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Axiomatic S'! Morse-Bott theory

MICHAEL HUTCHINGS
JOo NELSON

In various situations in Floer theory, one extracts homological invariants from “Morse—
Bott” data in which the “critical set” is a union of manifolds, and the moduli spaces of
“flow lines” have evaluation maps taking values in the critical set. This requires a mix
of analytic arguments (establishing properties of the moduli spaces and evaluation
maps) and formal arguments (defining or computing invariants from the analytic
data). The goal of this paper is to isolate the formal arguments, in the case when
the critical set is a union of circles. Namely, we state axioms for moduli spaces
and evaluation maps (encoding a minimal amount of analytical information that one
needs to verify in any given Floer-theoretic situation), and using these axioms we
define homological invariants. More precisely, we define an (almost) category of
“Morse—Bott systems”. We construct a “cascade homology” functor on this category,
based on ideas of Bourgeois and Frauenfelder, which is “homotopy invariant”. This
machinery is used in our work on cylindrical contact homology.

53D40, 5S7TR58

1 Introduction

There are now many versions of Floer theory, which are used to define topological
invariants of various kinds of objects, such as symplectomorphisms, pairs of Lagrangian
submanifolds of a symplectic manifold, contact manifolds, smooth three-manifolds, etc.
In the most basic versions of Floer theory, given an object, usually together with a
generic choice of certain auxiliary data, one obtains a discrete set of “critical points”,
and for each pair of critical points a moduli space of “flow lines” between them. The
invariant is then obtained as the homology of a chain complex which is generated by
the critical points and whose differential counts flow lines, analogously to classical
Morse homology. The proof that the differential has square zero involves gluing two
flow lines when the lower limit of the first flow line and the upper limit of the second
flow line are at the same critical point.

In some less well-behaved Floer-theoretic situations, instead of a discrete set of critical
points, one obtains a union of “critical submanifolds”, analogous to the critical set
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of a Morse—Bott function on a finite-dimensional manifold. In this case, given two
critical submanifolds, there is still a moduli space of flow lines between them. Now
there are also upper and lower evaluation maps from the moduli space of flow lines
to the two critical submanifolds (or more generally, certain manifolds associated to
them). Two flow lines can be glued only if the lower evaluation map on the first flow
line agrees with the upper evaluation map on the second flow line. The definition of
homological invariants in this situation is more complicated and combines analytical
arguments (establishing properties of the moduli spaces and evaluation maps) with
formal arguments (extracting invariants from the analytic data).

The goal of this paper is to isolate the formal arguments needed to define homological
invariants in such Morse—Bott situations, in the special case when the critical submani-
folds (more precisely the manifolds associated to them) are circles. In particular, we
state axioms for a “Morse—Bott system”, and given a Morse—Bott system, we define
its “cascade homology”. We also define a notion of “morphism” between Morse—Bott
systems, which almost makes Morse—Bott systems into a category. (The reason for the
word “almost” is that two morphisms such that the target of the first morphism equals the
source of the second are composable only under certain transversality conditions.) Given
a morphism, we define an induced map on cascade homology. Finally, we show that
the induced maps are functorial, and invariant under “homotopies” of morphisms. The
result is a blueprint for defining Floer-theoretic invariants, by analytically establishing
various axioms and then invoking the formal machinery of this paper. We now describe
this in more detail.

1.1 Summary of results

The precise definition of “Morse—Bott system” is given in Section 2.2. Some key
features are the following. A Morse—Bott system includes a set X ; one can think of
each element of X as referring to a “critical submanifold”. For each x € X, there is
an associated closed connected oriented 1-manifold S(x). Given distinct elements
X4, X— € X, and given an integer d € {0, 1, 2, 3}, there is a moduli space My(x4, x_)
of “flow lines” from x4 to x_, which is a smooth d-dimensional manifold. (In many
cases, given x4 and x_, there is only one value of d for which this moduli space
can be nonempty. One could also consider moduli spaces for d > 3, but these are not
relevant for our story.) There are smooth “evaluation maps”

er: My(x4,x-)—> S(x4) and e—: My(x4,x-) — S(x-).
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Also, for each x € X there is a local system Oy on S(x) locally isomorphic to Z,
and there is an orientation of My (x4, x—) with values in e Ox, ® eXOx_.

The above data are required to satisfy various axioms. Most importantly, there is a
“compactification” axiom which asserts that M (x4, x_), as well as M, (x4, x—) with
a generic point constraint on e4 or e—, or M3(xy,x_) with generic point constraints
on both e4+ and e_, has a compactification to a compact topological 1-manifold whose
boundary is explicitly described in terms of fiber products of moduli spaces.

To extract a homological invariant out of this structure, we use the “cascade” ap-
proach. Cascades were introduced by Bourgeois [3], and discovered independently’
by Frauenfelder [11]. The original idea would be to choose a generic auxiliary Morse
function fy on each manifold S(x), and define a chain complex over Z which is
generated by pairs (x, p) where p is a critical point of f,. The chain complex
differential counts cascades, which are alternating sequences of gradient flow lines of
the Morse functions fy and elements of the moduli spaces Mz (x4, x_).

In our situation where each S(x) is a circle, we use a streamlined version of this
construction, following Bourgeois, Ekholm, and Eliashberg [4], in which one chooses
only one basepoint px on each circle S(x). (One can think of this as a limit in which
the critical points of fx all approach px.) The chain complex has two generators
X and X for each x € X. (One can think of these as a maximum and minimum
respectively of f, which have collided at py.) If x4 and x_ are distinct elements
of X, a cascade from X4+ or X4 to X4+ or X_ consists of a sequence (u1,...,uy) for
some positive integer k& such that there are distinct xg,...,x; € X with x4+ = X,
X— =Xxg,and u; € My, (x;—1,x;). Fori =1,...,k —1, we require that the points
Dx;» e—(u;), and ey (u;4+1) on S(x;) be distinct and positively cyclically ordered
with respect to the orientation of S(x;). If we are starting from X4, then we also
impose the point constraint e (1) = px, ; and if we are ending at X_, then we also
impose the point constraint e_(uy) = px_. The differential coefficient counts such
cascades where the total moduli space dimension is the number of point constraints.
When x4 = x_, all differential coefficients are defined to be zero, except that our

1Some related ideas appeared earlier in work of Cieliebak, Floer, Hofer, and Wysocki [7] and Piunikhin,
Salamon, and Schwarz [14]. In the work of Bourgeois, the emphasis is on describing, in Morse—Bott terms,
what one would obtain after perturbing to a nondegenerate (not Morse—Bott) situation. By contrast, in
the work of Frauenfelder, the idea is to define invariants and prove invariance entirely in the Morse—Bott
world. This is closer to our philosophy, since in our main examples of interest in contact homology, there
is no apparent way to perturb to a situation that is not Morse—Bott. See Example 1.2.
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orientation conventions in Section 3.2 require that the differential coefficient satisfy

(1-1) (9%, ¥) = 0 %f Oy %s triVia%, '
—2 if Oy is nontrivial.

The results in this paper can now be summarized as follows.

Theorem 1.1 (a) Let A be a Morse—Bott system (see Definition 2.1). Then the
cascade homology H,:" (A) (see Definition 3.4) is well defined, independently of
the choice of basepoints.

(b) Let ® be a morphism of Morse—Bott systems from A; to A, (see Definition 2.7).

(i) The induced map on cascade homology
i HY (A1) — HY(A2)

(see Definition 3.9) is well defined independently of choices.
(i) If Ay = A, and O is the identity morphism (see Example 2.8), then ®, is
the identity map on cascade homology.
(iii) If W is a morphism from A, to A3z, and it ® and W are composable (see
Definition 2.10), then the composition ¥ o @ (see Definition 2.11) satisfies
(Wo @)y = Wy 0 By: HI (A1) > HI(A3).

(iv) If @' is another morphism from Ay to A, which is homotopic to ® (see
Definition 2.15), then

@y = ()u: H{(Ay) — H{(4y).

To use this theorem to define Floer-theoretic invariants of some class of objects, the
procedure is as follows:

(1) For each object, together with generic auxiliary data if necessary, define a Morse—
Bott system.

(2) For two equivalent objects (with auxiliary data as needed), define a homotopy
class of morphisms between the corresponding Morse—Bott systems.

(3) Show that the composition of some morphism in this homotopy class with a
morphism going in the other direction is homotopic to the identity.

1.2 Examples

The following two examples are the main examples we have in mind and the reason
we are writing this paper.
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Example 1.2 Let Y be a closed odd-dimensional manifold. Let A be a contact form
on Y, let R denote the associated Reeb vector field, and let £ = Ker(X) denote the
associated contact structure. Assume that A is nondegenerate and hypertight (meaning
that there are no contractible Reeb orbits). Let J = {J;},cg1 be a generic S'—family
of A-compatible? almost complex structures on R x Y. In [13], we associate to this
data a Morse-Bott system A(Y, A;J) where:

e X is the set of (not necessarily simple) Reeb orbits.
o If x is a Reeb orbit, then:

— S(x) is the image of x in Y, oriented via the Reeb vector field.

— The local system Oy comes from the theory of coherent orientations — see
Bourgeois and Mohnke [5] and Floer and Hofer [10] —and is trivial if and only
if x is a good® Reeb orbit.

— The grading |x| (see Definition 2.1) is the parity of the Conley—Zehnder index
of x.

o If x4 and x_ are distinct Reeb orbits, let M¥ (x4, x_) denote the moduli space of
J—holomorphic cylinders from x4 to x_, that is, the set of maps u: RxS! > R x Y
satisfying
st + J;0;u =0,
lim mru(s,-) = £oo,
s—=+o0

lim mwyu(s,-) is a parametrization of x4,
s—+o0

modulo R translation in the domain. Let Mi(ij, x_) denote the set of elements of
M (x4, x_) with Fredholm index d. We then have
My (x4, x2) = My, (x4, x2)/R,

where R acts by translation of the R factor in the target. The compactifications of
these moduli spaces are defined by adjoining “broken holomorphic cylinders”.

¢ The evaluation map e4 sends u > limg_, oo 7wy (1(s, 0)).

2 An almost complex structure J on R x Y is A—compatible if J sends £ to itself such that J is
compatible with the linear symplectic form dA on &; J is invariant under translation of the R factor; and
J(ds) = R, where s denotes the R coordinate.

3 As in Eliashberg, Givental, and Hofer [9], a Reeb orbit x is good if x is not an even-degree multiple
cover of a Reeb orbit x” for which the Conley—Zehnder indices of x and x’ have opposite parity.
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Analytic arguments in [13] show that A(Y, A; J) satisfies the axioms of a Morse—Bott
system. It then follows from Theorem 1.1(a) that the Morse—Bott system A(Y, A;J)
has a well-defined cascade homology. This cascade homology is the nonequivariant
contact homology of (Y, A, J), which we denote by NCHx (Y, A; J).

To prove that nonequivariant contact homology* depends only on the contact structure,
we show in [13] that if A" is another nondegenerate hypertight contact form with
Ker(A) = &, and if J’ is a generic S'—family of A’ almost complex structures,
then there is a morphism of Morse—Bott systems (obtained by counting holomorphic
cylinders in a completed symplectic cobordism) from A(Y, A;J) to A(Y,A’; J’) which
is well defined up to homotopy of Morse—Bott systems. Thus by Theorem 1.1(b), we
obtain a canonical map

(1-2) NCH. (Y, 1;J) — NCH,(Y', 1; J').

Finally, we show in [13] that the composition of one of the morphisms from A(Y, A; J)
to A(Y,A’; J’) with one of the morphisms going in the other direction is homotopic to
the identity. It then follows from Theorem 1.1(b) that the map (1-2) is an isomorphism.
We conclude in [13] that nonequivariant contact homology is an invariant of closed
contact manifolds (Y, &) that admit nondegenerate hypertight contact forms (and with
a bit more work one can drop the nondegeneracy requirement).

