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Relative recognition principle

RENATO VASCONCELLOS VIEIRA

We prove the recognition principle for relative N —loop pairs of spaces for 3 <N <oo.
If 3 < N < o0, this states that a pair of spaces homotopy equivalent to CW—complexes
(X¢. X,) is homotopy equivalent to (Y5" , HFib(:)s" ') for a functorially deter-
mined relative space (: B — Y if and only if (X., X,) is a grouplike SC y —space,
where SCy is any cofibrant resolution of the Swiss-cheese relative operad SCy . The
relative recognition principle for relative co—loop pairs of spaces states that a pair
of spaces (X., X,) homotopy equivalent to CW—complexes is homotopy equivalent
to (Yo, HFib(¢p)) for a functorially determined relative spectrum to: B /" Yot 1 if
and only if (X, X,) is a grouplike £~ —algebra, where £~ is a contractible cofibrant
relative operad or equivalently a cofibrant resolution of the terminal relative operad
Com™ of continuous homomorphisms of commutative monoids. These principles are
proved as equivalences of homotopy categories.

55P35, 55P48, 55R15; 55P42

1 Introduction

For 1 < N < 0o arecognition principle is a specification of conditions under which a
space is of the homotopy type of an N —loop space. The concept of operad was central
to establishing recognition principles. A topological operad P consists of a sequence
of spaces P(n) € [ [y Top and composition maps. The points p € P(n) are abstract
operations of n arguments, and a P—algebra is a pointed space X € Top, equipped
with concrete realizations of these operations as maps in X X " Formally a topological
operad P determines a monad P in the category of pointed topological spaces Top,,
via the coend construction.

If N =1, Stasheff proved in [42; 43] that a pointed space X is of the weak homotopy
type of a 1-loop space if and only if X is a grouplike A, —algebra, where A, is the
operad of associahedra. Though Stasheff didn’t use the term “operad” for the sequence
of associahedra, the structure he used was what is now called an operad structure.

In [31], May established the term “operad” and used the little N —cubes operad Cy,
introduced by Boardman and Vogt in [5] in the language of PROPs, in order to prove a
recognition principle for connected N —loop spaces. All N —loop spaces are natural
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Cy —algebras. A sufficient condition for a pointed space of the homotopy type of a CW-
complex X to be homotopic to an N —loop space is for it to be a grouplike Cy —algebra.
To get a necessary condition Cy must be substituted by a cofibrant resolution Cy .
If N =00, an Ex—operad £ can be used, which is a cofibrant operad with each
space contractible, or equivalently a cofibrant resolution of the terminal operad Com
of commutative topological monoids. For an overview including the nonconnected
cases, see Frankhuizen [12].

These recognition principles can be expressed as equivalences of homotopy categories.
For N € N the N —loop space functor ¥ is part of an equivalence between the ho-
motopy category of (N —1)—connected spaces and the homotopy category of grouplike
C v —algebras. The co—loop space functor Q% is part of an equivalence between the
homotopy category of connective spectra and the homotopy category of grouplike
£ —algebras for any Eo,—operad €.

In this article a recognition principle for relative N —loop pairs of spaces for 3 <N < oo
is proved. The case N = 1 was proved by Hoefel, Livernet and Stasheff in [19]. For
i: B—Y € Top, amap of pointed spaces the homotopy fiber HFib(¢) is the space
of pairs (b,y) € B x Y ! such that y(0) = ((b) and y(1) = yg. For 1 <N < oo the
relative N —loop pair of spaces functor is Qév V= sV , HFib(L)S’N_l ). The domain
of the relative co—loop pair of spaces functor Q5° is the category Sp/ of relative
spectra t,: B, /' Yo41, which are spectra maps with a shift in the degree, and it is
Q5°(te) 1= colim._mo(Yf’E:lrl , HFib(L.)S.).

The theory of colored operads is a generalization of the theory of operads where
operations on multiple spaces are allowed. In this article relative operads are used,
which are a kind of operad in two colors. A topological relative operad Q consists of a
sequence of spaces Q(/) € [ [ Top, a bisequence of spaces Q(m,n) € [[n2 Top and
composition maps. A relative operad Q determines a monad Q on the category of pairs
of pointed spaces Top2. The category of Q-algebras is denoted by Q[Top]. Central
to the relative recognition principle is the N —Swiss-cheese relative operad SCp . The
underlying spaces of SCy are SCy(l) = Cn(l) and SCy (m,n) is the subspace of
Cn (m + n) with the first coordinate base of the N —dimensional cube embeddings
indexed by the last n indices being mapped to the first coordinate base of the codomain
N —dimensional cube (see Figure 1 for an example). All relative N —loop pairs of
spaces are natural SCy —algebras.

The 2—Swiss-cheese relative operad SC, was introduced by Voronov [45] as a model of
the moduli space of genus-zero Riemann surfaces appearing in the open—closed string
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Figure 1: An element of SC>(3,2).

theory studied by Zwiebach [47]. In Voronov’s original version of the 2—Swiss-cheese
relative operad the spaces SC(m, 0) were taken to be empty, which is not assumed
in the present article. Kontsevich used the Swiss-cheese relative operad in his work
on deformation quantization to describe actions of Cy(Cp)—algebras on C«(Cy—1)—
algebras [23]. Related to Kontsevich’s approach to deformation quantization and
Zwiebach’s open—closed string field theory, Kajiura and Stasheff introduced open—
closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) in [22],
which are the algebras over operads that can be obtained from the homology of the
Swiss-cheese operad, as has been shown by Hoefel [16] and Hoefel and Livernet [18].

The Swiss-cheese relative operad itself has been the subject of intense study recently by
several authors. Livernet has shown that unlike the little cubes operads the Swiss-cheese
relative operads is not formal [27], and Willwacher has shown that extended Swiss-
cheese relative operads are also not formal [46]. Idrissi has found a model of SC» in the
category of groupoids [21], and in general Quesney has found combinatorial models for
SCp in the category of sets and used them to exhibit models for relative loop spaces
in dimension 2 [37]. Ducoulombier proved that totalizations of certain cosimplicial
spaces are SC,—algebras and that there are SC  —algebra structures on pairs of spaces
weakly equivalent to a pair composed of the space of embeddings of R¥~1 in RP
and the manifold calculus limit of (/)—immersions of R¥~1 in R? [10; 11].

An E™—operad is a cofibrant relative operad £~ with each space contractible, or
equivalently a cofibrant resolution of the terminal relative operad Com™ of continuous
homomorphisms of commutative topological monoids.

The relative recognition principle, Theorem 4.3.8, will be proved in the form of
equivalences of homotopy categories. These equivalences are not induced by Quillen
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equivalences, as is common in model category theory, but by a weaker machinery
introduced in Section 2.

Theorem Let 3 < N < oo and SCy be a cofibrant resolution of SCy . There is
an equivalence between the homotopy category of grouplike SC y —algebras and the
homotopy category of relative spaces with domain (N —2)—connected and codomain
(N —1)—connected.

Let £ be an E™—operad. There is an equivalence between the homotopy category of
grouplike £ —algebras and the homotopy category of relative spectra with connective
domain and codomain.

1.1 Structure of the article

In Section 2 generalizations of Quillen adjunctions and idempotent Quillen (co)monads
are introduced and will be the underlying machinery in the proof of the main theorem.
The homotopy theory of relative loop spaces is presented in the language of monoidal
model categories, in particular the category of relative spectra and its model structure
are defined.

In Section 3 the theory of relative operads and their algebras is presented, including a
description of the Swiss-cheese relative operads SCpu , the SCy —algebra structure of
relative N —loop pairs of spaces and some model-theoretical technical results.

The main results are proved in Section 4.

In the appendix a resolution of relative operads is introduced and used to construct
explicit cofibrant resolutions of the Swiss-cheese relative operads out of the Fulton—
MacPherson relative operads.

1.2 Notation and terminology

Throughout the language of category theory in Mac Lane [30] will be used. The theory
of model categories as presented by Goerss and Jardine [14] and Hirschhorn [15], as
well as the theory of monoidal model categories as presented by Hovey [20], is assumed.

By convention in diagrams in a model category 7 the morphisms in the class of
weak equivalences W are denoted by arrows marked with a tilde =, the ones
in the class of cofibrations C by hooked arrows < and the ones in the class of
fibrations F by double-headed arrows —>. The functorial weak factorization systems
are denoted by (Fatc Fnw.—c,—Fnw) and (Fatcnw,F,—cnw.—F) such that a
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morphism f € T(X,Y) is factored for instance as
X LS Fate paw (f) 250% .

The notation €: 7 — 7 and cof: € = Id is used for the cofibrant resolution functor
¢X = Fatc Fnw (@x) and the associated natural trivial fibration cofy = (@x)rFnw .,
and the notation §: 7 — 7 and fib: Id = § is used for the fibrant resolution functor
§X = Fatchw,F (*x) and the associated natural trivial cofibration fiby = (*x)cnw,
where Oy and xy are the unique morphisms associated with the initial and terminal
objects, respectively.

The homotopy category of 7 with objects the bifibrant objects of 7 and with morphisms
between bifibrant objects X and Y the set 7(X,Y )/~ of homotopy classes of maps
[20, Section 1.2] is denoted by Ho T, and my: T — Ho T denotes the homotopy
localization functor with w7 X = €§X.

The prototypical example of monoidal model category used is the closed cartesian
category Top of compactly generated, weakly Hausdorff spaces as presented by Strick-
land [44] equipped with the mixed model structure where weak equivalences are weak
homotopy equivalences, fibrations are Hurewicz fibrations and cofibrations are maps
homotopy equivalent to retracts of relative CW—complexes in Cole [9, Theorem 2.1.16].
In Top all spaces are fibrant and cofibrant spaces are the spaces homotopy equivalent
to CW—complexes. The cofibrantly generated Quillen model structure [38] will be
assumed when defining the model structure for relative operads. When distinctions are
necessary, (co)fibrations in the Strgm model structure are referred to as 2—(co)fibrations
and (co)fibrations in the Quillen model structure are referred to as g—(co)fibrations.

The theory of monads and their algebras as presented by May [31, Section 9] is assumed.
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2 Homotopy theory of relative loop spaces

In this section a generalization of the notion of Quillen adjunctions between model
categories is introduced, which is referred to as weak Quillen quasiadjunctions, where
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instead of unit and counit morphisms there is a unit span and a counit cospan, and it is
shown that they induce adjunctions on the homotopy categories. The relative N —loop
pair of spaces functors QQ’ for N € N are then defined and it is shown they admit a
weak Quillen left adjoint functor £, and that this adjunction induces a new model
structure with cofibrant objects the (N —1)—connected relative CW—complexes. A
generalization of left (right) Bousfield localizations via idempotent Quillen (co)monads
is presented, which is used in the recognition principle to pick out the subcategory of
grouplike algebras and connective relative spectra. The category of relative spectra, its
stable model structure, the base pair of spaces functor AJ® and the relative co—loop
pair of spaces functor Q5° are also defined and it is shown that A%® admits a weak
Quillen left adjoint functor X%°.

2.1 Weak Quillen quasiadjunctions

Functors between model categories that are compatible with the model structures
induce functors between their respective homotopy categories. Let 7 and .4 be model
categories and S: 7 — A and A: A— T be functors. If S preserves cofibrant objects
and weak equivalences between cofibrant objects then S is left derivable and the right
Kan extension L.S: Ho T — Ho A of m4S¢ along w7 with LSX = §SX is the left
derived functor of S. If A preserves fibrant objects and weak equivalences between
fibrant objects then A is right derivable and the left Kan extension RA: Ho A — Ho T
of w7 AT along w4 with RAY = €AY is the right derived functor of A. An adjunction
(S 4 A): T = Ais aweak Quillen adjunction if S is left derivable and A is right
derivable.

The standard fact that weak Quillen adjunctions induce adjunctions between homo-
topy categories is a special case of Theorem 2.1.2. The more common notion of
morphism between model categories in the literature, which by Ken Brown’s lemma
[20, Lemma 1.1.12] is strictly stronger than that of weak Quillen adjunction, is that
of Quillen adjunction, which are adjunctions where the left adjoint preserves (trivial)
cofibrations and the right adjoint preserves (trivial) fibrations. Not all adjunctions
between homotopy categories are induced by Quillen adjunctions or even weak Quillen
adjunctions. The following definition, which is central to the relative recognition
principle, is a generalization where a pair of functors admit a unit span and a counit
cospan:

Definition 2.1.1 Let 7 and .4 be model categories. A weak Quillen quasiadjunction
between 7 and A, denoted by (S -4.» A): T = A, is a quadruple of functors
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S: T — A, the left Quillen quasiadjoint, A: A — T, the right Quillen quasiadjoint,
¢: T—T and #: A— A equipped with a natural span ny: ¥X = X and ny: ¢X =
ASX and a natural cospan €y: ¥ = .ZY and ey: SAY = .ZY such that

(i) S is left derivable;
(i) A is right derivable;
(iii) % and .# preserve both cofibrant and fibrant objects;
(iv) 7’ and €’ are natural weak equivalences;
(v) if X €T is cofibrant then egy Snx =~ €y Sny:

(vi) if Y € A is fibrant then Aeynay ~ Aeynyy -

Note that the definition of weak Quillen adjunction is recovered if ¢, .%, ' and €’
are all identities and if the homotopy equations (v) and (vi) are strict equations. Note
also that since 1’ and €’ are natural weak equivalences the 2-out-of-3 property implies
that © and .# preserve weak equivalences.

