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In 2006, Dafermos and Holzegel formulated the so-called AdS instability conjecture, stating that there
exist arbitrarily small perturbations to AdS initial data which, under evolution by the Einstein vacuum
equations for 3< 0 with reflecting boundary conditions on conformal infinity I, lead to the formation of
black holes. The numerical study of this conjecture in the simpler setting of the spherically symmetric
Einstein-scalar field system was initiated by Bizón and Rostworowski (Phys. Rev. Lett. 107:3 (2011),
art. id. 031102), followed by a vast number of numerical and heuristic works by several authors.

In this paper, we provide the first rigorous proof of the AdS instability conjecture in the simplest
possible setting, namely for the spherically symmetric Einstein-massless Vlasov system, in the case
when the Vlasov field is moreover supported only on radial geodesics. This system is equivalent to
the Einstein-null dust system, allowing for both ingoing and outgoing dust. In order to overcome the
breakdown of this system occurring once the null dust reaches the center r = 0, we place an inner mirror
at r = r0 > 0 and study the evolution of this system on the exterior domain {r ≥ r0}. The structure of the
maximal development and the Cauchy stability properties of general initial data in this setting are studied
in our companion paper (2017, arXiv: 1704.08685).

The statement of the main theorem is as follows: We construct a family of mirror radii r0ε > 0 and
initial data Sε, ε ∈ (0, 1], converging, as ε→ 0, to the AdS initial data S0 in a suitable norm, such that, for
any ε ∈ (0, 1], the maximal development (Mε, gε) of Sε contains a black hole region. Our proof is based
on purely physical space arguments and involves the arrangement of the null dust into a large number of
beams which are successively reflected off {r = r0ε} and I, in a configuration that forces the energy of a
certain beam to increase after each successive pair of reflections. As ε→ 0, the number of reflections
before a black hole is formed necessarily goes to +∞. We expect that this instability mechanism can be
applied to the case of more general matter fields.
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1. Introduction

Anti-de Sitter spacetime (Mn+1
AdS, gAdS), n ≥ 3, is the simplest solution of the Einstein vacuum equations

Ricµν − 1
2 Rgµν +3gµν = 0 (1-1)

with a negative cosmological constant 3. In the standard polar coordinate chart on MAdS, the AdS metric
takes the form

gAdS =−

(
1−

2
n(n− 1)

3r2
)

dt2
+

(
1−

2
n(n− 1)

3r2
)−1

dr2
+ r2gSn−1, (1-2)

where gSn−1 is the round metric on the (n−1)-dimensional sphere; see [Hawking and Ellis 1973].
Despite being geodesically complete, (MAdS, gAdS) fails to be globally hyperbolic. In particular, it can

be conformally identified with the interior of (R×Sn
+
, gE), where Sn

+
is the closed upper hemisphere of

Sn and gE is the metric

gE =−dt̄2
+

(
−

n(n− 1)
23

)
gSn . (1-3)

Through this identification, the time-like boundary

I n
= R× ∂Sn

+
' R×Sn−1 (1-4)

of (R×Sn
+
, gE) is naturally attached to (MAdS, gAdS) as a “conformal boundary at infinity”; see [Hawking

and Ellis 1973].
Maldacena [1998], Gubser, Klebanov, and Polyakov [Gubser et al. 1998] and Witten [1998] proposed

the AdS/CFT conjecture, suggesting a correspondence between certain conformal field theories defined
on I n (in the strongly coupled regime) and supergravity on spacetimes asymptotically of the form
(Mn+1

AdS × Sk, gAdS+ gSk ), where (Sk, gSk ) is a suitable compact Riemannian manifold of dimension k.
Following the introduction of this conjecture, asymptotically AdS spacetimes (i.e., spacetimes (M, g)
with an asymptotic region with geometry resembling that of (MAdS, gAdS) in the vicinity of I ) became a
subject of intense study in the high-energy physics literature; see, e.g., [Aharony et al. 2000; Hartnoll
2009; Ammon and Erdmenger 2015].

The correct setting for the study of the dynamics of asymptotically AdS solutions (M, g) to (1-1) is
that of an initial value problem with appropriate boundary conditions prescribed asymptotically on I. The
issue of the right boundary conditions on I leading to well-posedness for the resulting initial-boundary
value problem for (1-1) was first addressed by Friedrich [1995]. Well-posedness for more general boundary
conditions and matter fields in the spherically symmetric case was obtained in [Holzegel and Smulevici
2012; Holzegel and Warnick 2015]; see also [Holzegel et al. 2020; Friedrich 2014]. In general, most
physically interesting boundary conditions on I leading to a well-posed initial-boundary value problem
can be classified as either reflecting (for which an appropriate “energy flux” for g through I vanishes)
or dissipative (allowing for a nonvanishing outgoing “energy flux” for g through I ), with substantially
different global dynamics associated to each case; see the discussion in [Holzegel et al. 2020].

Dafermos and Holzegel [2006a], see also [Dafermos 2006], suggested the following conjecture:
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AdS instability conjecture. There exist arbitrarily small perturbations to the initial data of (MAdS, gAdS)

for the vacuum Einstein equations (1-1) with a reflecting boundary condition on I which lead to the
development of trapped surfaces and, thus, black hole regions. In particular, (MAdS, gAdS) is nonlinearly
unstable.

This conjecture was motivated in [Dafermos and Holzegel 2006a] by the study of asymptotically AdS
solutions to (1-1) with biaxial Bianchi IX symmetry in 4+ 1 dimensions, a symmetry class in which the
vacuum Einstein equations (1-1) reduce to a 1+1 hyperbolic system with nontrivial dynamics. This model
was introduced in [Bizoń et al. 2005]. In this setting, it was observed in [Dafermos and Holzegel 2006a]
that perturbations of the initial data of (MAdS, gAdS) (which, if not trivial, necessarily have strictly positive
ADM mass MADM, in view of [Gibbons et al. 1983]) cannot settle down to a horizonless static spacetime,
since MADM is conserved along I under reflecting boundary conditions and no static asymptotically AdS
solution of (1-1) with MADM > 0 exists (according to [Boucher et al. 1984]). This picture was supported
by results of [Anderson 2006].

The following remarks should be made regarding the statement of the AdS instability conjecture:

• The perturbations referred to in the conjecture are assumed to be small with respect to a norm for which
(1-1) is well-posed and (MAdS, gAdS) is Cauchy stable as a solution to (1-1) (otherwise, the conjecture is
trivial).1 For such perturbations, Cauchy stability implies that the “time” elapsed before the formation of
a trapped surface tends to +∞ as the size of the initial perturbation shrinks to 0.

• The AdS instability conjecture stands in contrast to the nonlinear stability of Minkowski space (R3+1, η),
in the case 3 = 0 (see [Christodoulou and Klainerman 1993]), or de Sitter space (MdS, gdS), in the
case 3> 0 (see [Friedrich 1986]). The proof of the nonlinear stability of (R3+1, η) and (MdS, gdS) is
based on a stability mechanism related to the fact that linear fields on those spacetimes satisfy sufficiently
strong decay rates. The decay rates are, however, borderline in the case 3= 0, and thus the stability of
(R3+1, η) is a deep fact depending on the precise nonlinear structure of the system (1-1), whereas, in
the case 3 > 0, the decay is exponential and stability can be inferred relatively easily. In contrast, on
(MAdS, gAdS), it can be shown that linear fields satisfying a reflecting boundary condition on I remain
bounded, but do not decay in time. It is precisely the lack of a sufficiently fast decay rate at the linear
level which is associated to the possibility of nonlinear instability.

• The prescription of a reflecting boundary condition on I is essential for the conjecture: for maximally
dissipative boundary conditions, it is expected that (MAdS, gAdS) is nonlinearly stable, in view of the
quantitative decay rates obtained for the linearized vacuum Einstein equations (and other linear fields)
around (MAdS, gAdS) by Holzegel, Luk, Smulevici, and Warnick [Holzegel et al. 2020].

• In the biaxial Bianchi IX symmetry class, all perturbations of (MAdS, gAdS) leading to the formation of
a trapped surface can be shown to possess a complete conformal infinity I and are expected to settle down
to a member of the Schwarzschild-AdS family; see [Dafermos and Holzegel 2006a; 2006b]. However,

1Here, Cauchy stability of (MAdS, gAdS) refers to Cauchy stability of the conformal compactification of (MAdS, gAdS)
(including, therefore, the time-like boundary I ); see the discussion in the next section.
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in the absence of any symmetry, the picture regarding the end state of the evolution of general vacuum
perturbations of (MAdS, gAdS) is complicated; see the discussion in the next section.

Starting from the pioneering work [Bizoń and Rostworowski 2011], a plethora of numerical and
heuristic results have been obtained in the direction of establishing the AdS instability conjecture, mainly
in the context of the spherically symmetric Einstein-scalar field system. See the discussion in Section 1A.

In this paper, we will prove the AdS instability conjecture in the simplest possible setting, namely
for the Einstein-massless Vlasov system in spherical symmetry, further reduced to the case when the
Vlasov field f is supported only on radial geodesics. We will call this system the spherically symmetric
Einstein-radial massless Vlasov system. In fact, this is a singular reduction; the resulting system is
equivalent to the spherically symmetric Einstein-null dust system, allowing for both ingoing and outgoing
dust. This system has been studied in the 3= 0 case in [Poisson and Israel 1990].

A serious problem with the spherically symmetric Einstein-null dust system is that it suffers from a
severe breakdown when the null dust reaches the center r = 0. In particular, in any reasonable initial-data
topology, the spherically symmetric Einstein-null dust system is not well-posed and (MAdS, gAdS) is not
a Cauchy stable solution of it. One way to restore the well-posedness of this system (a necessary step
for the study of the AdS instability conjecture in this setting) is to place an inner mirror at some radius
sphere {r = r0} with r0 > 0 and study the evolution of the system in the exterior region {r ≥ r0}. However,
fixing the mirror radius r0 results in a trivial global stability statement for (MAdS, gAdS), as initial data
perturbations with total ADM mass m̃ADM <

1
2r0 cannot form a black hole. Thus, it is necessary to allow

the radius r0 to shrink to 0 as the total ADM mass of the initial data shrinks to 0, in order to address the
AdS instability conjecture in this setting. See the discussion in Section 1B.

A nontechnical statement of our result is the following:

Theorem 1 (rough version). The AdS spacetime (M3+1
AdS, gAdS) is nonlinearly unstable under evolution

by the spherically symmetric Einstein-radial massless Vlasov system with a reflecting boundary condition
on I and an inner mirror, in the following sense.

There exists a one-parameter family of spherically symmetric initial data Sε, ε ∈ (0, 1], and a family of
inner mirror radii r = r0ε (with r0ε

ε→0
−−→ 0) satisfying the following properties:

(1) As ε→ 0, ‖Sε‖CS→ 0; i.e., the Sε converge to the initial data S0 of (MAdS, gAdS).

(2) For any ε > 0, the maximal future development (Mε, gε) of Sε contains a trapped surface and, thus,
a black hole region. Moreover, (Mε, gε) possesses a complete conformal infinity I.

The norm ‖ · ‖CS in 1 measures the concentration of the energy of Sε in annuli of width ∼ r0ε and has
the property that the radial Einstein-massless Vlasov system is well-posed and (MAdS, gAdS) is Cauchy
stable with respect to ‖ · ‖CS independently of the precise value of r0ε. See Figure 1.

For progressively more detailed statements of Theorem 1, see Sections 1C and 4. For further discussion
on the need of an inner mirror at r ∼ r0ε and its relation to natural dispersive mechanisms appearing in
other matter models, see Section 1B.
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r
=

r 0
ε

I

Figure 1. The family of initial data Sε that we construct for the proof of Theorem 1
gives rise to a large number of Vlasov beams, which are successively reflected off I
and the inner mirror at r = r0ε. The Cauchy stability statement for ‖ · ‖CS implies that
the number of reflections necessarily goes to +∞ as ε→ 0 (see the remark after the
statement of the AdS instability conjecture).

