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CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS

ARAM L. KARAKHANYAN

We prove some Bernstein-type theorems for a class of stationary points of the Alt—Caffarelli functional in
R? and R? arising as limits of the singular perturbation problem

{Aus(x) = Be(ue) in By,

lue] <1 in By,

in the unit ball By as ¢ — 0. Here B¢(1) = (1/¢)B(t/e) = 0, B € C5°[0, 1], fol B)dt =M > 0,is an
approximation of the Dirac measure and ¢ > 0. The limit functions u = lim,; ¢ #¢; of uniformly con-
verging sequences {u & } solve a Bernoulli-type free boundary problem in some weak sense. Our approach
has two novelties: First we develop a hybrid method for stratification of the free boundary d{uo > 0} of
blow-up solutions which combines some ideas and techniques of viscosity and variational theory. An
important tool we use is a new monotonicity formula for the solutions u, based on a computation of
J. Spruck. It implies that any blow-up u¢ of u either vanishes identically or is a homogeneous function
of degree 1, that is, ug = rg(o), o € SN=1 in spherical coordinates (r, 8). In particular, this implies
that in two dimensions the singular set is empty at the nondegenerate points, and in three dimensions
the singular set of u is at most a singleton. Second, we show that the spherical part g is the support
function (in Minkowski’s sense) of some capillary surface contained in the sphere of radius ~/2M. In
particular, we show that Vi : S — R? is an almost conformal and minimal immersion and the singular
Alt—Caffarelli example corresponds to a piece of catenoid which is a unique ring-type stationary minimal
surface determined by the support function g.

1. Introduction

In this paper we study the singular perturbation problem

Aug(x) = Be(ue) %n By, (Py)
lug] <1 in By,
where ¢ > 0 is a small parameter,

Be(1) = (1/e)B(1/¢).
ﬁ(t) Z O’ Suppﬂ - [O’ 1]’ (1_1)
[y Bydt =M >0

is an approximation of the Dirac measure, and B; C R¥ is the unit ball centered at the origin. It is well

known that (P;) models propagation of equidiffusional premixed flames with high activation of energy
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[Caffarelli 1995]. Heuristically, the limit o = limg, o #s; (for a suitable sequence ¢; — 0) solves a
Bernoulli-type free boundary problem with the free boundary condition

|Vu™|?> —|Vu~|*> =2M.

If the functions {u,} are also minimizers of

2 t
Jelute] = /Q AL +B(%), B(t) = /0 B(s) ds. (1-2)

then the limits of {u.} inherit the generic features of minimizers (e.g., nondegeneracy, rectifiability
of d{u > 0}, etc.). Consequently, the limits of uniformly converging sequences {ug, } as &; — 0 are
minimizers of the Alt—Caffarelli functional J[u] = [’ B, |Vu|?> +2M X{u>0}- It is known that the singular
set of minimizers is empty in dimensions 2, 3 and 4; see [Alt and Caffarelli 1981; Caffarelli et al. 2004;
Jerison and Savin 2015]. However, if u#, is not a minimizer then the analysis of the limits of u presents a
more delicate problem. The main difficulty in carrying out such analysis is that the free boundary may
contain degenerate points [Weiss 2003].

This paper is devoted to the study of the blow-ups of the limits of the singular perturbation problem
(Pe) and establishes a new and direct connection with minimal surfaces. In particular, we show that
every blow-up of a limit function u = limg, o #g; in R3 (for an appropriate sequence & j) defines an
almost conformal and minimal immersion which is perpendicular to the sphere of radius ~/2M , where
M = fol B(1) dt. In other words, one obtains a capillary surface inside the sphere of radius v/2M.

Our first result is:

Theorem A. Let uy; — u locally uniformly in By for some subsequence ¢;. Then any blow-up of u at a
free boundary point xo € d{u > 0} is either identically zero or a homogeneous function of degree 1. In
particular, if N = 2 and u is not degenerate at xo € d{u > 0} then every blow-up of u at xo must be one
of the following functions (after some rotation of coordinates):

(1) v/2M x1+, a half-plane solution provided that there is a measure-theoretic normal at x,
(2) awedge a|xq|, 0 <a < 2M,
(3) a two-plane solution ozxfr —Bx7, a?>—B%2=2M, a,B > 0.

In order to prove Theorem A we will introduce a monotone quantity based on a computation of Joel
Spruck [1983]. From Theorem A it follows that in R? the blow-up limits at nondegenerate free boundary
points can be explicitly computed. It is worthwhile to note that the minimizers of

Jlu) = /B Vul + 2Mxgno) (1-3)
1

are nondegenerate; i.e., for each subdomain ' € B there is a constant ¢o > 0 depending on dist(d By, 02’),
N, M, such that

sup ut >cor forall xg € d{u>0yNQ’, B,(x9) C Bj. (1-4)
By (x0)



CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS 173

However, if u, is any solution of (P,) then nondegeneracy may not be true. There is a sufficient condition
[Caftarelli et al. 1997, Theorem 6.3] that implies (1-4).

Some well-known examples demonstrate rather strikingly that for the stationary case there are wedge-
like global solutions for which the measure-theoretic boundary of {# > 0} is empty. This is impossible for
minimizers. In fact, the zero set of a minimizer has uniformly positive Lebesgue density. In this respect
Theorem A only states that if u is nondegenerate at x( then the blow-up is a nontrivial cone.

The existence of wedge solutions, see [Caffarelli et al. 1997, Remark 5.1], suggests that some further
assumptions are needed to formulate the free boundary condition. For instance, one may assume that the
upper Lebesgue density at x € d{u > 0} satisfies ©*(x, {u > 0}) < 1; i.e., the upper density measure is
not covering the full ball. We emphasize that for some solutions the topological and measure-theoretic
boundaries may not coincide. Our next result addresses the degeneracy and wedge-formation in R3 of
blow-ups at free boundary points.

Theorem B. Suppose N = 3. Let u > 0 be a limit of some uniformly converging sequence {ue; } solving
(Pe) such that u is nondegenerate at yo € 0{u > 0}. Let ug be a blow-up of u at yo. If € is a component
of 3{ug > 0} such that the measure-theoretic boundary of {ug > 0} in € is nonempty then

(1) all points of € are nondegenerate,
(2) € is a subset of the measure-theoretic boundary of {ug > 0},
(3) €\ {0} is smooth.
In particular in R3 the singular set of 3{ug > 0} is at most a singleton.

Theorem B implies that the reduced boundary propagates instantaneously in the components of
d{ug > 0}. Our last result sheds some new light on the characterization of the blow-ups as minimal
surfaces inside spheres with contact angle %

Theorem C. Let ug be as in Theorem B and ug = rg(o), o € S?, in spherical coordinates. Then the
parametrization X(0) = 0g(0) + Vg2g(0) defines an almost conformal and minimal immersion. If
{g > 0} is homeomorphic to a disk then ug is a half-plane solution ~/2M xi". If {g > 0} is homeomorphic
to a ring then the only singular cone is the Alt—Caffarelli catenoid.

Observe that Aug = 0 implies that the spherical part g satisfies the following equation on the sphere:
Agn-18+ (N —-1)g =0,

where Agn-1 is the Laplace—Beltrami operator. If we regard g as the support function of some embedded
hypersurface M then the matrix [V;; g + §;; 2]~ ! gives the Weingarten mapping and its eigenvalues are
the principal curvatures kq, ..., kxy—q of M. If N = 3 then we have

L1 kitk
0:A§2g+2g:trace[Vijg+5ijg]:k_1+k_2: }61/622’

implying that the mean curvature is zero at the points where the Gauss curvature kk, does not vanish.

This is how the minimal surfaces enter into the game. One of the main obstacles is to show that the
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surface parametrized by X(0) = Vuy (o) is embedded. Then the classification for the disk-type domains
{g > 0} follows from a result of [Nitsche 1985]. To prove the last statement of Theorem C we will use
the moving plane method. It is worthwhile to point out that the results of this paper can be extended to
other classes of stationary points. For instance, the weak solutions introduced in [Alt and Caffarelli 1981]
can be analyzed in similar way provided that the zero set has uniformly positive Lebesgue density at free
boundary points in order to guarantee that the class of weak solution is closed with respect to blow-ups;
see [Alt and Caftarelli 1981, Example 5.8].

Related works. In [Hauswirth et al. 2011] L. Hauswirth, F. Hélein, and F. Pacard considered the overde-
termined problem
Au(x)=0 in 2,
u>0 in Q, (1-5)
u(x)=0, |Vu|=1 onaL,

where €2 is a smooth domain and the boundary conditions are satisfied in the classical sense. A domain €2
admitting a solution u to (1-5) is called exceptional. Note that every nonnegative smooth solution of the
limiting singular perturbation problem solves (1-5) with M = % In [Hauswirth et al. 2011] the authors
constructed a number of examples of exceptional domains and proposed to classify them. In particular,
they proved that if Q C R? is conformal to a half-plane such that u is strictly monotone in one fixed
direction then 2 is a half-space [Hauswirth et al. 2011, Proposition 6.1]. However the general problem
remained open.