Example 1.3 If Y is a closed manifold and £ is a contact structure on Y which
admits a nondegenerate hypertight contact form, a variant of the above construction
is used in [13] to define the S'—equivariant contact homology CHf ' (Y,&). Again,
the analysis in [13] produces Morse—Bott systems, morphisms, and homotopies, and
then Theorem 1.1 gives an invariant (of closed contact manifolds that admit hypertight
contact forms).

Example 1.4 A more classical example arises when Z is a closed smooth manifold,
f: Z — R is a Morse-Bott function whose critical set is a union of 1-manifolds, and
g is a generic metric on Z. One can then define a Morse—Bott system where:

e X is the set of components of the critical set of f.

4Nonequivariant contact homology is a contact analogue of the (Morse-Bott) Floer theory for au-
tonomous Hamiltonians studied by Bourgeois and Oancea [6]. The paper [6] identified this Morse—Bott
Floer theory with the Floer theory for a (not Morse—Bott) nonautonomous perturbation of the Hamiltonian.
In our contact situation we cannot make an analogous perturbation that is not Morse—Bott, so if we want
to prove that nonequivariant contact homology is a topological invariant, we need to work entirely within
the Morse—Bott world.
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o If x € X, then:

— S(x) is the component x, with an arbitrary orientation.

— The local system Oy is the orientation bundle of the bundle of unstable manifolds
of the critical points in S(x). That is, if p € S(x), and if D(p) denotes the
unstable manifold of p, then

Ox(p) = Hina(x)(D(p). D(p) \ {P}).
Here ind(x) = dim(D(p)) denotes the (lower) Morse index of the component x.

e Let x4+ and x_ be distinct components of the critical set. Then My (x4, x_) is
nonempty only if d = ind(x4) —ind(x—). In this case, My (x4, x—) is the moduli
space of maps y: R — Z satisfying

y'(s) =Vf(y(s)) and im y(s) € Sxs).

Here we mod out the set of maps y by R translation in the domain. The compacti-
fications of these moduli spaces are defined by adjoining “broken flow lines”.

e The evaluation map e sends y > limgi oo Y (5).

The cascade homology of this Morse—Bott system is canonically isomorphic to the
singular homology of the manifold Z. Indeed, following [3], one can perturb the
Morse-Bott function f to a Morse function f” such that the cascade chain complex is
canonically isomorphic at the chain level to the Morse complex of ( f”, g), with each
component of the critical set of f contributing two critical points of f”, both close to the
basepoint used to define the cascade chain complex. See eg Banyaga and Hurtubise [2].

1.3 Comparison with other approaches

Remark 1.5 Zhengyi Zhou [15] has independently developed an abstract Morse—
Bott theory which is similar in spirit to what we are doing here, but applicable in
different situations. He defines a “flow category”, after work of Cohen, Jones, and
Segal [8], which is related to our notion of “Morse—Bott system”. In a flow category, the
“critical submanifolds” can have arbitrary dimension, unlike the Morse—Bott systems
in this paper which only have one-dimensional critical submanifolds. However, a
flow category is also required to satisfy strong analytic assumptions, in particular that
the moduli spaces have compactifications which are smooth manifolds with corners,
while we make weaker analytic assumptions, in which the only compactifications that
arise are topological 1-manifolds with boundary. Zhou defines a kind of Morse—Bott

Algebraic & Geometric Topology, Volume 20 (2020)



1648 Michael Hutchings and Jo Nelson

cohomology out a flow category using de Rham theory, and in particular with coefficients
in R. One can presumably also set up cascade homology over Z in this setting.

Remark 1.6 There is also an older approach to Morse—Bott theory due to Fukaya [12].
(See Banyaga and Hurtubise [1] for a variant of this for Morse—Bott functions on
finite-dimensional manifolds.) The idea is to define a chain complex which consists
of appropriate chains in the (manifolds associated to the) critical submanifolds. The
differential is the sum of the usual boundary operator on chains, plus a term which
consists of a pullback—pushforward of chains over the moduli spaces. This approach has
the nice feature that it does not involve any choice of basepoints. One can implement
this theory for Morse—Bott systems and prove that it is canonically isomorphic to
cascade homology. However, we have omitted this story in order to keep this paper to
a reasonable length.

1.4 The rest of the paper

In Section 2, we define the notions of Morse—Bott system, morphism of Morse—Bott
systems, composition of morphisms, and homotopy of morphisms. We also prove
that the composition of morphisms is a morphism. We have endeavored to make a
minimum of assumptions, with the result that the definitions are somewhat long. In
many “real-life” situations, one knows stronger transversality and compactification
properties which are simpler to state. See the remarks in Section 2.2.

In Section 3 we set up cascade moduli spaces and prove their key properties. We use
these to define the cascade homology of a Morse—Bott system, as well as a map on
cascade homology induced by a morphism of Morse—Bott systems. We prove that the
induced maps are functorial, and invariant under homotopy of morphisms. Finally,
we show that the above constructions do not depend on the choice of basepoints. The
conclusion in Section 3.11 reviews where all of the points in Theorem 1.1 are proved.

Acknowledgements Hutchings was partially supported by NSF grant DMS-1406312
and a Simons Fellowship. Nelson was partially supported by NSF grant DMS-1303903.
We thank Zhengyi Zhou for helpful conversations.

2 Morse-Bott systems

”

In this section we give the precise definitions of “Morse—Bott system”, “morphism” of
Morse—Bott systems, and “homotopy” of morphisms. We also define the composition
of “composable” morphisms and prove that this is a morphism.
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2.1 Conventions

2.1.1 Orientation of level sets If X is an n—dimensional oriented manifold, if S is
an oriented 1-manifold, if f: X — S is a smooth map, and if p € S is a regular value
of f,then we orient f~1(p) using the “derivative first” convention. This means that if
x € f~(p), and if (vy,...,vy) is an oriented basis for Tx X such that dfy(v;) > 0,
then (v, ..., v,) is an oriented basis for T (f~1(p)).

2.1.2 Orientation of fiber products Let X and Y be oriented manifolds of dimen-
sions m and n respectively, let S' be an oriented 1-manifold, and let e_: X — S
and e4: Y — S be smooth maps. Suppose that the fiber product X xg Y is cut out
transversely. We then orient this fiber product as follows. Given (x, y) € X x Y with
e_(x)=e4(y),choose (u1,v;) € Tx X ®T,Y suchthat de_(u;)—des(vy) >0 with

respect to the orientation on S. Choose (u;, Vi)i=2....m+n With de_(u;) = de4+(v;)

.....

such that (u1,v1),..., (Um+n, Vm+n) is an oriented basis for Tx X @ 7),Y. Then
(t2,v2), ..., (Um+n, Vm+n) is an oriented basis for T, ,)(X xs Y) if and only if m
is odd.

This convention is chosen so that fiber product is associative. Namely, if Z is another
oriented manifold, if S’ is another oriented 1-manifold, and if e_: ¥ — S’ and
e4+: Z — S’ are smooth maps, then we have an equality of oriented manifolds

(2-1) Xxs(Yxg Z)=(XxsY)xs Z

whenever all fiber products in this equation are cut out transversely.

Another nice property of this convention is that when X or Y is equal to S, with e_
or e4 equal to the identity map, we have

2-2) XxsS=X and Sxg¥Y =Y

as oriented manifolds.

Also note that if X or Y is a positively oriented point p € S, and if e— or e
respectively is the inclusion {p} — S, then we have

23) {pixsY=ei'(pC¥ and (—DIE Ty xoipr=cTl(p)c X

as oriented manifolds.

If X and/or Y have boundary, then the boundary (codimension 1 stratum) of the fiber
product X xg Y is given by

(2-4) X xsY)=(3X)xg Y U (=M~ x ¢ 3y.
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2.1.3 Compactifications Let M be a smooth oriented 1-manifold without boundary.
In this paper, we define a “compactification” of M to be a compact oriented topological
l-manifold M , possibly with boundary, such that M is an open subset of M , the
orientation of M restricts to the orientation of M, and M \ M is finite.

Note that if M is a compactification of M, then M \ M contains dM , but M \ M
might also contain finitely many additional points. For example, under the above
definition, the closed interval [0, 2] is a compactification of the union of open intervals
(0,1)U(1,2). Here 1 is an “extra point” in the compactification which is not in the
boundary. We need to allow such points in order for composition of morphisms of
Morse—Bott systems to work; see Proposition 2.12 below.

2.2 The fundamental definition

Definition 2.1 A Morse—Bott system is a tuple (X, |- |, S, O, My, e+) where:

e X isa set.

| -] is a function X — Z/2 (the “grading”).

S is a function which assigns to each x € X a closed connected oriented
l-manifold S(x).

e () assigns to each x € X alocal system Oy over S(x) which is locally isomor-
phic to Z.

e Forde{0,1,2,3}and x4, x_ € X distinct, M; (x4, x_) is a smooth manifold
of dimension d (the “moduli space”).

e ey My(xy,x-)— S(x4+) and e—: My(x4,x—) — S(x_) are smooth maps
(the “evaluation maps”).

M (x4, x_) is equipped with an orientation with values> in el Ox, ®e*Ox_.

We require these moduli spaces and evaluation maps to satisfy the grading, fiber product
transversality, finiteness, and compactification axioms below:

e Grading If M;(x4,x_) is nonempty, then
(2-5) d=|x+|—|x=] mod 2.
SIf M is a smooth manifold and © is a local system over M which is locally isomorphic to Z, then

an “orientation of M with values in O” means a trivialization of Ops ® O, where Ops denotes the
orientation sheaf of M.
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o Fiber product transversality If x;, x,,x3 € X are distinct and d; and d, are
nonnegative integers with d; 4+ d, < 3, then the fiber product
Mg, (X1,X2) X8§(xy) Ma,(x2,X3)

is cut out transversely.

e Finiteness For each x( € X, there are only finitely many tuples (k, x1, ..., xX)
where k is a positive integer and X1, ..., x; € X such that there exist dy,...,d} €
10,1,2,3} with My, (x;j—1,x;) # @ forall i =1,... k.

To state the compactification axiom, given py € S(x4), define the following three
subsets of M (x4, x_):

Mg(x4, p+,x=) = e (p+), Mg(xy,x—, p-) =eZ'(p-),

(2-6) -1 -1
Mg(x4, p+,x—, p-) = e (p+)NeZ (p-).

Convention 2.2 If p. is aregular value of e, then we orient M; (x4, p+,x—) as
alevel set of ey . If p_ is a regular value of e_, then we orient M;(xy,x_, p—) as
minus a level set of e_. If (p4, p—) is a regular value of ey x e—, then we orient
My(xy, p+,x—, p—) as alevel set of e on My(x4,x—, p—).

e Compactification Let x,x_ € X bedistinct, and let (p, p—) € S(x)xS(x-)
be generic. “Genericity” includes but is not limited to the following:

— p+ is aregular value of all evaluation maps
et My(x+,x0) — S(x4)
for d <2.
— p— is aregular value of all evaluation maps
e—: Mg(xop,x-) = S(x-)
for d <2.
- (p+, p—) is a regular value of
er Xe—: Mg(x4,x=) = S(x4) x S(x2).
for d <3.

— All fiber products on the right-hand sides of (2-8), (2-9), and (2-10) below are
cut out transversely.
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Then:
(a) The moduli space My(x4, x—) is compact, ie finite.

(b) The moduli space M; (x4, x_) has a compactification M (x4, x_) whose bound-
ary has an identification®
(2-7) IMi(xy.x2)= ][] (—1)d+Md+ (X4, X0) X§(x0) Ma_(x0,X-).