We should also note the following:

• Except for the condition r0ε < 2(MADM)ε referred to earlier, where (MADM)ε is the ADM mass of Sε,
there is considerable flexibility in the choice of the mirror radii r0ε in the statement of Theorem 1 and
this can be exploited to one’s advantage. For simplicity, we choose r0ε to satisfy r0ε ∼ (MADM)ε (see
also the discussion in Section 1C).

• While we do not address the issue of the end state of the evolution of Sε, it can be easily inferred from
our proof of Theorem 1 that the spacetimes (Mε, gε) settle down to a member of the Schwarzschild-AdS
family; see also [Moschidis 2017].

The trivial instability at r = 0 occurring for the spherically symmetric Einstein-null dust system is
absent in the case of smooth solutions to the general spherically symmetric Einstein-massless Vlasov
system (not reduced to the radial case). In particular, the smooth initial value problem for the spherically
symmetric Einstein-massless Vlasov system is well-posed, and placing an inner mirror at r = r0 > 0 is
not necessary.2 For a proof of the AdS instability in this setting, see our forthcoming [Moschidis 2018].

1A. Earlier numerical and heuristic works. Restricted under spherical symmetry, all solutions to the
Einstein vacuum equations (1-1) are locally isometric to a member of the Schwarzschild-AdS family; see
[Eiesland 1925]. Thus, any attempt to search for unstable vacuum perturbations of (MAdS, gAdS) for (1-1)
in 3+1 dimensions cannot be reduced to a problem for a 1+1 hyperbolic system (where the wide variety
of available tools would make the problem more tractable).3 For this reason, instead of (1-1), numerical

2In fact, well-posedness for the smooth initial value problem for the Einstein–Vlasov system also holds outside spherical
symmetry; see [Choquet-Bruhat 1971]. In the case 3= 0, the stability of Minkowski spacetime for the Einstein-massless Vlasov
system without any symmetry assumptions was recently established in [Taylor 2017].

3This problem is circumvented in 4+ 1 dimensions by the biaxial Bianchi IX symmetry class referred to earlier; see [Bizoń
et al. 2005].
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and heuristic works on the AdS instability have so far mainly focused on the Einstein-scalar field system
Ricµν − 1

2 Rgµν +3gµν = 8πTµν[ϕ],
�gϕ = 0,
Tµν[ϕ]

.
= ∂µϕ ∂νϕ−

1
2 gµν∂αϕ ∂αϕ.

(1-5)

The system (1-5), whose mathematical study in the case 3= 0 was pioneered in [Christodoulou 1999],
admits nontrivial dynamics in spherical symmetry, and spherically symmetric solutions to (1-5) share
many qualitative properties with general solutions of (1-1). Reduced under spherical symmetry in a
double null gauge (u, v) in 3+ 1 dimensions, i.e., a gauge where

g =−�2 du dv+ r2gS2, (1-6)

the system (1-5) takes the form

∂u∂v(r2)=− 1
2(1−3r2)�2,

∂u∂v log(�2)=
�2

2r2 (1+ 4�−2 ∂ur ∂vr)− 8π ∂uϕ ∂vϕ,

∂v(�
−2 ∂vr)=−4πr�−2(∂vϕ)

2,

∂u(�
−2 ∂ur)=−4πr�−2(∂uϕ)

2,

∂u∂v(rϕ)=−
�2
− 4 ∂ur ∂vr

4r2 · rϕ.

(1-7)

The well-posedness of the asymptotically AdS initial-boundary value problem for the system (1-7) with
reflecting boundary conditions on I was established by [Holzegel and Smulevici 2012].

Numerical results in the direction of establishing the AdS instability conjecture were first obtained by
Bizoń and Rostworowski [2011], who studied the evolution of spherically symmetric perturbations of
(MAdS, gAdS) for (1-5) in Schwarzschild-type coordinates. More precisely, [Bizoń and Rostworowski
2011] numerically simulated the evolution of initial data for (1-5) with ϕ initially arranged into small
amplitude wave packets. It was found that, for certain families of initial arrangements of this form (of
“size” ε), after a finite number of reflections on I (proportional to ε−2), the energy of the wave packets
becomes substantially concentrated, leading to a breakdown of the coordinate system associated with the
threshold of trapped surface formation.

Following [Bizoń and Rostworowski 2011], a vast amount of numerical and heuristic works have
been dedicated to the understanding of the global dynamics of perturbations of (MAdS, gAdS) for the
system (1-5); see, e.g., [Dias et al. 2012a; 2012b; Buchel et al. 2012; Maliborski and Rostworowski
2013; Balasubramanian et al. 2014; Craps et al. 2014; 2015; Bizoń et al. 2015; Dimitrakopoulos
et al. 2015; 2016; 2018; Green et al. 2015; Horowitz and Santos 2015; Dimitrakopoulos and Yang
2015]. In these works, the picture that arises regarding the long-time dynamics of generic spherically
symmetric perturbations is rather complicated: Apart from perturbations that lead to instability and
trapped surface formation [Dias et al. 2012b; Buchel et al. 2012], it appears that there exist certain
types of perturbations (dubbed “islands of stability”) which remain close to (MAdS, gAdS) for long
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times; see [Dias et al. 2012a; Maliborski and Rostworowski 2013; Balasubramanian et al. 2014; Dim-
itrakopoulos and Yang 2015]. Perturbations of the latter type might in fact occupy an open set in
the moduli space of spherically symmetric initial data for (1-5); see [Balasubramanian et al. 2014;
Dimitrakopoulos and Yang 2015]. The question of existence of open “corners” of initial data around
(MAdS, gAdS) leading to trapped surface formation has also been studied; see, e.g., [Dimitrakopoulos
et al. 2015].

Another interesting problem in this context is the characterization of the possible end states of the
evolution of unstable perturbations of (MAdS, gAdS). Holzegel and Smulevici [2013b] established that
the Schwarzschild-AdS spacetime (MSch, gSch) is an asymptotically stable solution of the system (1-5)
in spherical symmetry, with perturbations decaying at an exponential rate.4 This result supports the
expectation that all spherically symmetric perturbations of (MAdS, gAdS) for the system (1-5) leading
to the formation of a trapped surface eventually settle down to a member of the Schwarzschild-AdS
family; see [Dafermos and Holzegel 2006a; 2006b]. However, beyond spherical symmetry, Holzegel and
Smulevici [2013a; 2014] showed that solutions to the linear scalar wave equation

�gSchϕ = 0 (1-8)

on (MSch, gSch) (and, more generally, on Kerr-AdS) decay at a slow (logarithmic) rate, which is insufficient
in itself to yield the nonlinear stability of (MSch, gSch) (see our remark below the statement of the AdS
instability conjecture). Thus, [Holzegel and Smulevici 2014] conjectured that (MSch, gSch) is nonlinearly
unstable. On the other hand, based on a detailed analysis of quasinormal modes on (MSch, gSch), Dias,
Horowitz, Marolf, and Santos [Dias et al. 2012a] suggested that sufficiently regular, nonlinear perturbations
of (MSch, gSch) still remain small, at least for long times. As a result, the picture regarding the end state
of the evolution of generic perturbations of (MAdS, gAdS) outside spherical symmetry remains unclear;
see also [Horowitz and Santos 2015; Dias and Santos 2016; Rostworowski 2017].

Following [Bizoń and Rostworowski 2011], the bulk of heuristic works have implemented a fre-
quency space analysis in the study of the AdS instability conjecture. A notable exception is the work
of Dimitrakopoulos, Freivogel, Lippert, and Yang [Dimitrakopoulos et al. 2015], where a physical
space mechanism possibly leading to instability for the system (1-7) is suggested. We will revisit the
mechanism of [Dimitrakopoulos et al. 2015] and compare it with the results of this paper at the end of
Section 1D.

1B. The Einstein-null dust system in spherical symmetry. A spherically symmetric model for (1-1)
which is even simpler than (1-5) is the Einstein-massless Vlasov system; see [Andréasson 2011; Rein
1995]. The case where the Vlasov field is supported only on radial geodesics is a singular reduction of
this system which is equivalent to the Einstein-null dust system, allowing for both ingoing and outgoing
dust; see [Rendall 1997]. This system was studied in the seminal work [Poisson and Israel 1990] on mass

4A similar result can presumably also be deduced for the vacuum Einstein equations (1-1) reduced under the biaxial Bianchi IX
symmetry in 4+ 1 dimensions, following by an amalgamation of the proofs of [Holzegel 2010] and [Holzegel and Smulevici
2013b].
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inflation. In 3+ 1 dimensions, it takes the form (in double null coordinates (u, v))

∂u∂v(r2)=− 1
2(1−3r2)�2,

∂u∂v log(�2)=
�2

2r2 (1+ 4�−2 ∂ur ∂vr),

∂v(�
−2 ∂vr)=−4πr−1�−2τ̄ ,

∂u(�
−2 ∂ur)=−4πr−1�−2τ,

∂u τ̄ = 0,
∂vτ = 0.

(1-9)

In certain cases, the Einstein-null dust system (1-9) can be formally viewed as a high-frequency limit
of the Einstein-scalar field system (1-7) (as was already discussed in [Poisson and Israel 1990]): Setting

τ
.
= r2(∂uϕ)

2, τ̄
.
= r2(∂vϕ)

2

in (1-5) and dropping all lower-order terms from the wave equation for ϕ, one formally obtains (1-9)
in the region where ∂uϕ ∂vϕ is negligible, i.e., outside the intersection of the supports of τ, τ̄ . While
this formal limiting procedure can be rigorously justified away from r = 0, the dynamical similarities
between (1-7) and (1-9) break down close to r = 0. A fundamental difference between these systems
is the fact that, while small-data asymptotically AdS solutions to (1-7) satisfying a reflecting boundary
condition at I remain regular (and “small”) for large times, all nontrivial solutions to the system (1-9)
break down once the support of τ̄ reaches the axis γ (i.e., the time-like portion of {r = 0}), independently
of the boundary conditions imposed at I. This is an ill-posedness statement for (1-9), which needs to be
addressed before any attempt to study the AdS instability conjecture in the setting of (1-9).

We will now proceed to discuss this difference of (1-7) and (1-9) in more detail.

Cauchy stability for the Einstein-scalar field system. The following Cauchy stability result holds for the
system (1-7):

Proposition 1 (Cauchy stability for (1-7); see [Holzegel and Smulevici 2012]). For a suitable initial-
data norm ‖ · ‖initial, (MAdS, gAdS) is Cauchy stable as a solution of the system (1-7) with reflecting
boundary conditions on I. That is to say, for all fixed times T∗ > 0, any perturbation of the initial data of
(MAdS, gAdS) which is small enough (when measured in terms of ‖ · ‖initial) with respect to T∗ gives rise to
a solution of (1-7) which is regular and close to (MAdS, gAdS) for times up to T∗.

Remark. In the statement of Proposition 1, Cauchy stability of (MAdS, gAdS) refers to stability over
fixed compact subsets of the conformal compactification of (MAdS, gAdS), such as subsets of the form
{0≤ t ≤ T∗} in the (t, r, ϑ, ϕ) coordinate chart. Any such subset contains, in particular, a compact subset
of the time-like boundary I.

