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SHARP VARIATION-NORM ESTIMATES FOR
OSCILLATORY INTEGRALS RELATED TO CARLESON’S THEOREM

SHAOMING GUO, JORIS ROOS AND PO-LAM YUNG

We prove variation-norm estimates for certain oscillatory integrals related to Carleson’s theorem. Bounds
for the corresponding maximal operators were first proven by Stein and Wainger. Our estimates are sharp
in the range of exponents, up to endpoints. Such variation-norm estimates have applications to discrete
analogues and ergodic theory. The proof relies on square function estimates for Schrodinger-like equations
due to Lee, Rogers and Seeger. In dimension 1, our proof additionally relies on a local smoothing estimate.
Though the known endpoint local smoothing estimate by Rogers and Seeger is more than sufficient for
our purpose, we also give a proof of certain local smoothing estimates using Bourgain—Guth iteration and
the Bourgain-Demeter ¢> decoupling theorem. This may be of independent interest, because it improves
the previously known range of exponents for spatial dimensions n > 4.

1. Introduction

Letn > 1 and @ > 1 be fixed. Given a Calderén—Zygmund kernel K : R"” — R we define a modulated
singular integral by

HOfx)y:= | fx—0e""" K@) dt, ueR. (1-1)
Rn
The maximal operator
sup [H" f| (1-2)
uelR

was introduced in [Stein and Wainger 2001] as a generalization of the Carleson operator studied in
[Carleson 1966; Fefferman 1973; Lacey and Thiele 2000]. In this paper, we study variation-norm
estimates for the family {(H®™ £icr. Apart from the intrinsic interest in such bounds, another strong
motivation is given by the connection to certain discrete analogues of (1-2) that are the subject of recent
works [Krause and Lacey 2017; Krause 2018] (see Section 1A below).

If J is a subset of R and {a, : u € J} is a family of complex numbers indexed by 7, then for any
1 <r < oo the r-variational norm of {a,},c 7 is defined to be

J 1/r
V'i{a, :u e J}:=sup sup (Z law; —au,_, |r> .
=1

JeN ug,uy,..., u;€J
Uo<U| < <Uy
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Closely related to it is the jump function of the family {a,},c7: for A > 0, the A-jump function of {a, },c 7,
namely N,{a, : u € J}, is defined to be the supremum of all positive integers N for which there exists a
strictly increasing sequence s; <t <sp <fp <--- < sy < ty, all of which are in 7, such that

lay — as;| > A

forall j=1,...,N. Forr € (1,00) and p € (1, c0), we will study the L?” mapping properties of the
maps

fr— V{HY f:ueR},

fr— AIN{HY frueRNY", r>0.

Henceforth f will always be a Schwartz function on R"; the goal is to establish a priori bounds for
all such f. If in dimension n = 1 we take « = 1 and replace [f| by ¢, then this corresponds to the
variation-norm Carleson operator, which has been studied in [Oberlin, Seeger, Tao, Thiele, and Wright
2012; Uraltsev 2016]. We refer the reader to [Bourgain 1989; Pisier and Xu 1988; Campbell, Jones,
Reinhold, and Wierdl 2000; 2003; Jones, Seeger, and Wright 2008] for earlier results concerning jump
function and variation-norm inequalities for other operators arising in harmonic analysis.
Let us assume that K is a homogeneous Calder6n—Zygmund kernel, in the sense that
Q(x)

|x |

K(x)=p.v.

for some function €2 that is smooth on R" \ {0}, homogeneous of degree 0. The assumption that K is
homogeneous is not strictly necessary. It is there to help simplify the presentation of the proof of the
theorem. We also assume that fgn_l Q(x)do (x) =0, where o denotes the surface measure on S" .

Theorem 1.1. Letn> 1, o € (1, 00) and define H™ as in (1-1). If r € (2, 00), p € (1,00) and r > p'/n,
then we have
VAR fru e R, < CILflp- (1-3)

In addition, ifn > 2 and p € 2n/(2n — 1), 00), then

AWNAHO fueRY| < CIUFI,.
Here the constant C is allowed to depend on n, o, p and r.
Moreover, up to endpoints, we show that this is the best we can expect:
Theorem 1.2. The estimate (1-3) fails if r < p’/n.

Thus, the range of exponents for which estimate (1-3) holds is given by the quadrilateral in Figure 1
below (up to endpoints).

It is natural to ask what happens when « is less than 1. Our methods do not seem to be able to handle
this case. But if n = 1, an easy adaptation of our methods allows us to obtain a positive result where the
phase function [¢|* in (1-1) is replaced by sgn(#)|z|*. In particular, if « is an odd positive integer, we may
replace |#|* in (1-1) by #* and still obtain a positive result.
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Figure 1. The range of exponents for which estimate (1-3) holds.

The inequality (1-3) can be understood as an extension of the well-known result from [Stein and
Wainger 2001] (also see [Guo 2016] for the case when « is not an integer):

Hsup IH(”)fIHp SIfll, forevery p > 1. (1-4)
ueR

1A. Connection with discrete analogues. Further motivation stems from the study of a discrete analogue
of the maximal operator (1-2). Fix an integer d > 2 and let u € R. Consider the following operator ’H(Z”)
acting on functions f : Z — C:

HOFo = Y fla— r)e”""%, xeZ
1eZ\{0)

This is a discrete analogue of our operator H“ for n = 1 and o = d. Bounding the associated maximal
operator f > sup,cp I”H(Zu) flon €7(Z) is significantly more difficult than bounding Stein and Wainger’s
maximal operator and until recently, no such bounds were known. For the recent progress on this problem
and further discussion of discrete analogues, we refer to [Krause 2018; Krause and Lacey 2017]. A
careful analysis of the multiplier of H(Z”), which is much in the spirit of the Hardy-Littlewood circle
method, reveals a natural splitting of the problem into a number-theoretic and an analytic component. In
the case p = 2, the core estimate for the analytic component is a variant of Bourgain’s classical maximal
multifrequency lemma [1989, Lemma 4.1]. The precise statements can be found in [Krause and Lacey
2017, Section 3; Krause 2018, Sections 5 and 10.2]; see, in particular, Theorem 3.5 of [Krause and Lacey
2017]. Using a small refinement of our Theorem 1.1 (see Theorem B.3 below), together with the argument
from [Bourgain 1989], one can obtain an alternative simple proof of (a small extension of) Theorem 3.5
of [Krause and Lacey 2017]; we include some details in Appendix B.

Discrete analogues are intimately related to ergodic theorems and this connection provides a further
application of our variation-norm estimates. Krause [2018, Theorem 1.2] made use of a variant of the

estimate (1-3) in his recent work on a pointwise ergodic theorem.

1B. Outline of the proof. We now briefly describe an outline of the proof of Theorem 1.1. To control
the left-hand side of the estimate (1-3), we split the contribution into two parts: long variations and short
variations. For each j € Z, define the short variation on the u-interval [2/¢, 2U+D2] by

VIHL () = VI{H® f(x) su e [27%, 20Dy,
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Also define y
S, (Hf)(x) = (Z |V;’Hf(x)|’> ,

jez
N3 () = N HEO f(x) 1 ) e 7).

We will use the following lemma (see, for example, [Jones, Seeger, and Wright 2008]):

Lemma 1.3. Forr € [2, o0) we have
MNAHY 2w > 00" S S, (Hf) + AN LT

uniformly in X > 0.

(Hereafter, A < B means A < C B for some absolute constant C.)

By this lemma, and by Bourgain’s argument [1989] of passing from jump norms to variation-norms
(see also [Jones, Seeger, and Wright 2008, Section 2]), to prove Theorem 1.1 it suffices to prove the
following two propositions.

Proposition 1.4. For every p € (1, 00) and r € [2, 00) we have
dyad
AN O, S AN

uniformly in A > 0.

Proposition 1.5. Letn > 1and p € (1, 00), r € (2, 00) withr > p’/n. Then we have

IS-(HOIp SISy
If n > 2, then the inequality also holds for r = 2.

The proof of Proposition 1.4 depends on a jump function inequality of [Jones, Seeger, and Wright
2008] that is based on a Lépingle inequality for martingales.

By interpolation with the inequality (1-4) of [Stein and Wainger 2001], it suffices to consider the case p €
(2n/(2n—1), oo) to prove Proposition 1.5. The proof of Proposition 1.5 then depends on a square function
estimate for Schrodinger-like equations, which is due to [Lee, Rogers, and Seeger 2012]. In one dimension,
we additionally need a local smoothing estimate for these equations. The following local smoothing result
is more than sufficient for our needs: indeed we will only need the following estimate for n = 1 and some
p < oco. We are including the full theorem here only because it may be of independent interest.

Theorem 1.6. Let y > 1 be a real number and let I be a compact time interval. For any dimension n > 1
and exponent p < oo satisfying

24n+7) ., _
>—4n—|—1 if n=—1 (mod 3),
P> 2”;3 if n=0 (mod 3), (1-5)
> 4(n+2) if n=1 (mod 3),

2n+1
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we have
o I P 1/p
( f / e f(E)e! ds' dx dr) Se I lwssencany (1-6)
R)lx[ n
whenever € > 0 and
B _ n(l _ l) _1
% 2 p/ p

Here we write WP (R") = (I — A)™*/2LP(R") to denote the standard Bessel potential space.

Let us take a moment to compare Theorem 1.6 with results in the existing literature. Rogers [2008]
considered the case y = 2, namely a local smoothing estimate for the Schrédinger propagator ¢''2. He
proved that (1-6) holds whenever y =2, pe (2+4/(n+ 1), 00) and € > O (in the rest of this section
B will always be as specified in Theorem 1.6). This was improved subsequently by Rogers and Seeger
[2010], who obtained the endpoint case € = 0 for all y > 1: they established that (1-6) holds with e =0
forall pe 2+4/(n+1),00) and all y > 1. In particular, this implies Theorem 1.6 for n =1, 2, 3.
Theorem 1.6 gives a larger range of p in dimensions n > 4, albeit with an e-loss in smoothness. We also
note that in the case y = 2 (i.e., for the Schrodinger propagator), Lee, Rogers and Seeger [2013] obtained
an improvement of the aforementioned result of [Rogers and Seeger 2010]; in particular, in Proposition 5.2
of [Lee, Rogers, and Seeger 2013], they proved that if the dual Fourier restriction conjecture holds at an
exponent g, in the sense that

IES Lo qnry S I Nl zoogo,11m)
for some exponent yy < 2(n+3)/(n+ 1), where E is the Fourier extension operator for the paraboloid in
R"*! given by

Ef(x,t) = FE)ECETED ge (x, 1) e R" x R, (1-7)
[0,1]"

then (1-6) holds for y = 2 with € = 0 whenever p € (g., 00), where g, is defined by

2(n+3) : 1/go — (n+1)/2(n +3))
% 1= 1-— , , h , = .
q a1 = r(q0),  withy(,qo) R T 1D)/2— (1 +2)/q0)

A direct computation shows that

2
n? —n(4—qo)/(qo—2)
As a result, even if one can establish (1-7) in all dimensions n with gg = go(n) that decays like go(n) =

24 (2+1)/n+ O(1/n?) for some A > 0 (the Fourier restriction conjecture shows that the best one can
hope for is A = 0), using the above result of Lee, Rogers and Seeger, one can only establish the local

4
gx=2+——
n

smoothing estimate (1-6) for p € (g.(n), 00), where

4 1
n n
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On the contrary, if p.(n) is the Bourgain—Guth exponent given by the right-hand sides of (1-5), we see that
3 1
n n

so our range of the exponent p is larger than that of Lee, Rogers and Seeger in high dimensions 7, even
for the Schrodinger equation case.