Theorem 2.1.2 A weak Quillen quasiadjunction (S -4 > A): T = A induces a
derived adjunction between the homotopy categories (ILS 4 RA): HoT = Ho A.

Proof The unit of the adjunction is the composition

7 5 —1 A
[y = X [(n’cof¢) x] RZX [€(Afibsn) x] RALSY

and the counit is the composition

S No1—1
[€]ly := LSRAY M LZY % v

That the unit—counit equations hold follows from the commutativity of the diagrams

§SX
(S ]! T (551!
[SEZS‘]Y] !
§S€X §FSX F5SX
T~
[SSCOfch]_]l \SSWXK‘ [SEfX] [S«Qﬁbs]K) T[ﬁbggs}(]_l
FSC¥ X FSASX SFZFSX
[SS@’?X]l }S‘cofl\{ [FSAfibgx] T[SGSSX]

FSCASX ————— > FSCAZFSX ——— > FSAFSX

[SSCAfibsx] [§Scofazsx]
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in Ho A forall X € HoT and
CAY

"Af

CEAY / CEAY CAZFY
|
[COf%eAY]_ll /[C‘é’cofAY] [Grll\y] /QAEY/ [CAfibgzy] !

CECAY /Q:ASAY CASZFY
[@ﬂCAY]l }\Scof[\y] \[c\ﬁbs/&) T[CASEY]

CASCAY —————— 5 CAFSCAY —————— CAFSAY
[€Afibseay] [€ATScofay]

in Ho T forall Y € Ho A. m|
The following corollary follows immediately:

Corollary 2.1.3 Let (S -4,2 A): T = A be a weak Quillen quasiadjunction. If
Afibsxnx € Wy for every cofibrant X € T and €y Scofpy € W4 for every fibrant
Y € A, then

(LSHRA): HoT = Ho A

is an equivalence of categories.

2.2 Finite relative loop pairs of spaces

For 7 a monoidal model category the pointed category 7 of objects under the terminal
object inherits a monoidal model structure with tensor product the smash product
Y AX =Y ® X Uygsusex * and exponential the pointed exponential ¥ X = ¥ X xy« %
with the pushout and the pullback taken in 7. The unit of the smash product is * LI 1.
A morphism f is in Wy, Cr, or Fr, if itis in Wy, Cy or Fr, respectively. In
the induced model structure on Top, all pointed spaces are fibrant and the cofibrant
pointed spaces are the based spaces that are homotopy equivalent to CW—complexes
and with the basepoint map a Hurewicz cofibration.

As a special case of the fact that for X € 7 a cofibrant object in a monoidal model
category the adjunction (—® X 4—%) is a Quillen adjunction the N—suspension/N—loop
space adjunction

=V 4aN) = (= A$Y 4-5"): Top, = Top,
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is a Quillen adjunction, where $V := IN/3I" with I the real interval [0, 1] and
the basepoint the equivalence class of the border. Note that trivially =V preserves
fibrant objects and that QV preserves cofibrant objects by Fritsch and Piccinini
[13, Corollary 5.3.7]. This is a nice advantage of working in the mixed model structure
when studying loop spaces.

If 7 is a model category then the category of morphisms and commutative squares 7~
inherits the projective model structure where a commutative square

(e, /)eT (k: A= X, 1: B—>Y)

isin Wy- or Fr- if e and f are both in Wi or Fr, respectively, and (e, f) is
in Cy— if e and (f,1) € T(X Uy B,Y) are both in C. An object in 7 is fibrant if
it is a morphism between fibrant objects and it is cofibrant if it is a cofibration between
cofibrant objects. For instance, in Top, all maps are fibrant and the cofibrant maps are
homotopy equivalent to inclusions of pointed CW-pairs.

For N € N, relative N —loop spaces are (N —1)—loop spaces of homotopy fibers of
maps. They come equipped with a natural inclusion of the N —loop space of the
codomain. Let I € Top, be the interval with 1 as the basepoint. For ¢: B — Y € Top,
the homotopy fiber of ¢ is the pullback HFib(t) := B xy Y ! in Top, induced by ¢
and the evaluation at 0 map, ie (b, y) € HFib(1) if b€ B and y € Y (in particular,

y(1) = yo) and y(0) = ¢(b).
Definition 2.2.1 The relative N —loop pair of spaces functor is

Qév = (Qév, Qév)Z TOp: — Topi’ (Ll B — Y) N (YSN,HFib(L)SN_l).

Note that there is always a natural map
0 € Top, (Y5 ,HEbO)S" ),  0(»)(s) := (bo, s > y(s',5)).
This map will be studied as part of the structure described by the Swiss-cheese relative
operads. The functor Qg’ admits a weak Quillen left adjoint.
Definition 2.2.2 The relative N —suspension functor is
>V Top? — Topy,

Ko Xo) (j;}OMSN_lz XO/\SN_I—>((X0/\I)\/(XC/\S1))/\$N_1)
cs Xo) > .

[Xo,5] = [X0,0,5]
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Proposition 2.2.3 There is a weak Quillen adjunction (X% - Qév ).

Proof The unit is

Mok x,) €TOPE((Xe, Xo), 2552 (X, X)),

N N
Xe 2 (XoADV (X ASASY ST 0 () (1) =[x, 11,
N _
Xo 2 HFib(j§, Algn-1)*" ", 0¥, (50)(8):= (%o, ], 8" [0, ', 5]),

and the counit is
eN etopm (=10,

N
€B

HFib())3" ' A§N -1

B
-0
Al N—
]HFib(L)SN_l sV ll lt
Y

(HFib)S" " AD) v (¥3Y ASH)) ASNTT —
€y

7 (((B. ). 5. 5]) := y()(s").
ef,v([a, 5", s]) = a(s”,s).

It is trivial to check that the unit—counit equations are satisfied.

N ([(B.y).s]) = B(s). {

Wedging by cofibrant objects preserves cofibrations, so the functors —ASY~1, — AN
and — A [ in particular preserve cofibrant objects, and therefore since cofibrations are
closed under coproducts the images of X% on cofibrant objects are maps between
cofibrant objects. The inclusion of a cofibrant object into the base of its cone is
a cofibration, therefore X preserves cofibrant objects. Ken Brown’s lemma and
the fact that wedging by cofibrant objects preserves trivial cofibrations imply that
— A SN preserves weak equivalences between cofibrant objects, and closure of trivial
cofibrations under coproducts and Ken Brown’s lemma imply that weak equivalences
between cofibrant objects are closed under coproducts, and therefore XV preserves
weak equivalences between cofibrant objects.

Clearly Qév preserves fibrant objects. There is a natural exact sequence of pointed

spaces
SN

B L ysY HFib(L)SN_1 st st

for all relative space t: B — Y that induces a natural exact sequence of homotopy

groups [36, Section 8.6], and therefore €2 év preserves weak equivalences by the five

3

lemma and the fact that the functors —5° preserve weak equivalences. |
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Note that & preserves cofibrations and trivial cofibrations between cofibrant objects.
The adjunction (2 4 Q év ) and the cofibrantly generated Quillen model structure
induces a new model structure on Top;, as in Berger and Moerdijk [1, page 6].

Definition 2.2.4 Let 1 <m < co. A relative spaces map
(e, f)eTop,(t: A= X, /: B—Y)

is a relative (m—1)—weak homotopy equivalence if the induced homomorphisms fix €
Grp(my X, myY') are isomorphisms for all ¢ > m and if the induced homomorphisms
(e, fH), e Grp(my (A xx X1, e (B xy Y1) are isomorphisms for all ¢ >m —1.

This definition is equivalent to Qév (e, f) being a pair of weak homotopy equivalences.
A pointed space Y is m—connected if 74 (Y) is trivial for 0 < g <m.

Definition 2.2.5 A relative space : B — Y € Top, is m—connected if B is (m—1)—
connected and Y is m—connected.

The images of ©& are always (N—1)—connected. The adjunction (% QQ’ )
transfers a model structure on Top, from the Quillen model structure where the weak
equivalences are the relative (N —1)-weak homotopy equivalences, all objects are
fibrant and cofibrant objects are (N —1)—connected relative CW-pairs. When equipped
with the mixture of this model structure with the Strgm model structure the category of
relative spaces is denoted by Topy_; .

Proposition 2.2.6 There is a weak Quillen adjunction
(Id 41d): Topy_; = Topy

that induces the inclusion of the coreflective homotopy subcategory of (N —1)—con-
nected relative spaces.

Proof The identity functor trivially preserves fibrant objects and weak homotopy
equivalences are (N —1)-weak homotopy equivalences, so Id: Top, — Topy_, is
right derivable. The generating cofibrations of Topy;_, are cofibrations in Top}’, and
(N —1)—weak homotopy equivalences between (N —1)—connected relative spaces are
weak homotopy equivalences, so Id: Topy,_, — Topj is left derivable. Also every
cylinder object in Topy,_, is a cylinder object in Topy ; therefore, the homotopy
relations coincide and LId is full. m
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2.3 Bousfield localizations

A left (right) Bousfield localization is a model categorical version of a (co)reflective
subcategory, ie, a full subcategory whose inclusion admits a left (right) adjoint, the
(co)reflector. In this section results related to left Bousfield localizations are presented
explicitly, but they can all be dualized into results about right Bousfield localizations.
Bousfield localizations through a generalization of Bousfield and Friedlander’s method
of Quillen idempotent monads [7, Theorem A.7] will now be constructed. This gener-
alization is required for the same reason weak Quillen quasiadjunctions are needed,
which is because in the context of the relative recognition theorem there is a unit,
and in the infinite case a counit, only up to resolutions. All proofs in this section are
adaptations of the original arguments for Quillen idempotent monads.

Definition 2.3.1 Let 7 be a right proper model category. A Quillen idempotent
quasimonad on T is a pair of endofunctors Q: 7 — T and €: T — T equipped with
a natural span ’: ¢ = Id and 1: € = Q such that

(i) 7’ is a natural weak equivalence;
(ii) Q preserves weak equivalences;
(iii) On and ng are natural weak equivalences;
(iv) if X €T, pe F(E,B) and f € T(X, B) are such that ng,ng, Qf € W, then
Q(mg) e W(Q(X xp E), QF);
(v) if X,KeT and € C(¥X,K),then ix € W(K, X Uzyx K).

If € and 1’ are both identities, then the first and last conditions are trivial and Bousfield
and Friedlander’s original definition of Quillen idempotent monad is recovered.

That ¢ € T~ has the left lifting property with regard to p € 7, or equivalently that p
has the right lifting property with regards to ¢, is denoted by ¢4 p. If M is a class of
morphisms of a category 7, the subclass of morphisms with the left lifting property
with regards to morphisms in M is denoted by “M, and the subclass of morphisms
with the right lifting property with regards to morphisms in M is denoted by M¥.

Definition 2.3.2 Let 7 be a right proper model category and (Q,%.n’,n) be a
Quillen idempotent quasimonad on 7. The Q-weak equivalences are defined as
Wo = O~ (W), the Q—cofibrations as Cp := C and the Q—fibrations as Fgp :=
(Co NWp)B.
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Lemma 2.3.3 Let T be a right proper model category and (Q,%,n’,n) be a Quillen
idempotent quasimonad on T ; then Wo N Fg = W N F.

Proof Let p e T(E,B). If p e FNW then p € Wy by Definition 2.3.1(ii) and
p € Fg,since Cg = C implies p € C5 C (Co NWp)?.

Suppose now that p € Fg N Wy . In the factorization p = prpaw pc it is the case
that pc € Wy by Definition 2.3.1(ii) and the fact that Wy satisfies the 2-out-of-3
property, so pc € Co N Wyg. Therefore pc 4 p and so p is a retract of praw by

the retract argument [20, Lemma 1.1.9]. Therefore p € F N W since trivial fibrations
are closed under retracts. O

Lemma 2.3.4 Let T be a right proper model category, (Q,%,n’,n) be a Quillen
idempotent quasimonad on T and p € F(E,B). If ng,ng € W then p € Fg.

