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CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS

ARAM L. KARAKHANYAN

We prove some Bernstein-type theorems for a class of stationary points of the Alt–Caffarelli functional in
R2 and R3 arising as limits of the singular perturbation problem(

4u".x/D ˇ".u"/ in B1;

ju"j � 1 in B1;

in the unit ball B1 as "! 0. Here ˇ".t/D .1="/ˇ.t="/ � 0, ˇ 2 C1
0
Œ0; 1�,

R 1

0
ˇ.t/ dt DM > 0, is an

approximation of the Dirac measure and " > 0. The limit functions uD lim"j!0 u"j of uniformly con-
verging sequences fu"j g solve a Bernoulli-type free boundary problem in some weak sense. Our approach
has two novelties: First we develop a hybrid method for stratification of the free boundary @fu0 > 0g of
blow-up solutions which combines some ideas and techniques of viscosity and variational theory. An
important tool we use is a new monotonicity formula for the solutions u" based on a computation of
J. Spruck. It implies that any blow-up u0 of u either vanishes identically or is a homogeneous function
of degree 1, that is, u0 D rg.�/, � 2 SN�1, in spherical coordinates .r; �/. In particular, this implies
that in two dimensions the singular set is empty at the nondegenerate points, and in three dimensions
the singular set of u0 is at most a singleton. Second, we show that the spherical part g is the support
function (in Minkowski’s sense) of some capillary surface contained in the sphere of radius

p
2M. In

particular, we show that ru0 W S
2! R3 is an almost conformal and minimal immersion and the singular

Alt–Caffarelli example corresponds to a piece of catenoid which is a unique ring-type stationary minimal
surface determined by the support function g.

1. Introduction

In this paper we study the singular perturbation problem�
4u".x/D ˇ".u"/ in B1;

ju"j � 1 in B1;
(P")

where " > 0 is a small parameter, 8<:
ˇ".t/D .1="/ˇ.t="/;

ˇ.t/� 0; suppˇ � Œ0; 1�;R 1
0 ˇ.t/ dt DM > 0

(1-1)

is an approximation of the Dirac measure, and B1 � RN is the unit ball centered at the origin. It is well
known that (P") models propagation of equidiffusional premixed flames with high activation of energy
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[Caffarelli 1995]. Heuristically, the limit u0 D lim"j!0 u"j (for a suitable sequence "j ! 0) solves a
Bernoulli-type free boundary problem with the free boundary condition

jruCj2� jru�j2 D 2M:

If the functions fu"g are also minimizers of

J"Œu"�D

Z
�

jru"j
2

2
CB

�
u"

"

�
; B.t/D

Z t

0

ˇ.s/ ds; (1-2)

then the limits of fu"g inherit the generic features of minimizers (e.g., nondegeneracy, rectifiability
of @fu > 0g, etc.). Consequently, the limits of uniformly converging sequences fu"j g as "j ! 0 are
minimizers of the Alt–Caffarelli functional J Œu�D

R
B1
jruj2C 2M�fu>0g. It is known that the singular

set of minimizers is empty in dimensions 2; 3 and 4; see [Alt and Caffarelli 1981; Caffarelli et al. 2004;
Jerison and Savin 2015]. However, if u" is not a minimizer then the analysis of the limits of u presents a
more delicate problem. The main difficulty in carrying out such analysis is that the free boundary may
contain degenerate points [Weiss 2003].

This paper is devoted to the study of the blow-ups of the limits of the singular perturbation problem
(P") and establishes a new and direct connection with minimal surfaces. In particular, we show that
every blow-up of a limit function u D lim"j!0 u"j in R3 (for an appropriate sequence "j ) defines an
almost conformal and minimal immersion which is perpendicular to the sphere of radius

p
2M , where

M D
R 1

0 ˇ.t/ dt . In other words, one obtains a capillary surface inside the sphere of radius
p

2M.

Our first result is:

Theorem A. Let u"j ! u locally uniformly in B1 for some subsequence "j . Then any blow-up of u at a
free boundary point x0 2 @fu> 0g is either identically zero or a homogeneous function of degree 1. In
particular, if N D 2 and u is not degenerate at x0 2 @fu> 0g then every blow-up of u at x0 must be one
of the following functions (after some rotation of coordinates):

(1)
p

2M xC
1

, a half-plane solution provided that there is a measure-theoretic normal at x0,

(2) a wedge ˛jx1j, 0< ˛ �
p

2M ,

(3) a two-plane solution ˛xC
1
�ˇx�

1
; ˛2�ˇ2 D 2M, ˛; ˇ > 0.

In order to prove Theorem A we will introduce a monotone quantity based on a computation of Joel
Spruck [1983]. From Theorem A it follows that in R2 the blow-up limits at nondegenerate free boundary
points can be explicitly computed. It is worthwhile to note that the minimizers of

J Œu�D

Z
B1

jruj2C 2M�fu>0g (1-3)

are nondegenerate; i.e., for each subdomain�0bB1 there is a constant c0>0 depending on dist.@B1; @�
0/,

N, M, such that

sup
Br .x0/

uC � c0r for all x0 2 @fu> 0g\�0; Br .x0/� B1: (1-4)
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However, if u" is any solution of (P") then nondegeneracy may not be true. There is a sufficient condition
[Caffarelli et al. 1997, Theorem 6.3] that implies (1-4).

Some well-known examples demonstrate rather strikingly that for the stationary case there are wedge-
like global solutions for which the measure-theoretic boundary of fu> 0g is empty. This is impossible for
minimizers. In fact, the zero set of a minimizer has uniformly positive Lebesgue density. In this respect
Theorem A only states that if u is nondegenerate at x0 then the blow-up is a nontrivial cone.

The existence of wedge solutions, see [Caffarelli et al. 1997, Remark 5.1], suggests that some further
assumptions are needed to formulate the free boundary condition. For instance, one may assume that the
upper Lebesgue density at x 2 @fu> 0g satisfies ‚�.x; fu> 0g/ < 1; i.e., the upper density measure is
not covering the full ball. We emphasize that for some solutions the topological and measure-theoretic
boundaries may not coincide. Our next result addresses the degeneracy and wedge-formation in R3 of
blow-ups at free boundary points.

Theorem B. Suppose N D 3. Let u� 0 be a limit of some uniformly converging sequence fu"j g solving
(P") such that u is nondegenerate at y0 2 @fu> 0g. Let u0 be a blow-up of u at y0. If C is a component
of @fu0 > 0g such that the measure-theoretic boundary of fu0 > 0g in C is nonempty then

(1) all points of C are nondegenerate,

(2) C is a subset of the measure-theoretic boundary of fu0 > 0g,

(3) C n f0g is smooth.

In particular in R3 the singular set of @fu0 > 0g is at most a singleton.

Theorem B implies that the reduced boundary propagates instantaneously in the components of
@fu0 > 0g. Our last result sheds some new light on the characterization of the blow-ups as minimal
surfaces inside spheres with contact angle �

2
.

Theorem C. Let u0 be as in Theorem B and u0 D rg.�/, � 2 S2, in spherical coordinates. Then the
parametrization X.�/ D �g.�/CrS2g.�/ defines an almost conformal and minimal immersion. If
fg > 0g is homeomorphic to a disk then u0 is a half-plane solution

p
2M xC

1
. If fg > 0g is homeomorphic

to a ring then the only singular cone is the Alt–Caffarelli catenoid.

Observe that 4u0 D 0 implies that the spherical part g satisfies the following equation on the sphere:

4SN�1gC .N � 1/g D 0;

where4SN�1 is the Laplace–Beltrami operator. If we regard g as the support function of some embedded
hypersurface M then the matrix Œrij gC ıij g��1 gives the Weingarten mapping and its eigenvalues are
the principal curvatures k1; : : : ; kN�1 of M. If N D 3 then we have

0D4S2gC 2g D traceŒrij gC ıij g�D
1

k1

C
1

k2

D
k1C k2

k1k2

;

implying that the mean curvature is zero at the points where the Gauss curvature k1k2 does not vanish.
This is how the minimal surfaces enter into the game. One of the main obstacles is to show that the
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surface parametrized by X.�/Dru0.�/ is embedded. Then the classification for the disk-type domains
fg > 0g follows from a result of [Nitsche 1985]. To prove the last statement of Theorem C we will use
the moving plane method. It is worthwhile to point out that the results of this paper can be extended to
other classes of stationary points. For instance, the weak solutions introduced in [Alt and Caffarelli 1981]
can be analyzed in similar way provided that the zero set has uniformly positive Lebesgue density at free
boundary points in order to guarantee that the class of weak solution is closed with respect to blow-ups;
see [Alt and Caffarelli 1981, Example 5.8].

Related works. In [Hauswirth et al. 2011] L. Hauswirth, F. Hélein, and F. Pacard considered the overde-
termined problem 8<:

4u.x/D 0 in �;
u> 0 in �;
u.x/D 0; jruj D 1 on @�;

(1-5)

where � is a smooth domain and the boundary conditions are satisfied in the classical sense. A domain �
admitting a solution u to (1-5) is called exceptional. Note that every nonnegative smooth solution of the
limiting singular perturbation problem solves (1-5) with M D 1

2
. In [Hauswirth et al. 2011] the authors

constructed a number of examples of exceptional domains and proposed to classify them. In particular,
they proved that if � � R2 is conformal to a half-plane such that u is strictly monotone in one fixed
direction then � is a half-space [Hauswirth et al. 2011, Proposition 6.1]. However the general problem
remained open.