Contrary to [Rogers and Seeger 2010], which relied on bilinear restriction estimates, our proof of
Theorem 1.6 relies on the Bourgain—Guth argument [2011] (see also the presentation in [Bourgain and
Demeter 2017]), and the Bourgain—Demeter decoupling inequality [2015]; see [Wolff 2000; L.aba and
Wolff 2002] for some earlier foundational work on decoupling inequalities, and their applications to local
smoothing estimates. The multilinear estimates developed in [Guth 2018] might be useful in establishing
(1-6) for a larger range of exponents, but we did not pursue this here.

Organization of the paper. In Section 2 we state two preliminary results, namely a consequence of the
classical Lépingle inequality, and a consequence of the Plancherel-Pélya inequality. In Section 3 we
control long jumps; that is, we will prove Proposition 1.4. The treatment for short jumps (that is, the
proof of Proposition 1.5) will be split into two parts. In Section 4 we prove Proposition 1.5 in two special
cases: n>2, p>2(n+2)/n,and n =1, p > 2. These are the main cases to be considered. In Section 5
we indicate the modifications necessary to prove the remaining case of Proposition 1.5: namely, n > 2
and 2n/(2n — 1) < p <2(n+2)/n. The proof of Theorem 1.2 is in Section 6. In Section 7 we provide
the proof of a vector-valued generalization of a multiplier theorem of [Seeger 1988], which we used in
the proof of the short jump estimates in Section 4. In Appendix A we prove the local smoothing estimates
in Theorem 1.6. In Appendix B we refine our Theorem 1.1 by obtaining a good bound on the growth of
the constant C in (1-3) as p = r — 2% (see Theorem B.3), and use it to provide an alternative simple
proof of a maximal multifrequency estimate of Krause and Lacey [2017, Theorem 3.5].

2. Prerequisites

2A. A jump function inequality of Jones, Seeger and Wright. We recall a jump function inequality for
convolutions with dyadic dilations of a fixed measure from [Jones, Seeger, and Wright 2008, Theorem 1.1].
It is a consequence of the more classical Lépingle inequality for martingales.

Proposition 2.1 [Jones, Seeger, and Wright 2008]. Let o be a compactly supported finite nonnegative
Borel measure on R" whose Fourier transform satisfies

o) <ClEl™
for some a > 0. For k € Z, define o} by

A () dog(x) = ) fQ27*x)do(x).
Then

|2/ Nutf * o ik € ZY| 1 oy < Coll FllLomey

forall 1 < p < oo, uniformly in A > Q0.
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We will apply this proposition as follows. Let S be a nonnegative smooth function with compact
support in [—1, 1]* and fRn S(x)dx = 1. For k € Z and any Schwartz function f on R", let

Sk f(x) = f*xSk(x),

where Si(x) = 2k S(2x). If o is the measure on R” given by

| rwdow = [ rwsean
R R
then oy (x) coincides with Sy (x)dx, and hence f * oy = Sy f for all k € Z. Proposition 2.1 then gives

|2V NSk f ik € ZY|| pgny < Coll Fllrny -1

for all 1 < p < 0o, uniformly in A > 0. Note that §(0) =1 and §(f;‘) decreases rapidly to zero as || — oo.
So later it helps to think of §(.§ ) as localized to |£] < 1, and interpret S f as a localization of f to
frequency < 2K,

Next, let {c¢}72, be a complex sequence with |cy| = 027 for some o > 0. Let gk be the operator
defined by

o0
Sif =) ceSi-ef. 22)
=0
We will use (2-1) to prove that

AV NS f ik € TV gy < Cpll fllrgn (2-3)

for all 1 < p < oo, uniformly in A > 0. Recall the definition of the jump norm Nx{gk fx): kel
it is the supremum of all positive integers N for which there exists a strictly increasing sequence
S]<l <8 <th<---<Sy <Ly, all of which are in Z, such that

1S, f (x) = S, f ()] > A (2-4)
forall j=1,...,N.Butifs; <t) <sp <tp <---<sy <tyisassuch, thenforall j=1,..., N we have

|Sy—e f (x) = Sy—e f ()] 2 2522

for at least one £ > 0. Hence,

NuASkf () 1k €Z) S Nowry {Sif (x) 1k € Z),

=0
which implies
o0
VNuSKf ik €Z) S /Nty (S f 1k € Z).
£=0

This further implies

o
AV NSk f ik € ZY| gy S D227 P2 hy Noera (S f 2k € DY oy S IS N
£=0

This finishes the proof of the estimate (2-3).
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2B. An inequality of Plancherel and Pélya. Next, let F(u) be an L? function on R whose Fourier
transform F (&) is supported on the set |£| < 1. Such an F' is sometimes said to be in a Paley—Wiener space.
An inequality of Plancherel and Pdlya [1936; 1937] says that for any such F and any r € [1, c0), we have

SIFGI =G [ IFar du 2-5)
jez R
where C, is a constant independent of F. This holds because if Fis supported on || < 1, then, by the
uncertainty principle, F' is essentially constant on every interval of length 1 (see also [Young 1980] for
an alternative proof based on complex analysis).

From (2-5) we can deduce the following variation-norm estimate (see also page 6729 of [Jones, Seeger,
and Wright 2008]):

Proposition 2.2. Let F(u) be a function on R whose Fourier transform F (&) is supported on the set
{I€] < A}. Then for every 1 <q <r < 00, we have

VI{F@):ueR} < Ay A9 F pa, (2-6)
with a constant A, , depending only on q and r.

Proof. By rescaling we may assume that A = 1. Now let k € N and u; < - - - < uy be a strictly increasing
sequence in R. We let k(0) =1, n1 = [u,(0)] and let k(1) be the largest integer in {1, ..., k} such that
ey <nip+ 1. If k(1) <k, we let np = |u,1)+1] and let « (2) be the largest integer in {1, ..., k} such
that u, ) < ny + 1. Clearly this process will terminate in finitely many, say m, steps. In this way we
collect the points u1, ..., uy into intervals [ny, ny + 1], [n2, np+11, ..., [, 0,y + 1] of length at most 1.
Now for s =1, ..., m — 1, by the triangle inequality, we have

|F (ie(s)) = F e )+ D" STF (Uie(s) = F (ng+ D" +|F(ng+ D"+ | F (ng+ )"+ F (ng41) — F (esy)+01

This shows

k—1

> IF )= F (i)’
i=1

5Z(|F<ns>|’+|F(ns+1>|’)+Z<|F(m)—F(uK(s_l))V
= = + > |F(ui)—F(ui+1)|r+|F(Mx(s))—F(ns+1)|r)-

k(s—1)<i<x(s)
(Indeed, for s = 1, we do not need the terms |F (n,)|" and | F (ny) — F (u,(s—1))|" on the right-hand side;
similarly for s = m, we do not need the terms |F (ns + 1)|" and |F (u.(s)) — F(ns + 1)|". But there is
no harm putting them in, which makes the expression on the right-hand side more symmetric.) By the
mean-value theorem, for s =1, ..., m, we have

|F(n) = Flues—)l"+ D> [Fu) = Fip)|” + | F () — Fng+ DI

k(s—1)<i<k(s)

< IF (|ns —weonl D i —uip |+ ) — (g + 1)|’>,

k(s—1)<i<k(s)
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and the quantity inside the parentheses in the last line is < 1 since we have the elementary inequality
Httty <+ + 1)
whenever t;,...,t, > 0and 1 <r < oco. Now since F is supported on |£| < 1, Bernstein’s inequality
implies
IF oo Sr I1F Nl e
whenever 1 <r < oo. Altogether, we see that

k—1

Y NF @) = Fu)l” S IF I+ Y _(F ()l +F(ng+ D)

i=1 s=1

S IFIL+ ) IFDE S IFN
jez
whenever 1 <r < oo, the last inequality following from (2-5). Since F is supported on {|§]| < 1} and

1 < g <r, Bernstein’s inequality again implies || F| - <4.- || Fllzs. This completes the proof of (2-6). [J

3. Long jump estimates

Our goal in this section is to prove Proposition 1.4. Indeed, we will prove something slightly stronger,
including the case 0 <« < 1.

Proposition 3.1. Fixa >0, a # 1. For 1 < p < 0o, we have

II?»\/NA{H(Zk”)f ke ZYlrwy SN fllrme (3-1
uniformly in ). > 0. Here HE g defined as in (1-1).

First we decompose H®) into

HE™ f(x) = /

lr|<27*

=t Hi,—o00 f (%) + Hic 00 f ().

Flx — )2 M K (1) dr +/ Flx —0)e 2 M K (1) dt

[t]>2*

In the term H oo f, We are integrating over small 7, and the exponential e/2“"I" is approximately 1. This
motivates us to further decompose Hy oo f as

Hi—oo f(x) = / f(x =K @)dt +/ Flx— )M 1)K (1) dr
|r|<2* |t|<2-k
= Hyof () + Hio f (x). (3-2)

For the other term, we take the decomposition

Moo £ (0) = S M f 0= [ F =DV K (1) dr.
=1 =1

k+0—1 <|t‘§2—k+e

The former term in (3-2) is a truncated singular integration. We have:



1466 SHAOMING GUO, JORIS ROOS AND PO-LAM YUNG

Lemma 3.2 [Campbell, Jones, Reinhold, and Wierdl 2003, Theorem A].

|2V N (FHiof ke Y oy S llrrey
foralll < p < oo.

Hence it remains to estimate the jump norms of Hy o f (x) + Z;’;l Hi o f (x) = Zgio Hy.o f(x). To
do so, we carry out a Littlewood—Paley decomposition. For each ¢ > 0, apply

Hief =HieSk—of +Hie(f —Sk—e f).

(see Section 2 for the precise definition of S f). Notice that S;_, f is approximately constant at the
physical scale 27¥+¢, Thus, Hy ¢Si_¢ f is almost just a multiple of S;_, f. This motivates us to further
take the decomposition

HioSk—ef = ceSk—e f + M eSk—e f —coSk—e f),

where
o= / " —DK(@)dt and ¢ := / MK (1ydt  for € > 1 (3-3)
[t]<1 1/2<|t|<1

are constants. Here we choose the constants cg and ¢, as such because K is assumed to be homogeneous.
Hence

o0 o (o) (o]

D Heaf@) =D crSieef + > (HiaSe—ef —ceSe—ef)+ D Hielf = Skt ).

£=0 £=0 £=0 £=0

Since a simple integration-by-parts argument shows that |c,| = O (27%), the contribution from the first
term to the desired jump norm can be controlled using (2-3). To handle the latter two terms we use a
square function. It suffices to show that

00 1/2
> (Z mk,zskef—czskefﬁ) S e, (3-4)
=0" Meez LP(R")

00 1/2

> (Z Hee(f = Sk_ef)F) S lLr@n (3-5)

e=0" Nkez LP(R")

since the square functions dominate the desired jump norms pointwisely. To establish these estimates we
apply a finer frequency decomposition. Let

Ax):=2"S2x)—S(x) and Ai(x):= Zk"A(ka)

and write A f := f * Ay so that

Sk—szZAk—/z-jf and f_Sk—Ef:ZAk—€+jf~

j=1 Jj=0
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By the triangle inequality, to prove (3-4) and (3-5), it suffices to prove the existence of some constant y >0

such that
12 .
‘ (Z [ HieDk—e—j f—ceDi—e— ,-f|2> S22 f e, (3-6)
kez LP(R™)
12 '
‘ (Z IHk,eAk_zﬂ-fﬁ) S277Y9HO f oy (3-7)
kez LP(R")

for every j, £ > 0 and every 1 < p < 0o. Throughout the paper, we use y to denote a positive real number
that might vary from line to line, if not otherwise stated.

