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SHARP VARIATION-NORM ESTIMATES FOR
OSCILLATORY INTEGRALS RELATED TO CARLESON’S THEOREM

SHAOMING GUO, JORIS ROOS AND PO-LAM YUNG

We prove variation-norm estimates for certain oscillatory integrals related to Carleson’s theorem. Bounds
for the corresponding maximal operators were first proven by Stein and Wainger. Our estimates are sharp
in the range of exponents, up to endpoints. Such variation-norm estimates have applications to discrete
analogues and ergodic theory. The proof relies on square function estimates for Schrödinger-like equations
due to Lee, Rogers and Seeger. In dimension 1, our proof additionally relies on a local smoothing estimate.
Though the known endpoint local smoothing estimate by Rogers and Seeger is more than sufficient for
our purpose, we also give a proof of certain local smoothing estimates using Bourgain–Guth iteration and
the Bourgain–Demeter `2 decoupling theorem. This may be of independent interest, because it improves
the previously known range of exponents for spatial dimensions n ≥ 4.

1. Introduction

Let n ≥ 1 and α > 1 be fixed. Given a Calderón–Zygmund kernel K : Rn
→ R we define a modulated

singular integral by

H(u) f (x) :=
∫

Rn
f (x − t)eiu|t |α K (t) dt, u ∈ R. (1-1)

The maximal operator

sup
u∈R

|H(u) f | (1-2)

was introduced in [Stein and Wainger 2001] as a generalization of the Carleson operator studied in
[Carleson 1966; Fefferman 1973; Lacey and Thiele 2000]. In this paper, we study variation-norm
estimates for the family {H(u) f }u∈R. Apart from the intrinsic interest in such bounds, another strong
motivation is given by the connection to certain discrete analogues of (1-2) that are the subject of recent
works [Krause and Lacey 2017; Krause 2018] (see Section 1A below).

If J is a subset of R and {au : u ∈ J } is a family of complex numbers indexed by J, then for any
1≤ r <∞ the r -variational norm of {au}u∈J is defined to be

V r
{au : u ∈ J } := sup

J∈N

sup
u0,u1,...,u J∈J
u0<u1<···<u J

( J∑
j=1

|au j − au j−1 |
r
)1/r

.

MSC2010: primary 42B20; secondary 42B25.
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Closely related to it is the jump function of the family {au}u∈J : for λ> 0, the λ-jump function of {au}u∈J ,
namely Nλ{au : u ∈ J }, is defined to be the supremum of all positive integers N for which there exists a
strictly increasing sequence s1 < t1 < s2 < t2 < · · ·< sN < tN , all of which are in J, such that

|atj − asj |> λ

for all j = 1, . . . , N. For r ∈ (1,∞) and p ∈ (1,∞), we will study the L p mapping properties of the
maps

f 7−→ V r
{H(u) f : u ∈ R},

f 7−→ λ[Nλ{H(u) f : u ∈ R}]1/r , λ > 0.

Henceforth f will always be a Schwartz function on Rn; the goal is to establish a priori bounds for
all such f . If in dimension n = 1 we take α = 1 and replace |t | by t , then this corresponds to the
variation-norm Carleson operator, which has been studied in [Oberlin, Seeger, Tao, Thiele, and Wright
2012; Uraltsev 2016]. We refer the reader to [Bourgain 1989; Pisier and Xu 1988; Campbell, Jones,
Reinhold, and Wierdl 2000; 2003; Jones, Seeger, and Wright 2008] for earlier results concerning jump
function and variation-norm inequalities for other operators arising in harmonic analysis.

Let us assume that K is a homogeneous Calderón–Zygmund kernel, in the sense that

K (x)= p.v.
�(x)
|x |n

for some function � that is smooth on Rn
\ {0}, homogeneous of degree 0. The assumption that K is

homogeneous is not strictly necessary. It is there to help simplify the presentation of the proof of the
theorem. We also assume that

∫
Sn−1 �(x) dσ(x)= 0, where σ denotes the surface measure on Sn−1.

Theorem 1.1. Let n ≥ 1, α ∈ (1,∞) and define H(u) as in (1-1). If r ∈ (2,∞), p ∈ (1,∞) and r > p′/n,
then we have

‖V r
{H(u) f : u ∈ R}‖p ≤ C‖ f ‖p. (1-3)

In addition, if n ≥ 2 and p ∈ (2n/(2n− 1),∞), then∥∥λ√Nλ{H(u) f : u ∈ R}
∥∥

p ≤ C‖ f ‖p.

Here the constant C is allowed to depend on n, α, p and r.

Moreover, up to endpoints, we show that this is the best we can expect:

Theorem 1.2. The estimate (1-3) fails if r < p′/n.

Thus, the range of exponents for which estimate (1-3) holds is given by the quadrilateral in Figure 1
below (up to endpoints).

It is natural to ask what happens when α is less than 1. Our methods do not seem to be able to handle
this case. But if n = 1, an easy adaptation of our methods allows us to obtain a positive result where the
phase function |t |α in (1-1) is replaced by sgn(t)|t |α. In particular, if α is an odd positive integer, we may
replace |t |α in (1-1) by tα and still obtain a positive result.
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Figure 1. The range of exponents for which estimate (1-3) holds.

The inequality (1-3) can be understood as an extension of the well-known result from [Stein and
Wainger 2001] (also see [Guo 2016] for the case when α is not an integer):∥∥sup

u∈R

|H(u) f |
∥∥

p . ‖ f ‖p for every p > 1. (1-4)

1A. Connection with discrete analogues. Further motivation stems from the study of a discrete analogue
of the maximal operator (1-2). Fix an integer d ≥ 2 and let u ∈ R. Consider the following operator H(u)

Z

acting on functions f : Z→ C:

H(u)
Z f (x)=

∑
t∈Z\{0}

f (x − t)eiutd 1
t
, x ∈ Z.

This is a discrete analogue of our operator H(u) for n = 1 and α = d . Bounding the associated maximal
operator f 7→ supu∈R |H

(u)
Z f | on `p(Z) is significantly more difficult than bounding Stein and Wainger’s

maximal operator and until recently, no such bounds were known. For the recent progress on this problem
and further discussion of discrete analogues, we refer to [Krause 2018; Krause and Lacey 2017]. A
careful analysis of the multiplier of H(u)

Z , which is much in the spirit of the Hardy–Littlewood circle
method, reveals a natural splitting of the problem into a number-theoretic and an analytic component. In
the case p = 2, the core estimate for the analytic component is a variant of Bourgain’s classical maximal
multifrequency lemma [1989, Lemma 4.1]. The precise statements can be found in [Krause and Lacey
2017, Section 3; Krause 2018, Sections 5 and 10.2]; see, in particular, Theorem 3.5 of [Krause and Lacey
2017]. Using a small refinement of our Theorem 1.1 (see Theorem B.3 below), together with the argument
from [Bourgain 1989], one can obtain an alternative simple proof of (a small extension of) Theorem 3.5
of [Krause and Lacey 2017]; we include some details in Appendix B.

Discrete analogues are intimately related to ergodic theorems and this connection provides a further
application of our variation-norm estimates. Krause [2018, Theorem 1.2] made use of a variant of the
estimate (1-3) in his recent work on a pointwise ergodic theorem.

1B. Outline of the proof. We now briefly describe an outline of the proof of Theorem 1.1. To control
the left-hand side of the estimate (1-3), we split the contribution into two parts: long variations and short
variations. For each j ∈ Z, define the short variation on the u-interval [2 jα, 2( j+1)α

] by

V r
j H f (x) := V r

{H(u) f (x) : u ∈ [2 jα, 2( j+1)α
]}.
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Also define

Sr (H f )(x) :=
(∑

j∈Z

|V r
j H f (x)|r

)1/r

,

N dyad
λ (H f )(x) := Nλ{H(2 jα) f (x) : j ∈ Z}.

We will use the following lemma (see, for example, [Jones, Seeger, and Wright 2008]):

Lemma 1.3. For r ∈ [2,∞) we have

λ[Nλ{H(u) f : u > 0}]1/r . Sr (H f )+ λ[N dyad
λ/3 (H f )]1/r

uniformly in λ > 0.

(Hereafter, A . B means A ≤ C B for some absolute constant C .)
By this lemma, and by Bourgain’s argument [1989] of passing from jump norms to variation-norms

(see also [Jones, Seeger, and Wright 2008, Section 2]), to prove Theorem 1.1 it suffices to prove the
following two propositions.

Proposition 1.4. For every p ∈ (1,∞) and r ∈ [2,∞) we have

‖λ[N dyad
λ/3 (H f )]1/r

‖p . ‖ f ‖p

uniformly in λ > 0.

Proposition 1.5. Let n ≥ 1 and p ∈ (1,∞), r ∈ (2,∞) with r > p′/n. Then we have

‖Sr (H f )‖p . ‖ f ‖p.

If n ≥ 2, then the inequality also holds for r = 2.

The proof of Proposition 1.4 depends on a jump function inequality of [Jones, Seeger, and Wright
2008] that is based on a Lépingle inequality for martingales.

By interpolation with the inequality (1-4) of [Stein and Wainger 2001], it suffices to consider the case p∈
(2n/(2n−1),∞) to prove Proposition 1.5. The proof of Proposition 1.5 then depends on a square function
estimate for Schrödinger-like equations, which is due to [Lee, Rogers, and Seeger 2012]. In one dimension,
we additionally need a local smoothing estimate for these equations. The following local smoothing result
is more than sufficient for our needs: indeed we will only need the following estimate for n = 1 and some
p <∞. We are including the full theorem here only because it may be of independent interest.

Theorem 1.6. Let γ > 1 be a real number and let I be a compact time interval. For any dimension n ≥ 1
and exponent p <∞ satisfying 

p > 2(4n+7)
4n+1

if n ≡−1 (mod 3),

p > 2n+3
n

if n ≡ 0 (mod 3),

p > 4(n+2)
2n+1

if n ≡ 1 (mod 3),

(1-5)
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we have (∫
Rn×I

∣∣∣∣∫
Rn

ei x ·ξ f̂ (ξ)ei t |ξ |γ dξ
∣∣∣∣p

dx dt
)1/p

.ε ‖ f ‖W β+ε,p(Rn) (1-6)

whenever ε > 0 and
β

γ
= n

(1
2
−

1
p

)
−

1
p
.

Here we write W s,p(Rn)= (I −1)−s/2L p(Rn) to denote the standard Bessel potential space.

Let us take a moment to compare Theorem 1.6 with results in the existing literature. Rogers [2008]
considered the case γ = 2, namely a local smoothing estimate for the Schrödinger propagator ei t1. He
proved that (1-6) holds whenever γ = 2, p ∈ (2+ 4/(n+ 1),∞) and ε > 0 (in the rest of this section
β will always be as specified in Theorem 1.6). This was improved subsequently by Rogers and Seeger
[2010], who obtained the endpoint case ε = 0 for all γ > 1: they established that (1-6) holds with ε = 0
for all p ∈ (2+ 4/(n + 1),∞) and all γ > 1. In particular, this implies Theorem 1.6 for n = 1, 2, 3.
Theorem 1.6 gives a larger range of p in dimensions n ≥ 4, albeit with an ε-loss in smoothness. We also
note that in the case γ = 2 (i.e., for the Schrödinger propagator), Lee, Rogers and Seeger [2013] obtained
an improvement of the aforementioned result of [Rogers and Seeger 2010]; in particular, in Proposition 5.2
of [Lee, Rogers, and Seeger 2013], they proved that if the dual Fourier restriction conjecture holds at an
exponent q0, in the sense that

‖E f ‖Lq0 (Rn+1) . ‖ f ‖Lq0 ([0,1]n)

for some exponent γ0 < 2(n+3)/(n+1), where E is the Fourier extension operator for the paraboloid in
Rn+1 given by

E f (x, t)=
∫
[0,1]n

f (ξ)ei(x ·ξ+t |ξ |2) dξ, (x, t) ∈ Rn
×R, (1-7)

then (1-6) holds for γ = 2 with ε = 0 whenever p ∈ (q∗,∞), where q∗ is defined by

q∗ :=
2(n+ 3)

n+ 1
(1− γ (n, q0)), with γ (n, q0) :=

1/q0− (n+ 1)/(2(n+ 3))
n((n+ 1)/2− (n+ 2)/q0)

.

A direct computation shows that

q∗ = 2+
4
n
−

2
n2− n(4− q0)/(q0− 2)

.

As a result, even if one can establish (1-7) in all dimensions n with q0 = q0(n) that decays like q0(n)=
2+ (2+ λ)/n+ O(1/n2) for some λ > 0 (the Fourier restriction conjecture shows that the best one can
hope for is λ = 0), using the above result of Lee, Rogers and Seeger, one can only establish the local
smoothing estimate (1-6) for p ∈ (q∗(n),∞), where

q∗(n)= 2+
4
n
+ O

(
1
n2

)
.
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On the contrary, if p∗(n) is the Bourgain–Guth exponent given by the right-hand sides of (1-5), we see that

p∗(n)= 2+
3
n
+ O

(
1
n2

)
,

so our range of the exponent p is larger than that of Lee, Rogers and Seeger in high dimensions n, even
for the Schrödinger equation case.

Contrary to [Rogers and Seeger 2010], which relied on bilinear restriction estimates, our proof of
Theorem 1.6 relies on the Bourgain–Guth argument [2011] (see also the presentation in [Bourgain and
Demeter 2017]), and the Bourgain–Demeter decoupling inequality [2015]; see [Wolff 2000; Łaba and
Wolff 2002] for some earlier foundational work on decoupling inequalities, and their applications to local
smoothing estimates. The multilinear estimates developed in [Guth 2018] might be useful in establishing
(1-6) for a larger range of exponents, but we did not pursue this here.

Organization of the paper. In Section 2 we state two preliminary results, namely a consequence of the
classical Lépingle inequality, and a consequence of the Plancherel–Pólya inequality. In Section 3 we
control long jumps; that is, we will prove Proposition 1.4. The treatment for short jumps (that is, the
proof of Proposition 1.5) will be split into two parts. In Section 4 we prove Proposition 1.5 in two special
cases: n ≥ 2, p > 2(n+2)/n, and n = 1, p > 2. These are the main cases to be considered. In Section 5
we indicate the modifications necessary to prove the remaining case of Proposition 1.5: namely, n ≥ 2
and 2n/(2n− 1) < p ≤ 2(n+ 2)/n. The proof of Theorem 1.2 is in Section 6. In Section 7 we provide
the proof of a vector-valued generalization of a multiplier theorem of [Seeger 1988], which we used in
the proof of the short jump estimates in Section 4. In Appendix A we prove the local smoothing estimates
in Theorem 1.6. In Appendix B we refine our Theorem 1.1 by obtaining a good bound on the growth of
the constant C in (1-3) as p = r → 2+ (see Theorem B.3), and use it to provide an alternative simple
proof of a maximal multifrequency estimate of Krause and Lacey [2017, Theorem 3.5].

2. Prerequisites

2A. A jump function inequality of Jones, Seeger and Wright. We recall a jump function inequality for
convolutions with dyadic dilations of a fixed measure from [Jones, Seeger, and Wright 2008, Theorem 1.1].
It is a consequence of the more classical Lépingle inequality for martingales.