Later M. Traizet [2014, Proposition 1] showed that the smoothness assumption can be relaxed, namely
if �� R2 has C 0 boundary and the boundary conditions are still satisfied in the classical sense then �
is real-analytic. Under various topological conditions on the two-dimensional domain �� R2 (such as
finite connectivity and periodicity), M. Traizet classified the possible exceptional domains. One of his
remarkable results is that from � one can construct a complete minimal surface using the Weierstrass
representation formula [Traizet 2014, Theorem 9]. Another classification result in R2, under stronger
topological hypotheses than in [Traizet 2014], was given by D. Khavinson, E. Lundberg and R. Teodorescu
[Khavinson et al. 2013]. Moreover, their results in the simply connected case are stronger because unlike
M. Traizet they do not assume the finite connectivity (i.e., @� has finite number of components). As
opposed to these results (1) we do not assume any regularity of the free boundary (which plays the role of
@� in (1-5)), (2) the Neumann condition is not satisfied in the classical sense, (3) the minimal surface we
construct in Theorem C is not complete and it is a capillary surface inside sphere, and (4) our techniques do
not impose any restriction on the dimension. Note that in [Hauswirth et al. 2011] the authors suggested to
study more general classes of exceptional domains: if .M;g/ is an m-dimensional Riemannian manifold
admitting a harmonic function with zero Dirichlet and constant Neumann boundary data then M is called
exceptional and u a roof function. In this context Theorem C provides a way of constructing a roof
function on the sphere from the blow-ups of stationary points of the Alt–Caffarelli functional.

One may consider higher-order critical points as well, such as mountain passes (which are, in fact,
minimizers over some subspace of admissible functions), for which one has nondegeneracy and nontrivial
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Lebesgue density properties [Jerison and Perera 2018, Propositions 1.7–5.1]. Observe that neither of these
properties is available for our solutions as Theorem 6.3 and Remark 5.1 in [Caffarelli et al. 1997] indicate,
and in the present work we do not impose any additional assumptions on our stationary points of this kind.

It seems that the only result in high dimensions that appears in [Hauswirth et al. 2011; Khavinson et al.
2013; Traizet 2014] states that if the complement of � is connected and has C 2;˛ boundary, then � is the
exterior of a ball [Khavinson et al. 2013, Theorem 7.1]. The restriction �� R2 is because the authors
have mainly used the techniques from complex analysis. Our approach does not have this restriction since
our main tool is the representation of the solution in terms of the Minkowski support function. We remark
that using our method in high dimensions we can construct a surface M inside the sphere of radius

p
2M

such that the sum of its principal radii of curvature is zero, and M is transversal to the sphere.
Finally, we point out that our approach may lead to a new characterization of global minimizers in R3

[Caffarelli et al. 2004]. Indeed, [Ros and Vergasta 1995, Theorem 6] implies that the capillary surface M

in Theorem C associated with the blow-up limit must be totally geodesic (i.e., the second fundamental
form is identically zero). Consequently, the blow-up must be the half-plane solution.

The paper is organized as follows: In Section 2 we set up some basic notation which will be used
throughout the paper. Section 3 is devoted to the study of a new monotone quantity s.x0;u; r/. This
interesting quantity is derived from a computation of Spruck [1983]. Among other things, properties of s

imply that every blow-up of u is either a homogeneous function of degree 1 or identically zero. Section 4
contains the proof of Theorem A. In Section 5 we develop a new method of stratification of the free
boundary points and prove Theorem B. Section 6 contains the proof of Theorem C. For the convenience
of the reader, in the Appendix we repeat the relevant material from [Caffarelli et al. 1997] without proofs.

2. Notation

Throughout the paper N will denote the spatial dimension. Br .x0/D fx 2 RN W jx�x0j< rg denotes
the open ball of radius r > 0 centered at x0 2 RN. The s-dimensional Hausdorff measure is denoted
by Hs, the unit sphere by SN�1 � RN, and the characteristic function of the set D by �D . We also let

M D

Z 1

0

ˇ.t/ dt:

Sometimes we will set x D .x1;x
0/, where x0 2 RN�1. For a given function v, we will define vC D

max.0; v/ and v�Dmax.0;�v/. Finally, we say that v 2C
0;1
loc .D/ if for every D0bD, there is a constant

L.D0/ such that

jv.x/� v.y/j �L.D0/jx�yj for all x;y 2 D:

If v 2 C
0;1
loc .D/ then we say that v is locally Lipschitz continuous in D. For x D .x1; : : : ;xN / and fixed

x0 2 RN we denote by .x �x0/
C

1
the positive part of the first coordinate of x �x0. If u.x0/D 0 then

.u.x//r D u.x0 C rx/=r , r > 0, denotes the scaled function at x0. For given rj ! 0 the sequence

.u.x//rj is called a blow-up sequence and its limit u0 a blow-up of u at x0.
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3. Monotonicity formula of Spruck

It is convenient to work with a weaker definition of nondegeneracy which only ensures that the blow-up
does not vanish identically.

Definition 3.1. We say that u is degenerate at x0 2 @fu> 0g if lim infr!0 .1=r/ /

R
Br .x0/

uC D 0.

Observe that uC.x/D o.jx�x0j/ near the degenerate point x0 because uC is subharmonic.
It is known that the solutions of (P") are locally Lipschitz continuous; see the Appendix, Proposition A.1.

Consequently, there is a subsequence "j ! 0 such that u"j ! u locally uniformly. Furthermore, u is
a stationary point of the Alt–Caffarelli problem in some weak sense and the blow-up of u can be
approximated by some scaled family of solutions to (P"); see the Appendix, Propositions A.5 and A.6.

Proposition 3.1. Let u be a limit of some sequence u"j as in Proposition A.2. Then any blow-up of u at a
nondegenerate point is a homogeneous function of degree 1.

Proof. To fix the ideas we assume that 0 2 @fu> 0g is a nondegenerate point. We begin with writing the
Laplacian in polar coordinates

4uD urr C
N � 1

r
ur C

1

r2
4SN�1u (3-1)

and then introducing the auxiliary function

v.t; �/D
u.r; �/

r
; r D e�t : (3-2)

A straightforward computation yields

vt D�ur C v; v� D
u�

r
; vt t D urr r C vt ; 4SN�1v D

1

r
4SN�1u;

where, with some abuse of notation, v� denotes the gradient of v computed on the sphere. Rewriting the
equation �u" D ˇ".u"/ in t - and � -derivatives we obtain

1

r
Œ.N � 1/.v� @tv"/C @

2
t v"� @tv"C4SN�1v"�D

1

"
ˇ

�
r

"
v"

�
:

Next, we multiply both sides of the last equation by @tv" to get

@tv"Œ.N � 1/.v� @tv"/C @
2
t v"� @tv"C4SN�1v"�D @tv"

r

"
ˇ

�
r

"
v"

�
: (3-3)

The right-hand side of (3-3) can be further transformed as follows:

r

"
ˇ

�
e�t

"
v"

�
@tv" D ˇ

�
e�t

"
v"

��
e�t

"
@tv"�

e�t

"
v"

�
Cˇ

�
e�t

"
v"

�
e�t

"
v"

D @t

Z .e�t="/v"

0

ˇ.s/ dsCˇ

�
e�t

"
v"

�
e�t

"
v"

D @tB
�

e�t

"
v"

�
Cˇ

�
e�t

"
v"

�
e�t

"
v" � I1:
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It is important to note that by our assumption (1-1) the last term is nonnegative; in other words

ˇ

�
e�t

"
v"

�
e�t

"
v" � 0: (3-4)

Moreover, we have

I2 � Œ.N � 1/v"�N @tv"C @
2
t v"C4SN�1v"�@tv"

D .N � 1/@t

�
v2
"

2

�
�N.@tv"/

2
C @t

�
.@tv"/

2

2

�
C @tv"4SN�1v":

Next we integrate the identity
I2 D rI1

over SN�1 and then over ŒT0;T � in order to get

.N � 1/

Z
SN�1

v2
"

2

ˇ̌̌̌T
T0

�N

Z T

T0

Z
SN�1

.@tv"/
2
C

Z
SN�1

.@tv"/
2

2

ˇ̌̌̌T
T0

C

Z T

T0

Z
SN�1

@tv"4SN�1v"

D

Z
SN�1

B
�

e�t

"
v"

�ˇ̌̌̌T
T0

C

Z T

T0

Z
SN�1

ˇ

�
r

"
v"

�
r

"
v":

Note that Z T

T0

Z
SN�1

@tv"4SN�1v" D�
1

2

Z
SN�1

jr�v"j
2
ˇ̌T
T0
: (3-5)

Rearranging the terms and utilizing (3-4) we get the identity

N

Z T

T0

Z
SN�1

.@tv"/
2
C

Z T

T0

Z
SN�1

ˇ

�
r

"
v"

�
r

"
v"

D .N � 1/

Z
SN�1

v2
"

2

ˇ̌̌̌T
T0

C

Z
SN�1

.@tv"/
2

2

ˇ̌̌̌T
T0

�
1

2

Z
SN�1

jr�v"j
2
ˇ̌T
T0
�

Z
SN�1

B
�

e�t

"
v"

�ˇ̌̌̌T
T0

: (3-6)

From here it follows that Z T

T0

Z
SN�1

.@tv"/
2
� C; (3-7)

where C depends on kru"k1;M;N but not on ";T0 or T.
Letting "! 0 we conclude Z T

T0

Z
SN�1

.@tv/
2
� C; (3-8)

where v.t; �/D u.r; �/=r . But @tv D�ur Cu=r , implying thatZ 1
T0

Z
SN�1

�
ur �

u

r

�2

dt d� � C: (3-9)

The proof of Theorem A follows if we note that �urCu=r D 0 is the Euler equation for the homogeneous
functions of degree 1. �
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In the proof of Proposition 3.1 we used Spruck’s original computation [1983]. The identity (3-6) can
be interpreted as a local energy balance for u". Moreover, using (3-6) we can construct a monotone
quantity which has some remarkable properties.