Later M. Traizet [2014, Proposition 1] showed that the smoothness assumption can be relaxed, namely
if Q C R? has C° boundary and the boundary conditions are still satisfied in the classical sense then
is real-analytic. Under various topological conditions on the two-dimensional domain  C R? (such as
finite connectivity and periodicity), M. Traizet classified the possible exceptional domains. One of his
remarkable results is that from €2 one can construct a complete minimal surface using the Weierstrass
representation formula [Traizet 2014, Theorem 9]. Another classification result in R?, under stronger
topological hypotheses than in [Traizet 2014], was given by D. Khavinson, E. Lundberg and R. Teodorescu
[Khavinson et al. 2013]. Moreover, their results in the simply connected case are stronger because unlike
M. Traizet they do not assume the finite connectivity (i.e., d€2 has finite number of components). As
opposed to these results (1) we do not assume any regularity of the free boundary (which plays the role of
02 in (1-5)), (2) the Neumann condition is not satisfied in the classical sense, (3) the minimal surface we
construct in Theorem C is not complete and it is a capillary surface inside sphere, and (4) our techniques do
not impose any restriction on the dimension. Note that in [Hauswirth et al. 2011] the authors suggested to
study more general classes of exceptional domains: if (M, g) is an m-dimensional Riemannian manifold
admitting a harmonic function with zero Dirichlet and constant Neumann boundary data then M is called
exceptional and u a roof function. In this context Theorem C provides a way of constructing a roof
function on the sphere from the blow-ups of stationary points of the Alt—Caffarelli functional.

One may consider higher-order critical points as well, such as mountain passes (which are, in fact,
minimizers over some subspace of admissible functions), for which one has nondegeneracy and nontrivial
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Lebesgue density properties [Jerison and Perera 2018, Propositions 1.7-5.1]. Observe that neither of these
properties is available for our solutions as Theorem 6.3 and Remark 5.1 in [Caffarelli et al. 1997] indicate,
and in the present work we do not impose any additional assumptions on our stationary points of this kind.

It seems that the only result in high dimensions that appears in [Hauswirth et al. 2011; Khavinson et al.
2013; Traizet 2014] states that if the complement of 2 is connected and has C?** boundary, then € is the
exterior of a ball [Khavinson et al. 2013, Theorem 7.1]. The restriction Q C R? is because the authors
have mainly used the techniques from complex analysis. Our approach does not have this restriction since
our main tool is the representation of the solution in terms of the Minkowski support function. We remark
that using our method in high dimensions we can construct a surface M inside the sphere of radius ~/2M
such that the sum of its principal radii of curvature is zero, and M is transversal to the sphere.

Finally, we point out that our approach may lead to a new characterization of global minimizers in R?
[Caffarelli et al. 2004]. Indeed, [Ros and Vergasta 1995, Theorem 6] implies that the capillary surface M
in Theorem C associated with the blow-up limit must be totally geodesic (i.e., the second fundamental
form is identically zero). Consequently, the blow-up must be the half-plane solution.

The paper is organized as follows: In Section 2 we set up some basic notation which will be used
throughout the paper. Section 3 is devoted to the study of a new monotone quantity s(xg, #, #). This
interesting quantity is derived from a computation of Spruck [1983]. Among other things, properties of s
imply that every blow-up of u is either a homogeneous function of degree 1 or identically zero. Section 4
contains the proof of Theorem A. In Section 5 we develop a new method of stratification of the free
boundary points and prove Theorem B. Section 6 contains the proof of Theorem C. For the convenience
of the reader, in the Appendix we repeat the relevant material from [Caffarelli et al. 1997] without proofs.

2. Notation

Throughout the paper N will denote the spatial dimension. B, (xg) = {x € RV : |x — x| < r} denotes
the open ball of radius r > 0 centered at xo € R". The s-dimensional Hausdorff measure is denoted
by 7, the unit sphere by SV~ ¢ R¥, and the characteristic function of the set D by yp. We also let

1
M:/0 B(t)dt.

Sometimes we will set x = (x7,x’), where x’ € RV ~1. For a given function v, we will define vt =
max(0, v) and v~ = max(0, —v). Finally, we say that v € C 01 (D) if for every D’ € D, there is a constant

loc
L(D’) such that
lv(x) —v(y)| < L(D')|x —y| forall x,y€D.

Ifve Clg’cl (D) then we say that v is locally Lipschitz continuous in D. For x = (xy,...,xy) and fixed
xo € RN we denote by (x — X0)1+ the positive part of the first coordinate of x — x¢. If u(xg) = 0 then
(u(x))r = u(xo +rx)/r, r > 0, denotes the scaled function at xo. For given r; — 0 the sequence

(u(x))y, is called a blow-up sequence and its limit #¢ a blow-up of u at xo.
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3. Monotonicity formula of Spruck

It is convenient to work with a weaker definition of nondegeneracy which only ensures that the blow-up
does not vanish identically.

Definition 3.1. We say that u is degenerate at xy € d{u > 0} if liminf, o (1/r) J[Br (x0) ut =0.

* is subharmonic.

Observe that T (x) = o(]x — x¢|) near the degenerate point x( because u
It is known that the solutions of (P;) are locally Lipschitz continuous; see the Appendix, Proposition A.1.
Consequently, there is a subsequence ¢ — 0 such that us; — u locally uniformly. Furthermore, u is
a stationary point of the Alt—Caffarelli problem in some weak sense and the blow-up of u can be

approximated by some scaled family of solutions to (P;); see the Appendix, Propositions A.5 and A.6.

Proposition 3.1. Let u be a limit of some sequence ug; as in Proposition A.2. Then any blow-up of u at a
nondegenerate point is a homogeneous function of degree 1.

Proof. To fix the ideas we assume that 0 € d{u > 0} is a nondegenerate point. We begin with writing the
Laplacian in polar coordinates

N —1 1
Au:urr + ur+_2A§N71u (3'1)
r
and then introducing the auxiliary function
v(t,0) = u(r, U), r=e’. (3-2)
¥
A straightforward computation yields
Uy 1
Vp=—Ur+V, Vg=-—, Vi =Upl+V, Agn-1V=—-Agn-1U,
r r

where, with some abuse of notation, v, denotes the gradient of v computed on the sphere. Rewriting the
equation Aug, = B.(u) in z- and o-derivatives we obtain

1 L (r
;[(N — 1)(1) — atvg) + 3%1}8 — 3,1}8 + AgN—l Ug] = Eﬂ(gvg)
Next, we multiply both sides of the last equation by d;v, to get
ro(r
31 Vs[(N — 1) (v — 9, v5) + 07V — 0; Vs + Agn—1Ve] = 0rve—p (gvg). (3-3)

The right-hand side of (3-3) can be further transformed as follows:

r (et et e ! et et et
—,3(—1)8)8;1)8 = ﬂ(—vg) [—8;1}8 — —vs] + ﬁ(—vs)—vs
€ € € € € € e

(e /e)ve et et
=0y / B(s)ds +,3(—vs)—vs
0 & &

e~ ! et et
= BtB(—vg) —I—,B(—vg)—vg = 1.
& € &
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It is important to note that by our assumption (1-1) the last term is nonnegative; in other words

—t —t
ﬂ("—vs)%vs > 0. (3-4)

&

Moreover, we have

I =[(N = 1)vg — N3yve + 02ve + Agn-10¢]0,ve

(atvs)2
2

2
= (N—l)at(%s)—N(atUg)z—Fat( ) +8tU8A§N—1Ug.

Next we integrate the identity
1 2=T 1 1

over SV ~! and then over [T}, T in order to get

2T T P 2
(N-1) Ye —N/ / (8tv8)2+/ ( tvs) / / 01V AgN—1Vg
SN*I TO TO SN*I §N1 TO SNI
[l
SN—-1

/TO [ (—vg)—vs

T
_ 1 0T ]
/To /§N—1 01V AgN—1Vg = 3 /§N_1 | Vo vel ‘To' (3-5)

Rearranging the terms and utilizing (3-4) we get the identity

Vufocto e f oo

Note that

9 2 —t T
=(N-1) Us +/ (3rve) _l/ |ng€|2‘; _/ B(e—vg) (3-6)
sN—1 2 T, SN—1 2 To 2 Jon—1 0 SN—1 £ T,
From here it follows that -
/ / (3rve)* < C, (3-7)
To SgN—1
where C depends on || Vi | oo, M, N but not on g, Ty or T.
Letting ¢ — 0 we conclude
T
/ / (0,v)* = C, (3-8)
Ty JSN-1

where v(t,0) = u(r,0)/r. But d;v = —u, + u/r, implying that

00 u 2
[ / (u, - —) dtdo <C. 3-9)
To sN—1 r

The proof of Theorem A follows if we note that —u, +u/r = 0 is the Euler equation for the homogeneous
functions of degree 1. O
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In the proof of Proposition 3.1 we used Spruck’s original computation [1983]. The identity (3-6) can
be interpreted as a local energy balance for u.. Moreover, using (3-6) we can construct a monotone
quantity which has some remarkable properties.