Now each of the estimates (3-6) and (3-7) holds for 1 < p < oo without the small factors on the right,
since |Hy.¢ f| < Mf where M is the Hardy—Littlewood maximal operator on R”, allowing us to invoke
the Fefferman—Stein vector-valued inequality for the maximal function [Stein 1993, Chapter II.1]. Hence
by real interpolation, it suffices to prove the case p =2. Todo so, fix o« > 0, a # 1 and £ € N. Let m,(§)
be the multiplier defined by

mo(£) == f """ —De " K (1) dr,
[t|<1

my(&) := / 2N K () dr for £> 1.
1/2<|r]<1
Let m (&) be the multiplier defined by

o (&) = / @ — 1) — DK (1) dt,
[t]<1

e (§) :=f 12N (=i _ VK (1) dr for € > 1.
1/2<|t|<1

Since K is assumed to be homogeneous, for £ > 0 the multiplier for Hy , is m, (2*"%5 ). It follows that
for £ > 0 the multiplier for Hy ¢ — c¢ is m(27%*HE). Then (3-6) and (3-7) with p = 2 follow from the
pointwise estimates for multipliers

1/2

1/2
(Z|A<2—k“+fs>nae(2—"+‘s)|2> +<Z|A<2—"+‘—fs>mz<2—"“s>|2) S22 (3-8)

keZ kez

We need the following lemma, which is a consequence of the van der Corput lemma (details omitted):

Lemma 3.3. We have

Ime(£)] <min{277, 2% E|7Y} forall £ € R. (3-9)
In particular,

Ime&)] S @77 2% 51T forall & €R. (3-10)
We also have
min{277¢, |E]} S22V for g <1,

Iﬁ?e(é)lfﬁ{1 for 8] > 1.
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We are ready to prove (3-8). The estimate is invariant upon replacing & by 2&; hence we only need to
prove it when |&| >~ 1. First consider the first term on the left-hand side of (3-8). When k& < 0, we bound
g (275 g) < 1 and |AQFHHig)| < 2710Ck+6+) Summing over k < 0, we obtain 27 10¢+7),

When k > 0, we bound |7, (275F¢&)| < 277/22=+/2+/2 and

2710k HEED  if O <k <+ j,

A 2fk+€+j < )
A S P ifk>¢+.

Summing over k > 0, we obtain 277 “*+/) for some y > 0. This finishes the proof of the first half of (3-8).
Next we turn to the second term on the left-hand side of (3-8). What we need to prove can also be
written as

AN :
(Z |A(2k$)mz(2k+]$)|2) S277) for g = 1. (3-11)
kezZ
We work on two different cases. Let C, > 0 be a sufficiently large constant. Assume that we are in the
case j > C,£. We bound the left-hand side of (3-11) by
Z 2—10]{20{52—}/1{—)/]' + Z 2]( (20[@ X 2—]/[2—)//(—]/])1/2 < 2—y(€+j).
k=0 k<0

Here for the case k > 0 we applied (3-9), and for the case k < 0 we applied (3-10).
Finally, we assume that 0 < j < C,£¢. We bound the left-hand side of (3-11) by

Z 2—10/(2—)/6 + Z 2k2—y€ 5 2—)/(E+j)‘
k>0 k<0

Here in both cases k£ > 0 and k < 0 we applied (3-9).

4. Short jump estimates for large p

We are now going to start the proof of Proposition 1.5. Recall that by interpolation, we only need
to establish Proposition 1.5 when p € 2n/(2n — 1), 00) and r € (2, 00) (see discussion following
Proposition 1.5). In this section we will do so for all sufficiently large values of p. More precisely, let
a > 1,let H® be as in (1-1), and let VIH f(x) = V/{H"™ f(x) : u € [2/%, 2U+D¥]}. We prove

1/r
H (Z |V;<Hf>|’) SUFN, (4-1)
jez p
whenever
pe,00), n=1, re(@2, 0) (4-2)
or
pe(Z—l—%,oo), n>2, re[2, o00). (4-3)

This proves Proposition 1.5 when n = 1. In the next section, we extend (4-1) to all p € (2n/(2n — 1), 00)
when n > 2, r € [2, 00). That would complete the proof of Proposition 1.5 when n > 2.
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4A. Main tool: a square function estimate for the semigroup et (-2

(4-1) under condition (4-2) or (4-3) is a square function estimate, due to [Lee, Rogers, and Seeger 2012]:

. The main input to our proof of

Proposition 4.1 [Lee, Rogers, and Seeger 2012]. (1) Letn =1, p € [2, 00) and A > 1. Then for any
compact time interval I,
2 1/2
dt)

{

(2) Letn>2,pe 2n+2)/n,c0) and A > 1. Then for any compact time interval I,
S lwer ey

2 12
(/ )
1 Lr ")

£eny-3)-4

We will apply the above estimates with A = &’ := /(o — 1) (remember « > 1). Recall that we are

SIfllLr@-
L (R)

[ e e as
R

with

interested in the variation of H® f(x), where u is restricted to the range [27¢,20+De] for some jelz.
To estimate this, we decompose the kernel eI K (1) into a part where oscillation plays no role and a
part where the oscillation becomes important. More precisely, for £ € Z, let

HY f(x) = . fx =0 oK (1) dt, (4-4)

where @ (1) = ¢o(27t) and ¢ is radial, smooth and compactly supported on an annulus {|¢| ~ 1} so that
for t #0 we have Y ,_; @¢(t) = 1. When u =~ 2/% || ~ 27/, the phase ¢/“/'" in (4-4) is approximately 1
precisely when £ < 0. Thus, it makes sense to take the decomposition
HOf ) =Y H f () 4-5)
tez

and expect that the terms ¢ < 0 in the above sum are essentially nonoscillatory.

It suffices to show that y
,
r ( ) r
S| (T vwe, o)

leZ jez

S lp- (4-6)
p
To do so, we introduce a Littlewood—Paley decomposition in the x-variable. Let P, be a multiplier
operator defined by 15;;7 &)=y (27%) f (&), where  is a smooth function with compact support on the
annulus % < |£] <2 so that for & # 0, we have ) , _, V¥ (27K&) = 1. We further take the decomposition

M f ) =D H Prxf (). (4-7)
keZ
We will estimate
MV HE Prax flle (4-8)

for each k, £ € Z, and sum the estimates at the end. (Hereafter, for compactness of notation, we write Zj’.
for the £" norm over all j € Z.)
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4B. Estimates for £ < —k/(2(a + 1)): bounding the Vj’ norm by the WU norm. First there are two
simple estimates for (4-8). One way to estimate (4-8) is to bound the Vj’ norm by the le norm, which in
turn is bounded by the W'! norm on the u interval [2/%, 2U+D] We get

VI P f () S /| , 2= /| VP f = DK @) dr du <2MPLF(X),
u|~27% t|2tJ
where M is the Hardy-Littlewood maximal function, so by the Fefferman—Stein inequality and the

Littlewood—Paley inequality, we have

MV H P f Ol lle S 2N f Nl 1< p < oo, (4-9)

For the second simple estimate, recall that fl
chosen to be radial, we have

f=R K(t)do(t) =0 for all R € (0, 00). Since ¢ was

/ e g (K () dt = 0.

Thus, in computing V]”HEM_) i Ptk f(x), we could have instead computed the Vj’ norm of

HE Pyt f o) — Pris () /R U g (K (1) dr.

This expression is equal to
/ [Pjsif (x =) = P f )1 oo (K (1) d1.
Rn

The variational norm of this expression is controlled by its W' norm in the u interval [2/¢, 20U+De],
which in turn is controlled by
21 M Py f (),
where 13j+k is a variant of the Littlewood—Paley projection P; 4, so arguing as before, we see that
VA Prak fF Ol ll e S22 fllee, 1< p < oo (4-10)
We can sum (4-10) over all pairs (k, £) with £ < —k/(2(e¢+ 1)) and k < 0. We can also sum (4-9) over
all (k, £) with £ < —k/(2(a + 1)) and k£ > 0. Thus, it remains to bound (4-8) when

k

(>
2(a+1)

4-11)
and sum over all such pairs of (k, £).

4C. Estimates for £ > —k/(2(ax + 1)): division into three cases. First we look at 7—[2”_) Pk f(x) in
terms of its multiplier:

H P f(x) =

L FO(ve 0 [ ey ok @)

The multiplier is an oscillatory integral in ¢ with phase ¢ (#) = —¢-& 4u|t|%, which (assuming |u| >~ 2% and
|£] ~ 2/+k) has a critical point in the annulus {|¢| ~ 2°~/} if and only if 25*¢ ~ 2¢¢ that is, if and only if
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k=/£(a—1)+ O(1). In that case, using stationary phase (see, for example, [Stein 1993, Chapter VIII.5.7]
or [Sogge 1993, Theorem 1.2.1]), the multiplier can be written as

Y2k (el @ TV g otgTg pten—ity) 4 e(2'27TE, 200 Toy)), (4-12)
where o/ = a/(a — 1), cg = (@ — 1)/a®, a € ST"2(R"*!) and e € S~ (R"*1). If there are no critical
points in the annulus {|¢| ~ 27/}, then the multiplier is simply

YR E)e(2" 27T g, 252y, (4-13)
(In the above, by a € S~"/2(R"*+!) we mean
109" a (&, u)| S (1+ €]+ Jul) /21

for every multiindex o = (o, &”) € Z’:gl, and by e € ST°(R"*!) we mean

1005 e (&, w)] Sw.a (1+[E]+ )~V 1

for any positive integers N and any multiindex c.)
The above motivates us to consider three cases separately (under our earlier standing assumption (4-11)):

Case 1: £ >0, k=4(a— 1)+ O(1).
Case 2: k > £(o — 1) 4+ C for some C > 0.
Case 3: k < £(x—1) — C for some C > 0.

4D. Estimates in Case 1. Now we consider Case 1. Our goal is to bound (4-8) given k and ¢ as in Case 1.
We proceed in a few steps.

4D1. Application of Plancherel-Pdlya. First we will essentially show that if r € [2, 00), then

2/«
NV HE P fllg e S 20X GO P f 0l lee (4-14)

for any g € [2, r] and any p € [1, oo]; here x (u) is a smooth function with compact support on [%, 2"‘*1]
that is identically equal to 1 on [1, 2*]. Indeed, when n > 2 (and p, r are as in (4-3)), we will only need
(4-14) for ¢ = 2. But for n =1 (and p, r as in (4-2)), we will need (4-14) for both g =2 and g =r. We
will see that this is the case after we prove (4-14).

To prove (4-14), let us temporarily write g = Pj4 f. As a function of u, Héu_) ;& has frequency morally
supported on the annulus of size ~ 2~/ centered at the origin. Thus, we introduce Littlewood—Paley
projections in the u-variable (denoted by P® so that P((ezl i) 18 Projection onto frequency = 2(~/*) and
estimate

Vi 8 N
< IV (PE_ X Q7 WH gD+ DIV (PE pal X @ W) H (0D, (4-15)
k=1

) . (2)
(Here P2y, == Zkge—j P
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The first term on the right-hand side of (4-15) is the main term and can be estimated using Proposition 2.2.
In particular, it is bounded by
2D @ w8 () g

(recall g € [2, r]). By changing variable in u, this is just
204y (yHE g () 5.
Hence the contribution of the first term of (4-15) to the left-hand side of (4-14) is bounded by

211 x M P f 0l ler o

Since r > g, we have £" norm bounded by ¢¢ norm; hence the above is bounded by the right-hand side of
(4-14).
On the other hand, for the second term on the right- hand side of (4-15), since k > —C, one can integrate

by parts in u, using the fact that the multiplier for P vanishes to infinite order at 0, and obtain

+k)
P2 e @AY g1 Sy 275V BRI @ L g ()] (4-16>

for any posmve integer N, where P@isa Littlewood—Paley projection similar to P, and 7-[ j 1s the
same as 7-[ deﬁned in (4-4), except that the cutoff ¢ is replaced by a smooth multiple ¢ of ¢. Hence
by repeating the above argument, and summing over k using the additional convergence factors 2%V
that we gained in (4-16), the contribution of the second term of (4-15) to the left-hand side of (4-14) is
bounded by

~ 2_jot
2NN OH " Prascf ) Lg s - (4-17)

Since H and H satisfy the same estimates, we will not distinguish the two, and declare that we can also
bound (4-17) once we can bound the right-hand side of (4-14).