Proof Let k € Co N Wp (A, X) and (e, f) € T~ (k, p). Consider the factorization

of O(e. f)

04 -2, Ratcow.r(Qe) — 25 OF

QKJ“' NJFaICﬂW,F(Qean) lQP

0X ———— Fatcnw,r(Qf) ——— OB
fcnw OfF

By Definition 2.3.1(ii) and the 2-out-of-3 property, Fatcnw,r(Qe, Q f) € W. Taking
the pullback of the right square along (g, np), there is the commutative diagram

(Qecnwna,ce) — TZE

FA Fatcnw,r(Qe) xpr € E ¢E
| _ _
%’Kl (FatCmW.F(gesQf),%P) l‘fp
¢X ——— Fat Xxop€B —— ¢B
@iy LHcowr(Qf) o T

with (Fatcnw,r(Qe, Qf),€p) € W by the 2-out-of-3 property, ng,ng € W, T
being right proper and the existence of the commutative square

—  TFRacnw,F(Qe)
Fatcnw,r(Qe) Xgr ¢ E ————— Fatcnw,r (Qe)

(FatCmW,F(Qe,Qf),%P)l NJ/FatCﬂW,F(Qe,Qf)

Fatcaw,F(Qf) xop €¢B ——————— Fatcnw,r (Qf)

TFaic AW, F(Qf)
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Now, taking the cofibration/trivial fibration factorization of the left square and then
taking the pushout along (7', ), define

A’ = AUz 4 Fatc Faw (Qecnwna, Ge),

X':= X Uz Fatc, Faw (O fcownx . € f),

k' = (k,Fatc, pnw (¢k. (Fatcnw,r(Qe, O f). € p))): A — X'
such that ¥ € W by the 2-out-of-3 property and Definition 2.3.1(v). Therefore there

is the commutative diagram

(e,ngmnzp(Qecnwna,ce) Faw)

i
A 4 A —

H KCOW[N H/
/ . Lo

o 4—— by
A1

Kcnwla
N " «) (fin'gmzg(Qfcawnx, € f)Faw )k
K[ CHT le%
p X’ _ B
L (fin'grzg(Qfcawnx € f)Faw)

with k7 € W by the 2-out-of-3 property. Then H'H € T(X, E) is a lift of (e, f) €
T (x, p). Therefore p € Fop. O

Theorem 2.3.5 Let T be a right proper model category and (Q,%,n',n) a Quillen
idempotent quasimonad on T ; then (Wp,Co, Fg) is a left Bousfield localization
of T.

Proof Since Q is a functor it preserves composition and isomorphisms, therefore
Wo contains isomorphisms and satisfies the 2-out-of-3 property. It is the case that
(Co.FoNWg) = (C,FNW) by Lemma 2.3.3, so the weak factorization system
(Fatc,, Fonwy s —Co»—Fp) = (Fatc Fnw, —c, —F) is well defined.

There is also a trivial Q —cofibration/Q —fibration weak factorization system. Since
by definition Fg = (Co N Wp)¥, and so PFg =2 ((Co NWp)?) D Wo NCq, the
existence of this weak factorization system implies ?Fp C Wp N Cp by the retract
argument, the closure of trivial cofibrations under retracts and the fact Q preserves
retracts.

Defining Q'X :=Fatc, rnw (nx), then ig-x € W(Q'X, X Uzy Q'X) by Definition
2.3.1(v). Therefore nxu_, o'x € W forall X € T since % and Q preserve weak
equivalences, W satisfies the 2-out-of-3 property and the following diagram commutes:
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Zox JLuxeow Zory YeX L Z(x U2y 0'X)
UQXlN 77Q/){~ l’?Xu xQ'X
Ql ’
QQX QUXFOW QQX QX Q(Xl_l%)X QIX)

Let f € T(X,Y) and apply the trivial cofibration/fibration factorization on (f, Q' f)
and the natural span of the Quillen idempotent quasimonad to obtain the diagram

(L2 NF

XUgy Q'X “LEDW B v (£, 0 f) YUzy Q'Y
NP/XH%X o'x N)‘\nl;atcmW.F(_/lQ/f) “’T”;ufy o'y
F(XUzx 0'X) LLEDW, TRty (£, 0' ) —LLEDE G (YULy 0'Y)
~|MXuzy0'X NlnFatcmW.F(f.Q/f) ~ MY Uy Q'Y
O(XUgzy 0'X) 2L, optcy r (.0 f)—2LLDE, oYUy 0'Y)

By the previous observations, NXUgy QX NY Uy Q'Y € W, and by the 2-out-of-3
PrOPerty Nracnw r(£,0' f) € W, therefore (f, Q' f)r € Fp by Lemma 2.3.4. Also
(. Q' flcnw € ConN Wy since C =Cg and W C Wp.

By Definition 2.3.1(iii) and the 2-out-of-3 property, Onxc € W. Therefore, by the
2-out-of-3 property, Qix € W, and so iy € Wp forall X € T:

07x — 2 . ox

Qﬂxcl’v '{Qix
00X 57— O(X Uzx 0'X)

By taking the pullback of (f, Q' f)f along iy, Definition 2.3.1(iv) implies that

Tratcnw. r (£,0' f) € Wo, which implies ((f, Q' f)cnwix. f) € Wg by the 2-out-
of-3 property and so ((f. Q' f)cnwix. f)c € Co N Wy in the diagram

Fatc,raw ((f. Q' f)cowix., f)

(.9 Nenwixsfc (L9 Aeawix Fnw
T
X ———.2 Nenwix . H—Fatcaw,r (£, Q' f)xyu, ovY — Y
ix nFa‘CﬂW;i{’(«f’Q,~f) ll’Y
XUz, Q' XC = Fatcnw.r ———» YUz Q'Y
Zx 0 G e aw.F(f, Q' f) Ty 244
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Also my € Fg since fibrations are closed under pullbacks, and so FNW = Fg N Wyo
implies 7y ((f. Q' f)cnwix. f)rnw € Fo by Lemma 2.3.3.

Therefore the upper morphisms in the above diagram present a trivial Q —cofibration/Q —
fibration weak factorization system. a

Setting Q'X :=Fatc raw (nx) and Q"X := X Uz y Q’X, the following characteriza-
tion of O —fibrations can be derived. Homotopy pullback results from [14, Section I1.9]
will be used, which are presented there in the context of simplicial sets but are valid in
any right proper model category.

Proposition 2.3.6 Let T be a right proper model category, (Q,%,n',n) be a Quillen
idempotent quasimonad on T and p € T(E, B); then p € Fg if and only if the
following conditions are satisfied:
(i) pefF.
(ii) The commutative square
E—£50"E
p l(p,Q/p)

B —_— Q”B
in

is a homotopy pullback. Equivalently, because T is a right proper model cate-
gory. (p.(p. Q' p)wie) e W(E, BxgrgK) forall (p. Q' p)w.(p.Q'p)F)€
W(Q"E. K)x F(K, Q"B) such that (p. Q'p) = (p.Q'p)r(p. Q'P)w -

Proof Suppose p satisfies conditions (i) and (ii). There is the factorization (p, Q' p) =

(p. O'p)r(p, Q' p)cnw . and by the previous proof (p, Q'p)r € Fg. Also np €
Fo(B xgrpFatcaw,r((p, Q'p)), B) since fibrations are closed under pullbacks:

E - 'E 0'E
(p,'dv";'Q/p)c._quE) (PaQ/P)CmW["“
P Bxgrp Eatc nw,F((p, Q' p)) —Facaw.rr.0'm— Fatcnw,F ((p, Q' p))
ﬂB/ (p,Q’p)Fl
B — - 0"B

From the hypothesis (p, (p, O’ p)cawig) € W and the 2-out-of-3 property, it follows
that (p, (p, Q' p)cnwig)c € C NW, and so from the hypothesis p € F it follows that
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(p.(p.Q'pP)cnwir)c B p. Therefore p is aretract of wp(p. (p. Q'pP)cnwie) Faw
by the retract argument, and p € Fg since FNW = Fo NWy.

Suppose now that p € Fg. Since Fp C F, (i) holds. Let ((p, Q' p)w.(p. Q'p)F)) be
as in condition (ii). There is a natural span of weak equivalences Q" <= Q' = Q by

the definition of Q' and by Definition 2.3.1(v), and so Q"W C W by the 2-out-of-3
property. Consider the commutative diagram

Q:"E Q//Q//E

(Ps(P,Q/P)WiE)l Nl(p,Q/p)w ’{Q”(p,Q’p)w
B XQ"B K K K K Q”K

~

ﬂBJ l(P,Q/P)F lQ”(P:Q/P)F

B . Q//B "’. Q//Q//B

iB Q"ip

E—% L, 0"E

By the previous proof, ig,ip € Wp and (p, Q'p)r € Fo. From the 2-out-of-3
property follows ig € W, and from the naturality of 1 and the 2-out-of-3 property
follows ng € W. Therefore mg € Wy by Definition 2.3.1(iv). Also mp € Fg by
closure under pullbacks. So (p,(p, Q'p)wig) € Wg by the 2-out-of-3 property
of Wy . Since every commutative square that contains parallel weak equivalences is a
homotopy pullback and pullbacks along fibrations are also homotopy pullbacks, the two
lower squares are homotopy pullbacks, and so the lower rectangle is also a homotopy
pullback. This lower rectangle is equal to the rectangle

iBx 17
B XQ”B K L Q”(B XQ”B K) —> Q”
I
”Bl Q/ITB lQ”(P;Q/P)F
" ~ ¥a Y
B - Q"B o 0"0"B

and since the right commutative square contains parallel weak equivalences it is a
homotopy pullback and so the left square is also a homotopy pullback.

Consider the factorization

(. (p. Q' P)wie) = (p.(p. Q' P)WiE) Faw (P, (p, Q' P)wiE)C-

From the 2-out-of-3 property, (p, (p, Q'p)wig) € Wo and FNW = Fo N Wy, it
follows that (p, (p, Q' p)wig)c € Co N Wy . Therefore (p, (p, Q' p)wie)c @ p and
p €Ret(wg(p. (p. Q' p)wik)Faw) by the retract argument.

Algebraic € Geometric Topology, Volume 20 (2020)



1448 Renato Vasconcellos Vieira

The commutative square of condition (ii) is a retract of

Fate, Faw (EiBxon g k) Fate, paw ((p. (p. Q' P)wik),
O'(p.(p. O'pP)wik))

~|(0.(p, Q' PIWIE) FAW ((P,(P,Q/P)WiE)sQ/(P,(P,Q/P)WiE))FﬁWl"’

Fatc,row ((p. (p. Q' P)wik))

B XQ”B K —iBXQ//BK Q”(B XQ”B K)
TR J(Q//HB
B — 0"B

with the upper square a homotopy pullback since it contains parallel weak equivalences,
and so the whole commutative rectangle is a homotopy pullback. Since homotopy
pullbacks are closed under retracts, condition (ii) is satisfied. O

For every weak Quillen quasiadjunction (S -4, # A): T = A there are the associated
endofunctor AFS ¢ that preserves weak equivalences equipped with the natural span
(cofng) Afibsn)e
2T gy AR £zSex,
and the endofunctor SCAF that preserves weak equivalences equipped with the natural
cospan
(eScofa)zy (e3fib)y

SCAZY —— FFY ——=Y.

Definition 2.3.7 Let (S 44,2 A): T = A be a weak Quillen quasiadjunction; then
it is idempotent if T is right proper, A left proper and the associated endofunctors
and natural transformations above form an idempotent Quillen quasimonad and an
idempotent Quillen quasicomonad.

The following theorem is a model-theoretic version of the fact that an adjunction
(S 4 A) with AS areflector and SA a coreflector induces an equivalence between
the respective subcategories:

Theorem 2.3.8 Let (S -4, # A): T = A be an idempotent weak Quillen quasiad-
junction; then the adjunction (LS 4 RA) can be factored into an equivalence between
the reflective subcategory Ho Tagse and the coreflective subcategory Ho Agepg,

Lid LS Lid
HoT L " HoTazse . L HoAseaz . L " Ho A.
RId RA RId
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Proof By the definitions, (Afibgn)y isa AFS E-weak equivalence and (e Scofp )y is
an SCAF—-weak equivalence. Therefore the equivalence follows from Corollary 2.1.3.
O

The infinite relative recognition theorem, Theorem 4.3.8, is a particular case of this
theorem.

2.4 Relative spectra and infinite relative loop pairs of spaces

Infinite loop spaces and their homotopy structure can be described via the category of
spectra introduced by Lima [26] equipped with the stable model structure introduced
by Bousfield and Friedlander [7]. See also Schwede [40]. The category of spectra is
denoted by Sp.

By the closed monoidal structure of Top,, for every spectrum Y, € Sp with struc-

tural maps 0., € Topy(Ye AS™, Yeym) there is are adjoint structural maps OI m €

Top, (Y, Y.Sfm). The ¢ stable homotopy group of Y, for g € Z is
n;IS(Y.) :=colimmg4.(Y,),
*—>0Q
where the colimit is induced by the adjoint structural maps O'I m- A spectrum Y, is

connective if n(f (Y,) is trivial for all g < 0. A stable weak homotopy equivalence is a
spectra map that induces an isomorphism on all stable homotopy groups.

The spectra of interest for stable homotopy theory are the $2—spectra, which are the
ones such that the adjoint structural maps O’I m are all weak equivalences. These are
the fibrant objects of the stable model structure on spectra. The cofibrant spectra are
the ones composed of cofibrant spaces with cofibrant structural maps.

