�W A!X; �0W B! Y /

is a relative .m�1/–weak homotopy equivalence if the induced homomorphisms f� 2
Grp.�qX;�qY / are isomorphisms for all q �m and if the induced homomorphisms
.e; f I /� 2 Grp.�q.A�X XI /; �q.B �Y Y I // are isomorphisms for all q �m� 1.

This definition is equivalent to �N2 .e; f / being a pair of weak homotopy equivalences.
A pointed space Y is m–connected if �q.Y / is trivial for 0� q �m.

Definition 2.2.5 A relative space �W B! Y 2 Top!� is m–connected if B is .m�1/–
connected and Y is m–connected.

The images of †N! are always .N�1/–connected. The adjunction .†N! a �
N
2 /

transfers a model structure on Top!� from the Quillen model structure where the weak
equivalences are the relative .N�1/–weak homotopy equivalences, all objects are
fibrant and cofibrant objects are .N�1/–connected relative CW–pairs. When equipped
with the mixture of this model structure with the Strøm model structure the category of
relative spaces is denoted by Top!N�1 .

Proposition 2.2.6 There is a weak Quillen adjunction

.Id a Id/W Top!N�1• Top!�

that induces the inclusion of the coreflective homotopy subcategory of .N�1/–con-
nected relative spaces.

Proof The identity functor trivially preserves fibrant objects and weak homotopy
equivalences are .N�1/–weak homotopy equivalences, so IdW Top!� ! Top!N�1 is
right derivable. The generating cofibrations of Top!N�1 are cofibrations in Top!� , and
.N�1/–weak homotopy equivalences between .N�1/–connected relative spaces are
weak homotopy equivalences, so IdW Top!N�1! Top!� is left derivable. Also every
cylinder object in Top!N�1 is a cylinder object in Top!� ; therefore, the homotopy
relations coincide and LId is full.
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2.3 Bousfield localizations

A left (right) Bousfield localization is a model categorical version of a (co)reflective
subcategory, ie, a full subcategory whose inclusion admits a left (right) adjoint, the
(co)reflector. In this section results related to left Bousfield localizations are presented
explicitly, but they can all be dualized into results about right Bousfield localizations.
Bousfield localizations through a generalization of Bousfield and Friedlander’s method
of Quillen idempotent monads [7, Theorem A.7] will now be constructed. This gener-
alization is required for the same reason weak Quillen quasiadjunctions are needed,
which is because in the context of the relative recognition theorem there is a unit,
and in the infinite case a counit, only up to resolutions. All proofs in this section are
adaptations of the original arguments for Quillen idempotent monads.

Definition 2.3.1 Let T be a right proper model category. A Quillen idempotent
quasimonad on T is a pair of endofunctors QW T ! T and C W T ! T equipped with
a natural span �0W C ) Id and �W C )Q such that

(i) �0 is a natural weak equivalence;

(ii) Q preserves weak equivalences;

(iii) Q� and �Q are natural weak equivalences;

(iv) if X 2 T , p 2 F.E;B/ and f 2 T .X;B/ are such that �E ; �B ;Qf 2W , then
Q.�E / 2W.Q.X �B E/;QE/;

(v) if X;K 2 T and � 2 C.CX;K/, then iK 2W.K;X tCX K/.

If C and �0 are both identities, then the first and last conditions are trivial and Bousfield
and Friedlander’s original definition of Quillen idempotent monad is recovered.

That � 2 T ! has the left lifting property with regard to p 2 T ! , or equivalently that p
has the right lifting property with regards to �, is denoted by ��p . If M is a class of
morphisms of a category T , the subclass of morphisms with the left lifting property
with regards to morphisms in M is denoted by �M, and the subclass of morphisms
with the right lifting property with regards to morphisms in M is denoted by M� .

Definition 2.3.2 Let T be a right proper model category and .Q;C ; �0; �/ be a
Quillen idempotent quasimonad on T . The Q–weak equivalences are defined as
WQ WDQ

�1.W /, the Q–cofibrations as CQ WD C and the Q–fibrations as FQ WD
.CQ \WQ/

� .
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Lemma 2.3.3 Let T be a right proper model category and .Q;C ; �0; �/ be a Quillen
idempotent quasimonad on T ; then WQ \FQ DW \F .

Proof Let p 2 T .E;B/. If p 2 F \W then p 2 WQ by Definition 2.3.1(ii) and
p 2 FQ , since CQ D C implies p 2 C�

Q � .CQ \WQ/
� .

Suppose now that p 2 FQ \WQ . In the factorization p D pF\W pC it is the case
that pC 2 WQ by Definition 2.3.1(ii) and the fact that WQ satisfies the 2-out-of-3
property, so pC 2 CQ \WQ . Therefore pC �p and so p is a retract of pF\W by
the retract argument [20, Lemma 1.1.9]. Therefore p 2 F \W since trivial fibrations
are closed under retracts.

Lemma 2.3.4 Let T be a right proper model category, .Q;C ; �0; �/ be a Quillen
idempotent quasimonad on T and p 2 F.E;B/. If �E ; �B 2W then p 2 FQ .

Proof Let � 2 CQ \WQ.A;X/ and .e; f / 2 T !.�; p/. Consider the factorization
of Q.e; f /

QA

�Q�

��

�

QeC\W
// FatC\W;F .Qe/

QeF
//

� FatC\W;F .Qe;Qf /
��

QE

Qp

��

QX
�

QfC\W

// FatC\W;F .Qf /
QfF

// QB

By Definition 2.3.1(ii) and the 2-out-of-3 property, FatC\W;F .Qe;Qf / 2W . Taking
the pullback of the right square along .�E ; �B/, there is the commutative diagram

CA

C�
��

.QeC\W �A;C e/
// FatC\W;F .Qe/�QE CE

�CE
//

.FatC\W;F .Qe;Qf /;Cp/
��

CE

Cp
��

CX
.QfC\W �L;Cf /

// FatC\W;F .Qf /�QB CB
�CB

// CB

with .FatC\W;F .Qe;Qf /;Cp/ 2 W by the 2-out-of-3 property, �E ; �B 2 W , T
being right proper and the existence of the commutative square

FatC\W;F .Qe/�QE CE

.FatC\W;F .Qe;Qf /;Cp/
��

�

�FatC\W;F .Qe/
// FatC\W;F .Qe/

� FatC\W;F .Qe;Qf /
��

FatC\W;F .Qf /�QB CB
�

�FatC\W;F .Qf /
// FatC\W;F .Qf /
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Now, taking the cofibration/trivial fibration factorization of the left square and then
taking the pushout along .�0A; �

0
X /, define

A0 WD AtCA FatC;F\W .QeC\W �A;C e/;

X 0 WDX tCX FatC;F\W .QfC\W �X ;Cf /;

�0 WD
�
�;FatC;F\W

�
C �; .FatC\W;F .Qe;Qf /;Cp/

��
W A0!X 0

such that �0 2W by the 2-out-of-3 property and Definition 2.3.1(v). Therefore there
is the commutative diagram

A
iA

// A0
.e;�0E�CE.QeC\W �A;C e/F\W /

//
� _

��0C\W
��

E

p
����

A
�0C\W iA

//
� _

�

��

FatC\W;F .�0/

�0F�
����

.f;�0B�CB.QfC\W �X ;Cf /F\W /�
0
F

//

H 0

33

B

X

H

55

iL

// X 0
.f;�0B�CB.QfC\W �X ;Cf /F\W /

// B

with �0F 2W by the 2-out-of-3 property. Then H 0H 2 T .X;E/ is a lift of .e; f / 2
T !.�; p/. Therefore p 2 FQ .

Theorem 2.3.5 Let T be a right proper model category and .Q;C ; �0; �/ a Quillen
idempotent quasimonad on T ; then .WQ; CQ; FQ/ is a left Bousfield localization
of T .

Proof Since Q is a functor it preserves composition and isomorphisms, therefore
WQ contains isomorphisms and satisfies the 2-out-of-3 property. It is the case that
.CQ; FQ \WQ/ D .C; F \W / by Lemma 2.3.3, so the weak factorization system
.FatCQ;FQ\WQ ;�CQ ;�FQ/ WD .FatC;F\W ;�C ;�F / is well defined.

There is also a trivial Q–cofibration/Q–fibration weak factorization system. Since
by definition FQ D .CQ \WQ/� , and so �FQ D

�..CQ \WQ/
�/�WQ \CQ , the

existence of this weak factorization system implies �FQ �WQ \CQ by the retract
argument, the closure of trivial cofibrations under retracts and the fact Q preserves
retracts.

Defining Q0X WD FatC;F\W .�X /, then iQ0X 2W.Q0X;X tCX Q
0X/ by Definition

2.3.1(v). Therefore �XtCXQ
0X 2 W for all X 2 T since C and Q preserve weak

equivalences, W satisfies the 2-out-of-3 property and the following diagram commutes:

Algebraic & Geometric Topology, Volume 20 (2020)



Relative recognition principle 1445

CQX

��QX

��

CQ0X�
C�XF\Woo

��Q0X

��

�

C iQ0X // C .X tCX Q
0X/

� �XtCXQ
0X

��

QQX QQ0X�
Q�XF\Woo

�

QiQ0X // Q.X tCX Q
0X/

Let f 2 T .X; Y / and apply the trivial cofibration/fibration factorization on .f;Q0f /
and the natural span of the Quillen idempotent quasimonad to obtain the diagram

XtCXQ
0X
� � .f;Q

0f /C\W
�

// FatC\W;F .f;Q0f /
.f;Q0f /F // // YtCYQ

0Y

C .XtCXQ
0X/

� �XtCXQ
0X

��

� �0
XtCXQ

0X

OO

�

C .f;Q0f /C\W // C FatC\W;F .f;Q0f /

� �0FatC\W;F .f;Q0f /

OO

C .f;Q0f /F //

� �FatC\W;F .f;Q0f /

��

C .YtCYQ
0Y /

� �0
YtCYQ

0Y

OO

� �YtCYQ
0Y

��

Q.XtCXQ
0X/

Q.f;Q0f /C\W
�

//QFatC\W;F .f;Q0f /
Q.f;Q0f /F //Q.YtCYQ

0Y /

By the previous observations, �XtCXQ
0X ; �YtCYQ

0Y 2 W , and by the 2-out-of-3
property �FatC\W;F .f;Q0f / 2 W , therefore .f;Q0f /F 2 FQ by Lemma 2.3.4. Also
.f;Q0f /C\W 2 CQ \WQ since C D CQ and W �WQ .

By Definition 2.3.1(iii) and the 2-out-of-3 property, Q�XC 2W . Therefore, by the
2-out-of-3 property, QiX 2W , and so iX 2WQ for all X 2 T :

QCX

�Q�XC
��

�

Q�0X // QX

� QiX
��

QQ0X �

QiQ0X
// Q.X tCX Q

0X/

By taking the pullback of .f;Q0f /F along iY , Definition 2.3.1(iv) implies that
�FatC\W;F .f;Q0f / 2 WQ , which implies ..f;Q0f /C\W iX ; f / 2 WQ by the 2-out-
of-3 property and so ..f;Q0f /C\W iX ; f /C 2 CQ \WQ in the diagram

FatC;F\W ..f;Q0f /C\W iX ; f /

�

..f;Q0f /C\W iX ;f /F\W

** **

X ..f;Q0f /C\W iX ;f /
//

iX

��

* 


..f;Q0f /C\W iX ;f /C

77

FatC\W;F .f;Q0f /�YtCYQ
0Y Y

�Y
// //

�FatC\W;F .f;Q0f /

��

Y

iY

��

XtCXQ
0X
� � �

.f;Q0f /C\W

// FatC\W;F .f;Q0f /
.f;Q0f /F

// // YtCYQ
0Y
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Also �Y 2 FQ since fibrations are closed under pullbacks, and so F \W D FQ\WQ
implies �Y ..f;Q0f /C\W iX ; f /F\W 2 FQ by Lemma 2.3.3.