4D2. Application of the square function estimate. Now fix k, £ as in Case 1. In other words, fix k, £ > 0
with k = £(a — 1) + O(1). We will try to bound the right-hand side of (4-14) when g = 2. The multiplier
for Hﬁjju)PjJrk f is given by (4-12) with u replaced by 2/%u. For u € R, let 111, (£) be the multiplier

Mfl/(afl)léla’

(&) = x ()Y (27*E) (€' a(2'e,2"u) + e(2%¢, 2 u)), (4-18)

where a € S7"/2(R"*!) and e € S™(R"*!) are as in (4-12). Then the multiplier of the operator
X(u)Hf_jj”)PHk is precisely 71, (27/&). Now expand x (u)a(2%€, 2°*u) in Fourier series in u: let ¢ be a
small enough constant depending on « so that the support of x («) is contained in [0, ¢~!]. Using the
smoothness in the variable u, we get

X@a'E,2u) =" (1 4|k 2a (2)e™
kecl
for u € [0, c~'], where a, € ST*(R") uniformly for every x € cZ. Similarly, expand x(w)e(2LE, 2ty)
in Fourier series in u:

x@e'E,2u) =Y " (14 k) e 2" E)e™

Kecl
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for u € [0, ¢!, where ¢, € S~ (R") uniformly for every « € cZ. This shows

(&) =Y (412 Y 275) (a 2'8)e " +e,(2°6))
kecZ
foru [0, ¢ ']. Temporarily let g be the function such that g(&) = f E)Y (27%E)a, (2°€); note that when
k>0, we have || g|| LE @) < 2kBp=UOn/2) £ L) by the Hormander-Mikhlin multiplier theorem, with
an implicit constant independent of . This is further bounded by ptla=Dpp—tan/2) £ Lp(Rr) Since we are

71/(a71)|%—|o¢/

in Case 1, where k = £(o¢ — 1) + O(1). We apply Proposition 4.1 with g in place of f and obtain

f e f©)Y 2 E)a 2 el TE gg
" 210,111l e mry
< 2792 Fllrm if pe[2,00)andn =1, (4-19)
~ | teln(/2=1/ P12y —ten 2| £l gy if p e (242, 00) and n > 2.
71/(a71)|§|a’

We get a better decay if a, (2°£)e/“" above is replaced by e, (2€). Summing over «, and

simplifying the exponent in the case n > 2, we get

H ' 2792 @) if pe[2,00)andn =1,

ey {26“/22‘50!"/P||f||mw) if pe(2+2,00) and n > 2.
But recall that the multiplier of the operator x (u)H((ZZ_j;“)PHk is precisely 711, (27/£). By scale invariance,

| e i@ de

L

we have

H\

for all j € Z, where the implicit constants are independent of j. (The Fourier series expansions used

27 f Loy if p €[2,00) andn =1,

27%u)
L@y {24“/22—&1"@||f||Lp(Rn) if pe(24+2,00) andn >2

x@)HZ ;7 Py f (4-20)

2
L u

to remove the dependence on u are very reminiscent of the method used to prove L? boundedness of
multipliers in S0 see, for example, [Stein 1993, Chapter VI.2].)

Recall that our goal now is to bound the right-hand side of (4-14) when ¢ = 2. Hence we need a
vector-valued version of (4-20), where we will have an additional £2 norm over j € Z inside the L? norm
on the left-hand side of (4-20). To do so, we need Proposition 4.2.

4D3. Application of Seeger’s theorem for multipliers with localized bounds. First we state a vector-valued
variant of a theorem of Seeger, about multipliers with localized bounds:

Proposition 4.2 [Jones, Seeger, and Wright 2008; Seeger 1988]. Let I C R be a compact interval. Let
{m, (&) : u € I} be a family of Fourier multipliers on R", each of which is compactly supported on

{E : % <&l < 2} and satisfies

suplagnﬁu(é)l <B foreach0O<|t|<n+1

uel

for some constant B. Foru € I and j € Z, denote by T, ; the multiplier operator with multiplier m,, 277¢).
Fix some p € [2, 00). Assume that there exists some constant A such that

sup (1 7o, j fll 2y ls ey < AlLFllLs @y (4-21)
jez
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A

This proposition was stated without proof on page 6737 of [Jones, Seeger, and Wright 2008]. It is a

for both s = p and s = 2. Then
1/2—1/p

Il f1lLr ey

N Tj fll2cnlle ey S A

vector-valued analogue of Theorem 1 of [Seeger 1988], and we provide a proof of this proposition in
Section 7 for the convenience of the reader.

Recall that our goal is to bound the right-hand side of (4-14) when g = 2. Also recall that if m, (§) is
defined as in (4-18), and 7, ; is the multiplier operator with multiplier 2, (2™ 7€) as in Proposition 4.2,
then T, ; f is precisely x (u)?—{,(zj W p; i+« f- Thus, if we could apply Proposition 4.2, we would obtain a
bound about the right-hand side of (4-14) when g =2. To do so we verify the hypothesis of Proposition 4.2.
From the explicit expression (4-18), we have

sup [8f it (§)] <2V

uel
for some large positive integer N if || <n+ 1. The hypothesis (4-21) for s = p is given by (4-20), where
A can be chosen to be relatively small if £ is large. On the other hand, by considering the L° norm of
the multipliers, we also get

xR Pk flli2 gy S 2720 f 2@y foralln > 1, (4-22)

which gives us the hypothesis (4-21) for s =2, where A can be chosen to be relatively small if £ is large.
More precisely, suppose first n > 2 and p € (2+4/n, c0). Then we invoke (4-20) and (4-22). Since
p—tan/2 < p—taj2p=tan/p e may apply Proposition 4.2 with A = 27t/22=ten/p and B = 2N for some
large positive integer N depending only on «. Thus, if n > 2 and p € (2+4/n, co0), then we get
I @HE Pk f Oz ey Se 2722728 £l o

for any € > 0. Taking ¢ = 2 in (4-14), this shows that
u — . 4
IV HE, Pl Se 27225 | flny i 22, pe (245, 00) and r €[2,00).

Note that the power of 2 here is negative. So this estimate can be summed over all £ > 0, and this gives
the desired bound for (4-8) whenn >2, pe (2+4/n,o0) and r € [2, co) for k, £ as in Case 1.

On the other hand, if n = 1 and p € [2, 00), then in light of (4-20) and (4-22), we may apply
Proposition 4.2 with A = 27%/2 and B = 2" for some large positive integer N depending on or. We
obtain

I R i f Nzl e Se 2725 fllLogy i n=1and p € [2,00)
for any € > 0. Taking g = 2 in (4-14), this shows that
MV H Pracfllellp Se 2N fllrgy ifn=1, pel2,00)andr €[2,00).  (4-23)

This is not good enough to be summed over all £ > 0, so we need to gain a slightly better decay in £.
This is achieved via the local smoothing estimate in Theorem 1.6.
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4D4. Application of a local smoothing estimate in dimension n = 1. The goal of this subsection is to
prove that
MV HE Prac fllellp S27P I oy ifn=1, p=r € (4, 00). (4-24)

Assume for the moment that this has been established. Interpolating (4-24) against (4-23) using complex
interpolation of vector-valued L? spaces (see [Bergh and Lofstrom 1976, Theorem 5.1.2]), we get

MV HE Pk fllellp S27 N flliewy ifn=1, pe(2,00),r € (2,00), (4-25)

where y = y(p, r) is a positive constant. This can be summed over all £ > 0, and this gives the desired
bound for (4-8) whenn =1, p € (2, 00) and r € (2, 00) for k, £ as in Case 1.

To prove (4-24) we use the local smoothing estimate in Theorem 1.6. Suppose n =1, p =r € (4, 00).
We use (4-14) with ¢ =r = p. Thus, the left-hand side of (4-24) is bounded up to a constant by

2P S Proa f @) g ller - (4-26)
Consider first
H f ¢ F(Eying () dE
R Leir?
B H HX W) | e FE ey T g2l 2ty + e (24, 2u)) dE
R" Lyley

We first use Fubini’s theorem to interchange the integrals in « and x, and use the Hérmander—Mikhlin
multiplier theorem (for each fixed u) to get rid of the multiplier a(2°£, 2°“u). Since k = £(a — 1) + O(1),
this gives

H H /r; e &) d

plrp
Lu L)C

B —1/(@=1) g —
<otan 51" g + 27V Fllr )

LY

‘x(u) /R T fEy e

LY

for any positive integer N. Thus, Theorem 1.6 applies, and when k£ > 0 we have

S22k AR f Ly ifn =1, p € (4, 00).

H H /R e f (i (6) dé

p P
Ly WLy

But recall that the multiplier of the operator x (u)?—[fzz_j;") P;  is precisely m,, (277&). By scale invariance,
and remembering that k = ¢(o — 1) 4+ O(1), we have

2Jja _ .
M OHE S Prax f Qo le S 272N flley ifn=1, p € (4, 00).

Replacing f by 13}+k f, taking the Zf norm on both sides, and using the Littlewood—Paley inequality
(remember p > 2), we get

2/ - .
X @O Praef llpller g S22 fllra ifn=1, p € 4, 00).

Thus, (4-26) is < 2=/ £ Lr@®). This establishes (4-24), and our treatment for Case 1 is now complete.
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4E. Estimates in Cases 2 and 3: further gains over Case 1. Next we estimate (4-8) for k, £ as in Case 2.
Fix k, £ such that k > £(a — 1) + C for some positive constant C. If C is large enough, then the multiplier
for ’Hf_]j.”)PHk f is given by (4-13), since the phase function of the oscillatory integral defining the

multiplier has no critical point in that case. For u € R, let 71, (§) be the multiplier

(&) = x WY (27" 6)e(2", 2 u),

where e € ST (R"*!) is as in (4-13). Then the multiplier of the operator x (u)?—[f_j;”)Pﬁk is precisely
m,(277&). For every N € N we can write

iy () =27 TNy 27T 9)en (26, 2 )
for some symbol éy € S~ (R"*!). Thus, applying Proposition 4.2 as in the proof of (4-23), we get

VA Pk Flle iy S 27 S ON | fll ey

whenever one of the following two conditions is fulfilled: n =1, p € [2, 00) and r € [2, 00), or n > 2,
p € 2+4/n,00), and r € [2, 00). The right-hand side in the above display equation can be summed
over all k, £ that satisfy k > £(a — 1) + C and the standing assumption (4-11), and this gives the bound
for (4-8) for such p, n, r for all k, £ as in Case 2.

Finally we estimate (4-8) for k, £ as in Case 3. Fix k, £ such that k < £(a — 1) — C for some positive
constant C. As in Case 2, if C is large enough, then the multiplier for HEZ_/;”)PH,( f is given by (4-13).
For u € R, let m,, (&) be the multiplier

(&) = x WY (27 6)e(2, 2 ),

where e € ST°(R"*!) is as in (4-13). Then the multiplier of the operator (M)ng”)PjJrk is precisely
m,(277&). For every N € N we can write

i (€) = @ x 0y Q7 )en (2%, 2u)
for some symbol éy € S~ (R"*!). Thus, applying Proposition 4.2 as in the proof of (4-23), we get
NV HE i Fllerllp S 27N 1L f e eny

whenever one of the following two conditions is fulfilled: n =1, p € [2, 00) and r € [2, 00), or n > 2,
p € (2+4/n,00),and r € [2, 0c0). The right-hand side in the above displayed equation can be summed
over all k, ¢ that satisfy k < £(o — 1) — C and the standing assumption (4-11). This gives the bound for
(4-8) for such p, n, r for all k, € as in Case 3.