XOFEX4 ,X—
dy+d—=1

(¢) The moduli space M,(x4,x_, p_) has a compactification M, (x4, x_, p_)
whose boundary has an identification

XOFEX4,X—
dy+d_=2

The moduli space M, (x4, p+,x_) has a compactification M, (x4, p4,x_) whose
boundary has an identification

(29) IMy(x+, p4,x-)
= 1 (—1)d+_1Md+(X+,P+,xo)XS(xO)Md_(xo,x—)-

X0FEX4,X—
dy+d_=2

(d) The moduli space M3 (x4, p+,x—, p—) has a compactification M3 (x4, py.x_, p_)
whose boundary has an identification
(2-10)  IM3 (x4, p4,x—, p-)
= U D" My, (o prx0) Xs(xg) Ma_ (X0, X p-).

XOFEX4,X—

dy+d_=3
In each of the identifications (2-7), (2-8), (2-9), and (2-10), the boundary orientation
on the left-hand side agrees with the fiber product orientation on the right-hand side.
In (b), (c), and (d), the evaluation maps e+ on M;(x4, x—) etc extend continuously
to the compactifications, and on the boundaries satisfy

ex(ui,u_)=ex(ug).

(e) The right-hand sides of (2-7), (2-8), (2-9) and (2-10) would not include any extra
points if we used compactifications. For example, for (2-7), this means that if x1, xq,

®More precisely, we should say that part of the data of the Morse—Bott system is the compactification

M (x+,x—) and the identification (2-7). A similar remark applies to the rest of the compactification
axiom here and other compactification axioms later.
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and x_ are distinct, then
Mo(x+1.X0) Xs(xg) (M1 (x0.x-) \ My (x0.x-)) = 2,
(M (x4, x0) \ M1(x+.X0)) X5(x) Mo(x0, X-) = @.
For (2-8), this means that if x4, xg, and x_ are distinct, and if p_ € S(x_) is generic,
then .
Mo (x+,X0) X5(xp) (M2(x0,X—, p—) \ Ma(x0,x—, p-)) = 2,
(M (x4, x0) \ M1(x+,%0)) X§(xp) M1 (x0,x—, p—) = @.

Remark 2.3 The grading axiom is needed only to obtain a Z/2-grading on the
cascade homology of a Morse—Bott system. One can also modify this axiom to obtain
a relative Z/N—grading on the cascade homology; to do this, one requires that the
grading difference of two elements of X be a well-defined element of Z/N such that
M (x4, x_) is nonempty only if |x4|—|x_| =d mod N.

Remark 2.4 In many cases of interest, the following stronger version of the finiteness
axiom holds: there is an “action” function 4: X — R such that

(i) foreach L € R, there are only finitely many x € X with A(x) < L, and

(i) if My(x4,x-) # @ then A(xy4) > A(x-).

Remark 2.5 A stronger version of parts (b)—(d) of the compactification axiom would
be that for d = 1,2, 3, the moduli space M ;(x+,x—) has a compactification to a
smooth manifold with corners M, (x4, x_) whose codimension 1 stratum is given by

OMa(ey.x) = [ (=D Mg, (x4, %0) X5(xg) Ma_ (x0. X-).
X0FEX4,X—
dy+d_=d

Equations (2-7), (2-8), (2-9), and (2-10) would follow from this, and this is our motiva-
tion for the signs in those equations.

Remark 2.6 Part (e) of the compactification axiom holds automatically if we know
two additional properties:

(1) Each of the compactifications in (2-7), (2-8), (2-9), and (2-10) does not include
any additional points aside from the boundary points of the compactification.
That is, as a set we have M (x4, x_)\ M (x4, x_) = M (x4, x_) etc.

(2) Fiber product transversality also holds for triple fiber products when the sum of
the dimensions of the factors is at most 3.
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2.3 Morphisms of Morse-Bott systems

We now define a morphism of Morse—Bott systems. This is very similar to the definition
of a Morse—Bott system, but some signs are changed in the compactification axiom:
compare (2-5), (2-7), (2-8), (2-9), and (2-10) with (2-11), (2-12), (2-13), (2-14),
and (2-15) respectively. For more about these sign changes see Section 3.5.

Definition 2.7 Let
A= (X111, $1,0" M} el) and Ay = (X2, |-]2, 82, O M7 e3)

be Morse—Bott systems. A morphism © of Morse—Bott systems from A; to A4,
consists of the following data for each x; € X7, x;, € X, and d € {0, 1,2, 3}:

e A “moduli space” ®;(xy,x2), which is a smooth manifold of dimension d.

e “Evaluation maps”, which are smooth maps

er: Dy(x1,x2) > S1(x1) and e—: P y(x1, x2) = Sa(xy).
* An orientation of ®;(xy, x;) with values in e’ (’))161 ® ef@iz.

These are required to satisfy the following grading, finiteness, fiber product transversal-
ity, and compactification properties:

e Grading If ®;(xq,x;) is nonempty, then

(2-11) d=|x1|1—|x212+1 mod 2.

e Finiteness For each x; € Xj, there exist only finitely many x, € X, such
that ®;(xy, x,) is nonempty for some d € {0, 1,2, 3}.

¢ Fiber product transversality If xi, x/1 € X7 are distinct and x, € X», then all

fiber products 1 , ,
Mdl (XI,XI) XSl(xi) ©d(x1vx2)

with dy + d < 3 are cut out transversely. Likewise, if x; € X; and Xx;, x; € X, are
distinct, then all fiber products
2
D 4(x1,x5) X$2xp) M, (x5, X2)
with d + d, <3 are cut out transversely.

¢ Compactification Let x; € X7 and x, € X;. Let (p1, p2) € S1(x1) X S2(x2)
be generic. In particular, assume that p; is a regular value of all evaluation maps e
on My and ®, for d <2; p, is a regular value of all evaluation maps e— on My
and &, for d <2; and (py, py) is aregular value of e4 xe_ on ®y(xq, x,) for d <3.
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Define ®4(x1, p1,x2), Pg(x1,x2, p2), and ®4(x1, p1,x2, p2) asin (2-6). Assume
also that all fiber products on the right-hand sides of (2-13), (2-14), and (2-15) below
are cut out transversely. Then:

(a) The moduli space ®y(x1,x,) is compact, ie finite.
(b) ®1(x1,x2) has a compactification ®;(x;,x,) whose boundary has an identification
(2-12) 0Py (x1,x2)

= [ M0 x)) xs, ) Palx], x2)

xieX\{x1}
di+d=1 4 5
L [T D <I>d(x1,x’2) X85 (x}) Mdz(xlz, X7).
x,€Xo\{x2}
d+dy=1

(c) ®,(x1.x2, p2) has a compactification ®,(x;, X2, p2) whose boundary has an
identification

(2-13)  30D1(x1, X2, p2)
= ] Mt}l(xl,x;)xsl(x/l)qu(Xll,Xz,Pz)

xpeXi\{x1}

di+d=2
U I D@ x)) x5, M, (x5, %2, pa).
x5€X2\{x2}
d+dy=2

Likewise, ®,(x;, p1,x,) has a compactification ®,(x;, p;,x,) whose boundary has
an identification

(2-14) 3D, (x1, p1,x2)

1 / /
= I M, (1 p1.x)) X, ) Palxy. x2)
xpeXi\{x1}
di+d=2
d—1 / 2
U [ D @g(x1, praxy) X85 (x}) Mdz(xz,xz).
x,€Xo\{x2}
d+dr,=2

(d) ®3(x1, p1.x2, p2) has a compactification ®3(x1, p1, X2, p2) whose boundary
has an identification

(2-15)  3®3(x1, p1, X2, P2)

= ]_[ _M(}l(xl’plﬂxll)xsl(xi) ®d(xllsx2’p2)
x1eX\{x1}
di+d=3

U I D 0g(x. praxh) X sy M, (X5, X2, p2).
x5 €Xo\{x2}
d+dr=3
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In each of the identifications (2-12), (2-13), (2-14), and (2-15), the boundary orientation
on the left-hand side agrees with the fiber product orientation on the right-hand side.
In (b), (c), and (d), the evaluation maps e+ extend continuously to the compactifications
and satisfy e+ (uy,u—_) =esr(ui).

(e) As in part (e) of the compactification axiom in the definition of Morse—Bott
system, the right-hand sides of (2-12), (2-13), (2-14), and (2-15) would not include
any extra points if we used compactifications. For example, for (2-12), this means that

if x1, x’l € X are distinct and x, € X5, then

(M} (x1. %)\ M (x1.%})) X5, (x) Po (X}, X2) = D,

(2-16) !
M (x1,x7) X1 (x)) (@1(x], x2) \ @1(x], x2)) = 2,

and if x; € X; and Xx;, x; € X, are distinct, then

(D1 (x1,x5) \ D1 (x1,x5)) X85 (x}) MG (xh,x)) =2,

2-17) o
Do (X1, X5) X5, (x}) (ME(xh,x2) \ ME(x5.x2)) = @.

Example 2.8 If 4= (X,|-|,S,0, My, e1) is a Morse-Bott system, then the identity
morphism from A to itself is defined as follows:

e Forall x;,x, € X, we have

(2-18) Dp(x1,x2) = 0.
e If x € X, then
S(x) ifd =1,
@ (x.x) =
a(x.x) {@ ifd £1.

The evaluation maps
er: Di(x,x) > S(x)

are both defined to be the identity map. The orientation on ®4(x, x) with values in
eX0x®eX0x =005 =1

agrees with the orientation on S(x).

e If x;,x, € X are distinct, then

(2-19) Dy(x1,x2) =R X My_1(xy1,x2)
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for each d € {1, 2, 3}. The evaluation maps e+ on ®4(x¢, x,) are pulled back from
the evaluation maps on M;_;(xy, x). The orientation on ®4(xy, x,) is the product
orientation.

Lemma 2.9 If A is a Morse—Bott system, then the identity morphism ® from A to
itself, defined in Example 2.8, is a morphism of Morse—Bott systems.

Proof We need to check that the identity morphism & satisfies the grading, finiteness,
fiber product transversality, and compactification axioms.

The grading and finiteness properties for @ follow from the corresponding properties
for 4.

The fiber product transversality property for ® follows from the corresponding property
for A, together with the fact that fiber products with the identity map are always cut
out transversely.

We now prove the compactification property for ®. Part (a) follows immediately
from (2-18).

To prove part (b) of compactification, suppose first that x; and x, are equal, to x € X.
We need to check that if x € X, then ®;(x, x) has a compactification ®; (x, x) whose
boundary has an identification

(2200 3Pi(x,x)= I Mg, (x.x}) Xg(x)) Pa(x], x)

x1eX\{x}
di+d=1

U 1 (=D@g(x,x) Xs(xy) Ma, (x5, %)
xyeX \{x}
d+dy=1

as oriented O—manifolds. Since ®;(x, x) is already compact, we can (and must)
compactify it by defining
D, (x,x) = Oy (x,x).

This will then satisfy (2-20), because the right-hand side of (2-20) is empty by (2-18).
Suppose now that x; # x,. To prove part (b) of compactification in this case, define
2-21) @1 (x1,X2) =R x Mo(x1.x2).

where R denotes the compactification of R obtained by adding two points at Foo.
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‘We need an identification
351()61,)62)
= [ Mi(x1.x}) Xs(xp) Polx], x2)

x| #x]

U [ Mo(rr,x)) Xg(xy) Pr(x]. x2)

X1 #X1

U [ =11, x3) Xg(xy) Mo(x), x2)

X, F#X2

U I ®olxi,x5) Xs(xp) M (x5, X2).

X, F#X2

The left-hand side of this equation, by definition, is My (x1, x2) U —My(x1,Xx3). On
the right-hand side, the first and last lines are empty by (2-18). The second line gives
My (x1,x2) when x| = x5 by (2-2), and is empty when x| # x5 by the fiber product
transversality property of A. Likewise, the third line gives —My(xq, x3).

Parts (c) and (d) of compactification are proved similarly, setting

®y(x1, X2, p2) = R x M;(x1, X2, p2)
and so forth.
Part (e) of the compactification axiom follows from the fiber product transversality
property for A4. O
2.4 Composition of morphisms

To compose morphisms, we need to make the following transversality hypotheses.