Proposition 2.1 [Jones, Seeger, and Wright 2008]. Let σ be a compactly supported finite nonnegative
Borel measure on Rn whose Fourier transform satisfies

|σ̂ (ξ)| ≤ C |ξ |−a

for some a > 0. For k ∈ Z, define σk by∫
Rn

f (x) dσk(x)=
∫

Rn
f (2−k x) dσ(x).

Then ∥∥λ√Nλ{ f ∗ σk : k ∈ Z}
∥∥

L p(Rn)
≤ C p‖ f ‖L p(Rn)

for all 1< p <∞, uniformly in λ > 0.
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We will apply this proposition as follows. Let S be a nonnegative smooth function with compact
support in [−1, 1]n and

∫
Rn S(x) dx = 1. For k ∈ Z and any Schwartz function f on Rn, let

Sk f (x)= f ∗ Sk(x),

where Sk(x)= 2kn S(2k x). If σ is the measure on Rn given by∫
Rn

f (x) dσ(x)=
∫

Rn
f (x)S(x) dx,

then σk(x) coincides with Sk(x)dx , and hence f ∗ σk = Sk f for all k ∈ Z. Proposition 2.1 then gives∥∥λ√Nλ{Sk f : k ∈ Z}
∥∥

L p(Rn)
≤ C p‖ f ‖L p(Rn) (2-1)

for all 1< p<∞, uniformly in λ> 0. Note that Ŝ(0)= 1 and Ŝ(ξ) decreases rapidly to zero as |ξ |→∞.
So later it helps to think of Ŝ(ξ) as localized to |ξ | . 1, and interpret Sk f as a localization of f to
frequency . 2k.

Next, let {c`}∞`=0 be a complex sequence with |c`| = O(2−α`) for some α > 0. Let S̃k be the operator
defined by

S̃k f :=
∞∑
`=0

c`Sk−` f. (2-2)

We will use (2-1) to prove that∥∥λ√Nλ{S̃k f : k ∈ Z}
∥∥

L p(Rn)
≤ C p‖ f ‖L p(Rn) (2-3)

for all 1 < p <∞, uniformly in λ > 0. Recall the definition of the jump norm Nλ{S̃k f (x) : k ∈ Z}:
it is the supremum of all positive integers N for which there exists a strictly increasing sequence
s1 < t1 < s2 < t2 < · · ·< sN < tN , all of which are in Z, such that

|S̃tj f (x)− S̃sj f (x)|> λ (2-4)

for all j = 1, . . . , N. But if s1 < t1 < s2 < t2 < · · ·< sN < tN is as such, then for all j = 1, . . . , N we have

|Stj−` f (x)− Ssj−` f (x)|& 2`α/2λ

for at least one `≥ 0. Hence,

Nλ{S̃k f (x) : k ∈ Z}.
∞∑
`=0

N2`α/2λ{Sk f (x) : k ∈ Z},

which implies √
Nλ{S̃k f : k ∈ Z}.

∞∑
`=0

√
N2`α/2λ{Sk f : k ∈ Z}.

This further implies∥∥λ√Nλ{S̃k f : k ∈ Z}
∥∥

L p(Rn)
.
∞∑
`=0

2−`α/2
∥∥2`α/2λ

√
N2`α/2λ{Sk f : k ∈ Z}

∥∥
L p(Rn)

. ‖ f ‖p.

This finishes the proof of the estimate (2-3).
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2B. An inequality of Plancherel and Pólya. Next, let F(u) be an L2 function on R whose Fourier
transform F̂(ξ) is supported on the set |ξ | ≤ 1. Such an F is sometimes said to be in a Paley–Wiener space.
An inequality of Plancherel and Pólya [1936; 1937] says that for any such F and any r ∈ [1,∞), we have∑

j∈Z

|F( j)|r ≤ Cr

∫
R

|F(u)|r du, (2-5)

where Cr is a constant independent of F. This holds because if F̂ is supported on |ξ | ≤ 1, then, by the
uncertainty principle, F is essentially constant on every interval of length 1 (see also [Young 1980] for
an alternative proof based on complex analysis).

From (2-5) we can deduce the following variation-norm estimate (see also page 6729 of [Jones, Seeger,
and Wright 2008]):

Proposition 2.2. Let F(u) be a function on R whose Fourier transform F̂(ξ) is supported on the set
{|ξ | ≤ λ}. Then for every 1≤ q ≤ r <∞, we have

V r
{F(u) : u ∈ R} ≤ Aq,rλ

1/q
‖F‖Lq , (2-6)

with a constant Aq,r depending only on q and r.

Proof. By rescaling we may assume that λ= 1. Now let k ∈ N and u1 < · · ·< uk be a strictly increasing
sequence in R. We let κ(0)= 1, n1 = buκ(0)c and let κ(1) be the largest integer in {1, . . . , k} such that
uκ(1) < n1+ 1. If κ(1) < k, we let n2 = buκ(1)+1c and let κ(2) be the largest integer in {1, . . . , k} such
that uκ(2) < n2+ 1. Clearly this process will terminate in finitely many, say m, steps. In this way we
collect the points u1, . . . , uk into intervals [n1, n1+1], [n2, n2+1], . . . , [nm, nm+1] of length at most 1.
Now for s = 1, . . . ,m− 1, by the triangle inequality, we have

|F(uκ(s))−F(uκ(s)+1)|
r . |F(uκ(s))−F(ns+1)|r+|F(ns+1)|r+|F(ns+1)|

r
+|F(ns+1)−F(uκ(s)+1)|

r .

This shows
k−1∑
i=1

|F(ui )−F(ui+1)|
r

.
m∑

s=1

(|F(ns)|
r
+|F(ns+1)|r )+

m∑
s=1

(
|F(ns)−F(uκ(s−1))|

r

+

∑
κ(s−1)≤i<κ(s)

|F(ui )−F(ui+1)|
r
+|F(uκ(s))−F(ns+1)|r

)
.

(Indeed, for s = 1, we do not need the terms |F(ns)|
r and |F(ns)− F(uκ(s−1))|

r on the right-hand side;
similarly for s = m, we do not need the terms |F(ns + 1)|r and |F(uκ(s))− F(ns + 1)|r. But there is
no harm putting them in, which makes the expression on the right-hand side more symmetric.) By the
mean-value theorem, for s = 1, . . . ,m, we have

|F(ns)− F(uκ(s−1))|
r
+

∑
κ(s−1)≤i<κ(s)

|F(ui )− F(ui+1)|
r
+ |F(uκ(s))− F(ns + 1)|r

≤ ‖F ′‖rL∞
(
|ns − uκ(s−1)|

r
+

∑
κ(s−1)≤i<κ(s)

|ui − ui+1|
r
+ |uκ(s)− (ns + 1)|r

)
,
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and the quantity inside the parentheses in the last line is ≤ 1 since we have the elementary inequality

tr
1 + · · ·+ tr

σ ≤ (t1+ · · ·+ tσ )r

whenever t1, . . . , tσ ≥ 0 and 1 ≤ r <∞. Now since F̂ is supported on |ξ | ≤ 1, Bernstein’s inequality
implies

‖F ′‖L∞ .r ‖F‖Lr

whenever 1≤ r <∞. Altogether, we see that
k−1∑
i=1

|F(ui )− F(ui+1)|
r .r ‖F‖rLr +

m∑
s=1

(|F(ns)|
r
+ |F(ns + 1)|r )

.r ‖F‖rLr +

∑
j∈Z

|F( j)|r .r ‖F‖rLr

whenever 1 ≤ r <∞, the last inequality following from (2-5). Since F̂ is supported on {|ξ | ≤ 1} and
1≤ q ≤ r , Bernstein’s inequality again implies ‖F‖Lr .q,r ‖F‖Lq . This completes the proof of (2-6). �

3. Long jump estimates

Our goal in this section is to prove Proposition 1.4. Indeed, we will prove something slightly stronger,
including the case 0< α < 1.

Proposition 3.1. Fix α > 0, α 6= 1. For 1< p <∞, we have

‖λ

√
Nλ{H(2kα) f : k ∈ Z}‖L p(Rn) . ‖ f ‖L p(Rn) (3-1)

uniformly in λ > 0. Here H(2kα) is defined as in (1-1).

First we decompose H(2kα) into

H(2kα) f (x)=
∫
|t |≤2−k

f (x − t)ei2kα
|t |α K (t) dt +

∫
|t |>2−k

f (x − t)ei2kα
|t |α K (t) dt

=:Hk,−∞ f (x)+Hk,∞ f (x).

In the term Hk,−∞ f , we are integrating over small t , and the exponential ei2kα
|t |α is approximately 1. This

motivates us to further decompose Hk,−∞ f as

Hk,−∞ f (x)=
∫
|t |≤2−k

f (x − t)K (t) dt +
∫
|t |≤2−k

f (x − t)(ei2kα
|t |α
− 1)K (t) dt

=: H̃k,0 f (x)+Hk,0 f (x). (3-2)

For the other term, we take the decomposition

Hk,∞ f (x)=
∞∑
`=1

Hk,` f (x) :=
∞∑
`=1

∫
2−k+`−1<|t |≤2−k+`

f (x − t)ei2kα
|t |α K (t) dt.

The former term in (3-2) is a truncated singular integration. We have:
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Lemma 3.2 [Campbell, Jones, Reinhold, and Wierdl 2003, Theorem A].∥∥λ√Nλ{H̃k,0 f : k ∈ Z}
∥∥

L p(Rn)
. ‖ f ‖L p(Rn)

for all 1< p <∞.

Hence it remains to estimate the jump norms of Hk,0 f (x)+
∑
∞

`=1 Hk,` f (x) =
∑
∞

`=0 Hk,` f (x). To
do so, we carry out a Littlewood–Paley decomposition. For each `≥ 0, apply

Hk,` f =Hk,`Sk−` f +Hk,`( f − Sk−` f ).

(see Section 2 for the precise definition of Sk f ). Notice that Sk−` f is approximately constant at the
physical scale 2−k+`. Thus, Hk,`Sk−` f is almost just a multiple of Sk−` f . This motivates us to further
take the decomposition

Hk,`Sk−` f = c`Sk−` f + (Hk,`Sk−` f − c`Sk−` f ),

where

c0 :=

∫
|t |≤1

(ei |t |α
− 1)K (t) dt and c` :=

∫
1/2<|t |≤1

ei2`α |t |α K (t) dt for `≥ 1 (3-3)

are constants. Here we choose the constants c0 and c` as such because K is assumed to be homogeneous.
Hence

∞∑
`=0

Hk,` f (x)=
∞∑
`=0

c`Sk−` f +
∞∑
`=0

(Hk,`Sk−` f − c`Sk−` f )+
∞∑
`=0

Hk,`( f − Sk−` f ).

Since a simple integration-by-parts argument shows that |c`| = O(2−α`), the contribution from the first
term to the desired jump norm can be controlled using (2-3). To handle the latter two terms we use a
square function. It suffices to show that

∞∑
`=0

∥∥∥∥(∑
k∈Z

|Hk,`Sk−` f − c`Sk−` f |2
)1/2∥∥∥∥

L p(Rn)

. ‖ f ‖L p(Rn), (3-4)

∞∑
`=0

∥∥∥∥(∑
k∈Z

|Hk,`( f − Sk−` f )|2
)1/2∥∥∥∥

L p(Rn)

. ‖ f ‖L p(Rn) (3-5)

since the square functions dominate the desired jump norms pointwisely. To establish these estimates we
apply a finer frequency decomposition. Let

1(x) := 2n S(2x)− S(x) and 1k(x) := 2kn1(2k x)

and write 1k f := f ∗1k so that

Sk−` f =
∞∑
j=1

1k−`− j f and f − Sk−` f =
∞∑
j=0

1k−`+ j f.
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By the triangle inequality, to prove (3-4) and (3-5), it suffices to prove the existence of some constant γ > 0
such that ∥∥∥∥(∑

k∈Z

|Hk,`1k−`− j f−c`1k−`− j f |2
)1/2∥∥∥∥

L p(Rn)

. 2−γ ( j+`)
‖ f ‖L p(Rn), (3-6)

∥∥∥∥(∑
k∈Z

|Hk,`1k−`+ j f |2
)1/2∥∥∥∥

L p(Rn)

. 2−γ ( j+`)
‖ f ‖L p(Rn) (3-7)

for every j, `≥ 0 and every 1< p<∞. Throughout the paper, we use γ to denote a positive real number
that might vary from line to line, if not otherwise stated.

Now each of the estimates (3-6) and (3-7) holds for 1< p <∞ without the small factors on the right,
since |Hk,` f |. M f where M is the Hardy–Littlewood maximal operator on Rn, allowing us to invoke
the Fefferman–Stein vector-valued inequality for the maximal function [Stein 1993, Chapter II.1]. Hence
by real interpolation, it suffices to prove the case p = 2. To do so, fix α > 0, α 6= 1 and ` ∈N. Let m`(ξ)

be the multiplier defined by

m0(ξ) :=

∫
|t |≤1

(ei |t |α
− 1)e−i t ·ξK (t) dt,

m`(ξ) :=

∫
1/2<|t |≤1

ei |2`t |αe−i t ·ξK (t) dt for `≥ 1.

Let m̃`(ξ) be the multiplier defined by

m̃0(ξ) :=

∫
|t |≤1

(ei |t |α
− 1)(e−i t ·ξ

− 1)K (t) dt,

m̃`(ξ) :=

∫
1/2<|t |≤1

ei |2`t |α (e−i t ·ξ
− 1)K (t) dt for `≥ 1.

Since K is assumed to be homogeneous, for `≥ 0 the multiplier for Hk,` is m`(2−k+`ξ). It follows that
for ` ≥ 0 the multiplier for Hk,`− c` is m̃(2−k+`ξ). Then (3-6) and (3-7) with p = 2 follow from the
pointwise estimates for multipliers(∑

k∈Z

|1̂(2−k+`+ jξ)m̃`(2−k+`ξ)|2
)1/2

+

(∑
k∈Z

|1̂(2−k+`− jξ)m`(2−k+`ξ)|2
)1/2

. 2−γ (`+ j). (3-8)

We need the following lemma, which is a consequence of the van der Corput lemma (details omitted):

Lemma 3.3. We have

|m`(ξ)|.min{2−γ `, 2α`|ξ |−γ } for all ξ ∈ R. (3-9)

In particular,

|m`(ξ)|. (2−γ ` · 2α`|ξ |−γ )1/2 for all ξ ∈ R. (3-10)

We also have

|m̃`(ξ)|.

{
min{2−γ `, |ξ |}. 2−γ `/2|ξ |1/2 for |ξ | ≤ 1,
1 for |ξ | ≥ 1.
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We are ready to prove (3-8). The estimate is invariant upon replacing ξ by 2ξ ; hence we only need to
prove it when |ξ | ' 1. First consider the first term on the left-hand side of (3-8). When k ≤ 0, we bound
|m̃`(2−k+`ξ)|. 1 and |1̂(2−k+`+ jξ)|. 2−10(−k+`+ j). Summing over k ≤ 0, we obtain 2−10(`+ j).

When k ≥ 0, we bound |m̃`(2−k+`ξ)|. 2−γ `/22−k/2+`/2 and

|1̂(2−k+`+ jξ)|.

