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Moments of quadratic twists of
elliptic curve L-functions over function fields

Hung M. Bui, Alexandra Florea, Jonathan P. Keating and Edva Roditty-Gershon

We calculate the first and second moments of L-functions in the family of quadratic twists of a fixed
elliptic curve E over Fq [x], asymptotically in the limit as the degree of the twists tends to infinity. We
also compute moments involving derivatives of L-functions over quadratic twists, enabling us to deduce
lower bounds on the correlations between the analytic ranks of the twists of two distinct curves.

1. Introduction and statement of results

The values of L-functions at the central point of the critical strip have been the subject of considerable
interest in recent years. One way to study these central values is by considering moments in families
of L-functions. There are now precise conjectured asymptotic formulas for such moments motivated
by analogies with random matrix theory [Keating and Snaith 2000a; 2000b]. More precise asymptotic
formulas containing lower order terms were conjectured in [Conrey et al. 2003; 2005; Diaconu et al.
2003]. In the case of the Riemann zeta-function, the analogue of these conjectures is now relatively well
understood in terms of correlations of the divisor function [Conrey and Keating 2015a; 2015b; 2015c;
2016; 2019]. The moments of other degree-one L-functions have also been investigated intensively. It
remains a challenge to extend these calculations to L-functions of degree two and higher.

The first moment of the family of derivatives of L-functions of quadratic twists of a fixed modular
form was studied in [Bump et al. 1990b; Iwaniec 1990; Murty and Murty 1991]. Questions related to
the nonvanishing of L-functions in this family were considered in [Bump et al. 1990a; 1990b; Murty
and Murty 1991]. For example, it is shown independently in [Murty and Murty 1991] and [Bump et al.
1990a], using different techniques, that for a fixed elliptic curve with root number equal to 1 there are
infinitely many fundamental discriminants d < 0 such that its twist by d has analytic rank equal to 1.

The second moment of the family was considered by Soundararajan and Young [2010]. Unconditionally,
they obtained a lower bound for the second moment which matches the asymptotic formula conjectured by
Keating and Snaith [2000b] and assuming the generalized Riemann hypothesis (GRH) they established the
conjectured formula. Using similar ideas, again under GRH, Petrow [2014] obtained several asymptotic
formulas for moments of derivatives of these GL(2) L–functions when the sign of the functional equation
is −1.
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While no asymptotic formulas for moments larger than the second are known for this family, there
are lower and upper bounds of the right order of magnitude. Rudnick and Soundararajan [2005; 2006]
established unconditional lower bounds for all moments larger than the first, and, assuming GRH, the work
of Soundararajan [2009] and its refinement by Harper [2013] produced upper bounds of the conjectured
order of magnitude. Radziwiłł and Soundararajan [2015] proved upper bounds for moments below the
first in this family of L-functions. Their techniques also allow them to obtain a one-sided central limit
for the distribution of the logarithm of these central L-values. Their result supports a conjecture by
Keating and Snaith [2000a] which can be viewed as the analogue of Selberg’s central limit theorem for
the distribution of log

∣∣ζ ( 1
2 + i t

)∣∣.
In this paper we study several moment problems of comparable difficulty to the moment computation

of Soundararajan and Young in the function field family of quadratic twists of an elliptic curve. Since we
are working over function fields, the results we obtain are unconditional due to the availability of GRH in
this setting.

Recently there has been a good deal of work on computing moments of L-functions in the function
field setting. Andrade and Keating [2012] obtained an asymptotic formula for the first moment in the
symplectic family of quadratic L-functions when the degree of the L-functions (which is a polynomial in
this case) goes to infinity and the size of the finite field is fixed (see also [Hoffstein and Rosen 1992] for a
similar result). A lower order term of size approximately the cube root of the main term was computed in
[Florea 2017c]. The second, third and fourth moments were computed in [Florea 2017b; 2017a] (see
also [Diaconu 2019]). We note that the asymptotic formula for the fourth moment does not have a power
savings error term, but recovers several of the expected leading order terms in the conjectured formula
[Andrade and Keating 2014]. Obtaining an asymptotic formula with the leading order term for the fourth
moment in the family of quadratic L-functions is comparable in difficulty to establishing an asymptotic
formula for the second moment of L-functions of quadratic twists of an elliptic curve, and is one of the
problems we consider in this paper.

We note that for all of our results, we fix the size q of the finite field we work in and let the degree
of the L-functions go to infinity. If instead one fixes the degree and lets q→∞, then Katz and Sarnak
[1999] showed that the L-functions become equidistributed in the orthogonal group, and hence computing
the various moments reduces to computing several random matrix integrals (see for example [Keating
and Snaith 2000a]). In the case of elliptic curve L-functions, the relevant equidistribution results were
established in [Hall et al. 2017].

To state our results we first need some notation. Fix a prime power q with

(q, 6)= 1 and q ≡ 1 (mod 4).

Let K = Fq(t) be the rational function field and OK = Fq [t]. Let E/K be an elliptic curve defined by
y2
= x3
+ax+b, with a, b ∈OK and discriminant 1= 4a3

+27b2 such that degt(1) is minimal among
models of E/K of this form.
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The normalized L-function associated to the elliptic curve E/K has the following Euler product and
Dirichlet series, which converge for <(s) > 1,

L(E, s) := L(E, u)

=

∑
f ∈M

λ( f )udeg( f )

=

∏
P |1

(1− λ(P)udeg(P))−1
∏
P -1

(1− λ(P)udeg(P)
+ u2 deg(P))−1, (1-1)

where we set u := q−s , and M denotes the set of monic polynomials over Fq [t]. For a more detailed
discussion of the coefficients λ( f ) and how to define the L-function, see Section 2.2 in [Baig and Hall
2012]. The L-function is a polynomial in u with integer coefficients of degree

n := deg(L(E, u))= deg(M)+ 2 deg(A)− 4, (1-2)

where for simplicity we denote by M the product of the finite primes where E has multiplicative reduction
and by A the product of the finite primes where E has additive reduction. Moreover, the L-function
satisfies a functional equation; namely, there exists ε(E) ∈ {±1} such that

L(E, u)= ε(E)(
√

qu)nL
(

E,
1

qu

)
.

For a more precise formula for the sign of the functional equation, see Lemma 2.3 in [Baig and Hall
2012]. Now for D ∈ OK with D square-free, monic of odd degree and (D,1) = 1, we consider the
twisted elliptic curve E ⊗ χD/K with the affine model y2

= x3
+ D2ax + D3b. Then the L-function

corresponding to the twisted elliptic curve has the following Dirichlet series and Euler product

L(E ⊗χD, u)=
∑
f ∈M

λ( f )χD( f )udeg( f )

=

∏
P |1

(1− λ(P)χD(P)udeg(P))−1
∏

P -1D

(1− λ(P)χD(P)udeg(P)
+ u2 deg(P))−1.

The new L-function is a polynomial of degree (n+ 2 deg(D)) and satisfies the functional equation

L(E ⊗χD, u)= ε(
√

qu)n+2 deg(D)L
(

E ⊗χD,
1

qu

)
, (1-3)

where

ε = ε(E ⊗χD)= εdeg(D)ε(E)χD(M).

Here εdeg(D) ∈ {±1} is an integer which only depends on the degree of D (see Proposition 4.3 in [Baig
and Hall 2012]).

Let H∗2g+1 denote the set of monic, square free polynomials of degree (2g+1) coprime to 1. Our first
two theorems concern the first moments of L

(
E ⊗χD,

1
2

)
and L ′

(
E ⊗χD,

1
2

)
.
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Theorem 1.1. Unless ε2g+1ε(E)=−1 and M = 1, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)
= c1(M)+ Oε(q−g+εg),

where the value c1(M) is defined in (5-6) and (5-2). In particular, the constant c1(M) 6= 0 in this case
and we obtain an asymptotic formula.

Theorem 1.2. Unless ε2g+1ε(E)= 1 and M = 1, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)
= c2(M)L(Sym2 E, 1)g+ c3(M)+ Oε(q−g+εg),

where the values c2(M) and c3(M) are defined in (6-2), (6-3) and (5-2). In particular, the constant
c2(M) 6= 0 in this case and we obtain an asymptotic formula.

Theorem 1.2 above should be compared to the number field analogous result in [Iwaniec 1990]. In
the following theorems we obtain asymptotic formulas for the second moments of L

(
E ⊗ χD,

1
2

)
and

L ′
(
E ⊗χD,

1
2

)
.

Theorem 1.3. Unless ε2g+1ε(E)=−1 and M = 1, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)2
= c4(M)L(Sym2 E, 1)3g+ Oε(g1/2+ε),

where the value c4(M) is defined in (7-2), (3-8) and (3-9). In particular, the constant c4(M) 6= 0 in this
case and we obtain an asymptotic formula.

Theorem 1.4. Unless ε2g+1ε(E)= 1 and M = 1, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)2
= c5(M)L(Sym2 E, 1)3g3

+ Oε(g2+ε),

where the value c5(M) is defined in (8-2), (3-8) and (3-9). In particular, the constant c5(M) 6= 0 in this
case and we obtain an asymptotic formula.

Note that Theorem 1.3 is the function field analogue of Theorem 1.2 in [Soundararajan and Young
2010]. Considering the smoothed second moment, Soundararajan and Young obtain an error term of
size (log X)3/4+ε , which would translate to g3/4+ε in the function field setting. Using slightly different
techniques, Petrow [2014] states that the error term could be improved to (log X)1/2+ε which is of the
same quality we obtain in the result above.

Our Theorem 1.3 should also be compared to the asymptotic formula for the fourth moment of quadratic
L-functions over function fields in [Florea 2017a]. We remark that for the symplectic family of quadratic
L-functions, one can obtain lower order terms in the asymptotic formula by using an inductive argument
and then obtaining upper bounds for moments of L-functions evaluated at points far from the critical
point. The fact that one can compute a few lower order terms can be explained by the gap between
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powers of g coming from evaluating moments at the critical point versus evaluating moments far from the
critical point. When computing the fourth moment of quadratic L-functions close to the central point, one
expects to obtain a power of g10. As we move away from the central point, the family starts to behave
like a family with unitary symmetry and one expects an upper bound of the magnitude g4. The difference
in powers of g gives one room to use a repetitive argument to rigorously compute lower order terms
down to g4. In the case of the orthogonal family we consider in this paper, note that the main term in
Theorem 1.3 is of size g, and the error term has size g1/2 coming from obtaining an upper bound for
the second moment evaluated at a point far from the central point. The small difference between these
powers of g does not give us enough room to compute a lower order term in this case.

We can also study the moment of the product of the quadratic twists of two elliptic curve L-functions.
Let E1 and E2 be two elliptic curves over K . Let 1 = 1112, where, for i = 1, 2, 1i denotes the
discriminant of Ei . Let Mi denote the product of the finite primes where Ei has multiplicative reduction
and

εi = εdeg(D)ε(Ei )χD(Mi ).

Define
ε+i :=

1+ εi

2
and ε−i :=

1− εi

2
.

Theorem 1.5. Unless ε2g+1ε(E1)=−1 and M1 = 1, or ε2g+1ε(E2)= 1 and M2 = 1, or ε(E1)= ε(E2)

and M1 = M2, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= c6(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1⊗ E2, 1)g+ Oε(g1/2+ε),

where the value c6(M1,M2) is defined in (9-2), (3-8) and (3-10). In particular, the constant c6(M1,M2)6=0
in this case and we obtain an asymptotic formula.

We are not aware of the analogous number field result in the literature. We also prove the following.

Theorem 1.6. Unless ε2g+1ε(E1)= 1 and M1 = 1, or ε2g+1ε(E2)= 1 and M2 = 1, or ε(E1)=−ε(E2)

and M1 = M2, we have

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−1 ε
−

2 L ′
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= c7(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1⊗ E2, 1)g2

+ Oε(g1+ε),

where the value c7(M1,M2) is defined in (10-2), (3-8) and (3-10). In particular, the constant c7(M1,M2)6=0
in this case and we obtain an asymptotic formula.

