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A SPIRAL INTERFACE WITH
POSITIVE ALT-CAFFARELLI-FRIEDMAN LIMIT AT THE ORIGIN

MARK ALLEN AND DENNIS KRIVENTSOV

We give an example of a pair of nonnegative subharmonic functions with disjoint support for which
the Alt—Caffarelli-Friedman monotonicity formula has strictly positive limit at the origin, and yet the
interface between their supports lacks a (unique) tangent there. This clarifies a remark of Caffarelli and
Salsa (A geometric approach to free boundary problems, 2005) that the positivity of the limit of the ACF
formula implies unique tangents; this is true under some additional assumptions, but false in general. In
our example, blow-ups converge to the expected piecewise linear two-plane function along subsequences,
but the limiting function depends on the subsequence due to the spiraling nature of the interface.

1. Introduction

The Alt—Caffarelli-Friedman monotonicity formula (hereafter denoted ACF formula) has been and
continues to be a powerful tool in the study of free boundary problems. It was introduced in [Alt et al.
1984] in order to prove that the solutions to a two-phase Bernoulli free boundary problem are Lipschitz
continuous. The formula was then adapted to treat more general two-phase problems, and a discussion
of the formula, its proof, and its applications to two-phase free boundary problems may be found in
[Caffarelli and Salsa 2005]. The ACF formula has also been effective in studying obstacle-type problems,
and applications of the formula for obstacle-type problems are found in [Petrosyan et al. 2012]. Further
applications also include the study of segregation problems in [Caffarelli et al. 2009]. While the most
typical use of the formula is to prove the optimal regularity of solutions or flatness of the free boundary, it
can also be used for other purposes, such as to show the separation of phases in free boundary problems;
see [Allen and Petrosyan 2012; Allen et al. 2015; Allen and Shi 2016].
The key property of the ACF formula (1-1) is given in the following proposition:

Proposition 1.1. Let uy, uy > 0 be two continuous subharmonic functions in Bg with uy - up = 0 and

u1(0) =ur(0) =0. Then
@ )= / 'V”1'2f [Vual” (1-1)
r,ui, up = -
r* o) 1X1"72 U, |x]"72

is nondecreasing for 0 < r < R. Consequently, the limit
D0+, uy, uz) :=lim O (r, uy, uz)
r\0
is well defined.
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Our paper is motivated by the following claim, which appears as Lemma 12.9 in [Caffarelli and Salsa
2005]:

Claim 1.2. Let u > 0 be continuous in By and harmonic in {u > 0}. Let 2| be a connected component of
{u>0}andlet 0 € 02;. If u1 =ulg, and uy = u —uy, then if (04, uy, us) > 0, exactly two connected
components 21 and Q2 of {u > 0} are tangent at 0, and in a suitable system of coordinates,

u(x) = ax; + Bx; +o(lx|), (1-2)
with o, B > 0.

As no proof of this Lemma 12.9 is provided in [Caffarelli and Salsa 2005] (it is followed only by
some general remarks), it is not entirely clear whether it is meant to be taken at face value. We note, for
example, that if u is also assumed to satisfy a two-phase free boundary problem of the type treated in
[Caffarelli and Salsa 2005], then the claim is valid, but requires heavy use of the free boundary relation to
prove.

Claim 1.2, and in particular the question of whether it is true in the generality stated, drew the authors’
interest when the second author was tempted to use it while working on certain eigenvalue optimization
problems [Kriventsov and Lin 2019] but was unable to write down a proof. Typically, a monotonicity
formula is applied together with other tools making explicit use of the free boundary relation in order to
prove regularity of an interface; however, Claim 1.2 would imply that the ACF monotonicity formula, on
its own, yields some regularity of the interface. This makes the claim very powerful and useful, especially
in problems where the free boundary condition is difficult to exploit, such as the vector-valued free
boundary problems arising from spectral optimization [Kriventsov and Lin 2018; 2019].