The initial-data norm ‖ ·‖initial, for which the Cauchy stability of (MAdS, gAdS) follows from [Holzegel
and Smulevici 2012], is a higher-order, suitably weighted Ck norm. However, this is not the only norm
for which (MAdS, gAdS) can be shown to be Cauchy stable: An additional, highly nontrivial example of
such a norm is the bounded variation norm of [Christodoulou 1993] (modified with suitable r-weights
near r =∞). Similar low-regularity norms will also play an important role in this paper (see Section 1B).
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Assuming, for simplicity, that initial data are prescribed on the outgoing null hypersurface corresponding
to u = 0, for 0≤ v ≤ v∗, a necessary condition for Cauchy stability of (MAdS, gAdS) for the system (1-7)
with respect to an initial-data norm ‖ · ‖initial is that, for any given R0 > 0, ‖ · ‖initial controls the quantity

M
.
= sup

0≤v1<v2≤v∗
r(0,v2)/r(0,v1)<3/2

r(0,v2)≤R0

m̃(0, v2)− m̃(0, v1)

(r(0, v2)− r(0, v1))|log(r(0, v2)/r(0, v1)− 1)|
, (1-10)

where m̃ is the renormalized Hawking mass, defined in terms of the Hawking mass m,

m .
=

1
2r(1− 4�−2 ∂ur ∂vr), (1-11)

by the relation
m̃ .
= m− 1

63r3. (1-12)

This is a consequence of the fact that, when M exceeds a certain threshold (depending on R0), there
exists a point p = (u†, v†) in the development of the initial data, with 0< u† < v∗, such that

2m
r
(u†, v†) > 1, (1-13)

a result proven in [Christodoulou 1991].5 The bound (1-13) implies that

∂ur(u†, v†) < 0, ∂vr(u†, v†) < 0, (1-14)

i.e., that the symmetry sphere associated to (u†, v†) is a trapped surface. In particular, (u†, v†) is contained
in a black hole.6

As a corollary, it follows that the total ADM mass of the initial data, though expressible as a coercive
functional on the space of initial data of (1-7), does not yield a norm for which (MAdS, gAdS) is Cauchy
stable for (1-7), since the ADM mass manifestly fails to control (1-10).

Break down at r = 0 and “trivial” Cauchy instability for the Einstein-null dust system. The following
instability result holds for the system (1-9) (see [Moschidis 2017]):

Proposition 2 (Cauchy instability for (1-9)). Any globally hyperbolic spherically symmetric solution
(M, g; τ, τ̄ ) of (1-9) with nonempty axis γ “breaks down” at the first point when a radial geodesic in the
support of τ̄ reaches γ : Beyond that point, (M, g; τ, τ̄ ) is C0 inextendible as a spherically symmetric
solution to (1-9). As a result, (MAdS, gAdS) is not a Cauchy stable solution of (1-9) for any “reasonable”
initial-data topology.

For the precise definition of the notion of C0 inextendibility as a spherically symmetric solution to
(1-9), see [Moschidis 2017]. Note that this is a stronger statement than (M, g; τ, τ̄ ) breaking down as a
smooth solution of (1-9). We should also note the following regarding Proposition 2:

5The result of [Christodoulou 1991] was restricted to the case 3= 0, but the proof can be readily modified to include the
case 3< 0.

6We should remark that (1-14) follows from (1-13) under the assumption that ∂ur < 0 (which always holds provided, initially,
∂ur |u=0 < 0, see [Christodoulou 1993]).
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• Proposition 2 holds independently of the value of the cosmological constant3. In particular, Minkowski
spacetime (R3+1, η) is not Cauchy stable for (1-9) with 3= 0 for any “reasonable” initial-data topology.

• Proposition 2 yields a uniform upper bound on the time of existence of solutions (M, g) to (1-9) for
any initial data set for which τ̄ is not identically equal to 0, depending only on the distance of the initial
support of τ̄ from the axis and, thus, independent of the proximity of the initial data to the trivial data (in
any reasonable initial-data norm). We should also highlight that the instability of Proposition 2 has nothing
to do with trapped surface formation: Up to the first retarded time when a radial geodesic in the support of
τ̄ reaches γ , any solution (M, g) to (1-9) arising from smooth initial data close to (MAdS, gAdS) remains
smooth and close to (MAdS, gAdS), and (M, g) contains no trapped surface. In fact, in this case, despite
being C0 inextendible as a globally hyperbolic spherically symmetric solution to (1-9), (M, g) is globally
C∞-extendible as a spherically symmetric Lorentzian manifold; see [Moschidis 2017].

• The Cauchy stability statement for (MAdS, gAdS) for the system (1-7) stated in Proposition 1 can be
informally interpreted as the result of a natural dispersive mechanism close to the axis γ displayed by the
system (1-7), which does not allow the energy of ϕ to concentrate on scales smaller than m̃ in O(1) time,
provided a suitable initial norm of ϕ (controlling at least (1-10)) is small enough. No such mechanism is
present for the system (1-9), as is illustrated by Proposition 2.

Resolution of the “trivial” instability of (1-9) through an inner mirror. In order to turn the spherically
symmetric Einstein-null dust system (1-9) into a well-posed, Cauchy-stable system (a necessary step
for converting (1-9) into an effective model of the vacuum Einstein equations (1-1)), it is necessary to
explicitly add to (1-9) a mechanism that prevents the breakdown at r = 0 described by Proposition 2, so
that, moreover, an analogue of Proposition 1 holds for (1-9). This can be achieved by placing an inner
mirror at r = r0 > 0, i.e., by restricting (1-9) on {r ≥ r0}, for some r0 > 0, and imposing a reflecting
boundary condition on the portion γ0 of the set {r = r0} which is time-like.

Remark. The reflecting boundary condition on γ0 can be motivated by the fact that, for smooth spherically
symmetric solutions (M, g;ϕ) to (1-5), the function ϕ, viewed as a function on the quotient of (M, g)
by the spheres of symmetry, satisfies a reflecting boundary condition on the axis.

The well-posedness and the properties of the maximal development for the system (1-9) with reflecting
boundary conditions on I and γ0 are addressed in the companion paper [Moschidis 2017]. The following
result is established in that paper:

Theorem 2 (well-posedness for (1-9) with an inner mirror). For any r0> 0 and any smooth asymptotically
AdS initial data set (r, �2, τ, τ̄ )|u=0 on u = 0, there exists a unique smooth maximal future development
(r, �2, τ, τ̄ ) on {r ≥ r0}, solving (1-9) with reflecting boundary conditions on I and γ0, where r |γ0 = r0

and γ0 coincides with the portion of the curve {r = r0} which is time-like (fixing the gauge freedom by
imposing a reflecting gauge condition on both I and γ0). For this development, I is complete and {r = r0}

is time-like in the past of I (see Figure 2).
In the case when the future event horizon H+ is nonempty, it is smooth and future complete. A necessary

condition for H+ to be nonempty is the existence of a point (u†, v†) where (1-13) holds. If the total mass
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u =
0

HU

γ0

Ir
=

r 0

r = r0

Figure 2. Schematic depiction of the domain on which the maximal future development
(r, �2, τ, τ̄ ) of a smooth initial data set on u = 0 (with reflecting boundary conditions on
I and γ0) is defined. A gauge condition ensures that I and γ0 are straight vertical lines.
Conformal infinity I is always complete in this setting. In the case when the future event
horizon H+ is nonempty, it is smooth and has infinite affine length. In this case, apart
from the mirror γ0, the boundary of the domain has a space-like portion on which {r = r0}.

m̃|I and the mirror radius r0 satisfy
2m̃|I

r0
≤ 1− 1

33r2
0 , (1-15)

then necessarily H+ =∅.

For a more detailed statement of Theorem 2, see Section 3 and [Moschidis 2017].
In view of the fact that H+ =∅ in the case when the total mass m̃|I and the mirror radius r0 satisfy

(1-15), in order to address the AdS instability conjecture for the system (1-9) with reflecting boundary
conditions on I and γ0, it is necessary to allow r0 to shrink to 0 with the size of the data. Thus,
addressing the AdS instability conjecture in this setting requires establishing a Cauchy stability statement
for (MAdS, gAdS) which is independent of the precise value of the mirror radius r0. This is the statement
of the following result, proved in our companion paper [Moschidis 2017]:

Theorem 3 (Cauchy stability for (1-9) uniformly in r0). Given ε > 0, u∗ > 0, there exists a δ > 0 such
that the following statement holds: for any r0 > 0 and any initial data set (r, �2, τ, τ̄ )|u=0 satisfying

‖(r, �2, τ, τ̄ )‖u=0

.
= sup

v̄

∫
u=0

τ̄ (0, v)
|ρ(0, v)− ρ(0, v̄)| + tan−1(

√
−3r0)

√
−3 dv

∂vρ(0, v)
+ sup

u=0

(∣∣∣∣(1−
2m̃
r

)−1

− 1
∣∣∣∣+√−3m̃

)
≤ ε, (1-16)

where

ρ(0, v) .= tan−1(
√
−3r)(0, v), (1-17)



1682 GEORGIOS MOSCHIDIS

the corresponding solution (r, �2, τ, τ̄ ) to (1-9) with reflecting boundary conditions on I and γ0 will
satisfy

sup
0≤ū≤u∗

‖(r, �2, τ, τ̄ )‖u=ū ≤ δ. (1-18)

For a more detailed statement of Theorem 3, see Section 3 and [Moschidis 2017].
Notice that the norm (1-16) vanishes only for the trivial initial data (r, �2, 0, 0). Informally, Theorem 3

implies that, if the energy of the initial data concentrated on scales proportional to the mirror radius r0 is
small enough, then the energy of the solution to (1-9) (with reflecting boundary conditions on I and γ0)
will remain similarly dispersed for times less than any given constant. In particular, no trapped surface
can form in this timescale if ε is chosen sufficiently small.

In Section 3, we will also present a Cauchy stability statement for general solutions of (1-9) with
reflecting boundary conditions on I and γ0, which will be used in the proof of Theorem 1 (see Theorem 3.6).

1C. Statement of Theorem 1: the nonlinear instability of AdS. According to Theorem 3, a Cauchy
stability statement holds for (MAdS, gAdS) for time intervals which are independent of the precise value
of the mirror radius r0, depending only on the smallness of the initial-data norm (1-16). As a result, it is
possible to study the AdS instability conjecture for the system (1-9) with reflecting boundary conditions
on I and γ0, for perturbations which are small with respect to (1-16), allowing the mirror radius r0 to
shrink with the size of the data. In this paper, we will prove the following result:

Theorem 1 (more precise version). There exists a family of positive numbers r0ε (satisfying r0ε
ε→0
−−→0)

and smooth initial data (r, �2, τ, τ̄ )(ε)|u=0 for the system (1-9) satisfying the following properties:

(1) In the norm ‖ · ‖u=0 defined by (1-16),

‖(r, �2, τ, τ̄ )(ε)‖u=0
ε→0
−−→ 0. (1-19)

(2) For any ε > 0, the maximal development (r, �2, τ, τ̄ )(ε) of (r, �2, τ, τ̄ )(ε)|u=0 for the system (1-9)
with reflecting boundary conditions on I and γ0, r |γ0 = r0ε contains a trapped sphere; i.e., there
exists a point (uε, vε) such that

2m(ε)

r (ε)
(uε, vε) > 1. (1-20)

Thus, in view of Theorem 2, (r, �2, τ, τ̄ )(ε) contains a nonempty, smooth and future complete event
horizon H+ and a complete conformal infinity I.

For the definitive statement of Theorem 1, see Section 4. The following remarks should be made
concerning Theorem 1:

• In view of the Cauchy stability of (MAdS, gAdS) with respect to (1-16) (see Theorem 3), the time7

required to elapse before (1−2m(ε)/r (ε)) becomes negative necessarily tends to +∞ as ε→ 0. However,
our proof yields a quantitative upper bound (increasing to +∞ as ε→ 0) on the time of trapped sphere
formation for the development of (r, �2, τ, τ̄ )(ε)|u=0 (see (4-6)).

7Where time is measured with respect to the (dimensionless) coordinate function t̄ =
√
−3(u+ v).
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• In view of the fact that H+ =∅ when (1-15) holds, in order for (r, �2, τ, τ̄ )(ε) to satisfy both (1-19)
and (1-20), it is necessary that r0ε→ 0 as ε→ 0, at a rate which is at least as fast as that of 2m̃(ε)

|I ,8 i.e.,

r0ε ≤ 2m̃(ε)
|I . (1-21)

In fact, we choose the family r0ε, (r, �2, τ, τ̄ )(ε)|u=0 of Theorem 1 to saturate the bound (1-21) in the
limit ε→ 0; i.e.,

lim
ε→0

r0ε

2m̃(ε)|I
= 1. (1-22)

For the proof of Theorem 1, (1-22) is not essential and can be relaxed; however, it is fundamental for our
proof that r0ε is bounded from below by some small multiple of m̃(ε)

|I .