Note that this result is the analogue of Theorem 2.2 in [Petrow 2014]. An interesting problem would be
to compute the average of L

(
E1⊗χD,

1
2

)
L
(
E2⊗χD,

1
2

)
for distinct elliptic curves E1 and E2. This would

have applications to the question of simultaneous nonvanishing of L
(
E1⊗χD,

1
2

)
and L

(
E2⊗χD,

1
2

)
.
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However our techniques do not allow us to obtain such an asymptotic formula, as the error term (coming
from Proposition 4.7) would dominate the main term which would have constant size.

Define the analytic rank of a quadratic twist of an elliptic curve L-function L(E ⊗χD, s) by

rE⊗χD := ords=1/2 L(E ⊗χD, s).

Combining the upper bounds for moments of elliptic curve L-functions (see Section 4) with Theorems 1.5
and 1.6 leads to the following corollary.

Corollary 1.7. Unless ε2g+1ε(E1)=−1 and M1 = 1, or ε2g+1ε(E2)= 1 and M2 = 1, or ε(E1)= ε(E2)

and M1 = M2, we have

#{D ∈H∗2g+1 : rE1⊗χD = 0, rE2⊗χD = 1} �ε

q2g

g6+ε

as g→∞. Also, unless ε2g+1ε(E1)= 1 and M1= 1, or ε2g+1ε(E2)= 1 and M2= 1, or ε(E1)=−ε(E2)

and M1 = M2, we have

#{D ∈H∗2g+1 : rE1⊗χD = rE2⊗χD = 1} �ε

q2g

g6+ε

as g→∞.

As far as we are aware, Corollary 1.7 is the first result in literature where explicit lower bounds
concerning the correlations between the ranks of two twisted elliptic curves are obtained. Following
Harper’s argument [2013], for the upper bounds for moments of L-functions one may remove the
exponents ε in Corollary 1.7. We fail to obtain positive proportions in the above results because we are
not able to use a mollifier. Note that the results of Heath-Brown [2004] adapted to the function field
setting do not lead to positive proportions either.

2. Some useful lemmas

In this section we will gather a few useful lemmas we will need throughout the paper.
Recall that q is a prime power with q ≡ 1 (mod 4) and (q, 6) = 1. Let M denote the set of monic

polynomials over Fq [t] and H be the set of monic, square-free polynomials. Let Mn denote the set of
monic polynomials of degree n over Fq [t] and M≤n be the set of monic polynomials of degree less than
or equal to n. Let Hn denote the monic, square-free polynomials of degree n and recall that H∗n denotes
the set of monic, square-free polynomials of degree n coprime to 1. The norm of a polynomial f is
defined by | f | = qdeg( f ). Let φ denote the Euler totient function and τ the divisor function.

We define the zeta-function as

ζq(s)=
∑
f ∈M

1
| f |s
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for <(s) > 1. By counting monic polynomials of a given degree, one can easily show that

ζq(s)=
1

1− q1−s ,

and this provides a meromorphic continuation of ζq with a simple pole at s = 1. As before, we will make
the change of variables u = q−s and so the zeta-function becomes

Z(u)= ζq(s)=
∑
f ∈M

udeg( f )
=

1
1− qu

,

with a simple pole at u = 1/q. Note that Z(u) can also be written as an Euler product

Z(u)=
∏

P

(1− udeg(P))−1,

where the product is over monic, irreducible polynomials in Fq [t].
The quadratic character over Fq [t] is defined as follows. For P a monic, irreducible polynomial let

(
f
P

)
=


1 if P - f, f is a square modulo P,
−1 if P - f, f is not a square modulo P,
0 if P | f.

We extend the definition of the quadratic residue symbol above to any monic D ∈ Fq [t] by multiplicativity,
and define the quadratic character χD by

χD( f )=
(

D
f

)
.

Since we assumed that q ≡ 1 (mod 4), note that the quadratic reciprocity law takes the following form: if
A and B are two monic coprime polynomials, then(

A
B

)
=

(
B
A

)
.

Throughout the paper, we will often make use of the Perron formula over function fields. If the series∑
f ∈M a( f )udeg( f ) is absolutely convergent for |u| ≤ r < 1 then

∑
f ∈Mn

a( f )=
1

2π i

∮
|u|=r

(∑
f ∈M

a( f )udeg( f )
)

du
un+1 ,

and ∑
f ∈M≤n

a( f )=
1

2π i

∮
|u|=r

(∑
f ∈M

a( f )udeg( f )
)

du
un+1(1− u)

.
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Recall that the twisted elliptic curve L-function L(E⊗χD, u) is a polynomial of degree (n+2 deg(D)),
with n being defined in (1-2). Thus we can write

L(E ⊗χD, u)=
n+2 deg(D)∑

n=0

cnun,

where cn =
∑

f ∈Mn
λ( f )χD( f ).

Lemma 2.1. The coefficients cn of L(E ⊗χD, u) satisfy the following relation

cn = εqn−n/2−deg(D)cn+2 deg(D)−n,

with ε as in (1-3). In particular, if ε =−1 and n is even, then cn/2+deg(D) = 0.

Proof. From the functional equation (1-3) we have

n+2 deg(D)∑
n=0

cnun
= ε

n+2 deg(D)∑
n=0

cnqn/2+deg(D)−nun+2 deg(D)−n.

By setting k := n+ 2 deg(D)− n we get

n+2 deg(D)∑
n=0

cnun
= ε

n+2 deg(D)∑
k=0

cn+2 deg(D)−kqk−n/2−deg(D)uk .

Comparing the coefficients we obtain the lemma. �

For D ∈ H∗2g+1, we can obtain the following exact formulas for L
(
E ⊗ χD,

1
2

)
and L ′

(
E ⊗ χD,

1
2

)
.

These are the analogues of the approximate functional equations in the number field setting.

Lemma 2.2. Let D ∈H∗2g+1. Then

L
(
E ⊗χD,

1
2

)
=

∑
f ∈M≤[n/2]+deg(D)

λ( f )χD( f )
√
| f |

+ ε
∑

f ∈M≤[(n−1)/2]+deg(D)

λ( f )χD( f )
√
| f |

,

with ε as in (1-3).

Proof. We use Lemma 2.1 to get

L(E ⊗χD, u)=
n+2 deg(D)∑

n=0

cnun

=

[n/2]+deg(D)∑
n=0

cnun
+

n+2 deg(D)∑
n=[n/2]+deg(D)+1

cnun

=

[n/2]+deg(D)∑
n=0

cnun
+ ε

n+2 deg(D)∑
n=[n/2]+deg(D)+1

cn+2 deg(D)−nqn−n/2−deg(D)un.
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Changing the summation variable in the second sum leads to

L(E ⊗χD, u)=
[n/2]+deg(D)∑

n=0

cnun
+ ε

[(n−1)/2]+deg(D)∑
n=0

cn(qu2)n/2+deg(D)−nun.

Taking u = q−1/2 and recalling that cn =
∑

f ∈Mn
λ( f )χD( f ) concludes the proof. �

Lemma 2.3. Let D ∈H∗2g+1. If ε =−1, then

L ′
(
E ⊗χD,

1
2

)
= 2(log q)

∑
f ∈M≤[n/2]+deg(D)

(
[n/2] + deg(D)− deg( f )

)
λ( f )χD( f )

√
| f |

.

Proof. The above formula follows simply by differentiating the last equation in the proof of Lemma 2.2.
Just note that as remarked in Lemma 2.1, if ε =−1 and n is even, then cn/2+deg(D) = 0. �

We also have the following lemma which expresses a character sum over square-free polynomials in
terms of sums over monics.

Lemma 2.4. We have∑
D∈H∗2g+1

χD( f )=
∑

C1 |1

µ(C1)χC1( f )
∑

C2 | (1 f )∞

∑
R∈M2g+1−deg(C1)−2 deg(C2)

χR( f )

− q
∑

C1 |1

µ(C1)χC1( f )
∑

C2 | (1 f )∞

∑
R∈M2g−1−deg(C1)−2 deg(C2)

χR( f ),

where by C2 | (1 f )∞ we mean that the prime factors of C2 divide 1 f .

Proof. Let

A(u)=
∑
D∈H

(D,1)=1

χD( f )udeg(D).

Then
A(u)=

∏
P -1 f

(1+χP( f )udeg(P))

=

∏
P -1 f

(1− u2 deg(P))(1−χP( f )udeg(P))−1

= (1− qu2)L(u, χ f )
∏

P |1 f

(1− u2 deg(P))−1
∏
P |1
P - f

(1−χP( f )udeg(P)).

Writing∏
P |1 f

(1− u2 deg(P))−1
=

∑
C2 | (1 f )∞

u2 deg(C2),
∏
P |1
P - f

(1−χP( f )udeg(P))=
∑

C1 |1

µ(C1)χC1( f )udeg(C1),

and comparing the coefficients of u2g+1, the conclusion follows. �
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As in [Hayes 1966] we define the exponential over function fields as follows. For a ∈ Fq((1/t)) let

eq(a)= exp
(

2π i TrFq/Fp(a1)

p

)
,

where a1 is the coefficient of 1/t in the Laurent expansion of a and q is a power of the prime p. We
define the generalized quadratic Gauss sum as

G(V, f )=
∑

u (mod f )

χ f (u)eq

(
uV

f

)
,

where χ f is the quadratic character defined before. We gather here a few useful facts about G(V, f )
whose proofs can be found in [Florea 2017c].

Lemma 2.5. (1) If ( f, h)= 1, then G(V, f h)= G(V, f )G(V, h).

(2) Write V = V1 Pα where P -V1. Then

G(V, P j )=



0 if j ≤ α and j odd,
φ(P j ) if j ≤ α and j even,
−|P| j−1 if j = α+ 1 and j even,
χP(V1)|P| j−1/2 if j = α+ 1 and j odd,
0 if j ≥ 2+α.

The following Poisson summation formula in function fields holds.

Lemma 2.6. Let f ∈Mn . If n is even, then∑
R∈Mm

χR( f )=
qm

| f |

(
G(0, f )+ (q − 1)

∑
V∈M≤n−m−2

G(V, f )−
∑

V∈Mn−m−1

G(V, f )
)
,

otherwise ∑
R∈Mm

χR( f )=
qmτ(q)
| f |

∑
V∈Mn−m−1

G(V, f ),

where

τ(q)=
q−1∑
c=1

χ f (c) exp
(

2π i TrFq/Fp(c)
p

)
is the usual Gauss sum over Fq .

2A. Outline of the proof. We will use the approximate functional equations for the L-functions involved
in the moment computations and then truncate the Dirichlet series close to the endpoint. For the longer
Dirichlet series, we will use Poisson summation and standard techniques to compute the main terms. For
the tails, we will go back and write the Dirichlet series in terms of expressions involving moments and
then use upper bounds for moments. The key in bounding the tails is the fact that the moments behave
differently depending on the points where we evaluate them (the power of g gets smaller in different
ranges).
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3. Main proposition

For N |1∞, let

SE1,E2(N , X, Y ;α, β) :=
∑

D∈H∗2g+1

∑
f ∈M≤X
h∈M≤Y

λ1( f )λ2(h)χD(N f h)
| f |1/2+α|h|1/2+β

, (3-1)

where λi are the Dirichlet coefficients of L(Ei , s) as in (1-1).

Proposition 3.1. Assume X ≥ Y . We have

SE(N , X, Y )
: = SE,E(N , X, Y ; 0, 0)

= |H2g+1|CE(N ; 1, 1, 1)L(Sym2 E, 1)3Y + O(q2g)+ O(q2g−Y/5g2)+ O(qg/2+3(X+Y )/8g30),

and if E1 6= E2, then

SE1,E2(N , X, Y ;α, β)

= |H2g+1|CE1,E2(N ; 1, 1, 1, α, β)L(Sym2 E1, 1+ 2α)L(Sym2 E2, 1+ 2β)L(E1⊗ E2, 1+α+β)
+ O(q2g−Y/5g2)+ O(qg/2+3(X+Y )/8g30)

uniformly for |α|, |β| ≤ 1/g, where the values CE(N ; 1, 1, 1) and CE1,E2(N ; 1, 1, 1, α, β) are defined in
(3-8), (3-9) and (3-10).