Corollary 3.2. Suppose 0 € 3{u > 0} and let (r,0), o € SN, be the spherical coordinates. Introduce

se(r)=[§N_l[2B(@) —|Va 2=V =1) 2(r %) (arug(r o) el (’)” 5. (3-10)

e Then S¢(r) is nondecreasing in r.

* Moreover, if ug; — u for some subsequence £j — 0, then Sg; (r) — S(r) for a.e. r, where

2 2
S(r)=/§N [2Mx{u>0}+ —Veul2— (N -1~ (V 9) (a,u(r,o)—”(rr’o)”do. G-11)

In particular, S(r) is a nondecreasing function of r.

e S(r) is constant if and only if u is a homogeneous function of degree 1.

Proof. By setting r; = e T ry=e"Toand noting that r; < r, if T > T, we obtain from (3-6)

Sg(r2)—Sg(r1)=2N/ [ B (0,v¢)2 +2/;0/;N1 ( vg) ve > 0,

where we applied (3-4) and hence the first claim follows. The second part follows from Propositions A.1
and A.2. Indeed, integrating S.(r) < S.(r +1¢), t = 0, over [r; — 8, r1 + 8] we infer

1 r1+6
% r1—8

1 ri+6
Se(r)dr < —/ Se(r +1t)dr.
26 §

ri—
Then first letting ¢ — 0 and utilizing Proposition A.2 together with (A-1) and then sending 6 — 0 we infer

that S(r) is nondecreasing for a.e. . Finally the last part follows as in the proof of Proposition 3.1. O

As one can see we did not use the Pohozhaev identity, as opposed to the monotonicity formula in
[Weiss 2003]. Spruck’s monotonicity formula enjoys a remarkable property.

Lemma 3.3. Let u be as in Proposition 3.1. Set S(xg, 1, u) for S(r) defined by the sphere centered at
Xxo € d{u > 0}. Suppose xj, € 0{u > 0} such that x;, — xo. Then

lim sup S(xg, 0,u) < S(xo,0, u).

XK —>X0

Proof. For given § > 0 there is po > 0 such that S(xg, p, #) < S(x¢,0,u) + 6 whenever p < po. Fix
such p and choose k so large that S'(xg, p, u) <&+ S(xg, p, #). From the monotonicity of S(xg, p, u) it
follows that

S(xk, 0,u) < S(xg, p,u) <6+ S(xo, p, u)

<26+ S(x¢,0,u).

First letting xz — xo and then § — 0 the result follows. O
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Lemma 3.4. Let S be the monotone quantity in (3-11). Then the following hold:

() s(xg, R,u) = (1/RN) fOR rN=18(xo, r, u) dr is monotone nondecreasing and

d R
—s(xp,u, R) = / NS (xo,u,r)dr = 0.
0

dR RN+1
(ii) If the solution u > 0 is degenerate at xog € d{u > 0} then the set {u > 0} has well-defined Lebesgue
density ©(xg, {u > 0}) equal to

1 1
—_— ,0, —_— 1 , R,
2M|B1|S(XO u) = M |B,| i 1m s(xo u).

(iii) Suppose xj € 0{u > 0} such that x;, — xo. Then

lim sup s(xg, 0, u) < s(xg,0, u).
Xje—>X0

Proof. 1t is easy to compute

N (R S(xo, R, u)
S/(xo,R,u)=—RN+1 /0 v 1S(xo,r,u)a’r—l—oT

R
/ NS (xg,u, r)dr +
0

R RN+1 R

1 R
= W/ NS (xg, r,u) dr.
0

To prove the second claim notice that at the degenerate point xo we have u(x) = o(|x — xo|) by virtue
of the subharmonicity of u. Consequently f Br(xo) |Vu|? = o(1) as r — 0 by virtue of the Caccioppoli
inequality. Therefore the only surviving term in S’ comes from 2M x ;- o}. The proof of the last claim is
analogous to that of Lemma 3.3. O

Lemma 3.5. Let 0 € 3{u > 0} and assume that ug =rg(c), o € SV, is a blow-up limit of u at 0 which
is homogeneous function of degree 1. Then

/ IVagIZ—(N—l)/ g? {=0 lfa{U%O}lsﬂata[(),
S SN—1

<0 otherwise.
Proof. Let (r, o) be the spherical coordinates; then the Laplacian takes the form

N -1 1
Oplte + ") ASNA Ug.
r

Aug = Brrug

Multiply both sides of Aug by rV~1u, and integrate over [0, R] x SN to get

R
Iy (ue;) :=/ /SN ] ugafrung_l dodr

= RN- 1/51\1 1u8 rlUg — / /SN— (azue)2 N- 1+(N—1)8ru‘,;u$r ]dadr
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R
I (us;) ::/ / usafung_z do dr
0 §N71

_ (”8)2 R (ue)z _
=RN Z/SN_I ) —(N—2)/(; LN_I[TVN 3]d0d7,

R R
13(u8].) = / / AgN—l”gUng_3 dodr = —/ / |V0ug|2rN_3 do dr.
0 §N—] 0 SN_I

Choosing a converging sequence u,; and letting ej — 0 we get by virtue of Proposition A.2

lim Bejus, =81iglo[[1(usj)+(N— DIa(ue;) + 13(uep)] = Iy () + (N = D)L (u) + I3(u).

£j—>0 BR

Suppose that u g, is a blow-up sequence at the origin and u g, — uo =rg(o); then

RN N-1
Idw)=RN/1 g —— gz————RN/ g> =0,
sN—1 N Jgn-1 N sN-1
2 2 N
g N -2 g R
12(u0)=RN/ ———RN/ 5 = g
sN—1 2 N sN—1 2 N Jgn—1

By Proposition A.5 and (A-2) there is a sequence d; — 0 such that us, — ¢ and
lim / Bs;us; < |Blloclix € By :0 <ugs; <d;}| —0,
8;—>0JpB,

provided that u is flat at 0. Hence we have

. RN =0 if d{u > 0} is flat at 0,
lim [ Bsus = —[(N—l)/ gz—/ |Vag|2}{ . O
§;—0JpB, N SN—1 SN—1 >0 otherwise.

4. Proof of Theorem A

The first part of the theorem follows from Proposition 3.1. Since u is not degenerate at the origin, by
Propositions A.2 and A.5 u,, (x) — uo(x) locally uniformly and by Proposition 3.1 u is homogeneous
of degree 1. Write A in polar coordinates (r, 8) to obtain

19
r2 96
In particular, writing o = rg (), this yields a second-order ODE for g,

10
Aw=—-——(rw,)+ (wg).
ror

g+§=0. 4-1)

Suppose g(0) = g(6p) =0, 6y € [0, 27); then (4-1) implies that g(6) = A sin 6 for some constant A,
consequently forcing 6y = . Hence, since N = 2, we obtain that #¢ must be linear; in other words the
free boundary d{u( > 0} is everywhere flat. This in turn implies that in two dimensions the singular set
of the free boundary d{uo > 0} is empty. Consequently, u is linear in {u¢ > 0} and {uo < 0}. From here
parts (2) and (3) of Theorem A follow from [Caffarelli et al. 1997, Propositions 5.3 and 5.1].
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So it remains to check (1). For the elliptic problem the only difference is that the limit function
M (x) = limg; ¢ Bs; (us;) cannot have nontrivial concentration on the free boundary coming from
{x1 <0}, as opposed to the parabolic case studied in [Caffarelli et al. 1997]. Observe that VB(us; /8;) =
Vusg, Bs; (us;) = 0in By \ {0 <us, <§;}. By Proposition A.5 and (A-2) there is sequence 0 < 1; — 0
such that (ug;)x; — uo, &j/Aj — 0 and M(x) = M) (x>0} + Mox{x,<0}- It follows from (A-3) that

2

/ M81¢+/ My o9 = a—81¢ forall¢eC(§’°(Bl). 4-2)
(x>0} {x] <0} (x;>0} 2

After integration by parts we obtain M f_ll ¢(0,x3)dxy = (M — %oﬂ) f_ll ¢ (0, x2) dx,. This yields

a?

My=M — —.
0 2
Next we claim that My = 0. Suppose My > 0; then Iy := {t € R: B(t) = My} # @ and there
is a € (0, 1) such that Iy C [a, 1]. Since B(¢) is continuous and nondecreasing, it follows that there is

0 <ao < a such that us, (x)/8; € [ao, 1] provided that j is sufficiently large.