We have thus completed the proof of (4-1) for all p, n, r satisfying (4-2) or (4-3).

5. Short jump estimates for p <2

|

In this section, we establish

SNy, (5-1
p

1/r
<Z |v;<Hf)|’)

jez
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whenevern>2, 2n/(2n—1) < p <2, and r € [2, 00). By complex interpolation (see [Bergh and Lofstrom
1976, Theorem 5.1.2]) with (4-1), we will then have (5-1) whenever n > 2, p € 2n/(2n — 1), 00), and
r € [2, 00), which concludes the proof of Proposition 1.5.

The key here is the following square function estimate.

Proposition 5.1. Letn>2, 1 < p <2 and ) > 1. Then for any compact time interval I,

(1 o)

; A P
e f(&)e" " ag S f lwern)s

LP(R)

with

The proof of this proposition is postponed to the end of this section.

Nowlet2n/(2n—1) < p <2, n>2,and r € [2, 00). We proceed to establish (5-1). As in Section 4, we
decompose %™ f as in (4-5) and (4-7), and estimate (4-8) for every k, £ € Z. The inequalities (4-9) and
(4-10) still hold under our current assumptions of p, n, r, and these estimates can be summed whenever
¢ < —k/(2(ax+1)). Thus, it remains to consider pairs of (k, £) for which (4-11) holds, and we still divide
into Cases 1, 2, 3 as before. We will only treat Case 1 here which is the main case; an easy adaptation of
this argument gives Cases 2 and 3.

Solet¢{ >0and k =¥f(ex— 1)+ O(1). By (4-14) with g = 2, the left-hand side of (5-1) is bounded by

2‘“/2||||||x< YHE P Pt f Iz lellze. (5-2)

We analyze the multiplier of Hz )P,+k as before, but in (4-19) we use Proposition 5.1 instead of
Proposition 4.1 (since now p € (Zn /(2n — 1), 2)). So instead of (4-20), we get

2 _ _ /
M GOHE " Piic fll 2 Loy S 200/ P=VD27 02 £ gy = 275 ) Loy (5-3)

uniformly in j € Z. Thus, we apply Proposition 4.2 with A = 2t/ P and B = 2N for some large
integer N depending only on «. This gives

M @HE S Py fllizll el Se 275725 £ Loy
for all € > 0. Continuing from (5-2), we see that the left-hand side of (5-1) is bounded by
25&/22*@0{”/[”2@6”f”Lp(Rn)‘

Since p € (2n/(2n — 1), 00), the above exponent of 2 is negative if € is sufficiently small. Thus, we can
sum over all £ > 0 in this case, establishing the bound for (4-8) for all k, £ in Case 1. A similar argument
establishes a bound for (4-8) for all k, £ in Cases 2 and 3. This completes the proof of (5-1), modulo the
proof of Proposition 5.1.

Proof of Proposition 5.1. We will prove a slightly more general result. Let us write

T,f(x) = /r; e Emae) de.
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where
m(€) = "B (14 57~ FH,

Theorem 5.2. Let I be a compact interval not containing 0. If A > 1, B =n)/2 and y € R, then
5 ||f||H1([R<n)§

1/2
“ (f |Tuf<x>|2du)
I L'(R")

that is, T maps the Hardy space H'(R") boundedly into L}( (R™; Lﬁ(])).

All implied constants may depend on A, 8, n, I, but not on f, y, x, u.

Theorem 5.2 implies Proposition 5.1 via complex interpolation; see, for example, [Stein 1993,
Chapter 1V.6.17] for a discussion of interpolation between Hardy spaces. For the scalar theory of
the multiplier m,, (for fixed u) we refer to [Miyachi 1981; Fefferman and Stein 1972; Fefferman 1970].

Recall that an H' atom of radius  is a bounded function @ on R” that is supported in a ball of radius r
and satisfies ||a|lco <7~ " and f[R" a=0. The Hardy space H'(R") is a Banach space consisting of functions
of the form f = Zj cja;j, with ZJ- |cj| < oo, where the (a;); are H' atoms. Its norm is defined as

£ 1l g1 ey = inf Y e,
J

where the infimum is taken over all atomic decompositions of f =3, c;a;.
To prove Theorem 5.2 it suffices to show that

||Ta||L;(L§) Sl (5-4)

holds for every H' atom a of radius . We may assume the support of a to be centered at the origin.
For ] > O,’ls:i P; denf)te the usual Littlewood—Paley projection with f/’J? =Y f, ¥; supported on
|E| ~2/. Let Py f = o f, where ¥ is such that
I=vo+ Y ¥
j>0
(Note that P here is actually P~ from the previous section.) For j > 0 we denote by 1}]' a smooth positive

function that equals 1 on the support of ¥; and whose support is contained in a small neighborhood of
the support of ;. Define

KD (x) = i () = / eMEHMER (14 1812) 7Py (8) d.

R

Before we begin, we record the following pointwise estimates for K ,Ej )(x). From estimating the second
derivative of the phase we obtain

KD )| <27"C7D forallx e R", uel. (5-5)
Here we used that 8 = nA/2. Estimating the first derivative of the phase we obtain
KD )| Sy 277F2m 7 1x)™  for x| 22/ D uel (5-6)

for all N > 0. Note that these estimates are uniform in u € I.
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Let us prove the main estimate (5-4). The first step is to apply the triangle inequality:

ITallizy < Y NKY *alp gz
j=0

We will estimate the summand in two different ways: in particular, it will be shown below that
1KY % allp g2y S @427/,
1K * allpiez) S 2/r.

These estimates immediately imply (5-4).

To prove (5-7) we first split up' the integral in x:

||KL5j) kallpy 2y <I1+11
where .
I= ||K’£J) k a”L}((R"\B(CZI(*—'>+r);L3(I))»

M=K xall g1 pcaioir;i2a)-

We claim that I <y 27/, Indeed, we see from (5-6) that

. 2 12
15/ (/(/ |Ky><x_y)a(y>|dy> du) dx
|x|>C2/G=D 4r 1 ly|<r

<y 277N / / =y la(y)] dy dx

|x|>=C2/*=D4r Jy|<r
< 2—4//32.1712—/1\’”61”1 f |x|—N dx S 2—/3]2.In?~2—/1\’)~’
x| 22/@=D

1479

(5-7)
(5-8)

which implies the claim (since N is arbitrary). To estimate the second part we use the Cauchy—Schwarz

inequality:
< (C2Y* D4+ 1)K xal 2012,
Then we have by the Fubini and Plancherel theorems that
1K *all 22y = MK xalallzgy S 27 lalla S 270r 72,

which implies
< (2j()»—1)ﬂ/2 + r"/2)2—jﬂr—n/2 — (2/,.)—"/2 +277B,

as desired (we used that § = nA/2). This proves (5-7).
It remains to show (5-8). Clearly we have
1K *allpyee) S llsup K salls.
uel

‘We claim that

I sup K xallly S IIPjal.
uel

1C is a constant that may depend on the parameters X, 8, n.

(5-9)

(5-10)
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To see this replace v; by 1%- in the definition of K Lﬁj ) and call the resulting kernel K ng ) Then we have
K9 xa=K9 x Pa.

It is clear that K LEj ) satisfies the same pointwise estimates (5-5), (5-6) (possibly with larger constants).
Thus, there exists a positive function w; on R” such that ||w;||; <1 and

K (0] < wj(x)
for all x € R" and u € I. As a consequence,

I'sup |[K xallly < | sup |K| % | Pialllh < llw; * | Pallly < | Piall,

uel uel

which is our claim (5-10). But by the mean zero property of a and the mean value theorem we have

1
Pja(X)sz’ (l/f,-(x—y)—wj(x»a(y)dyz—/Rfo y-Vii(x —ty)dta(y)dy.
This implies
1
1Pyall 5/ /u fo V5 G — i) [ di dy dx < 2.
" lyl=r

In view of (5-9) and (5-10), this establishes (5-8). O

6. A counterexample: the proof of Theorem 1.2

Let ¢ be a smooth test function supported in the annulus % < || <2 and define f; for k € Z by

f®) =p27 ).

On the one hand, clearly,

1/p
I il = 2 ( [ |¢(2kx)|pdx) P
Rn
On the other hand, we claim that
”Vr{H(u)fk ‘ueRy, > ok(=n(a=1)(A/p")+a/r) (6-1)

If (1-3) were to hold, then plugging in f; into the estimate (1-3) and letting kK — oo, we see that
1 o n
—n(@—1)—+— < —,
p rp
which is equivalent to p’ < nr.
For simplicity we will verify this only in the case n = 1, K(¢) = p.v.(1/t), @ = 2. The general case
can be treated in the same manner. In this case (6-1) takes the form

[VIAH® fi i u € RY||, 2 2K/ 2/, (6-2)

We can choose ¢ such that

% = Z%‘(l)

jez
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for all ¢ # 0, where ¢; (1) = 27/p(27/t). By Fourier inversion we have

HO S = 3 [ [ @ topete ey, i aras

jez
ok 0%k ey in% g2
222k/el2x5¢($)fe 27 +i2 [@J(I)dtd$:ZI]
JjeZ jez

(Keep in mind that I; also depends on k, x, u.) Let us take u € [1, 2]. Then the phase of the oscillatory
integral in ¢ has no critical points if | j| > 10. This motivates us to set

M= 3"1; and 1= ) I,
[jI=<10 [j1>10
Write B = [2F, 2¥+1] and estimate
IVAHY fi:u € RYlp = IV/{H™ fi:u € [1, 21} Lres)
> |V e (1, 2| esy — 1V 1" w € [1, 2 | Lo es).-
In order to verify (6-2) it suffices to show that
IV € (1, 20| o e gy 2 2820 (6-3)
IV u e [0, 20 oo ey S 272 (6-4)
We begin with the proof of (6-3). Write

[main =2kfei2kx§¢($)/ei22kt€+i22kut2p(t) dt de.

where p (1) = ZI jl<10 % (t). Note that the phase of the integral in ¢ has a critical point at t. = &/(2u). By
the principle of stationary phase [Stein 1993, Chapter VIIL.5.7; Sogge 1993, Theorem 1.2.1] we have

+~2k 292k, 2 :92k 2., —1
/6—12 tE+i2%%ut p(t) dt = 2—kC0812 c1Eu u—l/2p<zi) + 0(2—2]().
u
Here cg, ¢ are nonzero constants. To simplify the calculation, let us take co = ¢; = 1. Thus, the main
contribution to I™" jg

/ PR & ) d,

where x = 2¢x € [2%, 2% and a(&, u) = ¢ (§)u""?p(£/(2u)). Note that the u-derivative of the error
term coming from the stationary phase is also O (272¢). Therefore that term contributes only O(27%) to
the variation-norm and we can ignore it. From another application of the stationary phase principle we
see that the previous integral can essentially be written in the form

27k up(u) + 0272,
where b(u) = ¢ (Fu/2)p(x/4). Let ug = €x /x> for x*>/m < £ < 2x? /. Then

) 5 1/r
§ : |ezx Uerl _ X u(|r) ~ 22k/r,

x2/m<€<2x2/m
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which implies the claim (6-3) (the contribution of b(u) is negligible).
It remains to treat [*". Compute

8MIJ — i23k+2j / (b(g)eizkxg /e_i22k+jt§+i22k+2jutz[2(/)([) d[ ds
— i23k+2j f (23(22](—1-]'1‘ _ 2k)C)€i22k+2jm2[2§0([) dr.

Observe that if x € [2X, 2¢+1], |¢| € [1,2] and | j| > 10 we have
|22k+7 ¢ — 2K x| &~ 2% max(1, 2).
Since ¢ decays rapidly, we obtain
VAL cue 11,21 S 1817 Ly g2y Sa 2% M omin(l, 27M)

for every N > 1. Taking N large enough (N = 3 suffices) and summing over |j| > 10, we obtain (6-4).