We begin the proof of the proposition by applying Lemma 2.4 and rewriting SE1,E2(N , X, Y ;α, β) as∑
f ∈M≤X
h∈M≤Y

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∑
C1 |1

µ(C1)χC1(N f h)
∑

C2 | (1 f h)∞

∑
R∈M2g+1−deg(C1)−2 deg(C2)

χR(N f h)

− q
∑

f ∈M≤X
h∈M≤Y

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∑
C1 |1

µ(C1)χC1(N f h)
∑

C2 | (1 f h)∞

∑
R∈M2g−1−deg(C1)−2 deg(C2)

χR(N f h)

= SE1,E2(N , X, Y, Z;α, β)+ TE1,E2(N , X, Y, Z;α, β), (3-2)

where SE1,E2(N , X, Y, Z;α, β) denotes the contribution of the terms with deg(C2) ≤ Z and where
TE1,E2(N , X, Y, Z;α, β) denotes that with deg(C2) > Z for some Z ≤ g. We first estimate
TE1,E2(N , X, Y, Z;α, β), which is easier.

3A. The term TE1,E2(N, X,Y, Z;α, β).

Lemma 3.2. We have

TE1,E2(N , X, Y, Z;α, β)�ε q2g−3Z/2g6+ε

uniformly for |α|, |β| ≤ 1/g.
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Proof. It suffices to prove the bound for T
′

E1,E2
, which is∑

f ∈M≤X
h∈M≤Y

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∑
C1 |1

µ(C1)χC1(N f h)
∑

C2 | (1 f h)∞
deg(C2)>Z

∑
R∈M2g+1−deg(C1)−2 deg(C2)

χR(N f h).

We use the Perron formula for the sum over f and h. We write g(C2)/(rad(C2),1) = C = AB, and
replace f, h by A f and Bh, respectively, where g( f ) is defined to be g( f )=

∏
P | f P . Then

T
′

E1,E2
=

∑
c2>Z

c1+2c2≤2g+1

∑
C1∈Mc1
C2∈Mc2

C1 |1,C=AB

µ(C1)χC1(N AB)
|A|1/2+α|B|1/2+β

∑
R∈M2g+1−c1−2c2

χR(N AB)

×
1

(2π i)2

∮
|u|=r

∮
|v|=r

∑
f,h∈M

χC1 R( f h)λ1(A f )λ2(Bh)udeg( f )vdeg(h)

| f |1/2+α|h|1/2+β

×
dudv

u X−deg(A)+1vY−deg(B)+1(1− u)(1− v)

for any r < 1. The sum over f and h may be written as

D1(A, B,C1 R; u, v, α, β)L
(

E1⊗χC1 R,
u

q1/2+α

)
L
(

E2⊗χC1 R,
v

q1/2+β

)
,

where D1(A, B,C1 R; u, v, α, β) is some Euler product which is uniformly convergent provided that
|u|, |v| ≤ q−1/g, and satisfies

D1(A, B,C1 R; u, v, α, β)� τ(AB)

uniformly in this region. Moving the u and v contours to |u| = |v| = q−1/g and using the bound∣∣∣∣L(E1⊗χC1 R,
u

q1/2+α

)
L
(

E2⊗χC1 R,
v

q1/2+β

)∣∣∣∣
�

∣∣∣∣L(E1⊗χC1 R,
u

q1/2+α

)∣∣∣∣2+ ∣∣∣∣L(E2⊗χC1 R,
v

q1/2+β

)∣∣∣∣2
we get

T
′

E1,E2
� g2

∑
c2>Z

c1+2c2≤2g+1

∑
C1∈Mc1
C2∈Mc2

C1 |1

τ(C)2
√
|C |

∮
|u|=q−1/g

∮
|v|=q−1/g

∑
R∈M2g+1−c1−2c2

(∣∣∣∣L(E1⊗χC1 R,
u

q1/2+α

)∣∣∣∣2+ ∣∣∣∣L(E2⊗χC1 R,
v

q1/2+β

)∣∣∣∣2) dudv.

Now let D = (C1, R). Write R = DR1 = DE H 2, where E is square-free, and let C1 = DC3. Then∣∣∣∣L(E1⊗χC1 R,
u

q1/2+α

)∣∣∣∣�ε |DH |ε
∣∣∣∣L(E1⊗χC3 E ,

u
q1/2+α

)∣∣∣∣.
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Using upper bounds for moments (see Remark 4.2 after Theorem 4.1), we get that

T
′

E1,E2
�ε q2gg3+ε

∑
C2∈M

Z<deg(C2)≤g

τ(C2)
2

√
|g(C2)|C2

2
�ε q2g−3Z/2g6+ε,

and this finishes the proof of Lemma 3.2. �

3B. The term SE1,E2(N, X,Y, Z;α, β). Define S
′

E1,E2
(N , X, Y, Z;α, β) to be∑

f ∈M≤X
h∈M≤Y

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∑
C1 |1

µ(C1)χC1(N f h)
∑

C2 | (1 f h)∞
deg(C2)≤Z

∑
R∈M2g+1−deg(C1)−2 deg(C2)

χR(N f h),

and S
′′

E1,E2
(N , X, Y, Z;α, β) to be the same sum with g being replaced by (g− 1). Then

SE1,E2(N , X, Y, Z;α, β)= S
′

E1,E2
(N , X, Y, Z;α, β)− q S

′′

E1,E2
(N , X, Y, Z;α, β).

Using Lemma 2.6 on the sum over R, it follows that S
′

E1,E2
(N , X, Y, Z;α, β) equals

q2g+1
∑

f ∈M≤X
h∈M≤Y

deg(N f h) even

λ1( f )λ2(h)
|N || f |3/2+α|h|3/2+β

∑
C1 |1

C2 | (1 f h)∞
deg(C2)≤Z

deg(C1)+2 deg(C2)≤2g+1

µ(C1)χC1(N f h)
|C1||C2|2

×

(
G(0, N f h)+ (q − 1)

∑
V∈M≤deg(N f h)+deg(C1)+2 deg(C2)−2g−3

G(V, N f h)−
∑

V∈Mdeg(N f h)+deg(C1)+2 deg(C2)−2g−2

G(V, N f h)
)

+ q2g+1τ(q)
∑

f ∈M≤X
h∈M≤Y

deg(N f h) odd

λ1( f )λ2(h)
|N || f |3/2+α|h|3/2+β

∑
C1 |1

C2 | (1 f h)∞
deg(C2)≤Z

deg(C1)+2 deg(C2)≤2g+1

µ(C1)χC1(N f h)
|C1||C2|2

×

∑
V∈Mdeg(N f h)+deg(C1)+2 deg(C2)−2g−2

G(V, N f h).

Let S
′

E1,E2
(V = 0) denote the terms with V = 0 above and S

′

E1,E2
(V 6= 0) be the terms with nonzero V .

The terms S
′′

E1,E2
(V = 0) and S

′′

E1,E2
(V 6= 0) are similarly defined. Let

SE1,E2(N , X, Y, Z;α, β; V = 0)= S
′

E1,E2
(V = 0)− q S

′′

E1,E2
(V = 0)

and

SE1,E2(N , X, Y, Z;α, β; V 6= 0)= S
′

E1,E2
(V 6= 0)− q S

′′

E1,E2
(V 6= 0)

so that we have

SE1,E2(N , X, Y, Z;α, β)= SE1,E2(N , X, Y, Z;α, β; V = 0)+ SE1,E2(N , X, Y, Z;α, β; V 6= 0). (3-3)
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We shall evaluate SE1,E2(N , X, Y, Z;α, β;V =0) in Section 3C and bound SE1,E2(N , X, Y, Z;α, β;V 6=0)
in Section 3D.

3C. The V = 0 terms.

Lemma 3.3. We have

SE(N , X, Y, Z; V = 0) : = SE,E(N , X, Y, Z; 0, 0; V = 0)

= |H2g+1|CE(N ; 1, 1, 1)L(Sym2 E, 1)3Y + O(q2g)+ O(q2g−Y/5g2),

and if E1 6= E2, then

SE1,E2(N , X, Y, Z;α, β; V = 0)

= |H2g+1|CE1,E2(N ; 1, 1, 1, α, β)L(Sym2 E1, 1+ 2α)L(Sym2 E2, 1+ 2β)L(E1⊗ E2, 1+α+β)
+ O(q2g−Y/5g2)+ O(q2g−3Z/2)

uniformly for |α|, |β| ≤ 1/g, where the values CE(N ; 1, 1, 1) and CE1,E2(N ; 1, 1, 1, α, β) are defined in
(3-8), (3-9) and (3-10).

Proof. Note that G(0, N f h) 6= 0 if and only if N f h is a square polynomial, and in this case G(0, N f h)=
φ(N f h). Hence

S
′

E1,E2
(V = 0)= q2g+1

∑
f ∈M≤X
h∈M≤Y
N f h=�

λ1( f )λ2(h)φ(N f h)
|N || f |3/2+α|h|3/2+β

∑
C2 | (1 f h)∞
deg(C2)≤Z

1
|C2|2

∑
C1 |1

(C1,N f h)=1
deg(C1)≤2g+1−2 deg(C2)

µ(C1)

|C1|
. (3-4)

We have ∑
C1 |1

(C1,N f h)=1
deg(C1)≤2g+1−2 deg(C2)

µ(C1)

|C1|
=

∑
C1 |1

(C1,N f h)=1

µ(C1)

|C1|
−

∑
C1 |1

(C1,N f h)=1
deg(C1)>2g+1−2 deg(C2)

µ(C1)

|C1|

=

∏
P |1

P -N f h

(
1−

1
|P|

)
+ O(q−2g

|C2|
2)

=
|N f h|
φ(N f h)

∏
P |1 f h

(
1−

1
|P|

)
+ O(q−2g

|C2|
2). (3-5)

Note that ∑
C2∈Mn

C2 | (1 f h)∞

1�ε qεn. (3-6)

Let N = N 2
1 N2 with N2 being square-free. The condition N f h =� is equivalent to f h = N2`

2 for some
polynomial `. Then we can write f = N ′2 A and h = N ′′2 B, with N ′2 N ′′2 = N2 and AB = `2. It follows
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that the contribution of the error term in (3-5) to (3-4) will be

�ε qεg
∑

`∈M≤(X+Y )/2

1
|`|

∑
AB=`2

|λ1(N ′2 A)λ2(N ′′2 B)| �ε qεg,

by using the bound |λi ( f )| ≤ τ( f )�ε | f |ε. Thus we can rewrite (3-4) as

S
′

E1,E2
(V = 0)= q2g+1

∑
f ∈M≤X
h∈M≤Y
N f h=�

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∏
P |1 f h

(
1−

1
|P|

) ∑
C2 | (1 f h)∞
deg(C2)≤Z

1
|C2|2

+ Oε(qεg).

We obtain a similar estimate for S
′′

E1,E2
(V = 0) with g being replaced by (g− 1), and hence

SE1,E2(N , X, Y, Z;α, β; V = 0)

= |H2g+1|
∑

f ∈M≤X
h∈M≤Y
N f h=�

λ1( f )λ2(h)
| f |1/2+α|h|1/2+β

∏
P |1 f h

(
1−

1
|P|

) ∑
C2 | (1 f h)∞
deg(C2)≤Z

1
|C2|2

+ Oε(qεg). (3-7)

From the Perron formula for the sum over C2,

∑
C2 | (1 f h)∞
deg(C2)≤Z

1
|C2|2

=
1

2π i

∮
|w|=r

∏
P |1 f h

(
1−

wdeg(P)

|P|2

)−1 dw
wZ+1(1−w)

for any r < 1, it follows that

SE1,E2(N , X, Y, Z;α, β; V = 0)

=
|H2g+1|

(2π i)3

∮
|u|=r

∮
|v|=r

∮
|w|=r

AE1,E2(N ; u, v, w, α, β)
dudvdw

u X+1vY+1wZ+1(1− u)(1− v)(1−w)
+Oε(qεg),

where

AE1,E2(N ; u, v, w, α, β)=
∑

f,h∈M
N f h=�

λ1( f )λ2(h)udeg( f )vdeg(h)

| f |1/2+α|h|1/2+β
∏

P |1 f h

(
1−

1
|P|

)(
1−

wdeg(P)

|P|2

)−1

.

We can write down an Euler product for AE1,E2(N ; u, v, w, α, β) as follows.