In order to define infinite relative loop spaces, the category of maps of spectra that shift
the index by 1 is required.
Definition 2.4.1 A relative spectrum is a pair of spectra
(B.,Y,) €Sp xSp
equipped with a sequence of maps

Lo € HTOp*(B., Y.+1)
N
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such that the sequence of squares

B ASY 21 B,y

Lo/\lsll Jlo—i-l

1
Yer1 AS Toril Yei2

commute. A relative spectrum is denoted by either t,: B, ' Yo41 oOr simply to. A
relative spectra map between relative spectra k,: Ay /" Xo41 and t,: B, " Yot 1 is
a pair of spectra maps (e, f,) € Sp(A4., Be) X Sp(X., Y.) such that the sequence of
squares

A, —= . B,

Xet1 — Yo
fo+1

commute. The category of relative spectra is denoted by Sp/v .

Note that for every relative spectrum ¢,: B, /" Y,+1 there is an associated exact
sequence of groups

(bOuU:rvl)* (te)x

JrSB.—>

(”B.)*
)y

---—>an. n;HFib(L. n;_lY.—%-- .

As is the case with Sp, the category Sp/ is bicomplete and the limits and colimits are
computed in each index. A model structure on Sp/ can be built in an analogous way
to the stable model structure on Sp. This model structure is a left Bousfield localization
through a Quillen idempotent monad on a strict model structure induced by the pointed
mixed model structure on topological spaces. In the following the convention that
spectra are the terminal space * in negative degrees is used.

Definition 2.4.2 If «,: Ay /" Xet1,te: Be /" Yoi1 € Sp/' , then a relative spectra
map (e, f.) € Sp”" (ke ta) is a
o strict weak equivalence if e,, f, € W for all « € N;

e strict cofibration if
(i) (€e,00-1,1) € C(As V4, gt (Be1 ASY), B,) forall e €N, and

(i1) ((f"LO—I)»GO—I,l)EC((XOVAo—lBO—I)V(X._l\/A._zB._2)/\S1Y'—l/\Sl,Y-)
forall e e N;

o strict fibration if e,, f, € F forall e € N,
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These classes are part of the strict model structure on relative spectra and are denoted
by (W, C, F). The weak factorization systems can be defined inductively from the
mixed model structure on Top,,.

The cofibrant objects of the strict model structure are relative spectra such that 0,—1,1 €
C(B.—1AS', B,) and (te—1,04-1,1) €C(Ba_1Vp, ya51 (Ye—1ASY), Y,) forall e €N,
In particular the underlying spaces of a cofibrant relative spectrum are cofibrant and
the structural maps are cofibrations. All relative spectra are fibrant in the strict model
structure.

Definition 2.4.3 The relative spectrification functor is
O- e e . : 39 . ps 89
Q:8p” —>8Sp”, (Lt B /" Yeq1) > qu_lgofg(‘.Jrq- Bly /" Viiitg)
and it is equipped with the natural inclusions /: Id =  into the colimits.

Proposition 2.4.4 The functor Q equipped with the natural map [ is an idempotent
Quillen monad on Sp””" with the strict model structure.

A relative spectra map (e, f.) € Sp”" (ke Ae /' Xei1.te: Be /' Yui1) isan Q —weak
equivalence if 715 e, and 7'[5 f. are isomorphisms for all ¢ € 7., and it is an Q —fibration
if (es, f.) € F and

(0] 1.e) € W(Aw A3y X o1 B.) forall s€ N,
’ o1

(o:rl, fs) € W(X., X?"Jlrl X5l Y,) forall e N,
’ o+1

A relative spectrum t,: By /" Yoi1 IS Q—fibrant if B, and Y, are both Q —spectra.

Proof The conditions in Definition 2.3.1 are satisfied. The strict model structure is right
proper since all objects are fibrant. Conditions 2.3.1(i) and 2.3.1(v) are trivially satisfied

q . =
% preserves weak equivalences, Q pre-

since ¢ = Id and n = 1. Since each —
serves weak equivalences and so condition 2.3.1(ii) is satisfied. Condition 2.3.1(iii)
is satisfied because Q = QQ. Condition 2.3.1(v) is satisfied since the mixed model
structure on Top, is right proper and Q preserves limits and fibrations. That Q-weak
equivalences are as described follows from the fact that for every spectrum X, the
equations
. s . __S
Tetp 2(11)1&1 X.+q = 20_1)1521 et ptqXetq = Ty X,

hold. The description of Q—fibrations and  —fibrant relative spectra follows from the
characterization of fibrations in Proposition 2.3.6. |
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Definition 2.4.5 The relative base pair of spaces functor is
$ = (AP, AP): sp”" = Top2, (i B, /' Yuy1) > (Yo, HFib(10)).

The relative co—loop pair of spaces functor is Q5° := A%oﬁ

Definition 2.4.6 The relative suspension spectra functor is

0 AS: X, A8 X, ADV(X-ASH)IAS®
% Topi—>Sp/, (XcaXO)'—)(]XO ? 7 (FonA Ve ) )
[XO’S] = [x()a 07 S]

with (Xo AT)V (Xe ASH)ASTL = X,
Proposition 2.4.7 There is a weak Quillen adjunction (X% 4 A).

Proof The unit is
%, .x,) € ToP2((Xe. Xo). AP EF (Xe. Xo)).
=1
X, XeZ Xy nx. (Xc) 1= xc,
n5, o
XO L) HFlb(]XO'O)? r]?(oo ('xo) = ('XO’ S = (xo, s))?

and the counit is
€2 € 5p” (EX AT L, L),

(o]
€B.

HFlb(tO) ASD® Bo

;0
JHFib(LO)/\S. l l le

((HFib(to)) AT)V (Yo ASH)AS® ————— Yoy
E?:+1

6%0.([(b, y)’ S]) = O—O,o(ba S),
{E?f:H (B, y),5",5]) :=01,e41(y(5), 9),

€90 (7,551 1= 00,041(1, (5", 9)).

That the functors are derivable follows from the same arguments as in the proof of
Definition 2.2.2. m
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3 Relative operads

In this section the theory of relative operads and their algebras is presented. The relative
operad Com”~ of homomorphisms of commutative monoids and the Swiss-cheese
relative operads SCy are presented, and also the SCy —algebra structure of relative
N —loop pairs of spaces. The Quillen model structure on topological spaces can be
transferred to the category of relative operads and their algebras [3], and for algebras
over topological relative operads there is also a Strgm model structure and therefore
a mixed model structure on the categories of algebras. With this model structure it
is shown that some functors constructed with the bar construction and the monads
associated with relative operads are left derivable. This follows from a useful result on
the compatibility of Reedy model structures, monoidal model structures and coends.

The bar construction will be central to the main result. Let 7 and .4 be categories. The
category B(T,.A) is defined as follows: the objects of B(T,.A) are triples (F, C, X),
with C amonad in 7, F a C—functor in A and X a C —algebra, and morphisms are
triples (a0, ¢, f) € B(T, A)((F,C,X),(F’,C’,X’)) with ¢ a monad morphism, f a
C —morphism and o a C—functors morphism. The two-sided bar construction is the

functor ]
Ac*—l, i =0,
. 0 = FC' Y upumi, 0<i<x
. AP ’ e ’
B«: B(T, A=A, (F.C.X)—~|FC*X, FC* g, i = %,
S,':FCir]C*—i+1, 0<i=<x

The geometric realization | B«(F, C, X)| is denoted by B(F, C, X). From [31, Sections
9.2 and 11.8] any map f € A(Y, FX) determines a map t(f) € A(Y, B(F,C, X))
and any map g € A(FX,Y) such that gdg = gd; € A(FCX,Y) determines a map
e(g) € A(B(F,C, X),Y). Maps of these types are central to the original recognition
theorem and the relative version in Section 4.

3.1 Relative operads and their algebras

Colored operads are a generalization of operads where operations on multiple objects
are considered. Relative operads are a kind of colored operads on two colors {c, 0}
that were first defined by Voronov [45].

Definition 3.1.1 A relative set is a set A equipped with a function

corg € Set(AU{A},{c,0}),
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the coloring of A, such that if cor(A4) = ¢ then cor(a) = ¢ for all a € A. A relative
set is simply denoted by A and the coloring coryg simply as cor when its relative
set A is obvious from context. A relative set A is open if cor(A) = o and is closed if
cor(A) = c. The subset of closed and open elements of a relative set A are denoted
respectively as A, and A,.

A relative function f between relative sets A and A’ of the same color is a function
f € Set(A, A’) such that corqy = cory f. There are no relative functions between
relative sets of different colors.

Definition 3.1.2 Let S, be the category with objects the closed finite relative sets
L:={l¢,....,lc} for I € N and the open relative sets m,n :={l¢,...,mc, 1o, ..., 0o}
for (m,n) € N2, and with morphisms the bijective relative functions. The relative sets
0 and 0, O are respectively the closed and open empty sets. Denote by S¢ and S, the
full subcategories of respectively closed and open relative sets in S.

Let S™

rel e .
relative functions. Denote by Sz” and S," the full subcategories of closed and open

be the category with the same objects as Sy but with morphisms the injective
objects, respectively.

If (A,(B%)) € Sret X [[4 Scor(a) then X4B¢ is the relative set composed of pairs
(a,b) with a € A and b € B? equipped with the coloring cor(a, b) = cor(b) and
cor(X4B%) = cor(A). The relative set ¥4 B¢ is considered an object of S by
equipping it with the linear order (a, b) < (a’, b’) if either cor(b) = ¢ and cor(b’) = o,
or cor(b) = cor(b’) and either a < a’,or a =a’ and b < b'.

The relative bijections S; := S(/,[) form a group isomorphic to the symmetric
group with / elements and the relative bijections Sp,n := Sre1(m, n,m, n) is a group
isomorphic to Sy X Sy .

Definition 3.1.3 Let 7 be a bicomplete symmetric monoidal category. An S;ej—object
in T is a functor Q: SO* — 7T such that Q(0) = 1 = Q(0,0). The category of

rel

Stei1—objects in 7 is denoted by S;e—7.
For each Q € Sye; — 7 and A € Sy, there is a right S4—action on Q(A).

Definition 3.1.4 Q € S — Top is Si—free if for each A € S the S4q—action
on Q(A) is free.
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Definition 3.1.5 A (unital symmetric) relative operad Q in 7 is an S;—object in T
equipped with units

ng €T(1,Q(1)., n§eT(1 000,1)),

and for each (A, (B?)) € Sre1 X [ [4 Scor(a) @ composition morphism
o (gay € T(Q(A) ® () Q(BY). Q(EAB“))
A
satisfying associativity, unit and equivariance conditions [35].

For every relative operad Q in 7 there is an associated monad defined by a coend on
the category 7'12/ of pairs of objects under the monoidal unit. For a survey of the many
applications of coends see Loregian [28].

Definition 3.1.6 Let 7 be a category, C a small category and F: C®’ xC — T a
bifunctor. The coend of F is the coequalizer

/C F(C,C):= Coeq( ]_[

c(c,cn

Fc'.o)s]]F(C. C)).
C

The underlying functor of Q can be extended to a functor on Sg’()p. For t € Sg (A, B)
define (Bf) € @B Scor(p) as Bf =0if cor(b)=c and b ¢Im, Bf =1 ifcor(b)=c
and b eImrt, Bf = 0,0 if cor(b) =0 and b ¢ Im7, and Bi’ = 0,1 if cor(b) =0
and b € Imt. Then the right action -t € T(Q(B), Q(A)) is the composition of
the morphisms Q(B) — Q(B) ® (®p Q(BL)) — Q(A) induced by the units and
compositions. These morphisms are the degenerations of the relative operad. For every
(X¢, X,) € 7'12/ define the functor
(Xe. Xo)®: S S T, A x®4c g X840,

rel

with left action 7- € T((Xe, Xo)4, (X, X,)B) for each T € S (4, B) the composition
(Xe, Xo)d = (X¢, Xo)™T® (®p\imz 1) = (Xe, X,)8 induced by the rearrangements
of the coordinates and the basepoint maps. A relative operad Q then defines the monad
.2 2
0 =(0°. 0 T} —> T
So'

si
(Xe, Xo) = ([ o) ® X, Q(m,n) ® (Xe, X0)®mm),

with unit and multiplication induced by the operadic unit and composition.
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Definition 3.1.7 Let Q € Op,(7); then a Q—algebra is an algebra over the associated
monad Q. The category of Q-algebras is denoted by Q[7].

The terminal topological relative operad is Com~ with underlying S,.j—space
Com™: S?h — Top, A > x.

The structural maps are obvious since * is the terminal space. Algebras (X, X,) €
Com™ [Top] are pairs of topological commutative monoids equipped with a continuous
homomorphism from X, to X, induced by * € Com™(1,0).

