Volume 21, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Lannes's $T$–functor and equivariant Chow rings

David Hemminger

Algebraic & Geometric Topology 21 (2021) 1881–1910

For X a smooth scheme acted on by a linear algebraic group G and p a prime, the equivariant Chow ring CHG(X) 𝔽p is an unstable algebra over the Steenrod algebra. We compute Lannes’s T–functor applied to CHG(X) 𝔽p. As an application, we compute the localization of CHG(X) 𝔽p away from n–nilpotent modules over the Steenrod algebra, affirming a conjecture of Totaro as a special case. The case when X is a point and n = 1 generalizes and recovers an algebrogeometric version of Quillen’s stratification theorem proved by Yagita and Totaro.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Chow ring, equivariant Chow ring, group cohomology, Steenrod algebra, unstable modules, unstable algebras, $T$–functor
Mathematical Subject Classification 2010
Primary: 14C15, 55S10
Secondary: 14L30, 55N91
Received: 16 December 2019
Revised: 23 June 2020
Accepted: 24 August 2020
Published: 18 August 2021
David Hemminger
Department of Mathematics
University of California, Los Angeles
Los Angeles, CA
United States