Let
ug; (x)
C=1x: 5 € lap, 1] N{x1 <0} N By.
Jj
Then,
CC{x € By:apdj <us (x) <3} C{0<ugs <28;}N By.
But [{0 <us; <23;} N B[ — 0, which implies that M( cannot be positive. O

5. The structure of the free boundary of blow-ups in R3

In this section we assume that # > 0 is a limit of ug; solving (P.) for some sequence ¢; — 0, u is
nondegenerate at some yg € d{u > 0} and u¢ is a blow-up of u at yo. Note that by Corollary 3.2 ug is a
homogeneous function of degree 1. If ¢ is not a minimizer then it is natural to expect that the solutions
of (P,) develop singularities in RN, N > 3.

We first prove a nondegeneracy result.

Lemma 5.1. Let xg € 0{ug > 0} be a free boundary point such that there is a ball B C {ug = 0} touching
d{ug > 0} at x¢ and O(xg, {ug > 0}) > % Then uq is nondegenerate at xo and

uo(x) = vV2M (x —x0) " + o(x — x0).

Proof. Let (ug)r = ug(xo +rx)/r. There is ry such that
(ug)r =0 in{x; <—=8}NQy, forallr <ry, (5-1)

for some small § > 0, where Q; = (—1, 1)3 is the unit cube. Moreover, there is 7y > 0 such that

{(uo)r >0} N{x; >0} N By|
| B1]

>1-§ forallr <. (5-2)
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Cti
£

X1

A% (x])

Figure 1. The construction of the point ()'cfj , &%), The purple region is C%/ .

Fix r with these two properties (5-1) and (5-2). There exists y > 0 such that
[{@o)r >y} i{x1 > 03N By|

| Bi] 2

Let v = (us; )r, where ug; — ug (see Proposition A.5) and A% = {v® >y /2}N{xy >0} N B;. Since
v% — (ug), uniformly (see Proposition A.2), it follows that there is jo(r) such that for j > jo(r) we

—26. (5-3)

have
|A% | > | By|(3 —26). (5-4)

Let B ={x;€(—1,-6)}N Q1 and —B% ={x; € (§,1)} N Q4. Let C&% = A% N (—B%). Then we
have
|C& | > |By|(3 —28) > 0.

Define A% (x1) = {x’: (x1,x") € C%} and f% (x1) = |A®% (x1)|. We claim that
HX] . fej (Xl) > |B1|(% —35)}’ > 0.

Indeed, if the claim fails then we have

1
|B1](3 —26) <|C¥| :/5 S (x1) dxy <|By|(5 - 39),

which is a contradiction.
Hence there is x}’ € (8, 1) such that f% (x}') > | By|(% —35). Now choose 0 <da’ <a <b < b’ <1
such that
B(s) >k forallseld,b].
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Let 8} = ¢;j/r. We claim that there is £% € A® and )Efj such that

v Ej s&j
—(x{".§7) € (a.b).
&

Indeed, for sufficiently large j we have

v &j g
a> 8—/(—x1’,x') =0 forall x" € A% (x),

J
vEi . j /
— 7 x> Y b forall x' € A% (x7).
g 1 2¢" 1
J J

provided that j > j;(r); see Figure 1. Hence from the mean value theorem we see that the claim is true.
From the uniform Lipschitz continuity of the functions v®/ it follows that there is a constant co > 0 such that

V¥ . _¢&j o &
?(xl,x/) €(d,b) if|x; —x]|<é&jco, x' €A% (x)).
J
Consequently we have

By (v57) > ﬁ,/ B A% el = — (1= 38)2¢o8, = 2| By (1= 38)co == C.
B I 8]- |xl_)_cl |<8}CO 8].

Now the nondegeneracy follows from the proof of Part II of Theorem 6.3 in [Caffarelli et al. 1997]. The
asymptotic expansion follows from Theorem A and Proposition 3.1. O

Remark 5.2. Note that under the weaker assumption ®(xg, {#o > 0}) > 0 the argument in the proof
of Lemma 5.1 still works. However for a self-crossing free boundary [Weiss 2003] (see Figure 2) the
assumptions of Lemma 5.1 may not be satisfied.

As an immediate corollary we have:
Corollary 5.3. Let xy € 0{ug > 0} be a point of reduced boundary. Then u is nondegenerate at x.

Proof. Suppose that 0 € d{ug > 0} and 9{(ug)r > 0} C B, N{|x - e| < &} for some unit vector e and
small ¢ > 0. Here (uo)r = uo(rx)/r. Consider the family of balls B/, (et),t € [—&,¢]. Then there

u>0 u>0

Figure 2. Possible self-crossing free boundary which fails to satisfy the conditions of Lemma 5.1.
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is t; € [—¢, €] such that B}, (ete) touches the free boundary at some point zo € By provided that ¢ is
sufficiently small. Let vy = t;e. Introduce the barrier function

9(3) —e(lx —vol)

we) = o(3)—e() By

Uo,

where ¢(|x|) = 1/|x|¥ 2. We have A(ug—w) = Aug>01in D = By(vg) \ Bi/2(vo) and ug —w <0
on dD. From the maximum principle we infer that ug < w in D. But we have that the maximum of
ug — w is realized at zo. Hence from the Hopf lemma we get

—V2M = 0,,u0(z0) > dyyw(zo) = —|¢'( %| o(L)— (1)
V o(1)—

or

wp (o) = vair? 2 e 0
B1(v0) e

In the following definition we let Q" (1) = {u > 0} and Q~ (1) = {u < 0}. Moreover, let
Gy uy) = ) — () —2M, (5-5)

where ©; and u}, are the normal derivatives in the inward direction v to Q2 (1) and 32~ (u), respectively.
For more details see [Caffarelli and Salsa 2005, Definition 2.4].

Definition 5.1. Let  be a bounded domain of R" and let u be a continuous function in . We say
that u is a viscosity solution in €2 if:

(i) Au=0in Q" (u) and Q" (u).
(ii) Along the free boundary d{u > 0}, the function u satisfies the free boundary condition in the sense that:
(a) If at x¢ € 0{u > 0} there exists a ball B C Q7 () such that xo € 9B and
ut(x) > a(x —xg,v)T +o(x —x0|) forxeB, (5-6)
u= (x) < B{x —x0,v)” +0(]x —xq|) forx e B, (5-7)

for some @ > 0 and B > 0, with equality along every nontangential domain, then the free boundary
condition is satisfied:

G(a,pB) <0.
(b) If at x¢ € d{u > 0} there exists a ball B C Q7 (u) such that xy € dB and
u (x) > B{x —x0,v)” +0(]x —x¢|) forxeB,
u(x) <a(x —x0,v)" +o0(x —xg|) forx € dB,

for some & > 0 and B > 0, with equality along every nontangential domain, then

G(a, B) > 0.
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In our case B = 0 and we have only u™. However, one has to check that the free boundary conditions
(a) and (b) in Definition 5.1 are satisfied.

Lemma 5.4. Let ug be a blow-up of u at some nondegenerate point such that ®(x, {ug > 0}) > % for
every x € d{ug > 0}. Then ug is a viscosity solution in the sense of Definition 5.1.

Proof. We have to show that the properties (a), (b) in Definition 5.1 hold. Suppose that B C {uy > 0}
touches d{uy > 0} at some point xo. Then it follows from Hopf’s lemma that u( is nondegenerate
at xg. Consequently, if uqq is a blow-up at x( then by Theorem A ugo(x) = oleJr after some rotation of
coordinate system. Moreover 0 < o < ~/2M. Hence G(x,0) < 0.

Now suppose that B C {u#y = 0} and B touches d{uy > 0} at zo. By Lemma 5.1 u is nondegenerate
at zg. Theorem A implies that any blow-up ugg of ug at zg must be ugg(x) = V2M xI" after some
rotation of coordinates. Hence G(v/2M , 0) > 0. O

5A. Properties of d{ug > 0}. We want to study the properties of g. We first prove a Bernstein-type result
which is a simple consequence of a refinement of the Alt—Caffarelli-Friedman monotonicity formula [Alt
et al. 1984b; Caffarelli et al. 2000].

Lemma 5.5. Let u > 0 be a limit of solutions to (Pg). Let ug =rg (o), o € SV1, be a nontrivial blow-up
of u at some free boundary point. If there is a hemisphere containing supp g then the graph of uy is a

half-plane.
Proof. Without loss of generality we assume supp g C S]_?_’_l ={XeSNl:xy>0} Letv(xy,...,xny)=
u(xy,...,—xp) be the reflection of u with respect to the hyperplane xx = 0. Then v is a nonnegative

subharmonic function satisfying the requirements of [Caffarelli et al. 2000, Lemma 2.3]. Thus

() 1/ |Vu0|2/ |Vv|?
r) —= —
ré B, |x|N_2 B, |x|N_2

is nondecreasing in r. Moreover

20(r)

C
@' (r) > Ap, Ay = ,,N—]Xl Area(dB; \ (supp ug U supp v)).