Corollary 3.2. Suppose 0 2 @fu> 0g and let .r; �/, � 2 SN�1, be the spherical coordinates. Introduce

S".r/D

Z
SN�1

�
2B
�

u".r; �/

"

�
C

1

r2
jr�u"j

2
�.N �1/

u2
".r; �/

r2
�

�
@r u".r; �/�

u".r; �/

r

�2�
d�: (3-10)

� Then S".r/ is nondecreasing in r .

� Moreover, if u"j ! u for some subsequence "j ! 0, then S"j .r/! S.r/ for a.e. r , where

S.r/D

Z
SN�1

�
2M�fu>0gC

1

r2
jr�uj2� .N � 1/

u2.r; �/

r2
�

�
@r u.r; �/�

u.r; �/

r

�2�
d�: (3-11)

In particular, S.r/ is a nondecreasing function of r .

� S.r/ is constant if and only if u is a homogeneous function of degree 1.

Proof. By setting r1 D e�T, r2 D e�T0 and noting that r1 < r2 if T > T0 we obtain from (3-6)

S".r2/�S".r1/D 2N

Z T

T0

Z
SN�1

.@tv"/
2
C 2

Z T

T0

Z
SN�1

ˇ

�
r

"
v"

�
r

"
v" � 0;

where we applied (3-4) and hence the first claim follows. The second part follows from Propositions A.1
and A.2. Indeed, integrating S".r/� S".r C t/, t � 0, over Œr1� ı; r1C ı� we infer

1

2ı

Z r1Cı

r1�ı

S".r/ dr �
1

2ı

Z r1Cı

r1�ı

S".r C t/ dr:

Then first letting "! 0 and utilizing Proposition A.2 together with (A-1) and then sending ı! 0 we infer
that S.r/ is nondecreasing for a.e. r . Finally the last part follows as in the proof of Proposition 3.1. �

As one can see we did not use the Pohozhaev identity, as opposed to the monotonicity formula in
[Weiss 2003]. Spruck’s monotonicity formula enjoys a remarkable property.

Lemma 3.3. Let u be as in Proposition 3.1. Set S.x0; r;u/ for S.r/ defined by the sphere centered at
x0 2 @fu> 0g. Suppose xk 2 @fu> 0g such that xk ! x0. Then

lim sup
xk!x0

S.xk ; 0;u/� S.x0; 0;u/:

Proof. For given ı > 0 there is �0 > 0 such that S.x0; �;u/ � S.x0; 0;u/C ı whenever � < �0. Fix
such � and choose k so large that S.xk ; �;u/ < ıCS.x0; �;u/. From the monotonicity of S.xk ; �;u/ it
follows that

S.xk ; 0;u/� S.xk ; �;u/� ıCS.x0; �;u/

� 2ıCS.x0; 0;u/:

First letting xk ! x0 and then ı! 0 the result follows. �
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Lemma 3.4. Let S be the monotone quantity in (3-11). Then the following hold:

(i) s.x0;R;u/D .1=R
N /
R R

0 rN�1S.x0; r;u/ dr is monotone nondecreasing and

d

dR
s.x0;u;R/D

1

RNC1

Z R

0

rN S 0.x0;u; r/ dr � 0:

(ii) If the solution u� 0 is degenerate at x0 2 @fu> 0g then the set fu> 0g has well-defined Lebesgue
density ‚.x0; fu> 0g/ equal to

1

2M jB1j
s.x0; 0;u/D

1

2M jB1j
lim

R!0
s.x0;R;u/:

(iii) Suppose xk 2 @fu> 0g such that xk ! x0. Then

lim sup
xk!x0

s.xk ; 0;u/� s.x0; 0;u/:

Proof. It is easy to compute

s0.x0;R;u/D�
N

RNC1

Z R

0

rN�1S.x0; r;u/ dr C
S.x0;R;u/

R

D�
S.x0;R;u/

R
C

1

RNC1

Z R

0

rN S 0.x0;u; r/ dr C
S.x0;R;u/

R

D
1

RNC1

Z R

0

rN S 0.x0; r;u/ dr:

To prove the second claim notice that at the degenerate point x0 we have u.x/D o.jx�x0j/ by virtue
of the subharmonicity of u. Consequently /

R
BR.x0/

jruj2 D o.1/ as r ! 0 by virtue of the Caccioppoli
inequality. Therefore the only surviving term in S comes from 2M�fu>0g. The proof of the last claim is
analogous to that of Lemma 3.3. �

Lemma 3.5. Let 0 2 @fu> 0g and assume that u0D rg.�/, � 2SN�1, is a blow-up limit of u at 0 which
is homogeneous function of degree 1. ThenZ

SN�1

jr�gj2� .N � 1/

Z
SN�1

g2

�
D 0 if @fu> 0g is flat at 0;

� 0 otherwise:

Proof. Let .r; �/ be the spherical coordinates; then the Laplacian takes the form

4u" D @
2
rr u"C

N � 1

r
@r u"C

1

r2
4SN�1u":

Multiply both sides of �u" by rN�1u" and integrate over Œ0;R��SN�1 to get

I1.u"j / WD

Z R

0

Z
SN�1

u"@
2
rr u"r

N�1 d� dr

DRN�1

Z
SN�1

u"@r u"�

Z R

0

Z
SN�1

�
.@2

r u"/
2rN�1

C .N � 1/@r u"u"r
N�1

�
d� dr;
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I2.u"j / WD

Z R

0

Z
SN�1

u"@
2
r u"r

N�2 d� dr

DRN�2

Z
SN�1

.u"/
2

2
� .N � 2/

Z R

0

Z
SN�1

�
.u"/

2

2
rN�3

�
d� dr;

I3.u"j / WD

Z R

0

Z
SN�1

4SN�1u"u"r
N�3 d� dr D�

Z R

0

Z
SN�1

jr�u"j
2rN�3 d� dr:

Choosing a converging sequence u"j and letting "j ! 0 we get by virtue of Proposition A.2

lim
"j!0

Z
BR

ˇ"j u"j D lim
"j!0

ŒI1.u"j /C .N � 1/I2.u"j /C I3.u"j /�! I1.u/C .N � 1/I2.u/C I3.u/:

Suppose that uRk
is a blow-up sequence at the origin and uRk

! u0 D rg.�/; then

I1.u0/DRN

Z
SN�1

g2
�

RN

N

Z
SN�1

g2
�

N � 1

N
RN

Z
SN�1

g2
D 0;

I2.u0/DRN

Z
SN�1

g2

2
�

N � 2

N
RN

Z
SN�1

g2

2
D

RN

N

Z
SN�1

g2:

By Proposition A.5 and (A-2) there is a sequence ıj ! 0 such that uıj ! u0 and

lim
ıj!0

Z
B1

ˇıj uıj � kˇk1jfx 2 B1 W 0< uıj < ıj gj ! 0;

provided that u is flat at 0. Hence we have

lim
ıj!0

Z
B1

ˇıj uıj D
RN

N

�
.N � 1/

Z
SN�1

g2
�

Z
SN�1

jr�gj2
��
D 0 if @fu> 0g is flat at 0;

� 0 otherwise:
�

4. Proof of Theorem A

The first part of the theorem follows from Proposition 3.1. Since u is not degenerate at the origin, by
Propositions A.2 and A.5 u�k

.x/! u0.x/ locally uniformly and by Proposition 3.1 u0 is homogeneous
of degree 1. Write 4 in polar coordinates .r; �/ to obtain

4w D
1

r

@

@r
.rwr /C

1

r2

@

@�
.w� /:

In particular, writing u0 D rg.�/, this yields a second-order ODE for g,

gC Rg D 0: (4-1)

Suppose g.0/D g.�0/D 0 , �0 2 Œ0; 2�/; then (4-1) implies that g.�/D A sin � for some constant A,
consequently forcing �0 D � . Hence, since N D 2, we obtain that u0 must be linear; in other words the
free boundary @fu0 > 0g is everywhere flat. This in turn implies that in two dimensions the singular set
of the free boundary @fu0 > 0g is empty. Consequently, u0 is linear in fu0 > 0g and fu0 < 0g. From here
parts (2) and (3) of Theorem A follow from [Caffarelli et al. 1997, Propositions 5.3 and 5.1].
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So it remains to check (1). For the elliptic problem the only difference is that the limit function
M.x/ D limıj!0 Bıj .uıj / cannot have nontrivial concentration on the free boundary coming from
fx1 < 0g, as opposed to the parabolic case studied in [Caffarelli et al. 1997]. Observe that rB.uıj =ıj /D
ruıjˇıj .uıj /D 0 in B1 n f0< uıj < ıj g. By Proposition A.5 and (A-2) there is sequence 0< �j ! 0

such that .u"j /�j ! u0; "j=�j ! 0 and M.x/DM�fx1>0gCM0�fx1<0g. It follows from (A-3) thatZ
fx1>0g

M @1�C

Z
fx1<0g

M0 @1� D

Z
fx1>0g

˛2

2
@1� for all � 2 C10 .B1/: (4-2)

After integration by parts we obtain M0

R 1
�1 �.0;x2/ dx2 D

�
M � 1

2
˛2
� R 1
�1 �.0;x2/ dx2. This yields

M0 DM �
˛2

2
:

Next we claim that M0 D 0. Suppose M0 > 0; then I0 WD ft 2 R W B.t/ D M0g 6D ∅ and there
is a 2 .0; 1/ such that I0 � Œa; 1�: Since B.t/ is continuous and nondecreasing, it follows that there is
0< a0 < a such that uıj .x/=ıj 2 Œa0; 1� provided that j is sufficiently large.