Unfortunately, it is also not true: the main result of this paper is to provide a counterexample to
Claim 1.2.

Theorem 1.3. For any dimension n > 2, there exist two continuous subharmonic functions u,u > 0
with u, i both harmonic in their respective positivity sets and u - it = 0. Furthermore, ®(0+, u, it) > 0.
However, d{u > 0} and o{ie > 0} (which are given by a piecewise smooth, connected hypersurface when
restricted to any annulus B\ B,) do not admit tangents (or approximate tangents) at the origin, nor do
there exist numbers o, B > 0 and a change of coordinates such that u + u = owc{|r + Bx; +o(|x)).

In the above, the boundary of a measurable set A is said to admit a tangent (plane) at the origin if
.. BrNAL |B,NA|
0 <liminf ———— <limsup ——— < 1 (1-3)
Y | By | rN\O | By |

and there is a unit vector v such that

lim - max |x-v|=0.
rN\O r xedANB,

The boundary is said to admit an approximate tangent (plane) if (1-3) holds and

1
lim —— / Ix-v2dH" ' =0.
PNO L Jp oA
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Here 1"~ denotes (n—1)-dimensional Hausdorff measure. Note that if u, & are as in Claim 1.2 and A is
either {u > 0} or {u > 0}, then (1-3) holds; see Corollary 12.4 in [Caffarelli and Salsa 2005].

It seems that the notion of approximate tangent above (or another similar measure-theoretic notion) is
the more meaningful one in this context. Indeed, there are simpler constructions which produce functions
u, u as in Claim 1.2 for which d{u >0} does not admit a tangent at 0 but does admit an approximate
tangent.

If one only considers functions u# for which d{u >0} is, say, given by a 1-Lipschitz graph over some
plane 7, on every annulus B, \ B,, these two notions of tangent plane are equivalent. This property holds
for the example constructed in the proof of Theorem 1.3.

The functions u, i we construct in proving the theorem have d{u > 0} a spiral: while u + & looks more
and more like o (x - v);+ 4 B(x - v)_ on progressively smaller balls B,, the choice of v cannot be made
uniformly in r, and the optimal v rotates (slowly) as r decreases. Some free boundary problems are
known to exhibit spiraling patterns for the interface; see [Blank 2001; Terracini et al. 2019] for examples,
although the spirals produced there have different properties from ours. We also remark that an example
of nonunique tangents for an energy minimization problem is given in [White 1992].

Further questions. Before turning to the proof of Theorem 1.3 we would like to offer some discussion
of the further questions raised by this theorem and speculate on what “optimal” results, both positive and
negative, might look like.

A standard argument with the ACF formula shows that if u, # are as in Claim 1.2, then for every
sequence ry — 0, there is a subsequence ri; such that

Jll)l’glo rnl—FZf |”(x)_“(X'V)+—ﬁ(x-v)_|2=0,

kj Bkj

where «, B, v depend on the subsequence. Let us refer to any such subsequence ry; as a blow-up
subsequence. We are interested in whether or not these parameters may be chosen independent of the
blow-up subsequence.

In the example constructed below, the functions u and & are rotations of one another around the origin;
in particular, this means that for all of the blow-up subsequences, @« = 8 = ¢/ P (0+, u, it) are the same,
while v depends on the particular subsequence.

This example gives one way for (1-2) to fail. There could, in principle, be another way: say that
d{u>0} = d{i >0} is given by a C! hypersurface (including up to the origin, so that it admits a tangent
there), and that u, & are as in Claim 1.2. Can one find a pair u, u like this for which (1-2) fails? This
would mean that between the various blow-up subsequences, v would remain fixed, while o and 8 would
vary. Note that if the hypersurface is more regular near the origin (in particular, if it is a Lyapunov—Dini
surface), then this is impossible.