Therefore the upper morphisms in the above diagram present a trivial Q–cofibration/Q–
fibration weak factorization system.

Setting Q0X WD FatC;F\W .�X / and Q00X WDX tCXQ
0X, the following characteriza-

tion of Q–fibrations can be derived. Homotopy pullback results from [14, Section II.9]
will be used, which are presented there in the context of simplicial sets but are valid in
any right proper model category.

Proposition 2.3.6 Let T be a right proper model category , .Q;C ; �0; �/ be a Quillen
idempotent quasimonad on T and p 2 T .E;B/; then p 2 FQ if and only if the
following conditions are satisfied :

(i) p 2 F .

(ii) The commutative square

E
iE
//

p

��

Q00E

.p;Q0p/
��

B
iB

// Q00B

is a homotopy pullback. Equivalently, because T is a right proper model cate-
gory , .p; .p;Q0p/W iE /2W.E;B�Q00BK/ for all ..p;Q0p/W ; .p;Q0p/F /2
W.Q00E;K/�F.K;Q00B/ such that .p;Q0p/D .p;Q0p/F .p;Q0p/W .

Proof Suppose p satisfies conditions (i) and (ii). There is the factorization .p;Q0p/D
.p;Q0p/F .p;Q

0p/C\W , and by the previous proof .p;Q0p/F 2 FQ . Also �B 2
FQ.B �Q00B FatC\W;F ..p;Q0p//; B/ since fibrations are closed under pullbacks:

E

p

��

iE
//

.p;.p;Q0p/C\W iE/

((

Q00E� _

�.p;Q0p/C\W
��

B �Q00B FatC\W;F ..p;Q0p//

�B

vvvv

�FatC\W;F ..p;Q0p// // FatC\W;F ..p;Q0p//

.p;Q0p/F
����

B
iB

// Q00B

From the hypothesis .p; .p;Q0p/C\W iE /2W and the 2-out-of-3 property, it follows
that .p; .p;Q0p/C\W iE /C 2C \W , and so from the hypothesis p 2F it follows that
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.p; .p;Q0p/C\W iE /C �p . Therefore p is a retract of �B.p; .p;Q0p/C\W iE /F\W
by the retract argument, and p 2 FQ since F \W D FQ \WQ .

Suppose now that p 2FQ . Since FQ�F , (i) holds. Let ..p;Q0p/W ; .p;Q0p/F // be
as in condition (ii). There is a natural span of weak equivalences Q00 �(HQ0 �H)Q by
the definition of Q0 and by Definition 2.3.1(v), and so Q00WQ �W by the 2-out-of-3
property. Consider the commutative diagram

E

.p;.p;Q0p/W iE/

��

iE // Q00E

� .p;Q0p/W
��

�

Q00iE // Q00Q00E

� Q00.p;Q0p/W
��

B �Q00B K
�K //

�B

��

K �

iK //

.p;Q0p/F
����

Q00K

Q00.p;Q0p/F
��

B
iB

// Q00B
�

Q00iB

// Q00Q00B

By the previous proof, iE ; iB 2 WQ and .p;Q0p/F 2 FQ . From the 2-out-of-3
property follows iK 2 W , and from the naturality of � and the 2-out-of-3 property
follows �K 2 W . Therefore �K 2 WQ by Definition 2.3.1(iv). Also �B 2 FQ by
closure under pullbacks. So .p; .p;Q0p/W iE / 2 WQ by the 2-out-of-3 property
of WQ . Since every commutative square that contains parallel weak equivalences is a
homotopy pullback and pullbacks along fibrations are also homotopy pullbacks, the two
lower squares are homotopy pullbacks, and so the lower rectangle is also a homotopy
pullback. This lower rectangle is equal to the rectangle

B �Q00B K
iB�Q00BK //

�B

��

Q00.B �Q00B K/

Q00�B
��

Q00�K
�

// Q00K

Q00.p;Q0p/F
��

B
iB

// Q00B
Q00iB

� // Q00Q00B

and since the right commutative square contains parallel weak equivalences it is a
homotopy pullback and so the left square is also a homotopy pullback.

Consider the factorization

.p; .p;Q0p/W iE /D .p; .p;Q
0p/W iE /F\W .p; .p;Q

0p/W iE /C :

From the 2-out-of-3 property, .p; .p;Q0p/W iE / 2WQ and F \W D FQ \WQ , it
follows that .p; .p;Q0p/W iE /C 2CQ\WQ . Therefore .p; .p;Q0p/W iE /C �p and
p 2 Ret

�
�B.p; .p;Q

0p/W iE /F\W
�

by the retract argument.
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The commutative square of condition (ii) is a retract of

FatC;F\W
�
.p; .p;Q0p/W iE /

� FatC;F\W .iE ;iB�Q00BK
/
//

� .p;.p;Q0p/W iE /F\W

��

FatC;F\W
�
.p; .p;Q0p/W iE /;

Q0.p; .p;Q0p/W iE /
�

�..p;.p;Q0p/W iE /;Q
0.p;.p;Q0p/W iE //F\W

��

B �Q00B K iB�Q00BK
//

�B

��

Q00.B �Q00B K/

Q00�B
��

B
iB

// Q00B

with the upper square a homotopy pullback since it contains parallel weak equivalences,
and so the whole commutative rectangle is a homotopy pullback. Since homotopy
pullbacks are closed under retracts, condition (ii) is satisfied.

For every weak Quillen quasiadjunction .S aC ;F ƒ/W T •A there are the associated
endofunctor ƒFSC that preserves weak equivalences equipped with the natural span

X CCX
�

.cof�0C/Xks .ƒfibS�/CX +3 ƒFSCX;

and the endofunctor SCƒF that preserves weak equivalences equipped with the natural
cospan

SCƒFY
.�Scofƒ/FY +3 FFY Y:

.�0Ffib/Y

�
ks

Definition 2.3.7 Let .S aC ;F ƒ/W T •A be a weak Quillen quasiadjunction; then
it is idempotent if T is right proper, A left proper and the associated endofunctors
and natural transformations above form an idempotent Quillen quasimonad and an
idempotent Quillen quasicomonad.

The following theorem is a model-theoretic version of the fact that an adjunction
.S aƒ/ with ƒS a reflector and Sƒ a coreflector induces an equivalence between
the respective subcategories:

Theorem 2.3.8 Let .S aC ;F ƒ/W T • A be an idempotent weak Quillen quasiad-
junction; then the adjunction .LS aRƒ/ can be factored into an equivalence between
the reflective subcategory Ho TƒFSC and the coreflective subcategory HoASCƒF ,

Ho T
LId
//

? Ho TƒFSC

LS
//

?
_?

RId
oo HoASCƒF

� � LId
//

?

Rƒ
oo HoA:

RId
oo
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Proof By the definitions, .ƒfibS�/X is a ƒFSC–weak equivalence and .�Scofƒ/Y is
an SCƒF–weak equivalence. Therefore the equivalence follows from Corollary 2.1.3.

The infinite relative recognition theorem, Theorem 4.3.8, is a particular case of this
theorem.

2.4 Relative spectra and infinite relative loop pairs of spaces

Infinite loop spaces and their homotopy structure can be described via the category of
spectra introduced by Lima [26] equipped with the stable model structure introduced
by Bousfield and Friedlander [7]. See also Schwede [40]. The category of spectra is
denoted by Sp.

By the closed monoidal structure of Top� , for every spectrum Y� 2 Sp with struc-
tural maps ��;m 2 Top�.Y� ^ S

m; Y�Cm/ there is are adjoint structural maps ���;m 2
Top�.Y�; Y

Sm

�Cm/. The qth stable homotopy group of Y� for q 2 Z is

�Sq .Y�/ WD colim
�!1

�qC�.Y�/;

where the colimit is induced by the adjoint structural maps ���;m . A spectrum Y� is
connective if �Sq .Y�/ is trivial for all q < 0. A stable weak homotopy equivalence is a
spectra map that induces an isomorphism on all stable homotopy groups.

The spectra of interest for stable homotopy theory are the �–spectra, which are the
ones such that the adjoint structural maps ���;m are all weak equivalences. These are
the fibrant objects of the stable model structure on spectra. The cofibrant spectra are
the ones composed of cofibrant spaces with cofibrant structural maps.

In order to define infinite relative loop spaces, the category of maps of spectra that shift
the index by 1 is required.

Definition 2.4.1 A relative spectrum is a pair of spectra

.B�; Y�/ 2 Sp� Sp

equipped with a sequence of maps

�� 2
Y
N

Top�.B�; Y�C1/
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such that the sequence of squares

B� ^S
1 ��;1 //

��^1S1
��

B�C1

��C1

��

Y�C1 ^S
1
��C1;1

// Y�C2

commute. A relative spectrum is denoted by either ��W B�% Y�C1 or simply �� . A
relative spectra map between relative spectra ��W A�%X�C1 and ��W B�% Y�C1 is
a pair of spectra maps .e�; f�/ 2 Sp.A�; B�/� Sp.X�; Y�/ such that the sequence of
squares

A�
e�

//

��
��

B�

��
��

X�C1
f�C1

// Y�C1

commute. The category of relative spectra is denoted by Sp% .

Note that for every relative spectrum ��W B� % Y�C1 there is an associated exact
sequence of groups

� � � ! �Sq Y�
.b0�;�

�
�;1/�

�������! �Sq HFib.��/
.�B� /�
�����! �Sq B�

.��/�
��! �Sq�1Y�! � � � :

As is the case with Sp, the category Sp% is bicomplete and the limits and colimits are
computed in each index. A model structure on Sp% can be built in an analogous way
to the stable model structure on Sp. This model structure is a left Bousfield localization
through a Quillen idempotent monad on a strict model structure induced by the pointed
mixed model structure on topological spaces. In the following the convention that
spectra are the terminal space � in negative degrees is used.

Definition 2.4.2 If ��W A� % X�C1; ��W B� % Y�C1 2 Sp% , then a relative spectra
map .e�; f�/ 2 Sp%.��; ��/ is a

� strict weak equivalence if e�; f� 2W for all � 2N ;

� strict cofibration if
(i) .e�; ���1;1/ 2 C.A� _A��1^S1 .B��1 ^ S

1/; B�/ for all � 2N , and

(ii) ..f�; ���1/; ���1;1/2C..X�_A��1B��1/_.X��1_A��2B��2/^S
1Y��1^S

1;Y�/

for all � 2N ;

� strict fibration if e�; f� 2 F for all � 2N .
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These classes are part of the strict model structure on relative spectra and are denoted
by .W ;C ; F /. The weak factorization systems can be defined inductively from the
mixed model structure on Top� .

The cofibrant objects of the strict model structure are relative spectra such that ���1;1 2
C.B��1^S

1; B�/ and .���1; ���1;1/2C.B��1_B��2^S1 .Y��1^S
1/; Y�/ for all � 2N .

In particular the underlying spaces of a cofibrant relative spectrum are cofibrant and
the structural maps are cofibrations. All relative spectra are fibrant in the strict model
structure.

Definition 2.4.3 The relative spectrification functor is

z�W Sp%! Sp%; .��W B�% Y�C1/ 7! colim
q!1

.�S
q

�CqW B
Sq

�Cq% Y Sq

�C1Cq/;

and it is equipped with the natural inclusions l W Id) z� into the colimits.

Proposition 2.4.4 The functor z� equipped with the natural map l is an idempotent
Quillen monad on Sp% with the strict model structure.