{
2−10(−k+`+ j) if 0≤ k ≤ `+ j,
2−k+`+ j if k ≥ `+ j .

Summing over k ≥ 0, we obtain 2−γ (`+ j) for some γ > 0. This finishes the proof of the first half of (3-8).
Next we turn to the second term on the left-hand side of (3-8). What we need to prove can also be

written as (∑
k∈Z

|1̂(2kξ)m`(2k+ jξ)|2
)1/2

. 2−γ (`+ j) for |ξ | ' 1. (3-11)

We work on two different cases. Let Cα > 0 be a sufficiently large constant. Assume that we are in the
case j ≥ Cα`. We bound the left-hand side of (3-11) by∑

k≥0

2−10k2α`2−γ k−γ j
+

∑
k<0

2k(2α` · 2−γ `2−γ k−γ j )1/2 . 2−γ (`+ j).

Here for the case k ≥ 0 we applied (3-9), and for the case k < 0 we applied (3-10).
Finally, we assume that 0≤ j ≤ Cα`. We bound the left-hand side of (3-11) by∑

k≥0

2−10k2−γ `+
∑
k<0

2k2−γ ` . 2−γ (`+ j).

Here in both cases k ≥ 0 and k < 0 we applied (3-9).

4. Short jump estimates for large p

We are now going to start the proof of Proposition 1.5. Recall that by interpolation, we only need
to establish Proposition 1.5 when p ∈ (2n/(2n − 1),∞) and r ∈ (2,∞) (see discussion following
Proposition 1.5). In this section we will do so for all sufficiently large values of p. More precisely, let
α > 1, let H(u) be as in (1-1), and let V r

j H f (x)= V r
{H(u) f (x) : u ∈ [2 jα, 2( j+1)α

]}. We prove∥∥∥∥(∑
j∈Z

|V r
j (H f )|r

)1/r∥∥∥∥
p
. ‖ f ‖p (4-1)

whenever

p ∈ (2,∞), n = 1, r ∈ (2,∞) (4-2)

or

p ∈
(

2+ 4
n
,∞

)
, n ≥ 2, r ∈ [2,∞). (4-3)

This proves Proposition 1.5 when n = 1. In the next section, we extend (4-1) to all p ∈ (2n/(2n− 1),∞)
when n ≥ 2, r ∈ [2,∞). That would complete the proof of Proposition 1.5 when n ≥ 2.
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4A. Main tool: a square function estimate for the semigroup ei t(−1)λ/2 . The main input to our proof of
(4-1) under condition (4-2) or (4-3) is a square function estimate, due to [Lee, Rogers, and Seeger 2012]:

Proposition 4.1 [Lee, Rogers, and Seeger 2012]. (1) Let n = 1, p ∈ [2,∞) and λ > 1. Then for any
compact time interval I,∥∥∥∥(∫

I

∣∣∣∣∫
R

ei xξ f̂ (ξ)ei t |ξ |λ dξ
∣∣∣∣2 dt

)1/2∥∥∥∥
L p(R)

. ‖ f ‖L p(R).

(2) Let n ≥ 2, p ∈ (2(n+ 2)/n,∞) and λ > 1. Then for any compact time interval I,∥∥∥∥(∫
I

∣∣∣∣ ∫
Rn

ei x ·ξ f̂ (ξ)ei t |ξ |λ dξ
∣∣∣∣2 dt

)1/2∥∥∥∥
L p(Rn)

. ‖ f ‖W β,p(Rn),

with
β

λ
= n

(1
2
−

1
p

)
−

1
2
.

We will apply the above estimates with λ = α′ := α/(α− 1) (remember α > 1). Recall that we are
interested in the variation of H(u) f (x), where u is restricted to the range [2 jα, 2( j+1)α

] for some j ∈ Z.
To estimate this, we decompose the kernel eiu|t |α K (t) into a part where oscillation plays no role and a
part where the oscillation becomes important. More precisely, for ` ∈ Z, let

H(u)
` f (x) :=

∫
Rn

f (x − t)eiu|t |αϕ`(t)K (t) dt, (4-4)

where ϕ`(t)= ϕ0(2−`t) and ϕ0 is radial, smooth and compactly supported on an annulus {|t | ' 1} so that
for t 6= 0 we have

∑
`∈Z ϕ`(t)= 1. When u ' 2 jα, |t | ' 2`− j, the phase eiu|t |α in (4-4) is approximately 1

precisely when ` < 0. Thus, it makes sense to take the decomposition

H(u) f (x)=
∑
`∈Z

H(u)
`− j f (x) (4-5)

and expect that the terms ` < 0 in the above sum are essentially nonoscillatory.
It suffices to show that ∑

`∈Z

∥∥∥∥(∑
j∈Z

|V r
j H

(u)
`− j f |r

)1/r∥∥∥∥
p
. ‖ f ‖p. (4-6)

To do so, we introduce a Littlewood–Paley decomposition in the x-variable. Let Pk be a multiplier
operator defined by P̂k f (ξ)= ψ(2−kξ) f̂ (ξ), where ψ is a smooth function with compact support on the
annulus 1

2 ≤ |ξ | ≤ 2 so that for ξ 6= 0, we have
∑

k∈Z ψ(2
−kξ)= 1. We further take the decomposition

H(u)
`− j f (x)=

∑
k∈Z

H(u)
`− j Pj+k f (x). (4-7)

We will estimate
‖‖V r

j H
(u)
`− j Pj+k f ‖`r

j
‖p (4-8)

for each k, ` ∈ Z, and sum the estimates at the end. (Hereafter, for compactness of notation, we write `r
j

for the `r norm over all j ∈ Z.)
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4B. Estimates for ` ≤ −k/(2(α+ 1)): bounding the V r
j norm by the Ẇ1,1 norm. First there are two

simple estimates for (4-8). One way to estimate (4-8) is to bound the V r
j norm by the V 1

j norm, which in
turn is bounded by the Ẇ 1,1 norm on the u interval [2 jα, 2( j+1)α

]. We get

V r
j H

(u)
`− j Pj+k f (x).

∫
|u|'2 jα

2(`− j)α
∫
|t |'2`− j

|Pj+k f (x − t)||K (t)| dt du . 2`αM Pj+k f (x),

where M is the Hardy–Littlewood maximal function, so by the Fefferman–Stein inequality and the
Littlewood–Paley inequality, we have

‖‖V r
j H

(u)
`− j Pj+k f (x)‖`r

j
‖L p

x
. 2`α‖ f ‖L p , 1< p <∞. (4-9)

For the second simple estimate, recall that
∫
|t |=R K (t) dσ(t) = 0 for all R ∈ (0,∞). Since ϕ was

chosen to be radial, we have ∫
Rn

eiu|t |αϕ`− j (t)K (t) dt = 0.

Thus, in computing V r
j H

(u)
`− j Pj+k f (x), we could have instead computed the V r

j norm of

H(u)
`− j Pj+k f (x)− Pj+k f (x)

∫
Rn

eiu|t |αϕ`− j (t)K (t) dt.

This expression is equal to∫
Rn
[Pj+k f (x − t)− Pj+k f (x)]eiu|t |αϕ`− j (t)K (t) dt.

The variational norm of this expression is controlled by its Ẇ 1,1 norm in the u interval [2 jα, 2( j+1)α
],

which in turn is controlled by
2 j+k2`− j 2`αM P̃j+k f (x),

where P̃j+k is a variant of the Littlewood–Paley projection Pj+k , so arguing as before, we see that

‖‖V r
j H

(u)
`− j Pj+k f (x)‖`r

j
‖L p

x
. 2`+k2`α‖ f ‖L p , 1< p <∞. (4-10)

We can sum (4-10) over all pairs (k, `) with `≤−k/(2(α+1)) and k ≤ 0. We can also sum (4-9) over
all (k, `) with `≤−k/(2(α+ 1)) and k ≥ 0. Thus, it remains to bound (4-8) when

` >−
k

2(α+ 1)
(4-11)

and sum over all such pairs of (k, `).

4C. Estimates for ` > −k/(2(α + 1)): division into three cases. First we look at H(u)
`− j Pj+k f (x) in

terms of its multiplier:

H(u)
`− j Pj+k f (x)=

1
(2π)n

∫
Rn

f̂ (ξ)
(
ψ(2− j−kξ)

∫
Rn

e−i t ·ξeiu|t |αϕ`− j (t)K (t) dt
)

ei x ·ξ dx .

The multiplier is an oscillatory integral in t with phase φ(t)=−t ·ξ+u|t |α, which (assuming |u|' 2α j and
|ξ | ' 2 j+k) has a critical point in the annulus {|t | ' 2`− j

} if and only if 2k+`
' 2`α, that is, if and only if
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k = `(α−1)+O(1). In that case, using stationary phase (see, for example, [Stein 1993, Chapter VIII.5.7]
or [Sogge 1993, Theorem 1.2.1]), the multiplier can be written as

ψ(2− j−kξ)
(
eicα(2− jαu)−1/(α−1)(2− j

|ξ |)α
′

a(2`2− jξ, 2`α2− jαu)+ e(2`2− jξ, 2`α2− jαu)
)
, (4-12)

where α′ = α/(α− 1), cα = (α− 1)/αα
′

, a ∈ S−n/2(Rn+1) and e ∈ S−∞(Rn+1). If there are no critical
points in the annulus {|t | ' 2`− j

}, then the multiplier is simply

ψ(2− j−kξ)e(2`2− jξ, 2`α2− jαu). (4-13)

(In the above, by a ∈ S−n/2(Rn+1) we mean

|∂α
′

ξ ∂
α′′

u a(ξ, u)|.α (1+ |ξ | + |u|)−n/2−|α|

for every multiindex α = (α′, α′′) ∈ Zn+1
≥0 , and by e ∈ S−∞(Rn+1) we mean

|∂α
′

ξ ∂
α′′

u e(ξ, u)|.N ,α (1+ |ξ | + |u|)−N−|α|

for any positive integers N and any multiindex α.)
The above motivates us to consider three cases separately (under our earlier standing assumption (4-11)):

Case 1: `≥ 0, k = `(α− 1)+ O(1).

Case 2: k > `(α− 1)+C for some C > 0.

Case 3: k < `(α− 1)−C for some C > 0.

4D. Estimates in Case 1. Now we consider Case 1. Our goal is to bound (4-8) given k and ` as in Case 1.
We proceed in a few steps.

4D1. Application of Plancherel–Pólya. First we will essentially show that if r ∈ [2,∞), then

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖L p

x
. 2`α/q‖‖‖χ(u)H(2 jαu)

`− j Pj+k f (x)‖Lq
u
‖`

q
j
‖L p

x
(4-14)

for any q ∈ [2, r ] and any p ∈ [1,∞]; here χ(u) is a smooth function with compact support on
[1

2 , 2α+1
]

that is identically equal to 1 on [1, 2α]. Indeed, when n ≥ 2 (and p, r are as in (4-3)), we will only need
(4-14) for q = 2. But for n = 1 (and p, r as in (4-2)), we will need (4-14) for both q = 2 and q = r . We
will see that this is the case after we prove (4-14).

To prove (4-14), let us temporarily write g = Pj+k f . As a function of u, H(u)
`− j g has frequency morally

supported on the annulus of size ' 2(`− j)α centered at the origin. Thus, we introduce Littlewood–Paley
projections in the u-variable (denoted by P (2) so that P (2)(`− j)α is projection onto frequency ' 2(`− j)α) and
estimate

|V r
j H

(u)
`− j g(x)|

≤ |V r (P (2)
≤(`− j)α[χ(2

− jαu)H(u)
`− j g(x)])| +

∞∑
k=1

|V r (P (2)(`− j+k)α[χ(2
− jαu)H(u)

`− j g(x)])|. (4-15)

(Here P (2)
≤(`− j)α :=

∑
k≤`− j P (2)kα .)
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The first term on the right-hand side of (4-15) is the main term and can be estimated using Proposition 2.2.
In particular, it is bounded by

2(`− j)α/q
‖χ(2− jαu)H(u)

`− j g(x)‖Lq
u

(recall q ∈ [2, r ]). By changing variable in u, this is just

2`α/q‖χ(u)H(2 jαu)
`− j g(x)‖Lq

u
.

Hence the contribution of the first term of (4-15) to the left-hand side of (4-14) is bounded by

2`α/q‖‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖Lq

u
‖`r

j
‖L p

x
.

Since r ≥ q , we have `r norm bounded by `q norm; hence the above is bounded by the right-hand side of
(4-14).

On the other hand, for the second term on the right-hand side of (4-15), since k>−C , one can integrate
by parts in u, using the fact that the multiplier for P (2)(`− j+k)α vanishes to infinite order at 0, and obtain

|P (2)(`− j+k)α[χ(2
− jαu)H(u)

`− j g(x)]|.N 2−kαN P̃ (2)(`− j+k)α[χ(2
− jαu)H̃(u)

`− j g(x)] (4-16)

for any positive integer N, where P̃ (2) is a Littlewood–Paley projection similar to P (2), and H̃(u)
`− j is the

same as H(u)
`− j defined in (4-4), except that the cutoff ϕ is replaced by a smooth multiple ϕ̃ of ϕ. Hence

by repeating the above argument, and summing over k using the additional convergence factors 2−kαN

that we gained in (4-16), the contribution of the second term of (4-15) to the left-hand side of (4-14) is
bounded by

2`α/q‖‖‖χ(u)H̃(2 jαu)
`− j Pj+k f (x)‖Lq

u
‖`

q
j
‖L p

x
. (4-17)

Since H̃ and H satisfy the same estimates, we will not distinguish the two, and declare that we can also
bound (4-17) once we can bound the right-hand side of (4-14).

4D2. Application of the square function estimate. Now fix k, ` as in Case 1. In other words, fix k, `≥ 0
with k = `(α− 1)+ O(1). We will try to bound the right-hand side of (4-14) when q = 2. The multiplier
for H(2 jαu)

`− j Pj+k f is given by (4-12) with u replaced by 2 jαu. For u ∈ R, let m̃u(ξ) be the multiplier

m̃u(ξ)= χ(u)ψ(2−kξ)(eicαu−1/(α−1)
|ξ |α
′

a(2`ξ, 2`αu)+ e(2`ξ, 2`αu)), (4-18)

where a ∈ S−n/2(Rn+1) and e ∈ S−∞(Rn+1) are as in (4-12). Then the multiplier of the operator
χ(u)H(2 jαu)

`− j Pj+k is precisely m̃u(2− jξ). Now expand χ(u)a(2`ξ, 2`αu) in Fourier series in u: let c be a
small enough constant depending on α so that the support of χ(u) is contained in [0, c−1

]. Using the
smoothness in the variable u, we get

χ(u)a(2`ξ, 2`αu)=
∑
κ∈cZ

(1+ |κ|)−2aκ(2`ξ)eiκu

for u ∈ [0, c−1
], where aκ ∈ S−n/2(Rn) uniformly for every κ ∈ cZ. Similarly, expand χ(u)e(2`ξ, 2`αu)

in Fourier series in u:
χ(u)e(2`ξ, 2`αu)=

∑
κ∈cZ

(1+ |κ|)−2eκ(2`ξ)eiκu
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for u ∈ [0, c−1
], where eκ ∈ S−∞(Rn) uniformly for every κ ∈ cZ. This shows

m̃u(ξ)=
∑
κ∈cZ

(1+ |κ|)−2eiκuψ(2−kξ)(aκ(2`ξ)eicαu−1/(α−1)
|ξ |α
′

+ eκ(2`ξ))

for u ∈ [0, c−1
]. Temporarily let g be the function such that ĝ(ξ)= f̂ (ξ)ψ(2−kξ)aκ(2`ξ); note that when

k ≥ 0, we have ‖g‖L p
β (R

n) . 2kβ2−(k+`)n/2‖ f ‖L p(Rn) by the Hörmander–Mikhlin multiplier theorem, with
an implicit constant independent of κ . This is further bounded by 2`(α−1)β2−`αn/2

‖ f ‖L p(Rn) since we are
in Case 1, where k = `(α− 1)+ O(1). We apply Proposition 4.1 with g in place of f and obtain∥∥∥∥∥∥∥∥∫

Rn
ei x ·ξ f̂ (ξ)ψ(2−kξ)aκ(2`ξ)eicαu−1/(α−1)

|ξ |α
′

dξ
∥∥∥∥

L2
u [0,c−1]

∥∥∥∥
L p(Rn)

.