AE1,E2(N ; u, v, w, α, β)

=

∏
P -1

(
1+

(
1−

1
|P|

)(
1−

wdeg(P)

|P|2

)−1 ∑
i+ j even≥2

λ1(P i )λ2(P j )ui deg(P)v j deg(P)

|P|(1/2+α)i+(1/2+β) j

)

×

∏
P |1

((
1−

1
|P|

)(
1−

wdeg(P)

|P|2

)−1 ∑
i, j

i+ j+ordP (N ) even

λ1(P i )λ2(P j )ui deg(P)v j deg(P)

|P|(1/2+α)i+(1/2+β) j

)
. (3-8)
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Then
AE(N ; u, v, w, 0, 0)

:=AE,E(N ; u, v, w, 0, 0)

= CE(N ; u, v, w)L
(

Sym2 E,
u2

q

)
L
(

Sym2 E,
v2

q

)
×L

(
Sym2 E,

uv
q

)
Z
(

uv
q

)
, (3-9)

and
AE1,E2(N ; u, v, w, α, β)

= CE1,E2(N ; u, v, w, α, β)L
(

Sym2 E1,
u2

q1+2α

)
L
(

Sym2 E2,
v2

q1+2β

)
L
(

E1⊗ E2,
uv

q1+α+β

)
, (3-10)

if E1 6= E2, where CE(N ; u, v, w) and CE1,E2(N ; u, v, w, α, β) are some Euler products which are
uniformly bounded for example when |u|, |v| ≤ q1/5, |w| ≤ q3/2.

Consider the case E1 = E2 = E . We have
SE(N , X, Y, Z; V = 0)

=
|H2g+1|

(2π i)3

∮
|u|=r

∮
|v|=r

∮
|w|=r

CE(N ; u, v, w)L
(

Sym2 E,
u2

q

)
×L

(
Sym2 E,

v2

q

)
L
(

Sym2 E,
uv
q

)
dudvdw

u X+1vY+1wZ+1(1−u)(1−v)(1−w)(1−uv)
+Oε(qεg) (3-11)

for any r < 1. We choose r = q−1/g and move the u contour to |u| = q1/5, encountering two simple poles
at u = 1 and u = 1/v. The new integral is trivially bounded by O(q2g−X/5g2).

Furthermore, the contribution from the residue at u = 1/v is

−|H2g+1|L(Sym2 E, 1)
1

(2π i)2

∮
|v|=q−1/g

∮
|w|=q−1/g

CE(N ; 1/v, v,w)

×L
(

Sym2 E,
1
v2q

)
L
(

Sym2 E,
v2

q

)
dvdw

vY−XwZ+1(1− v)2(1−w)
,

which is O(q2g). This can be seen by first moving the v contour to |v| = q−1/5, creating no poles, and
then moving the w contour to |w| = q3/2, crossing a simple pole at w = 1. Both the new integral and the
residue at w = 1 are O(q2g) as X ≥ Y . So

SE(N , X, Y, Z; V = 0)= |H2g+1|L(Sym2 E, 1)
1

(2π i)2

∮
|v|=q−1/g

∮
|w|=q−1/g

CE(N ; 1, v, w)

×L
(

Sym2 E,
v2

q

)
L
(

Sym2 E,
v

q

)
dvdw

vY+1wZ+1(1− v)2(1−w)

+ O(q2g)+ O(q2g−X/5g2).

We now move the v contour to |v| = q1/5, encountering a double pole at v = 1. The new integral is
bounded by O(q2g−Y/5g), and an argument similar to the above implies that the residue at v = 1 is

|H2g+1|L(Sym2 E, 1)3Y
1

2π i

∮
|w|=q−1/g

CE(N ; 1, 1, w)
dw

wZ+1(1−w)
+ O(q2g).
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Hence

SE(N , X, Y, Z; V = 0)= |H2g+1|CE(N ; 1, 1, 1)L(Sym2 E, 1)3Y + O(q2g)+ O(q2g−Y/5g2).

For E1 6= E2, we have that

SE1,E2(N , X, Y, Z;α, β; V = 0)

=
|H2g+1|

(2π i)3

∮
|u|=r

∮
|v|=r

∮
|w|=r

CE1,E2(N ; u, v, w, α, β)L
(

Sym2 E1,
u2

q1+2α

)
L
(

Sym2 E2,
v2

q1+2β

)
×L

(
E1⊗ E2,

uv
q1+α+β

)
dudvdw

u X+1vY+1wZ+1(1− u)(1− v)(1−w)
+ Oε(qεg)

for any r < 1. We choose r = q−1/g and first shift the u contour to |u| = q1/5, encountering a pole at
u = 1. The new integral over |u| = q1/5, |v| = |w| = q−1/g is bounded by q2g−X/5g2. To calculate the
residue at u = 1, we move the v contour to |v| = q1/5, crossing a pole at v = 1. The new integral is
O(q2g−Y/5g). For the residue at u = v = 1, we move the w contour to |w| = q3/2. In doing so we obtain

SE1,E2(N , X, Y, Z;α, β; V = 0)= |H2g+1|CE1,E2(N ; 1, 1, 1, α, β)L(Sym2 E1, 1+ 2α)

× L(Sym2 E2, 1+ 2β)L(E1⊗ E2, 1+α+β)

+ O(q2g−Y/5g2)+ O(q2g−3Z/2),

and this concludes the proof of the lemma. �

3D. The V 6= 0 terms.

Lemma 3.4. We have

SE1,E2(N , X, Y, Z;α, β; V 6= 0)� q(X+Y+Z)/2g30

uniformly for |α|, |β| ≤ 1/g.

Proof. We will prove the bound for the term

S(V 6= 0)= q2g+1τ(q)
∑

f ∈M≤X
h∈M≤Y

deg(N f h) odd

λ1( f )λ2(h)
|N || f |3/2+α|h|3/2+β

∑
C1 |1

C2 | (1 f h)∞
deg(C2)≤Z

deg(C1)+2 deg(C2)≤2g+1

µ(C1)χC1(N f h)
|C1||C2|2

×

∑
V∈Mdeg(N f h)+deg(C1)+2 deg(C2)−2g−2

G(V, N f h), (3-12)

the treatment of the other terms being similar. We also assume for simplicity that deg(N ), X and Y are
all odd. The other cases can be done similarly.
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We use the Perron formula in the forms∑
f ∈M≤X

deg( f ) odd

a( f )=
1

2π i

∮
|u|=r

(∑
f ∈M

a( f )udeg( f )
)

du
u X+1(1− u2)

and ∑
f ∈M≤X

deg( f ) even

a( f )=
1

2π i

∮
|u|=r

(∑
f ∈M

a( f )udeg( f )
)

du
u X (1− u2)

for the sums over f and h. We write V = V1V 2
2 with V1 being a square-free polynomial and V2 ∈M,

g(C2)/(rad(C2),1)= C = AB, and replace f, h by A f and Bh, respectively. We then see that

S(V 6= 0)= q2g+1τ(q)
∑
c2≤Z

c1+2c2≤2g+1

∑
C1∈Mc1
C2∈Mc2

C1 |1,C=AB

µ(C1)χC1(N AB)
|N ||A|3/2+α|B|3/2+β |C1||C2|2

×
1

(2π i)3

∮
|u|=r

∮
|v|=r

∮
|w|=r

∑
V1∈H

B(N , A, B,C1, V1; u/w, v/w,w, α, β)

×
(1+ uv)dudvdw

u X−deg(A)+1vY−deg(B)+1wdeg(N AB)−deg(V1)+c1+2c2−2g−1(1− u2)(1− v2)
(3-13)

for any r < 1, where B(N , A, B,C1, V1; u, v, w, α, β) equals

∑
f,h,V2∈M

χC1( f h)λ1(A f )λ2(Bh)udeg( f )vdeg(h)w2 deg(V2)G(V1V 2
2 , N AB f h)

| f |3/2+α|h|3/2+β
.

To proceed we need to study the function B(N , A, B,C1, V1; u, v, w, α, β).

Lemma 3.5. The function B(N , A, B,C1, V1; u, v, w, α, β) defined above may be written as

D2(N , A, B,C1, V1; u, v, w, α, β)L
(

E1⊗χC1V1,
u

q1+α

)
L
(

E2⊗χC1V1,
v

q1+β

)
,

where D2(N , A, B,C1, V1; u, v, w, α, β) is some Euler product which is uniformly convergent provided
that |u|, |v| ≤ q1/2−2/g, |w| ≤ q−1/2−ε, and satisfies

D2(N , A, B,C1, V1; u, v, w, α, β)� g10τ10(AB)
√

AB

uniformly in this region.

Proof. It is easy to see that B(N , A, B,C1, V1; u, v, w, α, β) converges absolutely if |u|, |v| ≤ q−ε and
|w| ≤ q−1/2−ε. We claim that the sum over f, h and V2 is triply multiplicative. Indeed, one can easily see
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that the double sum over f, h is multiplicative, so∑
f,h∈M

χC1( f h)λ1(A f )λ2(Bh)udeg( f )vdeg(h)G(V1V 2
2 , N AB f h)

| f |3/2+α|h|3/2+β

=

∏
P

(∑
i, j

χC1(P
i+ j )λ1(P i+aP )λ2(P j+bP )ui deg(P)v j deg(P)G(V1V 2

2 , P i+ j+aP+bP+n P )

|P|(3/2+α)i+(3/2+β) j

)
,

where aP , bP and n P denote the orders of A, B and N with respect to P respectively. Let AP(V2) denote
the Euler product above. Note that when P -V2, we have AP(V2)= AP(1). Then we rewrite the double
sum over f, h as ∏

P

AP(1)
∏

P | V2

AP(V2)

AP(1)
.

We introduce the sum over V2 and use the observation that for (V2, V3) = 1 and P -V3 we have
AP(V2V3)= AP(V2). Then∏
P

AP(1)
∑

V2∈M

w2 deg(V2)
∏

P | V2

AP(V2)

AP(1)

=

∏
P

AP(1)
∏

P

(
1+

1
AP(1)

∑
k

AP(Pk)w2k deg(P)
)

=

∏
P

(∑
i, j,k

χC1(P
i+ j )λ1(P i+aP )λ2(P j+bP )ui deg(P)v j deg(P)w2k deg(P)G(V1 P2k, P i+ j+aP+bP+n P )

|P|(3/2+α)i+(3/2+β) j

)
,

and hence the generating series for f, h, V2 is indeed triply multiplicative.
Now we rewrite B(N , A, B,C1, V1; u, v, w, α, β) as∏

P -C1

(∑
i, j,k

χC1(P
i+ j )λ1(P i+aP )λ2(P j+bP )ui deg(P)v j deg(P)w2k deg(P)G(V1 P2k, P i+ j+aP+bP+n P )

|P|(3/2+α)i+(3/2+β) j

)

×

∏
P |C1

(∑
k

λ1(PaP )λ2(PbP )w2k deg(P)G(V1 P2k, PaP+bP+n P )

)
.

We next compute the Euler factors at an irreducible P in the region |u|, |v| ≤ q1/2−2/g, |w| ≤ q−1/2−ε.
Note that in this region, w2k deg(P)

�ε |P|−1−ε if k ≥ 1.
Consider first the case when P -N ABC1V1. The contribution of such an Euler factor is∑

i, j,k

χC1(P
i+ j )λ1(P i )λ2(P j )ui deg(P)v j deg(P)w2k deg(P)G(V1 P2k, P i+ j )

|P|(3/2+α)i+(3/2+β) j .

In view of Lemma 2.5, this is equal to

1+
χC1V1(P)λ1(P)udeg(P)

|P|1+α
+
χC1V1(P)λ2(P)vdeg(P)

|P|1+β
+ O

(
1
|P|1+ε

)
,

which justifies the two L-functions.
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In the case P | V1 but P -N ABC1, the Euler factor equals∑
i, j

χC1(P
i+ j )λ1(P i )λ2(P j )ui deg(P)v j deg(P)G(V1, P i+ j )

|P|(3/2+α)i+(3/2+beta) j + O
(

1
|P|1+ε

)

= 1−
λ1(P2)u2 deg(P)

|P|2+2α −
λ1(P)λ2(P)(uv)deg(P)

|P|2+α+β
−
λ2(P2)v2 deg(P)

|P|2+2β + O
(

1
|P|1+ε

)
= 1+ O

(
1

|P|1+2/g

)
.