A relative spectra map .e�; f�/ 2 Sp%.��W A�%X�C1; ��W B�% Y�C1/ is an z�–weak
equivalence if �Sq e� and �Sq f� are isomorphisms for all q 2Z, and it is an z�–fibration
if .e�; f�/ 2 F and

.�
�
�;1; e�/ 2W.A�; A

S1

�C1 �BS1
�C1

B�/ for all � 2N;

.�
�
�;1; f�/ 2W.X�; X

S1

�C1 �Y S1
�C1

Y�/ for all � 2N:

A relative spectrum ��W B�% Y�C1 is z�–fibrant if B� and Y� are both �–spectra.

Proof The conditions in Definition 2.3.1 are satisfied. The strict model structure is right
proper since all objects are fibrant. Conditions 2.3.1(i) and 2.3.1(v) are trivially satisfied
since C D Id and �0 D 1Id . Since each �S

q

preserves weak equivalences, z� pre-
serves weak equivalences and so condition 2.3.1(ii) is satisfied. Condition 2.3.1(iii)
is satisfied because z�D z� z�. Condition 2.3.1(iv) is satisfied since the mixed model
structure on Top� is right proper and z� preserves limits and fibrations. That z�–weak
equivalences are as described follows from the fact that for every spectrum X� the
equations

��Cp colim
q!1

XSq

�Cq D colim
q!1

��CpCqX�Cq D �
S
p X�

hold. The description of z�–fibrations and z�–fibrant relative spectra follows from the
characterization of fibrations in Proposition 2.3.6.
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Definition 2.4.5 The relative base pair of spaces functor is

ƒ12 D .ƒ
1
c ; ƒ

1
o /W Sp%! Top2�; .��W B�% Y�C1/ 7! .Y0;HFib.�0//:

The relative 1–loop pair of spaces functor is �12 WDƒ
1
2
z�.

Definition 2.4.6 The relative suspension spectra functor is

†1! W Top2�! Sp%; .Xc ; Xo/ 7!

�
j 0Xo^S

�
W Xo^S

�
% ..Xo^I /_.Xc^S

1//^S�

Œxo; s� 7! Œxo; 0; s�

�
;

with ..Xo ^ I /_ .Xc ^S1//^S�1 WDXc .

Proposition 2.4.7 There is a weak Quillen adjunction .†1! aƒ
1
2 /.

Proof The unit is

�1.Xc ;Xo/ 2 Top2�..Xc ; Xo/;ƒ
1
2 †
1
! .Xc ; Xo//;

Xc
�1XcD1Xc������!Xc ; �1Xc .xc/ WD xc ;

Xo
�1Xo
��! HFib.j 0Xo/; �1Xo.xo/ WD .xo; s 7! .xo; s//;

and the counit is

�1�� 2 Sp%.†1! ƒ
1
2 ��; ��/;

HFib.�0/^ S�

j 0HFib.�0/
^S�

��

�1B�
// B�

��

���
.HFib.�0/^ I /_ .Y0 ^S1/

�
^S�

�1Y�C1

// Y�C1

�1B�

�
Œ.b; 
/; s�

�
WD �0;�.b; s/;��1Y�C1.Œ.b; 
/; s0; s�/ WD �1;�C1.
.s0/; s/;

�1Y�C1.Œy; s
0; s�/ WD �0;�C1.y; .s

0; s//:

That the functors are derivable follows from the same arguments as in the proof of
Definition 2.2.2.
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3 Relative operads

In this section the theory of relative operads and their algebras is presented. The relative
operad Com! of homomorphisms of commutative monoids and the Swiss-cheese
relative operads SCN are presented, and also the SCN –algebra structure of relative
N –loop pairs of spaces. The Quillen model structure on topological spaces can be
transferred to the category of relative operads and their algebras [3], and for algebras
over topological relative operads there is also a Strøm model structure and therefore
a mixed model structure on the categories of algebras. With this model structure it
is shown that some functors constructed with the bar construction and the monads
associated with relative operads are left derivable. This follows from a useful result on
the compatibility of Reedy model structures, monoidal model structures and coends.

The bar construction will be central to the main result. Let T and A be categories. The
category B.T ;A/ is defined as follows: the objects of B.T ;A/ are triples .F; C;X/,
with C a monad in T , F a C –functor in A and X a C –algebra, and morphisms are
triples .˛; �; f / 2 B.T ;A/..F; C;X/; .F 0; C 0; X 0// with � a monad morphism, f a
C –morphism and ˛ a C –functors morphism. The two-sided bar construction is the
functor

B�W B.T ;A/!A�
op
; .F; C;X/ 7!

0BBB@FC �X; @i D
8<:
�C��1 ; i D 0;

FC i�1�C��i ; 0 < i < �;

FC ��1�; i D �;

si D FC
i�C��iC1 ; 0� i � �

1CCCA:
The geometric realization jB�.F; C;X/j is denoted by B.F;C;X/. From [31, Sections
9.2 and 11.8] any map f 2 A.Y; FX/ determines a map �.f / 2 A.Y; B.F; C;X//
and any map g 2 A.FX; Y / such that g@0 D g@1 2 A.FCX; Y / determines a map
".g/ 2A.B.F; C;X/; Y /. Maps of these types are central to the original recognition
theorem and the relative version in Section 4.

3.1 Relative operads and their algebras

Colored operads are a generalization of operads where operations on multiple objects
are considered. Relative operads are a kind of colored operads on two colors fc; og
that were first defined by Voronov [45].

Definition 3.1.1 A relative set is a set A equipped with a function

corA 2 Set.At fAg; fc; og/;
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the coloring of A, such that if cor.A/D c then cor.a/D c for all a 2 A. A relative
set is simply denoted by A and the coloring corA simply as cor when its relative
set A is obvious from context. A relative set A is open if cor.A/D o and is closed if
cor.A/D c . The subset of closed and open elements of a relative set A are denoted
respectively as Ac and Ao .

A relative function f between relative sets A and A0 of the same color is a function
f 2 Set.A;A0/ such that corA D corA0f . There are no relative functions between
relative sets of different colors.

Definition 3.1.2 Let Srel be the category with objects the closed finite relative sets
l WD f1c ; : : : ; lcg for l 2N and the open relative sets m; n WD f1c ; : : : ; mc ; 1o; : : : ; nog
for .m; n/ 2N2 , and with morphisms the bijective relative functions. The relative sets
0 and 0; 0 are respectively the closed and open empty sets. Denote by Sc and So the
full subcategories of respectively closed and open relative sets in Srel .

Let Sinj
rel be the category with the same objects as Srel but with morphisms the injective

relative functions. Denote by S inj
c and Sinj

o the full subcategories of closed and open
objects, respectively.

If .A; .Ba// 2 Srel �
Q
A Scor.a/ then †AB

a is the relative set composed of pairs
.a; b/ with a 2 A and b 2 Ba equipped with the coloring cor.a; b/ D cor.b/ and
cor.†ABa/ D cor.A/. The relative set †ABa is considered an object of Srel by
equipping it with the linear order .a; b/ < .a0; b0/ if either cor.b/D c and cor.b0/D o,
or cor.b/D cor.b0/ and either a < a0, or aD a0 and b < b0.

The relative bijections Sl WD Srel.l; l/ form a group isomorphic to the symmetric
group with l elements and the relative bijections Sm;n WD Srel.m; n;m; n/ is a group
isomorphic to Sm �Sn .

Definition 3.1.3 Let T be a bicomplete symmetric monoidal category. An Srel –object
in T is a functor QW Sop

rel ! T such that Q.0/ D 1 D Q.0; 0/. The category of
Srel –objects in T is denoted by Srel–T .

For each Q 2 Srel� T and A 2 Srel , there is a right SA–action on Q.A/.

Definition 3.1.4 Q 2 Srel � Top is Srel –free if for each A 2 Srel the SA–action
on Q.A/ is free.
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Definition 3.1.5 A (unital symmetric) relative operad Q in T is an Srel –object in T
equipped with units

�Qc 2 T .1;Q.1//; �Qo 2 T .1;Q.0; 1//;

and for each .A; .Ba// 2 Srel �
Q
A Scor.a/ a composition morphism

ı
Q
A;.Ba/

2 T
�
Q.A/˝

O
A

Q.Ba/;Q.†ABa/
�

satisfying associativity, unit and equivariance conditions [35].

For every relative operad Q in T there is an associated monad defined by a coend on
the category T 21= of pairs of objects under the monoidal unit. For a survey of the many
applications of coends see Loregian [28].

Definition 3.1.6 Let T be a category, C a small category and F W Cop � C ! T a
bifunctor. The coend of F is the coequalizerZ C

F.C;C / WD Coeq
� a

C.C;C 0/

F.C 0; C /�
a
C

F.C;C /

�
:

The underlying functor of Q can be extended to a functor on Sinj;op
rel . For � 2Sinj

rel.A;B/

define .Bb� /2
N
B Scor.b/ as Bb� D 0 if cor.b/D c and b … Im � , Bb� D 1 if cor.b/D c

and b 2 Im � , Bb� D 0; 0 if cor.b/ D o and b … Im � , and Bb� D 0; 1 if cor.b/ D o
and b 2 Im � . Then the right action � � 2 T .Q.B/;Q.A// is the composition of
the morphisms Q.B/! Q.B/˝

�N
B Q.Bb� /

�
! Q.A/ induced by the units and

compositions. These morphisms are the degenerations of the relative operad. For every
.Xc ; Xo/ 2 T 21= define the functor

.Xc ; Xo/
˝�
W Sinj

rel! T ; A 7!X˝Acc ˝X˝Aoo ;

with left action � � 2 T ..Xc ; Xo/A; .Xc ; Xo/B/ for each � 2Sinj
rel.A;B/ the composition

.Xc ; Xo/
A! .Xc ; Xo/

Im �˝
�N

BnIm � 1
�
! .Xc ; Xo/

B induced by the rearrangements
of the coordinates and the basepoint maps. A relative operad Q then defines the monad

QD .Qc ;Qo/W T 21=! T 21=;

.Xc ; Xo/ 7!

�Z S
inj
c

Q.l/˝X˝lc ;

Z S
inj
o

Q.m; n/˝ .Xc ; Xo/˝m;n
�
;

with unit and multiplication induced by the operadic unit and composition.
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Definition 3.1.7 Let Q2Oprel.T /; then a Q–algebra is an algebra over the associated
monad Q . The category of Q–algebras is denoted by QŒT �.

The terminal topological relative operad is Com! with underlying Srel –space

Com!
W Sop

rel! Top; A 7! �:

The structural maps are obvious since � is the terminal space. Algebras .Xc ; Xo/ 2
Com! ŒTop� are pairs of topological commutative monoids equipped with a continuous
homomorphism from Xc to Xo induced by � 2 Com!.1; 0/.

The N –Swiss-cheese relative operad SCN has as underlying Srel –space

SCN W S
op
rel!Top;

A 7!
˚
dAD.da/2.I

N /

F
A I

N

j8a2A 9.mida /2.0; 1�
N; .cida /2I

N
�
da.t

i
a/D.m

i
da
taCc

i
da
/
�

and da. VINa /\da0. VI
N
a0 /D∅ if a¤a0I c1daD0 if cor.a/Do

	
;

ie SCN .A/ is the subspace of maps in .IN /
F
A I

N

defined in each N –cube by coordi-
natewise dilations and translation with disjoint interiors such that the bases in the first
coordinate of the N –cubes with open indices are mapped inside the first coordinate base.
The SA–actions shuffle the map indices. The relative operad structural maps are defined
by composition, ie cA ı .daBa/D .cad

a
b
/, with the degenerations deleting the respective

N –cubes. For example see Figure 2. Define SC1 WD colim�!1 SC� with the colimit
taken over the natural relative operad inclusions �� 1I 2 Oprel.Top/.SC�;SC�C1/.

Proposition 3.1.8 Let 1 � N � 1; then the images of �N2 are naturally SCN –
algebras.