Let

C D
�

x W
uıj .x/

ıj
2 Œa0; 1�

�
\fx1 < 0g\B1:

Then,
C � fx 2 B1 W a0ıj � uıj .x/� ıj g � f0< uıj < 2ıj g\B1:

But jf0< uıj < 2ıj g\B1j ! 0, which implies that M0 cannot be positive. �

5. The structure of the free boundary of blow-ups in R3

In this section we assume that u � 0 is a limit of u"j solving (P") for some sequence "j ! 0, u is
nondegenerate at some y0 2 @fu> 0g and u0 is a blow-up of u at y0. Note that by Corollary 3.2 u0 is a
homogeneous function of degree 1. If u0 is not a minimizer then it is natural to expect that the solutions
of (P") develop singularities in RN, N � 3.

We first prove a nondegeneracy result.

Lemma 5.1. Let x0 2 @fu0 > 0g be a free boundary point such that there is a ball B � fu0D 0g touching
@fu0 > 0g at x0 and ‚.x0; fu0 > 0g/� 1

2
. Then u0 is nondegenerate at x0 and

u0.x/D
p

2M .x�x0/
C
C o.x�x0/:

Proof. Let .u0/r D u0.x0C rx/=r . There is r0 such that

.u0/r D 0 in fx1 < �ıg\Q1; for all r � r0; (5-1)

for some small ı > 0, where Q1 D .�1; 1/3 is the unit cube. Moreover, there is Or0 > 0 such that

jf.u0/r > 0g\ fx1 > 0g\B1j

jB1j
> 1

2
� ı for all r � Or0: (5-2)
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x
j
1

�x
j
1

ƒ"j .x
j
1
/

C "j

�"j

Nx
"j
1

x1

Figure 1. The construction of the point . Nx"j
1
; �"j /. The purple region is C "j .

Fix r with these two properties (5-1) and (5-2). There exists 
 > 0 such that

jf.u0/r > 
 g\ fx1 > 0g\B1j

jB1j
> 1

2
� 2ı: (5-3)

Let v"j D .u"j /r , where u"j ! u0 (see Proposition A.5) and A"j D fv"j > 
=2g\ fx1 > 0g\B1. Since
v"j ! .u0/r uniformly (see Proposition A.2), it follows that there is j0.r/ such that for j � j0.r/ we
have

jA"j j> jB1j
�

1
2
� 2ı

�
: (5-4)

Let B"j D fx1 2 .�1;�ı/g \Q1 and �B"j D fx1 2 .ı; 1/g \Q1. Let C "j D A"j \ .�B"j /. Then we
have

jC "j j � jB1j
�

1
2
� 2ı

�
> 0:

Define ƒ"j .x1/D fx
0 W .x1;x

0/ 2 C "j g and f "j .x1/D jƒ
"j .x1/j. We claim thatˇ̌˚

x1 W f
"j .x1/ > jB1j

�
1
2
� 3ı

�	ˇ̌
> 0:

Indeed, if the claim fails then we have

jB1j
�

1
2
� 2ı

�
� jC "j j D

Z 1

ı

f "j .x1/ dx1 � jB1j
�

1
2
� 3ı

�
;

which is a contradiction.
Hence there is x

"j
1
2 .ı; 1/ such that f "j .x"j

1
/ > jB1j

�
1
2
� 3ı

�
. Now choose 0< a0 < a< b < b0 < 1

such that
ˇ.s/ > � for all s 2 Œa0; b0�:
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Let "0j D "j=r . We claim that there is �"j 2ƒ"j and Nx"j
1

such that

v"j

"0j
.x
"j
1
; �"j / 2 .a; b/:

Indeed, for sufficiently large j we have

a>
v"j

"0j
.�x

"j
1
;x0/D 0 for all x0 2ƒ"j .x

"j
1
/;

v"j

"0j
.x
"j
1
;x0/ >




2"0j
> b for all x0 2ƒ"j .x

"j
1
/;

provided that j > j1.r/; see Figure 1. Hence from the mean value theorem we see that the claim is true.
From the uniform Lipschitz continuity of the functions v"j it follows that there is a constant c0>0 such that

v"j

"0j
.x1;x

0/ 2 .a0; b0/ if jx1� Nx
"j
1
j< "0j c0; x0 2ƒ"j .x

"j
1
/:

Consequently we haveZ
B1

ˇ"0
j
.v"j /�

�

"0j

Z
jx1� Nx

"j

1
j<"0

j
c0

jƒ"j .x1/jdx1 �
�

"0j
.1� 3ı/2c0"

0
j D 2�jB1j.1� 3ı/c0 WD

zC :

Now the nondegeneracy follows from the proof of Part II of Theorem 6.3 in [Caffarelli et al. 1997]. The
asymptotic expansion follows from Theorem A and Proposition 3.1. �

Remark 5.2. Note that under the weaker assumption ‚.x0; fu0 > 0g/ > 0 the argument in the proof
of Lemma 5.1 still works. However for a self-crossing free boundary [Weiss 2003] (see Figure 2) the
assumptions of Lemma 5.1 may not be satisfied.

As an immediate corollary we have:

Corollary 5.3. Let x0 2 @fu0 > 0g be a point of reduced boundary. Then u0 is nondegenerate at x0.

Proof. Suppose that 0 2 @fu0 > 0g and @f.u0/r > 0g � B2 \ fjx � ej < "g for some unit vector e and
small " > 0. Here .u0/r D u0.rx/=r . Consider the family of balls B1=2.et/; t 2 Œ�"; "�. Then there

u> 0u> 0

O

Figure 2. Possible self-crossing free boundary which fails to satisfy the conditions of Lemma 5.1.
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is t" 2 Œ�"; "� such that B1=2.et"/ touches the free boundary at some point z0 2 B1 provided that " is
sufficiently small. Let �0 D t"e. Introduce the barrier function

w.x/D
'
�

1
2

�
�'.jx� �0j/

'
�

1
2

�
�'.1/

sup
B1.�0/

u0;

where '.jxj/D 1=jxjN�2. We have 4.u0�w/D4u0 � 0 in D D B1.�0/ nB1=2.�0/ and u0�w � 0

on @D. From the maximum principle we infer that u0 � w in D. But we have that the maximum of
u0�w is realized at z0. Hence from the Hopf lemma we get

�
p

2M D @�0
u0.z0/ > @�0

w.z0/D�
ˇ̌
'0
�

1
2

�ˇ̌supB1.�0/
u0

'
�

1
2

�
�'.1/

or

sup
B1.�0/

.u0/r �
p

2M
'
�

1
2

�
�'.1/ˇ̌

'0
�

1
2

�ˇ̌ : �

In the following definition we let �C.u/D fu> 0g and ��.u/D fu< 0g. Moreover, let

G.uC� ;u
�
� / WD .u

C
� /

2
� .u�� /

2
� 2M; (5-5)

where uC� and u�� are the normal derivatives in the inward direction � to @�C.u/ and @��.u/, respectively.
For more details see [Caffarelli and Salsa 2005, Definition 2.4].

Definition 5.1. Let � be a bounded domain of RN and let u be a continuous function in �. We say
that u is a viscosity solution in � if:

(i) �uD 0 in �C.u/ and ��.u/.

(ii) Along the free boundary @fu> 0g, the function u satisfies the free boundary condition in the sense that:

(a) If at x0 2 @fu> 0g there exists a ball B ��C.u/ such that x0 2 @B and

uC.x/� ˛hx�x0; �i
C
C o.jx�x0j/ for x 2 B; (5-6)

u�.x/� ˇhx�x0; �i
�
C o.jx�x0j/ for x 2 Bc ; (5-7)

for some ˛ > 0 and ˇ � 0, with equality along every nontangential domain, then the free boundary
condition is satisfied:

G.˛; ˇ/� 0:

(b) If at x0 2 @fu> 0g there exists a ball B ���.u/ such that x0 2 @B and

u�.x/� ˇhx�x0; �i
�
C o.jx�x0j/ for x 2 B;

uC.x/� ˛hx�x0; �i
C
C o.jx�x0j/ for x 2 @B;

for some ˛ � 0 and ˇ > 0, with equality along every nontangential domain, then

G.˛; ˇ/� 0:
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In our case ˇ D 0 and we have only uC. However, one has to check that the free boundary conditions
(a) and (b) in Definition 5.1 are satisfied.

Lemma 5.4. Let u0 be a blow-up of u at some nondegenerate point such that ‚.x; fu0 > 0g/ � 1
2

for
every x 2 @fu0 > 0g. Then u0 is a viscosity solution in the sense of Definition 5.1.

Proof. We have to show that the properties (a), (b) in Definition 5.1 hold. Suppose that B � fu0 > 0g

touches @fu0 > 0g at some point x0. Then it follows from Hopf’s lemma that u0 is nondegenerate
at x0. Consequently, if u00 is a blow-up at x0 then by Theorem A u00.x/D ˛xC

1
after some rotation of

coordinate system. Moreover 0< ˛ �
p

2M. Hence G.˛; 0/� 0.
Now suppose that B � fu0 D 0g and B touches @fu0 > 0g at z0. By Lemma 5.1 u0 is nondegenerate

at z0. Theorem A implies that any blow-up u00 of u0 at z0 must be u00.x/ D
p

2M xC
1

after some
rotation of coordinates. Hence G.

p
2M ; 0/� 0. �

5A. Properties of @fu0 > 0g. We want to study the properties of g. We first prove a Bernstein-type result
which is a simple consequence of a refinement of the Alt–Caffarelli–Friedman monotonicity formula [Alt
et al. 1984b; Caffarelli et al. 2000].