{
2−`α/2‖ f ‖L p(R) if p ∈ [2,∞) and n = 1,
2`α[n(1/2−1/p)−1/2]2−`αn/2

‖ f ‖L p(Rn) if p ∈
(
2+ 4

n ,∞
)

and n ≥ 2.
(4-19)

We get a better decay if aκ(2`ξ)eicαu−1/(α−1)
|ξ |α
′

above is replaced by eκ(2`ξ). Summing over κ , and
simplifying the exponent in the case n ≥ 2, we get∥∥∥∥∥∥∥∥∫

Rn
ei x ·ξ f̂ (ξ)m̃u(ξ) dξ

∥∥∥∥
L2

u

∥∥∥∥
L p(Rn)

.

{
2−`α/2‖ f ‖L p(R) if p ∈ [2,∞) and n = 1,
2−`α/22−`αn/p

‖ f ‖L p(Rn) if p ∈
(
2+ 4

n ,∞
)

and n ≥ 2.

But recall that the multiplier of the operator χ(u)H(2 jαu)
`− j Pj+k is precisely m̃u(2− jξ). By scale invariance,

we have∥∥∥∥∥∥∥∥χ(u)H(2 jαu)
`− j Pj+k f

∥∥∥∥
L2

u

∥∥∥∥
L p(Rn)

.

{
2−`α/2‖ f ‖L p(R) if p ∈ [2,∞) and n = 1,
2−`α/22−`αn/p

‖ f ‖L p(Rn) if p ∈
(
2+ 4

n ,∞
)

and n ≥ 2
(4-20)

for all j ∈ Z, where the implicit constants are independent of j . (The Fourier series expansions used
to remove the dependence on u are very reminiscent of the method used to prove L2 boundedness of
multipliers in S0; see, for example, [Stein 1993, Chapter VI.2].)

Recall that our goal now is to bound the right-hand side of (4-14) when q = 2. Hence we need a
vector-valued version of (4-20), where we will have an additional `2 norm over j ∈ Z inside the L p norm
on the left-hand side of (4-20). To do so, we need Proposition 4.2.

4D3. Application of Seeger’s theorem for multipliers with localized bounds. First we state a vector-valued
variant of a theorem of Seeger, about multipliers with localized bounds:

Proposition 4.2 [Jones, Seeger, and Wright 2008; Seeger 1988]. Let I ⊂ R be a compact interval. Let
{m̃u(ξ) : u ∈ I } be a family of Fourier multipliers on Rn, each of which is compactly supported on{
ξ : 1

2 ≤ |ξ | ≤ 2
}

and satisfies

sup
u∈I
|∂τξ m̃u(ξ)| ≤ B for each 0≤ |τ | ≤ n+ 1

for some constant B. For u ∈ I and j ∈Z, denote by Tu, j the multiplier operator with multiplier m̃u(2− jξ).
Fix some p ∈ [2,∞). Assume that there exists some constant A such that

sup
j∈Z

‖‖Tu, j f ‖L2(I )‖Ls(Rn) ≤ A‖ f ‖Ls(Rn) (4-21)
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for both s = p and s = 2. Then

‖‖‖Tu, j f ‖L2(I )‖`2(Z)‖L p(Rn) . A
∣∣∣∣log

(
2+

B
A

)∣∣∣∣1/2−1/p

‖ f ‖L p(Rn).

This proposition was stated without proof on page 6737 of [Jones, Seeger, and Wright 2008]. It is a
vector-valued analogue of Theorem 1 of [Seeger 1988], and we provide a proof of this proposition in
Section 7 for the convenience of the reader.

Recall that our goal is to bound the right-hand side of (4-14) when q = 2. Also recall that if m̃u(ξ) is
defined as in (4-18), and Tu, j is the multiplier operator with multiplier m̃u(2− jξ) as in Proposition 4.2,
then Tu, j f is precisely χ(u)H(2 jαu)

`− j Pj+k f . Thus, if we could apply Proposition 4.2, we would obtain a
bound about the right-hand side of (4-14) when q= 2. To do so we verify the hypothesis of Proposition 4.2.
From the explicit expression (4-18), we have

sup
u∈I
|∂τξ m̃u(ξ)|. 2`N

for some large positive integer N if |τ | ≤ n+1. The hypothesis (4-21) for s = p is given by (4-20), where
A can be chosen to be relatively small if ` is large. On the other hand, by considering the L∞ norm of
the multipliers, we also get

‖‖χ(u)H(2 jαu)
`− j Pj+k f ‖L2

u
‖L2(Rn) . 2−`αn/2

‖ f ‖L2(Rn) for all n ≥ 1, (4-22)

which gives us the hypothesis (4-21) for s = 2, where A can be chosen to be relatively small if ` is large.
More precisely, suppose first n ≥ 2 and p ∈ (2+ 4/n,∞). Then we invoke (4-20) and (4-22). Since

2−`αn/2
≤ 2−`α/22−`αn/p, we may apply Proposition 4.2 with A = 2−`α/22−`αn/p and B = 2`N for some

large positive integer N depending only on α. Thus, if n ≥ 2 and p ∈ (2+ 4/n,∞), then we get

‖‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖L2

u
‖`2

j
‖L p

x
.ε 2−`α/22−`αn/p2`ε‖ f ‖L p(Rn)

for any ε > 0. Taking q = 2 in (4-14), this shows that

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p .ε 2−`αn/p2`ε‖ f ‖L p(Rn) if n ≥ 2, p ∈

(
2+ 4

n
,∞

)
and r ∈ [2,∞).

Note that the power of 2 here is negative. So this estimate can be summed over all `≥ 0, and this gives
the desired bound for (4-8) when n ≥ 2, p ∈ (2+ 4/n,∞) and r ∈ [2,∞) for k, ` as in Case 1.

On the other hand, if n = 1 and p ∈ [2,∞), then in light of (4-20) and (4-22), we may apply
Proposition 4.2 with A = 2−`α/2 and B = 2`N for some large positive integer N depending on α. We
obtain

‖‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖L2

u
‖`2

j
‖L p

x
.ε 2−`α/22`ε‖ f ‖L p(R) if n = 1 and p ∈ [2,∞)

for any ε > 0. Taking q = 2 in (4-14), this shows that

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p .ε 2`ε‖ f ‖L p(R) if n = 1, p ∈ [2,∞) and r ∈ [2,∞). (4-23)

This is not good enough to be summed over all ` ≥ 0, so we need to gain a slightly better decay in `.
This is achieved via the local smoothing estimate in Theorem 1.6.
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4D4. Application of a local smoothing estimate in dimension n = 1. The goal of this subsection is to
prove that

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p . 2−`α/p

‖ f ‖L p(R) if n = 1, p = r ∈ (4,∞). (4-24)

Assume for the moment that this has been established. Interpolating (4-24) against (4-23) using complex
interpolation of vector-valued L p spaces (see [Bergh and Löfström 1976, Theorem 5.1.2]), we get

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p . 2−γ `‖ f ‖L p(R) if n = 1, p ∈ (2,∞), r ∈ (2,∞), (4-25)

where γ = γ (p, r) is a positive constant. This can be summed over all ` > 0, and this gives the desired
bound for (4-8) when n = 1, p ∈ (2,∞) and r ∈ (2,∞) for k, ` as in Case 1.

To prove (4-24) we use the local smoothing estimate in Theorem 1.6. Suppose n = 1, p = r ∈ (4,∞).
We use (4-14) with q = r = p. Thus, the left-hand side of (4-24) is bounded up to a constant by

2`α/p
‖‖‖χ(u)H(2 jαu)

`− j Pj+k f (x)‖L p
u
‖`

p
j
‖L p

x
. (4-26)

Consider first∥∥∥∥∥∥∥∥∫
Rn

ei x ·ξ f̂ (ξ)m̃u(ξ) dξ
∥∥∥∥

L p
u

∥∥∥∥
L p

x

=

∥∥∥∥∥∥∥∥χ(u) ∫
Rn

ei x ·ξ f̂ (ξ)ψ(2−kξ)(eicαu−1/(α−1)
|ξ |α
′

a(2`ξ, 2`αu)+ e(2`ξ, 2`αu)) dξ
∥∥∥∥

L p
u

∥∥∥∥
L p

x

.

We first use Fubini’s theorem to interchange the integrals in u and x , and use the Hörmander–Mikhlin
multiplier theorem (for each fixed u) to get rid of the multiplier a(2`ξ, 2`αu). Since k = `(α−1)+O(1),
this gives∥∥∥∥∥∥∥∥∫

Rn
ei x ·ξ f̂ (ξ)m̃u(ξ) dξ

∥∥∥∥
L p

u

∥∥∥∥
L p

x

. 2−`α/2
∥∥∥∥∥∥∥∥χ(u) ∫

Rn
ei x ·ξ f̂ (ξ)ψ(2−kξ)eicαu−1/(α−1)

|ξ |α
′

dξ
∥∥∥∥

L p
u

∥∥∥∥
L p

x

+ 2−`N
‖ f ‖L p(R)

for any positive integer N. Thus, Theorem 1.6 applies, and when k ≥ 0 we have∥∥∥∥∥∥∥∥∫
Rn

ei x ·ξ f̂ (ξ)m̃u(ξ) dξ
∥∥∥∥

L p
u

∥∥∥∥
L p

x

. 2−`α/22kα′[(1/2−1/p)−1/p]
‖ f ‖L p(R) if n = 1, p ∈ (4,∞).

But recall that the multiplier of the operator χ(u)H(2 jαu)
`− j Pj+k is precisely m̃u(2− jξ). By scale invariance,

and remembering that k = `(α− 1)+ O(1), we have

‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖L p

u
‖L p

x
. 2−2`α/p

‖ f ‖L p(R) if n = 1, p ∈ (4,∞).

Replacing f by P̃j+k f , taking the `p
j norm on both sides, and using the Littlewood–Paley inequality

(remember p ≥ 2), we get

‖‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖L p

u
‖`

p
j
‖L p

x
. 2−2`α/p

‖ f ‖L p(R) if n = 1, p ∈ (4,∞).

Thus, (4-26) is . 2−`α/p
‖ f ‖L p(R). This establishes (4-24), and our treatment for Case 1 is now complete.
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4E. Estimates in Cases 2 and 3: further gains over Case 1. Next we estimate (4-8) for k, ` as in Case 2.
Fix k, ` such that k > `(α−1)+C for some positive constant C . If C is large enough, then the multiplier
for H(2 jαu)

`− j Pj+k f is given by (4-13), since the phase function of the oscillatory integral defining the
multiplier has no critical point in that case. For u ∈ R, let m̃u(ξ) be the multiplier

m̃u(ξ)= χ(u)ψ(2−kξ)e(2`ξ, 2`αu),

where e ∈ S−∞(Rn+1) is as in (4-13). Then the multiplier of the operator χ(u)H(2 jαu)
`− j Pj+k is precisely

m̃u(2− jξ). For every N ∈ N we can write

m̃u(ξ)= 2−(k+`)Nχ(u)ψ(2−kξ)ẽN (2`ξ, 2`αu)

for some symbol ẽN ∈ S−∞(Rn+1). Thus, applying Proposition 4.2 as in the proof of (4-23), we get

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p .N 2−(k+`)N‖ f ‖L p(Rn)

whenever one of the following two conditions is fulfilled: n = 1, p ∈ [2,∞) and r ∈ [2,∞), or n ≥ 2,
p ∈ (2+ 4/n,∞), and r ∈ [2,∞). The right-hand side in the above display equation can be summed
over all k, ` that satisfy k > `(α− 1)+C and the standing assumption (4-11), and this gives the bound
for (4-8) for such p, n, r for all k, ` as in Case 2.

Finally we estimate (4-8) for k, ` as in Case 3. Fix k, ` such that k < `(α− 1)−C for some positive
constant C . As in Case 2, if C is large enough, then the multiplier for H(2 jαu)

`− j Pj+k f is given by (4-13).
For u ∈ R, let m̃u(ξ) be the multiplier

m̃u(ξ)= χ(u)ψ(2−kξ)e(2`ξ, 2`αu),

where e ∈ S−∞(Rn+1) is as in (4-13). Then the multiplier of the operator χ(u)H(2 jαu)
`− j Pj+k is precisely

m̃u(2− jξ). For every N ∈ N we can write

m̃u(ξ)= (2−`αu)Nχ(u)ψ(2−kξ)ẽN (2`ξ, 2`αu)

for some symbol ẽN ∈ S−∞(Rn+1). Thus, applying Proposition 4.2 as in the proof of (4-23), we get

‖‖V r
j H

(u)
`− j Pj+k f ‖`r

j
‖p .N 2−`αN

‖ f ‖L p(Rn)

whenever one of the following two conditions is fulfilled: n = 1, p ∈ [2,∞) and r ∈ [2,∞), or n ≥ 2,
p ∈ (2+ 4/n,∞), and r ∈ [2,∞). The right-hand side in the above displayed equation can be summed
over all k, ` that satisfy k < `(α− 1)−C and the standing assumption (4-11). This gives the bound for
(4-8) for such p, n, r for all k, ` as in Case 3.

We have thus completed the proof of (4-1) for all p, n, r satisfying (4-2) or (4-3).

5. Short jump estimates for p ≤ 2

In this section, we establish ∥∥∥∥(∑
j∈Z

|V r
j (H f )|r

)1/r∥∥∥∥
p
. ‖ f ‖p, (5-1)



SHARP VARIATION-NORM ESTIMATES FOR OSCILLATORY INTEGRALS 1477

whenever n≥ 2, 2n/(2n−1)< p≤ 2, and r ∈ [2,∞). By complex interpolation (see [Bergh and Löfström
1976, Theorem 5.1.2]) with (4-1), we will then have (5-1) whenever n ≥ 2, p ∈ (2n/(2n− 1),∞), and
r ∈ [2,∞), which concludes the proof of Proposition 1.5.

The key here is the following square function estimate.