The N —Swiss-cheese relative operad SCy has as underlying S;ej—space

SCy: S — Top,

rel
N . . . . .
A {da=(dg) € (IN)UA " \Vaea A(my, )€ 0.1V, (¢ ) e IV (da (1)) = (mly ta+cl )

and da(f(fv)ﬂda/(fé\/’):g ifa ;éa’;cclla =0if cor(a) =0},

ie SCy (A) is the subspace of maps in (I yat " defined in each N —cube by coordi-
natewise dilations and translation with disjoint interiors such that the bases in the first
coordinate of the N —cubes with open indices are mapped inside the first coordinate base.
The S4—actions shuffle the map indices. The relative operad structural maps are defined
by composition, ie ¢4 o (dg.) = (cad})), with the degenerations deleting the respective
N —cubes. For example see Figure 2. Define SCq := colime— o0 SCo With the colimit
taken over the natural relative operad inclusions — x 17 € Op,(Top)(SCe, SCex1).

Proposition 3.1.8 Let 1 < N < oco; then the images of Qév are naturally SCy —
algebras.

Proof Firstlet N < oo. Define
6 e Top2(SCNQY (1: B—>Y), QY (: B—>Y)),

oN (1d;. v )(@) := %Vi(dfl(l)), tedi(IV),

Yo, t¢d1(|_|l1N),
o .
ON (ldn. (. BY. Y1 ::%(af(dj 0,5)), %), (0,5)ed(IV),
oilldman (- FIEVD = g ), 0.5) ¢ da(L, 1Y),
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. _ | @m B
°| [ e -
I m
1]

Figure 2: Composition in SCs.

where B 0., (ss) € d (1Y),
Uiy e R, () e de(TY),
Yo. (s",5) & dmn (Lmn 1Y)
o RECG ), ) e de ),
) Yo, (s/7s)¢dM(I_|MIN)

It’s easy to verify that 95\’ is compatible with the relative operad structural maps
of SCx .

The SCoo—algebra structure on the images of ©25° are induced by the finite cases, since
by definition an element dq € SCoo(A) belongs to some SCx(A) with N <oo. O

3.2 Homotopical properties of relative operads and their algebras

Conditions for the existence of a model structure on colored operads in a symmetric
model category 7 and their algebras are given in [3, Theorem 2.1]. The category
Op,.1(Top) admits a cofibrantly generated model structure induced by the Quillen model
structure, and for any Q € Op,(Top) the category Q[Top] admits a model structure
with weak equivalences and fibrations being the pairs of maps that are respectively
pairs of weak equivalences and pairs of fibrations of the mixed model structure when
the Q-algebra structure is forgotten.

A g—cofibrant relative operad Q satisfies the homotopy invariance property [1, Theo-
rem 3.5; 6, Theorem 4.58], which in particular states that if (X, X,), (Y¢, Yy) € ’7'12/ are
bifibrant, (Y., Y,) admits a Q—algebra structure and ( fe, f,) € 7'12/((Xc, X5), (Y, Yy))
is a weak equivalence, then (X., X,) admits a Q-algebra structure such that ( f, f5)
preserves the Q-algebra structure up to homotopy.

The following class of relative operads will be central to the infinite relative recognition
principle:
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Definition 3.2.1 A topological relative operad £~ is an E—operad if it is a g—
cofibrant resolution of the terminal relative operad Com~. Equivalently £ is an

EXy—operad if it is a g —cofibrant relative operad with all underlying spaces contractible.

For £ an E'Y—operad the homotopy invariance property implies the pair APy =
(Yo, HFib(ip)) is an £~ —algebra for bifibrant relative spectra t,, and so there is a
well-defined functor RAS: Ho Sp”" — Ho £ [Top] isomorphic to RQS°.

If 7 is a G—projective model category for all small groups G and R is a dualizable
generalized Reedy category, then the functor categories 7% and 7" admit the Reedy
model structure [4, Theorem 1.6]. The categories Sj,; of the last subsection and A
of isomorphism classes of finite ordinals are dualizable generalized Reedy categories,
and Top is G —projective for all groups G. The following result can be proved by an
argument similar to the one for Lurie [29, Proposition A.2.9.26]. The operation [ is
the pushout-product of morphisms defined as k Ot := (k ® 1y, lx ®1).

Proposition 3.2.2 Let T be a monoidal model category, R a dualizable generalized
Reedy category such that if R € R then T is R g—projective and k € TR (A, X) and
1 € TR(B,Y) cofibrations; then the morphism

R R R
/KRDLRET(/ AR®YRUAR®BRXR®BR,/ XR®YR)

is a cofibration. Also if k or t is a trivial cofibration then fR «ROR e T is atrivial
cofibration.

In the following proposition for X € 7% and R € R the latching object of X at R is
denoted by LXR [4, page 4]. For the conditions on 7 see [3, Theorem 2.1].

Proposition 3.2.3 Let 7 be a symmetric, cofibrantly generated model category
equipped with a symmetric monoidal fibrant resolution functor § and a cocommutative
coalgebra interval object I, Q a relative operad on T with cofibrant underlying Sye|—
object and cofibrations as units, A a model category and S a left derivable Q —functor
in A that preserves cofibrations between cofibrant objects; then

Bi(S, Q,-): Q[T] — A%

is left derivable.
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Proof Let 1 be the initial relative operad with 1(0) = 1(1) = 1(0,0) =1(1,0) =1
and 1(A) := @ in all other cases. A 1-algebra is a pair of objects under 1 with no
other structure.

If (k¢,k0) € Cle/ ((A¢, Ap), (X¢, Xp)) and (A¢, Ap) € 7’12/ is cofibrant, then
(KC’ K0)®_ € C’TS;?I ((A07 A0)®_’ (XC’ X0)®_)7
and, by the hypothesis on Q,
Q 1
7] € CTS:Z_{,Op (1, Q)
Therefore Proposition 3.2.2 applied on each coordinate implies

(Q(Kke. ko), n(QXC,Xn)) € C7~12/(Q(A0s Ao) U(A4.,40) (X¢, Xo), Q(Xc, Xo)).

Also Q preserves cofibrations by closure under compositions and pushouts. Analo-
gously, Q preserves trivial cofibrations. By Ken Brown’s lemma, Q preserves weak
equivalences between cofibrant objects.

Let (X¢, X,) € Q[T] be cofibrant. Since Q preserves cofibrations, every cofibrant

Q-algebra is cofibrant in 7'12/ , and therefore

lp € Cle/ (LBo(d, Q. (X¢, Xo)) = (1,1), (X¢. Xo))-

Note that for all g € N the square in the diagram below is a pushout:

l,_
LBy-1(1d, Q, (Xe, X,)) ———— 0971 (X, X,)

Q
nLBq_l(Id.Q.—)l l

QLB;-1(ld, Q. (X¢, Xo)) —— LBy (1d, Q. (Xc. Xo))

~
0ly— 09(Xe, Xo)

and therefore, by the argument in the beginning of this proof and by induction,
B.(d, 0, (X, X,)) € (7'12/)Aop is cofibrant. Since Q preserves weak equivalences
between cofibrant objects, B« (Id, O, —) also preserves weak equivalences between
cofibrant objects. Therefore B« (Id, O, —) is left derivable, and the hypothesis on S
imply that B.(S, Q,—) is also left derivable. m

Q
an—l
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Geometric realization is left derivable, so under the conditions of the proposition if A is
any of the topological categories of Section 2 B(S, Q,—): Q[T] — A is left derivable.

The following proposition follows by an argument analogous to the one for [31, Propo-
sition 3.4].

Proposition 3.2.4 Let € Op(Top)(Q, Q') be a weak equivalence between S —free
relative operads and (X, X,) € Top2 be cofibrant; then

Sinj

rel

V(A1 ¢ | € Topi(Q(Xe, Xo), Q' (Xe, Xo))

is a weak equivalence.

4 Relative recognition principle

The main results are proved in this section. A relative version of the approximation theo-
rem follows from the existence of a quasifibration pév € Top, (SC% (Xe, Xo),CN-1X5)
and a commutative square from pév to a fibration

3 € Top, (RN =¥ (X., X,), @V "1sN=1x,)

N-1

which is o on the base spaces and homotopy equivalent to & on the fibers, from

1

which follows that the total space map is a group completion. Since «* is not a group

completion, the proof in this article does not apply for the nonconnected cases when
N =2 and N = 1. After some technical results on the compatibility of geometric
realization with Qév , & and the monads associated to relative operads are presented,
the relative recognition principle will follow from the relative approximation theorem.
The general case for N = 1 was proved by Hoefel, Livernet and Stasheff [19].

4.1 Relative approximation theorem
Let’s recall the approximation theorem in May [31; 32] and Cohen [8].

Definition 4.1.1 An H-space is a pointed space X € Top, equipped with a map

€ Top, (X x X, X)
such that
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An H-map between H-spaces X and Y is a pointed map f € Top, such that
fu=u(f x f). The category of H—spaces is denoted by H-Top.

For an H—space (X, u) the homology groups H«(X; k) for any commutative coeffi-
cient ring k equipped with the Pontryagin product p+« and the unit [x¢] is a graded
k —algebra.

Definition 4.1.2 An H-space X is homotopy associative if
p(= (= =) = (=, =), =) € Top, (X%, X).

The k-—algebra structure on H.(X;k) for a homotopy associative H—space X is
associative.

For every d, € Cy(2) and Cy —algebras (X, &), the map £([d2, (—, —)]) endows X
with a homotopy associative H—space structure.

Definition 4.1.3 An H-space X is admissible if it is homotopy associative and

/,L(X, _) = //L(—,)C) € TOP*(X’ X)
for all x € X.

The k-—algebra structure on H.(X; k) for an admissible H—space X is associative
and graded commutative. For 2 < N < oo the H—space structures on Cy —algebras are
admissible.

Definition 4.1.4 A homotopy associative H—space X is grouplike if the monoid w9 X
is a group. A pair of homotopy associative H—spaces (X¢, X,) is grouplike if the
‘H—space structures on both X, and X, are grouplike.

The N —loop spaces and the relative N —loop pairs of spaces for 2 < N < oo are
grouplike.

Definition 4.1.5 A homological group completion of an admissible H—space X is a
grouplike admissible H-space G equipped with an H-map g € H-Top(X, G) such
that for every commutative ring k£ the induced homomorphism

g« € GrAlgy (Ho(X. k)[moX 1, He(G.k))
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is an isomorphism, where [9X ~!] denotes the localization at the subring of connected
components.

A homological group completion of a pair of admissible H—spaces (X., X,) is a pair
of homological group completions.

For every grouplike homotopy associative #—space X there is a homotopy equivalence
between X and Xo x moX, where Xy is the connected component containing the
basepoint [8, Lemma 1.4.6]. Since every H—space X is simple, that is, 71X is abelian
and acts trivially on 74X for all g, the dual Whitehead theorem for connected H—
spaces implies that a group completion of a grouplike admissible 7 —space is a weak
equivalence.

Let oV be the composition of the natural transformations Cyn™: Cy = Cy QN TV
and 63, : CyQVEN = QV N,

Theorem 4.1.6 (approximation theorem) If X € Top, is connected, a}( is a weak
equivalence. If 2 < N < co then 04)1}] is a homological group completion for all

X € Top,.

Corollary 4.1.7 If 2 < N < oo and X € Cy|[Top] is grouplike, then a)}(\l is a weak
equivalence.

A relative version of these results also holds. Define aév as the composition of the

natural transformations SCyn": SCy = SCNQQI ¥ and ng SC]\;Qév V=
Qév >N, which is explicitly given by
ayx..x,) € (H-Top)*(SCN(Xe, Xo), Q5 X (Xe, Xo)),

aAEX X )([dl,xl])(z) _ {[x",di—l(t)], ted;(IV),

X0> t¢dl(|—|lIN)’
k 7—1 N
N o ([x*,d 7 (0,9)], ), (0,5) €dp(I™), k €n,
o dm o, X222 (s) = -
O(Xc,Xu)([ m,n ])( ) {(xg, g), (O,S) ¢ dﬂ (|—|E IN),
where now
, [x“,da_l(s/,s)], (s'.5) €da(IN), a em,n,
W' > / d Ny
xg, (s".8) & dmn (Ln 1Y)
- [xj,dj_l(s/,s)], (s/,s)edj(]N),jem,
- X3, (s".8) & dmn (Lo 1)
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Note that a2 is the composition of & with the inc}/usion of the deformation retract
(Xe ASMYSY in (Ko ATYU (Xe ASH) ASN—1)S

Let 7., y: Top2 — Top, be the projection functors. The functors S Cy and SCR, are
S Cy —functors, with ASCR := 7,05¢N and ASCN := 71,05CN . The functor Cn_17,
is also an S Cy —functor, with structural map defined as

Cn_ ° i, i L ) i
2y ([drs (i s XD)]) 2= [y 0 (dyi Poyey v—1), X .
There is also the S Cy —functor map p(],\’: SC]f, = Cy—_17, defined as

péV(XC,X())([dM’ XM]) = [dﬂ r{o}xlN—l N xﬂ].

Note that SCg (Xc, X,) is a Cy—1—algebra and that p(])v is also a Cy_;—map, and
therefore when N > 2 it is an H-map and when N > 2 it is an H-map between
admissible H-spaces. Under some mild conditions on (X, X,) € Top2 the map
pé\z Xo. X)) is a quasifibration.