• It follows from the proof of Theorem 2 that, in the case 3 = 0, Minkowski spacetime (R3+1, η) is
globally stable (for the system (1-9) with reflecting boundary conditions on the inner mirror {r = r0}) to
initial data perturbations which are small with respect to the norm (1-16), independently of the precise
choice of r0. This fact further justifies the choice of the matter model and the norm (1-16) as a setting for
establishing the AdS instability conjecture.

• The proof of Theorem 1 also applies in the case 3= 0 when placing an outer mirror at r = R0� r0 (in
addition to the inner mirror at r = r0), i.e., restricting the solutions of (1-9) in the region {r0 ≤ r ≤ R0}

and imposing reflecting boundary conditions on both {r = r0} and {r = R0}. This is in accordance with
the numerical results of [Buchel et al. 2012] for the system (1-5).

• It can be readily inferred by Cauchy stability (see Theorem 3.6 in Section 3D) that, for any yε
.
=

(r, �2, τ, τ̄ )(ε)|u=0 in the family of initial data of Theorem 1, there exists an open neighborhood Wε of
initial data around yε such that, for all y ∈Wε, the maximal future development of y also contains a
trapped surface. In particular, the set of initial data leading to trapped surface formation is open. An even
stronger genericity statement would be the existence of an open instability corner in the space of initial
data around (MAdS, gAdS) (see [Dimitrakopoulos et al. 2015]), i.e., the existence of a c1 > 0 such that
{y : dist(y, yε)≤ c1‖yε‖u=0} ⊂Wε for all ε > 0 (with dist( · , · ) being the distance function associated to
(1-16) for r0 = r0ε). While we have not addressed the issue of genericity of the unstable initial data in
this paper, we expect that the proof of Theorem 1 can be adapted to yield the existence of an instability
corner around (MAdS, gAdS).

• A plethora of numerical works, see, e.g., [Bizoń and Rostworowski 2011; Buchel et al. 2012; Bizoń
et al. 2015; Dimitrakopoulos et al. 2015], suggest that, in the case of the Einstein-scalar field system
(1-5), for families of initial data (ϕ(0)ε , ϕ

(1)
ε ) for the scalar field ϕ of the form

(ϕ(0)ε , ϕ
(1)
ε )= (εϕ

(0), εϕ(1)) (1-23)

(where (ϕ(0), ϕ(1)) is a fixed initial profile), trapped surface formation occurs at time ∼ ε−2. However,
any rigorous formulation of this statement for general families of initial data, not necessarily of the form
(1-23), requires fixing an initial-data norm for which the initial data size is measured, with different

8Note that the renormalized Hawking mass m̃(ε) is constant on I when imposing a reflecting boundary condition.
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u =
0

r
=

r 0
ε

r
=
+
∞

Figure 3. The initial data (r, �2, τ, τ̄ )(ε)|u=0 give rise to a bundle of ingoing beams
which are successively reflected off {r = r0ε} and I = {r =+∞}. While the number of
beams goes to infinity as ε→ 0, for simplicity, we only depict here a bundle of three
beams. As long as the total width of the bundle of beams remains small, the interaction
set naturally splits into a part which lies close to {r = r0ε} and a part near I. We have
also marked with a red dashed line the beam lying (initially) to the future of the rest.

choices of (scale-invariant) norms possibly leading to different time scales of trapped surface formation
for initial data of size ∼ ε. For this reason, given that the initial data (τ, τ̄ )(ε)|u=0 in Theorem 1 cannot be
viewed as a rescaling of a fixed profile of the form (1-23), we have not tried to optimize the time required
for trapped surface formation in Theorem 1 in terms of the initial norm (1-16).

1D. Sketch of the proof and remarks on Theorem 1. We will now proceed to sketch the main arguments
involved in the proof of Theorem 1.

Construction of the initial data. The family of initial data (r, �2, τ, τ̄ )(ε)|u=0 in Theorem 1 is chosen so
that its total ADM mass m̃(ε)

|I and the mirror radius r0ε satisfy (for ε� 1)

r0ε, m̃(ε)
|I ∼ ε(−3)

−1/2. (1-24)

In particular, fixing a function h(ε) in terms of ε such that

ε� h(ε)� 1,

the initial data (r, �2, τ, τ̄ )(ε)|u=0 are constructed so that the null dust initially forms a bundle of narrow
ingoing beams emanating from the region r ∼ 1; see Figure 3. The number of the beams is chosen
to be large, i.e., of order ∼ (h(ε))−1, and the beams are initially separated by gaps of r-width ∼
(h(ε))−1ε(−3)−1/2. The large number of beams and their initial separation are chosen so that

‖(r, �2, τ, τ̄ )(ε)‖u=0 ∼ h(ε) ε→0
−−→ 0. (1-25)
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Remarks on the configuration of the null dust beams. As the solution (r, �2, τ, τ̄ )(ε) arising from the
initial data set (r, �2, τ, τ̄ )(ε)|u=0 evolves according to (1-9), the null dust beams are reflected successively
off γ0 = {r = r0ε} and I, as depicted in Figure 3. The beams separate the spacetime into vacuum regions
(the larger rectangular regions between the beams in Figure 3), where the renormalized Hawking mass
m̃(ε) is constant (recall the definitions of the Hawking mass and the renormalized Hawking mass by (1-11)
and (1-12), respectively). The interaction set of the beams consists of all the points in the spacetime
where two different beams intersect (depicted in Figure 3 as the union of all the smaller dark rectangles,
lying in the intersection of any two beams). As long as the total width of the bundle of beams remains
small, the interaction set can be split into two sets, one consisting of the intersections occurring close to
the mirror γ0 and one consisting of the intersections near I (see Figure 3).

Every beam is separated by the interaction set into several components. To each such component, we
can associate the mass difference Dm̃ between the two vacuum regions which are themselves separated
by that beam component. The mass difference Dm̃ measures the energy content of each beam component
and, in view of the nonlinearity of the system (1-9), it is not necessarily conserved along the beam after
an intersection with another beam. Precisely determining the resulting change in the mass difference after
the interaction of two beams will be the crux of the proof of Theorem 1.

Beam interactions and change in mass difference. In Figure 4, the region around the intersection of an
incoming null dust beam ζin and an outgoing null dust beam ζout is depicted. This region is separated
by the beams into four vacuum subregions R1, . . . ,R4 with associated renormalized Hawking masses
m̃1, . . . , m̃4 (see Figure 4). Before the intersection of the two beams, the mass difference of the incoming
beam ζin is

D−m̃ = m̃3− m̃4, (1-26)

while the mass difference of the outgoing beam ζout is

D−m̃ = m̃4− m̃2. (1-27)

After the intersection of the beams, the mass differences associated to ζin and ζout become

D+m̃ = m̃1− m̃2, (1-28)

D+m̃ = m̃3− m̃1, (1-29)
respectively.

Assuming that
2m
r
< 1, (1-30)

∂ur < 0< ∂vr, (1-31)

we can readily obtain the following differential relations for r and m̃ from (1-9):

∂u log
(

∂vr
1− 2m/r

)
=−

4π
r

τ

−∂ur
,

∂v log
(
−∂ur

1− 2m/r

)
=

4π
r

τ̄

∂vr

(1-32)
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R1

R4

R3R2

ζinζout

Figure 4. The region in the (u, v)-plane around the intersection of an incoming beam
ζin and an outgoing beam ζout. The regions Ri , i = 1, . . . , 4, are vacuum and the
renormalized Hawking mass m̃ is constant (and equal to m̃i ) on each of the Ri ’s.

and

∂um̃ =−2π
(

1− 2m/r
−∂ur

)
τ,

∂vm̃ = 2π
(

1− 2m/r
∂vr

)
τ̄ .

(1-33)

We will also assume that:

• The null dust beams ζin and ζout are sufficiently narrow so that, on their intersection ζin ∩ ζout, r can
be considered nearly constant:9

sup
ζin∩ζout

r − inf
ζin∩ζout

r � ε(−3)−1/2. (1-34)

• D+m̃−D−m̃ and D+m̃−D−m̃ are relatively small.10

Then, (1-32)–(1-33), combined with the conservation laws

∂u τ̄ = 0, ∂vτ = 0,

yield the following relations for the change in the mass difference associated to ζin and ζout after their
intersection:

D+m̃ =D−m̃ · exp
(

2
r

D−m̃
1− 2m2/r

+Errin

)
, (1-35)

D+m̃ =D−m̃ · exp
(
−

2
r

D−m̃
1− 2m2/r

+Errout

)
, (1-36)

where the error terms Errin, Errout are negligible compared to the other terms in (1-35), (1-36) (see also
the relations (6-51) and (6-52) in Section 6A2). In particular, whenever an ingoing and an outgoing null
dust beam intersect, the mass difference of the ingoing beam increases, while that of the outgoing beam
decreases.

9This is possible in view of the fact that, for solutions (r, �2, τ, τ̄ ) to (1-9), r remains uniformly continuous in the limit when
τ , τ̄ tend to δ-functions in the u-, v-variables, respectively.

10Note that, necessarily, D+m̃−D−m̃ =−(D+m̃−D−m̃).
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Remark. Notice that, according to (1-35) and (1-36), the change in the mass difference of each of the
beams ζin, ζout after their intersection can be estimated in terms of the mass difference of the other beam
and the value of r and inf(1− 2m/r) in the region of intersection. A relation for the change of the mass
difference of two infinitely thin, intersecting null dust beams was also obtained in [Poisson and Israel 1990].

The instability mechanism. Let us now consider, among the null dust beams arising from the initial data
(r, �2, τ, τ̄ )(ε)|u=0, the beam ζ0 which initially lies to the future of the rest (this is the beam marked with
a dashed line in Figure 3). Defining

Eζ0[t∗]
.
=mass difference associated to ζ0 at ζ0 ∩ {u+ v = t∗}, (1-37)

we will examine how Eζ0 changes along ζ0, after each successive intersection of ζ0 with the rest of the
beams:

(1) Starting from u = 0 up to the first reflection of ζ0 off the inner mirror γ0, the beam ζ0 is ingoing and
intersects all the other beams after they are reflected off γ0. Thus, applying (1-35) successively at each
intersection of ζ0 with an outgoing beam, we infer that Eζ0 increases at this step by a multiplicative factor

Ain ≥ exp
(

2(m̃(ε)
|I − Eζ0 |u=0)

rγ0

(1− ε)
)
, (1-38)

where rγ0 is the value of r at the region of intersection of ζ0 with the first beam which is reflected off
{r = r0ε} (note that rγ0 is also the r -width of the bundle of beams when ζ0 first reaches the mirror γ0). In
obtaining (1-38), we have assumed that

r0ε� rγ0 � (−3)−1/2, m̃(ε)
|I ∼ r0ε, Eζ0 |u=0� m̃(ε)

|I

(where the latter holds in view of the way the initial data where chosen).

(2) The mass difference Eζ0 right before and right after the reflection of ζ0 off γ0 is the same, in view of
the reflecting boundary conditions on γ0.

(3) From its first reflection off γ0 up to its first reflection off I, the beam ζ0 is outgoing and intersects
(again) the rest of the beams in the region close to I (after these beams are reflected off I ). Applying
(1-36) successively at each intersection, we infer that Eζ0 decreases at this step, being multiplied by a
factor

1> Aout ≥ exp
(
−

2(m̃(ε)
|I − Eζ0 |u=0)

rI

(
1(

1− ε− 1
33r2

I
) + ε)), (1-39)

where rI is the value of r at the region of intersection of ζ0 with the first beam which is reflected off I.
In obtaining (1-39), we have assumed that rI � (−3)−1/2 (which holds in view of the way the initial
data where chosen).