Proof First let N <1. Define

�N2;� 2 Top2�.SCN�
N
2 .�W B! Y /;�N2 .�W B! Y //;

�Nc;�.Œdl ; 

l �/.t/ WD

�

 i .d�1i .t//; t 2 di .I

N /;

y0; t … dl
�F

l I
N
�
;

�No;�.Œdm;n; ..˛; ˇ/
m; 
n/�/.s/ WD

�
.˛j .d�1j .0; s//; ‰/; .0; s/ 2 dk.I

N /;

.b0; „/; .0; s/ … dn
�F

n I
N
�
;
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2c 1c

1o

1c

2c
;

1c

2c 3c

1c

1o
2o

; D

6c

1o
2o

1c
2c

3c

4c 5c

Figure 2: Composition in SC2 .

where

‰W s0 7!

8̂<̂
:
ˇj .d�1j .0; s//.s0/; .s0; s/ 2 dj .I

N /;


k.d�1
k
.s0; s//; .s0; s/ 2 dk.I

N /;

y0; .s0; s/ … dm;n
�F

m;n I
N
�
;

„W s0 7!

�

k.d�1

k
.s0; s//; .s0; s/ 2 dk.I

N /;

y0; .s0; s/ … dm;n
�F

m;n I
N
�
:

It’s easy to verify that �N2 is compatible with the relative operad structural maps
of SCN .

The SC1–algebra structure on the images of �12 are induced by the finite cases, since
by definition an element dA 2 SC1.A/ belongs to some SCN .A/ with N <1.

3.2 Homotopical properties of relative operads and their algebras

Conditions for the existence of a model structure on colored operads in a symmetric
model category T and their algebras are given in [3, Theorem 2.1]. The category
Oprel.Top/ admits a cofibrantly generated model structure induced by the Quillen model
structure, and for any Q 2 Oprel.Top/ the category QŒTop� admits a model structure
with weak equivalences and fibrations being the pairs of maps that are respectively
pairs of weak equivalences and pairs of fibrations of the mixed model structure when
the Q–algebra structure is forgotten.

A q–cofibrant relative operad Q satisfies the homotopy invariance property [1, Theo-
rem 3.5; 6, Theorem 4.58], which in particular states that if .Xc ; Xo/; .Yc ; Yo/2T 21= are
bifibrant, .Yc ; Yo/ admits a Q–algebra structure and .fc ; fo/2T 21=..Xc ; Xo/; .Yc ; Yo//
is a weak equivalence, then .Xc ; Xo/ admits a Q–algebra structure such that .fc ; fo/
preserves the Q–algebra structure up to homotopy.

The following class of relative operads will be central to the infinite relative recognition
principle:
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Definition 3.2.1 A topological relative operad E! is an E1rel –operad if it is a q–
cofibrant resolution of the terminal relative operad Com! . Equivalently E! is an
E1rel –operad if it is a q–cofibrant relative operad with all underlying spaces contractible.

For E! an Erel
1–operad the homotopy invariance property implies the pair ƒ12 �� D

.Y0;HFib.�0// is an E! –algebra for bifibrant relative spectra �� , and so there is a
well-defined functor Rƒ12 W Ho Sp%!Ho E! ŒTop� isomorphic to R�12 .

If T is a G–projective model category for all small groups G and R is a dualizable
generalized Reedy category, then the functor categories T R and T Rop

admit the Reedy
model structure [4, Theorem 1.6]. The categories Sinj of the last subsection and �
of isomorphism classes of finite ordinals are dualizable generalized Reedy categories,
and Top is G–projective for all groups G. The following result can be proved by an
argument similar to the one for Lurie [29, Proposition A.2.9.26]. The operation � is
the pushout-product of morphisms defined as �� � WD .�˝ 1Y ; 1X ˝ �/.

Proposition 3.2.2 Let T be a monoidal model category , R a dualizable generalized
Reedy category such that if R 2R then T is RR–projective and � 2 T Rop

.A;X/ and
� 2 T R.B; Y / cofibrations; then the morphismZ R

�R� �R 2 T
�Z R

AR˝Y R tAR˝BR X
R
˝BR;

Z R
XR˝Y R

�
is a cofibration. Also if � or � is a trivial cofibration then

R R
�R� �R 2 T is a trivial

cofibration.

In the following proposition for X 2 T R and R 2R the latching object of X at R is
denoted by LXR [4, page 4]. For the conditions on T see [3, Theorem 2.1].

Proposition 3.2.3 Let T be a symmetric, cofibrantly generated model category
equipped with a symmetric monoidal fibrant resolution functor F and a cocommutative
coalgebra interval object I, Q a relative operad on T with cofibrant underlying Srel –
object and cofibrations as units , A a model category and S a left derivable Q–functor
in A that preserves cofibrations between cofibrant objects; then

B�.S;Q;�/W QŒT �!A�
op

is left derivable.
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Proof Let x1 be the initial relative operad with x1.0/D x1.1/D x1.0; 0/D x1.1; 0/D 1
and x1.A/ WD ∅ in all other cases. A x1–algebra is a pair of objects under 1 with no
other structure.

If .�c ; �o/ 2 CT 21=
..Ac ; Ao/; .Xc ; Xo// and .Ac ; Ao/ 2 T 21= is cofibrant, then

.�c ; �o/
˝�
2 C

T S
inj
rel
..Ac ; Ao/

˝�; .Xc ; Xo/
˝�/;

and, by the hypothesis on Q,

�Q 2 C
T S

inj;op
rel

.x1;Q/:

Therefore Proposition 3.2.2 applied on each coordinate implies

.Q.�c ; �o/; �
Q
.Xc ;Xo/

/ 2 CT 21=
.Q.Ac ; Ao/t.Ac ;Ao/ .Xc ; Xo/;Q.Xc ; Xo//:

Also Q preserves cofibrations by closure under compositions and pushouts. Analo-
gously, Q preserves trivial cofibrations. By Ken Brown’s lemma, Q preserves weak
equivalences between cofibrant objects.

Let .Xc ; Xo/ 2 QŒT � be cofibrant. Since Q preserves cofibrations, every cofibrant
Q–algebra is cofibrant in T 21= , and therefore

l0 2 CT 21=

�
LB0.Id; Q; .Xc ; Xo//D .1; 1/; .Xc ; Xo/

�
:

Note that for all q 2N the square in the diagram below is a pushout:

LBq�1.Id;Q; .Xc ; Xo//
lq�1

//

�Q
LBq�1.Id;Q;�/

��

Qq�1.Xc ; Xo/

��

�Q
Qq�1

��

QLBq�1.Id;Q; .Xc ; Xo//

Qlq�1 //

// LBq.Id;Q; .Xc ; Xo//

lqD.Qlq�1;�
Q
Qq�1

/

))

Qq.Xc ; Xo/

and therefore, by the argument in the beginning of this proof and by induction,
B�.Id;Q; .Xc ; Xo// 2 .T 21=/

�op
is cofibrant. Since Q preserves weak equivalences

between cofibrant objects, B�.Id;Q;�/ also preserves weak equivalences between
cofibrant objects. Therefore B�.Id;Q;�/ is left derivable, and the hypothesis on S
imply that B�.S;Q;�/ is also left derivable.
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Geometric realization is left derivable, so under the conditions of the proposition if A is
any of the topological categories of Section 2 B.S;Q;�/W QŒT �!A is left derivable.

The following proposition follows by an argument analogous to the one for [31, Propo-
sition 3.4].

Proposition 3.2.4 Let  2Op.Top/.Q;Q0/ be a weak equivalence between Srel –free
relative operads and .Xc ; Xo/ 2 Top2� be cofibrant ; thenZ S

inj
rel

 .A/˝ 1˝A
.Xc ;Xo/

2 Top2�.Q.Xc ; Xo/;Q
0.Xc ; Xo//

is a weak equivalence.

4 Relative recognition principle

The main results are proved in this section. A relative version of the approximation theo-
rem follows from the existence of a quasifibration pNo 2Top�.SCoN .Xc ; Xo/; CN�1Xo/
and a commutative square from pNo to a fibration

@ 2 Top�.�
N
o †

N
! .Xc ; Xo/;�

N�1†N�1Xo/

which is ˛N�1 on the base spaces and homotopy equivalent to ˛N on the fibers, from
which follows that the total space map is a group completion. Since ˛1 is not a group
completion, the proof in this article does not apply for the nonconnected cases when
N D 2 and N D 1. After some technical results on the compatibility of geometric
realization with �N2 , †N! and the monads associated to relative operads are presented,
the relative recognition principle will follow from the relative approximation theorem.
The general case for N D 1 was proved by Hoefel, Livernet and Stasheff [19].

4.1 Relative approximation theorem

Let’s recall the approximation theorem in May [31; 32] and Cohen [8].

Definition 4.1.1 An H–space is a pointed space X 2 Top� equipped with a map

� 2 Top�.X �X;X/

such that
�.x0;�/' 1X ' �.�; x0/ 2 Top�.X;X/:
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An H–map between H–spaces X and Y is a pointed map f 2 Top� such that
f�D �.f �f /. The category of H–spaces is denoted by H–Top.

For an H–space .X; �/ the homology groups H�.X I k/ for any commutative coeffi-
cient ring k equipped with the Pontryagin product �� and the unit Œx0� is a graded
k–algebra.

Definition 4.1.2 An H–space X is homotopy associative if

�.�; �.�;�//' �.�.�;�/;�/ 2 Top�.X
�3; X/:

The k–algebra structure on H�.X I k/ for a homotopy associative H–space X is
associative.

For every d2 2 CN .2/ and CN –algebras .X; �/, the map �.Œd2; .�;�/�/ endows X
with a homotopy associative H–space structure.

Definition 4.1.3 An H–space X is admissible if it is homotopy associative and

�.x;�/' �.�; x/ 2 Top�.X;X/

for all x 2X.

The k–algebra structure on H�.X I k/ for an admissible H–space X is associative
and graded commutative. For 2�N �1 the H–space structures on CN –algebras are
admissible.

Definition 4.1.4 A homotopy associative H–space X is grouplike if the monoid �0X
is a group. A pair of homotopy associative H–spaces .Xc ; Xo/ is grouplike if the
H–space structures on both Xc and Xo are grouplike.

The N –loop spaces and the relative N –loop pairs of spaces for 2 � N � 1 are
grouplike.

Definition 4.1.5 A homological group completion of an admissible H–space X is a
grouplike admissible H–space G equipped with an H–map g 2H–Top.X;G/ such
that for every commutative ring k the induced homomorphism

xg� 2 GrAlgk.H�.X; k/Œ�0X
�1�;H�.G; k//
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is an isomorphism, where Œ�0X�1� denotes the localization at the subring of connected
components.

A homological group completion of a pair of admissible H–spaces .Xc ; Xo/ is a pair
of homological group completions.

For every grouplike homotopy associative H–space X there is a homotopy equivalence
between X and X0 � �0X, where X0 is the connected component containing the
basepoint [8, Lemma I.4.6]. Since every H–space X is simple, that is, �1X is abelian
and acts trivially on �qX for all q , the dual Whitehead theorem for connected H–
spaces implies that a group completion of a grouplike admissible H–space is a weak
equivalence.

Let ˛N be the composition of the natural transformations CN�N W CN ) CN�
N†N

and �N
†N
W CN�

N†N )�N†N.

Theorem 4.1.6 (approximation theorem) If X 2 Top� is connected, ˛1X is a weak
equivalence. If 2 � N � 1 then ˛NX is a homological group completion for all
X 2 Top� .

Corollary 4.1.7 If 2 � N �1 and X 2 CN ŒTop� is grouplike, then ˛NX is a weak
equivalence.