7. Proof of Proposition 4.2

In this section we provide a proof of Proposition 4.2, which was stated in [Jones, Seeger, and Wright
2008] without proof. Indeed, Proposition 4.2 is a vector-valued analogue of Theorem 1 of [Seeger 1988].
The proof of Proposition 4.2 follows closely that of the scalar-valued case in [Seeger 1988]. On the other
hand, at one point in the scalar-valued case, Seeger used a duality argument between L” and L?', which
is not available in the vector-valued setting. This is why we had to assume that hypothesis (4-21) holds
not just for s = p, but also at s = 2.

To prove Proposition 4.2, one key tool is the Fefferman—Stein sharp function. Let B be a Banach space.
For us we will only need the case B = 02(Z)L*(I). For each measurable function F : R" — B, define its
Hardy-Littlewood maximal function M F by

MF(X)ZSupj[ |[F(y)lsdy
xeQ JQ

for each x € R", where the supremum is over all cubes Q containing x. Also define the sharp function F*
of F by

Fi(x) = sup][ |F(y)— Folpdy,
x€Q JQ

where Fp = fQ F (y) dy; again the supremum is over all cubes Q containing x. We have the following
lemma about F*:
Lemma 7.1. Suppose 0 < p < oo. Let F € LP(R", B) for some 0 < pyg < p. If F* € LP(R"), then
MF e LP(R"), and

IMPFllLr@ey Snp 1F L@

We give a proof of this lemma at the end.
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Now given f € L? N L?(R"), define Tf : R" — B by

Tf(x)=Tyu;f(x)ueljez-
Note Tf € L*>(R", B). Then

T Fllzclealier@y = NTFIalmr@y < IMTOlr@n Snp 1T E e @),

where in the last inequality we invoked the lemma with py = 2. Note that for a.e. x € R"

(THH )~ f TF ()~ (Tf)g,l5 dy

x

for some cube Q, containing x; we may choose Q. such that the side length of Q, is 2™ for some
integer r(x). Then we split

(T @) So1((Ty,j ), X) +02((P; f), X),

where N is a positive integer to be chosen; here

1/2
ol(G,x)z][( > ||Gu,j<y>—(Gu,ﬂgxllizu) ay,

A ()I=N
1/2
oz(H,x>=][( > ||Tu,,-Hj<y>—(TL,,jH,-)QA@z(,)) dy
* jHr()=N

for any functions G = (G,,;) : R" — B and H = (H;) : R" — 0%(Z). We claim that

lo1(G, )o@y S NYZYPING,; ) l2 ler @) lLe @y (7-1)
loa(H, )l r@ey S (A+ B2 MIH; 0O ll2 ) ll o ey (7-2)

forany G = (G, ;) :R" — Band H = (H;) : R" — 0%(Z). But when G,,j =T, f, we have

MG j CO L2y ller @ lle@ey = W T, j f CONl L2y | e @n) ller z)
S AP fCOle @y ller @)
S AP fF Ol e @
S Al lLr®e

(we used assumption (4-21) in the second inequality, p € [2, c0) in the third inequality, and Littlewood—
Paley inequality in the last). Also, when H; = P; f, we have

IH; COll2zylr@ny SN le@ny-
Hence
T rwey S (ANYZYP 4 A4+ B27N) | fll o .-

Choosing N >~ log(2 + B/A) gives the desired conclusion of the proposition. It remains to prove (7-1)
and (7-2).
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To prove (7-1), we interpolate between p =2 and p = oo. Indeed, we prove

lo1(G, )l 2wy S MG, j GOl L2y L2y I L2 ey »
12
o1 (G, )o@y S NG, j ) 2 llee @)l oo @ -

The desired estimate (7-1) then follows by complex interpolation and linearizing o7.
The estimate (7-3) follows since

172

* A ()IsN
o)

o1(G,x) S ][ MG ;D2 le@ dy S MINGujll2mllez) (),

Ox

where M is the standard (scalar-valued) Hardy-Littlewood maximal function on R". Hence

101(G, )l 2wy S MG, j COl L2y 2 Il 2w
as in (7-3).
To prove (7-4), note that for each x € R", we have, from (7-5), that

1/2
01(G.x) <2 sup( Y. G, ,«(y)niz(,)) SN2 sup sup 1Gu, ;) 2
yeR® Lj+r ()| <N yeR" jeZ

with constants uniform in x. This gives (7-4).
Next, to prove (7-2), we will prove
loa(H, )| 2y S ANH; GO N2z | L2y »
loa(H, )|y S (A+ B2 IH; ) eyl re)-

The desired estimate (7-2) then follows by complex interpolation and linearizing o>.
To prove (7-6), note that

12
Gz(H,X)§2][( Z ||Tu,jHj”iZ(1)> dy,

T jHr@=N
SO

o(H,x) S ][ W T, j Hill L2cylle2zy dy S M T, Hill L2 L2z () -

x

Hence
lo2(H, )l c2@ey S M T, j Hy OOl L2y 12y | 2wy -

We commute the ¢2(Z) norm outside. Since

T, j Hi GOl 2y 2y S ANH; GOl 2wy
one can conclude that
loa(H, X) 2@y S AINTH; Ol 2@l e22)»

which gives (7-6) upon a further change in the order of the norms on the right-hand side.

(7-3)
(7-4)

(7-5)

(7-6)
(7-7)

(7-8)
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Now we proceed to prove (7-7). For each x € R", we take the decomposition
H;(y) = (x20,H;)(y) + (Xx20.,)cHj)(y)
for all y € R". Then we plug this back into the formula for o> (H, x). We find that

o (H, x) ST(x) +11(x),
where

12
I(x) = ][ (Z 1T, j (X20, H)(y) — [Tu,j(X20, Hj)]o; ||i2(1)> dy,

o \Z
12
II(x):][< Z ||Tu,j(X(2QX)CHj)(y)_[Tu,j(X(ZQx)L‘Hj)]Qj||iz(1)) dy.
T NjHr(x0)>=N

We estimate I(x) by

1/2
10x) 52][ (Z IT,, j(xZQxHﬂ(y)niz(,)) dy

Ox Jjez

12
S <][Q D T jGeo HYWI s dY)

X jEZ
S |Q |1/2 ”””TM’/(XzQ‘HJ)(y)”Lz(I)”LZ(R”)”(ZZ(Z)
X

A
S W”||<X2QxHj)(y)”L2(R")”EZ(Z),

where in the last inequality we used the estimate (7-8). Then

1/2
I(x) < A(f I1Hj (¥ lle2(z) d)’) S A sup [Hi(D)lle2z)s
20x yeR”

which shows that
TGO [ zoomny S AN () Ml 22y |l Lo ).
Next we estimate 1I(x). Let K, ; be the convolution kernel of 7, ;. Then
Ky () =2""K,(2'x),
where

K, (x) = [ Tty (8)e*™F dE.

Now by our assumption on 8; m, (&), we have

sup | K, (x)| +sup |V, K, (x)] S ————.
uel wel (14 |xrt!

We claim now
2\1/2
sup ( (/ sup [Ky, j(y —w) — K, j(z — w)] dw) ) < B2V (7-9)
¥,2€0x (

jr@|>N N (2207 uel
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uniformly for x € R". Indeed, suppose y, z € O, and j +r(x) > —N. Then we have the estimate

/ SUPIKu,,-(y—w)—Ku,j(z—w)ldwS/ sup(| Ky, j(y —w)|+ [Ky,j(z — w)|) dw
(20Qx)° uel (20,)¢ uel

<2]”/ de < Bz_j_r(x).
- |w—x|>2r®) 2/ |lw — x])nt! ~

On the other hand, if y, z € Q,, and j +r(x) < —N, then
/ sup |Ky,j(y —w) — Ky, j(z —w)[dw
(20Qx)° uel
is bounded by a constant times
1
/ f sup |y —z||Vx Ky j (1 =)y + 1z —w)|dw dt 5212’0‘)/ 2"\ (VeKy) 2 w) | dw S B2
0 J20,)° uel n

Summing over j such that j +r(x) > N and j +r(x) < —N respectively, we see that (7-9) follows.
Finally, it suffices to observe that

12
H(X)Sf ][< > ||Tu,j(X(2QX>ij)(y)—Tu,j(X(zgx)ch)(Z)||iz(,)> dydz
X Q.\’

lj+r()[=>N

2 12
— sup ( / (Ko (7 —w) — Ko (c — w)] Hy () dw )
12€Q0e Ny oy 1 200 L)
21,2
S sup < (/ 1K, j(y —w) — Ky j (2 — w2 dw) ) Il Hj [l g2 z) | oo @m)
¥,2€0x lj4+r(x)|>N 20x)°
21,2
S sup < (/ SUP|Ku,j(y—w)—Ku,j(Z—w)Idw> ) 1 Hj Nl e2z) | Loo ) -
y,2€0x |j+r(x)\>N (20x)¢ uel

Invoking (7-9) yields
I L@ S B2NH;j ) lle2z) L @y,

which together with our earlier estimate about [|I(x)]| o) gives (7-7).

Proof of Lemma 7.1. The key is a relative distribution inequality. Fix the Banach space B. For any n > 1,
we claim that there exists b, € (0, 1) such that for any b, ¢ > 0 with b < b,, we have

{x e R" : MF(x) > o, F*(x) < ca}| <, c|{x € R" : MF(x) > ba}]|.

If this is true, then by taking c sufficiently small, we can use Lemma 2 of Chapter IV.3.5 of [Stein 1993]
(see also the remark on the bottom of page 152 there) and conclude the proof of Lemma 7.1.

To prove the above relative distributional inequality, let b € (0, 1) first. Let F € L?(R", B). Decompose
the open set {x € R" : MF(x) > ba} into an essentially disjoint union of Whitney cubes {Q}, so that the
distance of each Q from the complement of this set is bounded by 4 times the diameter of Q. Now since
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{x eR": MF(x) > a, F*(x) < ca} is a subset of {x € R" : M F(x) > ba}, we just need to show that for
each Whitney cube Q as above, we have

l{x € Q: MF(x) > a, FF(x) <ca}| <, c|0].

This inequality would be trivial if the set on the left-hand side were empty. So let’s assume there exists a
point xg € Q such that F ti(xo) < ca. Now let é be any cube that intersects Q and that has diameter at
least that of Q Then 20Q will contain a point y where M F(y) < ba. Hence fQ |Fl|p <20"ba for all
such cubes Q If x € Q and MF(x) > «, then by taking b < 207", we see that M(F x30)(x) > . We
also have f3Q |F|g <20"ba. Thus,

{(xe Q: MF(x) > «a, Fi(x) <ca} C {x € Q:M(Fxgg—][ F)(x) > (1—20"b)a},
30

where the measure of the right-hand side is bounded by

n Cn 3” n
— F —F dy< ——= _|30Q|F* <— ,
(l—ZO"b)O(/Q| x30(y) — F3glpdy < (1—20”b)a| Q|F*(xg) < (1—20”b)c|Q|
where C, is the constant arising in the weak-type (1,1) bound of M : LY(R", B) — L"“*°(R"). This
proves the desired relative distributional inequality. ([l

Appendix A: An improved local smoothing estimate

In this section we prove Theorem 1.6. Let x : R” — R be a nonnegative smooth bump function supported
on 1 < |&] < 2. Define

Eof(x,1):= fRn FExEe T gg.

We will prove
I Eof | Lr@ex(—nip S A" YZYPTEY £l Lo g (A-1)

for every A > 1. Once this is proved, a rescaling argument shows that

(/...

whenever f (&) is supported on the k-th annulus, that is, |§| ~ 2k Asa consequence we obtain Theorem 1.6.