Definition 2.10 Let A4; = (X;, |- |;, Si, O, M,,’;,eit) be a Morse—Bott system for
i=1,2,3. Let ® be a morphism from A; to A,, and let ¥ be a morphism from A4,
to A3. We say that the morphisms ® and W are composable if the following hold:

(a) All fiber products of the form
CDd] (xl , X2) X 85 (x2) qjdz (XZ’ X3)

with dy 4+ d, <3 are cut out transversely.
(b) All fiber products of the form

M (X}, x1) X85, (xp) Pty (X1 X2) X5, (x0) Wty (X2 X3),
(Ddl (xl’ XZ) X85 (x2) \dez(XZ? X3) X §3(x3) M;(x?nxg)

with d 4+ dy + d, < 4 are cut out transversely.
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(c) All fiber products of the form

(D1 (x1,x2) \ D1 (x1,x2)) X5, (x2) Yar (X2, X3),
Dy (X1, X2) X85 (xz) (W1 (X2, %3) \ Wi (32, X3)),
(@1 (x1,x2) \ @1 (X1, X2)) X8, (x2) (W1 (32, X3) \ Wy (x2, x3))

with d <1 are cut out transversely. (In particular, the first two are empty when

d =0, and the third is always empty.)

(d) All of the following fiber products are empty:

(M (x1,x7) \ M (x1,x))) X1ty PrX], X2) X 55 (xz) Vo (X2, X3) = 2,
(@1 (x1. X))\ P1(x1.X5) X $20x5) MP (xS, x7) Xs,0e5) Yo(x7 . x3) = 2,
Do (x1.x5) X $2(x3) ME(xF.x3) X$20e5) (1035, x3) \ Wy (x5, x3)) = 2,

Do(X1. X2) X5, (xy) P1(X2, X3) X55(x5) (M7 (x}. x3) \ M7 (x}. x3)) = @.
(e) Analogues of conditions (c) and (d) hold in which one adds a point constraint
at a generic point p; € S1(x;) and increases the dimension of the first factor
by one, and/or adds add a point constraint at a generic point p3 € S3(x3) and
increases the dimension of the last factor by one.

Definition 2.11 Under the assumptions of Definition 2.10, suppose that the morphisms
® and ¥ are composable. The composition of ® and W is a morphism ¥ o & from
A1 to A3 defined as follows: if x; € X7 and x5 € X5 and d € {0, 1,2, 3}, then
(2-22) (Wod)y(x1,x3) = I @a,(x1.x2) X8, (x0) Y, (X2, X3),

x2€X>
di+dry=d+1
with the fiber product orientation. This is well defined by part (a) of the definition of

composability. The evaluation maps
er: (Wod)y(xy,x3) > Si(x1) and e—: (Yo d)y(xy, x3) = S3(x3)
are defined by e (uy,u—_) =esr(uy).
Proposition 2.12 Under the assumptions of Definition 2.10, if the morphisms &

and W are composable, then the composition W o ® is a morphism’ of Morse—Bott
systems.

"More precisely, we can define compactifications (¥ o ®); (x1, x3) etc in a canonical way in order to
make W o @ into a morphism of Morse—Bott systems.
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Proof The grading and finiteness properties for W o @ follow from the grading and
finiteness properties for ® and W.

The fiber product transversality property for W o @ follows from part (b) of the assump-
tion that ® and W are composable.

To prove the compactification property for ¥ o @, let x; € X; and x3 € X3. We need
to prove parts (a)—(e) of the compactification property for x; and x3.

(a) We need to prove that (Wo®)q(xq, x3) is finite. Suppose to get a contradiction that
(Vo d)g(xy,x3) contains an infinite sequence of distinct elements {(u’i , ué)}izli__..
By the definition of (W o ®)g(xy,x3), for each 7, there is an element x}, € X5, and a
pair of integers (d{, d}) equal to (1,0) or (0, 1), such that

(uf,uy) € Dy (x1,x%) X S5 (xd) \Ildi-(xlz,xg).

By the finiteness property for ® applied to x;, we can pass to a subsequence such
that all of the x; are equal to a single element x, € X,. We can also pass to a further
subsequence so that the d{ are all equal to a single integer d; € {0, 1}. Without loss
of generality, d; = 1. Thus for all i we have

(uila ulz) € ch(xl ’ x2) XSz(Xz) ‘IJO(XZ’ X3).

Since Wy (x5, x3) is finite by the compactification property for W, we can pass to
a subsequence so that all of the ué are equal to a single element u, € Wo(x7, Xx3).
By passing to a further subsequence, we can assume that the sequence {u};=1,...
converges to a point u{° in the compactification ®;(xy, x2), which is provided by
the compactification property for ®. By part (c) of the assumption that & and W are
composable, we cannot have u$° € D (x1,x2) \ P1(x1,X2). So u® € ®1(xy, x3).

By part (a) of the assumption that ® and ¥ are composable, the fiber product
@y (x1,X2) X§(xy) Pol(x2,x3) is cut out transversely, so the point (1", u3) is isolated
in this fiber product. This contradicts the fact that there is a sequence of distinct points
(u’i , Up) in the fiber product converging to it.

(b) We need to construct the compactification (¥ o ®);(x1, x3). By definition,

(2-23) (Wod)i(x1,x3) = [ Dy, (x1.X2) X8,(xs) Ve (X2, X3).

x2€X>
di+dr=2

—_—~—

We first define a preliminary compactification W o ®¢(xy, x3), which is not the com-
pactification we want; the latter will be obtained from the former by identifying some
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boundary points. The preliminary compactification is

(2'24) (\IJO(I))I(_XI,X3) = ]_[ le(xth) XSg(xz) \dez(XZ,X3),
X2€X>
di+dr=2

where the right-hand side is to be interpreted as follows. When (d;, d,) = (1, 1), we
set

(2-25) D1 (X1, X2) X8, (xa) V1 (X2, X3) = P (X1, X2) X5, (xp) V1 (X2, X3).

It follows from parts (a) and (c) of the assumption that & and W are composable that this
is a topological 1-manifold with boundary. When (d1, d») = (0, 2), we cannot make an
analogous definition because W5 (x5, x3) is not defined. Instead, by (2-3) we can write

D (X1, X2) X5, (xy) Y2(x2,x3) = L e(u)Wa(xz, e—(uy), x3).
u1 €09 (x1,x2)

Here e(u1) € {£1} denotes the orientation of the point u; in ®y(xy, x;). Define

(2-26)  Dg(x1,X2) X8, (xy) V2(x2,x3) = L1 e(ur)Wa(xp, e—(uy),x3).

u1€®o(x1,x2)

The case (dy,d>) = (2,0) is handled analogously.

To see that the preliminary compactification (2-24) is compact, note that by the finiteness
property for ®, only finitely many triples (x,, d1, d») give nonempty contributions
to the right-hand side of (2-24). When (d;,d,) = (1, 1), the contribution (2-25) is
by definition compact. When (d;, d») = (0, 2), the contribution (2-26) is compact be-
cause Dg(x1,x>) is finite and W, (x5, e_ (1), x3) is compact by the compactification
properties for ® and W. Likewise, each contribution with (dy, d,) = (2, 0) is compact.

To proceed from the preliminary compactification to the actual compactification, con-
sider the following three oriented 0—manifolds:

Ei= 11 Mg (i x) X, (o) Py (X75X2) X5, eg) Wty (%2, %3),
x1eXi\{x1}
x2€X>
>di=2

E,= ] ‘Ddl(xl,X;r)st(x;r)sz(X;,xz_)st(xz—)‘l’d3(x2_,x3),
(2-27) Xy #x5€X;
>di=2

E3: ]_[ (_1)d3_1q)d1(x1sXZ)XSz(xZ)\sz('x2’xg)XS3(X%)M;3(X?’,’X3)'
X2€X, N
x3eX3\{x3}

S di=2
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We claim now that there is a map

—_—~—

(2-28) ¢: 8((\IJOCD)1(X1,X3))—>E1|_|E2|_|E3
with the following properties:

(i) Each point in E; U E3 has exactly one inverse image under ¢. Each point in
E | U E3 has the same orientation as its inverse image under ¢.

(i) Each pointin E, has exactly two inverse images under ¢, and these two inverse
images have opposite orientations.

Assuming (i) and (ii), we define
(Wod)i(x1,x3) = (Vo®)(x1,x3)/~,

where the equivalence relation ~ identifies two points if they are on the boundary
and ¢ maps them to the same point in E,. By (i) and (ii), (¥ o ®);(xy, x3) is an
oriented topological 1-manifold with oriented boundary given by

I((Wod);(x1,x3)) = EjUEj3.
This is the correct boundary, since we can rewrite

Ei= ] Ma}l(xl,xll)xsl(xg)(‘I’OCD)d(X'l,M),
x1€X\{x1}
di+d=1

Es= [ (DI(Wo®)y(x1,x4) xs,(x;) Mg, (x5, X3).
x4eX3\{x3}
d+dz;=1
To define the map (2-28) and prove (i) and (ii), we now catalog all of the boundary
points of (Vo ®),(x1,x3). To shorten the equations, given x, € X, and dy,d, € N

with d{ + d, = 2, define

Ndl ,dz(x2) = (Dd] (Xl, x2) XSz(xz) \dez(x29 X3)-

The preliminary compactification is the disjoint union of the compact oriented 1—
manifolds Ny, 4,(x2).

By (2-4) and part (b) of the compactification property for ® and ¥, we have

(2-29) 8N1,1(X2) =G UG, UG3 UGy,
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where

Gl = ]_[ M;](XI,X/I)XSI(X/I)ch(X;,XZ) XSz(xz) \Ijl(x27x3)’
x1eXi\{x1}
di+d=1

GZ = ]_[ (_1)d2_1 (Dd(xl P X;) XSZ(Xé) sz (X;, xZ) XSz(Xz) \pl (Xz, x3)a
x5 €Xo\{x2}
d+dr=1

Gi= [l @101, X2) Xsy(x0) M7, (X2, X5) X5, (x5) Waa (x5, X3),
x5€X2\{x2}
dr+d=1

Gs= I (—1)d3_1q>1(>€1,x2)st(xz)‘l’d(xz,xé)xs3(xg)M53(X§7X3)-
xheX3\{x3}
d+d3=1
Note that a priori, we should use W (x», x3) instead of W; (x5, x3) in the first two terms
on the right-hand side, and ®;(x, x,) instead of ®;(x;, x) and Wy (x5, x3) in the last
two terms. However, no points in ®; (x1, x2)\ ®1(x1,x2) or ¥;(x2, x3) \ ¥; (x2, x3)
contribute to the corresponding fiber products, by condition (d) in the assumption that
® and ¥ are composable.

By (2-26) and part (c) of the compactification property for W, we have

(2-30) 0Ny ,2(x2)

= ]_[ _q)O(x19x2)XSZ(X2)sz(xz’x;)XS2(x/2)\pd(x;’x3)
x5€X2\{x2}
dr+d=2

U LT (D)7 (1, X2) X5 () W (42, X5) X 55 () M7, (X5, X3).

x5€X3\{x3}
d+dz=2

Similarly, by part (c) of the compactification property for @, we have

(2-31)  N2,0(x2)

= I My Gonx) X, ) Pax],%2) X s5(xp) Wolxa, X3)
x1eXi\{x1}
di+d=2

U ]_[ (_l)dzq)d(xl’xé)xSZ(xé)sz(xé’XZ)XSZ(Xz) \I’O(XZ’X?))‘
x,€Xo\{x2}
d+dy=2

Now all of the boundary points of (@6)1 (x1, x3) are listed on the right-hand sides
of (2-29), (2-30), and (2-31). Each element of the right-hand side of one of these three
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equations in which the symbol x;c appears corresponds to a point in Ey . This defines
the map (2-28).