A relative version of these results also holds. Define ˛N2 as the composition of the
natural transformations SCN�N W SCN ) SCN�

N
2 †

N
! and �N

†N!
W SCN�

N
2 †

N
! )

�N2 †
N
! , which is explicitly given by

˛N2.Xc ;Xo/ 2 .H–Top/2.SCN .Xc ; Xo/;�N2 †
N
! .Xc ; Xo//;

˛Nc.Xc ;Xo/.Œdl ; x
l �/.t/D

�
Œxi ; d�1i .t/�; t 2 di .I

N /;

xc0; t … dl
�F

l I
N
�
;

˛No.Xc ;Xo/.Œdm;n; x
m;n�/.s/D

�
.Œxk; d�1

k
.0; s/�; ‰/; .0; s/ 2 dk.I

N /; k 2 n;

.xc0; „/; .0; s/ … dn
�F

n I
N
�
;

where now

‰W s0 7!

�
Œxa; d�1a .s0; s/�; .s0; s/ 2 da.I

N /; a 2m; n;

xo0 ; .s0; s/ … dm;n
�F

m;n I
N
�
;

„W s0 7!

(
Œxj ; d�1j .s0; s/�; .s0; s/ 2 dj .I

N /; j 2m;

xo0 ; .s0; s/ … dm;n
�F

m;n I
N
�
:
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Note that ˛Nc is the composition of ˛N with the inclusion of the deformation retract
.Xc ^S

N /S
N

in
�
..Xo ^ I /t .Xc ^ S

1//^ SN�1
�SN .

Let �c ; �oW Top2�! Top� be the projection functors. The functors SC cN and SC oN are
SCN –functors, with �SC

o
N WD�oı

SCN and �SC
c
N WD�cı

SCN . The functor CN�1�o
is also an SCN –functor, with structural map defined as

�
CN�1�o
.Xc ;Xo/

��
dl ; .Œdmi ;ni ; x

mi ;ni �/
��
WD Œdl ı .dni�f0g�IN�1/; x

†ln
i

�:

There is also the SCN –functor map pNo W SC
o
N ) CN�1�o defined as

pNo.Xc ;Xo/.Œdm;n; x
m;n�/ WD Œdn�f0g�IN�1 ; xn�:

Note that SC oN .Xc ; Xo/ is a CN�1–algebra and that pNo is also a CN�1–map, and
therefore when N � 2 it is an H–map and when N > 2 it is an H–map between
admissible H–spaces. Under some mild conditions on .Xc ; Xo/ 2 Top2� the map
pN
o.Xc ;Xo/

is a quasifibration.

Definition 4.1.8 A map p 2 Top.E;B/ is a quasifibration if the natural inclusions
ip�1.b/2Top

�
p�1.b/; f.e; 
/2E�BB

I j
.1/Dbg
�

defined as ip�1.b/.e/D .e; t 7!b/

are weak equivalences for all b 2 B. A subspace U � B is distinguished if p�p�1.U /
is a quasifibration.

From [34, Section 2.7] there is the following criterion for a map to be a quasifibration,
which considers both h–cofibrations and q–fibrations. Note that these aren’t part of
the distinguished classes of the mixed model structure.

Proposition 4.1.9 Let � 2 Top.E;B/ be a map of filtered spaces such that F qE D
��1F qB for each q 2 N . If for each q � 1 the map F q� is obtained by pushouts
from a commutative diagram of the form

F q�1E

�
��

Dq
gq
oo

 q
��

jq
// Eq

�q
��

F q�1B Aq
fq

oo

iq

// Bq

such that

(i) F 0B is distinguished ,

(ii) �q is a q–fibration ,
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(iii) iq and jq are h–cofibrations ,

(iv) the right square is a pullback , and

(v) gq� �1q .a/ 2 Top
�
 �1q .a/; ��1.fq.a//

�
are weak equivalences for all a 2 Ak ,

then each F qB is distinguished and � is a quasifibration.

For every topological relative operad Q and .Xc ;Xo/2T 2� the pair of spaces Q.Xc ;Xo/
admits a natural double filtration. Let F p;qSinj

rel be the full subcategory of Sinj
rel containing

the l with l � p and the m; n with m� p and n� q . Define F p;qQ.Xc ; Xo/ as the
images of the natural inclusions of�Z F p;qS

inj
c

Q.l/˝X˝lc ;

Z F p;qS
inj
o

Q.m; n/˝ .Xc ; Xo/˝m;n
�

in Q.Xc ; Xo/. This defines a filtration F qQ.Xc ; Xo/ WD
S
p2N F

p;qQ.Xc ; Xo/.

Theorem 4.1.10 Let .Xc ; Xo/ 2 Top2� with Xo h–cofibrant ; then pN
o.Xc ;Xo/

is a
quasifibration with fiber CN .Xc/.

Proof The map pNo and the natural filtrations on CN�1Xo and SCN .Xc ; Xo/ satisfy
the conditions of Proposition 4.1.9.

Let q 2N , Sc;q be the full subcategory of Sc containing only q and So;q be the full
subcategory of Sinj

o containing only the m; q with m 2N . Define

SC
q
N .Xc ; Xo/ WD

Z So;q
SCN .m; q/� .Xc ; Xo/m;q

and
C
q
N�1Xo WD

Z Sc;q
CN�1.q/�X

q
o :

Define also

D
q
N WD fŒdm;q; x

m;q� 2 SC
q
N .Xc ; Xo/ j x

k
D xo0 for some k 2 qg

and
A
q
N WD fŒdq; x

q� 2 C
q
N�1Xo j x

k
D xo0 for some k 2 qg:

The maps F qpNo are then the pushouts of

F q�1SC oN .Xc ; Xo/

pNo
��

D
q
N

gq
oo

 q
��

jq
// SC

q
N .Xc ; Xo/

�q
��

F q�1CN�1Xo A
q
Nfq

oo

iq

// C
q
N�1Xo
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where iq and jq are the inclusions, gq and fq are induced by the degeneracy of the
little cubes with the same index as the xk that are equal to the basepoint, and  q
and �k are defined in the same way as pNo . These diagrams satisfy the conditions in
Proposition 4.1.9:

(i) F 0CN�1XoD�. Since every space is fibrant and every fibration is a quasifibration
F 0CN�1Xo is distinguished.

(ii) By definition, �q is a q–fibration if for every commutative square

I r� _

�r0
��

Œdm;q ;x
m;q�
// SC

q
N .Xc ; Xo/

�q
��

I r � I

zH

66

Œıq ;�
q�

// C
q
N�1Xo

there is a lift zH that makes the diagram commute.

An element dA in SCN .A/ or CN�1.A/ is of the form dA.s
i
a/ D .mi

da
sia C c

i
da
/

for some .mi
da
/ 2 .0; 1�N and some .ci

da
/ 2 IN for each a 2 A. For .dm;n; ın/ 2

SCN .m; n/�CN�1.n/ CN�1.n/
I and v 2 .0; 1�, define


�dm;n;ın 2 Top.I; .IN /
F
a2m;n I

N
a /;


�dm;n;ın.t/.s
i
a/

WD

8̂̂̂̂
<̂
ˆ̂̂:

(�
2v�t
2v

m1
da
s1aC

.2v�t/c1
da
Ct

2v
; 2v�t
2v

mi
da
siaC c

i
da

�
; 0� t � v;�

1
2
m1
da
s1aC

1Cc1
da

2
; 1
2
mi
da
siaC c

i
da

�
; v � t � 1;

cor.a/D cI

���2v�t
2v

�
m1
da
s1aC

�
2v�t
2v

�
c1
da
; mi

ıa.t/
siaC c

i
ıa.t/

�
; 0� t � v;�

1
2
m1
da
s1aC

1
2
c1
da
; mi

ıa.t/
siaC c

i
ıa.t/

�
; v � t � 1;

cor.a/D o;

ie 
�
dm;n;ın

is the path in .IN /
F
a2m;n I

N
a such that


�dm;n;ın.0/D dm;n; po

�
dm;n;ın

D ın;

the heights in the first coordinate of the open little cubes are linearly halved in the
interval Œ0; �� and remain constant in the interval Œ�; 1�, and such that the side lengths
in all coordinates of the closed little cubes and the distance in the first coordinate from
the center of the little cube to 1 are also linearly halved in the interval Œ0; �� and remain
constant in the interval Œ�; 1�.
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� � � �

Figure 3: Cross-sections of 
�
dm;n;ın

.

For some .dm;n; ın/ and � it might be the case that 
�
dm;n;ın

… SCN .m; n/I, because
there might be a; a0 2m; n and t 2 I such that a¤ a0 and


�dm;n;ın;a.t/.
VIN /\ 
�dm;n;ın;a0.t/.

VIN /¤∅;

but there is always some �0 2 .0; 1� such that for � 2 .0; �0� these intersections are
empty. Define for each m; n 2 So the map

�m;n 2 Top.SCN .m; n/�CN�1.n/ CN�1.n/
I ; .0; 1�/;

�m;n.dm;n; ın/ WDmaxf� 2 .0; 1� j 
�dm;n;ın 2 SCN .m; n/
I
g:

For any commutative square as above there is always x� 2 .0; 1� such that 
x�
dm;q.s/;ıq.s/

2

SCN .m; q/I for all s 2 I q . Let F pSo;q be the full subcategory of So;q containing
only the m; q with m�p . The natural inclusion of

R F pSo;q SCN .m; q/�.Xc ; Xo/m;q

in SC qN .Xc ; Xo/ induces a filtration F pSC qN .Xc ; Xo/. Any compact subspace K
of SC qN .Xc ; Xo/ is contained in F pSC

q
N .Xc ; Xo/ for some p 2 N . To see this,

assume to the contrary that there is an infinite sequence of points .zi / 2 KN all
lying in distinct F pSC qN .Xc ; Xo/. Consider the subset S WD

F
Nfzig � K. In

order to show that S is closed, assume that S \F p�1SC qN .Xc ; Xo/ is closed. Then
S \ F pSC

q
N .Xc ; Xo/ contains at most one more point. The space SC qN .Xc ; Xo/

is weakly Hausdorff, so points are closed and therefore S \ F pSC qN .Xc ; Xo/ is
closed. It follows that S is closed. The same argument shows that any subset of S
is closed, so S has the discrete topology. Being a closed subset of a compact set, S
must be compact. Therefore, S has to be finite, a contradiction.1 Now the filtration

1I thank Eduardo Hoefel for providing the argument in this paragraph through private communication.
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F pSC
q
N .Xc ; Xo/ and the map Œdm;q; xm;q� from the commutative diagram induce a

filtration F pI r WD Œdm;q; xm;q��1.F pSC
q
N .Xc ; Xo//. Define

�p 2 Top.F pI r �F p�1I r ; .0; 1�/; �p.s/ WD �p;q.dm;q.s/; ıq.s//:

Since I r is compact, F pI r �F p�1I r is compact, and therefore the image of �p has
a positive minimum. By the two previous observations the minimum

x� WDminf�l.s/ j p 2N; s 2 F pI r �F p�1I rg

exists. Thus there is

zH 2 Top.I r � I; SC qN .Xc ; Xo//; zH.s; t/ WD Œ
x�dm;q.s/;ıq.s/.t/; .x
m.s/; �q.s; t//�;

which is a lift of .Œdm;q; xm;q�; Œıq; �q�/.

(iii) Since Xo is h–cofibrant, there are maps u2Top.Xo; I / and H 2Top.Xo�I;Xo/
making .xo0 ; Xo/ an NDR pair, and so there are the maps u0 2 Top.C qN�1Xo; I /
with u0.Œdq; xq�/ WDminfu.xi / j i 2 qg and H 0 2 Top.C qN�1Xo � I; C

q
N�1Xo/ with

H 0.Œdq; x
q�; t / WD Œdq; .H.x

i ; t //i2q� which makes .AqN ; C
q
N�1Xo/ an NDR pair. The

pair .DqN ; SC
q
N .Xc ; Xo// is an NDR pair by an analogous argument.