Thus, if supp g digresses from the hemisphere by size § > 0 then 4, > ¢(8) > 0. Hence integrating the
differential inequality for ® we see that ® grows exponentially, which is a contradiction since in view of
Proposition A.3 ug is Lipschitz and hence ® must be bounded. O

It is convenient to define the following subsets of the free boundary:

T2 = {x € 3{uo > 0} such that O(x, {ug > 0}) = 1}, (5-8)
't = {x € 9{up > 0} such that O(x, {ug > 0}) = 1}, (5-9)

where ®(x, D) denotes the Lebesgue density of D at x. We will see that ®(x, {uy > 0}) exists at every
1

nondegenerate point and equals either 1 or 5
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Lemma 5.6. Assume N = 3. Let xg € 0{ug > 0} \ {0} be a nondegenerate free boundary point such that
the lower Lebesgue density satisfies ©«(xg, {ug = 0}) > 0. Then there is a unit vector vg such that

ug(x) = V2M[(x — xo) - vo] T + o(x — xp). (5-10)
In particular, xo € T'y .

Proof. Set v, = ug(xo + prX)/pr. Since uq is nondegenerate at xg it follows from a customary compact-
ness argument that vy — v and by virtue of Corollary 3.2 v is a homogeneous function of degree 1. We have

uo (o + P X)

o = uo(pg ' xo + x) = Vuo(pj ' xo + x) (pf; ' X0 + X)

1
= - Vito((¥o + o) (3o + piv). (5-11)
where the last line follows from the zero-degree homogeneity of the gradient; hence

Pr Uk (X) = Vug(xo + prx)(xo + prx) = Vg (x)(xo + pg X). (5-12)

By the Lipschitz continuity of uq it follows that vy is locally bounded. Consequently, for a suitable
subsequence of px we have vg, — v and Vv(x)xo = 0. Without loss of generality we may assume that xo
is on the x3-axis, implying that v depends only on x; and x,. Applying Proposition A.6 and Corollary 3.2
we conclude that S(xg, r, #g) is nondecreasing and thus v must be homogeneous of degree 1. Indeed,
there is a sequence 6; — 0 such that (ug;)y; — v.8; = ¢;/A; by Proposition A.6.

Finally, applying Theorem A and the assumption ®«(xg, {ug = 0}) > 0 we see that v must be a
half-plane solution. It remains to note that the approximate tangent of d{uo > 0} at x¢ is unique and this
completes the proof. O

Lemma 5.7. We want to show that ®(x, {ug > 0}) > % in some neighborhood of x¢. Let xo € I'y /5. Then
there exists ro > 0 such that By,(xo) N d{ug > 0} is a C1* surface.

Proof. Let yy € 0{uy > 0} be a degenerate point. Suppose there is p > 0 such that u( is degenerate
at every point of B,(yo) N d{ug > 0}. Since supp Aug C d{uo > 0}, it follows that ug = 0 in B,(yo).
Consequently, there is a sequence of nondegenerate points y; — 3. Note that if y; is a nondegenerate
point then by Theorem A the Lebesgue density satisfies ® (g, {ug > 0}) > %

Let ”I(go be a blow-up of uq at yg. By Proposition A.6 for fixed k there are 5}’.‘ — 0 such that
(u 85;) Ak — ulgo, 8]’.‘ = 8}‘ / k}‘ . Thus applying Theorem A it follows that ulgo is a half-plane solution or
a wedge.

From scaling properties of Spruck’s monotonicity formula and Lemma 3.4 we get

2nM if y; is a wedge point, (5-13)

0, v, ug) = s(1,0,u% ) = 2M vol(B; N {uk > 0}) =
$(0, v, uo) = s ”00) vol(By {”00 ) {nM otherwise.

Then applying Corollary 3.2 to u g« and using the semicontinuity of S, Lemma 3.3 together with Lemma 3.5,
J
we have

2M vol(By N {uk ) > 0}) = limsup s(0, yx, uo) < 5(0, yo, uo) = 2M wO(xg, {uo > 0}).  (5-14)
Yk—>Yo



CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS 187

Therefore we conclude that ®(x, {ug > 0}) > % for every free boundary point x in some neighborhood
of x¢. By virtue of Lemma 5.4 u is a viscosity solution which is flat x¢. Applying the “flatness-implies-
C 19> regularity results from [Caffarelli 1987; 1989] the lemma follows. O

Next we prove a representation formula for Auy.
Lemma 5.8. Let ug be as in Lemma 5.5. Then:
(i) H*(T1/2 N Bg) < oo forany R > 0.
(i) Away from I'y the following representation formula holds:
Aug = V2MH? LTy,
Proof. (i) For given x € I'y/, there is a px > 0 such that

sup ug = ~Mr, re(0,px). (5-15)
B (x)

This follows from the asymptotic expansion in Lemma 5.6. Consequently, there is p}, > 0 such that
/ Aug>~Mr?,  re(0,p,). (5-16)
By (x)

Indeed, if this inequality is false then there is a sequence r; ~\ 0 such that

/ Aug < erjz.
Brj (x)

Set vj(x) = uo(x +rjx)/rj. By (5-15) suppg, vj(x) = VM. Moreover, it follows from Lemma 5.6 that
vj (x) —> \/Wx;r in a suitable coordinate system, while fBl Av < VM. However, fB1 AxT = Wg
and this is in contradiction with the former inequality. Putting o = min(p’,, px) we see that the collection
of balls F = | B, (x), x € I'y/, N Br, px < px., is a Besicovitch-type covering of I'y/, N Bp.
Consequently, there is a positive integer m > 0 and subcoverings Fi, ..., F such that the balls in
each Fj, 1 <i <m, are disjoint and I'; /, N Bg C U,’-"zl Fi. We have from (5-16)

s Vuoloz [ bz [ sw= Y[ swzavil Y
0BRr Bpx(x)e]-‘,- Bpx(x)

B (x)EF; B, (x)eF;

This yields
g2 < AVl R
T omVM

By, (x)EU:ﬁ:l Fi

(5-17)

Given § > 0 small, suppose there is x € I'y/, such that px > 6. Then we choose px < §. Thus, in any case
we can assume that px < §. In view of (5-17) this implies that the §-Hausdorff premeasure is bounded
independently of §. This proves (i).
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(i1)) From the estimate

\/MrszB()Auof4nr2||Vu0||, r€(0,px), Br(x)NTy, CTyya,
r(x

we see that there is a positive bounded function ¢ such that Aug = gH>*L T /2- Using Lemma 5.6 we
conclude that ¢ = V2 M. O

Next we prove the full nondegeneracy of ug near I'y /5.

Lemma 5.9. Let ug be as above and xo € Iy /5. Then for any By (x) such that x € d{ug > 0}, B,(x) N
d{ug > 0} C I'y/2, we have

sup ug > vV2Mmr.
By (x)

Proof. By a direct computation we have
" dt "1
r_zf u(,:/ —2/ AuOZ/ —2V2Mnt2=v2Mnr,
9B, (x) 0 1% JB(x) o !

where the inequality follows from the representation formula and the fact that d{u¢ > 0} is a cone; hence for
all t € (0, r) we have H?(B,(x) N Ti2) = mt2. It remains to note that r 2 faB, (x) 40 = SUPp, (x) Uo- O

5B. Weak solutions. Combining Lemmas 5.8 and 5.9 as well as Propositions A.2(iii) and A.3(i) we see
that u¢ is a weak solution near I'; /, in the sense of [Alt and Caffarelli 1981, Definition 5.1]. Furthermore,
d{ug > 0} \ {0} is flat at each point.

Lemma 5.10. The blow-up u is a weak solution in the Alt—Caffarelli sense away from I'y. Furthermore,
I’y /2 is smooth.

Proof. All conditions in [Alt and Caffarelli 1981, Definition 5.1] are satisfied and u is flat at every point
zo € d{ug > 0} \ {0} thanks to (5-10). Applying Theorem 8.1 of the same paper we infer that I'; /, is
smooth at every zg € d{ugo > 0} \ {0}. O

5C. Minimal perimeter. In this section we prove that the local perturbations S’ C {uo > 0} of a portion
S C Iy, have larger 72 measure than S. This can be seen from the estimate |Vug(x)| < ~/2M, which
follows from Lemma A.7. Since by Lemma 5.10 on I'y/, the free boundary condition |Vu| = V2M is
satisfied in the classical sense, it follows that

o=/ Au():/ dpug + Bvuoz«/ZMHz(S)+/ Ao,
D S S’ S’

where D C {uy > 0} such that 9D = S U S’. But US’ 8vuo‘ < V2MH?(S’) and thereby
H2(S) < H(S"). (5-18)
The estimate for the perimeter can be reformulated as follows:

Theorem S5.11. Let N = 3. Then the components of I'y;, are surfaces of nonpositive outward mean
curvature. In particular, 'y /5 is a union of smooth convex surfaces.
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Proof. Since ug is a weak solution, by Lemma 5.10 I'y/, is smooth. If zg € I'j/, then choosing the
coordinate system in R? so that x3-axis has the direction of the inward normal of {uo > 0} at zy and
considering the free boundary near zq as a graph x3 = /(x1, x,), we can consider the one-sided variations
of the surface area functional. Indeed, let D C R? be a open bounded domain in the xx,-plane containing
zo and assume 7 > 0, 0 < € C3°(D). Then from (5-18) we have

ozlf[mﬂvmz—J1+|V<h—n/f)|2]
tJp

_ 2VAVY —t|Vyr|?

o JTHIVEE + T+ [V —19)]2
VhVy

— | ——— ast—0. (5-19)
D /14 |Vh|?
Therefore
. Vh
divl ———=1]>0
V1+|Vh|?
and, noting that I'y/, is a cone, the result follows. O

5D. Full nondegeneracy.