(4) The mass difference Eζ0 right before and right after the reflection of ζ0 off I is the same, in view of
the reflecting boundary conditions on I.
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Therefore, provided rγ0 � (−3)−1/2
� rI , we infer that, after the first reflection of ζ0 off γ0 and I,

the mass difference Eζ0 increases by a factor

Atot = Ain · Aout ≥ exp
(

2(m̃(ε)
|I − Eζ0 |u=0)

rγ0

(1− ε)−
2(m̃(ε)

|I − Eζ0 |u=0)

rI

(
1(

1− ε− 1
33r2

I
) + ε))

≥ exp
(

m̃(ε)
|I − Eζ0 |u=0

rγ0

)
. (1-40)

The steps (1)–(4) in the above procedure can then be repeated for each successive reflection of ζ0 off γ0

and I, as long as

r0ε� rγ0;n � (−3)−1/2
� rI;n, (1-41)

where rγ0;n, rI;n are the values of rγ0, rI;n after the n-th reflection of ζ0 on γ0 and I (note that rγ0;n is
also the r -width of the bundle of beams at the n-th reflection of ζ0 off γ0). Thus, as long as (1-41) holds,
denoting with Eζ0;n the value of Eζ0 at the n-th reflection of ζ0 off γ0, the following inductive bound holds:

Eζ0;n ≥ Atot;n · Eζ0;n−1, (1-42)

where the multiplicative factor

Atot;n
.
= exp

(
m̃(ε)
|I − Eζ0;n

rγ0;n

)
(1-43)

is always greater than 1, since Eζ0;n < m̃(ε)
|I (see also the relation (6-13) in Section 6A). This is the main

mechanism driving the instability, and the proof of Theorem 1 is aimed at showing that, for some large
enough n(ε) depending on ε,

n(ε)∏
n=0

Atot;n >
r0ε

2Eζ0 |u=0
. (1-44)

Inequality (1-44) implies (in view of (1-42)) that

2Eζ0;n(ε)

r0ε
> 1, (1-45)

i.e., that, after the n(ε)-th successive reflection of ζ0 on γ0 and I, the mass difference Eζ0 has become so
large that a trapped surface (in particular, a point where 2m/r > 1) necessarily forms before ζ0 reaches the
mirror γ0 = {r = r0ε} for the (n(ε)+1)-th time (provided ζ0 was initially chosen sufficiently “narrow”).11

Control of rγ0;n and the final step before trapped surface formation. The main obstacle to establishing
(1-44) (and, thus, Theorem 1) is the following: Once Eζ0 exceeds c · r0ε for some fixed (small) c > 0,
the total r -width of the bundle of beams close to γ0, i.e., rγ0;n in (1-43), increases after each successive

11We should remark that, once a trapped surface S has formed, {r = r0ε} ∩ J+(S) (where J+(S) is the future of S) will be
space-like and we will not study the evolution of the spacetime beyond {r = r0ε} ∩ J+(S). In particular, no more reflections of
the beams will occur in the future of S. See Theorem 2.
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reflection off γ0 and I. Thus, the multiplicative factor (1-43) decreases as n grows. The increase in rγ0;n

is more dramatic when the spacetime is close to having a trapped surface, i.e., when 2m/r is close to 1.12

Controlling the growth of rγ0;n is achieved by establishing an inductive bound of the form

rγ0;n ≤ rγ0;n−1 ·

(
1+C0

r0ε

rγ0;n−1

(∣∣∣∣log
(

1−
2Eζ0;n−1

r0ε

)∣∣∣∣+ 1
))

(1-46)

(see also the relation (6-14) in Section 6A). Obtaining the bound (1-46) is one of the most demanding
parts in the proof of Theorem 1 and requires controlling the r -distance r (1)γ0;n of ζ0 from the second-to-top
beam ζ1 at the n-th reflection off γ0 for all n ≤ n(ε), i.e., establishing a bound of the form

r (1)γ0;n

r0ε
≥ 1+ c0

(
Eζ0;0

r0ε

)
. (1-47)

(see (6-12) in Section 6A). The bound (1-47) is in turn obtained by establishing an inductive bound of the
form

log
(r (1)γ0;n−1

r (1)γ0;n

)
≤ C0 log

(
Eζ0;n

Eζ0;n−1

)
, (1-48)

estimating the decrease of r (1)γ0;n by the increase of Eζ0;n at each reflection (see (6-129) in Section 6A2).
The bound (1-47) is inferred from (1-48), in view of the fact that Eζ0;n ≥ Eζ0;n−1 and

n(ε)∑
n=1

log
(

Eζ0;n

Eζ0;n−1

)
= log

(
Eζ0;n(ε)

Eζ0;0

)
≤ log

(
r0ε

2Eζ0;0

)
. (1-49)

At the level of the initial data, obtaining (1-46) and (1-48) requires introducing a certain hierarchy for the
scales of the r-distances and mass differences associated to the beams initially (see (5-2) and (5-3) in
Section 5A).

Combining (1-42) and (1-46), we can show that there exists a large n(ε) such that, after n(ε) reflections
of ζ0 off γ0 (but not earlier!), we have

2Eζ0;n(ε)

r0ε
> 1− c(ε), (1-50)

where c(ε)� h(ε) is a fixed function of ε. Note that, compared to (1-45), (1-50) is a slightly weaker
bound, which just stops short of implying that a trapped surface is formed. In order to complete the proof
of Theorem 1, we therefore have to consider two different scenarios for Eζ0;n(ε):

Case 1: In the case when (1-45) holds, the proof of Theorem 1 follows readily, since (1-45) implies that,
before ζ0 reaches {r = r0ε} for the (n(ε)+1)-th time, a point arises where 2m/r > 1.

12The example of two outgoing null rays in the exterior of Schwarzschild-AdS, with mass M� (−3)−1/2, serves to illustrate
this phenomenon: The r -separation of two rays emanating from the region close to the future event horizon H+, where 2m/r ∼ 1,
increases dramatically by the time they reach the region r ∼ (−3)−1/2. This is, of course, nothing other than the celebrated
red-shift effect.
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Case 2: In the case when (1-50) holds but (1-45) is violated, we have the bound

1− c(ε) <
2Eζ0;n(ε)

r0ε
≤ 1. (1-51)

In this case, ζ0 reaches {r = r0ε} for the (n(ε)+1)-th time before a trapped surface has formed. One would
be tempted to repeat the above procedure for one more reflection, in an attempt to establish that a trapped
surface has formed before the (n(ε)+2)-th reflection of ζ0 off γ0. However, the bound (1-51) implies
that most of the bootstrap assumptions needed for the proof of Theorem 1 (which we have suppressed
in this sketch for the sake of simplicity) are violated beyond the (n(ε)+1)-th reflection and, thus, the
above procedure cannot be repeated. For this reason, we choose a different path: Applying a Cauchy
stability statement backwards in time (see Theorem 3.6), we show that there exists a small perturbation
(r ′, (�′)2, τ ′, τ̄ ′)(ε)|u=0 of the initial data (r, �2, τ, τ̄ )(ε)|u=0 (satisfying (1-25)), such that the perturbed
solution (r ′, (�′)2, τ ′, τ̄ ′)(ε) to (1-9) satisfies (1-45) and, furthermore,

2E ′ζ0;n(ε)

r0ε
> 1 (1-52)

(where E ′ζ0
is similarly defined by the relation (1-37) for (r ′, (�′)2, τ ′, τ̄ ′)(ε) in place of (r, �2, τ, τ̄ )(ε)).

Thus, we end up in the scenario of Case 1, and the proof of Theorem 1 follows readily.

Further remarks on the proof of Theorem 1. The proof of Theorem 1 involves many technical issues
related to the final step of the evolution before a trapped surface is formed. Most of these technical
issues simplify considerably in the case when one restricts to showing a weaker instability statement for
(MAdS, gAdS), e.g., by replacing (1-20) with(

1− 2m
r

)(ε)∣∣∣∣
(uε,vε)

<
1
2
. (1-53)

See Sections 4 and 6A1 for more details.
The mechanism leading to trapped surface formation in the proof of Theorem 1 only made use of

the fact that we chose the initial data (r, �2, τ, τ̄ )(ε)|u=0 so that the matter was supported in narrow null
beams, successively reflected off γ0 and I, while the matter model satisfied the condition

Tuv =�
2g AB TAB = 0. (1-54)

Thus, we expect that the same mechanism can be adapted to the case of more general matter fields, which
allow for matter to be arranged into narrow and sufficiently localised null beams, satisfying (in a region
around the set of intersection of the beams)

Tuv, |�
2g AB TAB | � Tuu + Tvv, (1-55)

with such a configuration arising moreover from initial data which are small in a norm for which
(MAdS, gAdS) is Cauchy stable. For an application of this mechanism in the case of the spherically
symmetric Einstein-massless Vlasov system (without reducing to the radial case and without an inner
mirror), see our forthcoming [Moschidis 2018].
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Finally, let us remark that the general mechanism of instability suggested by the proof of Theorem 1
can be summarized as follows: In a configuration consisting of a relatively narrow bundle of nearly
null beams of matter that are successively reflected on I and r = 0 (on an approximately (MAdS, gAdS)

background), the energy content of the “top” beam will increase after each pair of reflections. A similar
physical space mechanism was described for the Einstein-scalar field system (1-7) in [Dimitrakopoulos
et al. 2015], where it was suggested that, on a nearly null scalar field beam successively reflected off I
and the center r = 0, the energy density on the top part of the beam tends to increase.

1E. Outline of the paper. This paper is organized as follows:
In Section 2, we will introduce the spherically symmetric Einstein-radial massless Vlasov system in

double null coordinates. We will also formulate the notion of reflecting boundary conditions for this
system on I and on time-like hypersurfaces of the form {r = r0}.

In Section 3, we will formulate the asymptotically AdS characteristic initial-boundary value problem
for the spherically symmetric Einstein-radial massless Vlasov system. We will then recall the main results
established in [Moschidis 2017] regarding the structure of the maximal development and the Cauchy
stability properties for this system.

In Section 4, we will provide a technical statement of the main result of this paper, namely the instability
of AdS for the Einstein-radial massless Vlasov system with reflecting boundary conditions on {r = r0}

and I. The proof of this result will occupy Sections 5 and 6.

2. The Einstein-massless Vlasov system in spherical symmetry

In this section, we will review the basic properties of the spherically symmetric Einstein-massless Vlasov
system in 3+ 1 dimensions, expressed in double null coordinates, following the conventions introduced
in [Dafermos and Rendall 2016]. We will also introduce the notion of the reflecting boundary condition
on time-like hypersurfaces for the radial massless Vlasov equation. To this end, we will follow the
conventions adopted in our companion paper [Moschidis 2017].

2A. Spherically symmetric spacetimes in double null coordinates. Let (M3+1, g) be a smooth Lorentz-
ian manifold such that M is of the form

M' U ×S2, (2-1)

where U is an open domain of R2 with piecewise Lipschitz boundary ∂U and, in the standard (u, v)-
coordinates on U , g takes the form

g =−�2(u, v) du dv+ r2(u, v)gS2, (2-2)

where gS2 is the standard round metric on S2 and �, r : U→ (0,+∞) are smooth functions. In addition,
we will assume that

inf
U

r > 0. (2-3)
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We will also fix a time orientation on M by requiring that the time-like vector field N = ∂u + ∂v is
future-directed.

Remark. Notice that the action of SO(3) on (M, g) through rotations of the S2 factor of (2-1) is an
isometric action.