To prove (i) and (ii), we need to count how many times each point in (2-27) appears
on the right-hand side of (2-29), (2-30), or (2-31), as x, ranges over X,, and compare
orientations. Note that the fiber products in (2-27) are empty when (d, d3, d3) equals
(2,0,0) or (0,0, 2). The remaining possibilities for (dy, d3, d3) are (1,1,0), (1,0, 1),
(0,1,1), and (0,2, 0). We then see by inspection that each point in E£; or E3 appears
exactly once on the right-hand side of (2-29), (2-30), or (2-30), with the same sign as
in (2-27). On the other hand, each point in E, appears exactly twice on the right-hand
side of (2-30), (2-30), or (2-31), once with x, = x; and once with x, = x5, and
these two appearances have opposite signs.

Parts (c) and (d) of the compactification property are proved by the same argument as
part (b), but with point constraints at p4+ and/or p_ inserted everywhere.

To prove part (e) of the compactification property, we will just explain (2-16), as (2-17)
is proved symmetrically, and the rest is proved analogously with point constraints
at p4+ and/or p_ inserted.

To prove the first line of (2-16), we need to show that
(Mll (xlvx/l) \ Mll (XI,X/I)) XS](Xi) ©d1 (x/19-x2) X lI']dz(x2’x3) =g

whenever dy 4+ dy = 1. When d; = 0 this follows from the fact that ® is a morphism.
When d; =1 this follows from condition (d) in the definition of composable.

To prove the second line of (2-16), we need to show that
(2-32) Mg (x1,x7) X, (x)) (¥ 0 @)1 (x], x3) \ (Wo ) (x],x3)) = 2.

The second factor, (¥ o ®); \ (¥ o ®);, consists of points in (®; \ ;) x S(x,) Y1 and
D1 X g(x,) (W \ W), as well as points as in (2-27). In each case, the contributions to the
fiber product (2-32) are empty, either by condition (d) in the definition of composable,
or by the fact that ® is a morphism. |

Remark 2.13 Our definition of “identity morphism” is a slight abuse of terminology,
for the following reason. Let 4, and A, be Morse—Bott systems, let ® be a morphism
from A; to A,, and let I’ denote the identity morphism from A; to itself for i =1, 2.
Then:
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o I! and ® are not necessarily composable; likewise ® and 7?2 are not necessarily
composable. Composability with the identity requires ® to satisfy slightly stronger
transversality conditions than in the definition of “morphism”.

 Even when composability holds, the compositions ® o I'! and 7% o ® are not quite
equal to ®; the moduli spaces for the compositions are larger than the moduli spaces
for @ because of additional contributions coming from (2-19). For example, for x
and x, distinct we have

(12°¢)1(X1,X2)=q’1(x1,X2)|—|(RX I ®i(x1.x%) X5 Moz(xé,xz))-

x,€Xo\{x2}
The compactification (72 o ®);(xy, x») then includes an extra piece

(2-33) Rx ] <I>1(x1,x;)xs(xé)Moz(x;,xz).

x,€Xo\{x2}

The evaluation maps are constant on each component of (2-33). In the construction in
Proposition 2.12, each component of (2-33) is glued onto the corresponding boundary
point of ®;(x;,x,) at the point where the R coordinate is —oo.

Remark 2.14 Although we will not need this, one can also show that the composition
of three morphisms is associative, assuming that all morphisms and pairwise compo-
sitions in question are composable. This follows from (2-22) and the associativity of
fiber product, together with a check that the compactifications agree.

2.5 Homotopies of morphisms

Definition 2.15 Let
Ay = (X1, |1, 81,0, M} el) and As=(Xa, |2, S2, O, M2, e3)

be Morse-Bott systems. Let ® and &’ be morphisms from 4 to A,. A homotopy K
from ® to ®' consists of the following data for each x; € X7, x, € X5, and d €
{0,1,2,3}:

e A “moduli space” K;(x1,x,), which is a smooth manifold of dimension d.
e “Evaluation maps”, which are smooth maps
er: Kg(x1,x2) = Si(x1) and e—: Kz(x1,x3) = Sa(x7).

* An orientation of Ky (xy,x;) with values in e (’),lcl ® efOfm.
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These are required to satisfy the following grading, finiteness, fiber product transversal-
ity, and compactification properties:

e Grading If K (x;,x) is nonempty, then
d=|x1|1—|x212+2 mod 2.

 Finiteness For each x; € X, there exist only finitely many x, € X? such
that K;(x1,x3) is nonempty for some d € {0, 1,2, 3}.

¢ Fiber product transversality This condition is the same as in the definition of
“morphism”, but with ®; replaced by K.

o Compactification Let x; € X! and x, € X2. Let (p1, p2) € S;(x1) xS (x3) be
generic. Define K;(x1, p1,x2), Kg(x1,x2, p2), and Kz (x1, p1, X2, p2) asin (2-6).
Suppose that p; is a regular value of all evaluation maps e on M a} , Dg, <I>;,, and Ky
for d <2; p, is aregular value of all evaluation maps e— on Mj, D, CD;,, and K
for d <2; and (pq, p,) is a regular value of et x e— on dy(xq, x72), CD:i(xl,xz),
and K, (xq,x,) for d <3. Then:

(a) The moduli space Ko(x1,X3) is compact, ie finite.

(b) K;(x1,x3) has acompactification K;(x;,x,) whose boundary has an identification

(2-34) 9K (x1,x2)
= —®g(x1,x2) U Pp(x1,x2)
W | (—1)"'1Ma}1 (1, x)) X81(x)) Ki(x],x2)

X eX\(x1}
dl +d=1

U (DK xX5) Xy xp) M3, (x5, x2).
x;eXz\{xz}
d+d,=1
(¢) Kjy(x1,x2, p) has a compactification K, (x1,x2, p2) whose boundary has an
identification

(2_35) 81?2(x17x2’p2)
= —®;(x1,x2, p2) UD| (x1, X2, p2)

U DM e x)) X, e Ka(x] %2, pa)
x1eX N\ {x;}
di+d=2
U (=DYKa(xr.x5) X, MG, (X5, X2, pa).
xéEXz\{xz}
d+dr,=2
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Similarly, K5 (x1, pi,x2) has a compactification K (x1, p1, x2) whose boundary has
an identification

(2-36) 9Kz (x1, p1.X2)
= @y (x1, p1,X2) U =P (x1, p1, X2)

U I (—1)‘711_1Ma}l (X1, p1. X)) X5, (x;) Ka(x], x2)
X eX\{x;}
di+d=2

U I DT K proxh) Xy MG, (), x2).
x’zeXz\{xz}
d+d,=2

(d) Kj3(xi, p1.x2, p>) has a compactification K3(x1, p1, X2, p2) whose boundary
has an identification

(2-37)  3K3(x1, p1.x2, p2)
= @y (x1. p1. X2, p2) U =D, (x1, p1, X2, p2)
U I DMy G X)) X sy o) Ka (. X2, pa)
x’leXl\{xl}
di+d=3

u ]_[ (—1)d_1Kd(x1 ) Pl,x/z) X85 (x5) sz(xé, X2, P2).
xpeX?\{x2}
d+dy=3

In (b), (¢), and (d), the evaluation maps e+ extend continuously to the compactifications

and satisfy e (u4,u—_) =es(uy).

(e) Asin part (e) of the compactification axiom in the definition of Morse—Bott system,
the right-hand sides of (2-34), (2-35), (2-36), and (2-37) would not include any extra
points if we used compactifications.

3 Cascade homology

In this section, we define the cascade homology of a Morse—Bott system. We show that
cascade homology is functorial with respect to morphisms of Morse—Bott systems, and
that the induced maps on cascade homology are invariant under homotopy of morphisms.

3.1 Setup

Let A =(X,|-],S,0, My, es) be a Morse-Bott system. We are going to define its
cascade homology, which is a Z/2—graded Z-module, denoted by Hf (A4). To do so,
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we need to make a generic choice of a point pyx € Sx for each x € X, ensuring, in
particular, that:

e py is aregular value of all evaluation maps
e—: Mj(x4,x) > Sx and ey: My(x,x_) —> Sx

foreach x € X and d <2.

* (px4»px_) is aregular value of
er Xe—: Mg(x4,x=) = S(x4) xS(x2)
for each pair of distinct points x4+, x— € X and each d < 3.

We denote the set of choices {px}xex by P. Below we will define the cascade
chain complex (Cf (A4,P), d). The homology of this chain complex will be denoted
by H{(A,P). We will later show that this homology does not depend on P, and so
we can denote it by Hf (A4).

The chain complex C,:" (A, P) is the sum over x € X of two copies of Ox(px). To
describe this a bit more conveniently, fix a generator of Ox(py) for each x € S.
Then the chain complex C,:" (A4, P) is freely generated over Z, with two generators
for each x € X. We denote these generators by X and X. The mod 2 grading of X
equals |x|, while the mod 2 grading of X equals |x|+ 1.

3.2 Cascade moduli spaces: definition

To define the differential d on the chain complex Cf (4,P), we need to introduce
cascade moduli spaces. Roughly speaking, we will consider “cascades” that start
at X4 or X4 and end at X_ or X_. When we start at X+ there is an initial point con-
straint, and we end at X_ there is a final point constraint. Now for the precise definitions.

3.2.1 Notation and simple cases To define cascade moduli spaces, we need the
following notation. Define the “cyclic fiber product”

(3-D Mg, (x0,x1) O Mg,(x1,x2) O -+ O Mg, (Xg—1,Xk)
S(x1) S(x2)  SCxr—1)
to be the set of k—tuples (uy, ..., ux) such that:

* uj € My, (xj—1,x;) foreachi =1,... k.

e Foreachi =1,...,k—1, the points py,, e—(u;), and e4 (u;4) are distinct
and positively cyclically ordered with respect to the orientation of S(x;).
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In (3-1), we can also replace the first factor by My, (xo, px,.X1), in which case we
require that u1 € My, (xo, po, X1); and we can replace the lastby My, (Xg—1, Xk, Px;.)
in which case we require that ux € My, (Xg—1, Xk, Px; ). On each of these cyclic fiber
products, there is an evaluation map e+ with values in S(xg), and an evaluation
map e— with values in S(xg).

Furthermore, we define M; (x4,x_) to be the set of u € M, (x4, x—) such that
e4(u) # pxy and e—_(u) # px_. Similarly, we define M j (x4, p+,x—) to be the set
of u € My(x+, py,x—) such that e_(u) # p—; and we define Mj(x4,x—, p—) to
be the set of u € My(x4,x—, px_) such that e4 (u) # px, .

For x+ xX_ € X and d € {0, 1}, we define four cascade moduli spaces M A"(x+, X-),
M Xy, X)), M L"(x.;., X_),and M %(x+, X_). These will be open smooth manifolds
of dlmenswn d , with orientations valued in Ox_ (px,) ® Ox_(px_).

The simplest case is where x4+ = x_. In this case we define

32 MIER)=MI(%2)=M|X%=0

{Sx, px} ifd =0,
1] otherwise.

(3-3) M}(R,%) = {

That is, the set M (X, X) has two elements, which we label as Sx and p, . To complete
this definition, we need to specify the orientation of M (X, X) with values in

Ox(px) ® Ox(px) =7

That is, we need to attach a sign to each of the two points Sy and py. If the local
system Oy is trivial, then Sx has positive sign and py has negative sign. If the local
system Oy is not trivial, then Sx and p, both have negative signs.

Remark 3.1 The above convention is the reason for the —2 in (1-1). Combined with
the rather natural orientation conventions below, the above convention is necessary for
the orientations to work out in Proposition 3.2(b) below.

We now define the cascade moduli spaces when x4 # x_.