Similarly, the corresponding Euler factor is

=



O(|P|1/2) if P | AB and P -NC1V1,

O(1) if P | AB, P | V1 and P -NC1,

1+ O(1/|P|1+ε) if P |C1 and P -N AB,
O(|P|1/2) if P |C1, P | AB and P -N V1,

0 if P |C1, P | AB, P | V1 and P -N ,

and is
�ε

∑
i+ j≤2k

|P|1−(1+ε)k−(i+ j)/2
�ε |P|,

if P | N .
The lemma easily follows by combining these estimates. �

We now return to (3-13). In view of Lemma 3.5, we take r ≤ q−1/2−ε and move the u and v contours
to |u| = |v| = rq1/2−2/g. This creates no poles. Then, by the above result,

B(N , A, B,C1, V1; u/w, v/w,w, α, β)

� g10τ10(AB)
√

AB
∣∣∣∣L(E1⊗χC1V1,

u/w
q1+α

)
L
(

E2⊗χC1V1,
v/w

q1+β

)∣∣∣∣
� g10τ10(AB)

√
AB
(∣∣∣∣L(E1⊗χC1V1,

u/w
q1+α

)∣∣∣∣2+ ∣∣∣∣L(E2⊗χC1V1,
v/w

q1+β

)∣∣∣∣2).
So

S(V 6= 0)

� q2g−(X+Y )/2g10
∑
c2≤Z

c1+2c2≤2g+1

∑
C1∈Mc1
C2∈Mc2

C1 |1

τ(C)τ10(C)τ (C1)
√
|C ||C1||C2|2

×

∮
|u|=q1/2−1/g

∮
|v|=q1/2−1/g

∮
|w|=r

∑
V1∈H

∣∣∣∣L(E1⊗χC1V1,
u

q1+α

)∣∣∣∣2 dudvdw
|w|X+Y+deg(N )−deg(V1)+c1+2c2−2g+1 .

If deg(V1)≤ X +Y + c1+2c2−2g, then we move the w contour to |w| = q−3/4, otherwise we move the
w contour to |w| = q−5/4. Using the upper bounds for moments as in Theorem 4.1 (see Remark 4.2) we
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find that

S(V 6= 0)� q(X+Y )/2g11
∑
c2≤Z

c1+2c2≤2g+1

∑
C1∈Mc1
C2∈Mc2

C1 |1

τ(C)τ10(C)
√
|C |

� q(X+Y )/2g11
∑

C2∈M≤Z

τ(C2)τ10(C2)
√
|g(C2)|

� q(X+Y+Z)/2g30,

which finishes the proof of Lemma 3.4. �

Proposition 3.1 follows upon combining the estimates and choosing Z = g− (X + Y )/4.

4. Upper bounds for moments

The aim of this section is to bound the tails of the Dirichlet series in the approximate functional equations
in Lemmas 2.2 and 2.3. We start with the following upper bounds for moments.

Theorem 4.1. Let k > 0, u = eiθ , v = eiγ with θ, γ ∈ [0, 2π ] and let m = deg(L(E ⊗χD, w)). Then∑
D∈H∗2g+1

∣∣∣∣L(E ⊗χD,
u

q1/2+α

)
L
(

E ⊗χD,
v

q1/2+β

)∣∣∣∣k �ε q2ggε exp
(

kM(u, v,m)+
k2

2
V(u, v,m)

)
uniformly for |α|, |β| ≤ 1/g, where M(u, v,m) and V(u, v,m) are given by (4-9) and (4-11) respectively.

Remark 4.2. Note that the same upper bound as above holds if we replace L(E ⊗ χD, w) with
L(E ⊗ χD`, w) for a fixed polynomial ` with (`,1) = 1. Since the proof of the upper bound for
this twisted moment is the same as the proof of Theorem 4.1, we only focus on `= 1.

We first need the following proposition, whose proof is similar to the proof of Theorem 3.3 in [Altuğ
and Tsimerman 2014].

Proposition 4.3. Let D ∈H∗2g+1 and let m = deg(L(E ⊗χD, w)). Then for h ≤ m and z with <(z)≥ 0
we have

log
∣∣L(E ⊗χD,

1
2 + z

)∣∣≤ m
h
+

1
h
<

( ∑
j≥1

deg(P j )≤h

χD(P j )(α(P) j
+β(P) j ) log qh− j deg(P)

|P| j (1/2+z+1/(h log q)) log q j

)
.

Proof. We write

L(E ⊗χD, s)=
m∏

j=1

(1−α j q1/2−s),

where |α j | = 1 (see [Hall et al. 2017]). Then

L ′

L
(E ⊗χD, s)= log q

(
−

m
2
+

m∑
j=1

(
1

1−α j q1/2−s −
1
2

))
. (4-1)
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We put s = σ + z and integrate (4-1) with respect to σ from 1
2 to σ0, where σ0 >

1
2 . Taking real parts

gives

log
∣∣L(E ⊗χD,

1
2 + z

)∣∣− log|L(E ⊗χD, σ0+ z)|

=
m log q

2

(
σ0−

1
2

)
−

1
2 log q

m∑
j=1

log
qσ0−1/2

− 2q−<(z) cos(θ j − log q=(z))+ q1/2−σ0−2<(z)

1+ q−2<(z)− 2q−<(z) cos(θ j − log q=(z))
,

where α j = eiθ j . We use the inequality log(1+ x)≥ x/(1+ x) for x > 0 and get that

log
∣∣L(E ⊗χD,

1
2 + z

)∣∣− log|L(E ⊗χD, σ0+ z)|

≤
m log q

2

(
σ0−

1
2

)
−

1
2 log q

m∑
j=1

(1− q1/2−σ0−2<(z))(1− q1/2−σ0)

1− 2q1/2−σ0−<(z) cos(θ j − log q=(z))+ q1−2σ0−2<(z)

=
m log q

2

(
σ0−

1
2

)
−

Gz(σ0)(1− q1/2−σ0−2<(z))(1− q1/2−σ0)

(1− q1−2σ0−2<(z)) log q
, (4-2)

where

Gz(σ )=
1− q1−2σ−2<(z)

2

m∑
j=1

1
1− 2q1/2−σ−<(z) cos(θ j − log q=(z))+ q1−2σ−2<(z) . (4-3)

Now similarly as in [Altuğ and Tsimerman 2014] we compute the integral

1
2π i

∫ 2+2π i/ log q

2
−

L ′

L
(E ⊗χD, σ + z+w)

qhwq−w

(1− q−w)2
dw

in two different ways. First we write

−
L ′

L
(E ⊗χD, s)=

∑
n≥0

λD(n)
qns ,

and integrate term by term. Secondly we continue analytically to the left and pick up the residues. We
integrate with respect to σ from σ0 to∞ and take real parts, which gives

−
1

(log q)2
<

(∑
n≤h

λD(n) log qh−n

qn(σ0+z) log qn

)

=−
h

log q
log|L(E ⊗χD, σ0+ z)| −

1
(log q)2

<

(
L ′

L
(E ⊗χD, σ0+ z)

)
+

m∑
j=1

<

(∫
∞

σ0

(α j q1/2−σ0−z)hα−1
j qσ+z−1/2

(1−α−1
j qσ+z−1/2)2

dσ
)

. (4-4)
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Now we have

<

(∫
∞

σ0

(α j q1/2−σ0−z)hα−1
j qσ+z−1/2

(1−α−1
j qσ+z−1/2)2

dσ
)
≤

∫
∞

σ0

q(1/2−σ−<(z))hqσ+<(z)−1/2

|1−α−1
j qσ+z−1/2|2

dσ

=

∫
∞

σ0

q(1/2−σ−<(z))hq1/2−σ−<(z)

1−2q1/2−σ−<(z) cos(θ j−log q=(z))+q1−2σ−2<(z) dσ.

By taking the derivative of

f (x)=
q−x

1− 2q1/2−x−<(z) cos(θ j − log q=(z))+ q1−2x−2<(z)

we can see that f is decreasing on [σ0,∞). Hence

m∑
j=1

<

(∫
∞

σ0

(α j q1/2−σ0−z)hα−1
j qσ+z−1/2

(1−α−1
j qσ+z−1/2)2

dσ
)

≤

m∑
j=1

q1/2−σ0−<(z)

1− 2q1/2−σ0−<(z) cos(θ j − log q=(z))+ q1−2σ0−2<(z)

∫
∞

σ0

q(1/2−σ−<(z))h dσ

=
2Gz(σ0)q(1/2−σ0−<(z))hq1/2−σ0−<(z)

(1− q1−2σ0−2<(z)) log qh

≤
2Gz(σ0)q(1/2−σ0−<(z))h

(σ0+<(z)− 1/2) log q log qh ,

with Gz(σ0) as in (4-3). Now from (4-1) note that

<

(
L ′

L
(E ⊗χD, σ0+ z)

)
= log q

(
−

m
2
+Gz(σ0)

)
.

Combining the equations above and (4-4) gives

log|L(E ⊗χD, σ0+ z)|

≤
1

log qh<

(∑
n≤h

λD(n) log qh−n

qn(σ0+z) log qn

)
+

1
h

(
m
2
−Gz(σ0)

)
+

2Gz(σ0)q(1/2−σ0−<(z))h

h(σ0+<(z)− 1/2) log qh .

This and (4-2) lead to

log
∣∣L(E ⊗χD,

1
2 + z

)∣∣
≤

m
2h
+

m log q
2

(
σ0−

1
2

)
+

1
log qh<

(∑
n≤h

λD(n) log qh−n

qn(σ0+z) log qn

)

+Gz(σ0)

(
−

1
h
+

2q(1/2−σ0−<(z))h

h(σ0+<(z)− 1/2) log qh −
(1− q1/2−σ0−2<(z))(1− q1/2−σ0)

(1− q1−2σ0−2<(z)) log q

)
.
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Choosing σ0 =
1
2 + 1/ log qh ensures that the coefficient of Gz(σ0) is negative. Since

λD(n)= log q
∑
j | n

∑
deg(P j )=n

deg(P)χD(P) j (α(P) j
+β(P) j ),

the conclusion follows. �

Before proving Theorem 4.1, we also need the following lemma (see Lemma 8.4 in [Florea 2017a]).

Lemma 4.4. Let h, l be integers such that 2hl ≤ 2g+ 1. For any complex numbers a(P) we have∑
D∈H∗2g+1

∣∣∣∣ ∑
deg(P)≤h

χD(P)a(P)
|P|1/2

∣∣∣∣2l

� q2g (2l)!
l!2l

( ∑
deg(P)≤h

|a(P)|2

|P|

)l

.

Let

N (V, u, v)=
∣∣∣∣{D ∈H∗2g+1 : log

∣∣∣∣L(E ⊗χD,
u

q1/2+α

)
L
(

E ⊗χD,
v

q1/2+β

)∣∣∣∣≥ V +M(u, v,m)
}∣∣∣∣.

We will prove the following lemma.

Lemma 4.5. If
√

log m ≤ V ≤ V(u, v,m), then

N (V, u, v)� q2g+1 exp
(
−

V 2

2V(u, v,m)

(
1−

8
log log m

))
;

if V(u, v,m) < V ≤ 1
13 log log mV(u, v,m), then

N (V, u, v)� q2g+1 exp
(
−

V 2

2V(u, v,m)

(
1−

8V
V(u, v,m) log log m

)2)
;

if V > 1
13 log log mV(u, v,m), then

N (V, u, v)� q2g+1 exp
(
−

V log V
4500

)
.

Using Lemma 4.5 above we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. We have the following.∑
D∈H∗2g+1

∣∣∣∣L(E ⊗χD,
u

q1/2+α

)
L
(

E ⊗χD,
v

q1/2+β

)∣∣∣∣k =− ∫ ∞
−∞

exp(kV + kM(u, v,m)) d N (V, u, v)

= k
∫
∞

−∞

exp(kV + kM(u, v,m))N (V, u, v) dV .