Definition 4.1.8 A map p € Top(E, B) is a quasifibration if the natural inclusions
Ip—1(p) € Top(p_1 (b),{(e,y)e ExgB!|y(l)= b}) defined as i,,—1(p)(e) = (e, 1> D)
are weak equivalences for all b € B. A subspace U C B is distinguished if pl,-1
is a quasifibration.

From [34, Section 2.7] there is the following criterion for a map to be a quasifibration,
which considers both i—cofibrations and g—fibrations. Note that these aren’t part of
the distinguished classes of the mixed model structure.

Proposition 4.1.9 Let ¢ € Top(E, B) be a map of filtered spaces such that F1E =
¢ 1F9B foreach q € N. If for each ¢ > 1 the map F4¢ is obtained by pushouts
from a commutative diagram of the form

FI'E £ pa 7, pa

| l
¢l 1z bq
0

Fi7'B+—— A9 — B4
q lq
such that
(i) F°B is distinguished,

(ii) ¢gq is a g—fibration,
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(iii) iy and j, are h—cofibrations,
(iv) the right square is a pullback, and
™) gqly-1() € Top(¥, ' (a). 9" (f4(a))) are weak equivalences for all a € Ak,

then each F4B is distinguished and ¢ is a quasifibration.

For every topological relative operad Q and (X, Xo) € 7.2 the pair of spaces Q(Xe¢, Xo)
admits a natural double filtration. Let F' 74 SLZ{ be the full subcategory of S;‘;{ containing

the [ with [ < p and the m,n with m < p and n < ¢q. Define FP741Q (X, X,) as the
images of the natural inclusions of

F”"’S?j p Fﬁ.qSi(';J'
(/ () ®X£®,/ Q(m,n) ® (XC,XO)‘X’"W)

in Q(X¢, X,). This defines a filtration F4Q(X,, X,) := UpeN FP1Q(Xc, X,).

Theorem 4.1.10 Let (X, X,) € Top2 with X, h—cofibrant; then péV(XC X,) is a
quasitibration with fiber Cy (X.).

Proof The map pév and the natural filtrations on Cy—1 X, and SCxy (X, X,) satisfy
the conditions of Proposition 4.1.9.

Let ¢ € N, S¢,4 be the full subcategory of S, containing only ¢ and S, 4 be the full
subcategory of S,” containing only the m,q with m € N. Define

So.q
SCI(Xe. Xp) = / SCy (m. q) x (Xe. Xp)™d

and Se.q
Ch  X,:= / Cn-1(g) % X5
Define also
DY, = {[dm,q. x™1] € SCH(Xe. Xo) | x* = x§ for some k € q}
and

A% = [dg,x%] € Ci_ 1 Xo | Xk = xg for some k € g}.

The maps F? pév are then the pushouts of

_ g J
FI7'SC{ (Xe, Xo) +—— DY —= SC(Xc, Xo)
|
| I |+
-1 q q
Fi1Cn_1X, - Ay —— Cy 1 Xo
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where i; and j, are the inclusions, g, and f; are induced by the degeneracy of the
little cubes with the same index as the x¥ that are equal to the basepoint, and v,
and ¢ are defined in the same way as pf)v . These diagrams satisfy the conditions in
Proposition 4.1.9:

(i) F°Cwn_1X, = . Since every space is fibrant and every fibration is a quasifibration
F°Cn_1X, is distinguished.

(i1) By definition, ¢4 is a g—fibration if for every commutative square

[dm, q,x q

' q
I <1 —>[8q,$q] CN 1X0

there is a lift A that makes the diagram commute.

An element dq in SCy(A) or Cy—1(A) is of the form dy(s) = (mii sh 4 cé )
for some (md ) € (0, 1]V and some (cd ) e IN for each a € A. For (dmpn,dn) €
SCN(m,n) Xen—13) CN— 1L) and v € (0, 1], define

em.,n Idlv
Vi i € Top(L, (1 V) Hacma L),
AROICA

2v—t, 1 1, @Dyt auy i i
g( 2v md a+ 2v . > 2v mdusa+cda)’ Oitfv’ COI’(a):C'
1 1tc d 1,0 i i ’
(Emds—i- 4 1 3My Sa +Cd) v=<t=<l1,
2v—t
{(( 2v )mdas +( 2v )Cd ,m5 (t)S +C3 (f)) O=r=v, cor(a) =o
1 - ’
(3my sa+ 3¢y m§ 0%+ ) v=t=1I,

i€ 7,5, 15 the pathin (1 NyUaemn 1" guch that

ydmn’(g (0) mn, p()y;m’sﬂ :8}1’

the heights in the first coordinate of the open little cubes are linearly halved in the
interval [0, v] and remain constant in the interval [v, 1], and such that the side lengths
in all coordinates of the closed little cubes and the distance in the first coordinate from
the center of the little cube to 1 are also linearly halved in the interval [0, v] and remain
constant in the interval [v, 1].
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Figure 3: Cross-sections of y;m wibn

For some (dm,n,8n) and v it might be the case that Vc]i)m b ¢ SCn(m,n)!, because
there might be a,a’ € m,n and ¢ € I such that a # a’ and

Vanmsibna DTV 5 aOUN) # 2,

but there is always some v’ € (0, 1] such that for v € (0, v’] these intersections are
empty. Define for each m,n € S, the map

Vm,n € TOP(SCN (m, 1) Xey () CN—1(m)", (0, 1]),
Vm,n(dm,ns 8n) := max{v € (0, 1] | y“i’m by € SCn(m,n)"}.

For any commutative square as above there is always v € (0, 1] such that yY g ()54 ) €
SCn(m,q g)! forall s € I9. Let FPS, ,¢ be the full subcategory of So.q contammg
only the m, g with m < p. The natural inclusion of f "Soaq SCy (m, q)x (X, X,)24
in SCK, (X¢, X,) induces a filtration FPSCK, (X¢, Xo). Any compact subspace K
of SCK, (X¢, Xo) is contained in FPSCK, (X¢, Xo) for some p € N. To see this,
assume to the contrary that there is an infinite sequence of points (z;) € KN all
lying in distinct FPSCI‘{,(XC,X,,). Consider the subset S := | |y{z;} C K. In
order to show that S is closed, assume that S N FP~1§ Cg, (X¢, Xo) is closed. Then
SN FI’SC]‘\I, (Xc¢, Xo) contains at most one more point. The space SC;{, (Xe, Xo)
is weakly Hausdorff, so points are closed and therefore S N F?S C]‘{, (Xe, Xo) is
closed. It follows that S is closed. The same argument shows that any subset of

is closed, so S has the discrete topology. Being a closed subset of a compact set, S
must be compact. Therefore, S has to be finite, a contradiction.! Now the filtration

1T thank Eduardo Hoefel for providing the argument in this paragraph through private communication.
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FPS Cg, (Xc, Xo) and the map [dym 4, x™4] from the commutative diagram induce a
filtration F21" := [dpm,q. ™" (FPSC (Xc. X,)). Define

VP e Top(FPI™ — FP~17 (0,1]),  vP(s) 1= vp,q(dm,q(5), 84(s)).

Since I" is compact, F?I" — FP~1]" is compact, and therefore the image of v? has
a positive minimum. By the two previous observations the minimum

v:=min{v'(s)| peN, se€ FP[" — Fp=1]r}
exists. Thus there is
H eTop(I" x I,SC(Xe, Xo)), H(s,t):= [)/gm(s)’sg(s)(t), (x™(s), £9(s,1))].

A, [84.67]).

(iii) Since X, is h—cofibrant, there are maps u € Top(X,, /) and H € Top(X,x1, X,)
making (x§, X,) an NDR pair, and so there are the maps u’ € Top(CK,_lXo, 1)
with u'([dg, x4]) := min{u(x") | i € g} and H' € Top(C]{{,_lXo x 1, C]’{,_IXO) with
H'([dg,x%],1):=dy, (H(xi,t))ieq] which makes (44 ,C;f,_lXo) an NDR pair. The
pair (D%, SCK, (X¢, Xo)) is an NDR pair by an analogous argument.

which is a lift of ([dm,q, x

(iv) It is trivial to check that the right square is a pullback.

(v) Fix [dg, x4 e A?\, and define the subspaces Pg, as

(I)C[% ]X]N_l for all j Em}

, 1
%[dm,q, q] S Wq ([dq, q]) d (I) C [O %] XIN 1 for all k €q

and Q;{, as

di(I)C[3. 1]xIN"1 forall j em, }

m,qg—1
gt A1 ) 1y D 41y [0 1V foral hegu]

Then P]% and Q?\, are deformation retracts of

Vg (dg. x9]) and  (pg) ™" (fo(ldg. x%])),

respectively, and the restriction g4 Py is a fibration with contractible fiber, and
therefore a weak equivalence. This implies g4 rwq_l (Idg,x4]) is also a weak equivalence.

Therefore, by Proposition 4.1.9, p(l,v is a quasifibration. That C X, is the fiber follows
easily from the definitions. |
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Corollary 4.1.11 Let (X, X,) € Topi with X, a cofibrant space. If N =1 and X,
is connected, N = 2 and X, is connected, or if 3 < N < oo, then aéV(XC X,) is a
homological group completion.

Proof Consider the commutative diagram

N
Cn Xe ———— SCG(Xe. Xo) — 2 CN_1 X,

QNsNx, aly alN aN—1

T

QNN (X,, X,) —— QY 2N (X., X,) —» QN-IxN-1x,

N-1 N

The maps oV and « are group completions by Theorem 4.1.6, and therefore
also is. Note that H(SCg (X¢, Xo)) = H(Cn X)) ® H(Cn-1X,), that 71 (Cy—1Xo)
acts trivially on H(Cy X), that 71(QVN 1SN =1X,) acts trivially on H(QN TV X,)

and that both Cy_1 X, and QN =12V ~1 X are cofibrant spaces. Therefore the induced

map on the Serre spectral sequences, which exists by Theorem 4.1.10, implies aév isa

group completion. |

4.2 Compatibility of the geometric realization functor

In this section some compatibility results of the geometric realization functor analogous
to the ones in [31, Section 12] are stated. Proofs are only sketched since they are simple
adaptations of the arguments there.
Proposition 4.2.1 Let (X, X,)« € (Top2)2”". There are natural homeomorphisms

N e Topy (|28 (Xe, Xo)«l, 2 [(Xe, Xo) )
for N < oo and also

v € 8p” (|22 (Xe, Xo) |, 2I(Xe, Xo)+).-
Proof Define

o ([l s)oul) =[x ul. 5]

it can be directly checked that this defines a homeomorphism. |
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Proposition 4.2.2 Let (X¢, X,)« € (Top2)~" and Q € Op,,(Top). There is a natural
homeomorphism

19 € Top2(|Q (X, Xo)« |, O1(Xe, Xo)«|)

such that the following diagrams commute:

(Ko Xo)al 225 10X Xo)ul - 10 0(Xe. Xo)ul 2225 0 01(Xe. Xo)al
x JVQ Iu*ll JM
O(Xe, Xo)«] |O(Xe, Xo)«| T) O|(Xe, Xo)«|

If (X¢, Xo)+ € Q[Top]2”, then |(X¢, Xo)«| € Q[Top]; therefore, geometric realization
defines a functor Q[Top]2” — Q[Top].

Proof Define
ve(llg. xD] ul) = [q. (x%. u])];

it can be directly checked that this defines a homeomorphism and that the diagrams
commute. The second statement follows directly from the first. a
Proposition 4.2.3 Let | < N < 0o and t4x: B« — Yi € (Top;)2" be h—cofibrant
with each 1« (N —1)—connected; then there is a weak equivalence

ys € Topy (|25 txl, 5 tx]).

Let tox: Bex /" Yoi1,5 € (Sp/r)AOp be h—cofibrant with each t, « *—connected; then
there is a weak equivalence

y5° € Top2 (|25t | Q5 ta x]).
Proof Define
v (o, ul) (@) := [e(t),ul, vy ([(B,y), ul)(s) :=[(B(s),s" = y(s)(s))), ul.

These are pairs of maps of fibers of simplicial quasifibrations over the same simplicial
spaces with contractible total spaces, with the contraction compatible with the simplicial
structure. O

Proposition 4.2.4 Let (X, X,)« € (Top2)2™ and 1 < N < co. The maps yL are
SC N —maps and the following diagram commutes:
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SC
ISCN (X, Xo)u| ——— SCN|(Xe» Xo)x]

N N
|O‘2*|l l“z

1Y SN (Xe, Xo)+] — QY =N 1(Xe, Xo)+]
TV

Proof This can be checked directly from the definitions. |

4.3 Recognition principle for relative loop pairs of spaces

The relative recognition principle will be proved by showing that the relative N —
loop pairs of spaces functors are part of weak Quillen quasiadjunctions that induce
equivalences of certain homotopy subcategories.

Definition 4.3.1 Let N € N and Qpn € Op,(Top) be equipped with a weak equiva-
lence v € Op,(Top)(Qn.SCy). The relative N —delooping functor of Qy —algebras
is

BY: Qn[Top] = Topy,  (Xc. Xo) = B(EL, On. (Xe. Xo)).

with the Q y —functor structure of X% induced by v?, aév and the (2 A Qé\' )
adjunctions.