Proposition 5.1. Let n ≥ 2, 1< p ≤ 2 and λ > 1. Then for any compact time interval I,∥∥∥∥(∫
I

∣∣∣∣∫
Rn

ei xξ f̂ (ξ)ei t |ξ |λ dξ
∣∣∣∣2 dt

)1/2∥∥∥∥
L p(Rn)

. ‖ f ‖W β,p(Rn),

with
β

λ
= n

( 1
p
−

1
2

)
.

The proof of this proposition is postponed to the end of this section.
Now let 2n/(2n−1)< p≤ 2, n≥ 2, and r ∈ [2,∞). We proceed to establish (5-1). As in Section 4, we

decompose H(u) f as in (4-5) and (4-7), and estimate (4-8) for every k, ` ∈ Z. The inequalities (4-9) and
(4-10) still hold under our current assumptions of p, n, r , and these estimates can be summed whenever
`≤−k/(2(α+1)). Thus, it remains to consider pairs of (k, `) for which (4-11) holds, and we still divide
into Cases 1, 2, 3 as before. We will only treat Case 1 here which is the main case; an easy adaptation of
this argument gives Cases 2 and 3.

So let `≥ 0 and k = `(α−1)+O(1). By (4-14) with q = 2, the left-hand side of (5-1) is bounded by

2`α/2‖‖‖χ(u)H(2 jαu)
`− j Pj+k f (x)‖L2

u
‖`2

j
‖L p

x
. (5-2)

We analyze the multiplier of H(2 jαu)
`− j Pj+k as before, but in (4-19) we use Proposition 5.1 instead of

Proposition 4.1 (since now p ∈ (2n/(2n− 1), 2)). So instead of (4-20), we get

‖‖χ(u)H(2 jαu)
`− j Pj+k f ‖L2

u
‖L p(Rn) . 2`αn(1/p−1/2)2−`αn/2

‖ f ‖L p(Rn) = 2−`αn/p′
‖ f ‖L p(Rn) (5-3)

uniformly in j ∈ Z. Thus, we apply Proposition 4.2 with A = 2−`αn/p′ and B = 2`N for some large
integer N depending only on α. This gives

‖‖‖χ(u)H(2 jαu)
`− j Pj+k f ‖L2

u
‖`2

j
‖L p(Rn) .ε 2−`αn/p′2`ε‖ f ‖L p(Rn)

for all ε > 0. Continuing from (5-2), we see that the left-hand side of (5-1) is bounded by

2`α/22−`αn/p′2`ε‖ f ‖L p(Rn).

Since p ∈ (2n/(2n− 1),∞), the above exponent of 2 is negative if ε is sufficiently small. Thus, we can
sum over all `≥ 0 in this case, establishing the bound for (4-8) for all k, ` in Case 1. A similar argument
establishes a bound for (4-8) for all k, ` in Cases 2 and 3. This completes the proof of (5-1), modulo the
proof of Proposition 5.1.

Proof of Proposition 5.1. We will prove a slightly more general result. Let us write

Tu f (x)=
∫

Rn
ei xξ f̂ (ξ)mu(ξ) dξ,
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where
mu(ξ)= eiu|ξ |λ(1+ |ξ |2)−(β+iγ )/2.

Theorem 5.2. Let I be a compact interval not containing 0. If λ > 1, β = nλ/2 and γ ∈ R, then∥∥∥∥(∫
I
|Tu f (x)|2 du

)1/2∥∥∥∥
L1(Rn)

. ‖ f ‖H1(Rn);

that is, T maps the Hardy space H 1(Rn) boundedly into L1
x(R

n
; L2

u(I )).

All implied constants may depend on λ, β, n, I, but not on f, γ, x, u.
Theorem 5.2 implies Proposition 5.1 via complex interpolation; see, for example, [Stein 1993,

Chapter IV.6.17] for a discussion of interpolation between Hardy spaces. For the scalar theory of
the multiplier mu (for fixed u) we refer to [Miyachi 1981; Fefferman and Stein 1972; Fefferman 1970].

Recall that an H 1 atom of radius r is a bounded function a on Rn that is supported in a ball of radius r
and satisfies ‖a‖∞≤r−n and

∫
Rn a=0. The Hardy space H 1(Rn) is a Banach space consisting of functions

of the form f =
∑

j cj aj , with
∑

j |cj |<∞, where the (aj )j are H 1 atoms. Its norm is defined as

‖ f ‖H1(Rn) = inf
∑

j

|cj |,

where the infimum is taken over all atomic decompositions of f =
∑

j cj aj .
To prove Theorem 5.2 it suffices to show that

‖T a‖L1
x (L2

u)
. 1 (5-4)

holds for every H 1 atom a of radius r . We may assume the support of a to be centered at the origin.
For j > 0, let Pj denote the usual Littlewood–Paley projection with P̂j f = ψj f̂ , ψj supported on
|ξ | ' 2 j. Let P̂0 f = ψ0 f̂ , where ψ0 is such that

1= ψ0+
∑
j>0

ψj .

(Note that P0 here is actually P≤0 from the previous section.) For j ≥ 0 we denote by ψ̃j a smooth positive
function that equals 1 on the support of ψj and whose support is contained in a small neighborhood of
the support of ψj . Define

K ( j)
u (x)= m̂u ∗ ψ̂j (x)=

∫
Rn

ei xξ+iu|ξ |λ(1+ |ξ |2)−β/2ψj (ξ) dξ.

Before we begin, we record the following pointwise estimates for K ( j)
u (x). From estimating the second

derivative of the phase we obtain

|K ( j)
u (x)|. 2− jn(λ−1) for all x ∈ Rn, u ∈ I. (5-5)

Here we used that β = nλ/2. Estimating the first derivative of the phase we obtain

|K ( j)
u (x)|.N 2− jβ2 jn(2 j

|x |)−N for |x |& 2 j (λ−1), u ∈ I (5-6)

for all N ≥ 0. Note that these estimates are uniform in u ∈ I.
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Let us prove the main estimate (5-4). The first step is to apply the triangle inequality:

‖T a‖L1
x (L2

u)
≤

∑
j≥0

‖K ( j)
u ∗ a‖L1

x (L2
u)
.

We will estimate the summand in two different ways: in particular, it will be shown below that

‖K ( j)
u ∗ a‖L1

x (L2
u)
. (2 jr)−n/2

+ 2− jβ, (5-7)

‖K ( j)
u ∗ a‖L1

x (L2
u)
. 2 jr. (5-8)

These estimates immediately imply (5-4).
To prove (5-7) we first split up1 the integral in x :

‖K ( j)
u ∗ a‖L1

x (L2
u)
≤ I+ II,

where
I= ‖K ( j)

u ∗ a‖L1
x (R

n\B(C2 j (λ−1)+r);L2
u(I )),

II= ‖K ( j)
u ∗ a‖L1

x (B(C2 j (λ−1)+r);L2
u(I )).

We claim that I.N 2− j N. Indeed, we see from (5-6) that

I≤
∫
|x |≥C2 j (λ−1)+r

(∫
I

(∫
|y|≤r
|K ( j)

u (x − y)a(y)| dy
)2

du
)1/2

dx

.N 2− jβ2 jn2− j N
∫
|x |≥C2 j (λ−1)+r

∫
|y|≤r
|x − y|−N

|a(y)| dy dx

≤ 2− jβ2 jn2− j N
‖a‖1

∫
|x |&2 j (λ−1)

|x |−N dx . 2−β j 2 jnλ2− j Nλ,

which implies the claim (since N is arbitrary). To estimate the second part we use the Cauchy–Schwarz
inequality:

II≤ (C2 j (λ−1)
+ r)n/2‖K ( j)

u ∗ a‖L2
x (L2

u)
.

Then we have by the Fubini and Plancherel theorems that

‖K ( j)
u ∗ a‖L2

x (L2
u)
= ‖‖K ( j)

u ∗ a‖2‖L2
u(I ) . 2− jβ

‖a‖2 . 2− jβr−n/2,

which implies
II. (2 j (λ−1)n/2

+ rn/2)2− jβr−n/2
= (2 jr)−n/2

+ 2− jβ,

as desired (we used that β = nλ/2). This proves (5-7).
It remains to show (5-8). Clearly we have

‖K ( j)
u ∗ a‖L1

x (L2
u)
. ‖ sup

u∈I
|K ( j)

u ∗ a|‖1. (5-9)

We claim that
‖ sup

u∈I
|K ( j)

u ∗ a|‖1 . ‖Pj a‖1. (5-10)

1C is a constant that may depend on the parameters λ, β, n.
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To see this replace ψj by ψ̃j in the definition of K ( j)
u and call the resulting kernel K̃ ( j)

u . Then we have

K ( j)
u ∗ a = K̃ ( j)

u ∗ Pj a.

It is clear that K̃ ( j)
u satisfies the same pointwise estimates (5-5), (5-6) (possibly with larger constants).

Thus, there exists a positive function wj on Rn such that ‖wj‖1 . 1 and

|K̃ ( j)
u (x)| ≤ wj (x)

for all x ∈ Rn and u ∈ I. As a consequence,

‖ sup
u∈I
|K ( j)

u ∗ a|‖1 ≤ ‖ sup
u∈I
|K̃ ( j)

u | ∗ |Pj a|‖1 ≤ ‖wj ∗ |Pj a|‖1 . ‖Pj a‖1,

which is our claim (5-10). But by the mean zero property of a and the mean value theorem we have

Pj a(x)=
∫

Rn
(ψ̂j (x − y)− ψ̂j (x))a(y) dy =−

∫
Rn

∫ 1

0
y · ∇ψ̂j (x − t y) dt a(y) dy.

This implies

‖Pj a‖1 ≤
∫

Rn

∫
|y|≤r

∫ 1

0
|y||∇ψ̂j (x − t y)||a(y)| dt dy dx . 2 jr.

In view of (5-9) and (5-10), this establishes (5-8). �

6. A counterexample: the proof of Theorem 1.2

Let φ be a smooth test function supported in the annulus 1
2 ≤ |ξ | ≤ 2 and define fk for k ∈ Z by

f̂k(ξ)= φ(2−kξ).

On the one hand, clearly,

‖ fk‖p = 2nk
(∫

Rn
|φ̂(2k x)|p dx

)1/p

≈ 2nk/p′ .

On the other hand, we claim that

‖V r
{H(u) fk : u ∈ R}‖p & 2k(−n(α−1)(1/p′)+α/r). (6-1)

If (1-3) were to hold, then plugging in fk into the estimate (1-3) and letting k→∞, we see that

−n(α− 1)
1
p′
+
α

r
≤

n
p′
,

which is equivalent to p′ ≤ nr .
For simplicity we will verify this only in the case n = 1, K (t)= p.v.(1/t), α = 2. The general case

can be treated in the same manner. In this case (6-1) takes the form

‖V r
{H(u) fk : u ∈ R}‖p & 2k(−1+1/p+2/r). (6-2)

We can choose ϕ such that
1
t
=

∑
j∈Z

ϕj (t)
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for all t 6= 0, where ϕj (t)= 2− jϕ(2− j t). By Fourier inversion we have

H(u) fk(x)=
∑
j∈Z

∫∫
φ(2−kξ)ei xξe−i tξ+iut2

ϕj+k(t) dt dξ

=

∑
j∈Z

2k
∫

ei2k xξφ(ξ)

∫
e−i22k tξ+i22kut2

ϕj (t) dt dξ =
∑
j∈Z

I j .

(Keep in mind that I j also depends on k, x, u.) Let us take u ∈ [1, 2]. Then the phase of the oscillatory
integral in t has no critical points if | j |> 10. This motivates us to set

Imain
=

∑
| j |≤10

I j and Ierr
=

∑
| j |>10

I j .

Write B = [2k, 2k+1
] and estimate

‖V r
{H(u) fk : u ∈ R}‖p ≥ ‖V r

{H(u) fk : u ∈ [1, 2]}‖L p(B)

≥ ‖V r
{Imain

: u ∈ [1, 2]}‖L p(B)−‖V r
{Ierr
: u ∈ [1, 2]}‖L p(B).

In order to verify (6-2) it suffices to show that

‖V r
{Imain

: u ∈ [1, 2]}‖L p([2k ,2k+1]) & 2k(−1+1/p+2/r), (6-3)

‖V r
{Ierr
: u ∈ [1, 2]}‖L p([2k ,2k+1]) . 2−2k . (6-4)

We begin with the proof of (6-3). Write

Imain
= 2k

∫
ei2k xξφ(ξ)

∫
e−i22k tξ+i22kut2

ρ(t) dt dξ,

where ρ(t)=
∑
| j |≤10 ϕj (t). Note that the phase of the integral in t has a critical point at tc = ξ/(2u). By

the principle of stationary phase [Stein 1993, Chapter VIII.5.7; Sogge 1993, Theorem 1.2.1] we have∫
e−i22k tξ+i22kut2

ρ(t) dt = 2−kc0ei22kc1ξ
2u−1

u−1/2ρ

(
ξ

2u

)
+ O(2−2k).

Here c0, c1 are nonzero constants. To simplify the calculation, let us take c0 = c1 = 1. Thus, the main
contribution to Imain is ∫

ei22k(x̃ξ+ξ2u−1)a(ξ, u) dξ,

where x = 2k x̃ ∈ [2k, 2k+1
] and a(ξ, u) = φ(ξ)u−1/2ρ(ξ/(2u)). Note that the u-derivative of the error

term coming from the stationary phase is also O(2−2k). Therefore that term contributes only O(2−2k) to
the variation-norm and we can ignore it. From another application of the stationary phase principle we
see that the previous integral can essentially be written in the form

2−kei x2ub(u)+ O(2−2k),

where b(u)= φ(x̃u/2)ρ(x̃/4). Let u` = `π/x2 for x2/π < ` < 2x2/π . Then( ∑
x2/π<`<2x2/π

|ei x2u`+1 − ei x2u` |r
)1/r

≈ 22k/r ,
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which implies the claim (6-3) (the contribution of b(u) is negligible).
It remains to treat Ierr. Compute

∂uI j = i23k+2 j
∫
φ(ξ)ei2k xξ

∫
e−i22k+ j tξ+i22k+2 j ut2

t2ϕ(t) dt dξ

= i23k+2 j
∫
φ̂(22k+ j t − 2k x)ei22k+2 j ut2

t2ϕ(t) dt.

Observe that if x ∈ [2k, 2k+1
], |t | ∈

[ 1
2 , 2

]
and | j |> 10 we have

|22k+ j t − 2k x | ≈ 22k max(1, 2 j ).

Since φ̂ decays rapidly, we obtain

V r
{I j : u ∈ [1, 2]}. ‖∂uI j‖L1

u([1,2]) .N 23k+2 j−2Nk min(1, 2−N j )

for every N ≥ 1. Taking N large enough (N = 3 suffices) and summing over | j |> 10, we obtain (6-4).

7. Proof of Proposition 4.2

In this section we provide a proof of Proposition 4.2, which was stated in [Jones, Seeger, and Wright
2008] without proof. Indeed, Proposition 4.2 is a vector-valued analogue of Theorem 1 of [Seeger 1988].
The proof of Proposition 4.2 follows closely that of the scalar-valued case in [Seeger 1988]. On the other
hand, at one point in the scalar-valued case, Seeger used a duality argument between L p and L p′, which
is not available in the vector-valued setting. This is why we had to assume that hypothesis (4-21) holds
not just for s = p, but also at s = 2.