In the equation above we use Lemma 4.5 in the form

N (V, u, v)�
{

q2g+1mo(1) exp(−V 2/2V(u, v,m)) if V ≤ 8kV(u, v,m),
q2g+1mo(1) exp(−4kV ) if V > 8kV(u, v,m),

which finishes the proof of Theorem 4.1. �
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Proof of Lemma 4.5. We assume without loss of generality that α, β are positive and real. Indeed, notice
that if α ∈ C, since |α| ≤ 1/g, we have |<(α)| ≤ 1/g and |=(α)| ≤ 1/g. The proof that follows goes
through in exactly the same way, with α replaced by <(α) and θ replaced by θ −=(α) log q. Once we
assume α is real, we can also assume that α is positive, since by the functional equation we have∣∣∣∣L(E ⊗χD,

u
q1/2+α

)∣∣∣∣= q−α(n+2 deg(D))
∣∣∣∣L(E ⊗χD,

1
q1/2−αu

)∣∣∣∣.
Let

m
h
=

V
A

and h0 =
h

log m
,

where

A =


1
2 log log m if V ≤ V(u, v,m),
1

2V (log log m)V(u, v,m) if V(u, v,m) < V ≤ 1
16 log log mV(u, v,m),

8 if V > 1
16 log log mV(u, v,m).

Using Proposition 4.3 gives

log
∣∣∣∣L(E⊗χD,

u
q1/2+α

)
L
(

E⊗χD,
v

q1/2+β

)∣∣∣∣
≤

2m
h
+

1
h
<

( ∑
j≥1

deg(P j )≤h

χD(P j )(α(P) j
+β(P) j ) log qh− j deg(P)

|P|(1/2+1/h log q) j log q j (|P|−(α−iθ/ log q) j
+|P|−(β−iγ / log q) j )

)
. (4-5)

Note that the contribution of the terms with j ≥ 3 is bounded by O(1).
The terms with j = 2 in (4-5) will contribute, up to a term of size O(log log m) coming from those P

with P | D,

1
2

∑
deg(P)≤h/2

(h− 2 deg(P))(λ(P2)− 1)
h|P|1+2/h log q

(
cos(2θ deg(P))
|P|2α

+
cos(2γ deg(P))
|P|2β

)
.

Let

Fα(h, θ)=
h∑

n=1

cos(2nθ)
nq2nα+n/h log q .

Similarly as in [Florea 2017a, Lemma 9.1], we can show that

Fα(h, θ)= log min
{

h,
1

2θ

}
+ O(1), (4-6)

where for θ ∈ [0, 2π ] we denote θ =min{θ, 2π − θ}. Now using the fact that

∑
deg(P)≤h

λ(P2) cos(2θ deg(P))
|P|1+1/h log q = O(log log h), (4-7)
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it follows that the contribution from j = 2 will be equal to

−
1
2

∑
deg(P)≤ h

2

h− 2 deg(P)
h|P|1+2/h log q

(
cos(2θ deg(P))
|P|2α

+
cos(2γ deg(P))
|P|2β

)
+ O(log log m)

=−
1
2

(
Fα

(
h
2
, θ

)
+ Fβ

(
h
2
, γ

))
+ O(log log m)

≤−
1
2
(Fα(m, θ)+ Fβ(m, γ ))+

2m
h
+ O(log log m)=M(u, v,m)+

2m
h
+ O(log log m), (4-8)

where

M(u, v,m)=−
1
2

(
log min

{
m,

1

2θ

}
+ log min

{
m,

1

2γ

})
(4-9)

by formula (4-6). Note that in the second line of the equation above we used the fact that

Fα(m, θ)− Fα

(
h
2
, θ

)
=

m∑
n=1

cos(2nθ)
nq2nαen/m −

h/2∑
n=1

cos(2nθ)
nq2nαe2n/h ,

and since e−x
= 1+ O(x), it follows that

Fα(m, θ)− Fα

(
h
2
, θ

)
=

m∑
n=h/2+1

cos(2nθ)
nq2nα + O(1)≤

2m
h
+ O(1).

Hence, using (4-8) in (4-5) we get

log
∣∣∣∣L(E ⊗χD,

u
q1/2+α

)
L
(

E ⊗χD,
v

q1/2+β

)∣∣∣∣
≤M(u, v,m)+

5m
h
+

∑
deg(P)≤h

(h− deg(P))χD(P)λ(P)
h|P|1/2+1/(h log q)

(
cos(θ deg(P))
|P|α

+
cos(γ deg(P))
|P|β

)
.

Let S1 be the sum above truncated at deg(P)≤ h0 and S2 be the sum over primes with h0< deg(P)≤ h.
If D is such that

log
∣∣∣∣L(E ⊗χD,

u
q1/2+α

)
L
(

E ⊗χD,
v

q1/2+β

)∣∣∣∣≥M(u, v,m)+ V,

then

S1 ≥ V1 := V
(

1−
6
A

)
or S2 ≥

V
A
.

Let

F1 = {D ∈H∗2g+1 : S1 ≥ V1} and F2 =

{
D ∈H∗2g+1 : S2 ≥

V
A

}
.

If D ∈ F2, then by Markov’s inequality and Lemma 4.4 it follows that

|F2| � q2g (2l)!
l!2l

(
A
V

)2l( ∑
h0<deg(P)≤h

|a(P)|2

|P|

)l

,
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for any l ≤ g/h where

a(P)=
(h− deg(P))λ(P)

h|P|1/(h log q)

(
cos(θ deg(P))
|P|α

+
cos(γ deg(P))
|P|β

)
.

Picking l = [g/h] and noting that a(P)� 1 and m = 4g+ O(1), we get that

|F2| � q2g
(

2l
e

)l( A
V

)2l

(log log m)l � q2g exp
(
−

V log V
8A

)
. (4-10)

If D ∈ F1 then for any l ≤ g/h0, we have

|F1| � q2g (2l)!
l!2l

1
V 2l

1

( ∑
deg(P)≤h0

|a(P)|2

|P|

)l

.

Using the expression for a(P) and (4-7) we get that

|F1| � q2g (2l)!
l!2l V 2l

1

(V(u, v,m)+ O(log log m))l,

where

V(u, v,m)

= log m+1
2(Fα(m, θ)+Fβ(m, γ ))+F(α+β)/2

(
m,
θ+γ

2

)
+F(α+β)/2

(
m,
θ−γ

2

)
= log m+ 1

2

(
log min

{
m,

1

2θ

}
+log min

{
m,

1

2γ

})
+log min

{
m,

1
θ+γ

}
+log min

{
m,

1
θ−γ

}
, (4-11)

and the last line of the equation above follows from (4-6). Then

|F1| � q2g
(

2l
eV 2

1
(V(u, v,m)+ O(log log m))

)l

.

If V ≤ V(u, v,m)2, then we pick l = [V 2
1 /2V(u, v,m)], and if V > V(u, v,m)2, then we pick l = [10V ].

In doing so we get

|F1| � q2g exp
(
−

V 2
1

2V(u, v,m)

)
+ q2g exp(−V log V ). (4-12)

Combining the bounds (4-12) and (4-10) finishes the proof of Lemma 4.5. �

The following is an immediate corollary of Theorem 4.1.

Corollary 4.6. Let u = eiθ and v = eiγ with θ, γ ∈ [0, 2π ]. Then∑
D∈H∗2g+1

∣∣∣∣L(E ⊗χD,
u
√

q

)
L
(

E ⊗χD,
v
√

q

)∣∣∣∣
�ε q2gg1/2+ε min

{
g,

1

2θ

}−1/4

min
{

g,
1

2γ

}−1/4

min
{

g,
1

(θ − γ )

}1/2

min
{

g,
1

(θ + γ )

}1/2

.
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For N |1∞ and fixed n ∈ N, we define the truncated sums

E1,E(N , X, n) :=
∑

X<deg( f )≤n+deg(D)

λ( f )χD(N f )
√
| f |

(4-13)

and

E2,E(N , X, n) :=
∑

X<deg( f )≤n+deg(D)

(n+ deg(D)− deg( f ))λ( f )χD(N f )
√
| f |

. (4-14)

We are now ready to prove the following upper bounds for Ei,E(N , X, n).

Proposition 4.7. For i = 1, 2 and any fixed n ∈ N we have∑
D∈H∗2g+1

|Ei,E(N , X, n)|2�ε q2gg1/2+ε(2g− X)2i .

Proof. Using the Perron formula for the sum over f in (4-13), we get that

E1,E(N , X, n)=
χD(N )

2π i

∮
|u|=1

L
(

E ⊗χD,
u
√

q

)(
1

un+deg(D) −
1

u X

)
du

u(1− u)
.

Note that there is no pole at u = 1. So we need to bound the following expression

1
(2π i)2

∮
|u|=1

∮
|v|=1

∑
D∈H∗2g+1

L
(

E ⊗χD,
u
√

q

)
L
(

E ⊗χD,
v
√

q

)
×

(
1

un+deg(D) −
1

u X

)(
1

vn+deg(D) −
1
vX

)
dudv

uv(1− u)(1− v)
. (4-15)

We use Corollary 4.6 to bound the integral above and consider θ and γ on different arcs on the unit circle.
We bound the integral on these arcs and notice that we obtain the biggest upper bound when θ, γ are not
close to 0 (i.e., u and v are not close to 1) and when θ is not close to γ or to 2π − γ (by close we mean
on an arc of length on the scale of 1/g).

For example, if θ and γ are both on an arc C1 of length on the scale of 1/g around 0, then the double
integral in (4-15) over the arcs C1 is Oε(q2gg−1+ε) (since from the corollary we get a power of g which
gets multiplied by g−2, the product of the sizes of the arcs.)

If θ, γ are both on the complement of C1, but close to each other (i.e., θ is within 1/g of γ ), we get
that the corresponding integral over the two arcs is Oε(q2ggε). We get a similar bound if θ is close to
2π − γ , under the same conditions.

We are left with the case when θ, γ are on the complement of C1 and θ is far from γ and from 2π −γ .
In this case the corresponding integral will be Oε(q2gg1/2+ε). This finishes the proof of the upper bound
when i = 1.

When i = 2, using the Perron formula for the sum over f in (4-14), we have

E2,E(N , X, n)=
χD(N )

2π i

∮
|u|=1

L
(

E⊗χD,
u
√

q

)(
1

un+deg(D)−
(n+ deg(D)− X)(1− u)+ u

u X+1

)
du

(1− u)2
.
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Hence

E2,E(N , X, n)2 =
1

(2π i)2

∮
|u|=1

∮
|v|=1

L
(

E ⊗χD,
u
√

q

)
L
(

E ⊗χD,
v
√

q

)
×

(
1

un+deg(D) −
(n+ deg(D)− X)(1− u)+ u

u X+1

)
×

(
1

vn+deg(D) −
(n+ deg(D)− X)(1− v)+ v

vX+1

)
dudv

(1− u)2(1− v)2
.

We proceed as before and keeping in mind that |u| = |v| = 1, it follows that∑
D∈H∗2g+1

|E2,E(N , X, n)|2�ε q2gg1/2+ε(2g− X)4,

as required. �

5. Proof of Theorem 1.1

For N |1∞, let

RE(N , X) :=
∑

D∈H∗2g+1

∑
f ∈M≤X

λ( f )χD(N f )
√
| f |

.

We will prove the following lemma.

Lemma 5.1. We have

RE(N , X)= |H2g+1|CE(N ; 1)L(Sym2 E, 1)+ Oε(q2g−X/2+εg)+ Oε(q X/2+εg),

where the value CE(N ; 1) is defined in (5-2).

Proof. Note that

RE(N , X)= SE,E(N , X, 0; 0, 0),

where SE1,E2(N , X, Y ;α, β) is defined as in (3-1). We proceed as in Section 3, see (3-2), (3-3) and (3-7),
and write

RE(N , X)= SE,E(N , X, 0, g; 0, 0)= RE(N , X; V = 0)+ RE(N , X; V 6= 0),

where RE(N , X; V 6= 0)= SE,E(N , X, 0, g; 0, 0; V 6= 0) and

RE(N , X; V = 0)= SE,E(N , X, 0, g; 0, 0; V = 0)

= |H2g+1|
∑

f ∈M≤X
N f=�

λ( f )
√
| f |

∏
P |1 f

(
1−

1
|P|

) ∑
C2 | (1 f )∞
deg(C2)≤g

1
|C2|2

+ Oε(qεg).
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We first evaluate RE(N , X; V = 0). From (3-6) we have

∑
C2 | (1 f )∞
deg(C2)≤g

1
|C2|2

=

∏
P |1 f

(
1−

1
|P|2

)−1

+ Oε(q−2g+εg).