Let Qo € Op,(Top) be equipped with a sequence Q, € [ [y Op,e(Top) of rela-
tive operads, a sequence of weak equivalences v* € [ [y, {00} OPre1 (Top)(Q.. SC.).,
a sequence of maps i® € [ [ Op,e1(Qe, Qe+1) that commute up to homotopy with
the inclusions — x 17 € Op,(Top)(SC., SCe+1), and a homotopy equivalence u €
Op,;(Top)(colime— o0 Do, Qo). The relative infinite delooping functor of Qoc—alge-
bras is

B Ouo[Top] = Sp”",  (Xe, Xo) > B(E5T, Qut1. (Xe, X)),

with the structural spectra maps induced by the i°.

The g—cofibrant resolutions 207 F My of SCp in the appendix give explicit examples
of relative operads that can be equipped as in this definition.

Definition 4.3.2 Let Q € Op,(Top). The bar resolution of Q—algebras is

B: Q[Top] - Q[TOP]’ (Xe, Xo) = B(Q, 0, (Xc, Xyp)).
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Theorem 4.3.3 Let 3 < N < oo, Qn € Op,,(Top) be S,—free and equipped as
in Definition 4.3.1, and ((X., X,), &) € Qn|[Top] with X, h—cofibrant and X, m—
cofibrant in Top,, . Consider the following diagram of Qy —maps, with the Q  —algebra
structures on the images of Q2 év induced by v :

By oV ,1,1)

B(X¢, Xo) B(QYEN, 0N, (Xe, Xo))

S(S)l lyzN

(Xe, Xo) QY BY (X., X,)
Then:

(i) () is a strong deformation retract with right inverse t(n<V), and therefore a
weak equivalence.

(i1) B(aév o™, 1,1) is a group completion, and therefore a weak equivalence if
(X¢, Xo) are grouplike.

(i11) yév is a weak equivalence.

(iv) In Top2 the composition yév B(océv oV 1,1)t(neN) coincides with the compo-
sition Qg’(r(lzz_v)))r)év and it is a weak equivalence if (X, X,) is grouplike.

(v) BY¥ (X, X,) is (N—1)—connected if N < oo and is connective if N = o0o.
(vi) If N < oo and ¢ € Topy is an (N —1)—connected relative space then
s(e[N) € WTopj(BiVQQ’L, t).

In general the following diagram is commutative:

_ B oM ,1,1)
BQY, — B(QY =Y, on. Q)0
/
o | (@) [
QY QY BNl

Qév s(eLN)

and Qévs(eLN) is a retraction with right inverse Qév (T(IZL"QQ’))”gQ’ .

If N =00 and t, € Sp/v is connective then

£(eg ) € Wy, (BLQCu, Qu.).
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In general the following diagram is commutative:

_ B(aS°v™,1,1)
BoP. —2 "N BQPEP, 0o, QFL)
e(ego)l E(ngegi.( lygo

Q50 QB
2 Q5°e(eZ) 2T

and Q‘z"’e(eg.) is a retraction with right inverse ng(r(lggoggo))ngzogo .

(vii) Forall (Y.,Y,) € Top2 the map

e(€xn (v, y,) =0 Bleg o™ 1. 1))
TOP:(BiV On(Ye,Yo), E—ZY (Ye,Yp)), N <oo,
5p” (B Qoo (Ye, Yo), BX(Ye, Vo)), N = o0,

is a strong deformation retract with right inverse (X% nen).
Proof The maps ¢(£) and B (aév v, 1, 1) are realizations of simplicial Q —maps, there-
fore by Proposition 4.2.2 they are Q y —maps, and )/év isa Qpn —map by Proposition 4.2.4.

(1) and (vii) hold on the level of simplicial spaces by [31, Theorems 9.10 and 9.11] and
therefore hold after realization by [31, Corollary 11.10].

(i1) holds on the level of simplicial spaces by Proposition 3.2.4 and Corollary 4.1.11
and therefore holds after realization by the argument in [32, Theorem 2.3.ii)].

(iii) follows from Proposition 4.2.3.
(iv) follows from (i), (ii) and (iii).
(v) follows from [31, Theorem 11.12; 32, Remark A.5].

The upper triangle in (vi) commutes by the naturality of ¢, and the lower triangle
by [31, Theorem 9.11]. The fact that e(¢?V) is a weak equivalence under the stated
connectivity conditions follows from the commutativity of the diagram and the previous
items. |

The relative delooping of relative N —loop pairs of spaces is unique up to weak equiv-

alence among (NN —1)—connected relative spaces if N < co and among connective
relative spectra if N = oo.
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Corollary 4.3.4 Under the hypothesis of the theorem consider a span of Q y —weak
equivalences
(Xe. Xo) <L (Yo, Y,) £ Q1.

If N <00 and « € Topy is (N—1)—connected, then the diagram of relative spaces

B(1,1, 1)
%

~

e(¢/V)B(1,1,8)
—_—>

BY (X, X,) BY(v..Y,)

displays a weak equivalence between ¢ and BY (X., X,).

If N =00 and t, € Sp/' is connective, then the diagram of relative spectra

B(1,1, &g, )B(LLg) |
B3°(Xe, Xo) ((Tf) B (Ye, Yo) Qf) Qi JLT. Lo

displays a stable weak equivalence between t, and BY (X., X,).

Proof The map e(egL

and B(1,1, g) are weak equivalences on the level of simplicial spaces by Proposition

) is a weak equivalence by Theorem 4.3.3(vi), and B(1, 1, f)
3.2.3, and so their realizations are weak equivalences by [31, Theorem 11.13]. O

The relative operads Qxn must be assumed to be g—cofibrant in order for the functors
involved to be compatible with the model structures and Qy[Top] to be homotopy
invariant. In particular Q, must be an Eg‘;l—operad.

Theorem 4.3.5 For 1 < N < oo and SCy a cofibrant resolution of SCy , there is a
weak Quillen quasiadjunction
(BY Hp 14 25): SCi[Top] = Topy
that induces an adjunction of homotopy categories
(LBY 4RQY): Ho SCy[Top] = Ho Top;.
For £ an E é‘i} —operad there is a weak Quillen quasiadjunction
(B 45,5 Q5°): £7[Top] = sp”

that induces an adjunction

(LBS® 4 RASY): Ho £ [Top] = Ho Sp””

of homotopy categories.
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Proof The indicated functors equipped with the natural span

29 5 v3' B(e} oV,1,1)

QY BY,
Ny. pNOoN ;
the natural map (e ): B Q5 = Id if N < oo and the cospan

o5 ~
BPQY ——= Q <=1d
if N = oo satisfy the conditions of Definition 2.1.1. Condition (i) holds by Proposition
3.2.3. Condition (ii) holds by Propositions 2.2.3 and 2.4.7 and the construction of the
model structures. Proposition 3.2.3 also implies one part of condition (iii) and the other
follows from the fact £ preserves cofibrant objects in the mixed model structure and the
construction of the stable model structure. One part of condition (iv) is Theorem 4.3.3(i)
and the other follows from the construction of the stable model structure. Conditions

(v) and (vi) follow from Theorems 4.3.3(iv) and 4.3.3(vi), respectively.
The last statement follows from the existence of the natural isomorphism between

RAY and RQY. O

There is a Bousfield localization of SC y —algebras where the fibrant objects are precisely
the grouplike algebras.

Theorem 4.3.6 For 3 < N < oo and SCy a cofibrant resolution of SCy , the endo-
functor QQ’ BN ¢ is part of a Quillen idempotent quasimonad such that the Qév BN¢-
weak equivalences are the maps

(fe. fo) € SC[Top]((Xe. Xo). (Ye, Y5))
such that the homomorphisms

fex € GrAlgy (He(Xe. k) [mo X, '], He(Ye k) [0 Y1),
fox € GrAlgy (Hy(Xo, k) [0 X, ], He (Yo, k)[mo Y, '])

are isomorphisms for all commutative rings k and the 2 9’ BY ¢ —fibrant objects are the
grouplike SCy —algebras.

Proof First note that the following diagram of SCy —maps commutes:
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)

(Xe, Xo) (Ye, Yo)
cofe(fg))['v ~Tcofs({=é)
B&(Xc, X,) —BA1LE(fe. fo))— BE(Ye, Yy)
yéVB(aéVnN,l,G)J/ J/yéVB(aéVnN,l,C)

QY BY e(X,, X,) QY BNe(Y,,Y,)

Q) BY e(fe. fo)
By Theorem 4.3.3 and the dual Whitehead theorem [33], the map Qév BNC(fe, f)
is a weak equivalence if and only if the homomorphisms induced by ( f, f,) in the
statement of the theorem are isomorphisms.

The functor Qév BN ¢ equipped with the endofunctor B¢ and the natural maps
cofe(£¢): BC = Id and yév B(aév oV, 1,¢): B¢ = Qév BN ¢ satisfies the conditions
of Definition 2.3.1.

That condition (i) holds follows from Theorem 4.3.3(1), the fact that cof is a trivial
fibration and the 2-out-of-3 property. That (ii) holds follows from Propositions 3.2.3
and 2.4.7 and the construction of the stable model structure. From the first part of this
proof and Theorem 4.3.3(ii), condition (iii) holds. Since fibrations are preserved by
pullbacks, fibrations induce long exact sequences of homotopy groups in Top, and the
diagram

BE&(F,,F,) BE(F.,F,)
— ~

QSCBLE(F,, F,) QI BPEU(Fe, Fo)

B&(Xcxp,Ec,XoxB,Eo) ——|—— BE(E¢, E,)

QP BXPE(Xcxp, Ec, Xoxp, Eg) —— ‘ QP BXE(E,, E,)
BE&(X,. X,) BE(B.. Bo)

/\,

QPBIC(X,, X,) QP BLC(Be, Bo)

~

commutes, condition (iv) holds. Condition (v) holds since the images of B¢ are
cofibrant SC y —algebras and since pushouts of weak equivalences along cofibrations
with cofibrant domain in the category of algebras over a cofibrant operad in a left proper
model category are weak equivalences, as Spitzweck proves in [41, Theorem 4.4].
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That the Qév BY ¢—fibrant objects are the grouplike SCy —algebras follows from
Proposition 2.3.6. |

The category of SC —algebras equipped with the left Bousfield localization induced
by the Quillen idempotent quasimonad above is denoted by SCy [Top]Grp-

For N < oo the category Top, can be equipped with the (N —1)—connected model
structure and the proof of Theorem 4.3.5 would still follow. The existence of long exact
sequences of stable homotopy groups associated to spectra cofibrations implies there is
a right Bousfield localization that presents the homotopy subcategory of connective
relative spectra.

Theorem 4.3.7 For £~ an E'Y! —operad, the endofunctor B$°QS° is part of a Quillen
idempotent quasicomonad such that the B3 Q5° —weak equivalences are the relative
spectra maps

(eur 12) €Sp” (Ko: Ae /' Xut1. ta: Be /' Yur1)

such that the homomorphisms
(es)x € ADGTP(7r; Au. 75 B).  (fu)x € AbGrp(m) X, 75 Ya)

are isomorphisms for all ¢ > 0 and the BS°Q5° —cofibrant objects are the connective
relative spectra.

Proof First note that the following diagram of relative spectra commutes:

(eo, fo)
Ke le
lkol'\' NJ/IL.
Qks Q(ce, fo) Q.

OO0 o OO0 .
BPQ kK —>B£§°Qg°(e.,f.) B3R5
By Theorem 4.3.3(vi), the long exact sequence of stable homotopy groups associated
with a relative spectrum, and the five lemma, the map BS°Q5°(e,, f,) is a weak
equivalence if and only if the homomorphisms induced by (e, f,) in the statement of
the theorem are isomorphisms.
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The functor B3°Q5° equipped with the endofunctor €2 and the natural maps /: Id= Q
and 8(6%0)1 BPQP = € satisfy the conditions dual to the ones in Definition 2.3.1.

First note that conditions (i), (ii) and (iii) are self-dual. Condition (i) holds by the
definition of the stable model structure. That (ii) holds follows from Propositions 3.2.3
and 2.4.7. From the first part of this proof and Theorem 4.3.3(vi), condition (iii) holds.
Since cofibrations are preserved by pushouts, cofibrations induce long exact sequences
of stable homotopy groups in Sp and the diagram

/ QK. / QA.
BEOQSOK. ~ ‘ B_O,oﬂgok.
~J/ ~
Qu. Q(le Viea Ao)
BQLu, | BSPQ5(te Viea Ad)
Qe /k0) Q(ta/xs)
/ /
BPQP (1 /) B3PQ5(ta/K0)

commutes, the dual of condition (iv) holds. The dual of (v) holds since Sp~” is right
proper.