To prove Proposition 4.2, one key tool is the Fefferman–Stein sharp function. Let B be a Banach space.
For us we will only need the case B = `2(Z)L2(I ). For each measurable function F : Rn

→ B, define its
Hardy–Littlewood maximal function MF by

MF(x)= sup
x∈Q

/

∫
Q
|F(y)|B dy

for each x ∈ Rn, where the supremum is over all cubes Q containing x . Also define the sharp function F]

of F by

F](x)= sup
x∈Q

/

∫
Q
|F(y)− FQ |B dy,

where FQ = /

∫
Q F(y) dy; again the supremum is over all cubes Q containing x . We have the following

lemma about F]:

Lemma 7.1. Suppose 0 < p <∞. Let F ∈ L p0(Rn, B) for some 0 < p0 ≤ p. If F] ∈ L p(Rn), then
MF ∈ L p(Rn), and

‖MF‖L p(Rn) .n,p ‖F]‖L p(Rn).

We give a proof of this lemma at the end.
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Now given f ∈ L p
∩ L2(Rn), define T f : Rn

→ B by

T f (x)= (Tu, j f (x))u∈I, j∈Z.

Note T f ∈ L2(Rn, B). Then

‖‖‖Tu, j f ‖L2(I )‖`2(Z)‖L p(Rn) = ‖|T f |B‖L p(Rn) ≤ ‖M(T f )‖L p(Rn) .n,p ‖(T f )]‖L p(Rn),

where in the last inequality we invoked the lemma with p0 = 2. Note that for a.e. x ∈ Rn

(T f )](x)' /

∫
Qx

|T f (y)− (T f )Qx |B dy

for some cube Qx containing x ; we may choose Qx such that the side length of Qx is 2r(x) for some
integer r(x). Then we split

(T f )](x). σ1((Tu, j f ), x)+ σ2((Pj f ), x),

where N is a positive integer to be chosen; here

σ1(G, x)= /

∫
Qx

( ∑
| j+r(x)|≤N

‖Gu, j (y)− (Gu, j )Qx‖
2
L2(I )

)1/2

dy,

σ2(H, x)= /
∫

Qx

( ∑
| j+r(x)|>N

‖Tu, j Hj (y)− (Tu, j Hj )Qx‖
2
L2(I )

)1/2

dy

for any functions G = (Gu, j ) : R
n
→ B and H = (Hj ) : R

n
→ `2(Z). We claim that

‖σ1(G, x)‖L p(Rn) . N 1/2−1/p
‖‖‖Gu, j (x)‖L2(I )‖`p(Z)‖L p(Rn), (7-1)

‖σ2(H, x)‖L p(Rn) . (A+ B2−N )‖‖Hj (x)‖`2(Z)‖L p(Rn) (7-2)

for any G = (Gu, j ) : R
n
→ B and H = (Hj ) : R

n
→ `2(Z). But when Gu, j = Tu, j f , we have

‖‖‖Gu, j (x)‖L2(I )‖`p(Z)‖L p(Rn) = ‖‖‖Tu, j f (x)‖L2(I )‖L p(Rn)‖`p(Z)

. A‖‖Pj f (x)‖L p(Rn)‖`p(Z)

. A‖‖Pj f (x)‖`2(Z)‖L p(Rn)

. A‖ f ‖L p(Rn)

(we used assumption (4-21) in the second inequality, p ∈ [2,∞) in the third inequality, and Littlewood–
Paley inequality in the last). Also, when Hj = Pj f , we have

‖‖Hj (x)‖`2(Z)‖L p(Rn) . ‖ f ‖L p(Rn).

Hence

‖(T f )]‖L p(Rn) . (AN 1/2−1/p
+ A+ B2−N )‖ f ‖L p(Rn).

Choosing N ' log(2+ B/A) gives the desired conclusion of the proposition. It remains to prove (7-1)
and (7-2).
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To prove (7-1), we interpolate between p = 2 and p =∞. Indeed, we prove

‖σ1(G, x)‖L2(Rn) . ‖‖‖Gu, j (x)‖L2(I )‖`2(Z)‖L2(Rn), (7-3)

‖σ1(G, x)‖L∞(Rn) . N 1/2
‖‖‖Gu, j (x)‖L2(I )‖`∞(Z)‖L∞(Rn). (7-4)

The desired estimate (7-1) then follows by complex interpolation and linearizing σ1.
The estimate (7-3) follows since

σ1(G, x)≤ 2 /

∫
Qx

( ∑
| j+r(x)|≤N

‖Gu, j (y)‖2L2(I )

)1/2

dy, (7-5)

so
σ1(G, x). /

∫
Qx

‖‖Gu, j (y)‖L2(I )‖`2(Z) dy . M‖‖Gu, j‖L2(I )‖`2(Z)(x),

where M is the standard (scalar-valued) Hardy–Littlewood maximal function on Rn. Hence

‖σ1(G, x)‖L2(Rn) . ‖‖‖Gu, j (x)‖L2(I )‖`2(Z)‖L2(Rn)

as in (7-3).
To prove (7-4), note that for each x ∈ Rn, we have, from (7-5), that

σ1(G, x)≤ 2 sup
y∈Rn

( ∑
| j+r(x)|≤N

‖Gu, j (y)‖2L2(I )

)1/2

. N 1/2 sup
y∈Rn

sup
j∈Z

‖Gu, j (y)‖L2(I ),

with constants uniform in x . This gives (7-4).
Next, to prove (7-2), we will prove

‖σ2(H, x)‖L2(Rn) . A‖‖Hj (x)‖`2(Z)‖L2(Rn), (7-6)

‖σ2(H, x)‖L∞(Rn) . (A+ B2−N )‖‖Hj (x)‖`2(Z)‖L∞(Rn). (7-7)

The desired estimate (7-2) then follows by complex interpolation and linearizing σ2.
To prove (7-6), note that

σ2(H, x)≤ 2 /

∫
Qx

( ∑
| j+r(x)|>N

‖Tu, j Hj‖
2
L2(I )

)1/2

dy,

so
σ2(H, x). /

∫
Qx

‖‖Tu, j Hj‖L2(I )‖`2(Z) dy . M‖‖Tu, j Hj‖L2(I )‖`2(Z)(x).

Hence
‖σ2(H, x)‖L2(Rn) . ‖‖‖Tu, j Hj (x)‖L2(I )‖`2(Z)‖L2(Rn).

We commute the `2(Z) norm outside. Since

‖‖Tu, j Hj (x)‖L2(I )‖L2(Rn) . A‖Hj (x)‖L2(Rn), (7-8)
one can conclude that

‖σ2(H, x)‖L2(Rn) . A‖‖Hj (x)‖L2(Rn)‖`2(Z),

which gives (7-6) upon a further change in the order of the norms on the right-hand side.
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Now we proceed to prove (7-7). For each x ∈ Rn, we take the decomposition

Hj (y)= (χ2Qx Hj )(y)+ (χ(2Qx )c Hj )(y)

for all y ∈ Rn. Then we plug this back into the formula for σ2(H, x). We find that

σ2(H, x). I(x)+ II(x),
where

I(x)= /

∫
Qx

(∑
j∈Z

‖Tu, j (χ2Qx Hj )(y)− [Tu, j (χ2Qx Hj )]Q j‖
2
L2(I )

)1/2

dy,

II(x)= /

∫
Qx

( ∑
| j+r(x)|>N

‖Tu, j (χ(2Qx )c Hj )(y)− [Tu, j (χ(2Qx )c Hj )]Q j‖
2
L2(I )

)1/2

dy.

We estimate I(x) by

I(x)≤ 2 /

∫
Qx

(∑
j∈Z

‖Tu, j (χ2Qx Hj )(y)‖2L2(I )

)1/2

dy

.

(
/

∫
Qx

∑
j∈Z

‖Tu, j (χ2Qx Hj )(y)‖2L2(I ) dy
)1/2

.
1

|Qx |
1/2 ‖‖‖Tu, j (χ2Qx Hj )(y)‖L2(I )‖L2(Rn)‖`2(Z)

.
A

|Qx |
1/2 ‖‖(χ2Qx Hj )(y)‖L2(Rn)‖`2(Z),

where in the last inequality we used the estimate (7-8). Then

I(x). A
(

/

∫
2Qx

‖Hj (y)‖`2(Z) dy
)1/2

. A sup
y∈Rn
‖Hj (y)‖`2(Z),

which shows that
‖I(x)‖L∞(Rn) . A‖‖Hj (x)‖`2(Z)‖L∞(Rn).

Next we estimate II(x). Let Ku, j be the convolution kernel of Tu, j . Then

Ku, j (x)= 2 jn Ku(2 j x),
where

Ku(x)=
∫

Rn
m̃u(ξ)e2π i x ·ξ dξ.

Now by our assumption on ∂τξ m̃u(ξ), we have

sup
u∈I
|Ku(x)| + sup

u∈I
|∇x Ku(x)|.

B
(1+ |x |)n+1 .

We claim now

sup
y,z∈Qx

( ∑
| j+r(x)|>N

(∫
(2Qx )c

sup
u∈I
|Ku, j (y−w)− Ku, j (z−w)| dw

)2 )1/2

. B2−N (7-9)
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uniformly for x ∈ Rn. Indeed, suppose y, z ∈ Qx , and j + r(x) >−N. Then we have the estimate∫
(2Qx )c

sup
u∈I
|Ku, j (y−w)− Ku, j (z−w)| dw .

∫
(2Qx )c

sup
u∈I
(|Ku, j (y−w)| + |Ku, j (z−w)|) dw

. 2 jn
∫
|w−x |&2r(x)

B
(2 j |w− x |)n+1 dw . B2− j−r(x).

On the other hand, if y, z ∈ Qx , and j + r(x) <−N, then∫
(2Qx )c

sup
u∈I
|Ku, j (y−w)− Ku, j (z−w)| dw

is bounded by a constant times∫ 1

0

∫
(2Qx )c

sup
u∈I
|y− z||∇x Ku, j ((1− t)y+ t z−w)| dw dt . 2 j 2r(x)

∫
Rn

2 jn
|(∇x Ku)(2 jw)| dw. B2 j+r(x).

Summing over j such that j + r(x) > N and j + r(x) <−N respectively, we see that (7-9) follows.
Finally, it suffices to observe that

II(x). /

∫
Qx

/

∫
Qx

( ∑
| j+r(x)|>N

‖Tu, j (χ(2Qx )c Hj )(y)− Tu, j (χ(2Qx )c Hj )(z)‖2L2(I )

)1/2

dy dz

= sup
y,z∈Qx

( ∑
| j+r(x)|>N

∥∥∥∥∫
(2Qx )c

[Ku, j (y−w)− Ku, j (z−w)]Hj (w) dw
∥∥∥∥2

L2(I )

)1/2

. sup
y,z∈Qx

( ∑
| j+r(x)|>N

(∫
(2Qx )c

‖Ku, j (y−w)− Ku, j (z−w)‖L2(I ) dw
)2 )1/2

‖‖Hj‖`∞(Z)‖L∞(Rn)

. sup
y,z∈Qx

( ∑
| j+r(x)|>N

(∫
(2Qx )c

sup
u∈I
|Ku, j (y−w)− Ku, j (z−w)| dw

)2 )1/2

‖‖Hj‖`2(Z)‖L∞(Rn).

Invoking (7-9) yields

‖II(x)‖L∞(Rn) . B2−N
‖‖Hj (x)‖`2(Z)‖L∞(Rn),

which together with our earlier estimate about ‖I(x)‖L∞(Rn) gives (7-7).

Proof of Lemma 7.1. The key is a relative distribution inequality. Fix the Banach space B. For any n ≥ 1,
we claim that there exists bn ∈ (0, 1) such that for any b, c > 0 with b ≤ bn we have

|{x ∈ Rn
:MF(x) > α, F](x)≤ cα}|.n c|{x ∈ Rn

:MF(x) > bα}|.

If this is true, then by taking c sufficiently small, we can use Lemma 2 of Chapter IV.3.5 of [Stein 1993]
(see also the remark on the bottom of page 152 there) and conclude the proof of Lemma 7.1.

To prove the above relative distributional inequality, let b∈ (0, 1) first. Let F ∈ L p(Rn, B). Decompose
the open set {x ∈ Rn

:MF(x) > bα} into an essentially disjoint union of Whitney cubes {Q}, so that the
distance of each Q from the complement of this set is bounded by 4 times the diameter of Q. Now since
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{x ∈ Rn
:MF(x) > α, F](x)≤ cα} is a subset of {x ∈ Rn

:MF(x) > bα}, we just need to show that for
each Whitney cube Q as above, we have

|{x ∈ Q :MF(x) > α, F](x)≤ cα}|.n c|Q|.

This inequality would be trivial if the set on the left-hand side were empty. So let’s assume there exists a
point x0 ∈ Q such that F](x0)≤ cα. Now let Q̃ be any cube that intersects Q and that has diameter at
least that of Q. Then 20Q̃ will contain a point y where MF(y)≤ bα. Hence /

∫
Q̃ |F |B ≤ 20nbα for all

such cubes Q̃. If x ∈ Q and MF(x) > α, then by taking b < 20−n, we see that M(Fχ3Q)(x) > α. We
also have /

∫
3Q |F |B ≤ 20nbα. Thus,

{x ∈ Q :MF(x) > α, F](x)≤ cα} ⊂
{

x ∈ Q :M
(

Fχ3Q − /

∫
3Q

F
)
(x) > (1− 20nb)α

}
,

where the measure of the right-hand side is bounded by

Cn

(1− 20nb)α

∫
Q
|Fχ3Q(y)− F3Q |B dy ≤

Cn

(1− 20nb)α
|3Q|F](x0)≤

3nCn

(1− 20nb)
c|Q|,

where Cn is the constant arising in the weak-type (1,1) bound of M : L1(Rn, B)→ L1,∞(Rn). This
proves the desired relative distributional inequality. �

Appendix A: An improved local smoothing estimate

In this section we prove Theorem 1.6. Let χ :Rn
→R be a nonnegative smooth bump function supported

on 1≤ |ξ | ≤ 2. Define

E0 f (x, t) :=
∫

Rn
f (ξ)χ(ξ)ei x ·ξ+i t |ξ |γ dξ.

We will prove
‖E0 f ‖L p(Rn×[−λ,λ]) . λ

n(1/2−1/p)+ε
‖ f̂ ‖L p(Rn) (A-1)

for every λ≥ 1. Once this is proved, a rescaling argument shows that(∫
Rn×I

∣∣∣∣∫
Rn

ei xξ f̂ (ξ)ei t |ξ |γ dξ
∣∣∣∣p

dx dt
)1/p

. 2kγ n(1/2−1/p)−kγ /p+kε
‖ f ‖L p(Rn) (A-2)

whenever f̂ (ξ) is supported on the k-th annulus, that is, |ξ |≈ 2k. As a consequence we obtain Theorem 1.6.
We will prove (A-1) for every elliptic phase. Let c0 be a small positive real number. Let φ : Rn

→ R

be a smooth function with

|φ(ξ)| + |∇φ(ξ)|. 1, c0 In ≤ (∇
2φ)(ξ)≤

1
c0

In for every |ξ |< 10, (A-3)

where In is the identity matrix of order n× n. Let χ0 : R
n
→ R be a nonnegative smooth bump function

supported on |ξ | ≤ 2. Define

Eφ f (x, t) :=
∫

Rn
f (ξ)χ0(ξ)ei x ·ξ+i tφ(ξ) dξ.
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We will prove
sup
φ:(A-3)

‖Eφ f ‖L p(Rn×[−λ,λ]) . λ
n(1/2−1/p)+ε

‖ f̂ ‖L p(Rn) (A-4)

for every λ≥ 1.
For a ball Bλ ⊂ Rn+1 of radius λ, we will let B−λ denote its projection in the first n variables, i.e.,

spatial variables. That is, B−λ is a ball of radius λ in Rn. We also define the associated weight

wB−λ
(x) :=

1
(1+‖x − c‖/λ)100n for x ∈ Rn.