The contribution of the error term to RE(N , X; V = 0) is

�ε qεg
∑

l∈M≤X/2

|λ(Nl2)|

|l|
�ε qεg.

Hence

RE(N , X; V = 0)= |H2g+1|
∑

f ∈M≤X
N f=�

λ( f )
√
| f |

∏
P |1 f

(
1+

1
|P|

)−1

+ Oε(qεg).

Applying the Perron formula to the sum over f yields

RE(N , X; V = 0)=
|H2g+1|

2π i

∮
|u|=r

BE(N ; u)
du

u X+1(1− u)
+ Oε(qεg) (5-1)

for any r < 1, where

BE(N ; u)=
∑
f ∈M

N f=�

λ( f )udeg( f )
√
| f |

∏
P |1 f

(
1+

1
|P|

)−1

.

We can write BE(N ; u) in terms of its Euler product,

BE(N ; u)=
∏
P -1

(
1+
(

1+
1
|P|

)−1∑
i≥1

λ(P2i )u2i deg(P)

|P|i

)∏
P |1

((
1+

1
|P|

)−1 ∑
i+ordP (N ) even

λ(P i )ui deg(P)

|P|i/2

)

= CE(N ; u)L
(

Sym2 E,
u2

q

)
, (5-2)

where CE(N ; u) is some Euler product which is uniformly bounded for |u| ≤ q1/2−ε. We shift the contour
in (5-1) to |u| = q1/2−ε, encountering a simple pole at u = 1. Then

RE(N , X; V = 0)= |H2g+1|CE(N ; 1)L(Sym2 E, 1)+ Oε(q2g−X/2+εg). (5-3)

Now we will bound RE(N , X; V 6= 0). As in Section 3D, see (3-12), it suffices to bound the term

R(V 6=0)=q2g+1τ(q)
∑

f ∈M≤X
deg(N f ) odd

λ( f )
|N || f |3/2

∑
C1 |1

C2 | (1 f )∞
deg(C1)+2 deg(C2)≤2g+1

µ(C1)χC1(N f )
|C1||C2|2

∑
V∈Mdeg(N f )+deg(C1)+2 deg(C2)−2g−2

G(V, N f ).
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Using the fact that

∑
C2∈Mc2

C2 | (1 f )∞

1
|C2|2

=
q−2c2

2π i

∮
|w|=r

∏
P |1 f

(1−wdeg(P))−1 dw
wc2+1

for r < 1, and writing V = V1V 2
2 with V1 a square-free polynomial, we have

R(V 6= 0)=
q2g+1τ(q)
|N |

∑
c1+2c2≤2g+1

q−2c2
∑

C1∈Mc1
C1 |1

µ(C1)χC1(N )
|C1|

×

∑
n≤X

n+deg(N ) odd

∑
j≤n+deg(N )+c1+2c2−2g−2

j+c1 odd

∑
V1∈H j

∑
V2∈M(n+deg(N )+c1− j)/2+c2−g−1

×
1

2π i

∮
|w|=r

∑
f ∈Mn

χC1( f )λ( f )G(V1V 2
2 , N f )

| f |3/2
∏

P |1 f

(1−wdeg(P))−1 dw
wc2+1 .

Now

∑
f ∈M

χC1( f )λ( f )G(V1V 2
2 , N f )

| f |3/2
∏

P |1 f

(1−wdeg(P))−1udeg( f )

=H(V1; u, w)I(V1V 2
2 , N ; u, w)J (V1V 2

2 ; u, w),

where

H(V1; u, w)=
∏
P -V1

(
1+

χC1V1(P)λ(P)u
deg(P)

|P|
(1−wdeg(P))−1

)
,

I(V1V 2
2 , N ; u, w)=

∏
P |1

(∑
j

χC1(P
j )λ(P j )G(V1V 2

2 , P j+n P )u j deg(P)

|P|3 j/2

)
(1−wdeg(P))−1

and

J (V1V 2
2 ; u, w)=

∏
P | V1V2

P -1

(
1+

∑
j≥1

χC1(P
j )λ(P j )G(V1V 2

2 , P j )u j deg(P)

|P|3 j/2 (1−wdeg(P))−1
)

×

∏
P -V1

P |1V2

(
1+

χC1V1(P)λ(P)u
deg(P)

|P|
(1−wdeg(P))−1

)−1

.
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We use the Perron formula for the sum over f and obtain

R(V 6= 0)=
q2g+1τ(q)
|N |

∑
c1+2c2≤2g+1

q−2c2
∑

C1∈Mc1
C1 |1

µ(C1)χC1(N )
|C1|

×

∑
n≤X

n+deg(N ) odd

∑
j≤n+deg(N )+c1+2c2−2g−2

j+c1 odd

∑
V1∈H j

∑
V2∈M(n+deg(N )+c1− j)/2+c2−g−1

×
1

(2π i)2

∮
|u|=r

∮
|w|=r

H(V1; u, w)I(V1V 2
2 , N ; u, w)J (V1V 2

2 ; u, w)
du

un+1

dw
wc2+1 . (5-4)

Let r1 = q1/2−ε, r2 = q−ε, and let k0 be minimal such that |r1r k0
2 |< 1. Then we can write

H(V1; u, w)= L
(

E ⊗χC1V1,
u
q

)
L
(

E ⊗χC1V1,
uw
q

)
· · ·L

(
E ⊗χC1V1,

uwk0−1

q

)
K(V1; u, w), (5-5)

where

K(V1; u, w)�ε |C1|
ε

uniformly for |u| ≤ r1 and |w| ≤ r2. We also have

I(V1V 2
2 , N ; u, w)�ε |V1V2|

ε and J (V1V 2
2 ; u, w)�ε |V2|

ε

in this region. We now move the contours in (5-4) to |u| = r1 and |w| = r2. We then use the Lindelöf
bound for each L-function and trivially bound the rest of the expression to obtain that

R(V 6= 0)�ε q X/2+εg.

Combining this with (5-3) finishes the proof of Lemma 5.1. �

To prove Theorem 1.1, note that from Lemma 2.2 we have∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)
= RE(1, [n/2] + 2g+ 1)+ ε2g+1ε(E)RE(M, [(n+ 1)/2] + 2g).

Using Lemma 5.1 and choosing X = g we have that

1
|H∗2g+1|

∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)
= c1(M)L(Sym2 E, 1)+ Oε(q−g+εg),

where

c1(M)= (CE(1; 1)+ ε2g+1ε(E)CE(M; 1))
∏
P |1

|P| + 1
|P|

. (5-6)

This finishes the proof of the theorem.
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6. Proof of Theorem 1.2

For N |1∞, let

RE(N , X;α) :=
∑

D∈H∗2g+1

∑
f ∈M≤X

λ( f )χD(N f )
| f |1/2+α

.

Note that RE(N , X; 0) = RE(N , X) with RE(N , X) as in Section 5. Similarly as in Section 5 and for
|α| ≤ 1/g we get that

RE(N , X;α)= |H2g+1|CE(N ; q−α)L(Sym2 E, 1+ 2α)+ Oε(q2g−X/2+εg)+ Oε(q X/2+εg). (6-1)

Using Lemma 2.3 we obtain∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)
= (log q)([n/2] + 2g+ 1)(RE(1, [n/2] + 2g+ 1)− ε2g+1ε(E)RE(M, [n/2] + 2g+ 1))

+
∂

∂α
(RE(1, [n/2] + 2g+ 1;α)− ε2g+1ε(E)RE(M, [n/2] + 2g+ 1;α))

∣∣
α=0.

From Lemma 5.1 and (6-1) it follows that

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)
= c2(M)L(Sym2 E, 1)g+ c3(M)+ Oε(q−g+εg),

where
c2(M)= 2(log q)(CE(1; 1)− ε2g+1ε(E)CE(M; 1))

∏
P |1

|P| + 1
|P|

(6-2)

and

c3(M)= (((log q)([n/2] + 1)L(Sym2 E, 1)+ 2L ′(Sym2 E, 1))(CE(1; 1)− ε2g+1ε(E)CE(M; 1))

+ L(Sym2 E, 1)(C′E(1; 1)− ε2g+1ε(E)C′E(M; 1)))
∏
P |1

|P| + 1
|P|

. (6-3)

7. Proof of Theorem 1.3

Following Lemma 2.2, for X < 2g, we define

M1,E(X) := (1+ ε)
∑

f ∈M≤X

λ( f )χD( f )
√
| f |

,

so that

L
(
E ⊗χD,

1
2

)
=M1,E(X)+ E1,E(1, X, [n/2])+ ε2g+1ε(E)E1,E(M, X, [(n− 1)/2]), (7-1)

where recall expression (4-13) for E1,E(N , X, n). Hence

L
(
E ⊗χD,

1
2

)2

= 2L(E ⊗χD,
1
2)M1,E(X)−M1,E(X)2+ (E1,E(1, X, [n/2])+ ε2g+1ε(E)E1,E(M, X, [(n− 1)/2]))2.
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By Cauchy’s inequality and Proposition 4.7 we get∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)2
= 2

∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)
M1,E(X)−

∑
D∈H∗2g+1

M1,E(X)2

+ Oε(q2gg1/2+ε(2g− X)2).

Now using Lemma 2.2 again and expanding M1,E(X)2, the first line of the equation above is

2(SE(1, [n/2] + 2g+ 1, X)+ SE(1, [(n+ 1)/2] + 2g, X)− SE(1, X, X))
+ 2ε2g+1ε(E)(SE(M, [n/2] + 2g+ 1, X)+ SE(M, [(n+ 1)/2] + 2g, X)− SE(M, X, X)),

where recall the definition of SE(M, X, Y ) in Section 3. Using Proposition 3.1, this is equal to

|H∗2g+1|c2(M)L(Sym2 E, 1)3 X + O(q2g)+ O(q2g−X/5g3)+ O(q5g/4+3X/8g30),

where

c2(M)= 2(CE(1; 1, 1, 1)+ ε2g+1ε(E)CE(M; 1, 1, 1))
∏
P |1

|P| + 1
|P|

, (7-2)

and CE(N ; 1, 1, 1) is defined in (3-9). Thus

1
|H∗2g+1|

∑
D∈H∗2g+1

L
(
E ⊗χD,

1
2

)2

= c4(M)L(Sym2 E, 1)3 X + O(q−X/5g3)+ O(q−3g/4+3X/8g30)+ Oε(g1/2+ε(2g− X)2).

Choosing X = 2g− 100 log g we obtain the theorem.

8. Proof of Theorem 1.4

Following Lemma 2.3, for X < 2g and fixed n ∈ N, we define

M2,E(X, n) := (1− ε)
∑

f ∈M≤X

(n+ deg(D)− deg( f ))λ( f )χD( f )
√
| f |

,

so that

ε−L ′
(
E ⊗χD,

1
2

)
= (log q)M2,E(X, [n/2])+ (log q)(E2,E(1, X, [n/2])− ε2g+1ε(E)E2,E(M, X, [n/2])), (8-1)

where recall that E2,E(M, X, n) is given in (4-14). Then we get that

ε−L ′
(
E ⊗χD,

1
2

)2
= 2(log q)ε−L ′

(
E ⊗χD,

1
2

)
M2,E(X, [n/2])− (log q)2M2

2,E(X, [n/2])
+ (log q)2(E2,E(1, X, [n/2])− ε2g+1ε(E)E2,E(M, X, [n/2]))2.
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By Cauchy’s inequality and Proposition 4.7 we get that∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)2
= 2(log q)

∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)
M2,E(X, [n/2])

− (log q)2
∑

D∈H∗2g+1

M2,E(X, [n/2])2+ Oε(q2gg1/2+ε(2g− X)4).