Lemma 5.5. Let u� 0 be a limit of solutions to (P"). Let u0D rg.�/, � 2SN�1, be a nontrivial blow-up
of u at some free boundary point. If there is a hemisphere containing supp g then the graph of u0 is a
half-plane.

Proof. Without loss of generality we assume supp g�SN�1
C DfX 2SN�1 WxN �0g. Let v.x1; : : : ;xN /D

u.x1; : : : ;�xN / be the reflection of u with respect to the hyperplane xN D 0. Then v is a nonnegative
subharmonic function satisfying the requirements of [Caffarelli et al. 2000, Lemma 2.3]. Thus

ˆ.r/D
1

r4

Z
Br

jru0j
2

jxjN�2

Z
Br

jrvj2

jxjN�2

is nondecreasing in r . Moreover

ˆ0.r/�
2ˆ.r/

r
Ar ; Ar D

CN

rN�1
Area.@Br n .supp u0[ supp v//:

Thus, if supp g digresses from the hemisphere by size ı > 0 then Ar � c.ı/ > 0. Hence integrating the
differential inequality for ˆ we see that ˆ grows exponentially, which is a contradiction since in view of
Proposition A.3 u0 is Lipschitz and hence ˆ must be bounded. �

It is convenient to define the following subsets of the free boundary:

�1=2 D
˚
x 2 @fu0 > 0g such that ‚.x; fu0 > 0g/D 1

2

	
; (5-8)

�1 D fx 2 @fu0 > 0g such that ‚.x; fu0 > 0g/D 1g; (5-9)

where ‚.x;D/ denotes the Lebesgue density of D at x. We will see that ‚.x; fu0 > 0g/ exists at every
nondegenerate point and equals either 1 or 1

2
.
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Lemma 5.6. Assume N D 3. Let x0 2 @fu0 > 0g n f0g be a nondegenerate free boundary point such that
the lower Lebesgue density satisfies ‚�.x0; fu0 � 0g/ > 0. Then there is a unit vector �0 such that

u0.x/D
p

2M Œ.x�x0/ � �0�
C
C o.x�x0/: (5-10)

In particular, x0 2 �1=2.

Proof. Set vk D u0.x0C�kx/=�k . Since u0 is nondegenerate at x0 it follows from a customary compact-
ness argument that vk!v and by virtue of Corollary 3.2 v is a homogeneous function of degree 1. We have

u0.x0C �kx/

�k

D u0.�
�1
k x0Cx/Dru0.�

�1
k x0Cx/.��1

k x0Cx/

D
1

�k

ru0.x0C �kx/.x0C �kx/; (5-11)

where the last line follows from the zero-degree homogeneity of the gradient; hence

�kvk.x/Dru0.x0C �kx/.x0C �kx/Drvk.x/.x0C �kx/: (5-12)

By the Lipschitz continuity of u0 it follows that vk is locally bounded. Consequently, for a suitable
subsequence of �k we have vkj ! v and rv.x/x0D 0. Without loss of generality we may assume that x0

is on the x3-axis, implying that v depends only on x1 and x2. Applying Proposition A.6 and Corollary 3.2
we conclude that S.x0; r;u0/ is nondecreasing and thus v must be homogeneous of degree 1. Indeed,
there is a sequence ıj ! 0 such that .u"j /�j ! v; ıj D "j=�j by Proposition A.6.

Finally, applying Theorem A and the assumption ‚�.x0; fu0 D 0g/ > 0 we see that v must be a
half-plane solution. It remains to note that the approximate tangent of @fu0 > 0g at x0 is unique and this
completes the proof. �

Lemma 5.7. We want to show that‚.x; fu0 > 0g/� 1
2

in some neighborhood of x0. Let x0 2 �1=2. Then
there exists r0 > 0 such that Br0

.x0/\ @fu0 > 0g is a C 1;˛ surface.

Proof. Let y0 2 @fu0 > 0g be a degenerate point. Suppose there is � > 0 such that u0 is degenerate
at every point of B�.y0/\ @fu0 > 0g. Since supp�u0 � @fu0 > 0g, it follows that u0 � 0 in B�.y0/.
Consequently, there is a sequence of nondegenerate points yk ! y0. Note that if yk is a nondegenerate
point then by Theorem A the Lebesgue density satisfies ‚.yk ; fu0 > 0g/� 1

2
.

Let uk
00

be a blow-up of u0 at yk . By Proposition A.6 for fixed k there are ık
j ! 0 such that

.u"k
j
/�k
j
! uk

00
, ık

j D "
k
j =�

k
j . Thus applying Theorem A it follows that uk

00
is a half-plane solution or

a wedge.
From scaling properties of Spruck’s monotonicity formula and Lemma 3.4 we get

s.0;yk ;u0/D s.1; 0;uk
00/D 2M vol.B1\fu

k
00 > 0g/D

�
2�M if yk is a wedge point,
�M otherwise:

(5-13)

Then applying Corollary 3.2 to uık
j

and using the semicontinuity of S, Lemma 3.3 together with Lemma 3.5,
we have

2M vol.B1\fu
k
00 > 0g/D lim sup

yk!y0

s.0;yk ;u0/� s.0;y0;u0/D 2M�‚.x0; fu0 > 0g/: (5-14)



CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS 187

Therefore we conclude that ‚.x; fu0 > 0g/� 1
2

for every free boundary point x in some neighborhood
of x0. By virtue of Lemma 5.4 u0 is a viscosity solution which is flat x0. Applying the “flatness-implies-
C 1;˛” regularity results from [Caffarelli 1987; 1989] the lemma follows. �

Next we prove a representation formula for 4u0.

Lemma 5.8. Let u0 be as in Lemma 5.5. Then:

(i) H2.�1=2\BR/ <1 for any R> 0.

(ii) Away from �1 the following representation formula holds:

4u0 D
p

2MH2
��1=2:

Proof. (i) For given x 2 �1=2 there is a Q�x > 0 such that

sup
Br .x/

u0 �
p

M r; r 2 .0; Q�x/: (5-15)

This follows from the asymptotic expansion in Lemma 5.6. Consequently, there is �0x > 0 such thatZ
Br .x/

4u0 �
p

M r2; r 2 .0; �0x/: (5-16)

Indeed, if this inequality is false then there is a sequence rj & 0 such thatZ
Brj

.x/

4u0 <
p

M r2
j :

Set vj .x/D u0.xC rj x/=rj . By (5-15) supB1
vj .x/�

p
M. Moreover, it follows from Lemma 5.6 that

vj .x/!
p

2M xC
1

in a suitable coordinate system, while
R

B1
4v�

p
M. However,

R
B1
4xC

1
D
p

2M �
2

and this is in contradiction with the former inequality. Putting N�xDmin.�0x; Q�x/ we see that the collection
of balls F D

S
B�x

.x/, x 2 �1=2 \ BR, �x < N�x , is a Besicovitch-type covering of �1=2 \ BR.
Consequently, there is a positive integer m > 0 and subcoverings F1; : : : ;Fm such that the balls in
each Fi , 1� i �m, are disjoint and �1=2\BR �

Sm
iD1 Fi . We have from (5-16)

4�R2
kru0k1 �

Z
@BR

@�u0 �

Z
B�x .x/2Fi

4u0 D

X
B�x .x/2Fi

Z
B�x .x/

4u0 �m
p

M
X

B�x .x/2Fi

�2
x :

This yields X
B�x .x/2

Sm
iD1 Fi

�2
x �

4kru0k1�R2

m
p

M
: (5-17)

Given ı > 0 small, suppose there is x 2 �1=2 such that N�x � ı. Then we choose �x < ı. Thus, in any case
we can assume that �x < ı. In view of (5-17) this implies that the ı-Hausdorff premeasure is bounded
independently of ı. This proves (i).
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(ii) From the estimate
p

M r2
�

Z
Br .x/

4u0 � 4�r2
kru0k; r 2 .0; N�x/; Br .x/\�1=2 � �1=2;

we see that there is a positive bounded function q such that 4u0 D qH2
��1=2. Using Lemma 5.6 we

conclude that q D
p

2M. �

Next we prove the full nondegeneracy of u0 near �1=2.

Lemma 5.9. Let u0 be as above and x0 2 �1=2. Then for any Br .x/ such that x 2 @fu0 > 0g, Br .x/\

@fu0 > 0g � �1=2, we have
sup

Br .x/

u0 �
p

2M�r:

Proof. By a direct computation we have

r�2

Z
@Br .x/

u0 D

Z r

0

dt

t2

Z
Bt .x/

4u0 �

Z r

0

1

t2

p
2M� t2

D
p

2M�r;

where the inequality follows from the representation formula and the fact that @fu0>0g is a cone; hence for
all t 2 .0; r/ we have H2.Br .x/\�1=2/� � t2. It remains to note that r�2

R
@Br .x/

u0 � supBr .x/
u0. �

5B. Weak solutions. Combining Lemmas 5.8 and 5.9 as well as Propositions A.2(iii) and A.3(i) we see
that u0 is a weak solution near �1=2 in the sense of [Alt and Caffarelli 1981, Definition 5.1]. Furthermore,
@fu0 > 0g n f0g is flat at each point.

Lemma 5.10. The blow-up u0 is a weak solution in the Alt–Caffarelli sense away from �1. Furthermore,
�1=2 is smooth.