(iv) It is trivial to check that the right square is a pullback.

(v) Fix Œdq; xq� 2 A
q
N and define the subspaces P qN as�

Œdm;q; x
m;q� 2  �1q .Œdq; x

q�/
ˇ̌̌ dj .I /� �12 ; 1�� IN�1 for all j 2m;
dk.I /�

�
0; 1
2

�
� IN�1 for all k 2 q

�
and QqN as�
Œdm;q�1; x

m;q�1�2.pNo /
�1.fq.Œdq; x

q�//
ˇ̌̌ dj .I /��12 ; 1��IN�1 for all j 2m;
dk.I /�

�
0; 1
2

�
�IN�1 for all k2q�1

�
:

Then P qN and QqN are deformation retracts of

 �1q .Œdq; x
q�/ and .pNo /

�1.fq.Œdq; x
q�//;

respectively, and the restriction gq�PNq is a fibration with contractible fiber, and
therefore a weak equivalence. This implies gq� �1q .Œdq ;x

q�/ is also a weak equivalence.

Therefore, by Proposition 4.1.9, pNo is a quasifibration. That CNXc is the fiber follows
easily from the definitions.
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Corollary 4.1.11 Let .Xc ; Xo/ 2 Top2� with Xo a cofibrant space. If N D 1 and Xc
is connected, N D 2 and Xo is connected, or if 3 � N � 1, then ˛N2 .Xc ;Xo/ is a
homological group completion.

Proof Consider the commutative diagram

CNXc
˛N

uu

˛Nc

��

// SC oN .Xc ; Xo/
pNo

//

˛No

��

CN�1Xo

˛N�1

��

�N†NXc

� ))

�Nc †
N
! .Xc ; Xo/

// �No †
N
! .Xc ; Xo/

@

// // �N�1†N�1Xo

The maps ˛N and ˛N�1 are group completions by Theorem 4.1.6, and therefore ˛Nc
also is. Note that H.SC oN .Xc ; Xo//ŠH.CNXc/˝H.CN�1Xo/, that �1.CN�1Xo/
acts trivially on H.CNXc/, that �1.�N�1†N�1Xo/ acts trivially on H.�N†NXc/
and that both CN�1Xo and �N�1†N�1Xo are cofibrant spaces. Therefore the induced
map on the Serre spectral sequences, which exists by Theorem 4.1.10, implies ˛No is a
group completion.

4.2 Compatibility of the geometric realization functor

In this section some compatibility results of the geometric realization functor analogous
to the ones in [31, Section 12] are stated. Proofs are only sketched since they are simple
adaptations of the arguments there.

Proposition 4.2.1 Let .Xc ; Xo/� 2 .Top2�/
�op

. There are natural homeomorphisms

�N 2 Top!�
�
j†N! .Xc ; Xo/�j; †

N
! j.Xc ; Xo/�j

�
for N <1 and also

�1 2 Sp%
�
j†1! .Xc ; Xo/�j; †

1
! j.Xc ; Xo/�j

�
:

Proof Define

�N .ŒŒx; s�; u�/ WD ŒŒx; u�; s�I

it can be directly checked that this defines a homeomorphism.
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Proposition 4.2.2 Let .Xc ; Xo/� 2 .Top2�/
�op

and Q2Oprel.Top/. There is a natural
homeomorphism

�Q 2 Top2�.jQ.Xc ; Xo/�j;Qj.Xc ; Xo/�j/

such that the following diagrams commute:

j.Xc ; Xo/�j
j��j
//

�
''

jQ.Xc ; Xo/�j

�Q

��

Qj.Xc ; Xo/�j

jQQ.Xc ; Xo/�j

j��j

��

�Q�Q
// QQj.Xc ; Xo/�j

�

��

jQ.Xc ; Xo/�j
�Q

// Qj.Xc ; Xo/�j

If .Xc ; Xo/� 2QŒTop��
op

, then j.Xc ; Xo/�j 2QŒTop�; therefore , geometric realization
defines a functor QŒTop��

op
!QŒTop�.

Proof Define
�Q.ŒŒq; .xa/�; u�/D Œq; .Œxa; u�/�I

it can be directly checked that this defines a homeomorphism and that the diagrams
commute. The second statement follows directly from the first.

Proposition 4.2.3 Let 1 � N <1 and ��W B� ! Y� 2 .Top!� /
�op

be h–cofibrant
with each �� .N�1/–connected ; then there is a weak equivalence


N2 2 Top2�.j�
N
2 ��j; �

N
2 j��j/:

Let ��;�W B�;�% Y�C1;� 2 .Sp%/�
op

be h–cofibrant with each ��;� �–connected ; then
there is a weak equivalence


12 2 Top2�.j�
1
2 ��;�j; �

1
2 j��;�j/:

Proof Define


Nc .Œ˛; u�/.t/ WD Œ˛.t/; u�; 
No
�
Œ.ˇ; 
/; u�

�
.s/ WD Œ.ˇ.s/; s0 7! 
.s/.s0//; u�:

These are pairs of maps of fibers of simplicial quasifibrations over the same simplicial
spaces with contractible total spaces, with the contraction compatible with the simplicial
structure.

Proposition 4.2.4 Let .Xc ; Xo/� 2 .Top2�/
�op

and 1 � N �1. The maps 
N2 are
SCN –maps and the following diagram commutes:
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jSCN .Xc ; Xo/�j
�SCN

//

j˛N2�j
��

SCN j.Xc ; Xo/�j

˛N2
��

j�N2 †
N
! .Xc ; Xo/�j

�N 
N2

// �N2 †
N
! j.Xc ; Xo/�j

Proof This can be checked directly from the definitions.

4.3 Recognition principle for relative loop pairs of spaces

The relative recognition principle will be proved by showing that the relative N –
loop pairs of spaces functors are part of weak Quillen quasiadjunctions that induce
equivalences of certain homotopy subcategories.

Definition 4.3.1 Let N 2N and QN 2 Oprel.Top/ be equipped with a weak equiva-
lence vN 2Oprel.Top/.QN ;SCN /. The relative N –delooping functor of QN –algebras
is

BN! W QN ŒTop�! Top!�; .Xc ; Xo/ 7! B.†N! ;QN ; .Xc ; Xo//:

with the QN –functor structure of †N! induced by vN, ˛N2 and the .†N! a �
N
2 /

adjunctions.

Let Q1 2 Oprel.Top/ be equipped with a sequence Q� 2
Q

N Oprel.Top/ of rela-
tive operads, a sequence of weak equivalences v� 2

Q
Ntf1gOprel.Top/.Q�;SC�/,

a sequence of maps i� 2
Q

N Oprel.Q�;Q�C1/ that commute up to homotopy with
the inclusions �� 1I 2 Oprel.Top/.SC�;SC�C1/, and a homotopy equivalence u 2

Oprel.Top/.colim�!1Q�;Q1/. The relative infinite delooping functor of Q1–alge-
bras is

B1! W Q1ŒTop�! Sp%; .Xc ; Xo/ 7! B.†�C1! ;Q�C1; .Xc ; Xo//;

with the structural spectra maps induced by the i� .

The q–cofibrant resolutions WIFMN of SCN in the appendix give explicit examples
of relative operads that can be equipped as in this definition.

Definition 4.3.2 Let Q 2 Oprel.Top/. The bar resolution of Q–algebras is

BW QŒTop�!QŒTop�; .Xc ; Xo/ 7! B.Q;Q; .Xc ; Xo//:
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Theorem 4.3.3 Let 3 � N � 1, QN 2 Oprel.Top/ be Srel –free and equipped as
in Definition 4.3.1, and ..Xc ; Xo/; �/ 2 QN ŒTop� with Xc h–cofibrant and Xo m–
cofibrant in Top� . Consider the following diagram of QN –maps , with the QN –algebra
structures on the images of �N2 induced by vN :

B.Xc ; Xo/

".�/

��

B.˛N2 vN ;1;1/
// B.�N2 †

N
! ;QN ; .Xc ; Xo//


N2
��

.Xc ; Xo/ �N2 B
N
! .Xc ; Xo/

Then:

(i) ".�/ is a strong deformation retract with right inverse �.�QN /, and therefore a
weak equivalence.

(ii) B.˛N2 vN ; 1; 1/ is a group completion, and therefore a weak equivalence if
.Xc ; Xo/ are grouplike.

(iii) 
N2 is a weak equivalence.

(iv) In Top2� the composition 
N2 B.˛
N
2 vN ; 1; 1/�.�QN / coincides with the compo-

sition �N2 .�.1†N! //�
N
2 and it is a weak equivalence if .Xc ; Xo/ is grouplike.

(v) BN! .Xc ; Xo/ is .N�1/–connected if N <1 and is connective if N D1.

(vi) If N <1 and � 2 Top!� is an .N�1/–connected relative space then

".�N� / 2WTop!�
.BN! �

N
2 �; �/:

In general the following diagram is commutative:

B�N2 �
B.˛N2 vN ;1;1/

//

".�N2 /
��

B.�N2 †
N
! ;QN ; �

N
2 �/


N2
��

".�N2 �
N
� /

tt
�N2 � �N2 B

N
! �

N
2 �

�N2 ".�
N
� /

oo

and �N2 ".�
N
� / is a retraction with right inverse �N2 .�.1†N!�N2 //�

N
�N2

.

If N D1 and �� 2 Sp% is connective then

".�1
z���
/ 2WSp%.B

1
! �

1
2 ��;

z���/:
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In general the following diagram is commutative:

B�12 ��
B.˛12 v1;1;1/

//

".�12 /

��

B.�12 †
1
! ;Q1; �

1
2 ��/


12
��

".�12 �
1
z���
/

tt
�12 �� �12 B

1
! �

1
2 ���12 ".�

1
z���
/

oo

and �12 ".�
1
z���
/ is a retraction with right inverse �12 .�.1†1! �12 //�

1
�12

.

(vii) For all .Yc ; Yo/ 2 Top2� the map

".�N
†N! .Yc ;Yo/

†N! B.˛
N
2 vN ; 1; 1//

2

�
Top!�.B

N
! QN .Yc ; Yo/; †

N
! .Yc ; Yo//; N <1;

Sp%.B1! Q1.Yc ; Yo/; †
1
! .Yc ; Yo//; N D1;

is a strong deformation retract with right inverse �.†N! �
QN /.

Proof The maps ".�/ and B.˛N2 v; 1; 1/ are realizations of simplicial QN –maps, there-
fore by Proposition 4.2.2 they are QN –maps, and 
N2 is a QN –map by Proposition 4.2.4.

(i) and (vii) hold on the level of simplicial spaces by [31, Theorems 9.10 and 9.11] and
therefore hold after realization by [31, Corollary 11.10].

(ii) holds on the level of simplicial spaces by Proposition 3.2.4 and Corollary 4.1.11
and therefore holds after realization by the argument in [32, Theorem 2.3.ii)].

(iii) follows from Proposition 4.2.3.

(iv) follows from (i), (ii) and (iii).

(v) follows from [31, Theorem 11.12; 32, Remark A.5].

The upper triangle in (vi) commutes by the naturality of ", and the lower triangle
by [31, Theorem 9.11]. The fact that ".�N / is a weak equivalence under the stated
connectivity conditions follows from the commutativity of the diagram and the previous
items.

The relative delooping of relative N –loop pairs of spaces is unique up to weak equiv-
alence among .N�1/–connected relative spaces if N <1 and among connective
relative spectra if N D1.
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Corollary 4.3.4 Under the hypothesis of the theorem consider a span of QN –weak
equivalences

.Xc ; Xo/
f

�
 � .Yc ; Yo/

g

�
�!�N2 �:

If N <1 and � 2 Top!� is .N�1/–connected, then the diagram of relative spaces

BN! .Xc ; Xo/
B.1;1;f /
 ������
�

BN! .Yc ; Yo/
".�N� /B.1;1;g/
����������!