Here c denotes the center of B−λ . We remark that in the argument below, various implicit constants
depend on this choice of weight. However, this dependence is not important, and to avoid unnecessary
technicalities, we will not make these details explicit. We refer the interested reader to [Li 2020], which
contains all the necessary details that are required to run the Bourgain–Guth argument [2011].

We prove (A-4) by an inductive argument. Denote by Qλ the smallest constant such that

sup
φ:(A-3)

‖Eφ f ‖L p(Bλ) ≤ Qλ · λ
n(1/2−1/p)

‖ f̂ ‖L p(wB−
λ
)

for every ball Bλ ⊂ Rn+1 with Bλ ⊂ B−λ ×[−λ, λ]. Of course our goal is to prove that

Qλ .ε λ
ε (A-5)

for every ε > 0. In the following, for the sake of simplicity, we will always abbreviate Eφ f to E f .
First, by translation invariance, we will assume that B−λ is centered at 0. We normalize f such that

‖ f̂ ‖L p(wB−
λ
)λ

n(1/2−1/p)
= 1. (A-6)

Next, let Kn be a large integer that is to be determined, satisfying

Kn � λε .

For a large dyadic integer K , let ColK denote the collection of all dyadic cubes of length 1/K . We write

E f =
∑

αn∈ColKn

E fαn , with fαn := f ·1αn .

Here {1αn }n forms a smooth partition of unity, and 1αn is supported on 2αn . On every ball BKn ⊂Rn+1 of
radius Kn , by the uncertainty principle, we know that |E fαn | is essentially a constant for every αn ∈ColKn .
We let |E fαn |(BKn ) denote this constant. Denote by α∗n the cube that maximizes

{|E fαn |(BKn )}αn∈ColKn
.

Consider the collection

Col∗Kn
:= {αn ∈ ColKn : |E fαn |(BKn )≥ K−n

n |E fα∗n |(BKn )}.

Here the choice of the coefficient K−n
n is not strict. One can also use K−2n

n or something even smaller.
There are three cases.

Case 1: There exists an integer 1≤ j ≤ n, and cubes α(1)n , . . . , α
( j)
n ∈Col∗Kn

which are (1/Kn−1)-separated
such that every cube within Col∗Kn

is in the 1/Kn−1 neighborhood of some α( j ′)
n .
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Here Kn−1� K ε
n is also to be determined. Next, we have:

Case 2: There exist cubes α(1)n , . . . , α
(n+1)
n ∈ Col∗Kn

that are (1/Kn−1)-separated and do not lie in the
100/Kn neighborhood of any (n−1)-dimensional subspace.

If Case 1 and Case 2 are not satisfied, then we have:

Case 3: All cubes in Col∗Kn
lie in the C(Kn−1)/Kn neighborhood of a subspace of dimension n− 1.

Here C(Kn−1) is a large constant depending on Kn−1 which may change from line to line (it always
suffices to take, say, C(Kn−1)= K 100n

n−1 ).

We deal with these three cases separately. In Case 1, we have

|E f |. max
αn∈ColKn

|E fαn | + max
αn−1∈ColKn−1

|E fαn−1 |. (A-7)

In Case 2, we use

|E f |. K 2n
n

(n+1∏
j=1

|E f
α
( j)
n
|

)1/(n+1)

.

In Case 3, we use

|E f |. max
αn∈ColKn

|E fαn | + max
Ln−1: subspace

of dimension (n−1)

∣∣∣∣ ∑
αn−1:dist(αn−1,Ln−1)≤1/Kn−1

E fαn−1

∣∣∣∣. (A-8)

In the last summation, we implicitly assumed that αn−1 ∈ ColKn−1 , and that

C(Kn−1)

Kn
≤

1
Kn−1

.

Here we agree upon a convention: for 1≤ j ≤ n, whenever the symbol αj appears, we always assume
that αj ∈ ColK j , to keep notation simpler. Combining (A-7)–(A-8), we obtain

|E f |. max
αn∈ColKn

|E fαn | + max
αn−1∈ColKn−1

|E fαn−1 | + K 2n
n

(n+1∏
j=1

|E f
α
( j)
n
|

)1/(n+1)

+ max
Ln−1: subspace

of dimension (n−1)

∣∣∣∣ ∑
αn−1:dist(αn−1,Ln−1)≤1/Kn−1

E fαn−1

∣∣∣∣.
We raise both sides to the p-th power, then integrate over BKn , and in the end sum over balls BKn inside Bλ,∫

Bλ
|E f |p .

∑
αn∈ColKn

∫
Bλ
|E fαn |

p
+

∑
αn−1∈ColKn−1

∫
Bλ
|E fαn−1 |

p

+

∑
α
(1)
n ,...,α

(n+1)
n in Case 2

∫
Bλ

K 2pn
n

(n+1∏
j=1

|E f
α
( j)
n
|

)p/(n+1)

+

∑
BKn⊂Bλ

max
Ln−1

∫
BKn

∣∣∣∣ ∑
αn−1:dist(αn−1,Ln−1)≤1/Kn−1

E fαn−1

∣∣∣∣p

. (A-9)

There are four terms on the right-hand side. It is the contribution from the last term that gives us the
ultimate constraint for the exponent p, as stated in (1-5).
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Let us be more precise. The first and second summands on the right-hand side of (A-9) can be taken
care of by parabolic rescaling. We will deal with the third summand using multilinear restriction estimates
due to [Bennett, Carbery, and Tao 2006]. The last term requires further careful analysis.

For the first and second summands, we will apply rescaling. The argument is the same in both cases.
Hence we will only write down the rescaling argument for the first summand.∫

Bλ
|E fαn |

p
=

∫
Bλ

∣∣∣∣∫ fαn (ξ)e
iξ x+i tφ(ξ)dξ

∣∣∣∣p

dx dt.

Here we apply the change of variable

ξ →
ξ

Kn
+ cαn , with cαn being the center of αn.

We obtain

K−np
n

∫
Bλ

∣∣∣∣∫ fαn

(
ξ

Kn
+ cαn

)
ei(ξ/Kn+cαn )x+i tφ(ξ/Kn+cαn )dξ

∣∣∣∣p

dx dt

= K−np
n

∫
Bλ

∣∣∣∣∫ fαn

(
ξ

Kn
+ cαn

)
eiξ/Kn x+i K 2

nφ(ξ/Kn+cαn )(t/K 2
n )dξ

∣∣∣∣p

dx dt.

Next we apply the change of variables

x/Kn→ x and t/K 2
n → t

to obtain

K−np+n+2
n

∫
B̃λ

∣∣∣∣∫ fαn

(
ξ

Kn
+ cαn

)
eiξ x+i t ·K 2

nφ(ξ/Kn+cαn )dξ
∣∣∣∣p

dx dt. (A-10)

Here B̃λ⊂Rn+1 is a rectangular box of dimensions λ/Kn×· · ·×λ/Kn×λ/K 2
n centered at 0. The reason

of writing it in this form is that

φ̃(ξ) := K 2
nφ

(
ξ

Kn
+ cαn

)
− Kn〈(∇φ)(cαn ), ξ〉− K 2

nφ(cαn ) still satisfies (A-3).

By a change of variable, (A-10) can be bounded by

K−np+n+2
n

∫
2B̃λ

∣∣∣∣∫ fαn

(
ξ

Kn
+ cαn

)
eiξ x+i t φ̃(ξ)dξ

∣∣∣∣p

dx dt.

Next we split the rectangular box 2B̃λ into a union of cubes of side-length λ/K 2
n .

K−np
n K n+2

n

∑
B
λ/K 2

n
⊂2B̃λ

∫
B
λ/K 2

n

∣∣∣∣∫ fαn

(
ξ

Kn
+ cαn

)
eiξ x+i t φ̃(ξ)dξ

∣∣∣∣p

dx dt

. K−np
n K n+2

n

∑
B−
λ/K 2

n
⊂B−λ/Kn

(
λ

K 2
n

)np(1/2−1/p)

Q p
λ/K 2

n

∫
Rn

∣∣∣∣∧fαn

(
·

Kn
+ cαn

)
(x)
∣∣∣∣p

wB−
λ/K 2

n

(x) dx .
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Here we applied the induction hypothesis. We may now sum the weights over all B−
λ/K 2

n
⊂ B−λ/Kn

, and
bound the above by

. K−np
n K n+2

n

(
λ

K 2
n

)np(1/2−1/p)

Q p
λ/K 2

n

∫
Rn

∣∣∣∣∧fαn

(
·

Kn
+ cαn

)
(x)
∣∣∣∣p

wB−λ/Kn
(x) dx

. K−np
n K n+2

n K np−n
n

(
λ

K 2
n

)np(1/2−1/p)

Q p
λ/K 2

n

∫
Rn
| f̂αn (ξ)|

pwB−λ
(x) dx

Summing over αn , we obtain

K−np
n K n+2

n

(
λ

K 2
n

)np(1/2−1/p)

Q p
λ/K 2

n
K−n

n K np
n

∑
αn

∫
Rn
| f̂αn |

pwB−λ

. K−np
n K n+2

n

(
1

K 2
n

)np(1/2−1/p)

Q p
λ/K 2

n
K−n

n K np
n .

In the last step, we applied the normalization condition (A-6). Let the exponent of Kn be equal to zero
and we obtain

2− 2np
(1

2
−

1
p

)
= 0 =⇒ p = 2(n+1)

n
.

This is exactly the exponent in the Fourier restriction conjecture. Moreover, the last display tells us
that, for the contribution from the first and second terms in (A-9), the induction can be closed whenever
p > 2(n+ 1)/n.

Now we deal with the third summand on the right-hand side of (A-9). When p ≥ 2(n + 1)/n, by
multilinear restriction of [Bennett, Carbery, and Tao 2006] and by Bernstein’s inequality and Hölder’s
inequality, ∑

α
(1)
n ,...,α

(n+1)
n in Case 2

∫
Bλ

K 2n
n

(n+1∏
j=1

|E f
α
( j)
n
|

)p/(n+1)

. K 2n
n K 100n!

n λε .

Again we see that there is no problem for this term as Kn can be chosen to be much smaller compared
with λε.

In the end, we come to the last summand on the right-hand side of (A-9). Fix a ball BKn ⊂ Rn+1.
Assume that the maximum is attained at the (n−1)-dimensional subspace Ln−1. We need to consider∫

BKn

∣∣∣∣ ∑
αn−1:dist(αn−1,Ln−1)≤1/Kn−1

E fαn−1

∣∣∣∣p

.

Notice that each |E fαn−1 | is essentially a constant on BKn−1 , a ball of radius Kn−1 which is much smaller
compared with K ε

n . Hence tentatively we fix a ball BKn−1 ⊂ BKn . Let α∗n−1 denote the cube that maximizes

{|E fαn−1 |(BKn−1)}αn−1:dist(αn−1,Ln−1)≤1/Kn−1 .

Consider the collection

Col∗Kn−1
:=

{
αn−1 : dist(αn−1, Ln−1)≤

1
Kn−1

and |E fαn−1 |(BKn−1)≥ K−n
n−1|E fα∗n−1

|(BKn−1)

}
.

There are three further cases:
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Case 3.1: There exists an integer 1≤ j ≤ n−1, and cubes α(1)n−1, . . . , α
( j)
n−1 ∈Col∗Kn−1

which are (1/Kn−2)-
separated such that every cube within Col∗Kn−1

is in the 1/Kn−2 neighborhood of some α( j ′)
n−1.

Here Kn−2� K ε
n−1 is also to be determined. Moreover, we have

Case 3.2: There exist cubes α(1)n−1, . . . , α
(n)
n−1 ∈ Col∗Kn−1

that are (1/Kn−2)-separated and do not lie in the
100/Kn−1 neighborhood of any (n−2)-dimensional subspace.

If the above two cases are not satisfied, then we must have

Case 3.3: All cubes in Col∗Kn−1
lie in the C(Kn−2)/Kn−1 neighborhood of a linear subspace of dimension n−2.

Here C(Kn−2) is a large constant depending on Kn−2. It suffices to take C(Kn−2)= K 100n
n−2 .

Similarly to (A-7)–(A-8), we have that for every point (x, t) ∈ BKn−1

|E f |. max
αn∈ColKn

|E fαn | + max
αn−1∈ColKn−1

|E fαn−1 | + max
αn−2∈ColKn−2

|E fαn−2 |

+ K 2n
n−1

( n∏
j=1

|E f
α
( j)
n−1
|

)1/n

+max
Ln−2

∣∣∣∣ ∑
αn−2:dist(αn−2,Ln−2)≤1/Kn−2

E fαn−2

∣∣∣∣.
We first raise both sides to the p-th power, integrate over BKn−1 , and then sum over all balls BKn−1 ⊂ BKn ,
and in the end sum over all balls BKn ⊂ Bλ:∫

Bλ
|E f |p .

∑
αn∈ColKn

∫
Bλ
|E fαn |

p
+

∑
αn−1∈ColKn−1

∫
Bλ
|E fαn−1 |

p

+

∑
αn−2∈ColKn−2

∫
Bλ
|E fαn−2 |

p
+

∑
α
(1)
n−1,...,α

(n)
n−1 in Case 3.2

∫
Bλ

K 2n
n−1

( n∏
j=1

|E f
α
( j)
n−1
|

)p/n

+

∑
BKn⊂Bλ

∑
BKn−1⊂BKn

max
Ln−2

∫
BKn−1

∣∣∣∣ ∑
αn−2:dist(αn−2,Ln−2)≤1/Kn−2

E fαn−2

∣∣∣∣p

.

There are five terms on the right-hand side of the last display. By the same scaling argument as above, we
can handle the first three summands. For the fourth summand, we again apply multilinear restrictions
due to [Bennett, Carbery, and Tao 2006]. However, notice that we are applying an n-linear restriction
estimate in Rn+1. This will not give us the restriction exponent 2(n+ 1)/n, but something larger. To be
precise, we have

∑
α
(1)
n−1,...,α

(n)
n−1 in Case 3.2

∫
Bλ

K 2n
n−1

( n∏
j=1

|E f
α
( j)
n−1
|

)p/n

. K 2n
n−1K 100n!

n−1 λ
ε

for every

p ≥
2n

n− 1
,

which we assume.
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Hence it remains to handle the last summand∑
BKn−1⊂Bλ

max
Ln−2

∫
BKn−1

∣∣∣∣ ∑
αn−2:dist(αn−2,Ln−2)≤1/Kn−2

E fαn−2

∣∣∣∣p

.