Proof. All conditions in [Alt and Caffarelli 1981, Definition 5.1] are satisfied and u0 is flat at every point
z0 2 @fu0 > 0g n f0g thanks to (5-10). Applying Theorem 8.1 of the same paper we infer that �1=2 is
smooth at every z0 2 @fu0 > 0g n f0g. �

5C. Minimal perimeter. In this section we prove that the local perturbations S 0 � fu0 > 0g of a portion
S � �1=2 have larger H2 measure than S. This can be seen from the estimate jru0.x/j �

p
2M, which

follows from Lemma A.7. Since by Lemma 5.10 on �1=2 the free boundary condition jru0j D
p

2M is
satisfied in the classical sense, it follows that

0D

Z
D

4u0 D

Z
S

@�u0C

Z
S 0
@�u0 D

p
2MH2.S/C

Z
S 0
@�u0;

where D � fu0 > 0g such that @D D S [S 0. But
ˇ̌R

S 0 @�u0

ˇ̌
�
p

2MH2.S 0/ and thereby

H2.S/�H2.S 0/: (5-18)

The estimate for the perimeter can be reformulated as follows:

Theorem 5.11. Let N D 3. Then the components of �1=2 are surfaces of nonpositive outward mean
curvature. In particular, �1=2 is a union of smooth convex surfaces.
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Proof. Since u0 is a weak solution, by Lemma 5.10 �1=2 is smooth. If z0 2 �1=2 then choosing the
coordinate system in R3 so that x3-axis has the direction of the inward normal of fu0 > 0g at z0 and
considering the free boundary near z0 as a graph x3D h.x1;x2/, we can consider the one-sided variations
of the surface area functional. Indeed, let D�R2 be a open bounded domain in the x1x2-plane containing
z0 and assume t > 0, 0�  2 C1

0
.D/. Then from (5-18) we have

0�
1

t

Z
D

�p
1Cjrhj2�

p
1Cjr.h� t /j2

�
D

Z
D

2rhr � t jr j2p
1Cjrhj2C

p
1Cjr.h� t /j2

!

Z
D

rhr p
1Cjrhj2

as t ! 0: (5-19)

Therefore

div
�

rhp
1Cjrhj2

�
� 0

and, noting that �1=2 is a cone, the result follows. �

5D. Full nondegeneracy.

Lemma 5.12. Assume that N D 3 and let u0 be a nontrivial blow-up of u such that the measure-theoretic
boundary of fu0 > 0g is nonempty. Then @fu0 > 0g n f0g � �1=2. In particular the set of degenerate
points of @fu0 > 0g is empty.

Proof. Let u0 be a blow-up of u at 0. Since u is nondegenerate at 0, it follows that u0 does not vanish
identically. Hence there is a ball B � fu0 > 0g touching @fu0 > 0g at some point z0 2 @fu0 > 0g \B.
By Hopf’s lemma, the Lipschitz estimate Proposition A.3(i) and asymptotic expansion [Caffarelli 1989,
Lemma A1] it follows that u0 is not degenerate at z0. Consequently, the set of nondegenerate points of
u0 is not empty.

Suppose that S is a component of @fu0 > 0g containing a point of measure-theoretic boundary of
fu0 > 0g. Note that by Lemma 5.7 and Theorem 5.11 S is a smooth convex surface. Let x0 2 @S , x0 6D 0.
Then either (a) x0 2 �1 or (b) u0 is degenerate at x0.

We first analyze the case (a). Let ` be the ray passing through x0 and … the tangent half-plane to S

along `. First note that u0 is nondegenerate at x0 becauseZ
Br .x0/

�u0 �

Z
Br .x0/\S

�u0 �
p

2MH2.S \Br .x0//�
p

2M
�r2

2

for sufficiently small r . Consequently

1

R2

Z
@BR

u0 D

Z R

0

1

r2

Z
Br .x0/

�u0 �
p

2M
�r2

2
R: (5-20)

Let u00 be a blow-up of u0 at x0. Then from Theorem A it follows that u00 is two-dimensional. Moreover
…� @fu00 > 0g, fu00 > 0g has unit density at 0, and the interior of fu00D 0g near … is not empty. Note
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O

x0

`

S1

S

…

Figure 3. The structure of the free boundary near the point x0.

that the interior of the set fu0 D 0g propagates to x0 along another component S1 of measure-theoretic
boundary; see Figure 3. Consequently, near …, we have u00.x/ D

p
2M xC

1
after some rotation of

coordinates. From the unique continuation theorem it follows that u00.x/D
p

2M xC
1

everywhere, which
is in contradiction with the fact that fu00 > 0g has unit density at 0.

As for the case (b), (5-20) shows that u0 is nondegenerate at x0 as long as x0 is on the boundary of S. �

5E. Properties of �1=2.

Lemma 5.13. Suppose u0 is not degenerate at x0 2 @fu0 > 0g n f0g, such that ‚�.x0; fu0 D 0g/ > 0.
Then there is a unique component C of @fu0 > 0g containing x0 such that C� �1=2.

Proof. We only have to show the uniqueness of C; the rest follows from Lemmas 5.6 and 5.7. Suppose
there are two components of @fu0 > 0g n f0g, C1 and C2, containing x0. From the dimension-reduction
argument as in the proof of Lemma 5.6, it follows that C1 and C2 have the same approximate tangent
plane at x0. This is in contradiction with our assumption ‚�.x0; fu0 D 0g/ > 0. �
Lemma 5.14. Let C be a component of @fu0 > 0g such that C\�1=2 6D∅. Then C n�1=2 D∅; in other
words all points of C are in �1=2.

Proof. By Lemma 5.12 C cannot have degenerate points; thus we have to show that �1=2 cannot have
limit points in �1. Note that �1=2 is of locally finite perimeter (see Lemma 5.8(i)) and hence locally it
is a countable union of convex surfaces. Let x0 2 �1 \C be a limit point of �1=2 \C. The generatrix
of the cone @fu0 > 0g passing through x0 splits C into two parts, one of which must be convex near x0

because by assumption x0 is a limit point of �1=2; see Theorem 5.11. The set fu0D 0gı propagates to x0

because �1=2 is a subset of reduced boundary. Thus, there is another subset of �1=2 approaching x0, and
it is a part of the topological boundary of fu0 D 0gı. Therefore, the ray passing through x0 is on the
boundaries of two convex pieces of @fu0 > 0g (near x0). Note that if these pieces of �1=2 contain flat
parts then from the unique continuation theorem we infer that @fu0 > 0g cannot have singularity at 0.
Thus, they cannot contain flat parts and consequently the density of fu0 > 0g at x0 cannot be 1, because
by convexity of �1=2 it follows that fu0 � 0gı has positive density at x0. But this is in contradiction with
the assumption x0 2 �1. �
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Summarizing we have:

Proposition 5.15. Let u0 be as above and N D3. Then @fu0>0gnf0g is a union of smooth convex cones.

5F. Proof of Theorem B. The first part of Theorem B follows from Lemma 5.12, while the second part is
a corollary of Lemma 5.14 since �1=2 coincides with the reduced boundary. Finally, the last part follows
from Lemma 5.10, because by Lemma 5.14 the reduced boundary propagates instantaneously in @fu0> 0g.

6. Proof of Theorem C

6A. Inverse Gauss map and the support function. Suppose N D 3 and uD rg.�; �/, where

x D r.sin � cos�; sin � sin�; cos �/:

Then

4u0 D
1

r

�
g�� C

cos �
sin �

g� C
g��

sin2 �
C 2g

�
:

Note that

4S2g D g�� C
cos �
sin �

g� C
g��

sin2 �

is the Laplace–Beltrami operator. Thus we get

4S2gC 2g D 0: (6-1)

Let H.n/, n 2 SN�1, be the Minkowski support function of some hypersurface M. H.n/ is the distance
between the point on M with normal n and the origin. It is known [Alexandroff 1939] that the eigenvalues
of the matrix

r
2
ij H.n/C ıij H.n/

are the principal radii of curvature of the surface determined by H, where the second-order derivatives
are taken with respect to an orthonormal frame at n 2 SN�1. The support function uses the inverse of the
Gauss map to parametrize the surface as

H.n/DG�1.n/ � n:

Furthermore, we have the following formula for the Gauss curvature K [Alexandroff 1939]:

1

K
D det.r2

ij H.n/C ıij H.n//: (6-2)

The Gauss map is a local diffeomorphism whenever K 6D 0 [Langevin and Rosenberg 1988]. Since
u0 D rg is harmonic in fu0 > 0g, we infer that g is smooth on S2\fg > 0g.

Remark 6.1. In higher dimensions (6-1) becomes

�SN�1gC .N � 1/g D

N�1X
iD1

1

ki
D
�N�2.k/

�N�1.k/
D 0; �m D

X
i1<i2<���<im

ki1
ki2
� � � kim

; (6-3)
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where �m.k/ is the m-th elementary symmetric function and ki , i D 1; : : : ;N � 1, are the principal
curvatures. Observe that any positive function g > 0 satisfying the equation �SN�1gC .N � 1/g D 0

defines an .N�2/-minimal surface (i.e., �N�2.k/ D 0) provided that the Gauss curvature satisfies
�N�1 6D 0. From here we infer that the spherical parts of the homogeneous stationary points of the
Alt–Caffarelli functional are support functions of an .N�2/-capillary surface in SN�1, because they are
solutions to (6-3).

