Volume 21, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
Fibrations of $\mathbb{R}^3$ by oriented lines

Michael Harrison

Algebraic & Geometric Topology 21 (2021) 2899–2928
Abstract

A continuous fibration of 3 by oriented lines is given by a unit vector field V : 3 S2 for which all of the integral curves are oriented lines. A line fibration is called skew if no two fibers are parallel. Skew fibrations have been the focus of recent study, in part due to their close relationships with great circle fibrations of S3 and with tight contact structures on 3. Both geometric and topological classifications of the space of skew fibrations have appeared; these classifications rely on certain rigid geometric properties exhibited by skew fibrations. Here we study these properties for line fibrations which are not necessarily skew, and we offer some partial answers to the question: in what sense do nonskew fibrations look and behave like skew fibrations? We develop and utilize a technique, called the parallel plane pushoff, for studying nonskew fibrations. In addition, we summarize the known relationship between line fibrations and contact structures, and we extend these results to give a complete correspondence. Finally, we develop a technique for generating nonskew fibrations and offer a number of examples. All results (except where otherwise stated) hold in the topological category.

PDF Access Denied

We have not been able to recognize your IP address 3.239.76.211 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
line fibration, skew fibration, great circle fibration, continuity at infinity, parallel plane pushoff, tight contact structure
Mathematical Subject Classification 2010
Primary: 57R22
Secondary: 53C12, 57R17
References
Publication
Received: 1 November 2019
Revised: 2 October 2020
Accepted: 9 November 2020
Published: 22 November 2021
Authors
Michael Harrison
Institute for Advanced Study
Princeton, NJ
United States