That the BS°Q5°—cofibrant objects are the connective relative spectra follows from
the dual of Proposition 2.3.6. O

The category of relative spectra equipped with the model structure given by the right

Bousfield localization associated with the Quillen idempotent quasicomonad above is
e

Con*

denoted by Sp

Theorem 4.3.8 For 2 < N < oo and SCy a cofibrant resolution of SC , the adjunc-
tion
(LBY 4ARQY): HoSCy[Toplay = Ho Topp_,
is an equivalence.
For £7 an E (‘;‘Z} —operad, the adjunction
(LB 4 RAS): Ho £ [Toplarp = Ho Sply,

is an equivalence.
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Proof With these model structures the conditions of Corollary 2.1.3 are satisfied. For
N = oo the conditions of Theorem 2.3.8 are satisfied. O

The relative recognition principle for N = 1 was proved in [19]. The reason the
argument in this section doesn’t work in general if N =1 or N =2 comes from the fact
that C1 —algebras aren’t necessarily admissible and so the natural map a!: C; = Q1 %!
isn’t necessarily a natural group completion. It is the case that Q%B% (Xe¢, Xo) as
constructed in this section is a group completion if X, is connected. The general
argument should involve a modification of the relative delooping functor B2 similar to
the delooping functor in [19].

Appendix Cofibrant resolutions of the Swiss-cheese relative
operads

In this appendix a resolution of relative operads 2U;: Op,.;(7) — Op,(T) is introduced
which takes relative operads with cofibrant underlying nonunital relative operads to
cofibrant unital relative operads. The resolution of the Fulton—MacPherson relative
operads F My are then shown to be cofibrant resolutions of SCy by adapting an
argument in Hoefel [17].

A.1 A resolution for relative operads

Nonunital relative operads are defined as in Definitions 3.1.3 and 3.1.5 except it is
assumed that Q(0) = @ = Q(0,0). They have a similar structure to unital relative
operads except they don’t admit degeneracies and they induce monads in 772 instead
of 7'12/ The category of nonunital relative operads is denoted by Opg,(7) and the
forgetful functor U°: Op,(T) — Op;,,(T) admits a left adjoint free unital operad

functor F*: Opp, (T) — Op,(T).

The category of objects under A4 in Sg has as objects relative injections 7 € S;:{ (A, B)

and morphisms between 1 € SE(A, B) and 7’ € Sg(A, B’) are morphisms o €

S™(B, B') such that v/ = ot. The category of objects under A is denoted by Sy /-

rel

For Q € Op,, (T) the underlying S,e—object of F*Q is

Say
F*O: S* 57, A Q(B),

rel
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and the units and the nondegeneracy compositions are induced by those of Q. The
degeneracies are given by the natural inclusions into the colimits. The unit of the
adjunction is induced by inclusion into the colimits, and the counit by degeneracies.

If 7 is a symmetric model category that satisfies the conditions in [3, Theorem 2.1],
the category Opp,(7) admits a model structure such that (F* - U°) is a Quillen
adjunction, and so in particular F* preserves cofibrant objects. One of the conditions
on 7 is that it contains an inferval object, which is an object I equipped with maps
0,1€7(1,1)and e € T({,1) such that (0,1) € 7(1U1, 1) is a cofibration and ¢ is
a weak equivalence. In Top the interval I = [0, 1] is an interval object. The following
resolution functor is similar to the Boardman—Vogt resolution [6; 2]. Let

I:Syy—T, (:A—B)—~ J®B\Imt

with the map o~ € 7 (1 ®B\Imz J®B\Imt’y yeq0ciated to o € Sa/(t:A—B,7": A—B’)
being induced by the map 0 in the coordinates in B’ \ Imo.

Definition A.1.1 Let 7 be a symmetric model category and / € 7 an interval ob-
ject. The degeneration resolution is the endofunctor 20;: Op,.(7T) — Op,(7) with
underlying S;.j—object

Sa,
W;0: St =T, A Q(B)® I(1),

for each Q € Op,;(7). The units are the inclusions into the colimit of the units in Q.
The relative operad compositions that don’t involve degenerations are defined by the
composition in Q and a reordering of the copies of I, and the degenerations are induced
by the morphism 1.

In Top an element [g, (¢?)]; €207 O(A) is represented by a relative injection 7: A — B,
a ¢ € Q(B) and a point in the cube I B\™? and these elements satisfy the relation
that [g -0, (t?)]: = [¢q.0 - (t?)]y forall o € Sa/(t,7’). This means there is always a
representative such that (tb ) doesn’t contain any zeros.

The full subcategories F9S,, of Sy, for ¢ € N containing the injections 7: A — B
with B\ Imt < g induce a filtration QII? Q in S;e; — 7. The inclusions of this filtration
are denoted by 107 € S| — T(QU? Q, QU?H Q). Note that QB(I)Q is isomorphic to Q.

The following result is similar to the result that the Boardman—Vogt resolution is
a cofibrant resolution for relative operads with cofibrant underlying S.ej—objects
[2, Theorem 5.1]. For the conditions on 7 see [3, Theorem 2.1].
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Theorem A.1.2 Let 7 be a symmetric cofibrantly generated model category equipped
with a symmetric monoidal fibrant resolution functor § and a cocommutative coalgebra
interval object I. For all unital relative operads Q such that U°Q is a cofibrant
nonunital relative operad, the counit of the adjunction (F* - U®) admits a factorization

o §Q ye
FUQ—W; 90— Q

into a cofibration §< followed by a weak equivalence y<. In particular, 207 Q is a
cofibrant resolution of Q.

Proof The last assertion follows from the fact that F* preserves cofibrant objects. The
map ¢ and the degenerations of Q define morphisms y2 € 7(Q(B) ® I ®B\Im* 0(4))
which fit together into a relative operad morphism y< € Op,.,(7)(20; Q, Q) such that
the composition ‘,ZB?Q <~ W0 8, 0O of Sij—objects is the identity. Since the
inclusion of Qﬂ? Q into Wy Q is a trivial cofibration, yQ is a weak equivalence.

The morphism 1 defines morphisms §$ € T(Q(B), Q(B) ® I(t)) which fit together
into a relative operad morphism §< € Op,(T)(F*U°Q,2; Q). Clearly y<§< equals
the counit of the adjunction (F* - U®). It remains to show that §< is a cofibration, ie
that for any commutative square of unital relative operads

F*U°Q -2 ¢

8% Ea ~lp

QBIQTB

where p is a trivial fibration, the lift ¥ exists. By the (F* < U°) adjunction a morphism
¥ is a lift of the square above if and only if U°y is a lift of the square of nonunital
operads

veQ—*- uce
U° COliIIlq—)oo mql Uo{/} NJ:UOP
U Qﬁ] Q W U°B
We construct ¥ inductively on the filtration degree of 207 Q. Define Vg := ¢g €
Srel — T(QU(I) Q,&). Now assume constructed ¥, € S;e) — T(;Q,€&) for e <g—1

such that, for A € Sy, (B?) € I4Scor(q) and (i, (j%)) € N x II4N with j¢ =1 if
B =g and i+ ¥4j% < g —1, the square below commutes:
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W Q(A) ® (R4 W] Q(BY)) —— W (S 4B%)
oz,-,@ja»l Fq_,
E(A) ® (R4 E(BY)) ——s—— E(S4B%)
Let

1 ifbeD,

I ifb¢D,

I:S T, :A— B li I =
= (A= By colim  Ip(0) ®{

and

- 1ul ifbeD
I:S4 —T. :A— B)— colim  IF(7):= ’
A/ ( ) DCB\Imt, D£o p(®) B@r{l if b ¢ D.

By the pushout-product axiom, (v) <> T (v) = I(v) are cofibrations. There is a
factorization of the inclusion of the filtration tv? by the sequence of pushouts

S5 oB) @ T(x) — w0
/5% 0By @ T(r) — W10

/5% o(B)® (1) —— w4 Q

with the vertical natural morphisms cofibrations of S;j—objects since Q is in particular
a cofibrant S, —object.

The morphism ¥y—1 € Syel — T(Qﬂ‘}_l Q, &) extends uniquely to a morphism fﬁq_l €
Srel —T(Qﬂg_l Q, &) that satisfies the inductive hypothesis. This gives us a commutative

square
5
B

The lift Izq € Srel —T(QU? Q, £) exists by the model structure on S.;—7 and it satisfies
the induction hypothesis. The operad map ¥ € Op,;(7)(20; Q, £) is then defined as
the colimit of the V. |

~

?H?

?ZﬂqQ—>
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A.2 Cofibrant resolution of the Swiss-cheese relative operads

Let N € N and FMy € Op,(Top) be the Fulton—-MacPherson relative operads
of compactifications of normalized configuration spaces [24; 17]; see also [25] for
the uncolored version. Let Confy (/) be the configuration space of / points in the
euclidean space RY and Confy (m,n) be the configuration space of m + n points in
the euclidean half-space H¥ such that the first m points are in the interior of the half-
space and the last n points are in the border of the half-space. The interior of F My (/)
is homeomorphic to the orbit space F. M ~ (1) = Confy (I)/RN xR* of the action
given by translation and dilation, and the interior of F My (m, n) is homeomorphic
to the orbit space F. M N(m,n) = Confy (m,n)/ RN =IxR* of the action given by
translation parallel to the border of H?Y and dilation. For A € Srel define Ae Srel as
A=A if cor(A) =c and A= AU A, if cor(4) = o, with A, a copy of A.. Let p
be the reflection of RV across the hyperplane dHY . For x € Confy (4) and a € A
define X(a) = x(a) if a € A and X(a) = px(a) if a € A,. For k € N let

(1) = tan € B |as #a ifi £ 1)

then each FM ~ (4) can be embedded into ($V _1)(31) % [0, o0] (%) by the maps

X(az)—X(ay)

[X(a2) —X(a)|’

_ X(az)—%(ay)
. Sar.az.an (X)) = % (a3) —%(@)|’

and F My (A) is the closure of the image of these embeddings. Elements of F My (A4)
can intuitively be visualized as normalized virtual configurations of points which can be

9(01,@) € (SN_I)FMN’ 0(01,02)(['x]) =

S(al,az,as) € [0, OO]]:MN

infinitesimally close but with the directions between two points and the ratio of distances
between three points well defined by the natural extensions of the maps 6,1 ,2) and
8(al 42.a%) to FMpy . The relative operad structural maps are defined by the inclusion
of infinitesimal configurations, and the degenerations delete the respective points of
the configurations. Define F M := colim,—, o0 F M, with the colimit induced by
the natural inclusions i € Top(R®,R**!) and i3 € Top(H*, H**!) into the first N
coordinates and with the last coordinate 0.

Salvatore used the Boardman—Vogt resolution to prove that the nonunital Fulton—
MacPherson operads are cofibrant [39]. The unital versions fail to be cofibrant because
the degenerations aren’t cellular, but the resolution in the previous subsection fixes this.
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e w LR

Figure 4: Composition in FM>.

Consider the subrelative operad SC%‘, C SCy with dg € SCE,(A) if the (mila) associ-
ated to each a € A has constant entries, or equivalently such that their images have
all sides of the same length. Note that the inclusion of this subrelative operad is a
weak equivalence of relative operads. Let c¢{ /2 € I™N be the center of the N —cube and

C?/z be the projection of Ci/z onto {0} x IV~ Define 7 € Sye; — Top(SCH, .7-'3\/11\7)
as 74(dq) = [(da(c@))]. The following lemma is a cubical equivalent of [17,

1/2
Lemma 3.1.1].

LemmaA.2.1 Let 1 <N <00, A€ Sy and x € F 3\/1 ~ (A); then the inverse image
7~ 1(x) is convex in SC% (A).

From this follow cubical equivalents of [17, Corollary 3.1.2, Theorem 3.1.3 and
Corollary 3.1.5]. In particular, U°F My are cofibrant resolutions of U°SCy, ie
explicit weak equivalences of nonunital relative operads can be constructed.

Theorem A.2.2 Let 1 < N < oco; then there is a cofibrant resolution

v € Op,(Top) (W, FMN  SCV).
Proof From [17, Theorem 3.1.3 and Corollary 3.1.5] there is a cofibrant resolution of
nonunital relative operads vV € Opy (Top)(U°FMp, U °SC%‘,).

The map vV € Op,.(Top)(W; FMpy.SCy) is defined as a colimit of inductively
defined maps anV € Stel —Top(?lﬂ}l}'MN,SCN). Set bév := v, Suppose that Uf]\’_l
is well defined. Let A € Sie; and 7: A — B € SZ/. Define

vl € Top(FMp (B) x 1(2), SCn (A))

as U(IIV_I on the subspace F My (B) x I(r) and as (varojFMN(B)(—)) - T on the
subspace FMpy(B)x{(1,...,1)}. Since the degenerations in 7 M y preserve relative
positions of the points in the configurations that are not deleted by Lemma A.2.1,
nf,v can be extended to the whole F My (B) x I(t). This construction is compatible
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with the identifications in QB?]—'M ~ and therefore U(JIV is well defined. Set v? :=
colimy oo ng] , which is a relative operad map. Since each 01]4\] 1s homotopic to the

composition of the weak equivalences ny N and vlflv , then, v is a weak equivalence.
The theorem therefore follows from Theorem A.1.2. O
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