We will also define the Hawking mass m :M→ R by the expression

m = 1
2r(1− g(∇r,∇r)). (2-4)

Viewed as a function on U , m takes the form

m = 1
2r(1+ 4�−2 ∂ur ∂vr). (2-5)

Equivalently, we have

�2
= 4

(−∂ur) ∂vr
1− 2m/r

. (2-6)

In any local coordinate chart (y1, y2) on S2, the nonzero Christoffel symbols of (2-2) in the (u, v, y1, y2)

local coordinate chart on M are computed as

0u
uu = ∂u log(�2), 0vvv = ∂u log(�2),

0u
AB =�

−2 ∂v(r2)(gS2)AB, 0vAB =�
−2 ∂u(r2)(gS2)AB,

0A
u B = r−1 ∂urδA

B , 0A
vB = r−1 ∂vr δA

B ,

0A
BC = (0S2)A

BC ,

(2-7)

where the indices A, B,C are associated to the spherical coordinates y1, y2, δA
B is the Kronecker delta

and 0S2 are the Christoffel symbols of the round sphere in the (y1, y2) coordinate chart.
For any pair of smooth functions f1, f2 : R→ R with f ′1, f ′2 6= 0, the coordinate transformation

(ū, v̄)= ( f1(u), f2(v)), (2-8)

mapping U to U ⊂R2, can be used to diffeomorphically identify M with U×S2. In these new coordinates,
the metric g takes the form

g =−�2(ū, v̄) dū d v̄+ r2(ū, v̄)gS2, (2-9)

where

�2(ū, v̄)=
1

f ′1 f ′2
�2( f −1

1 (ū), f −1
2 (v̄)), (2-10)

r(ū, v̄)= r( f −1
1 (ū), f −1

2 (v̄)). (2-11)

We will frequently make use of such coordinate transformations, without renaming the coordinates each
time.

Note that m is invariant under coordinate transformations of the form (u, v)→ ( f1(u), f2(v)); i.e.,

m(ū, v̄)= m( f −1
1 (ū), f −1

2 (v̄)). (2-12)
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2B. The radial massless Vlasov equation. Let (M, g) be as in Section 2A. Let f ≥ 0 be a measure on
TM which is constant along the geodesic flow, that is to say, in any local coordinate chart (x0, x1, x2, x3)

on M with associated momentum coordinates (p0, p1, p2, p3) on the fibers of TM, f satisfies (as a
distribution) the first-order equation

pα∂xα f −0αβγ pβ pγ ∂pα f = 0, (2-13)

where 0αβγ are the Christoffel symbols of g in the chart (x0, x1, x2, x3). We will call f a massless Vlasov
field if it is supported on the set P ⊂ TM of future-directed null vectors; any such vector (x; p) ∈ TM
will satisfy

gαβ(x)pα pβ = 0. (2-14)

Associated to f is a symmetric (0, 2)-form on M (possibly defined only in the sense of distributions),
the energy momentum tensor of f , given by the expression

Tαβ(x)=
∫
π−1(x)

pα pβ f, (2-15)

where π−1(x) denotes the fiber of TM over x ∈M and the indices of the momentum coordinates are
lowered with the use of the metric g, i.e.,

pγ = gγ δ(x)pδ. (2-16)

Remark. In this paper, we will only consider distributions f for which the expression (2-15) is finite for
all x ∈M and depends smoothly on x ∈M.

We will consider only distributions f which are spherically symmetric, i.e., invariant under the
action of SO(3) on M. In that case, in any (u, v, y1, y2) local coordinate chart as in Section 2A, the
energy-momentum tensor T is of the form

T = Tuu(u, v) du2
+ 2Tuv(u, v) du dv+ Tvv(u, v) dv2

+ TAB(u, v) dy A dyB . (2-17)

Furthermore, we will restrict to radial Vlasov fields f , i.e., fields supported only on radial null vectors
which are normal to the orbits of the action of SO(3) on M. In any (u, v, y1, y2) local coordinate chart as
in Section 2A (with associated momentum coordinates (pu, pv, p1, p2)), a spherically symmetric, radial
massless Vlasov field f has the form

f (u,v, y1, y2
; pu, pv, p1, p2)= ( f̄in(u,v; pu)+ f̄out(u,v; pv))δ(

√
(gS2)AB pA pB)δ(�2 pu pv), (2-18)

where f̄in, f̄out ≥ 0 and δ is the Dirac delta function on R. In this case, the only nonzero components of
the energy momentum tensor (2-15) are the Tuu and Tvv components. In particular, in terms of f̄in, f̄out,
we (formally) compute

Tuu(u, v)=
∫
+∞

0
�4(pv)2 f̄out(u, v; pv) r2 dpv

pv
, (2-19)

Tvv(u, v)=
∫
+∞

0
�4(pu)2 f̄in(u, v; pu) r2 dpu

pu . (2-20)
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Remark. In this paper, we will only consider the case when f̄in, f̄out are smooth and compactly supported
in the pu-, pv-variables, respectively.

In the case when f is of the form (2-18), equation (2-13) is equivalent to the following system for f̄in

and f̄out:
∂u(�

4r4 pu f̄in)+ ∂pu (�2 ∂u(�
2) r4(pu)2 f̄in)= 0, (2-21)

∂v(�
4r4 pv f̄out)+ ∂pv (�

2 ∂v(�
2) r4(pv)2 f̄out)= 0. (2-22)

The equations (2-21)–(2-22) readily yield the following transport equations for Tuu , Tvv:

∂v(r2Tuu)= 0, (2-23)

∂u(r2Tvv)= 0. (2-24)

Remark. Under a coordinate transformation of the form (2-8), f̄in, f̄out transform as

f̄ (new)
in ( f1(u), f2(v); f ′1(u)p)= f̄in(u, v; p), (2-25)

f̄ (new)
out ( f1(u), f2(v); f ′2(v)p)= f̄out(u, v; p). (2-26)

2C. The spherically symmetric Einstein-radial massless Vlasov system. Let (M, g) be a smooth Lor-
entzian manifold and let 3 < 0. Let also f be a nonnegative measure on TM. The Einstein–Vlasov
system for (M, g; f ) with cosmological constant 3 is{

Ricµν(g)− 1
2 R(g)gµν +3gµν = 8πTµν,

pα ∂xα f −0αβγ pβ pγ ∂pα f = 0,
(2-27)

where Tµν is expressed in terms of f by (2-15).
Restricting to the case where (M, g) is a spherically symmetric spacetime as in Section 2A and f is a

radial massless Vlasov field (i.e., has the form (2-18)), the system (2-27) is equivalent to the following
system for (r, �2, f̄in, f̄out):

∂u∂v(r2)=− 1
2(1−3r2)�2, (2-28)

∂u∂v log(�2)=
�2

2r2 (1+ 4�−2 ∂ur ∂vr), (2-29)

∂v(�
−2 ∂vr)=−4πrTvv�−2, (2-30)

∂u(�
−2 ∂ur)=−4πrTuu�

−2, (2-31)

∂u(�
4r4 pu f̄in)=−∂pu (�2 ∂u(�

2) r4(pu)2 f̄in), (2-32)

∂v(�
4r4 pv f̄out)=−∂pv (�

2 ∂v(�
2) r4(pv)2 f̄out), (2-33)

where Tuu, Tvv are expressed in terms of f̄out, f̄in by (2-19), (2-20), respectively. Notice that the system
(2-28)–(2-33) reduces to the following system for (r, �2, Tuu, Tvv):

∂u∂v(r2)=− 1
2(1−3r2)�2, (2-34)

∂u∂v log(�2)=
�2

2r2 (1+ 4�−2 ∂ur ∂vr), (2-35)
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∂v(�
−2 ∂vr)=−4πrTvv�−2, (2-36)

∂u(�
−2 ∂ur)=−4πrTuu�

−2, (2-37)

∂u(r2Tvv)= 0, (2-38)

∂v(r2Tuu)= 0. (2-39)

Remark. The system (2-34)–(2-39) is the Einstein-null dust system with both ingoing and outgoing dust
(used as a model for self-gravitating radiation already in [Poisson and Israel 1990]). In the notation of
Section 1B of the Introduction,

r2Tvv = τ̄ , (2-40)

r2Tuu = τ. (2-41)
Defining the renormalized Hawking mass as

m̃ .
= m− 1

63r3, (2-42)

and using the relation (2-5), equations (2-34)–(2-39) formally give rise to the following system for
(r, m̃, Tuu, Tvv) (valid in the region of U where ∂vr > 0, ∂ur < 0 and 1− 2m/r > 0):

∂u log
(

∂vr
1− 2m/r

)
=−4πr−1 r2Tuu

−∂ur
, (2-43)

∂v log
(
−∂ur

1− 2m/r

)
= 4πr−1 r2Tvv

∂vr
, (2-44)

∂u∂vr =−
2m̃− 2

33r3

r2

(−∂ur) ∂vr
1− 2m/r

, (2-45)

∂um̃ =−2π
(1− 2m/r)
−∂ur

r2Tuu, (2-46)

∂vm̃ = 2π
(1− 2m/r)

∂vr
r2Tvv (2-47)

∂u(r2Tvv)= 0, (2-48)

∂v(r2Tuu)= 0. (2-49)

2D. The reflecting boundary condition for the radial Vlasov equation. Let (M, g) be as in Section 2A.
Recall that M splits topologically as the product

M' U ×S2.

Let ∂timU be the subset of the boundary ∂U of U ⊂ R2 consisting of a union of connected, time-like
Lipschitz curves with respect to the comparison metric

gcomp =−du dv (2-50)

on R2. Recall that a connected Lipschitz curve γ in R2 is said to be time-like with respect to (2-50) if,
for every point p = (u∗, v∗) ∈ γ , we have

γ \p ⊂ I+(p)∪ I−(p) .= ({u > u∗} ∩ {v > v∗})∪ ({u < u∗} ∩ {v < v∗}). (2-51)



1696 GEORGIOS MOSCHIDIS

U∂`timU ∂atimU

Figure 5. For a domain U ⊂ R2 as depicted above, the time-like portion ∂timU of the
boundary ∂U splits as the union of a “left” component ∂`timU and a “right” component
∂atimU . In general, ∂`timU and ∂atimU need not necessarily be straight line segments as
depicted above. However, in the following sections, we will impose a gauge condition
on the domains under consideration that will indeed fix ∂`timU and ∂atimU to be vertical
line segments (see Definitions 3.2 and 3.3).

Let us fix w : U ∪ ∂timU→ R to be a smooth boundary-defining function of ∂timU ; i.e.,

w|∂timU = 0, dw|∂timU 6= 0, w|U > 0.

We can split ∂timU into its “left” and “right” components as

∂timU = ∂`timU ∪ ∂atimU (2-52)

(see Figure 5), where
∂`timU = {(u0, v0) ∈ ∂timU : ∂vw(u0, v0) > 0},

∂atimU = {(u0, v0) ∈ ∂timU : ∂vw(u0, v0) < 0}.

Remark. Notice that any future-directed radial null geodesic of M = U × S2 with a future-limiting
point on ∂`timU × S2 (in the ambient R2

× S2 topology of U × S2) is necessarily ingoing. Similarly,
future-directed radial null geodesics “terminating” at ∂atimU ×S2 are necessarily outgoing.

In the next sections, we will only consider the reflection of radial null geodesics on parts of ∂timU for
which either r − r0 (for some constant r0 > 0) or 1/r is a boundary-defining function.

Following [Moschidis 2017], we will define the reflecting boundary condition on ∂timU for the radial
massless Vlasov equation as follows:

Definition. A radial massless Vlasov field f on TM will be said to satisfy the reflecting boundary
condition on ∂timU ×S2 if and only if

• for any (u0, v0) ∈ ∂
`

timU and any p > 0

lim
h→0+

(
f̄out
(
u0, v0+ h; (−∂uw/∂vw)(u0, v0) ·�

−2(u0, v0+ h) · p
)

f̄in(u0− h, v0; �−2(u0− h, v0) · p)

)
= 1, (2-53)
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• for any (u1, v1) ∈ ∂
a

timU and any p > 0

lim
h→0+

(
f̄in
(
u1+ h, v1; (−∂vw/∂uw)(u1, v1) ·�

−2(u1+ h, v1) · p
)

f̄out(u1, v1− h; �−2(u1, v1− h) · p)

)
= 1. (2-54)

Remark. In the above definition, the relations (2-53)–(2-54) are equivalent to the condition that the radial
Vlasov field f is constant along the reflection of radial null geodesics off ∂timU ; for a precise definition
of the notion of a reflected radial null geodesic, see [Moschidis 2017].