�
�

displays a weak equivalence between � and BN! .Xc ; Xo/.

If N D1 and �� 2 Sp% is connective, then the diagram of relative spectra

B1! .Xc ; Xo/
B.1;1;f /
 ������
�

B1! .Yc ; Yo/
".�1
z���
/B.1;1;g/

�����������!
�

z���
l��
�
 � ��

displays a stable weak equivalence between �� and BN! .Xc ; Xo/.

Proof The map ".�N
z���
/ is a weak equivalence by Theorem 4.3.3(vi), and B.1; 1; f /

and B.1; 1; g/ are weak equivalences on the level of simplicial spaces by Proposition
3.2.3, and so their realizations are weak equivalences by [31, Theorem 11.13].

The relative operads QN must be assumed to be q–cofibrant in order for the functors
involved to be compatible with the model structures and QN ŒTop� to be homotopy
invariant. In particular Q1 must be an Erel

1–operad.

Theorem 4.3.5 For 1�N <1 and SCN a cofibrant resolution of SCN , there is a
weak Quillen quasiadjunction

.BN! aB;Id �
N
2 /W SCN ŒTop�• Top!�

that induces an adjunction of homotopy categories

.LBN! aR�N2 /W HoSCN ŒTop�•Ho Top!� :

For E! an Erel
1–operad there is a weak Quillen quasiadjunction

.B1! aB;z� �
1
2 /W E

!ŒTop�• Sp%

that induces an adjunction

.LB1! aRƒ12 /W Ho E
!ŒTop�•Ho Sp%

of homotopy categories.
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Proof The indicated functors equipped with the natural span

Id B
".�/ks


N2 B.˛
N
2 vN ;1;1/

+3 �N2 B
N
! ;

the natural map ".�N /W BN! �
N
2 ) Id if N <1 and the cospan

B1! �
1
2

".�1
z�
/
+3 z� Idlks

if N D1 satisfy the conditions of Definition 2.1.1. Condition (i) holds by Proposition
3.2.3. Condition (ii) holds by Propositions 2.2.3 and 2.4.7 and the construction of the
model structures. Proposition 3.2.3 also implies one part of condition (iii) and the other
follows from the fact z� preserves cofibrant objects in the mixed model structure and the
construction of the stable model structure. One part of condition (iv) is Theorem 4.3.3(i)
and the other follows from the construction of the stable model structure. Conditions
(v) and (vi) follow from Theorems 4.3.3(iv) and 4.3.3(vi), respectively.

The last statement follows from the existence of the natural isomorphism between
RƒN2 and R�N2 .

There is a Bousfield localization of SCN –algebras where the fibrant objects are precisely
the grouplike algebras.

Theorem 4.3.6 For 3�N �1 and SCN a cofibrant resolution of SCN , the endo-
functor �N2 B

N
! C is part of a Quillen idempotent quasimonad such that the �N2 B

N
! C–

weak equivalences are the maps

.fc ; fo/ 2 SCN ŒTop�..Xc ; Xo/; .Yc ; Yo//

such that the homomorphisms

xfc� 2 GrAlgk
�
H�.Xc ; k/Œ�0X

�1
c �;H�.Yc ; k/Œ�0Y

�1
c �

�
;

xfo� 2 GrAlgk
�
H�.Xo; k/Œ�0X

�1
o �;H�.Yo; k/Œ�0Y

�1
o �

�
are isomorphisms for all commutative rings k and the �N2 B

N
! C–fibrant objects are the

grouplike SCN –algebras.

Proof First note that the following diagram of SCN –maps commutes:
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.Xc ; Xo/
.fc ;fo/

// .Yc ; Yo/

BC.Xc ; Xo/

�cof".�C/

OO

B.1;1;C.fc ;fo// //


N2 B.˛
N
2 vN ;1;C/

��

BC.Yc ; Yo/

� cof".�0C/

OO


N2 B.˛
N
2 vN ;1;C/

��

�N2 B
N
! C.Xc ; Xo/

�N2 B
N
! C.fc ;fo/

// �N2 B
N
! C.Yc ; Yo/

By Theorem 4.3.3 and the dual Whitehead theorem [33], the map �N2 B
N
! C.fc ; fo/

is a weak equivalence if and only if the homomorphisms induced by .fc ; fo/ in the
statement of the theorem are isomorphisms.

The functor �N2 B
N
! C equipped with the endofunctor BC and the natural maps

cof".�C/W BC) Id and 
N2 B.˛
N
2 vN ; 1;C/W BC)�N2 B

N
! C satisfies the conditions

of Definition 2.3.1.

That condition (i) holds follows from Theorem 4.3.3(i), the fact that cof is a trivial
fibration and the 2-out-of-3 property. That (ii) holds follows from Propositions 3.2.3
and 2.4.7 and the construction of the stable model structure. From the first part of this
proof and Theorem 4.3.3(ii), condition (iii) holds. Since fibrations are preserved by
pullbacks, fibrations induce long exact sequences of homotopy groups in Top� and the
diagram

BC.Fc ;Fo/

��

�
ss

BC.Fc ;Fo/

��

�ww

�12 B
1
! C.Fc ;Fo/

��

�12 B
1
! C.Fc ;Fo/

��

BC.Xc�BcEc ;Xo�BoEo/

��

//

ss

BC.Ec ;Eo/

��

�ww

�12 B
1
! C.Xc�BcEc ;Xo�BoEo/

� //

��

�12 B
1
! C.Ec ;Eo/

��

BC.Xc ;Xo/

ss

// BC.Bc ;Bo/

�ww

�12 B
1
! C.Xc ;Xo/ �

// �12 B
1
! C.Bc ;Bo/

commutes, condition (iv) holds. Condition (v) holds since the images of BC are
cofibrant SCN –algebras and since pushouts of weak equivalences along cofibrations
with cofibrant domain in the category of algebras over a cofibrant operad in a left proper
model category are weak equivalences, as Spitzweck proves in [41, Theorem 4.4].
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That the �N2 B
N
! C–fibrant objects are the grouplike SCN –algebras follows from

Proposition 2.3.6.

The category of SCN –algebras equipped with the left Bousfield localization induced
by the Quillen idempotent quasimonad above is denoted by SCN ŒTop�Grp .

For N <1 the category Top!� can be equipped with the .N�1/–connected model
structure and the proof of Theorem 4.3.5 would still follow. The existence of long exact
sequences of stable homotopy groups associated to spectra cofibrations implies there is
a right Bousfield localization that presents the homotopy subcategory of connective
relative spectra.

Theorem 4.3.7 For E! an Erel
1–operad, the endofunctor B1! �

1
2 is part of a Quillen

idempotent quasicomonad such that the B1! �
1
2 –weak equivalences are the relative

spectra maps

.e�; f�/ 2 Sp%.��W A�%X�C1; ��W B�% Y�C1/

such that the homomorphisms

.e�/� 2 AbGrp.�Sq A�; �
S
q B�/; .f�/� 2 AbGrp.�Sq X�; �

S
q Y�/

are isomorphisms for all q � 0 and the B1! �
1
2 –cofibrant objects are the connective

relative spectra.

Proof First note that the following diagram of relative spectra commutes:

��

l�� �
��

.e�;f�/
// ��

l���
��

z��� z�.e�;f�/
// z���

B1! �
1
2 ��

".�1
z���

/

OO

B1! �
1
2 .e�;f�/

// B1! �
1
2 ��

".�1
z���
/

OO

By Theorem 4.3.3(vi), the long exact sequence of stable homotopy groups associated
with a relative spectrum, and the five lemma, the map B1! �

1
2 .e�; f�/ is a weak

equivalence if and only if the homomorphisms induced by .e�; f�/ in the statement of
the theorem are isomorphisms.
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The functor B1! �
1
2 equipped with the endofunctor z� and the natural maps l W Id) z�

and ".�1
z�
/W B1! �

1
2 )

z� satisfy the conditions dual to the ones in Definition 2.3.1.

First note that conditions (i), (ii) and (iii) are self-dual. Condition (i) holds by the
definition of the stable model structure. That (ii) holds follows from Propositions 3.2.3
and 2.4.7. From the first part of this proof and Theorem 4.3.3(vi), condition (iii) holds.
Since cofibrations are preserved by pushouts, cofibrations induce long exact sequences
of stable homotopy groups in Sp and the diagram

z��� //

��

z���

��

B1! �
1
2 ��

��

�
//

�
55

B1! �
1
2 ��

��

44

z��� //

��

z�.�� _�� ��/

��

B1! �
1
2 ��

�
//

�
55

��

B1! �
1
2 .�� _�� ��/

44

��

z�.��=��/ z�.��=��/

B1! �
1
2 .��=��/

� 55

B1! �
1
2 .��=��/

�

44

commutes, the dual of condition (iv) holds. The dual of (v) holds since Sp% is right
proper.

That the B1! �
1
2 –cofibrant objects are the connective relative spectra follows from

the dual of Proposition 2.3.6.

The category of relative spectra equipped with the model structure given by the right
Bousfield localization associated with the Quillen idempotent quasicomonad above is
denoted by Sp%Con .

Theorem 4.3.8 For 2 <N <1 and SCN a cofibrant resolution of SCN , the adjunc-
tion

.LBN! aR�N2 /W HoSCN ŒTop�Grp•Ho Top!N�1

is an equivalence.

For E! an Erel
1–operad, the adjunction

.LB1! aRƒ12 /W Ho E
!ŒTop�Grp•Ho Sp%Con

is an equivalence.
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Proof With these model structures the conditions of Corollary 2.1.3 are satisfied. For
N D1 the conditions of Theorem 2.3.8 are satisfied.

The relative recognition principle for N D 1 was proved in [19]. The reason the
argument in this section doesn’t work in general if N D 1 or N D 2 comes from the fact
that C1–algebras aren’t necessarily admissible and so the natural map ˛1W C1)�1†1

isn’t necessarily a natural group completion. It is the case that �22B
2
!.Xc ; Xo/ as

constructed in this section is a group completion if Xo is connected. The general
argument should involve a modification of the relative delooping functor B2! similar to
the delooping functor in [19].

Appendix Cofibrant resolutions of the Swiss-cheese relative
operads

In this appendix a resolution of relative operads WI W Oprel.T /!Oprel.T / is introduced
which takes relative operads with cofibrant underlying nonunital relative operads to
cofibrant unital relative operads. The resolution of the Fulton–MacPherson relative
operads FMN are then shown to be cofibrant resolutions of SCN by adapting an
argument in Hoefel [17].

A.1 A resolution for relative operads

Nonunital relative operads are defined as in Definitions 3.1.3 and 3.1.5 except it is
assumed that Q.0/ D ∅ D Q.0; 0/. They have a similar structure to unital relative
operads except they don’t admit degeneracies and they induce monads in T 2 instead
of T 21= . The category of nonunital relative operads is denoted by Opırel.T / and the
forgetful functor U ıW Oprel.T /! Opırel.T / admits a left adjoint free unital operad
functor F �W Opırel.T /! Oprel.T /.

The category of objects under A in Sinj
rel has as objects relative injections � 2Sinj

rel.A;B/

and morphisms between � 2 Sinj
rel.A;B/ and � 0 2 Sinj

rel.A;B
0/ are morphisms � 2

Sinj
rel.B;B

0/ such that � 0 D �� . The category of objects under A is denoted by SA= .
For Q 2 Opırel.T / the underlying Srel –object of F �Q is

F �QW Sop
rel! T ; A 7!

Z SA=
Q.B/;
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and the units and the nondegeneracy compositions are induced by those of Q. The
degeneracies are given by the natural inclusions into the colimits. The unit of the
adjunction is induced by inclusion into the colimits, and the counit by degeneracies.