Lemma 5.12. Assume that N = 3 and let ug be a nontrivial blow-up of u such that the measure-theoretic
boundary of {ug > 0} is nonempty. Then d{ug > 0} \ {0} C I'y5. In particular the set of degenerate
points of d{ug > 0} is empty.

Proof. Let uq be a blow-up of u at 0. Since u is nondegenerate at 0, it follows that «y does not vanish
identically. Hence there is a ball B C {ug > 0} touching d{uy > 0} at some point zg € d{ug > 0} N B.
By Hopf’s lemma, the Lipschitz estimate Proposition A.3(i) and asymptotic expansion [Caffarelli 1989,
Lemma A1l] it follows that u¢ is not degenerate at zy. Consequently, the set of nondegenerate points of
Ug is not empty.

Suppose that S is a component of d{uy > 0} containing a point of measure-theoretic boundary of
{ug > 0}. Note that by Lemma 5.7 and Theorem 5.11 S is a smooth convex surface. Let xg € S, xo # 0.
Then either (a) xo € I'; or (b) ug is degenerate at xy.

We first analyze the case (a). Let £ be the ray passing through x( and IT the tangent half-plane to S
along £. First note that u is nondegenerate at xy because

2
/ Aug > / Aug > N2ZMHA(S N By (xq)) = v2M 22—
B (x0) B (x)NS 2

for sufficiently small . Consequently
1 R 2
— o :/ —2/ Aug > V2MZ—R. (5-20)
R* Jopg 0 7% JB,(x0) 2
Let 1o be a blow-up of u at x¢. Then from Theorem A it follows that ¢ is two-dimensional. Moreover
IT C 0{ugo > 0}, {upo > 0} has unit density at 0, and the interior of {#g9 = 0} near IT is not empty. Note
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S

S

)

Figure 3. The structure of the free boundary near the point xg.

that the interior of the set {ug = 0} propagates to x¢ along another component S; of measure-theoretic
boundary; see Figure 3. Consequently, near I1, we have ugo(x) = V2M. xfr after some rotation of
coordinates. From the unique continuation theorem it follows that u0g(x) = v/2M. x1+ everywhere, which
is in contradiction with the fact that {uo¢ > 0} has unit density at 0.

As for the case (b), (5-20) shows that 1 is nondegenerate at x¢ as long as x is on the boundary of .S. [J

SE. Properties of T'y3.

Lemma 5.13. Suppose uy is not degenerate at xo € 0{ug > 0} \ {0}, such that ©«(xq, {ug = 0}) > 0.
Then there is a unique component € of d{ug > 0} containing xq such that € C I'y 5.

Proof. We only have to show the uniqueness of €; the rest follows from Lemmas 5.6 and 5.7. Suppose
there are two components of d{uy > 0} \ {0}, €; and €,, containing xo. From the dimension-reduction
argument as in the proof of Lemma 5.6, it follows that €; and €, have the same approximate tangent
plane at x¢. This is in contradiction with our assumption @ (xg, {u#g = 0}) > 0. O

Lemma 5.14. Let € be a component of d{ug > 0} such that €N Ty, # @. Then €\ 'y, = @; in other
words all points of € are in Ty ;.

Proof. By Lemma 5.12 € cannot have degenerate points; thus we have to show that I';/, cannot have
limit points in I'y. Note that I'; /, is of locally finite perimeter (see Lemma 5.8(i)) and hence locally it
is a countable union of convex surfaces. Let xo € I'y N € be a limit point of I'y ), N €. The generatrix
of the cone d{uo > 0} passing through x splits € into two parts, one of which must be convex near x,
because by assumption X is a limit point of I'; /5; see Theorem 5.11. The set {uo = 0}° propagates to xg
because I'y /5 is a subset of reduced boundary. Thus, there is another subset of I'; /, approaching x¢, and
it is a part of the topological boundary of {u#y = 0}°. Therefore, the ray passing through x is on the
boundaries of two convex pieces of d{uo > 0} (near x¢). Note that if these pieces of I'; /, contain flat
parts then from the unique continuation theorem we infer that d{uy > 0} cannot have singularity at 0.
Thus, they cannot contain flat parts and consequently the density of {u¢ > 0} at x¢ cannot be 1, because
by convexity of I'y /5 it follows that {uo = 0}° has positive density at xo. But this is in contradiction with
the assumption x¢ € I'y. O



CAPILLARY SURFACES ARISING IN SINGULAR PERTURBATION PROBLEMS 191
Summarizing we have:
Proposition 5.15. Let ug be as above and N = 3. Then d{ug > 0}\{0} is a union of smooth convex cones.

5K. Proof of Theorem B. The first part of Theorem B follows from Lemma 5.12, while the second part is
a corollary of Lemma 5.14 since I'y /5 coincides with the reduced boundary. Finally, the last part follows
from Lemma 5.10, because by Lemma 5.14 the reduced boundary propagates instantaneously in d{uy > 0}.

6. Proof of Theorem C
6A. Inverse Gauss map and the support function. Suppose N =3 and u =rg(6, ¢), where

x = r(sin 0 cos ¢, sin 0 sin ¢, cos ).

Then
1 cos 0 g
Aug = —(ggg +—80+ ,d’f +2g).
r sin 6 sin? 6
Note that
cos )
A =
s28 = 800 T 5860 T in2 0
is the Laplace—Beltrami operator. Thus we get
Ag2g +2g =0. (6-1)

Let H(n), n € SV, be the Minkowski support function of some hypersurface M. H (n) is the distance
between the point on M with normal 7 and the origin. It is known [Alexandroff 1939] that the eigenvalues
of the matrix

Vi H(n) + 6 H(n)

are the principal radii of curvature of the surface determined by H, where the second-order derivatives
are taken with respect to an orthonormal frame at n € S ~1. The support function uses the inverse of the
Gauss map to parametrize the surface as

H@n) =G '(n)-n.

Furthermore, we have the following formula for the Gauss curvature K [Alexandroff 1939]:
1
%= det(V}; H(n) + 8;j H(n)). (6-2)

The Gauss map is a local diffeomorphism whenever K # 0 [Langevin and Rosenberg 1988]. Since
ug = rg is harmonic in {uq > 0}, we infer that g is smooth on S? N {g > 0}.

Remark 6.1. In higher dimensions (6-1) becomes
N—-1

1 2k
Agn-1g+ (N —1)g = Zk_—O-N—Z()—
i=1 "

= o = om= Yo kikiykiy,  (63)

I1<ip<-<im
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where 0,,(k) is the m-th elementary symmetric function and k;, i = 1,..., N — 1, are the principal
curvatures. Observe that any positive function g > 0 satisfying the equation Agn—1g + (N —1)g =0
defines an (N —2)-minimal surface (i.e., oy—>(k) = 0) provided that the Gauss curvature satisfies
on—1 # 0. From here we infer that the spherical parts of the homogeneous stationary points of the
Alt—Caffarelli functional are support functions of an (N —2)-capillary surface in SV =1, because they are
solutions to (6-3).