Another set of questions is related to optimality in Theorem 1.3. To clarify the discussion, define, for
each r, v(r) to be the best approximating normal vector:

f Ix - v(r)PdH" " = min/ Ix - v|>dH" L.
B,Nd{u>0} veS" ! J BN {u>0}
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It may be verified that v(r) is uniquely determined from this relation and depends in a Lipschitz manner
on r. The property of having an approximate tangent, then, can be reformulated as saying that v(r) has a
limit as » — 0, while Theorem 1.3 gives an example where

/

What restrictions on the change in v(r), one may ask then, are implied by the conditions in Claim 1.2?

dv(r)
dr

= 0. (1-4)

We conjecture that under those conditions, one must have

1
[
0

on the other hand, for any v (r) satisfying (1-4) and (1-5), there is a pair of functions u, & as in Claim 1.2
with vy (r) with

dv(r) |?

dr

00; (1-5)

dv(r) - dvy(r)
dr |~ | dr |
To explain the source of (1-5), let us point out that in Section 2, we construct a pair of functions u, u for
which
*ld OO0+, u,u
f Y| g ang 20HW g

(and this dependence on 6 seems to be sharp up to constants). By gluing truncated and scaled versions of
this construction, one might hope to attain functions u, u satisfying the hypotheses of Claim 1.2, and with

2J+1

/

for any sequence 6; for which [ [; (1 —912) > 0. This restriction is equivalent to (1-5) for such a construction.

dv(r)
dr

~

i

In the actual proof of Theorem 1.3, we are unable to perform the truncation and gluing steps uniformly
in 8, and so do not obtain such a quantitative result.

Finally, over the past two decades enormous progress has been made in understanding the relationship
between the behavior of positive harmonic functions with zero Dirichlet condition near the boundaries of
domains and the geometric measure-theoretic properties of the boundary; we do not attempt to provide a
summary here, but refer the reader to the introduction and references in [Azzam et al. 2016]. We suggest
that the questions above can be thought of as a continuation, or extension, of this program, with the goal
of relating (finer) geometric properties of a boundary to the simultaneous behavior of positive harmonic
functions on a domain and its compliment, using the ACF formula as a crucial tool.

Outline of proof. To prove Theorem 1.3 we will construct a subharmonic function « > 0 in R? such that
u is harmonic in its positivity set and u(0) = 0. Furthermore, d{u >0} will be invariant under a rotation
of . Consequently, if it(z) := u(—z), then the pair u, u will satisfy the assumptions of the ACF formula
in Proposition 1.1. Before explaining the construction of # and the outline of the paper, we first give two
definitions.
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We define the class of functions in R2

K:={ueC(By):u>0in By, Au=0in {u>0},
w(0) =0, u(z) - u(—z) =0, and 0{u(z) >0} = d{u(—z) >0}}.

By working in the class X, we may consider using a one-sided rescaled version of the ACF formula. If

u € IC, then
) 172
2
J(r,u) = (—2/ [Vu| )
nr B,

is monotonically nondecreasing in r since J (r, u) = (%)2\/ @ (r, u(z), u(—z)). Furthermore, if u is C'
up to d{u >0} near the origin, then J(0+, u) = |Vu(0)]|.
In order to prove Theorem 1.3 we first show in Section 2, working on unbounded domains, that it is

possible to turn d{u > 0} so that its asymptotic behavior at infinity differs from its tangent near the origin
by an angle of § while arranging that J (oo, u) — J (0+, u) < 1 —62 (for small #). In Section 3 we transfer
this result to a bounded domain. In Section 4 we inductively construct a sequence of functions in X and
take a limit to obtain the u in Theorem 1.3. Heuristically, the value of J(0+, «) should be [](1 — 01.2),
and this is strictly positive if, say, §; = i ~!. On successively smaller balls, the interface {« =0} will have
turned a total amount of >_i~! — oo, which implies that the interface spirals towards the origin and
therefore lacks a unique tangent there. We make these heuristic ideas rigorous, and then we show how
the pair u, u also provide a counterexample in higher dimensions.