If T is a symmetric model category that satisfies the conditions in [3, Theorem 2.1],
the category Opırel.T / admits a model structure such that .F � a U ı/ is a Quillen
adjunction, and so in particular F � preserves cofibrant objects. One of the conditions
on T is that it contains an interval object, which is an object I equipped with maps
0; 1 2 T .1; I / and " 2 T .I;1/ such that .0; 1/ 2 T .1t1; I / is a cofibration and " is
a weak equivalence. In Top the interval I D Œ0; 1� is an interval object. The following
resolution functor is similar to the Boardman–Vogt resolution [6; 2]. Let

I W SA=! T ; .� W A! B/ 7! I˝BnIm � ;

with the map � �2T .I˝BnIm �;I˝B 0nIm � 0/ associated to � 2SA=.� WA!B; � 0WA!B 0/

being induced by the map 0 in the coordinates in B 0 n Im � .

Definition A.1.1 Let T be a symmetric model category and I 2 T an interval ob-
ject. The degeneration resolution is the endofunctor WI W Oprel.T /! Oprel.T / with
underlying Srel –object

WIQW Srel! T ; A 7!

Z SA=
Q.B/˝ I.�/;

for each Q 2 Oprel.T /. The units are the inclusions into the colimit of the units in Q.
The relative operad compositions that don’t involve degenerations are defined by the
composition in Q and a reordering of the copies of I, and the degenerations are induced
by the morphism 1.

In Top an element Œq; .tb/�� 2WIQ.A/ is represented by a relative injection � W A!B,
a q 2 Q.B/ and a point in the cube IBnIm � , and these elements satisfy the relation
that Œq � �; .tb/�� D Œq; � � .tb/�� 0 for all � 2 SA=.�; �

0/. This means there is always a
representative such that .tb/ doesn’t contain any zeros.

The full subcategories F qSA= of SA= for q 2N containing the injections � W A! B

with B n Im � � q induce a filtration W
q
IQ in Srel�T . The inclusions of this filtration

are denoted by wq 2 Srel� T .Wq
IQ;W

qC1
I Q/. Note that W0

IQ is isomorphic to Q.

The following result is similar to the result that the Boardman–Vogt resolution is
a cofibrant resolution for relative operads with cofibrant underlying Srel –objects
[2, Theorem 5.1]. For the conditions on T see [3, Theorem 2.1].
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Theorem A.1.2 Let T be a symmetric cofibrantly generated model category equipped
with a symmetric monoidal fibrant resolution functor F and a cocommutative coalgebra
interval object I. For all unital relative operads Q such that U ıQ is a cofibrant
nonunital relative operad, the counit of the adjunction .F � aU ı/ admits a factorization

F �U ıQ
ıQ
,�!WIQ


Q

�
�!Q

into a cofibration ıQ followed by a weak equivalence 
Q . In particular, WIQ is a
cofibrant resolution of Q.

Proof The last assertion follows from the fact that F � preserves cofibrant objects. The
map " and the degenerations of Q define morphisms 
Q� 2 T .Q.B/˝I˝BnIm � ;Q.A//
which fit together into a relative operad morphism 
Q 2 Oprel.T /.WIQ;Q/ such that
the composition W0

IQ �,�!WIQ

Q
�! Q of Srel –objects is the identity. Since the

inclusion of W0
IQ into WIQ is a trivial cofibration, 
Q is a weak equivalence.

The morphism 1 defines morphisms ıQ� 2 T .Q.B/;Q.B/˝ I.�// which fit together
into a relative operad morphism ıQ 2Oprel.T /.F �U ıQ;WIQ/. Clearly 
QıQ equals
the counit of the adjunction .F � a U ı/. It remains to show that ıQ is a cofibration, ie
that for any commutative square of unital relative operads

F �U ıQ

ıQ

��

� // E

� p
����

WIQ  
//

x 

;;

B

where p is a trivial fibration, the lift x exists. By the .F �aU ı/ adjunction a morphism
x is a lift of the square above if and only if U ı x is a lift of the square of nonunital
operads

U ıQ

U ı colimq!1wq

��

�0 // U ıE

� U ıp
����

U ıWIQ
U ı 

//

U ı x 

99

U ıB

We construct x inductively on the filtration degree of WIQ. Define x 0 WD �0 2

Srel � T .W0
IQ; E/. Now assume constructed x � 2 Srel � T .W�IQ; E/ for � � q � 1

such that, for A 2 Srel , .Ba/ 2…AScor.a/ and .i; .j a// 2N �…AN with j a D 1 if
Ba D∅ and i C†Aj a � q� 1, the square below commutes:
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Wi
IQ.A/˝

�N
AW

ja

I Q.Ba/
�
ı //

. x i ;. x ja //

��

W
q�1
I .†AB

a/

x q�1

��

E.A/˝
�N

A E.Ba/
�

ı
// E.†ABa/

Let

xI W SA=! T ; .� W A! B/ 7! colim
D�BnIm �;D¤∅

ID.�/ WD
O
BnIm �

�
1 if b 2D;
I if b …D;

and

zI W SA=! T ; .� W A! B/ 7! colim
D�BnIm �;D¤∅

ICD .�/ WD
O
BnIm �

�
1t 1 if b 2D;
I if b …D:

By the pushout-product axiom, xI .�/ ,! zI .�/ ,! I.�/ are cofibrations. There is a
factorization of the inclusion of the filtration wq by the sequence of pushoutsR Sq

�= Q.B/˝ xI .�/
� _

��

// W
q�1
I Q
� _

��R Sq
�= Q.B/˝ zI .�/ //

� _

��

�Wq�1
I Q
� _

��R Sq
�= Q.B/˝ I.�/ // W

q
IQ

with the vertical natural morphisms cofibrations of Srel –objects since Q is in particular
a cofibrant Srel –object.

The morphism x q�1 2 Srel� T .Wq�1
I Q; E/ extends uniquely to a morphism z q�1 2

Srel�T .�Wq�1
I Q; E/ that satisfies the inductive hypothesis. This gives us a commutative

square

�Wq�1
I Q
� _

��

z q�1
// E

� p

����

W
q
IQ  q

//

x q

;;

B

The lift x q 2Srel�T .W
q
IQ; E/ exists by the model structure on Srel�T and it satisfies

the induction hypothesis. The operad map x 2 Oprel.T /.WIQ; E/ is then defined as
the colimit of the x q .
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A.2 Cofibrant resolution of the Swiss-cheese relative operads

Let N 2 N and FMN 2 Oprel.Top/ be the Fulton–MacPherson relative operads
of compactifications of normalized configuration spaces [24; 17]; see also [25] for
the uncolored version. Let ConfN .l/ be the configuration space of l points in the
euclidean space RN and ConfN .m; n/ be the configuration space of mCn points in
the euclidean half-space HN such that the first m points are in the interior of the half-
space and the last n points are in the border of the half-space. The interior of FMN .l/

is homeomorphic to the orbit space VFMN .l/ D ConfN .l/=RNÌRC of the action
given by translation and dilation, and the interior of FMN .m; n/ is homeomorphic

to the orbit space VFMN .m; n/ D ConfN .m; n/=RN�1ÌRC of the action given by
translation parallel to the border of HN and dilation. For A 2 Srel define zA 2 Srel as
zAD A if cor.A/D c and zAD AtA0c if cor.A/D o, with A0c a copy of Ac . Let �

be the reflection of RN across the hyperplane @HN . For x 2 ConfN .A/ and a 2 zA
define zx.a/D x.a/ if a 2 A and zx.a/D �x.a/ if a 2 A0c . For k 2N let� zA

k

�
D f.ai / 2 zA

k
j ai ¤ ai 0 if i ¤ i 0gI

then each VFMN .A/ can be embedded into .SN�1/.
zA
2/ � Œ0;1�.

zA
3/ by the maps

�.a1;a2/ 2 .S
N�1/

VFMN ; �.a1;a2/.Œx�/ WD
zx.a2/� zx.a1/

kzx.a2/� zx.a1/k
;

ı.a1;a2;a3/ 2 Œ0;1�
VFMN ; ı.a1;a2;a3/.Œx�/ WD

zx.a2/� zx.a1/

kzx.a3/� zx.a1/k
;

and FMN .A/ is the closure of the image of these embeddings. Elements of FMN .A/

can intuitively be visualized as normalized virtual configurations of points which can be
infinitesimally close but with the directions between two points and the ratio of distances
between three points well defined by the natural extensions of the maps �.a1;a2/ and
ı.a1;a2;a3/ to FMN . The relative operad structural maps are defined by the inclusion
of infinitesimal configurations, and the degenerations delete the respective points of
the configurations. Define FM1 WD colim�!1 FM� with the colimit induced by
the natural inclusions i�c 2 Top.R�;R�C1/ and i�o 2 Top.H�;H�C1/ into the first N
coordinates and with the last coordinate 0.

Salvatore used the Boardman–Vogt resolution to prove that the nonunital Fulton–
MacPherson operads are cofibrant [39]. The unital versions fail to be cofibrant because
the degenerations aren’t cellular, but the resolution in the previous subsection fixes this.
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�

�

�

1o
1c

2c ı
�
1c

�2c

;
�1c

�2c�3c

;

�
1o

�
2o

�
1c

D

�

�

� �
1c

�2c

�3c
�4c�5c

�
1o

�
2o

�6c

Figure 4: Composition in FM2 .

Consider the subrelative operad SC�
N � SCN with dA 2 SC�

N .A/ if the .mi
da
/ associ-

ated to each a 2 A has constant entries, or equivalently such that their images have
all sides of the same length. Note that the inclusion of this subrelative operad is a
weak equivalence of relative operads. Let cc

1=2
2 IN be the center of the N –cube and

co
1=2

be the projection of cc
1=2

onto f0g� IN�1 . Define � 2 Srel�Top.SC�
N ;
VFMN /

as �A.dA/ D Œ.da.c
cor.a/
1=2

//�. The following lemma is a cubical equivalent of [17,
Lemma 3.1.1].

Lemma A.2.1 Let 1�N �1, A 2 Srel and x 2 VFMN .A/; then the inverse image
��1.x/ is convex in SC�

N .A/.

From this follow cubical equivalents of [17, Corollary 3.1.2, Theorem 3.1.3 and
Corollary 3.1.5]. In particular, U ıFMN are cofibrant resolutions of U ıSCN , ie
explicit weak equivalences of nonunital relative operads can be constructed.

Theorem A.2.2 Let 1�N �1; then there is a cofibrant resolution

vN 2 Oprel.Top/.WIFMN ;SCN /:

Proof From [17, Theorem 3.1.3 and Corollary 3.1.5] there is a cofibrant resolution of
nonunital relative operads �N 2 Opırel.Top/.U ıFMN ; U

ıSC�
N /.

The map vN 2 Oprel.Top/.WIFMN ;SCN / is defined as a colimit of inductively
defined maps vNq 2 Srel� Top.Wq

IFMN ;SCN /. Set vN0 WD �
N. Suppose that vNq�1

is well defined. Let A 2 Srel and � W A! B 2 Sq
A=

. Define

vN� 2 Top.FMN .B/� I.�/;SCN .A//

as vNq�1 on the subspace FMN .B/ � xI .�/ and as .vN projFMN .B/
.�// � � on the

subspace FMN .B/�f.1; : : : ; 1/g. Since the degenerations in FMN preserve relative
positions of the points in the configurations that are not deleted by Lemma A.2.1,
vN� can be extended to the whole FMN .B/� I.�/. This construction is compatible
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with the identifications in W
q
IFMN and therefore vNq is well defined. Set vN WD

colimq!1 vNq , which is a relative operad map. Since each vNA is homotopic to the
composition of the weak equivalences 
FMN

A and �NA , then, vN is a weak equivalence.
The theorem therefore follows from Theorem A.1.2.
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