6B. Catenoid is a solution. Alt and Caffarelli [1981, page 110] constructed a weak solution which is
not a minimizer. Their solution can be given explicitly as follows: let

X = r(sin @ cos ¢, sin 0 sin ¢, cos )

and take

u(x) = rmax( /) O),

f'(6o)
where

1 —cosf 0
f(0)=2+4cosb log(l_i_(:%) =2+ cos 0 log (tan2 E)

and 6 is the unique zero of f between 0 and Z. The aim of this section is to show that /" is the support
function of catenoid. Recall that the principal radii of curvature of a smooth surface are the eigenvalues
of the matrix Vé ~—1 H +8;j H, where the Hessian is taken with respect to the sphere SN—1 [Alexandroff
1939]. At each point where the Gauss curvature does not vanish, the zero mean curvature condition for
N = 3 can be written as

AgpH +2H =0,

where Ag is the Laplace—Beltrami operator and H (n) is the value of Minkowski’s support function
corresponding to the normal n € S% From now on let us consider the (x, y)-variables on R?. Recall
that by rotating the graph of y(x) = acosh(x/a) around the x-axis one obtains a catenoid for some
constant ¢. Thus it is enough to compute the support function for the graph of y. Let « be the angle
the tangent line of y at (x, y(x)) forms with the x-axis. If # is the unit normal to the graph of y then
n = (—sina, cosa) and

H(n) =(x,y(x))-n=—xsina —i—acosozcoshf.
a

Noting that the unit tangent at (x, y(x)) is (cos «, sina) and equating with the slope of tangent line,
which is (sinh(x/a), —1), we obtain
sinh(x/a) i 1
cosa = , sina=— .
V1 + sinh?(x /a) V1 + sinh?(x /a)
From second equation we get that sinh(x /a) = tan @ and solving the quadratic equation e2x/a) 1 =
2¢X/® tan o we find that

1+ sina X 1
x =alog———, cosh— = .
cos o a cosoa
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Consequently,

1 +sina)\?
Hn) = —% sinalog(ﬂ) +a.

cos o

Taking a = 6 + 5 we have

l+sine 1+cosf 2COSZ% t@
= - = = — COt —
cosa —sinf —2sin % cos% 2

and thus choosing a = 2 the result follows.

6C. Almost minimal immersions. Consider the parametrization X : Uy — R?, where
X(n) =ng(n) + Va2g, Ug={g>0}CS> (6-4)

Let M be the hypersurface determined by X. The spherical part g of u¢ solves (6-1) and by [Reznikov
1992, Theorem 1] X determines a smooth map which is either constant or a conformal minimal immersion
outside a locally finite set of isolated singularities (branch points). Recall that if at some point p

Xg, xXg, =0, X = X(&1,&>) in local coordinates &1, &>, (6-5)

then p is called branch point; see [Nitsche 1989, page 314].
Observe that X(n) is the gradient of the blow-up u¢ at n = x/|x/|. Indeed,

n 1 n 1
X(n) = ;rg + ;ng(rg) = ;uo(x) + ;nguo

n 1 X 1
= —(Vuo(x)-x)+ -Vgaug = n(Vuo(x) . ﬂ) + —Vgaug = Vup(x). (6-6)
r r X ¥
In particular, the computation above shows that
X
Vug(x) = Vuo(ﬂ), Veag(n) Ln; (6-7)
x

in other words the gradient is homogeneous of degree 0.
The absence of branch points does not rule out the possibility of self-intersection. Therefore we need
to prove that under conditions of Theorem C M is embedded.

6D. Dual cones and center of mass. If u is a blow-up and the assumptions in Theorem C are satisfied,
then by virtue of Proposition 5.15 the free boundary d{uy > 0} \ {0} is a union of smooth convex cones
C; and C,. We define the dual cones as

Cr=dyeR:x-y<0,xeC}, i=1,2. (6-8)
It is well known that the dual of a convex cone is also convex [Schneider 2014, page 35].

Lemma 6.2. The largest principal curvature of C; \ {0} is strictly positive.
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Proof. To fix the ideas, we prove the statement for C;. Note that one of the principal curvatures of C; \ {0}
is zero because C; is a cone and C; \ {0} is smooth; see Theorem B. Let «(p) be the largest principal
curvature at p € C; \ {0}. Suppose there is p such that ¥ (p) = 0. Choose the coordinate system at p so
that x; points in the outward normal direction at p (into {u¢ = 0}), the x,-axis is tangential at p and is
the principal direction corresponding to x (p). Then we have Vuy(p) = e1, where e; is the unit direction
of the x-axis, and the mean curvature of C; at p vanishes because we assumed that x(p) = 0. Writing
the mean curvature at p in terms of the derivatives of uy we have

_ Vo D% (Vo) — [Vug|? Aug _ 9uuo
[Vuol3 NOIY8

implying that d;;u9 = 0. Moreover, since uq is homogeneous of degree 1, Vuy = e; along the x;-axis.

This yields d13ug = d3ug = d33u¢ = 0 along the x-axis. From the harmonicity of u it follows that
022ug = 0 along the x3-axis. Summarizing, we have that along the points of the x3-axis the Hessian of
uo has the form

0 812110 0
8121/!0 0 0
0 0 0

Finally, letting o (¢), ¢ € (—4, §), be the parametrization of the curve along which the x; x,-plane intersects
C; and differentiating |Vug(a(z))| = 1 in ¢ we get that at p one must have

0 812u0 0
O=e; |dppug 0 0 ]ex=01up(p).
0 0O O

Thus, the Hessian D?u vanishes along the x;-axis. The function w = V2M — 9 uy is harmonic in
{ug > 0} and w > 0 thanks to Lemma A.7. Moreover, w(e;) = 0 = min w. Since at ¢; the free boundary
is regular, by Hopf’s lemma 9w = —d,;u¢ # 0. However, D?uq(te;) = 0 for every ¢ > 0 and hence
d11w(ep) = 0, which is a contradiction. O

Remark 6.3. It follows from Lemma 6.2 and Theorem B that there are two positive constants kg, k1 such
that

0<kg=<k(p)=<k1, pe@{uy> O}\{O})HE)BW,
where «(p) is the largest curvature of d{ug > 0} at p € (d{ug > 0} \ {0}) N BBW.
Let us put y; = S? N cr.
Lemma 6.4. Let G’l*, G’; be the dual cones (6-8). Then we have:

(i) OM is differentiable and there are two positive constants ky, K} such that the largest curvature k* (p)
of (CX\{0}) N S? satisfies Ky <k*(p) < k7.

(ii) There is 6 > 0 small such that every component Eg of dB1_s N M defines a convex cone Kg = {ot :
o€ Eg, t >0},

(iii) M is star-shaped with respect to the origin and hence embedded.
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Proof. Suppose that C7 is not differentiable at some z # 0. Then C; must have a flat piece. Indeed, if
ny,ny are the normals of two supporting hyperplanes of C} at z then the unit vectors
tn1+ (1 —1)n,
ns =
" iy + (1= 1)ny

define a support function at z for every ¢ € (0, 1). Since the vectors #; lie on the same plane, C; must

have a flat piece. The unique continuation theorem implies that the free boundary is a hyperplane and
cannot have singularities. Now the desired estimate follows from Remark 6.3 and the definition of dual
cone. The first claim is proved.

Let k1, k, be the principal curvatures of M. Then k 4+ k, = 0 and the Gauss curvature is K =
—kl2 = —k%. Since M is a smooth immersion, from (6-2) and the smoothness of X = Vug in Uy we
see that K # 0. Furthermore, there is a tame constant ¢g > 0 such that kl.2 > cp, i = 1,2, at every point
of M. Thus by virtue of the part (i) M is fibered by dB;_g for § > 0 small. We claim that |X(n)| > 0,
ne Ug. Clearly this is true if n € dUg, where |X(n)| = 1. Suppose there is n € U, such that X(n) = 0.
Since X(n) = ng + Vg2 g, it follows that g(n) = 0, but this is impossible since n € {g > 0} = Ug. From
g(n)=X(n)-n>0, n € Uy, it follows that M is star-shaped with respect to the origin. Consequently,
M is fibered by dB; for every ¢t € (0, 1) and hence embedded. d

Let n € Ug. Then from X(n) = Vuq(n) it follows that
XM [ggug>03| = [Virolagug>03l = V2M.
Since by Lemma 6.4 M is differentiable along y;, we see that the contact angle « between M and S? is

X(1)]9uy>03
cosa =n- ?ZWO = g(”)|8{u0>0} = 0.

Thus, the minimal surface defined by g is inside of the sphere of radius v2M because in view of
Lemma A.7 |Vug|?> = g% + |Vg|?> < 2M. Moreover, M is tangential to C} and €7 along S? since
n L Vg2g by (6-7).

We recall the definition of topological type [e, r, x] of hypersurface M C R? from [Nitsche 1985,
page 47].

Definition 6.1. We say that M is of topological type [, r, x] if it has orientation &, Euler characteristic x,
and r boundary curves. Here ¢ = £1, where 41 means that M is orientable and ¢ = —1 is nonorientable.
For an orientable surface the Euler characteristic is defined by the relation y =2 —2g —r, where g is the
genus of M.

Now the first part of Theorem C follows from Nitsche’s theorem [1985, page 2]. Moreover, the only
stationary surfaces of disk type are the totally geodesic disks and the spherical cups. From Lemma 5.5 it
follows that if o = rg and supp g is a disk then u is a half-plane.

In view of Lemma 6.4(iii) the proof of Theorem C can be deduced from the result of [Nitsche 1962]
but we will sketch a shorter proof based on Aleksandrov’s moving plane method and Serrin’s boundary
lemma. We reformulate Theorem C as follows:
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Lemma 6.5. Let M be of topological type [1,2,0], i.e., a ring-type minimal surface. Then M is a part of
a catenoid.