3.2.2 Unconstrained cascade moduli spaces If xt # x_, we define
(3-4) Mj(R4.%)

]_[ ]_[ ]_[ Md (X0, xl) 0 Md (x1,x2)
kz1 X0=X+ Yd;i=d x1)

Xp=x_ O - O Mdk(xk 1:Xk),
S(x2)  S(xr—1)
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The orientation of M;" (X4, X—) with values in Ox, (px,) ® Ox_(px_) is defined as

follows. Consider a point (u1,...,uy) in
My (xo.x1) O My (x1,x2) O -+ O My (Xg—1,xk) C M3(55+,f—)-
S(x1) S(x2)  S(xk—-1)

At u;, the moduli space My, (x;—1,X;) a priori has an orientation with values in
Ox,;_,(e4(ui)) ® Ox;(e—(u;)). The cyclic fiber product is an open subset of the
product of these moduli spaces for i = 1,...,k. Thus taking the product of these
orientations in order from i = 1 to k, we obtain an orientation of the cascade moduli
space M;()?+, X_) at the point (uq,...,uy) with values in

k
(3-5) ® Oxi_, (e4(ui)) ® Ox; (e—(ui)).

i=1

Now there is an isomorphism

(3-6) Ox+ (px+) = Oy, (pxo) >~ Oy, (e4+(uy))

obtained by parallel transport in Oy, along a positively oriented path in S(x¢) from pyx,
to e4(uqp). Similarly, for i = 1,...,k — 1 we have an isomorphism

(3-7) Ox; (e~ (ui)) = Ox; (e+(uit1))

obtained by parallel transport in Oy, along a positively oriented path in S(x;) from
e—(u;) to e4(uj41). Finally, there is an isomorphism

(3-3) Ox (e—(ug)) = Ox; (px;) = Ox_(px_)

obtained by parallel transport in Oy, along a positively oriented path in S(xz) from
e_(ug) to px,. Combining the isomorphisms (3-6), (3-7), and (3-8) allows us to
identify (3-5) as

k
® Ox;_ (e+(ui)) ® Ox; (e—(u;)) ~ Ox+ (px+) ® Ox_(px_).

i=1

Thus we obtain an orientation of M; (X4,X_) at the point (uq,...,uy) with values
in Oxy(Pxo) ® Ox; (Px;)- As (uy, ..., ux) movesin MJ(X4,X-), this orientation
1S continuous, because:
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e Since we are using M(}"l (x0,x1) in (3-4), so that py, # e4(u;), the isomor-
phism (3-6) varies continuously.

e Fori=1,...,k=1,since we use the “cyclic fiber product” condition Ogx,)
in (3-4), so that e—(u;) # e+ (4;j+1), the isomorphism (3-7) varies continuously.

e Since we are using M;k (Xk—1.Xg) in (3-4), so that e_(ug) # px, , the isomor-
phism (3-8) varies continuously.

3.2.3 Constrained cascade moduli spaces Let x4, x_ € X be distinct. We define

(-9 M. %)
=1 1] [T M (xo. pxo,xl) (5 Mdz(xl,xz)
zleO‘;‘:lZdl =d+1
Xp=x_ O -+ O Mdk(xk—l’xk)-

S(x2)  SOx-1)

This is oriented as in (3-4), except that now we can dispense with the isomorphism (3-6).
We define

(3-10) MRy, %)
=1 1 L Mdl(xo,xl) (5 Mdz(xl x2)
k21 X0=X4 Y di=d+1
xk=x7 o .- (5 Mdk(xk_l,xk,pxk).

S(x2)  SCxr—1)

This is oriented as in (3-4), except that here we can dispense with the isomorphism (3-8).
Finally, we define

B-11) M (%4, %)
= Md+2(.x+, pXJ,-’ .X—, pX—)

(L L MG pxge ) (O M (61, x2)
k22 X0=x+ Y di=d+2
Xj=X_— S - O Mdk(xk_l,xk,pxk)).

S(x2)  S(xgk—1)

This is oriented as in (3-4), except that now we can dispense with the isomorphisms
(3-6) and (3-8).

3.3 Cascade moduli spaces: the key property

Recall from Section 3.1 that P denotes the set of choices {px}xex -
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Proposition 3.2 Let x4+, x— € X. Fix X+ to denote one of X4+ or X+ ; and fix X_ to
denote one of X_ or X_. If P is generic then:

(a) The cascade moduli space Mé" (X+,X_) is finite.

(b) The cascade moduli space M IL" (¥+,X_) has a compactification M IL" X+,X%2)
with boundary

(3-12) M/ (%4.5%)
= 11 MJEr ) x M5 U L My (R ) x MJ (5, 50),
yeXx yex

In (3-12), the boundary orientation on the left-hand side agrees with the product
orientation on the right-hand side.

Proof (a) By (3-2) and (3-3), we can assume that x4 # x_.

In the unconstrained case when Xy = X4+ and X_ = X_, so that all factors in the
cascade (3-4) live in O—dimensional moduli spaces My (x;—1, X;), the desired finiteness
of M(j" (X4, X_) follows from the finiteness axiom and part (a) of the compactification

axiom.

If instead we have X4 = X, then we also need to know that M (x4, px_ . x) is finite
for every x # x4 . Suppose to get a contradiction that there is an infinite sequence
{u;}i=1,.. of distinct elements of My (x4, px, ., x). By part (b) of the compactification
axiom, we can pass to a subsequence so that {u;} converges to a point o € M7 (X4, X)
with e4 (Uso) = px . If o € M(x+, x), this contradicts the assumption that py_ is
aregular value of e . Thus e € M7 (x4, x)\ M1 (x4, x). Since the latter set is finite,
if px, is generic then itis notin e of this set, which is also a contradiction. Therefore,
if P is generic then M;(x4, px,,x) is finite for every x # x4, and consequently
M (%4, X_) is finite.

Similar arguments show if P is generic then M (x, x_, px_) is finite for every x # x_,
and M5 (x4, px,.X—, px_) is finite. We then likewise deduce that M;"(55+,55_)
and M J(X+,X-) are finite.

(b) If x4+ = x_, then Mf"()?.;., X_) = @ by definition, so we can (and must) take
the compactification to be the empty set. The right-hand side of (3-12) is also empty;
otherwise we could make arbitrarily long chains of nonempty moduli spaces, violating
the finiteness axiom.

Suppose now that x4 # x_. There are four cases to consider, depending on whether X
equals X4 or X4, and whether X_ equals X_ or X_. We will just consider the case
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where X4+ = X4+ and X_ = X_; the proofs in the other cases use the same ideas. We
now need to show that Mi"(fc}, X_) has a compactification M 1% (X4, X—) with oriented
boundary

(3-13) M/ (%4.%)

= [ M{G4. ) x M7, %) U ] MG+, 7) x MJ (5, 5-).
yeX yeX
Recall that

(3-14) M/ (34.%)

=1 1 L Mg (xo.x1) O Mg (x1.x2)
S(x1)

k=1 _X0=X+ Y d;=2
X1seeesXfe—1 Z !
X =X—

M;k (Xk—1+ Xk Dxy.)-
S(x2)  SCxx—1)

Note that if (uq,...,ux) is in the above moduli space, then only one of the fac-
tors u; is in a 1-dimensional moduli space; this is M (x;—1.x;) if i < k, and
M2* (Xk—1. Xk, Px;) if i = k. Every other u; is rigid, ie in a O—dimensional moduli
space; this is M (x;—1,x;) if i <k and M (Xg_1. Xk, px,) if i = k.

The idea of the proof of (3-13) is that the moduli space (3-14) has ends where one of
the following happens:

(i) the nonrigid u; approaches an end of its moduli space;

(ii) e+ (u;) approaches e_(u;—1) (when i > 1);

(iii) e—(u;) approaches e (u;41) (When i < k);

(iv) e (u;) approaches py,_,;or

(v) e—(u;) approaches py;, (when i <k).
We can compactify the moduli space by gluing together ends of the form (i), (ii),
and (iii), and adding boundary points for ends of the form (iv) and (v). Boundary
points of type (iv) correspond to the first product on the right-hand side of (3-13), and

boundary points of type (v) correspond to the second product on the right-hand side
of (3-13).

To be more precise, and to explain how the orientations work, note that there are four
possibilities for the i such that u; isnotrigid: 1 =i =k, 1 =i <k, 1 <i =k,
or 1 <i < k. Accordingly, we can write

M?()AC+,5C\_)=E1 UE,UE3L Ey,
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where

Ey = My (x4,x-, px_),

Ex= 1] M(p.x) ) M%?’,A_,
X4 #EX FEx_

E3: ]_[ M()L',(x+,x) O Mz(x 9x—’px—)’
X4 Fx FEx_

Ev= ] Mé(& ) O MIC) O MRS
X4 Ex/Ex"Ex_ x")

We first define a “partial compactification” of M IA" (X+,X-) by compactifying the
1-dimensional moduli spaces above, to get

M?(f.{.,)/&_) =FiUF,UuF;U Fy,
where

F :M*(X+ X—, Px_),

Fo= Il M) O M%( 20,
X4 F#EX FEx_

=11 M(?(?wr,?f) 0 My (X' x—. px_),
Xy Fx/F#Ex_ x’)

Fo= 11 M{@ELY) & M o MIE"30).
X4 FEXEXEx_ S(x")

Here we denote by Mz”‘(er,x_,px_) the set of u € My(x4,x_, px_) such that
e+ (u) # px, , and so forth; and the cyclic fiber products are oriented as before.

By parts (b) and (c) of the compactification axiom, the oriented boundaries of the four
parts of the partial compactification are given by

Fr = [ M§Ce,x") xsey My (x", x—, px_)
X4 #EX FEx_
- M (x4, X") Xy M (X", x—, px_),
1 (=) M
X4 FxF#Ex_
8F2= ]_[ M (x+ X)XS(X/)M (X X”) (5 Me(/\” A_)
X4 FEXFEXFEx (x”)
- M (x4, x") x gy Mg (X', x" (5 M% X7 %0),
(x")
X4 #EX FEXEXx_ (x")
OF; = 11 MO%()?JF,}C") O Mg x")xgxry My (x", x_, px_)
X4 EX EX Ex_ S(x)
_ MA,' ¥ O M, X" Xsoom MEG" X, px_),
0 1 () M1
X4 FEXEX FEX— S(x")
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0Fy = 11 M (2+.%) §O MGG s MG O M MIE",50)

— ]_[ ML',(X+ X ) (_'5 M (x x”) Xs(x//) M (x” XW) S(Cj//’) M:(A”/ A—)y
where x4 # x" # x" # x"" 7é x_ for each of the products in F,4. Note that we can use
starred moduli spaces in the above equations, by our assumption that each point py is
a regular value of all evaluation maps e+ .

We can combine the above four equations to obtain the following formula for the
boundary of the partial compactification:
(15) MR %)= [ MJE¥) xseo M{(®, %)
X4 FEX FEX_
— L MG F) X MY (R 50,
X4 F#XFX—

Here the first product in the right-hand side of (3-15) corresponds to the first products
in the right-hand sides of the previous four equations.

The partial compactification also has ends, where e or e_ of the nonrigid factor
approaches a forbidden value. We now classify these. Here the signs are determined
by the orientation conventions in Section 2.1 and Convention 2.2.

To start, there are ends of F; where e approaches py_ from either side. Thus
(3-16) Ends(F1) = Mg (R4, 4) X Ma(x 4, pry X, pr).

Note that since we are assuming that the points px, and px_ are generic, we do not
need a bar on M, in this equation.

Next, there are ends of F, where e of the first factor approaches px_ , where e— of
the first factor approaches py’, and where e_ of the first factor approaches e of the
second factor. Thus

GAT) Bnds(F) = L1 MY (E 5) X M (i pap o) O M 5-)
Xy FXFEX
+ ]_[ M] (X+,X,px/)XMg(X/,5C\_)
XpFExXFEx_
L M) xsee MG (R 50).
X4 FEXFEX_

Note that we do not need bars on M in the first two lines of this equation because
Pxy and px_ are generic; and we do not need a bar on M in the third line by part ()
of the compactification axiom.
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Next, there are ends of F3 where e of the second factor approaches p,-, and where e+
of the second factor approaches e_ of the first factor. Thus
(3-18) Bnds(F3)= 1]  MJE4.¥) x My(x', par, x—, px_)

X4 FEX FEx—

— U MIGF) xseey M x—, pr),
Xy FxFEx—

where we do not need bars on M, as before.