Note that the relations (2-53) and (2-54) for f̄in, f̄out imply the following boundary relations for the
components (2-19)–(2-20) of the energy momentum tensor T :

• For any (u0, v0) ∈ ∂
`

timU ,

lim
h→0+

r2Tuu(u0, v0+ h)
r2Tvv(u0− h, v0)

=

(
−∂uw

∂vw
(u0, v0)

)2

. (2-55)

• For any (u1, v1) ∈ ∂
a

timU ,

lim
h→0+

r2Tvv(u1+ h, v1)

r2Tuu(u1, v1− h)
=

(
−∂vw

∂uw
(u0, v0)

)2

. (2-56)

3. The boundary-characteristic initial value problem: well-posedness and Cauchy stability

In this section, we will formulate the asymptotically AdS initial value problem for the system (2-28)–(2-33)
with reflecting boundary conditions on {r = r0} and I for some r0 > 0. We will then recall the main
results established in [Moschidis 2017] regarding the well-posedness and the structure of the maximal
development for this system.

3A. Asymptotically AdS characteristic initial data. The following was introduced in [Moschidis 2017]:

Definition 3.1 [Moschidis 2017, Definition 3.1]. For any v1<v2 and any r0>0, let r/ :[v1,v2)→[r0,+∞),
�/ : [v1, v2)→ (0,+∞) and f̄in/, f̄out/ : [v1, v2)× (0,+∞)→ [0,+∞) be C∞ functions, such that

r/(v1)= r0, (3-1)

lim
v→v2

r/(v)=+∞. (3-2)

Let us define (∂ur)/ : [v1, v2)→ (−∞, 0) by the relation

(∂ur)/(v)=
1

r/(v)

(
−r/ ∂vr/(v1)−

1
4

∫ v

v1
(1−3r2

/ (v̄))�
2
/(v̄) d v̄

)
. (3-3)

We will call (r/, �2
/, f̄in/, f̄out/) an asymptotically AdS boundary-characteristic initial data set on [v1, v2)

for the system (2-28)–(2-33) satisfying the reflecting gauge condition at r = r0,+∞ if:

• (r/, �/) satisfies the constraint equation

∂v(�
−2
/ ∂vr/)=−4πr/(Tvv)/�−2

/ , (3-4)

where
(Tvv)/(v)

.
=

∫
+∞

0
�4
/(v)(p

u)2 f̄in/(v; pu) r2
/ (v)

dpu

pu . (3-5)
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• f̄out/ solves the massless radial Vlasov equation

∂v
(
�4
/(v)r

4
/ (v)p

v f̄out/(v, pv)
)
+ ∂pv

(
�2
/ ∂v(�

2
/)r

4
/ (v)(p

v)2 f̄out/(v, pv)
)
= 0. (3-6)

• (∂ur)/ satisfies

lim
v→v−2

(∂ur)/
∂vr/

= 1. (3-7)

• f̄out/, f̄in/ satisfy the following compatibility conditions at v = v1, v2 for any p > 0:

f̄out/
(
v1; (−(∂ur)//∂vr/)(v1) ·�

−2
/ (v1) · p

)
f̄in/(v1;�

−2
/ (v1) · p)

= 1, (3-8)

and

lim
h→0+

( f̄in/
(
v2− h; (∂vr//− (∂ur)/)(v2− h) ·�−2

/ (v2− h) · p
)

f̄out/(v2− h;�−2
/ (v2− h) · p)

)
= 1. (3-9)

Remark. Notice that the constraint equation (3-4) implies

∂v(�
−2
/ ∂vr/)≤ 0. (3-10)

Thus, (3-2) yields
∂vr/ > 0 (3-11)

everywhere on [v1, v2).

Given any asymptotically AdS boundary-characteristic initial data set (r/, �2
/, f̄in/, f̄out/) on [v1, v2)

with reflecting gauge conditions at r = r0,+∞, we will also define the initial Hawking mass m/ and
initial renormalized Hawking mass m̃/ on [v1.v2) by the relations

m/
.
=

1
2r/(1− 4�−2

/ (∂ur)/ ∂vr/), (3-12)

m̃/
.
= m/−

1
63r3

/ , (3-13)

in accordance with (2-6), (2-42).

3B. Developments with reflecting boundary conditions on r = r0, +∞. We will only consider solutions
(r, �2, f̄in, f̄out) to (2-28)–(2-33) satisfying a reflecting gauge condition on ∂timU , which fixes ∂timU to
be a union of vertical straight lines in the (u, v)-plane. This motivates defining the following class of
domains U in the plane (see [Moschidis 2017]):

Definition 3.2 [Moschidis 2017, Definition 3.3]. For any v0 > 0, let Uv0 be the set of all connected open
domains U of the (u, v)-plane with piecewise Lipschitz boundary ∂U , with the property that ∂U splits as
the union

∂U = γ0 ∪ I ∪Sv0 ∪ clos(γ ), (3-14)

where, for some 0< uγ0, uI ≤+∞,

γ0 = {u = v} ∩ {0≤ u < uγ0}, (3-15)

I = {u = v− v0} ∩ {0≤ u < uI}, (3-16)

Sv0 = {0}× [0, v0], (3-17)
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u =
0

v
=

0

(0, v0)

(0, 0)

U

Sv0

γ0

I

γ

Figure 6. A typical domain U ∈ Uv0 would be as depicted above. In the case when the
boundary set γ is empty, it is necessary that both γ0 and I are unbounded (i.e., extend
all the way to u+ v =∞).

and γ : (x1, x2)→ R2 is a Lipschitz, achronal (with respect to the reference Lorentzian metric (2-50))
curve, which is allowed to be empty (the closure clos(γ ) of γ in (3-14) is considered with respect to the
standard topology of R2). See Figure 6.

Remark. It follows readily from Definition 3.2 that U is necessarily contained in the future domain of
dependence of Sv0 ∪ γ0 ∪ I (with respect to the comparison metric (2-50)). In the case when γ =∅ in
(3-14), it is necessary that both γ0 and I extend all the way to u+ v =+∞.

A development of an asymptotically AdS boundary-characteristic initial data set for the system (2-28)–
(2-33) with reflecting boundary conditions on r = r0,+∞ is defined as follows (see [Moschidis 2017]):

Definition 3.3 [Moschidis 2017, Definition 3.4]. For any v0 > 0 and r0 > 0, let (r/, �2
/, f̄in/, f̄out/) be a

smooth asymptotically AdS boundary-characteristic initial data set on [0, v0) for the system (2-28)–(2-33)
satisfying the reflecting gauge condition at r = r0,+∞, according to Definition 3.1. A future development
of (r/, �2

/, f̄in/, f̄out/) will consist of an open set U ∈ Uv0 (see Definition 3.2) and smooth functions
r : U→ (r0,+∞), �2

: U→ (0,+∞) and f̄in, f̄out : U × (0,+∞)→ [0,+∞) satisfying the following
properties:

(1) The functions r, �2, f̄in, f̄out solve the system (2-28)–(2-33) on U .

(2) The functions r, �2, f̄in, f̄out satisfy the given initial conditions on Sv0 = {0}× [0, v0), i.e.,

(r, �2, f̄in, f̄out)|Sv0 = (r/, �
2
/, f̄in/, f̄out/). (3-18)

(3) The functions (r, f̄in, f̄out) satisfy on γ0 the boundary conditions

r |γ0 = r0, (3-19)

f̄out(u∗, v∗; p)= f̄in(u∗, v∗; p), (3-20)
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for all (u∗, v∗) ∈ γ0 and p > 0, and on I the boundary conditions

(1/r)|I = 0, (3-21)

lim
h→0+

(
f̄in(u∗+ h, v∗; �−2(u∗+ h, v∗) · p)
f̄out(u∗, v∗− h; �−2(u∗, v∗− h) · p)

)
= 1, (3-22)

for all (u∗, v∗) ∈ I and p > 0.

(4) The following are satisfied on γ0 and I:

∂ur |γ0 =−∂vr |γ0, (3-23)

∂u(1/r)|I =−∂v(1/r)|I . (3-24)

Remark. Notice that the boundary conditions (3-19) and (3-21), combined with the form (3-15) and
(3-16) of γ0 and I, respectively, imply the relations (3-23) and (3-24). However, the relations (3-23)
and (3-24) should be viewed as gauge conditions fixing, in conjunction with (3-19) and (3-21), the form
(3-15) and (3-16) of γ0 and I.

If D = (U; r, �2, f̄in, f̄out) and D ′ = (U ′; r ′, (�′)2, f̄ ′in, f̄ ′out) are two future developments of the same
initial data (r/, �2

/, f̄in/, f̄out/), we will say that D ′ is an extension of D , writing D ⊆ D ′, if U ⊆ U ′ and
the restriction of (r ′, (�′)2, f̄ ′in, f̄ ′out) on U coincides with (r, �2, f̄in, f̄out).

Remark. If D = (U; r, �2, f̄in, f̄out) and D ′ = (U ′; r ′, (�′)2, f̄ ′in, f̄ ′out) are two future developments of
the same initial data (r/, �2

/, f̄in/, f̄out/), then

(r, �2, f̄in, f̄out)|U∩U ′ = (r ′, (�′)2, f̄ ′in, f̄ ′out)|U∩U ′; (3-25)

see [Moschidis 2017].

3C. The maximal development. The following result was established in [Moschidis 2017]:

Theorem 3.4 [Moschidis 2017, Theorem 1]. For any v0 > 0 and r0 > 0, let (r/, �2
/, f̄in/, f̄out/) be a

smooth asymptotically AdS boundary-characteristic initial data set on [0, v0) for the system (2-28)–(2-33)
satisfying the reflecting gauge condition at r =r0,+∞, according to Definition 3.1, such that the quantities
�2
//
(
1− 1

33r2
/

)
, r2

/ (Tvv)/, and tan−1 r/ extend smoothly on v = v0. Then, there exists a unique, smooth
future development (U; r, �2, f̄in, f̄out) of (r/, �2

/, f̄in/, f̄out/) which is maximal; i.e., any other future
development (U ′; r ′, (�′)2, f̄ ′in, f̄ ′out) of (r/, �2

/, f̄in/, f̄out/) with r ′ ≥ r0 everywhere on U ′satisfies U ′ ⊆ U
and r ′, (�′)2, f̄ ′in, f̄ ′out are the restrictions of r, �2, f̄in, f̄out on U ′.

The maximal future development (U; r, �2, f̄in, f̄out) satisfies the following properties ( for the definition
of the curves γ0, I, γ , see Definition 3.2):

(1) The renormalized Hawking mass m̃ is conserved on γ0 and I, i.e.,

m̃|γ0 = m̃|γ0∩{u=0}, (3-26)

m̃|I = m̃|I∩{u=0}. (3-27)
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(2) The curve I is conformally complete; i.e., �2/
(
1− 1

33r2
)

has a finite limit on I and∫
I

√
�2

1− 1
33r2

∣∣∣∣
I

du =+∞. (3-28)

(3) We have
∂ur < 0, (3-29)(

1− 2m
r

)∣∣∣
J−(I )∪J−(γ0)

> 0 (3-30)

∂vr |J−(I )∪J−(γ0) > 0, (3-31)

where
J−(I )=

{
0≤ u < sup

I
u
}
∩U (3-32)

is the causal past of I and
J−(γ0)=

{
0≤ v < sup

γ0

v
}
∩U (3-33)

is the causal past of γ0 (with respect to the reference Lorentzian metric (2-50)).

(4) In the case U\J−(I ) 6=∅, the future event horizon

H+ .
= U ∩ ∂ J−(I )=

{
u = sup

I
u
}
∩U (3-34)

has the following properties:

(a) H+ has infinite affine length, i.e., ∫
H+
�2 dv =+∞. (3-35)

(b) We have
sup
H+

r = rS (3-36)

and
inf
H+

(
1− 2m

r

)
= 0, (3-37)

where rS defined by the relation

1− 2
limv→v−0

m̃/(v)

rS
−

1
33r2

S = 0. (3-38)

(5) In the case H+ 6=∅, the curve γ0 is bounded and satisfies

γ0 * J−(I ); (3-39)

i.e., γ0 contains points lying to the future of H+.