2. Conformal mapping

We utilize the Schwarz—Christoffel formula to obtain a conformal mapping. For a fixed angle 0 <6 < 7,
we map the upper half-plane to the domain €24 (see Figure 1) by the conformal mapping fp with derivative

1 6/m
F1(2) = (2 — (= 1) @+/7=1 (; _ [ya=0)/a—1 _ (%) . 2-1)

We translate fj by a constant zg, so that the midpoint of the line segment in the image is the origin
0+ 0i. Wedefinety € (—1,1) CRtobety = fe_l(O + 0i). Clearly, ty — 0 as & — 0. What is of
importance is how quickly g — 0. In order to determine this decay rate we use the following result:

Jo

Figure 1. Conformal map.
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Lemma 2.1. Let f, g > 0 be integrable functions on an interval 1. If f/g is an increasing function, then
for any x| < xy < x3 < x4 with each x; € I, we have
X2 X4
f
fx)]cz S fx;4 .
f)q g fJCj; g

Proof. Since f/g is increasing we have

fxz FOodx < / 102 (x) d.
X1 X1 g()C2)

Consequently, we have
[ F@dx _ f(xy)
Jigdx T gla)

By the same argument, we have

fo) _ [ f@)da
g(xs) ~ [Hg(x)dx
and so the conclusion follows. O

We will also need the following:

Lemma 2.2. Let f > g > 0 be integrable and continuous on [0, 1) with f > g and f/g increasing, and

1 1
ff>M and /g>M.
0 0

Let x1, xp be the unique values such that

X1 1 X2 1
M+/ g=/ ¢ and M+/ f=/ f (2-2)
0 X1 0 X2

Then x1 < x».

Proof. We have
1
MAT S _JF
M+['e ™ e~ [lg

where the second inequality is due to Lemma 2.1. Since x; is chosen so that (2-2) holds, we have that the
denominator in the inequality above is the same so that

M+/OXIf§/x11f-

Then x; < x5. Il
The two lemmas above allow us to prove:

Lemma 2.3. Let fy be defined as in (2-1) and let ty = fg_l (04 0i). Then there exists 6y > 0 such that
0 <ty <20/m aslongas 0 <6 < 6.
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Proof. To determine the midpoint of a line segment it suffices to find the x-value. Consequently, we focus
on the real part of the mapping fy. If r € (—1, 1), then

) 14+1\7 146\
f(ﬂz((—D:) =(:> o

Thus, ty is the unique value in (—1, 1) such that

/tg 1+l 6/77dt_/1 1+[ e/ﬂdt
S\ 1=z - J, 1=t '

VT (A if —1<1=<0.
1—1¢ 2

Then #y < &y, where &y is the unique value such that

0 0/ & 0/ 1 0/
1+4+¢ 14+t 14+t
LO5) e () a=[(5) o
1\ 2 0o \1—1 g \1—1t
1 t@/n 1 20/

il <(— ifo<t<l,
1—1¢ 1—1¢

(/(A=—p?m (1 N7
(L+0)/A—1)f/m (1 —r2>

is an increasing function on (0, 1). If we let

0 0/
141
M:/ <l> dt,
4\ 2

then we may apply Lemma 2.2 and conclude that 7y < &y < 1y, where ty is given by

0 /14 \0/ w1 N\ L/ 1 \¥/7
/ — dt+/ —_— dt :/ — dt.
i\ 2 o \1—1¢ o \1—1

The integrals above have elementary antiderivatives. In order to show that 7y < 26 /7 for small 6, we

We now note that

We also have

and

choose 26 /7 as the point of integration. By taking explicit antiderivatives and simplifying, it suffices to
show that for small enough 6,

1\0/7 1-260/7
5 1—-2(1-26
() (1-20/7) > 0. (2-3)
14+0/x 1-20/m
The expression on the left of (2-3) approaches zero as 6 — 0. If we take the derivative of the left side of