14 1/p
/eixsf(g)enswdg' dxd;) < kv 2= P)=ky [pHke | £ 1 gy (A-2)

We will prove (A-1) for every elliptic phase. Let cg be a small positive real number. Let ¢ : R" — R
be a smooth function with

1
BEI+IVOEI ST, col, < (V2)(E) < aln for every |§] < 10, (A-3)

where [, is the identity matrix of order n x n. Let xo : R” — R be a nonnegative smooth bump function
supported on |£| < 2. Define

Eyf(x,1):= /;‘\yn £ (&) 50 (&)™ EFPE) gt
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We will prove
sup 1 Ep fllLr@exi—aa S A Y2VPRN £l oy (A-4)
¢:(A-3)

for every A > 1.
For a ball B, ¢ R*t! of radius A, we will let B, denote its projection in the first n variables, i.e.,

spatial variables. That is, B,  is a ball of radius A in R". We also define the associated weight
(x) ! f eR"
~(x) = or x .
ST A =l /o

Here ¢ denotes the center of B, . We remark that in the argument below, various implicit constants

depend on this choice of weight. However, this dependence is not important, and to avoid unnecessary
technicalities, we will not make these details explicit. We refer the interested reader to [Li 2020], which
contains all the necessary details that are required to run the Bourgain—Guth argument [2011].

We prove (A-4) by an inductive argument. Denote by Q, the smallest constant such that

sup 1 Ep fllLeesy < Qn- 2" Y20 fllirqw,
¢:(A-3) A

for every ball B, C R+ with B, C B, x[—A, A]. Of course our goal is to prove that

Q5. Se A (A-5)
for every € > 0. In the following, for the sake of simplicity, we will always abbreviate Ey f to Ef.

First, by translation invariance, we will assume that B, is centered at 0. We normalize f such that
||]?||Lﬂ(w3;))\n(l/2_l/p) =1. (A-6)

Next, let K,, be a large integer that is to be determined, satisfying

K, < A°.
For a large dyadic integer K, let Colg denote the collection of all dyadic cubes of length 1/K. We write

Ef= Y Efy, with fy, =Ff 1,
a,eColg,

Here {1, }, forms a smooth partition of unity, and 1,, is supported on 2«,. On every ball B, C Rt of
radius K, by the uncertainty principle, we know that | Ef,, | is essentially a constant for every o, € Colg, .
We let |Efy, |(Bg,) denote this constant. Denote by o the cube that maximizes

{|Efoz,, |(BK,,)}04,,€C01K" .
Consider the collection

Coly, = {ay € Colk, : |Efq,|(Bk,) = K, " |Efu:|(Bk,)}-

Here the choice of the coefficient K, is not strict. One can also use K, " or something even smaller.
There are three cases.

Case 1: There exists an integer 1 < j <n, and cubes a,gl), R a,(,j ) € Col}}'1 which are (1/K,,_1)-separated
such that every cube within Col*,}n is in the 1/K,,_ neighborhood of some a,(,j ),
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Here K, < K is also to be determined. Next, we have:

Case 2: There exist cubes a(l) .. ("H) € Coly that are (1/K,_)-separated and do not lie in the
100/ K, neighborhood of any (n—l)—dlmensmnal subspace.

If Case 1 and Case 2 are not satisfied, then we have:
Case 3: All cubes in Col}‘(n lie in the C(K,_1)/K, neighborhood of a subspace of dimension n — 1.

Here C(K,_1) is a large constant depending on K,_; which may change from line to line (it always
suffices to take, say, C(K,—1) = K.

We deal with these three cases separately. In Case 1, we have

|Efl S max [Efy |+ max |Efy, | (A-7)
oy GCO]](n [o | ECO]KH_]
In Case 2, we use
n+1 1/(n+1)
EfIS K (1'[ Ef, 0 |)

j=1
In Case 3, we use

|Ef| < max |Efy,|+  max ‘ > Efu |- (A-8)
a,€Colg, L,_1: subspace
of dimension (n—1) @n—1:dist(@—1,Ly—1)<1/Ky—
In the last summation, we implicitly assumed that o, € Colg, ,, and that
C(Kn-1) < 1 '
Kn Kn—l

Here we agree upon a convention: for 1 < j <n, whenever the symbol «; appears, we always assume
that &; € Colg;, to keep notation simpler. Combining (A-7)-(A-8), we obtain

n+1 1/(n+1)
|Ef| S max |Efy,|+  max |Efa,,l|+K2"(1_[|Ef<,>|)

apelolg, Oy — ]ECO[( = 1

+ max E Efy, .|
L,_1: subspace
of dimension (n—1) @n—1:dist(@n—1,Ly—1)<1/Kyp_

We raise both sides to the p-th power, then integrate over By, , and in the end sum over balls By, inside B;,

/IEfI”< 3 /|Efa,, f&|Efa,,.|

a, €Colg,, U |eC01K 4
ntl p/(n+1)
+ Z / Kgp” (1_[ |Efa,(,j) I)
oty(,l) ..... ("H) in Case 2 B Jj=1
p
+ ), max f Efa, (A-9)
B, CB; Bkn gy, dist(ctn_1. L,, D<1/Kn_1

There are four terms on the right-hand side. It is the contribution from the last term that gives us the
ultimate constraint for the exponent p, as stated in (1-5).
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Let us be more precise. The first and second summands on the right-hand side of (A-9) can be taken
care of by parabolic rescaling. We will deal with the third summand using multilinear restriction estimates
due to [Bennett, Carbery, and Tao 2006]. The last term requires further careful analysis.

For the first and second summands, we will apply rescaling. The argument is the same in both cases.
Hence we will only write down the rescaling argument for the first summand.

|Efo, | =
B;.

p
/ f, ()19 del dx dr.
B;,

Here we apply the change of variable

3

£ — ra +cq,, With ¢y, being the center of .
n

‘We obtain

14
/ f()ln (i +Cﬂ[})ei(%-/Kn+Cozn)x+it¢(§/Kn+Cotn)d$‘ dx dt
B)V Kn

-
By,

Next we apply the change of variables

K"

n

/fa ( +Ca) zs/Knx+zK3¢(s/Kn+can)(t/Kz)dg dx dt.

x/K,—x and t/Kf —t

to obtain

—np+n+2
K; /
B;.

Here B, CR""isa rectangular box of dimensions /K, x - - - x A/K, x A/K? centered at 0. The reason
of writing it in this form is that

/fa"< ";: +Can> iEx+it- Kz(b(%-/K +Can)d€‘ dx dt. (A-IO)

$&) =K ¢( : + ca,,> — K, (V) (ca,), &) — K29 (cy,) still satisfies (A-3).

By a change of variable, (A-10) can be bounded by

~ p
K, vt f / fo[,,(i +can)e"5x+”¢<f>ds‘ dxdt.
ZE)L Kl’l

Next we split the rectangular box 2B, into a union of cubes of side-length A/K2.

. p
K" K"2 Z / / fan<Ki+can)ei§x+”¢(§)d§‘ dx dt
n

) C2B, By x2

o 2 np(l/2—1/p)

—np pn -

somt Y () e,
n

B; CB}T/K,,

p
wp- (x)dx.
e

i (K— + ca,> (x)
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Here we applied the induction hypothesis. We may now sum the weights over all B,

o (; + ca,,) (x)

A/KZ/ |fan(€)|pw3 (x)dx

A/K? - B/\/K , and

bound the above by

o A\
—np n
< K K <K2) A/Kz/

5 \P(/2=1/p)
%)

p
W, (x) dx

<K npKrH—ZKnp n<

Summing over «,,, we obtain

A/Kz nKan | for "W

K npKn+2<
an Rn
< K npKn+2<

2 \"P(1/2=1/p)
%)

K, "K,".

1 \»{1/2=1/p)
) A/Kz

KZ
In the last step, we applied the normalization condition (A-6). Let the exponent of K, be equal to zero

and we obtain

2—2np<l—%>=0 =

_ 2(n+1)
5 ===

n
This is exactly the exponent in the Fourier restriction conjecture. Moreover, the last display tells us
that, for the contribution from the first and second terms in (A-9), the induction can be closed whenever
p>2nm+1)/n.

Now we deal with the third summand on the right-hand side of (A-9). When p > 2(n + 1)/n, by
multilinear restriction of [Bennett, Carbery, and Tao 2006] and by Bernstein’s inequality and Holder’s

inequality,
n+1

p/(n+1)

oo in Cas

.....

Again we see that there is no problem for this term as K,, can be chosen to be much smaller compared
with A€,

In the end, we come to the last summand on the right-hand side of (A-9). Fix a ball Bk, C R+
Assume that the maximum is attained at the (n—1)-dimensional subspace L,_;. We need to consider

/ 3 Efur,

Op—1 :diSt(an—l JLn—1 )Sl/Kn—l
Notice that each |Ef,, ,| is essentially a constant on Bg

p

a ball of radius K,,_; which is much smaller

n—1°

compared with K. Hence tentatively we fix a ball B, , C By, . Leta;_; denote the cube that maximizes

{1E fa,_ |(Bk,_ ) Yap_:dist(@n_1,Ln_1)<1/Kn_1 -
Consider the collection

1
Col}'}n_I = {an_l sdist(ay—1, Ly—1) < <

n—1

and |Efq, ,|(Bk, ) = K, " |Efo: |(BKn1)}-

There are three further cases:
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Case 3.1: There exists an integer 1 < j <n —1, and cubes ozr(ll_)l, ey ot,(f_)l € Col*Kn_1 which _z/ire (1/K,_»)-
separated such that every cube within Coly  is in the 1/K,_> neighborhood of some a,(lj_ )1.
Here K, > < K;_, is also to be determined. Moreover, we have

Case 3.2: There exist cubes a,(ll_)l, ...

100/ K, neighborhood of any (n—2)-dimensional subspace.

, a,(ln_)l € Col’;(n_1 that are (1/K,,_»)-separated and do not lie in the

If the above two cases are not satisfied, then we must have
Case 3.3: All cubes in Col}}H lie in the C(K,,—»)/K,—1 neighborhood of a linear subspace of dimension n—2.
Here C(K,_;) is a large constant depending on K, _,. It suffices to take C(K,,_») = K,ig%”.