6B. Catenoid is a solution. Alt and Caffarelli [1981, page 110] constructed a weak solution which is
not a minimizer. Their solution can be given explicitly as follows: let

x D r.sin � cos�; sin � sin�; cos �/

and take

u.x/D r max
�
f .�/

f 0.�0/
; 0

�
;

where

f .�/D 2C cos � log
�

1� cos �
1C cos �

�
D 2C cos � log

�
tan2 �

2

�
and �0 is the unique zero of f between 0 and �

2
. The aim of this section is to show that f is the support

function of catenoid. Recall that the principal radii of curvature of a smooth surface are the eigenvalues
of the matrix r2

SN�1H C ıij H, where the Hessian is taken with respect to the sphere SN�1 [Alexandroff
1939]. At each point where the Gauss curvature does not vanish, the zero mean curvature condition for
N D 3 can be written as

4S2H C 2H D 0;

where 4S2 is the Laplace–Beltrami operator and H.n/ is the value of Minkowski’s support function
corresponding to the normal n 2 S2. From now on let us consider the .x;y/-variables on R2. Recall
that by rotating the graph of y.x/ D a cosh.x=a/ around the x-axis one obtains a catenoid for some
constant a. Thus it is enough to compute the support function for the graph of y. Let ˛ be the angle
the tangent line of y at .x;y.x// forms with the x-axis. If n is the unit normal to the graph of y then
nD .� sin˛; cos˛/ and

H.n/D .x;y.x// � nD�x sin˛C a cos˛ cosh
x

a
:

Noting that the unit tangent at .x;y.x// is .cos˛; sin˛/ and equating with the slope of tangent line,
which is .sinh.x=a/;�1/, we obtain

cos˛ D
sinh.x=a/

p
1C sinh2.x=a/

; sin˛ D�
1

p
1C sinh2.x=a/

:

From second equation we get that sinh.x=a/D tan˛ and solving the quadratic equation e2.x=a/� 1D

2e.x=a/ tan˛ we find that

x D a log
1C sin˛

cos˛
; cosh

x

a
D

1

cos˛
:
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Consequently,

H.n/D�
a

2
sin˛ log

�
1C sin˛

cos˛

�2

C a:

Taking ˛ D � C �
2

we have

1C sin˛
cos˛

D
1C cos �
� sin �

D
2 cos2 �

2

�2 sin �
2

cos �
2

D� cot
�

2

and thus choosing aD 2 the result follows.

6C. Almost minimal immersions. Consider the parametrization X W Ug! R3, where

X.n/D ng.n/CrS2g; Ug D fg > 0g � S2: (6-4)

Let M be the hypersurface determined by X. The spherical part g of u0 solves (6-1) and by [Reznikov
1992, Theorem 1] X determines a smooth map which is either constant or a conformal minimal immersion
outside a locally finite set of isolated singularities (branch points). Recall that if at some point p

X�1
�X�2

D 0; XD X.�1; �2/ in local coordinates �1; �2; (6-5)

then p is called branch point; see [Nitsche 1989, page 314].
Observe that X.n/ is the gradient of the blow-up u0 at nD x=jxj. Indeed,

X.n/D
n

r
rgC

1

r
rS2.rg/D

n

r
u0.x/C

1

r
rS2u0

D
n

r
.ru0.x/ �x/C

1

r
rS2u0 D n

�
ru0.x/ �

x

jxj

�
C

1

r
rS2u0 Dru0.x/: (6-6)

In particular, the computation above shows that

ru0.x/Dru0

�
x

jxj

�
; rS2g.n/? nI (6-7)

in other words the gradient is homogeneous of degree 0.
The absence of branch points does not rule out the possibility of self-intersection. Therefore we need

to prove that under conditions of Theorem C M is embedded.

6D. Dual cones and center of mass. If u0 is a blow-up and the assumptions in Theorem C are satisfied,
then by virtue of Proposition 5.15 the free boundary @fu0 > 0g n f0g is a union of smooth convex cones
C1 and C2. We define the dual cones as

C?i D @fy 2 R3
W x �y � 0; x 2 Cig; i D 1; 2: (6-8)

It is well known that the dual of a convex cone is also convex [Schneider 2014, page 35].

Lemma 6.2. The largest principal curvature of Ci n f0g is strictly positive.
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Proof. To fix the ideas, we prove the statement for C1. Note that one of the principal curvatures of C1nf0g

is zero because C1 is a cone and C1 n f0g is smooth; see Theorem B. Let �.p/ be the largest principal
curvature at p 2 C1 n f0g. Suppose there is p such that �.p/D 0. Choose the coordinate system at p so
that x1 points in the outward normal direction at p (into fu0 � 0g), the x2-axis is tangential at p and is
the principal direction corresponding to �.p/. Then we have ru0.p/D e1, where e1 is the unit direction
of the x1-axis, and the mean curvature of C1 at p vanishes because we assumed that �.p/D 0. Writing
the mean curvature at p in terms of the derivatives of u0 we have

0D
ru0D2u0.ru0/

T � jru0j
24u0

jru0j
3

D
@11u0
p

2M
;

implying that @11u0 D 0. Moreover, since u0 is homogeneous of degree 1, ru0 D e1 along the x1-axis.
This yields @13u0 D @23u0 D @33u0 D 0 along the x1-axis. From the harmonicity of u0 it follows that
@22u0 D 0 along the x3-axis. Summarizing, we have that along the points of the x3-axis the Hessian of
u0 has the form 0@ 0 @12u0 0

@12u0 0 0

0 0 0

1A :
Finally, letting �.t/, t 2 .�ı; ı/, be the parametrization of the curve along which the x1x2-plane intersects
C1 and differentiating jru0.�.t//j D 1 in t we get that at p one must have

0D e1

0@ 0 @12u0 0

@12u0 0 0

0 0 0

1A e2 D @12u0.p/:

Thus, the Hessian D2u0 vanishes along the x1-axis. The function w D
p

2M � @1u0 is harmonic in
fu0 > 0g and w � 0 thanks to Lemma A.7. Moreover, w.e1/D 0Dminw. Since at e1 the free boundary
is regular, by Hopf’s lemma @1w D �@11u0 6D 0. However, D2u0.te1/D 0 for every t > 0 and hence
@11w.e1/D 0, which is a contradiction. �
Remark 6.3. It follows from Lemma 6.2 and Theorem B that there are two positive constants �0; �1 such
that

0< �0 � �.p/� �1; p 2 .@fu0 > 0g n f0g/\ @Bp
2M
;

where �.p/ is the largest curvature of @fu0 > 0g at p 2 .@fu0 > 0g n f0g/\ @Bp
2M

.

Let us put 
i D S2\C?i .

Lemma 6.4. Let C?
1
;C?

2
be the dual cones (6-8). Then we have:

(i) @M is differentiable and there are two positive constants �?
0
; �?

1
such that the largest curvature �?.p/

of .C?i n f0g/\S2 satisfies �?
0
� �?.p/� �?

1
.

(ii) There is ı > 0 small such that every component Eı of @B1�ı \M defines a convex cone Kı D f� t W

� 2Eı; t > 0g,

(iii) M is star-shaped with respect to the origin and hence embedded.
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Proof. Suppose that C?
1

is not differentiable at some z 6D 0. Then Ci must have a flat piece. Indeed, if
n1; n2 are the normals of two supporting hyperplanes of C?i at z then the unit vectors

nt D
tn1C .1� t/n2

jtn1C .1� t/n2j

define a support function at z for every t 2 .0; 1/. Since the vectors nt lie on the same plane, C1 must
have a flat piece. The unique continuation theorem implies that the free boundary is a hyperplane and
cannot have singularities. Now the desired estimate follows from Remark 6.3 and the definition of dual
cone. The first claim is proved.

Let k1; k2 be the principal curvatures of M. Then k1 C k2 D 0 and the Gauss curvature is K D

�k2
1
D �k2

2
. Since M is a smooth immersion, from (6-2) and the smoothness of X D ru0 in Ug we

see that K 6D 0. Furthermore, there is a tame constant c0 > 0 such that k2
i � c0, i D 1; 2, at every point

of M. Thus by virtue of the part (i) M is fibered by @B1�ı for ı > 0 small. We claim that jX.n/j > 0,
n 2 U g. Clearly this is true if n 2 @Ug, where jX.n/j D 1. Suppose there is n 2 Ug such that X.n/D 0.
Since X.n/D ngCrS2g, it follows that g.n/D 0, but this is impossible since n 2 fg > 0g D Ug. From
g.n/D X.n/ � n> 0, n 2 Ug, it follows that M is star-shaped with respect to the origin. Consequently,
M is fibered by @Bt for every t 2 .0; 1/ and hence embedded. �

Let n 2 Ug. Then from X.n/Dru0.n/ it follows that

jX.n/j@fu0>0gj D jru0j@fu0>0gj D
p

2M :

Since by Lemma 6.4 M is differentiable along 
i , we see that the contact angle ˛ between M and S2 is

cos˛ D n �
X.n/j@fu0>0g
p

2M
D g.n/j@fu0>0g D 0:

Thus, the minimal surface defined by g is inside of the sphere of radius
p

2M because in view of
Lemma A.7 jru0j

2 D g2 C jrgj2 � 2M. Moreover, M is tangential to C?
1

and C?
2

along S2 since
n?rS2g by (6-7).

We recall the definition of topological type Œ"; r; �� of hypersurface M � R3 from [Nitsche 1985,
page 47].

Definition 6.1. We say that M is of topological type Œ"; r; �� if it has orientation ", Euler characteristic �,
and r boundary curves. Here "D˙1, where C1 means that M is orientable and "D�1 is nonorientable.
For an orientable surface the Euler characteristic is defined by the relation �D 2� 2g� r , where g is the
genus of M.

Now the first part of Theorem C follows from Nitsche’s theorem [1985, page 2]. Moreover, the only
stationary surfaces of disk type are the totally geodesic disks and the spherical cups. From Lemma 5.5 it
follows that if u0 D rg and supp g is a disk then u0 is a half-plane.