(2-3) with respect to 6 and let & — 0 we obtain (1 +ln(%))/n > 0. Then (2-3) is true as long as 0 < 6 < 6
for 6y > 0 chosen small enough. Hence we conclude that #y < 79 <20 /7 for any 0 < 6 < 6. O

From (2-1) we have | f;(z)| — 1 as |z| = 0o. We let ¢ be the harmonic function in €y defined by

y T =¢o(u, v),
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where fp =u+iv. Since 1 = [V¢y||f'(z)|, we have [Vgy| — 1 as |z] — oo. By a rotation of 5 of ¢y
we have a complementary harmonic function ¢y and can thus apply the ACF monotonicity formula. We
have J (0o, ¢y, (,239) = 1. To find J (0+, ¢y, (]39) we find |V¢y (0)]. This is given by

L= [VgoO)1f (to)].

1—1 o/
1> |Vegy(0)| = T :

Thus

s0 |V¢y(0)] is an increasing function of 6, and

1-20/7\/"
1Z|V¢9(O)|Z<m) .

Using L’Hospital’s rule we conclude that

1= (1 =20/m)/(1+20/7))%/"
lim =

4 > 0.
650 0/7)? g

As a consequence we have the following result:

Lemma 2.4. There exists 6y such that if 0 < 6 < 6y, then
0<1-—02<|Vg(0) <1. (2-4)
Since J (00, ¢g) = 1 and J (04, ¢g) = |Vy(0)|, Lemma 2.4 shows that

J (00, ¢p) — J(0+, ¢p) < 1 —62.

3. Bounded domain

The aim of this section is to transfer the inequality in (2-4) to a harmonic function on a bounded domain.
We approximate 2 with domains €2y »s; see Figure 2. If fy ) is the conformal mapping of the upper
half-plane onto €29 s, then

z+1 9/”(1—Zz>1/2(z+m>1/2
Ty () = , 3-1
Jo.u(@) <z—1> Z+22 7—2z1 -1

where 71, z2 € Rand 1 < 71 < z2. We again translate fy » by a constant so that the domain is centered
on the origin as in Figure 2. The points z1, z» are chosen so that fy 3(z2) = M + 0i. We point out that
| fo | = 1 as |z| — oo. We define ¢y (1, v) =y, where fo vy =u+iv.

Lemma 3.1. Fix 0 < 6. There exists M > 0, possibly depending on 0, such that J (oo, ¢ m) = 1 and
J O+, do.u) > 1 — 62

Proof. That J (oo, ¢9. i) = 1 follows from the definition of ¢y » and (3-1). Now from the explicit
formulas given for f;(z) and fy » in (2-1) and (3-1) respectively, we have ¢y y — ¢y in C ! up to the
boundary in a neighborhood of the origin. Since |V (0)| > 1 — 62, the conclusion follows. Il
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Figure 2. Domain Qg y.

Remark 3.2. Since J(r, ¢ )) is monotonically increasing in r, it follows from Lemma 3.1 that
J (00, go,u) = J O+, do.u) < 1 —67.

For any 6 < 6y, we fix an M that satisfies Lemma 3.1. We now transfer the decrease in energy to a
finite domain.

Lemma 3.3. Let 6 and ¢g p be as in Lemma 3.1. Let Qg be defined as before. If we define wg to be

such that
AwR =0 in BR DQQ,M,

WR = 0 on aQQ’M N BR,
wg=y on(dBp)",
then wg — ¢y locally uniformly in Qg _y and in C' in B, N Qg y for small enough p.

Proof. Using the rescaling
__ 9o.m(Rx, Ry)
o R

we have ¢pg — y* in C! on (3 By)™. Thus, for any n > 0, there exists Ry > 0 such that if R > Ry, then

DR

9

(A=my" <¢g <A +ny" on@B)".
Then rescaling back we obtain that (1 —n)y™ < ¢g.pr < (1 + 1)y on (Bg)™ if R > Ry. From the
maximum principle we then have
(I =mwg <¢om < (1+nwg forany R > Ry.