Now by Lemma 2.3 we have∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)
M2,E(X, [n/2])

= 2(log q)([n/2]+2g+1)2(SE(1, [n/2]+2g+1, X)−ε2g+1ε(E)SE(M, [n/2]+2g+1, X))

+2([n/2]+2g+1)
∂

∂β
(SE(1, [n/2]+2g+1, X; 0, β)−ε2g+1ε(E)SE(M, [n/2]+2g+1, X; 0, β))

∣∣
β=0

+2([n/2]+2g+1)
∂

∂α
(SE(1, [n/2]+2g+1, X;α, 0)−ε2g+1ε(E)SE(M, [n/2]+2g+1, X;α, 0))

∣∣
α=0

+
2

log q
∂2

∂α∂β
(SE(1, [n/2]+2g+1, X;α, β)−ε2g+1ε(E)SE(M, [n/2]+2g+1, X;α, β))

∣∣
α=β=0,

and similarly∑
D∈H∗2g+1

M2,E(X, [n/2])2

= 2([n/2] + 2g+ 1)2(SE(1, X, X)− ε2g+1ε(E)SE(M, X, X))

+
2

log q
([n/2] + 2g+ 1)

∂

∂β
(SE(1, X, X; 0, β)− ε2g+1ε(E)SE(M, X, X; 0, β))

∣∣
β=0

+
2

log q
([n/2] + 2g+ 1)

∂

∂α
(SE(1, X, X;α, 0)− ε2g+1ε(E)SE(M, X, X;α, 0))

∣∣
α=0

+
2

(log q)2
∂2

∂α∂β
(SE(1, X, X;α, β)− ε2g+1ε(E)SE(M, X, X;α, β))

∣∣
α=β=0.

Choosing X = 2g− 100 log g and using Proposition 3.1, we obtain that

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−L ′
(
E ⊗χD,

1
2

)2
= c5(M)L(Sym2 E, 1)3g3

+ Oε(g2+ε),

where

c5(M)= 16(log q)2(CE(1; 1, 1, 1)− ε2g+1ε(E)CE(M; 1, 1, 1))
∏
P |1

|P| + 1
|P|

. (8-2)
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9. Proof of Theorem 1.5

By combining (7-1) and (8-1),

ε−2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= ε−2 M1,E1(X)L

′
(
E2⊗χD,

1
2

)
+ (log q)L

(
E1⊗χD,

1
2

)
M2,E2(X, [n2/2])

− (log q)M1,E1(X)M2,E2(X, [n2/2])

+ (log q)(E1,E1(1, X, [n1/2])+ ε2g+1ε(E1)E1,E1(M1, X, [(n1− 1)/2]))
× (E2,E2(1, X, [n2/2])− ε2g+1ε(E2)E2,E2(M2, X, [n2/2])).

We bound the last term above using Cauchy’s inequality and Proposition 4.7. In doing so we get∑
D∈H∗2g+1

ε−2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
=

∑
D∈H∗2g+1

ε−2 M1,E1(X)L
′
(
E2⊗χD,

1
2

)
+ (log q)

∑
D∈H∗2g+1

L
(
E1⊗χD,

1
2

)
M2,E2(X, [n2/2])

− (log q)
∑

D∈H∗2g+1

M1,E1(X)M2,E2(X, [n2/2])+ Oε(q2gg1/2+ε(2g− X)3). (9-1)

We shall estimate the remaining three terms using Proposition 3.1. They all have similar forms. For the
first term, by Lemma 2.3 again we have∑
D∈H∗2g+1

ε−2 M1,E1(X)L
′
(
E2⊗χD,

1
2

)
= (log q)

∑
D∈H∗2g+1

(1+ ε1)(1− ε2)
∑

f ∈M≤X
h∈M≤[n2/2]+2g+1

([n2/2] + 2g+ 1− deg(h))λ1( f )λ2(h)χD( f h)
√
| f h|

.

By expanding out, this equals

(log q)([n2/2] + 2g+ 1)
(
SE1,E2(1, [n2/2] + 2g+ 1, X; 0, 0)

+ ε2g+1ε(E1)SE1,E2(M1, [n2/2] + 2g+ 1, X; 0, 0)

− ε2g+1ε(E2)SE1,E2(M2, [n2/2] + 2g+ 1, X; 0, 0)

− ε(E1)ε(E2)SE1,E2(M1 M2, [n2/2] + 2g+ 1, X; 0, 0)
)

+
∂

∂β

(
SE1,E2(1, [n2/2] + 2g+ 1, X; 0, β)

+ ε2g+1ε(E1)SE1,E2(M1, [n2/2] + 2g+ 1, X; 0, β)

− ε2g+1ε(E2)SE1,E2(M2, [n2/2] + 2g+ 1, X; 0, β)

− ε(E1)ε(E2)SE1,E2(M1 M2, [n2/2] + 2g+ 1, X; 0, β)
)∣∣
β=0,
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which is, by Proposition 3.1 and Cauchy’s residue theorem,

|H∗2g+1|c6(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1⊗ E2, 1)g+ O(q2g)+ O(q5g/4+3X/8g31),

where

c6(M1,M2)= 2(logq)
(
CE1,E2(1;1,1,1,0,0)+ ε2g+1ε(E1)CE1,E2(M1;1,1,1,0,0)

− ε2g+1ε(E2)CE1,E2(M2;1,1,1,0,0)

− ε(E1)ε(E2)CE1,E2(M1 M2;1,1,1,0,0)
)∏

P |1

|P|+1
|P|

. (9-2)

The other two terms in (9-1) have the same asymptotics so we obtain

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
=c6(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1⊗E2, 1)g+O(q−3g/4+3X/8g31)+Oε(g1/2+ε(2g−X)3).

Choosing X = 2g− 100 log g we obtain the theorem.

10. Proof of Theorem 1.6

We argue as in the previous section. From (8-1) we have

ε−1 ε
−

2 L ′
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= (log q)

(
ε−2 M2,E1(X, [n1/2])L

′
(
E2⊗χD,

1
2

)
+ ε−1 L ′

(
E1⊗χD,

1
2

)
M2,E2(X, [n2/2])

)
− (log q)2M2,E1(X, [n1/2])M2,E2(X, [n2/2])

+ (log q)2(E2,E1(1, X, [n1/2])− ε2g+1ε(E1)E2,E1(M1, X, [n1/2]))
× (E2,E2(1, X, [n2/2])− ε2g+1ε(E2)E2,E2(M2, X, [n2/2])).

Bounding the last term above using Cauchy’s inequality and Proposition 4.7 leads to∑
D∈H∗2g+1

ε−1 ε
−

2 L ′
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= (log q)

∑
D∈H∗2g+1

ε−2 M2,E1(X, [n1/2])L
′
(
E2⊗χD,

1
2

)
+ (log q)

∑
D∈H∗2g+1

ε−1 L ′
(
E1⊗χD,

1
2

)
M2,E2(X, [n2/2])

− (log q)2
∑

D∈H∗2g+1

M2,E1(X, [n1/2])M2,E2(X, [n2/2])+ Oε(q2gg1/2+ε(2g− X)4). (10-1)
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We shall illustrate the evaluation of the third term using Proposition 3.1. The first two terms can be
treated in the same way, and in fact they all have the same asymptotics. We have

(log q)2
∑

D∈H∗2g+1

M2,E1(X, [n1/2])M2,E2(X, [n2/2])= (log q)2
∑

D∈H∗2g+1

(1− ε1)(1− ε2)

∑
f,h∈M≤X

([n1/2] + 2g+ 1− deg( f ))([n2/2] + 2g+ 1− deg(h))λ1( f )λ2(h)χD( f h)
√
| f h|

.

By expanding out, this equals

(log q)2([n1/2] + 2g+ 1)([n2/2] + 2g+ 1)
(
SE1,E2(1, X, X; 0, 0)− ε2g+1ε(E1)SE1,E2(M1, X, X; 0, 0)

− ε2g+1ε(E2)SE1,E2(M2, X, X; 0, 0)+ ε(E1)ε(E2)SE1,E2(M1 M2, X, X; 0, 0)
)

+ (log q)([n1/2] + 2g+ 1)
∂

∂β

(
SE1,E2(1, X, X; 0, β)− ε2g+1ε(E1)SE1,E2(M1, X, X; 0, β)

− ε2g+1ε(E2)SE1,E2(M2, X, X; 0, β)+ ε(E1)ε(E2)SE1,E2(M1 M2, X, X; 0, β)
)∣∣
β=0

+ (log q)([n2/2] + 2g+ 1)
∂

∂α

(
SE1,E2(1, X, X;α, 0)− ε2g+1ε(E1)SE1,E2(M1, X, X;α, 0)

− ε2g+1ε(E2)SE1,E2(M2, X, X;α, 0)+ ε(E1)ε(E2)SE1,E2(M1 M2, X, X;α, 0)
)∣∣
α=0

+
∂2

∂α∂β

(
SE1,E2(1, X, X;α, β)− ε2g+1ε(E1)SE1,E2(M1, X, X;α, β)

− ε2g+1ε(E2)SE1,E2(M2, X, X;α, β)+ ε(E1)ε(E2)SE1,E2(M1 M2, X, X;α, β)
)∣∣
α=β=0.

In view of Proposition 3.1 and Cauchy’s residue theorem, this is

|H∗2g+1|c7(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1⊗ E2, 1)g2
+ O(q2gg)+ O(qg/2+3X/4g32),

where

c7(M1,M2)= 4(log q)2
(
CE1,E2(1; 1, 1, 1, 0, 0)− ε2g+1ε(E1)CE1,E2(M1; 1, 1, 1, 0, 0)

− ε2g+1ε(E2)CE1,E2(M2; 1, 1, 1, 0, 0)

+ ε(E1)ε(E2)CE1,E2(M1 M2; 1, 1, 1, 0, 0)
) ∏

P |1

|P| + 1
|P|

.
(10-2)

The other two terms in (10-1) have the same asymptotics so we obtain

1
|H∗2g+1|

∑
D∈H∗2g+1

ε−1 ε
−

2 L ′
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
= c7(M1,M2)L(Sym2 E1, 1)L(Sym2 E2, 1)L(E1 E2, 1)g2

+ O(g)+ O(q−3g/2+3X/4g32)+ Oε(g1/2+ε(2g− X)4).

Choosing X = 2g− 100 log g we obtain the theorem.
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11. Proof of Corollary 1.7

The results in Section 4 imply that ∑
D∈H∗2g+1

L(E ⊗χD,
1
2)

4
�ε q2gg6+ε. (11-1)

We next obtain some upper bounds for moments of the derivatives. We have

L(l)
(
E ⊗χD,

1
2

)k
=

(
l!

2π i

)k ∮
· · ·

∮
L(E ⊗χD, 1/2+α1) · · · L(E ⊗χD, 1/2+αk)

αl+1
1 · · ·αl+1

k

dα1 · · · dαk,

where we are integrating along small circles of radii r around the origin. Then using Hölder’s inequality
leads to ∑

D∈H∗2g+1

∣∣L(l)(E ⊗χD,
1
2

)∣∣k � (l!)k

r lk+1

∮
|α|=r

∑
D∈H∗2g+1

∣∣L(E ⊗χD,
1
2 +α

)∣∣kdα.

Choosing r = 1/g and using upper bounds for moments of L-functions we get that∑
D∈H∗2g+1

∣∣L(l)(E ⊗χD,
1
2

)∣∣k �ε q2g(l!)k glk+k(k−1)/2+ε.

In particular, with l = 1 and k = 4, we have∑
D∈H∗2g+1

L ′
(
E ⊗χD,

1
2

)4
�ε q2gg10+ε. (11-2)

Now from Hölder’s inequality we have( ∑
D∈H2g+1
(D,11)=1

L
(
E1⊗χD,

1
2

)4
)( ∑

D∈H2g+1
(D,12)=1

L ′
(
E2⊗χD,

1
2

)4
)( ∑

D∈H2g+1, (D,1112)=1
ε−2 L(E1⊗χD,1/2)L ′(E2⊗χD,1/2) 6=0

1
)2

≥

( ∑
D∈H2g+1

(D,1112)=1

ε−2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

))4

.

Combining (11-1) and (11-2) with Theorem 1.5 we get

#
{

D ∈H∗2g+1 : ε
−

2 L
(
E1⊗χD,

1
2

)
L ′
(
E2⊗χD,

1
2

)
6= 0

}
�ε

q2g

g6+ε ,

which implies the first statement. The second statement can be obtained similarly.
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