In view of Lemma 6.4(iii) the proof of Theorem C can be deduced from the result of [Nitsche 1962]
but we will sketch a shorter proof based on Aleksandrov’s moving plane method and Serrin’s boundary
lemma. We reformulate Theorem C as follows:
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Lemma 6.5. Let M be of topological type Œ1; 2; 0�, i.e., a ring-type minimal surface. Then M is a part of
a catenoid.

Proof. By Lemma 6.4(iii) M is embedded. In particular, X is a conformal minimal immersion (see the
discussion in Section 6C).

Let @MD 
1[ 
2. Then applying Stokes’ formula we haveZ
M

4MXD

Z
@M

n� ds D

Z

1

n�C

Z

2

n� ds; (6-9)

where n� is the outward conormal, i.e., n� is tangent to M and normal to @M; see [Fang 1996, page 81].
Since X is minimal, 4MXD 0. Thus Z


1

n� dsC

Z

2

n� ds D 0: (6-10)

Since M is tangential to C?i it follows that the conormal n� on 
i points in the direction of the generatrix
of the dual cone C?i . Observe that if we use the arc-length parametrization of 
i and let sk 2 Œ0; j
i j� be
some partition points then the sums Sm D

Pm
kD0 n�i

k
.skC1� sk/, n�i

k
2 C?i , approximate the boundary

integrals in (6-9). Consequently the vector Sm is strictly inside of the cone C?i and in the limit converges
to the center of mass of 
i computed with respect to the origin (the vertex of the cone). In view of (6-10)
there is a diameter of S2 strictly inside of both dual cones C?

1
and C?

2
.

Without loss of generality we assume that the diameter passes through the north and south poles.
Now we can apply Aleksandrov’s moving plane method and Serrin’s boundary point lemma to finish the
proof. Let …t be the family of planes containing the x1-axis where t measures the angle between …t

and x3-axis.
Now start rotating …t about the x1-axis starting from a position when …t is a support hyperplane to

either of the cones C?
1
;C?

2
and …t \C?i 6D∅, i D 1; 2.

Case 1: If the first touch of M and its reflection eM with respect to the plane …t occurs at some interior
point of M, then from the maximum principle it follows that MD eM.

By Lemma 6.4, both dual cones are strictly convex. Moreover, we claim that for ı small the cones
generated by M\ @B1�ı are convex, otherwise the inflection point would propagate to C?i .

The two remaining possibilities are:

Case 2: The first touch of M and its reflection eM occurs at some boundary point where @M is perpendicular
to …t .

Case 3: The first touch of M and its reflection eM occurs at some boundary point where @M is not lying
on …t .

We cannot directly apply Serrin’s boundary point lemma [1971] because @M is only C 1;1 by virtue of
Lemma 6.4. However, from the fibering of M near @M we conclude that Qg � g near the contact point,
where Qg is the support function of zM. Thus QuD r Qg � rg D u. Hence applying Serrin’s boundary point
lemma to the harmonic functions Qu and u we conclude that MD eM.
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Choosing …t to be an arbitrary family passing through a line perpendicular to the diameter it follows
that 
1; 
2 are circles and (6-10) forces them to lie on parallel planes. Applying [Schoen 1983, Corollary 2]
we infer that M is a part of catenoid. �

Appendix

This section contains some well-known results about the solutions of the singular perturbation problem (P").
We begin with the uniform Lipschitz estimates of Luis Caffarelli; see [Caffarelli 1995] for the proof.

Proposition A.1. Let fu"g be a family of solutions of (P"). Then there is a constant C depending only on
N; kˇk1 and independent of " such that

kru"kL1.B1=2/ � C: (A-1)

As a consequence we get that one can extract converging sequences fu"n
g of solutions of (P") such

that the limit functions are stationary points of the Alt–Caffarelli problem.

Proposition A.2. Let u" be a family of solutions to (P") in a domain D � RN. Let us assume that
ku"kL1.D/ �A for some constant A> 0 independent of ". For every "n! 0 there exists a subsequence
"n0 ! 0 and u 2 C

0;1
loc .D/ such that

(i) u"n0
! u uniformly on compact subsets of D,

(ii) ru"n0
!ru in L2

loc.D/,

(iii) u is harmonic in D n @fu> 0g.

Proof. See [Caffarelli et al. 1997, Lemma 3.1]. �

Next, we recall the estimates for the slopes of some global solutions.

Proposition A.3. Let u be as in Proposition A.2. Then the following statements hold true:

(i) u is Lipschitz.

(ii) If u"j !uD˛xC
1

locally uniformly, then 0�˛�
p

2M (see [Caffarelli et al. 1997, Proposition 5.2]).

(iii) If u"j ! u D ˛xC
1
� 
x�

1
C o.jxj/ and 
 > 0 then ˛2 � 
 2 D

p
2M (see [Caffarelli et al. 1997,

Proposition 5.1]). In this lemma the essential assumption is that 
 > 0.

Remark A.4. Observe that if u.x/D ˛xC
1
C N̨x�

1
then we must necessarily have that ˛ D N̨ �

p
2M ;

see [Caffarelli et al. 1997, Proposition 5.3]. In this case the interior of the zero set of u is empty. Thus
one might have a wedge-like solution.

Using Proposition A.1 we can extract a sequence u"j for some sequence "j such that u"j !u uniformly
in B1=2; see Proposition A.2. Let u be a limit and 0<�j # 0 and uj .x/Du.x0C�j x/=�j , x0 2 @fu> 0g.
Thanks to Proposition A.3(i) we can extract a subsequence, still labeled �j , such that uj converges to
some function u0 defined in RN. The function u0 is called a blow-up limit of u at the free boundary
point x0 and it depends on f�j g.



198 ARAM L. KARAKHANYAN

The two propositions to follow establish an important property of the blow-up limits, namely that the
first and second blow-ups of u can be obtained from (P") for a suitable choice of parameter ". Observe
that the scaled function r.u"j /�n

satisfies the equation

4.u"j /�j D
�j

"j
ˇ

�
�j

"j
.u"j /�j

�
: (A-2)

Taking ıj D "j=�j ! 0 we see that .u"j /�j is solution to 4uıj D ˇıj .uıj /.

Proposition A.5. Let u"j be a family of solutions to (P") in a domain D � RN such that u"j ! u

uniformly on D and "j ! 0. Let x0 2 D \ @fu > 0g and let xn 2 @fu > 0g be such that xn ! x0 as
n!1. Let �n! 0, u�n

.x/D .1=�n/u.xnC�nx/ and .u"j /�n
D .1=�n/u"j .xnC�nx/. Assume that

u�n
! U as n!1 uniformly on compact subsets of RN. Then there exists j .n/!1 such that for

every jn � j .n/ it holds that "j=�n! 0 and

� .u"jn /�n
! U uniformly on compact subsets of RN,

� r.u"jn /�n
!rU in L2

loc.R
N /,

� ru�n
!rU in L2

loc.R
N /.

Proof. See [Caffarelli et al. 1997, Lemma 3.2]. �

Finally, recall that the result of the previous proposition extends to the second blow-up.

Proposition A.6. Let u"j be a solution to (P") in a domain Dj � DjC1 and
S

j Dj D RN such that
u"j ! U uniformly on compact sets of RN and "j ! 0. Let us assume that for some choice of positive
numbers dn and points xn 2 @fU > 0g, the sequence

Udn
.x/D

1

dn
U.xnC dnx/

converges uniformly on compact sets of RN to a function U0. Let

.u"j /dn
D

1

dn
u"j .xnC dnx/:

Then there exists j .n/!1 such that for every jn � j .n/, it holds that "jn
=dn! 0 and

� .u"jn /dn
! U0 uniformly on compact subsets of RN,

� r.u"j /dn
!rU0 in L2

loc.R
N /.

Proof. See [Caffarelli et al. 1997, Lemma 3.3]. �

The next lemma contains one of the crucial estimates needed for the proof of Proposition 5.15.

Lemma A.7. Let u� 0 be as in Proposition A.2. Then

lim sup
x!x0;u.x/>0

jru.x/j �
p

2M :
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Proof. To fix the ideas we let x0 D 0 and l D lim supx!0;u.x/>0 jru.x/j. Suppose l > 0, otherwise we
are done. Choose a sequence zk ! 0 such that u.zk/ > 0 and jru.zk/j ! l . Setting �k D jyk � zk j,
where yk 2 @fu > 0g is the nearest point to zk on the free boundary and proceeding as in the proof of
[Alt et al. 1984a, Lemma 3.4] we can conclude that the blow-up sequence uk.x/ D �

�1
k

u.zk C �kx/

has a limit u0 (at least for a subsequence, thanks to Proposition A.1) such that u0.x/ D lx1, x1 > 0,
in a suitable coordinate system. Moreover, by Proposition A.5 it follows that u0 is a limit of some u�j
solving 4u�j D ˇ�j .u�j / in Brj ; rj !1. If there is a point z 2 fx1 D 0g and r > 0 such that u0 > 0 in
Br .z/\fx1 < 0g then near z we must have u0.x/D l.x� z/C

1
C l.x� z/�

1
C o.x� z/; see Remark A.4.

Applying the unique continuation theorem to u0.x/� u0.�x1;x2; : : : ;xn/ we see that u0 D l.�x1/
C,

x1 < 0. Thus recalling Remark A.4 again we infer that l �
p

2M. �
Finally, we mention a useful identity for the solutions u"; see [Caffarelli et al. 1997, equation (5.2)]:

Let u" be a solution of (P"). Then for any � 2 C1
0
.B1/ there holdsZ �

jru"j
2

2
CB

�
u"

"

��
@1� D

Z X
k

@ku" @1u"@k�: (A-3)
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