Then as R — oo, we have wg — wso locally uniformly in €24 p and in C Lina neighborhood of the
origin. Furthermore, we have (1 — n)we < ¢p.m < (1 + n)w. Since n can be taken to be arbitrarily
small, we conclude that we, = ¢g u. O

We end this section by defining a 6-turn. If # € K and for some p > 0 we have d{u > 0} N B, is a line
segment with inward unit normal v, then a 6-turn in B, gives a new function v with

i) vek,

(ii) v=uon 9By,
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Figure 3. 6-turn when v =i.

(i) d{v >0} N (B1\ By) =d{u>0}N(Bi\B),
(iv) 8{v >0} N B, = d{po. m ('~ (2M/p)z) > 0} N B,

The idea of property (iv) is to shrink ¢y s on By to B, and give v the same positivity set; see Figure 3
for when v =i.

4. Construction of counterexample
As before we let 6y be as in Lemma 2.4. This next lemma shows how to apply a -turn to a function that
is almost linear at the origin.
Lemma 4.1. Fix e > 0. Assume u € IC, and that there is s < rg < 1 with
(1) BsNo{u>0} = BN {y,=0},
(2) |ul <2J(1,u)rg on By,

If 0 < 6o, then there exists r, p with s > r > p > 0 with a 0-turn in B, such that if v is the redefined
function, then v satisfies

(A) |v| <2J(1,v)r on By,

B) |v| < (1+6?%) supg, |ul on B, fort € [ro, 1],
(©) J(,v) < (1+6%)J(1,u),

(D) J(O+,v) > (1 =627 (04, u).

Proof. We choose r < s small enough so that

u(rx)

— J(O+, u)y* <34, (4-1)

CH(@BN™)

and so that |u| < 2J(1, u)r. We now apply a 0-turn in B, with0 < p <r. As p — 0, we have v — u
uniformly away from the origin, so that by choosing p small enough, v satisfies (B).
We now let n > 0 be small and use a cut-off function and obtain in the standard way the Caccioppoli

f Vv —ul> < C(n) lv—ul*.
Bi\By, Bi\By2

inequality
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Then as p — 0, we have v — u in H'(B; \ B)) for any n > 0. We now use the monotonicity of J(r, v)
to prove that v — u in H'(B;) as p — 0. We have

Vo < |Vv|2=82f |Vv|2+f VP,
B,, B; Bl\Bn BU

nz
/|Vv|25 2/ Vo,
B 1—n%Jp\5,

n

so that

and we conclude that

|Vo|? < |Vul?.

B L —n% Jp\»,

Then [[v|| g1(p,) 1s bounded as p — 0, so that v — u in H'(B;) as p — 0. We now have

1 1
|Vu|? < hrn IVol? < lim —— Vu|> = —— |Vul?.
By By p—01—n% Jp\s, 1—n%Jp\5,
Since 7 can be chosen arbitrarily small, we have Vv — Vu in L?(B;) and thus conclude that v — u in
H'(B;) as p — 0. Consequently, we may choose p even smaller so that properties (A) and (C) hold.
From (4-1), if p is chosen small enough we have

v(rz)

r

— J(O4, u)y™

<4,
Cl((8B1)™)

so that (1 —8)J(0+, u)y™ < v(rz)/r on (0 B1)™". We now define w to be the solution to

Aw =0 in {v(rz)/r > 0}N By,
w=0 on dof{v(rz)/r > 0} N By,
w=(1-8)J(0O+)y" on (dB)".