We repeat this iteration until we reach∑
BKn−k⊂Bλ

max
Ln−k−1

∫
BKn−k

∣∣∣∣ ∑
αn−k−1:dist(αn−k−1,Ln−k−1)≤1/Kn−k−1

E fαn−k−1

∣∣∣∣p

, (A-11)

where k is the largest positive integer such that

k ≤
n− 1

3
; (A-12)

in other words,

k =


(n− 3)/3 if n ≡ 0 (mod 3),
(n− 1)/3 if n ≡ 1 (mod 3),
(n− 2)/3 if n ≡ 2 (mod 3).

(A-13)

Collecting all the constraints on the exponent p from applying the multilinear restriction estimate, we
obtain

p ≥
2(n− k+ 1)

n− k
. (A-14)

Instead of running the previous argument again on (A-11), we apply the decoupling inequalities of
[Bourgain and Demeter 2015]:∫

BKn−k

∣∣∣∣ ∑
αn−k−1:dist(αn−k−1,Ln−k−1)≤1/Kn−k−1

E fαn−k−1

∣∣∣∣p

. (Kn−k−1)
(n−k−1)(1/2−1/p)p+ε

∑
αn−k−1

∫
BKn−k

|E fαn−k−1 |
p.

The above inequality will hold as long as

p ≤
2(n− k+ 1)

n− k− 1
. (A-15)

In the end, we sum over all balls BKn−k inside Bλ, and obtain

(Kn−k−1)
(n−k−1)(1/2−1/p)p+ε

∑
αn−k−1

∫
Bλ
|E fαn−k−1 |

p.

It is clear now that we should apply parabolic rescaling. This gives us

(Kn−k−1)
(n−k−1)(1/2−1/p)p+ε

× (Kn−k−1)
2−2np(1/2−1/p)

× Q p
λ/K 2

n−k−1
.

By equating the exponent of Kn−k−1 with zero we obtain the constraint

p >
2(n+ k+ 3)

n+ k+ 1
. (A-16)

This constraint is more restrictive than (A-14), by condition (A-12). By choosing k as in (A-13), and
substituting that into (A-16), we obtain the constraint on p in (1-5). To summarize, we have shown that for
p satisfying (1-5) and (A-15), we can close the induction. Thus, we have established (A-5) and therefore
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(1-6) for such p’s. Finally, by the result of [Rogers and Seeger 2010], we already know that (1-6) holds for
all p>2+4/(n+1) (even with ε=0), which completes the proof of Theorem 1.6 for the claimed range in p.

Appendix B: A maximal multifrequency estimate of Krause and Lacey

Fix `0 ∈ Z and d ∈ N with d ≥ 2. Take the decomposition 1=
∑

`∈Z ϕ`(t), where ϕ`(t) := ϕ0(2−`t) for
some smooth even function ϕ0 supported on |t | ' 1. For u > 0, let

T (u) f (x)=
∑
`≥`0

T (u)
` f (x),

where

T (u)
` f (x) :=

∫
R

f (x − t)ϕ`(t)eiutd dt
t
.

Following the method in [Bourgain 1989], we will prove the following maximal multifrequency estimate.

Theorem B.1. There exists a constant C such that for any τ > 0, M ∈ N and any θ1, . . . , θM ∈ R with
min1≤i< j≤M |θi − θj |> 2τ , we have∥∥∥∥sup

u>0

∣∣∣∣ M∑
m=1

Modθm T (u)Pτ fm

∣∣∣∣∥∥∥∥
L2(R)

≤ C(log M)2
( M∑

m=1

‖ fm‖
2
L2(R)

)1/2

(B-1)

for all f1, . . . , fM ∈L2(R), where Pτ is the Littlewood–Paley projection onto the frequency interval [−τ,τ ].

Here Modθ f (x) is the modulation Modθ f (x) := eiθx f (x).
As a corollary, we obtain Theorem 3.5 of [Krause and Lacey 2017]:

Corollary B.2 [Krause and Lacey 2017]. There exists a constant C such that for any τ > 0, M ∈ N and
any θ1, . . . , θM ∈ R with min1≤i< j≤M |θi − θj |> 2τ , we have∥∥∥∥sup

u>0

∣∣∣∣ M∑
m=1

Modθm T (u)(Pτ Mod−θm f )
∣∣∣∣∥∥∥∥

L2(R)

≤ C(log M)2‖ f ‖L2(R)

for any f ∈ L2(R).

Indeed, one can obtain the corollary by applying Theorem B.1 to fm := Pτ Mod−θm f , and noting that
then

∑M
m=1 ‖ fm‖

2
L2(R)
≤ ‖ f ‖2L2(R)

.
The corollary is slightly stronger than Theorem 3.5 of [Krause and Lacey 2017] because it allows one

to take supremum over all u > 0 (not just over u ∈ (0, τ 2)).
To prove Theorem B.1, we use the following variant of our Theorem 1.1.

Theorem B.3. There exists a constant C such that for all p ∈ (2, 3) we have

‖V p
{T (u) f : u > 0}‖L p(R) ≤ C(p− 2)−1

‖ f ‖L p(R). (B-2)

Stein and Wainger proved that

‖ sup{T (u) f : u > 0}‖Lq (R) ≤ Cq‖ f ‖Lq (R) (B-3)

for 1< q <∞. By complex interpolation, we then get the following corollary:
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Corollary B.4. There exists a constant C such that for all r ∈ (2, 3) we have

‖V r
{T (u) f : u > 0}‖L2(R) ≤ C(r − 2)−1

‖ f ‖L2(R). (B-4)

Indeed, for any r ∈ (2,∞), one can obtain (B-4) by interpolating between (B-2) with p = (r + 6)/4,
and (B-3) with q = 3

2 .
Below we first prove Theorem B.3, and then use Corollary B.4 to prove Theorem B.1.

Proof of Theorem B.3. By the argument in Section 3, we have

sup
λ>0
‖λ
√

Nλ{T (2kd ) f : k ∈ Z}‖L p(R) ≤ C p‖ f ‖L p(R)

for 1< p<∞. By the real interpolation argument in Lemma 3.3 of [Bourgain 1989] (see also Lemma 2.1
of [Jones, Seeger, and Wright 2008]), we have

‖V p
{T (2kd ) f : k ∈ Z}‖L p(R) ≤ C(p− 2)−1

‖ f ‖L p(R) (B-5)

for all 2< p < 3. Furthermore, by the argument in Section 4, we have

‖V p
j T (u) f ‖`p( j∈Z)‖L p(R) ≤ C(p− 2)−1

‖ f ‖L p(R) (B-6)

for all 2 < p < 3, where V p
j T (u) f (x) := V p

{T (u) f (x) : u ∈ [2 jd , 2( j+1)d
]}. Indeed, the left-hand side

above is bounded by ∑
k,`∈Z

‖‖V p
j T (u)

`− j Pj+k f ‖`p{ j :`− j≥`0}‖L p(R),

and the arguments of Sections 4B and 4E show that∑
k,`∈Z

`≤−k/(2(d+1))

‖‖V p
j T (u)

`− j Pj+k f ‖`p
j
‖L p(R) ≤ C p‖ f ‖L p(R) (B-7)

for 1< p <∞, and∑
k,`∈Z

`>−k/(2(d+1)), k>`(d−1)+C

+

∑
k,`∈Z

`>−k/(2(d+1)), k<`(d−1)−C

‖‖V p
j T (u)

`− j Pj+k f ‖`p
j
‖L p(R) ≤ C p‖ f ‖L p(R) (B-8)

for 2 ≤ p < ∞, where the constants C p satisfy sup2≤p≤3 C p < ∞. Furthermore, the arguments in
Section 4D show that there exist absolute constants C and δ > 0 such that if `≥ 0 and k= `(d−1)+O(1),
then

‖‖V p
j T (u)

`− j Pj+k f ‖`p
j
‖L p(R) ≤ C2−`δd(p−2)

‖ f ‖L p(R)

for all 2< p < 3. Summing these up, we get∑
`≥0

∑
k=`(d−1)+O(1)

‖‖V p
j T (u)

`− j Pj+k f ‖`p
j
‖L p(R) ≤ C(p− 2)−1

‖ f ‖L p(R) (B-9)

for all 2< p < 3. Inequality (B-6) then follows from (B-7), (B-8) and (B-9). Since

V p
{T (u) f : u > 0} ≤ V p

{T (2kd ) f : k ∈ Z}+ ‖V p
j T (u) f ‖`p( j∈Z),

we obtain the desired conclusion (B-2) from (B-5) and (B-6). �
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Proof of Theorem B.1. We will deduce Theorem B.1 from Theorem B.3, following [Bourgain 1989] closely
(see Lemma 4.13 there). Suppose τ > 0, and θ1, . . . , θM ∈ R are such that min1≤i< j≤M |θi − θj | > 2τ .
First, to prove (B-1), it will suffice to show that(

/

∫
w∈[0,1/(100τ)]

∥∥∥∥sup
u>0

∣∣∣∣ M∑
m=1

eiθm x T (u)Pτ fm(x+w)
∣∣∣∣∥∥∥∥2

L2(R)

dw
)1/2

≤C(log M)2
( M∑

m=1

‖ fm‖
2
L2(R)

)1/2

. (B-10)

Morally speaking, this is the uncertainty principle at work: note that for every u > 0, the function
x 7→ T (u)Pτ fm(x) has Fourier support contained in [−τ, τ ], and hence |Modθm T (u)Pτ fm(x)| can be
thought of as locally constant on an interval of length ' 1/τ . To be precise, for each w ∈ [0, 1/(100τ)],
we have, by Plancherel’s identity, that

‖Pτ fm( · )− Pτ fm( · +w)‖L2 ≤
1
2‖ fm‖L2

whenever w ∈ [0, 1/(100τ)]. Thus if B is the best constant for which (B-1) holds, then for all w ∈
[0, 1/(100τ)], we have∥∥∥∥sup

u>0

∣∣∣∣ M∑
m=1

Modθm T (u)Pτ fm(x)
∣∣∣∣∥∥∥∥

L2(R)

≤

∥∥∥∥sup
u>0

∣∣∣∣ M∑
m=1

eiθm x T (u)Pτ fm(x+w)
∣∣∣∣∥∥∥∥

L2(R)

+
B
2

( M∑
m=1

‖ fm‖
2
L2(R)

)1/2

,

so taking L2 average over all w ∈ [0, 1/(100τ)], and using (B-10), we have

B ≤ C(log M)2+
B
2
;

i.e., B ≤ 2C(log M)2 as desired. Thus, it remains to establish (B-10), which can be rewritten as∥∥∥∥( /

∫
w∈[0,1/(100τ)]

sup
u>0

∣∣∣∣ M∑
m=1

e−iθmweiθm x T (u)Pτ fm(x)
∣∣∣∣2 dw

)1/2∥∥∥∥
L2(R)

≤ C(log M)2
( M∑

m=1

‖ fm‖
2
L2(R)

)1/2

(B-11)

by first changing variable x 7→ x −w, and then interchanging the integrals in x and w.
To prove (B-11), for each x ∈ R, consider the (bounded) set Ax ⊂ RM, given by

Ax := {(T (u)Pτ f1(x), . . . , T (u)Pτ fM(x)) : u > 0}.

If λ is bigger than the diameter of Ax , let Eλ(x)= 0; otherwise let Eλ(x) be the minimal number of balls
in RM of radius λ that is required to cover Ax . (Eλ(x) is sometimes called the entropy number.) One
then observes that for every s ∈ Z, there exists a finite subset Bs(x) ⊂ Ax − Ax of cardinality at most
E2s (x) such that

|bs | ≤ 2s+1 for every bs ∈ Bs(x)

and such that every element a of Ax admits a decomposition

a =
∑
s∈Z

bs with bs ∈ Bs(x) for every s ∈ Z.
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Then the left-hand side of (B-11) is bounded by∥∥∥∥∑
s∈Z

max
bs∈Bs(x)

(

/

∫
w∈[0,1/(100τ)]

∣∣∣∣ M∑
m=1

e−iθmweiθm x bs,m

∣∣∣∣2 dw
)1/2∥∥∥∥

L2(R)

;

here bs = (bs,1, . . . , bs,m). Using Cauchy–Schwarz for the sum over m, the above displayed equation is
further bounded by∥∥∥∥∑

s∈Z

min
{

2s+1 M1/2,

( ∑
bs∈Bs(x)

/

∫
w∈[0,1/(100τ)]

∣∣∣∣ M∑
m=1

e−iθmweiθm x bs,m

∣∣∣∣2 dw
)1/2}∥∥∥∥

L2(R)

. (B-12)

To estimate the integral in w above, observe that from the separation of the θ1, . . . , θM , we have(

/

∫
w∈[0,1/(100τ)]

∣∣∣∣ M∑
m=1

e−iθmwcm

∣∣∣∣2 dw
)1/2

.

( M∑
m=1

|cm |
2
)1/2

;

indeed, the key is that if h : RM
→ RM is defined by

(ha)m :=
M∑

m=1

τ

θm − θn
an,

then the operator norm of h is bounded independent of M , which can be deduced, for instance, by
comparing it to the (continuous) Hilbert transform on R. Thus (B-12) is bounded by∥∥∥∥∑

s∈Z

min{2s+1 M1/2, 2s+1 E2s (x)1/2}
∥∥∥∥

L2(R)

= 2
∥∥∥∥∑

s∈Z

2s min{M1/2, E2s (x)1/2}
∥∥∥∥

L2(R)

. (B-13)

Now let

F(x) :=
( M∑

m=1

sup
u>0
|T (u)Pτ fm(x)|2

)1/2

.

Then the diameter of Ax is at most 2F(x). Hence the entropy number satisfies E2s (x) = 0 whenever
2s > 2F(x). We are then led to sum ∑

2s≤2F(x)

2s min{M1/2, E2s (x)1/2}.

We split this sum into two, one where 2s
≤M−1/2 F(x), and another where M−1/2 F(x)≤ 2s

≤ 2F(x). The
former sum is bounded by F(x), while the latter sum is bounded by (log M)M1/2−1/r sups∈Z 2s E2s (x)1/r

for any r ∈ (2,∞). Now pick r ∈ (2,∞) such that

1
2
−

1
r
= (log M)−1,

so that M1/2−1/r
' 1. Then (B-13) is bounded by∥∥F(x)+ (log M) sup

s∈Z

2s E2s (x)1/r
∥∥

L2(R)
.
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But by Stein and Wainger’s inequality (B-3), we have

‖F‖L2(R) .

( M∑
m=1

‖ fm‖
2
L2(R)

)1/2

.

Furthermore, one can relate the entropy E2s (x)1/r with the r -th variation norm pointwise:

sup
s∈Z

2s E2s (x)1/r
≤

( M∑
m=1

|V r
{T (u)Pτ fm(x) : u > 0}|2

)1/2

.

Hence ∥∥(log M) sup
s∈Z

2s E2s (x)1/r
∥∥

L2(R)
≤ (log M)

( M∑
m=1

‖V r
{T (u)Pτ fm : u > 0}‖2L2(R)

)1/2

.

By Corollary B.4, the latter is bounded by

C(log M)(r − 2)−1
( M∑

m=1

‖ fm‖
2
L2(R)

)1/2

,

and since (r − 2)−1
' log M by our choice of r , this completes the proof of Theorem B.1. �
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