Similarly to (A-7)-(A-8), we have that for every point (x, t) € Bg

n—1

|EfIS max |Efg,|+ max  [Efg, |+ max |Efy,,|

o€ Olk, oy—1€ OKn—l op_2€ OlKn—Z
n 1/n
2
+Knﬁ1<1'[ IEfo,<f>1|) + max > Efu, |-
n— =
j=1 "2 oy st (@2, Lu-2)<1/Kpno2

C Bk

n’

We first raise both sides to the p-th power, integrate over Bk, ,, and then sum over all balls By

n—1

and in the end sum over all balls Bx, C B:

/BllEfV’S > /19A|Efa"|p+ > /BJEfa’”lp

a, €Colg,, a,—1€Colg, |
n p/n
+ Z / |E fo, |7+ Z / K, (l_[ |Efa(j>1|>
ap—2€Colg, , B a,(ll_)l,...,a,(l”_)] in Case 3.2 B Jj=1 .

p

> Efy,

an—Z:diSt(an—Zan—Z)SI/Kn—Z

+ )2 IglafB

BK,,CB)L BKn—I CBK,,

n—1

There are five terms on the right-hand side of the last display. By the same scaling argument as above, we
can handle the first three summands. For the fourth summand, we again apply multilinear restrictions
due to [Bennett, Carbery, and Tao 2006]. However, notice that we are applying an n-linear restriction
estimate in R"*!. This will not give us the restriction exponent 2(n + 1)/n, but something larger. To be

precise, we have

n p/n
> / K>, (]_[ |Ef, i) |) S K2 KOs
B n—1

. A i
a,(ll_)l,...,a,(ln_)l in Case 3.2 J=1

for every

which we assume.
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Hence it remains to handle the last summand

),

BK ICB

p

> Efa,

ap—2:dist(ety—2,Ly—2)<1/K,—2

n—1

We repeat this iteration until we reach

p
> [max / > Efu .\l (A-11)
Bk, _,CB; M B, oty —k—1:dist(oty—k—1, Lyn—k—1) <1/ Kn—k—1
where k is the largest positive integer such that
n—1
k < 7 (A-12)

in other words,
(n—3)/3 ifn=0 (mod 3),
k={(m—-1/3 ifn=1 (mod3), (A-13)
(n—2)/3 ifn=2 (mod 3).
Collecting all the constraints on the exponent p from applying the multilinear restriction estimate, we

obtain
2(n—k+1)
> 7.

p= n—=k

Instead of running the previous argument again on (A-11), we apply the decoupling inequalities of

(A-14)

[Bourgain and Demeter 2015]:

p
/ Z Ef()ln—k—l S (Kn—k—1)<n_k_l)(l/2_l/p)p+€ Z / |EfOln—k71 |p.
Bry i Ap—g—1:dist(@n—g—1,Ln—k—1)<1/Ky—t—1 on i1 ¥ BRni
The above inequality will hold as long as
2n —
< M (A-15)
~ n—k-1
In the end, we sum over all balls Bk, , inside B;, and obtain
T S TR
Op—k—1 By,
It is clear now that we should apply parabolic rescaling. This gives us
(K ) =DA2=ppte (g \2=2m0(/2=1/p) P
)L/Kn k—1
By equating the exponent of K,_j_; with zero we obtain the constraint
2(n+k+3) (A-16)
n+k+1

This constraint is more restrictive than (A-14), by condition (A-12). By choosing k as in (A-13), and
substituting that into (A-16), we obtain the constraint on p in (1-5). To summarize, we have shown that for
p satisfying (1-5) and (A-15), we can close the induction. Thus, we have established (A-5) and therefore
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(1-6) for such p’s. Finally, by the result of [Rogers and Seeger 2010], we already know that (1-6) holds for
all p >2+4/(n+1) (even with € =0), which completes the proof of Theorem 1.6 for the claimed range in p.

Appendix B: A maximal multifrequency estimate of Krause and Lacey

Fix € € Z and d € N with d > 2. Take the decomposition 1 =), , ¢¢(t), where ¢ (t) := ©o(27¢t) for
some smooth even function ¢g supported on |f| >~ 1. For u > 0, let

TWf@) =Y 1" fx),
>0
where

cad
T £ (x) = /R F =g L.

Following the method in [Bourgain 1989], we will prove the following maximal multifrequency estimate.

Theorem B.1. There exists a constant C such that for any T >0, M € N and any 6y, ..., 0y € R with
mini<; < j<p |0; — 60;| > 21, we have
M M 1/2
sup| Y " Modg, T™ P, f,, < C(log M)Z(Z ||fm||iz(R>> (B-1)
u>01 "7 L%2(R) m=1
forall f1,...,fu € L*>(R), where P; is the Littlewood—Paley projection onto the frequency interval [—T1, T].

Here Mody f(x) is the modulation Mody f(x) := ¢!%* £ (x).
As a corollary, we obtain Theorem 3.5 of [Krause and Lacey 2017]:

Corollary B.2 [Krause and Lacey 2017]. There exists a constant C such that for any T > 0, M € N and

any 0y, ...,0y € Rwithmin|<;-j<um |0; — 0;] > 2T, we have
M
sup| > Mod, T (P, Mod_y, f) < CUog M) || fll 2wy
u>01"—] L2(R)

for any f € L*(R).

Indeed, one can obtain the corollary by applying Theorem B.1 to f;, := P; Mod_g, f, and noting that

then 30 Il fonll 72y < 1172

The corollary is slightly stronger than Theorem 3.5 of [Krause and Lacey 2017] because it allows one
to take supremum over all u > 0 (not just over u € (0, 72)).

To prove Theorem B.1, we use the following variant of our Theorem 1.1.

Theorem B.3. There exists a constant C such that for all p € (2, 3) we have
VAT fou> 0l < C(p =27 I fllew- (B-2)
Stein and Wainger proved that

I sup{T“ f :u > O}l Lawy < Cyll fll Loy (B-3)

for 1 < g < co. By complex interpolation, we then get the following corollary:
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Corollary B.4. There exists a constant C such that for all v € (2, 3) we have
VAT f ru>0Hl2w < CO =27 I 2. (B-4)

Indeed, for any r € (2, 00), one can obtain (B-4) by interpolating between (B-2) with p = (r 4+ 6)/4,
and (B-3) with ¢ = 3.
Below we first prove Theorem B.3, and then use Corollary B.4 to prove Theorem B.1.

Proof of Theorem B.3. By the argument in Section 3, we have

kd
sup AV NAT PO f ik € ZY oy < Coll fll Loy
A>0

for 1 < p < oco. By the real interpolation argument in Lemma 3.3 of [Bourgain 1989] (see also Lemma 2.1
of [Jones, Seeger, and Wright 2008]), we have

kd —
IWVATEOf ke DYlirg < € =27 I fllLrm) (B-5)
for all 2 < p < 3. Furthermore, by the argument in Section 4, we have
IVIT® fllorenllr@ < Cp =27 1 fllr@) (B-6)

forall 2 < p <3, where V/T® f(x) := VP{T™ f(x) : u € [2/¢,2UF D]}, Indeed, the left-hand side
above is bounded by

> VjpT[(K)]'Pj—i-kfnﬁp{j:[—jzeo} e @),
k,teZ

and the arguments of Sections 4B and 4E show that

> VT Prflle e < Coll flere (B-7)

k.teZ
L=—k/(2(d+1))

for 1 < p < 00, and
> + > VT P flllr@ < Coll fleey  (B-8)
ke k,Lez
0>—k/Q2d+D), k>d—D+C  >—k/(2(d+1)), k<€(d—1)-C
for 2 < p < oo, where the constants C), satisty sup,_,.3 C, < oo. Furthermore, the arguments in
Section 4D show that there exist absolute constants C and § > 0 such thatif £ >0and k =¢(d—1)+ O(1),

then
—L£6 -2
VT, P fll lr@ < €272 fllo

for all 2 < p < 3. Summing these up, we get

Yoo > VT RS lle e < Cp =27 Il (B-9)
>0 k=L(d—1)+0(1)

for all 2 < p < 3. Inequality (B-6) then follows from (B-7), (B-8) and (B-9). Since
VIHTO fiu>0) < VAT f ik e ZY+ IVITY fllergien),
we obtain the desired conclusion (B-2) from (B-5) and (B-6). [l



1496 SHAOMING GUO, JORIS ROOS AND PO-LAM YUNG

Proof of Theorem B.1. We will deduce Theorem B.1 from Theorem B.3, following [Bourgain 1989] closely
(see Lemma 4.13 there). Suppose 7 > 0, and 0y, ..., 0y € R are such that min;<; <y |6; — 6;| > 27.
First, to prove (B-1), it will suffice to show that

M 2 172 M 1/2
(f sup| » ¢! T Py £, (x+w) dw) scaogM)Z(anmniz(R)) . (B-10)
wel0,1/(1000)] llu>017 = L2(R) m=1

Morally speaking, this is the uncertainty principle at work: note that for every u > 0, the function
x> TWP, fm(x) has Fourier support contained in [—7, 7], and hence | Modg, TWP, fm(x)] can be
thought of as locally constant on an interval of length ~ 1/7. To be precise, for each w € [0, 1/(1007)],
we have, by Plancherel’s identity, that

I1Pe fin () = Pefin G- +w)llz2 < 5l fnl 2

whenever w € [0, 1/(1007)]. Thus if B is the best constant for which (B-1) holds, then for all w €
[0, 1/(1007)], we have

M M M 1/2
) B
sup Z Modg, T™ P, f,(x) < |[sup Z T P fr (X +w) +—<Z ||fm||iz(R)) ,
u>0 m=1 LZ(R) u>0 m=1 LZ(R) 2 m=1

so taking L? average over all w € [0, 1/(1007)], and using (B-10), we have
, B
B < C(log M)~ + 5§
ie., B <2C(logM )? as desired. Thus, it remains to establish (B-10), which can be rewritten as

2 12
dw)

M

sup
H (]ﬁe[O,l/(lOOt)J u>0 Z

m=1

e—iBmweimeT(u)Prfm(x)

LX(R)

M 12
< C(log M)* (Z I fon ||iz(R)> (B-11)
m=1

by first changing variable x — x — w, and then interchanging the integrals in x and w.
To prove (B-11), for each x € R, consider the (bounded) set A, C R¥, given by

A ={(TYWP, fi(x), ..., TP, frr(x)) : u > O}.

If X is bigger than the diameter of A,, let E; (x) = 0; otherwise let E, (x) be the minimal number of balls
in RM of radius A that is required to cover A,. (Ej(x) is sometimes called the entropy number.) One
then observes that for every s € Z, there exists a finite subset By(x) C A, — A, of cardinality at most
E»s (x) such that

lbs| <251 for every by € B(x)

and such that every element a of A, admits a decomposition

a= st with b; € Bg(x) for every s € Z.

sezZ
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Then the left-hand side of (B-11) is bounded by

Mo . 2 1/2
HZ max <][ Z e i pitnp dw) ;
ez DB \Jwepo,1/1000)11 7= L2(R)
here by = (by 1, . . ., bs ). Using Cauchy—Schwarz for the sum over m, the above displayed equation is
further bounded by
Mo . 2 1/2
> min{2S+1M1/2, ( > ][ D dw) } (B-12)
seZ bye By (x) ¥ WELO 1/ 00T, L2(®R)

To estimate the integral in w above, observe that from the separation of the 0y, ..., 6,7, we have

Mo 2 12 M 12
(f e, an) 5 (X k)
wel0,1/(1000)]1,, —; m=1

indeed, the key is that if b : RY — R is defined by

M

(ba)n, = Z 9 T_G dp,

then the operator norm of h is bounded independent of M, which can be deduced, for instance, by
comparing it to the (continuous) Hilbert transform on R. Thus (B-12) is bounded by

=2

Zmin{23+1M1/2’ 2S+1E2S (X)I/Z}
LX(R)

seZ

2 min{M /2, Eps (x)"/?}
seZ

(B-13)

L2(R)
Now let

M 1/2
Fx):= (Z sup |7 Pffm(x)F) :

=1 u>0

Then the diameter of A, is at most 2F (x). Hence the entropy number satisfies Eys(x) = 0 whenever
2% > 2F (x). We are then led to sum

Z 2’ min{M "%, E»s (x)'/?1.
25<2F(x)
We split this sum into two, one where 2° < M~12F(x), and another where M~'/2F (x) <25 <2F(x). The
former sum is bounded by F'(x), while the latter sum is bounded by (log M)M 1/2=1/r Supycz 2° Eos (x) 1/r
for any r € (2, 00). Now pick r € (2, o0) such that

1 1 1
5~ =(log )™,

so that M'/>=1/7 ~ 1. Then (B-13) is bounded by

[P0+ tog M) sup2 Ex (0! | -
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But by Stein and Wainger’s inequality (B-3), we have

M 1/2
IF 12 S (Z ||fm||iz(R)) .
m=1

Furthermore, one can relate the entropy Es (x)!/" with the r-th variation norm pointwise:

M 1/2
sup 2° Eos (x)'/" < (Z VAT P, fru(x) 1 u > 0}|2> :
m=1

seZ

Hence

M 1/2
| log M) sup2'Ex "] 2 < (log M)(Z IVAT P, fo:u > 0}||§2(R)) :
se

m=1

By Corollary B.4, the latter is bounded by
M 1/2
caogM)(r—z)—l(Z ||fm||iz®) :
m=1

and since (r —2)~!' ~ log M by our choice of r, this completes the proof of Theorem B.1. (I
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