Finally, there are ends of F4 where ey of the second factor approaches p,’, where e
of the second factor approaches e_ of the first factor, where e— of the second factor
approaches py~, and where e_ of the second factor approaches ey of the third factor.
Similarly to the above, we obtain

(3-19) Ends(F4) =]] M(? (R, X)X M (X', par, X" i (@ )M(? (x",30)

x//
L ME Gy T X500y ME ) O )M(? &%)
x//

+ 1 Mg (R+.5) & )Ml* (', X", par) x MY (R, %
x/
FLIMI ) 0 MEG ") s MG (. 22),
X

where x4 # x’ # x” # x_ for each of the products. Putting the above four equations
together, we obtain
(320) Ends(M?(Gp, %) =— [ MJEs %) xse) MIE,22)
X4 FEXFEX_
+ U MG E) s M 30)
XpFx'F#Ex_

+ LI M{ (R4, ) % M (5, 2-)
y
+ L M§ (R4 D) x MJ (5. 32).
y

Here the first line of the right-hand side of (3-20) corresponds to the second lines
of (3-18) and (3-19); the second line of (3-20) corresponds to the third line of (3-17)
and the fourth line of (3-19); the third line of (3-20) corresponds to the first lines of
the right-hand sides of (3-16), (3-17), (3-18), and (3-19); and the fourth line of (3-20)
corresponds to the second line of (3-17) and the third line of (3-19).

To conclude, the first two lines of (3-20) match the corresponding lines of (3-15), but
with opposite orientations. Thus we can glue these ends and boundary points together,
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and add points corresponding to the last two lines of (3-20), to obtain the desired
compactification of M IL" (X4, X_) satisfying (3-13). O

3.4 Definition of cascade homology

We explained in Section 3.1 how to define the Z /2—graded chain module Cf (4,P).

Definition 3.3 We define the differential 0: C,,? (4,P) — Cf_l(A,P) as follows.
Let x € X, and fix X to denote one of X or X. Define
0T = 3 #M{(F. )7 +#MJ(E D)7).
yeX
In the definition, #M(? denotes the signed count of points in M(? ; it follows from
Proposition 3.2(a) that this is well defined. Furthermore, the finiteness axiom guarantees

that the whole sum is finite. It follows from the grading axiom that d decreases the
mod 2 grading by 1. Finally, Proposition 3.2(b) shows that 3> = 0.

Definition 3.4 We define the cascade homology H:" (A4, P) to be the homology of the
chain complex (Cf (A4,P),0).

3.5 The conjugate of a Morse-Bott system

To clarify some signs in the definition of induced maps on cascade homology, it will
help to consider a modification of a Morse—Bott system in which the orientation on
each moduli space M is multiplied by (—1).

Definition 3.5 If 4 = (X,|-|,S,0, My, ex) is a Morse-Bott system, define its
conjugate A = (X.|-|.S.0. My.ex), where My(xy.x_) = (1) My(xs.x).

Note that the conjugate of a Morse—Bott system is also a Morse—Bott system, because
when we pass to the conjugate, for each of (2-7)—(2-10), both sides change sign in the
same way. Conjugation also does not affect the cascade homology: it follows from the
grading axiom that the chain complexes C*L" (4,P) and Cf (A, P) are isomorphic via

the involution which multiplies each generator X or X by (=D,

For our purposes, a slightly different involution will be more useful:

Definition 3.6 Define t: Cf(il, P) — Cf(A, P) by t(X¥) =X and (X)) = —X.
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Lemma 3.7 Let d denote the differential on C,,? (4,P). Then
0t = —10.

Proof By (3-4) and (3-11), the differentials from hat generators to check generators or
vice versa count cascades with total moduli space dimension even. By (3-9) and (3-10),
the differentials between check and check generators, or between hat and hat generators,
count cascades with total moduli space dimension odd. a

Conjugation is useful because if ®: A; — A, is a morphism of Morse—Bott systems,
then we can rewrite (2-12)—(2-15) using the conjugate of A; (but not the conjugate
of A,) to obtain nicer signs, which look just like the signs in (2-7)—(2-10). Namely,

351()61,)62)

= I DDM (X)) X, ) Pa(x], X2)
x1eXi\{x1}
di+d=1

U I (=D ®g(xr,xh) Xy (xp) M, (x5, x2),
x,€Xo\{x2}
d+dr=1

352(361,?62, D2)

= U DM (xr.x)) xs, () Pa(x]. X2, p2)
xieXi\{x}
di+d=2

U 1 (DP@4(x.xh) Xy M7, (x5 %2, p2).
x,€Xo\{x2}
d+dry=2
(3-21)

0Py (x1, p1,Xx2)

= I (—1)d1_1Malyl (X1, P1, X)) X5, (xp) Pt (X X2)
xieXi\{x1}
di+d=2

U DT 0g(xr, proxh) X, ) M, (65, X2),
x,€Xo\{x2}
d+dr,=2
d®3(x1, p1. X2, P2)

= 1 EDPTIMY (e prxy) X ) @a (¥ X2, p2)
xieXi\{x1}
161'1+d=3

U D 0g(xr. praxh) Xy M, (X5, X2, p2).

x,€Xo\{x2}
d+dy=3
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3.6 Induced maps on cascade homology

Let A4, =(X1,]| |1, Sl,(’)l,Mj,ei) and A, = (X3, |- |2, S2, O, M2, ei) be Morse—
Bott systems, and let ®: 4; — A, be a morphism of Morse—Bott systems. Let (Pq, P,)
be a generic pair of choices as needed to define the cascade chain complexes C/ (A1, P1)
and Cf (A2, P,). We now define a chain map

®y: CF (A1, Py) — C{(Az, P).

The idea is to define @y by counting “hybrid” cascades consisting of some elements
of M(} , followed by an element of ®,;, followed by some elements of M 2, with total
moduli space dimension zero (after point constraints are taken into account). The chain
map equation arises by considering such cascades with total moduli space dimension
one. In order to simplify the notation when defining this precisely, we will use the
following shortcut.

Definition 3.8 Define a Morse—-Bott system
ArUe Ay = (X,[-[,S,0, My, ex)

as follows. We take X' = X; LIX,. For x| € X; wedefine |x;|=|x;|1+1, Sk, =5!

X1

1 2 2
and Oy, = Oy, . For x; € X, we define |x3| = |x2[2, Sx, = Sy, , and Oy, = Oy, .

For xl,x’l € X; and xz,x’2 € X,, we define
Mg(x1,x7) = My (x1,x7),
My(xy.x5) = Mj(x2,x5),
Mg(x1,x2) = Pa(x1, X2),
Mg(x2,x1) =92
The evaluation maps e+ on these moduli spaces are the same as the evaluation maps

for Ay, A,, and ®.

It follows from (3-21) that 4; Ug A, is a Morse—Bott system. We can now use the
generic choices (P1,P;) to define the cascade chain complex for this Morse—Bott
system. Let d denote the differential. Let d1 denote the differential on C (A41,P1),
and let 0, denote the differential on C (A2,P). Let ®y denote the portion of o
mapping from C (A41,Py1) to C ﬁ(Az, P,), precomposed with the involution t. We
can then write the full cascade differential d in block matrix form as

(91 O
a_(q’uf 32)'
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Since 9% = 0, it follows that
02 Pyt + Py70y = 0.
Since td; = —d; 1, the above equation is equivalent to
dr Dy = Dyd;.
Thus @y is a chain map.
Definition 3.9 Let
OV HE (A1, Pr) — HE (42, Py)
denote the map on cascade homology induced by the chain map ®y.
3.7 More conjugation

Our next goal is to prove that the induced maps on cascade homology are functorial.
To prepare for this, it will be useful to consider the conjugate of a morphism.

Definition 3.10 If ® is a morphism of Morse—Bott systems from A; to 4,, define
its conjugate Y by
Q4 (x1,3%2) = (=17 D (x1, x2).

Observe that ® is a morphism of Morse—Bott systems from A; to 4,, because the
equations in (3-21) still hold if we replace ® by &, M by M, and M? by M?2.

Lemma 3.11 The following diagram commutes (note the minus sign):
g —%: g
Ci(41,P1) — Ci(42.P2)
rl lr
g i g
C* (A],P]) _— C* (A29 PZ)

Proof The map ®y is defined from the cascade differential for the conjugate of the
Morse—-Bott system A; Ligp A>. The lemma then follows from Lemma 3.7 applied to
A=A, Ugp A4,. O

3.8 Functoriality

We are now ready to prove the following key result.
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Proposition 3.12 Let ®: A1 — A, and V: A, — A3 be composable morphisms of
Morse—Bott systems. Let (P1, P2, P3) be generic choices as needed to define the chain
complexes C:" (A;,P;i). Then

(W o @)3P1 = wP3P2 6 P21 g2(4,. Py) — HZ (A3, P3).

The idea of the proof is to define a chain homotopy between (W o ®)y and Wy o ®y,
by counting “hybrid” cascades that consist of some elements of Ma} , followed by an
element of ®4, followed by some elements of M 2, followed by an element of W,
followed by some elements of M 3, with total moduli space dimension zero. The chain
homotopy equation then comes from considering such cascades with total moduli space
dimension one. We will again use a shortcut to simplify the notation.

Proof of Proposition 3.12 We define an “almost” Morse—Bott system
A=A, U@Az Uy A3 = (X,|-|,S,O,M*,€:|:)

as follows. This will satisfy all of the axioms for a Morse—Bott system, except for a
partial failure of the compactification axiom.

WetakeX:Xll_Ile_lX3.

For x; € X; we define |x| = |x1|1, Sx, = S;l ,and Oy, = 03161 . For x5 € X, we

take |x2| =|x2]2+1, Sx, =S§2,and Ox, =O§2. For x3 € X3 we take |x3| =|x3]3,
_ Q3 _ 3

Sx; = Sx;.and Oy, = Oy,

For x1, x| € Xy, x3,x} € X3, and x3,x} € X3, we define
Mg(x1,x7) = Mj(x1,x)),
M (x2.x3) = Mg (x2.x3),
My (x3,x5) = Mj(x3,x3),
Mg(x1,x2) = Pg(x1, x2),
My(x2,x3) = Wg(x2, x3),

Mg(x1,x3) = Mg(x2,x1) = Mg(x3,x1) = Mg(x3,x2) = 2.
The evaluation maps e+ on these moduli spaces are the same as the evaluation maps

for Al, 42, A3, @,and v,

Observe that A satisfies all of the axioms for a Morse—Bott system, except that parts
(b)-(d) of the compactification axiom fail when applied to x; € X; and x3 € X3.
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Namely, parts (b)—(d) of the compactification axiom require that we have

) IMi(x1,x3) =[] (—1)d1@d1(x1,xz) XS (xs) Y, (X2, Xx3),

X2€X>
di+dr=1

and similar equations with generic point constraints on Sy, and/or Sx,. In fact,
however, the left-hand side of each of these equations is empty, since all moduli spaces
from x; to x3 are empty.

What happens if we try to define a cascade “differential” 0 for (A, (P1, P2, P3))
anyway, despite the above failure of compactification? Proposition 3.2(a) still holds, so
we obtain a well-defined linear map

0: CY(A, (Py.Py.P3)) = C7_ (A, (P, Py, Py)).

However, we no longer know that 32 = 0. In particular Proposition 3.2(b) no longer
holds when x4 = x; € X7 and x_ = x3 € X3. We will need to compute the precise
error in order to find out what 92 actually is.

Fix X1 to denote X; or Xi, and fix X3 to denote X3 or X3. The part of the proof of
Proposition 3.2(b) that is no longer valid is (3-15), which in this case would be
M) M ELF) = 1 MJELE) xsey MY (3. 53)
X'#X1,X3
— I MPELE) xsen MY (R F).
X'#X1,X3

In the present case, the left-hand side is missing points on the right-hand side in which
x" = x5 € X, and the cascades do not involve any other elements of X, . More precisely,
define

(322) Z(F.F3) = 1 MJ(F1 %) x5ty MY (%2, %)
X2€X>

L M (F1, %) Xse Mg (52, 5),
X2€X2
where we use the notation M ? to indicate cascades which involve only one pointin X5.
We can then correct the previous equation by adding Z (X1, X3) to the left-hand side,
giving
(23) L T)UZELT) = [ M{ G F) xse M (®.5s)
X'#X1,X3
— 1 MPGLY) xsey MY (R F).