We have w < v in By, so that [Vw(0)| < |Vv(0)| or J(0+, w) < J(0+, v). We may rescale w and apply
Lemma 3.3 to obtain that for small enough p, we have

J(O+, w) > (1 =05 (1 = 8)J 0+, u).
By choosing § < 62 we obtain (D). O

Proof of Theorem 1.3 in dimension n = 2. We now use Lemma 4.1 to construct a sequence u; € K with
limuy — u. The pair u and (z) := u(—z) will be a counterexample to Claim 1.2. The sequence uy is
constructed inductively as follows. We choose 6; = 1/(k + Ny), where Ny € N is chosen large enough
so that 6; < 6y. We then let ug = y* on By. By Lemma 4.1 there exists p; < ry such that if a §;-turn is
applied in B, to obtain uy, then u; will satisfy properties (A)—(D). We now suppose that u; has been
constructed for some k > 1. By rotating uy it will satisfy assumption (1) of Lemma 4.1. Assumption (2)
will also be satisfied because uy satisfies (A) for » = ry. By Lemma 4.1 there exists pgy; < rr+1 with
Frt1 < px so that if we apply a 6,4 -turn to uy to obtain ug4; we have

(1) lugs1l <2J(, ugq1)r on By,
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(i) Jugs1] < [Tj=, (1+63) supg, luol on B, for t € [ry, 11,
(i) J (1 i) < TT5_y (1+6])7 (Lowo) = [Tj_y (1 +6)),
(iv) JO+, weer) > [T5_; (1= 6227 0+, ug) = [T, (1 — 622,

From the same arguments involving the Caccioppoli inequality as in the proof of Lemma 4.1, there exists
u such that uy — u in H'(B;) and locally uniformly away from the origin. Then u is continuous away
from the origin. From (i) we obtain that |u| < Cr on B, for 0 < r < 1, so that u is continuous up to the
origin, and u(0) = 0.

Now 0 < []p2, (1 —62)? if and only if 0 < 5o, (1 — 67) if and only if

o0 o
D k+No)y 2= "6} <oo.
k=1 k=1

Since the inequality above is true, we conclude that

o<[Ja-e*<JJa-6) <1

k=1 k=1

The last inequality above is due to the fact that all the terms are less than 1. Since u; — u in H'(B;) and
from properties (ii) and (iii), we conclude that

o0
0<[Ja=6)*<Jiuy<CI(l.u)<oo forall0<r <1,
k=1

so that J (04, u) > 0.

If we let i1 (z) = ur(—2z), then ity — u, where it (z) = u(—z). Furthermore, u - # = 0 in By. Since also
u, i are nonnegative, continuous, and harmonic when positive, they satisfy the assumptions of the ACF
monotonicity formula in Proposition 1.1. We now show that u, i are a counterexample to Claim 1.2.
We assume by way of contradiction that {# >0} and {z > 0} are tangent at the origin and after a rotation
u(z) +u(z) = ax1+ + Bx; +o(|z]). Then for any small § > 0, there exists ry such that if r < ry and
|z| > § and |Arg(z)| < 8, then

~ +
utra) Hulra) _oxy (4-2)
r 2
We now recall that from the construction
3u>0yN (B, \ By) = {z:z=te”" Yi-1% and py < |t] < rel. (4-3)

Since ) 6 = 0o and 6 — 0, we obtain from (4-3) there exist infinitely many z; with |zx| — 0 and
|Arg(z)| < & such that u(z;) + ut(zx) = 0. This contradicts (4-2), and so Claim 1.2 is not true. O

We now show that the pair u and # are also a counterexample in higher dimensions.
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Proof of Theorem 1.3 in dimension n > 2. For u as in the proof for dimension 2, we let w, (x1, X2, ..., X,) =
u(xi, x»). Since in dimension n = 2 we have

1 2

r B,
1 2
— [Vw|* > C.
r’ B,

1 IVw|> 1 [Vw> 1 )
r2 B, |x|n72 r2 B, rn72 22 B

r

it follows that in dimension #,

Then

so that ®(r, w, w) > 0. We have already shown that u + & cannot satisfy the conclusions in Claim 1.2;
consequently, w 4+ w also do not satisfy those conclusions. 0
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