Proof. By Lemma 6.4(iii) M is embedded. In particular, X is a conformal minimal immersion (see the
discussion in Section 6C).
Let OM = y; U y,. Then applying Stokes’ formula we have

/AMDC=/ n*ds=/ n*+/ n*ds, (6-9)
M oM Y1 V2

where n* is the outward conormal, i.e., n* is tangent to M and normal to dM; see [Fang 1996, page 81].
Since X is minimal, A»X = 0. Thus

/ n*ds+/ n*ds=0. (6-10)
Vi 2

Since M is tangential to C it follows that the conormal #* on y; points in the direction of the generatrix
of the dual cone C;. Observe that if we use the arc-length parametrization of y; and let s € [0, |y;|] be
some partition points then the sums Sy, = Y ;' n,’:i (Sk+1—Sk)» n,ti € C7, approximate the boundary
integrals in (6-9). Consequently the vector Sy, is strictly inside of the cone €} and in the limit converges
to the center of mass of y; computed with respect to the origin (the vertex of the cone). In view of (6-10)
there is a diameter of S? strictly inside of both dual cones C} and CJ.

Without loss of generality we assume that the diameter passes through the north and south poles.
Now we can apply Aleksandrov’s moving plane method and Serrin’s boundary point lemma to finish the
proof. Let IT; be the family of planes containing the x;-axis where ¢ measures the angle between I1;
and x3-axis.

Now start rotating I1; about the x1-axis starting from a position when I1; is a support hyperplane to
either of the cones C7,C} and [T, NC} # @, i =1, 2.

Case 1: If the first touch of M and its reflection M with respect to the plane I1; occurs at some interior
point of M, then from the maximum principle it follows that M = M.

By Lemma 6.4, both dual cones are strictly convex. Moreover, we claim that for § small the cones
generated by M N dB_g are convex, otherwise the inflection point would propagate to C7.

The two remaining possibilities are:

Case 2: The first touch of M and its reflection M occurs at some boundary point where d)M is perpendicular
to I1 I

Case 3: The first touch of M and its reflection M occurs at some boundary point where dM is not lying
on IT,.

We cannot directly apply Serrin’s boundary point lemma [1971] because dM is only C !>! by virtue of
Lemma 6.4. However, from the fibering of M near dM we conclude that g < g near the contact point,
where g is the support function of M. Thus ii = rg < rg = u. Hence applying Serrin’s boundary point
lemma to the harmonic functions i and u we conclude that M = M.
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Choosing I1; to be an arbitrary family passing through a line perpendicular to the diameter it follows
that y1, y, are circles and (6-10) forces them to lie on parallel planes. Applying [Schoen 1983, Corollary 2]
we infer that M is a part of catenoid. O

Appendix

This section contains some well-known results about the solutions of the singular perturbation problem (Ps).
We begin with the uniform Lipschitz estimates of Luis Caffarelli; see [Caffarelli 1995] for the proof.

Proposition A.1. Let {u.} be a family of solutions of (Pg). Then there is a constant C depending only on
N, || Blloo and independent of & such that

As a consequence we get that one can extract converging sequences {u¢, } of solutions of (P,) such
that the limit functions are stationary points of the Alt—Caffarelli problem.

Proposition A.2. Let u, be a family of solutions to (Pg) in a domain D C RN. Let us assume that
luellLoo(py < A for some constant A > 0 independent of e. For every &, — 0 there exists a subsequence
gw — 0andu € Clg’cl (D) such that

(1) ug,, — u uniformly on compact subsets of D,
(i) Vue,, — Vu in L% (D),
(iii) u is harmonic in D\ d{u > 0}.
Proof. See [Caffarelli et al. 1997, Lemma 3.1]. O
Next, we recall the estimates for the slopes of some global solutions.
Proposition A.3. Let u be as in Proposition A.2. Then the following statements hold true:
(1) u is Lipschitz.
(i) ffue; >u= ax1+ locally uniformly, then 0 <o < V2M (see [Caftarelli et al. 1997, Proposition 5.2]).
(i) Ifug; — u = ozxfr —yx] +o(|x]) and y > 0 then o> — y? = V2M (see [Caffarelli et al. 1997,
Proposition 5.1]). In this lemma the essential assumption is that y > 0.

Remark A.4. Observe that if u(x) = axi" +ax| then we must necessarily have that « = & < v/2M;
see [Caffarelli et al. 1997, Proposition 5.3]. In this case the interior of the zero set of u is empty. Thus
one might have a wedge-like solution.

Using Proposition A.1 we can extract a sequence u,; for some sequence ¢; such that us; — u uniformly
in Bj/,; see Proposition A.2. Let u be alimit and 0 < p; | 0 and u; (x) = u(xo + p;j x)/pj, Xo € {u > 0}.
Thanks to Proposition A.3(i) we can extract a subsequence, still labeled p;, such that u; converges to
some function 1 defined in RY. The function u is called a blow-up limit of u at the free boundary
point xo and it depends on {p; }.
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The two propositions to follow establish an important property of the blow-up limits, namely that the
first and second blow-ups of u can be obtained from (P;) for a suitable choice of parameter ¢. Observe
that the scaled function V(ug; ), satisfies the equation

" (u, >Aj)- (A2)

€j

A
Aug; ), = —’ﬂ(

€j
Taking §; = ¢ /Aj — 0 we see that (ug;)y; is solution to Aug;, = Bs, (us;).

Proposition A.5. Let ug; be a family of solutions to (Pg) in a domain D C RN such that Ug, —> U
uniformly on D and ¢j — 0. Let xo € D N d{u > 0} and let x, € d{u > 0} be such that x, — x¢ as
n— o00. Let Ay — 0, uy, (x) = (1/An)u(xp + Anx) and (ug; )y, = (1/An)tie; (Xn + AnXx). Assume that
uy, — U as n — oo uniformly on compact subsets of RN. Then there exists j(n) — oo such that for

every ju > j(n) it holds that €j /Ay, — 0 and

* (ug;,)r, — U uniformly on compact subsets of RV,
* V(ug;, )a, = VU in L (RN),

loc

e Vu,, — VU in L} (RV).

loc
Proof. See [Caffarelli et al. 1997, Lemma 3.2]. O

Finally, recall that the result of the previous proposition extends to the second blow-up.

Proposition A.6. Let u.; be a solution to (Pe) in a domain Dj C Dj41 and Uj Dj = RN such that
ug; — U uniformly on compact sets of RN and ¢ i — 0. Let us assume that for some choice of positive
numbers dy, and points x,, € 0{U > 0}, the sequence

1
Udn (x) = —U(xp +dnx)
dn
converges uniformly on compact sets of RN to a function Uy. Let

|
(qu )d, = d_nusj (xn + dnx).

Then there exists j(n) — oo such that for every j, > j(n), it holds that €;, /d, — 0 and
* (ug;, )a, —> Uo uniformly on compact subsets of RY,
* V(ug;)a, = VU in L _(RV).
Proof. See [Caffarelli et al. 1997, Lemma 3.3]. O

The next lemma contains one of the crucial estimates needed for the proof of Proposition 5.15.

Lemma A.7. Let u > 0 be as in Proposition A.2. Then

limsup |Vu(x)| < v2M.

x—>x0,Uu(x)>0
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Proof. To fix the ideas we let xo = 0 and / = limsup,_, ¢ ,,(x)>0 |Vu(x)|. Suppose / > 0, otherwise we
are done. Choose a sequence zj — 0 such that u(zz) > 0 and |Vu(zi)| — [. Setting pr = |k — zk|,
where y; € 0{u > 0} is the nearest point to z; on the free boundary and proceeding as in the proof of
[Alt et al. 1984a, Lemma 3.4] we can conclude that the blow-up sequence uy (x) = p;lu(zk + pxX)
has a limit u( (at least for a subsequence, thanks to Proposition A.1) such that ug(x) = /xq, x1 > 0,
in a suitable coordinate system. Moreover, by Proposition A.5 it follows that u is a limit of some u;
solving Auy,; = B, (uy;) in By, rj — oco. If there is a point z € {x; = 0} and r > 0 such that u¢ > 0 in
B, (z) N{x1 < 0} then near z we must have ug(x) = I(x — z);r +1(x —z)] +o(x —z); see Remark A.4.

Applying the unique continuation theorem to uq(x) — tg(—X1, X2, ..., X,) we see that ug = [(—x1)™T,
x1 < 0. Thus recalling Remark A.4 again we infer that / < +/2M. O

Finally, we mention a useful identity for the solutions u.; see [Caffarelli et al. 1997, equation (5.2)]:
Let u, be a solution of (Pg). Then for any ¢ € C5°(B) there holds

Vug|? .
[(l L;| +B(%)) 81¢=/;8kugalugak¢' (A3)
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