X'#X1,X3
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The rest of the proof of Proposition 3.2(b) now goes through. However, since the
right-hand side of (3-23) is used to cancel some ends of the moduli space, and since
we had to add the points in Z (X1, X3) to obtain this right-hand side, the result is that
we obtain a compactification Z\71 (X1, X3) of M/(X,X3) with —Z(X1,X3) added to
its boundary. That is,

(3-24) OM/ (5. %)
= L Mg (1 ) x MJ (5. %) U L Mg Gy, 9)x M (5, %) = Z (%1, 5).
yeX yeX
Let ]\2067 (X1, X3) denote the moduli space of cascades in 4| Uyop A3 from X; to X3
in which each factor lives in a zero-dimensional moduli space. Observe that as a set,
we have Z(X1,X3) = M (? (X1, X3). We claim that as an oriented 0—manifold, we have
—M(?(fl,%) if X1 = Xy,

(3-25) Z(X1.X3) = {

Mg (X1,X3) if Xy =X1.
To see how the orientations work, consider a cascade in
/\% ~ .
(UQ, cees uk) S MO (xl,x3).

Here uj € (Vo ®), for some j €10,...,k}; u; € M! forall i < j;and u; € M? for
all i > j. Assume for simplicity that u; does not have any point constraints. Then all
factors u; for i > 0 are counted with the same signs in M (X1,X3) and in Z(xl,x3)

the minus sign in the second line of (3-22) arises because cascades in M L (X1, X2)
are oriented using @ instead of ®. The factor uy is counted with the same sign
in ]\20%(551 ,X3) and Z(X1,X3) when X; = X1, and with opposite signs when X; = X; .
The reason is that in the latter case, ug € M 11 =-M 11 . The cases where u; has point
constraints are treated similarly.

Combining (3-25) with (3-24), it follows that the part of 3> mapping from C,:" (41,P1)
to C,:"(A3, P3) is given by

(3-26) 9 = —(Vo D).

Now let K denote the portion of d mapping from Cf(Al,Pl) to Cf(Ag,Pg). We
can then write d4 in block matrix form as

dp 0 0
0= @#T Qz 0
K q’ﬁl’ 83
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Squaring this and comparing the lower-left entry with (3-26), we obtain
Koy + ¥yt Pyt + 03K = —(W o D)y.
By Lemma 3.11, we can rewrite this as
Ko+ 03K = Wyody— (Vo D)y

Thus K is a chain homotopy between Wy o @y and (W o @)y. a

3.9 Homotopy invariance

Let A =(X1,]| |1, SI,OI,M*I,ei) and A, = (X2, ]|+ |2, S5, 02, M*z,ei) be Morse—
Bott systems. We now prove:

Proposition 3.13 Let ®, ®’: A; — A, be morphisms of Morse—Bott systems. Sup-
pose there exists a homotopy K from ® to @' as in Definition 2.15. Let (Py,P,) be a
generic pair of choices as needed to define the cascade chain complexes C;/(A1,P1)
and C,:"(Az, P>). Then

By = (V)5 HI (A1, Py) — HZ (A3, P>).

To prove Proposition 3.13, we define a chain homotopy
Ky: Cf(Al,Pl) — CfH(Az,Pz)-
from @4 to ®’y. To do so, we define an “almost” Morse—Bott system

Ay Ug Ay = (X, ||, S,0, My, e4),

similarly to Definition 3.8, as follows. We take X = X; U X,. For x; € X; we define

|x1] = |x1|1 + 2, le = S)il , and Oxl = O)lcl . For x, € X, we define |x;| = |x2]2,
Sx, = S)%z, and Oy, = Ofcz. For x1,x] € X; and x3, x} € X5, we define

Mg(x1,x}) = Mj(x1,x}), Mg(x2,x5) = M3 (x3,x5),
Md(xl,xZ)=Kd(X1,X2), Md(X2,X1)=®.

The evaluation maps e+ on these moduli spaces are the same as the evaluation maps
for Ay, A,,and K.

As in Definition 3.8, A; Ug A, almost satisfies the axioms for a Morse—Bott system,
except that we do not have parts (b), (c), and (d) of the compactification axiom, because
of the extra terms involving ® and @’ in (2-34), (2-35), (2-36), and (2-37). In any
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case, since part (a) of compactification holds, it still makes sense to define a cascade
“differential” d. We write this in block matrix form as

(% 0
(3-27) 0= ( X, 82),

and this is the definition of Kjy.

Lemma 3.14 K} satisfies the chain homotopy equation

02Ky + Kyoy = @a — @y,

Proof Since we do not have parts (b)—(d) of the compactification axiom, we do not
have 3 = 0. Instead, taking note of the extra terms involving ® and @' in (2-34),
(2-35), (2-36), and (2-37), and comparing with the definition of ®y and @/, we find that

0 0
2 _
(3-28) i _(% —a, 0).

To explain the signs in this equation, consider a cascade contributing to the coefficient
(02X, X_), coming from a ® boundary term in (2-34), (2-35), (2-36), or (2-37). At
first glance, these equations suggest that this cascade should count with the same sign
as in ®y when X1 = X (which would disagree with (3-28)), and with the opposite sign
as in @y when Xy = X— (which would agree with (3-28)). However, we have to make
two adjustments in order to compare the signs in (2-34)—(2-37) with the signs in the
definition of ®y: namely, we have to replace A; by A4 and insert 7.

If ¥, = X, then replacing 4; by A, does not affect the sign, because any M !
factors in the cascade are in zero-dimensional moduli spaces. However, the t factor in
the definition of @y does switch the sign.

On the other hand, if X4 = X_, then there are two cases to consider. If the first factor in
the cascade is in @, then replacing A1 by A; does not affect the sign, and inserting
does not affect the sign either. If the first factor in the cascade is in M !, then it lives in
a one-dimensional moduli space, while all other factors in M ! live in zero-dimensional
moduli spaces. Thus replacing A; by A; switches the sign; and inserting 7 also
switches the sign. This completes the proof of (3-28).

Computing 02 using (3-27) and comparing with (3-28), we obtain

02 Ky + Kyd, =<I>&—q)ﬁ. m|
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3.10 Independence of the choice of basepoints

We now show that if A is a Morse—Bott system, then the cascade homology Hf (A,P)
does not depend on the choice of basepoints P, and so can be denoted by H,(A4). In
addition, if ® is a morphism of Morse—Bott systems from A to A;, then the induced
map on cascade homology QDZ:Z’PI: H:" (A1, P1) — H:" (A, P,) gives a well-defined
map Py: H:"(Al) — H:"(Az). More precisely:

Proposition 3.15 Let A be a Morse—Bott system, and let P and P’ be two choices of
basepoints as needed to define the cascade chain complex. Then there is a canonical
isomorphism

(3-29) ¢ pt HI(AP) => HI(A.P)
with the following properties:

@ o¢pp=1idg?a,p)-

(b) If P” is a third choice of basepoints, then
Gprp = Gprpr o pt HI(AP) — HI(A.P").

(c) If ® is a morphism of Morse—Bott systems from Ay and A,, if P; and 73;
are choices of basepoints for Ay, and if P, and P, are choices of basepoints
for A,, then the following diagram commutes:

4 ¢P1’P1 4 ’
H*(AI’PI) — H*(AI’PI)
q,fz-Pl l lq)?é.?i

4 ¢P§.P2 4 ,
H* (AZ’ P2) — H* (A27 732)

Proof To define the map (3-29), suppose that the pair (P, P’) is generic. Then by
Section 3.6, the identity morphism of A induces a map

idl"P: HZ (A, P) > HI(A.P),

and we define this to be ¢p/ p.

Lemma 3.16 The map ¢p p that is defined above for generic pairs (P, P’) is an
isomorphism.
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Proof Let Cy denote the free Z—module with generators X and X for each x € X.
Choose generators of Ox(px) and Ox(pl) for each x € X, in order to identify
both cascade chain modules C:" (4,P) and C,:" (A,P") with Cx. For each x € X,
choose these generators to agree under the isomorphism Oy (px) —> Ox(p’) given
by parallel transport along a positively oriented embedded arc on S(x) from py to p).
Then by the construction in Section 3.6, ¢/ p is induced by a chain map of the form

I + B: Cy — Cy,

where I denotes the identity on Cy, and (BX, y) # 0 only if x # y and M;(x,y) # @
for some d € {0, 1}. Now

O k pk
k=0
is a well-defined linear map, by the finiteness axiom for a Morse—Bott system, and
it is inverse to I + B. Thus I + B is an isomorphism of chain complexes, and so it
induces an isomorphism on homology. a

The above definition of ¢pr p only works for generic pairs (P, P’); in particular it
does not work when P = P’. To extend the definition to arbitrary pairs (P, P’) for
which both cascade chain complexes are defined, we use the following lemma:

Lemma 3.17 Let ® be a morphism of Morse—Bott systems from A to A,, and
let Py and P; be generic choices of basepoints for A1 and A,, so that the cascade
chain complexes and the map CIDZ:Z’P1 are defined. Then:

/ /
(a) If 73; is a generic choice of basepoints for A1, so that ¢7’i ,p, and CDfZ’pl are
defined, then

P5,Py P, P}
*

o = O, °© ¢Pi P1e

(b) If P, is a generic choice of basepoints for A,, so that Csz’p‘ and (j)pé,pz are
defined, then
Py P P2, P
o2 P = ¢P§,732 ° CD*Z h

Proof The idea is to apply the functoriality of Proposition 3.12 to the composition
of ® with the identity morphism for A; or A,. Unfortunately we cannot do this
directly, because as discussed in Remark 2.13, ® might not be composable with the
identity; and even when it is, the composition of @ with the identity is different from &
(although only inconsequentially). However, the proof of Proposition 3.12 still goes
through in this case with minor modifications. We omit the details. a
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Lemma 3.18 Let (P, P2, P3) be a generic triple of choices of basepoints for the
Morse—Bott system A. (If any pair of these choices is generic, then the third choice
can be made generically.) Then

¢ps. Py = PP3. P2 © PPoPy -
Proof This is a special case of Lemma 3.17 in which ®: A — A is the identity

morphism. |

Continuing the proof of Proposition 3.15, if A is a Morse-Bott system and if P and P’

are any choices of basepoints for which the cascade chain complexes are defined, then

we can define ¢p’ p by generically choosing a third set of basepoints P” and setting
¢pr.p = Qprpr 0 Ppr p.

It follows by repeatedly applying Lemma 3.18 that ¢/ » does not depend on the choice
of P” and satisfies property (b) in Proposition 3.15. It follows from Lemma 3.16
that ¢p/ p is an isomorphism.

To prove part (a) of Proposition 3.15, by definition we have

épp =dppodp . p

where P’ is generic. To prove that ¢p p is the identity, by Lemma 3.16 it is enough to
show that

¢p,pr 0P podppr = dppr
where P” is generic. This last equation follows by applying Lemma 3.18 twice.

Part (c) of Proposition 3.15 now follows from Lemma 3.17. a

3.11 Proof of the main theorem
To conclude, we review how the above results prove all the points in the main theorem.

Proof of Theorem 1.1 Part (a) follows from Proposition 3.15(a)—(b).
Part (b)(i) follows from Proposition 3.15(c).

Part (b)(ii) holds by definition, because we are using the maps induced by the identity
morphism to identify the cascade homologies for different choices of basepoints with
each other.

Part (b)(iii) follows from Proposition 3.12.

Part (b)(iv) follows from Proposition 3.13. O
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