(6) In the case H+ 6= ∅, the curve γ is nonempty, piecewise smooth and r extends continuously on γ
with r |γ0 = r0. Furthermore, for any point (u1, v1) ∈ γ , the line {v = v1} intersects I.13

13In other words, there is no point in γ which lies on the curve {v = vI}, where (uI , vI) is the future limit point of I.
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Remark. In the case when U\J−(I ) 6=∅ (and thus H+ 6=∅), in view of (3-36), (3-38) and the fact that
r > r0 on U , it is necessary that

2
limv→v−0

m̃/(v)

r0
> 1− 1

33r2
0 . (3-40)

In a similar way, we can uniquely define the maximal past development (U; r, �2, f̄in, f̄out) of
(r/, �2

/, f̄in/, f̄out/), satisfying the properties outlined by Theorem 3.4 after performing a “time reversal”
transformation (u, v)→ (−v,−u). Notice that such a coordinate transformation turns an asymptotically
AdS boundary-characteristic initial data set on u = 0 into an asymptotically AdS boundary-characteristic
initial data set on v = 0. However, Theorem 3.4 also holds (with exactly the same proof) for such initial
data sets.

3D. Cauchy stability in a rough norm, uniformly in r0. In [Moschidis 2017], the following “norm” was
introduced for smooth asymptotically AdS boundary-characteristic initial data sets (r/, �2

/, f̄in/, f̄out/) on
[0, v0) for the system (2-28)–(2-33):

‖(r/, �2
/, f̄in/, f̄out/)‖CS

.
=
√
−3 sup

0≤v<v0

|m̃/(v)| + (−3) sup
0≤v<v0

∫ v0

0

1
ρ/(v)− ρ/(v̄)+ ρ/(0)

(r2
/ (Tvv)/
∂vρ/

)
(v̄) d v̄

+ sup
0≤v<v0

max
{

2m/

r/
, 0
}
, (3-41)

where
ρ/(v)

.
= tan−1(

√
−3r/(v)). (3-42)

Remark. Note that, in (3-41),
ρ/(0)= tan−1(

√
−3r0).

The expression (3-41) is invariant under gauge transformations, as well as scale transformations of
the form (u, v)→ (λu, λv), (r, m̃,3)→ (λr, λm̃, λ−23), r0 → λr0, ( f̄in, f̄out)→ (λ−4 f̄in, λ

−4 f̄out).
Moreover, ‖(r/, �2

/, f̄in/, f̄out/)‖CS = 0 if and only if (r/, �2
/, f̄in/, f̄out/) are the initial data for pure AdS

spacetime on {r ≥ r0}, i.e., if f̄in/ = f̄out/ = 0 and m̃ = 0.

The following Cauchy stability result for the trivial initial data was established in [Moschidis 2017]:

Proposition 3.5 [Moschidis 2017, Corollary 1]. For any (possibly large) l∗ > 0, there exists a (small)
ε0>0 and a constant Cl∗>0 depending only on l∗, so that the following statement holds: for any v0>0 and
0< r0 < (−3)

−1/2, if (r/, �2
/, f̄in/, f̄out/) is a smooth asymptotically AdS boundary-characteristic initial

data set on [0, v0) for the system (2-28)–(2-33) satisfying the reflecting gauge condition at r = r0,+∞,
according to Definition 3.1, such that the quantities �2

//
(
1− 1

33r2
/

)
, r2

/ (Tvv)/, and tan−1 r/ extend
smoothly on v = v0 and moreover

‖(r/, �2
/, f̄in/, f̄out/)‖CS < ε (3-43)

for some 0< ε ≤ ε0, then the maximal development (U; r, �2, f̄in, f̄out) satisfies

Wl∗
.
= {0< u ≤ l∗v0} ∩ {u < v < u+ v0} ⊂ U (3-44)
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and
√
−3 sup

Wl∗

|m̃| + sup
Wl∗

log
(

1− 1
33r2

1−max{2m/r, 0}

)
+ sup

ū

∫
{u=ū}∩Wl∗

rTvv
∂vr

dv+ sup
v̄

∫
{v=v̄}∩Wl∗

rTuu

(−∂ur)
du < Cl∗ε. (3-45)

Remark. Proposition 3.5 should be interpreted as a Cauchy stability statement for the pure AdS initial
data set with respect to the topology defined by (3-41) which is independent of the radius r0 of the
reflecting boundary.

Considering the spherically symmetric Einstein-scalar field system (1-7) with an inner mirror placed at
{r = r0}, the analogue of the initial-data norm (3-41) (obtained using the substitution (Tvv)/→ (∂vϕ)|u=0)
is rougher compared to the bounded variation norm of Christodoulou [1993]. It is not known whether
(1-7), restricted to the exterior of an inner mirror at {r = r0}, satisfies a Cauchy stability estimate with
respect to the analogue of the initial-data norm (3-41) which is independent of r0 (although local existence
and uniqueness follow trivially in this case for fixed r0).

In fact, Proposition 3.5 is a special case of the following Cauchy stability estimate established in
[Moschidis 2017]:

Theorem 3.6 [Moschidis 2017, Theorem 2]. For any v1<v2 and 0<r0<(−3)
−1/2, let (r/i ,�2

/i , f̄in/i , f̄out/i ),
i = 1, 2, be two smooth asymptotically AdS boundary-characteristic initial data sets on [v1, v2) for the
system (2-28)–(2-33) satisfying the reflective gauge condition at r = r0,+∞, according to Definition 3.1,
such that the quantities �2

/ i/
(
1− 1

33r2
/ i

)
, r2

/ i (Tvv)/ i , and tan−1 r/ i extend smoothly on v = v2. Assume,
also, the following conditions:

(1) For some u0 > 0, the maximal future development (U1; r1, �
2
1, f̄in1, f̄out1) of (r/1, �2

/1, f̄in/1, f̄out/1)

satisfies
Wu0

.
= {0< u < u0} ∩ {u+ v1 < v < u+ v2} ⊂ U1 (3-46)

and

sup
Wu0

{∣∣∣∣log
(

�2
1

1− 1
33r2

1

)∣∣∣∣+∣∣∣∣log
(

2∂vr1

1−2m1/r1

)∣∣∣∣+∣∣∣∣log
(

1−2m1/r1

1− 1
33r2

1

)∣∣∣∣+√−3|m̃1|

}
+sup

ū

∫
{u=ū}∩Wu0

r1
(Tvv)1
∂vr1

dv+sup
v̄

∫
{v=v̄}∩Wu0

r1
(Tuu)1

−∂ur1
du = C0 <+∞. (3-47)

(2) The (r/ i , �
2
/ i , f̄in/ i , f̄out/ i ), i = 1, 2, are δ-close in the following sense:

sup
v∈[v1,v2)

{∣∣∣∣log
(

�2
/1

1− 1
33r2

/1

)
− log

(
�2
/2

1− 1
33r2

/2

)∣∣∣∣
+

∣∣∣∣log
(

2∂vr/1
1− 2m/1/r/1

)
− log

(
2∂vr/2

1− 2m/2/r/2

)∣∣∣∣+
+

∣∣∣∣log
(

1− 2m/1/r/1
1− 1

33r2
/1

)
− log

(
1− 2m/2/r/2

1− 1
33r2

/2

)∣∣∣∣+√−3|m̃/1− m̃/2|

}
(v)≤ δ (3-48)
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and

sup
v∈[v1,v2]

(−3)

∫ v2

v1

∣∣∣∣r2
/1
(Tvv)/1
∂vρ1

(v̄)− r2
/2
(Tvv)/2
∂vρ2

(v̄)

∣∣∣∣(|ρ/(v)− ρ/(v̄)| + ρ/(v1)
)−1 d v̄ ≤ δ, (3-49)

where C1 is a large fixed absolute constant, δ satisfies

0≤ δ ≤ δ0
.
= exp

(
− exp

(
C1(1+C0)

u0

v2− v1

))
(3-50)

and ρ/ is defined by the relation

ρ/(v)
.
= tan−1

(√
−
3

3
r/(v)

)
. (3-51)

Then, the maximal development (U2; r2, �
2
2, f̄in2, f̄out2) of (r/2, �2

/2, f̄in/2, f̄out/2) satisfies

Wu0 ⊂ U2 (3-52)

and

sup
Wu0

{∣∣∣∣log
(

�2
1

1− 1
33r2

1

)
− log

(
�2

2

1− 1
33r2

2

)∣∣∣∣+ ∣∣∣∣log
(

2∂vr1

1− 2m1/r1

)
− log

(
2∂vr2

1− 2m2/r2

)∣∣∣∣
+

∣∣∣∣log
(

1− 2m1/r1

1− 1
33r2

1

)
− log

(
1− 2m2/r2

1− 1
33r2

2

)∣∣∣∣+√−3|m̃1− m̃2|

}
+ sup

ū

∫
{u=ū}∩Wu0

|r1(Tvv)1− r2(Tvv)2| dv+ sup
v̄

∫
{v=v̄}∩Wu0

|r1(Tuu)1− r2(Tuu)2| du

≤ exp
(

exp(C1(1+C0))
u0

v2− v1

)
δ. (3-53)

Remark. By repeating the proof of Theorem 3.6, the Cauchy stability estimate (3-53) also holds in the
case when (Ui ; ri , �

2
i , f̄in;i , f̄out;i ), i = 1, 2, are the maximal past developments of (r/ i , �

2
/ i , f̄in/ i , f̄out/ i ),

i.e., when Wu0 is replaced by

W(−)
u0

.
= {−u0 ≤ u < 0} ∩ {u+ v1 < v < u+ v2} (3-54)

and (3-47) holds on W(−)
u0 in place of Wu0 .

4. Final statement of Theorem 1: the nonlinear instability of AdS

The main result of this paper is the following:

Theorem 1 (final version). For any ε ∈ (0, 1], there exist r0ε, v0ε depending smoothly on ε such that

r0ε
ε→0
−−→ 0, (4-1)

√
−3v0ε

ε→0
−−→

√
3π, (4-2)

as well as a family (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/) of smooth asymptotically AdS boundary-characteristic initial
data sets for the system (2-28)–(2-33) satisfying the reflecting gauge condition at r = r0,+∞, such that
the following hold:
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(1) The family (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/) satisfies

‖(r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/)‖CS
ε→0
−−→ 0, (4-3)

where ‖ · ‖C S is the norm defined by (3-41).

(2) There exists a trapped sphere, i.e., a point (u†, v†) in the maximal future development (Uε; rε, �2
ε,

f̄inε, f̄outε) of (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/) such that

2m
r
(u†, v†) > 1. (4-4)

In particular, in view of Theorem 3.4, (Uε; rε, �2
ε, f̄inε, f̄outε) has a nonempty future event horizon

H+ (defined by (5-30)), satisfying the properties (4a) and (4b) of Theorem 3.4, and a complete
conformal infinity I (satisfying (3-28)).

Remark. If

δ(ε)
.
= ‖(r (ε)/ , (�

(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/)‖CS, (4-5)

the point (u†, v†) satisfies the upper bound

u† ≤ exp(exp(δ6(ε)))v0. (4-6)

On the other hand, in view of Proposition 3.5, we necessarily have

u†
ε→0
−−→+∞. (4-7)

In the simpler case when one is interested in a weaker instability statement, such as the existence of a
point (u†, v†) where

2m
r

∣∣∣
(u†,v†)

>
1
2

(4-8)

(instead of the stronger bound (4-4)), the proof of Theorem 1 can be substantially simplified. In the case
of (4-8), the upper bound (4-6) can be improved into a polynomial bound

u† ≤ (δ(ε))
−C1v0 (4-9)

for some fixed C1 > 0.

5. Construction of the initial data and notation

As described already in Section 1D of the Introduction, the initial data family in Theorem 1 will be such
that their development consists of a large number of initially ingoing Vlasov beams. In this section,
we will construct such a family (r/ε, �2

/ε, f̄in/ε, f̄out/ε) of asymptotically AdS boundary-characteristic
initial data for (2-28)–(2-33). The family (r (ε)/ , (�

(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/) in the statement of Theorem 1 will
be eventually obtained from (r/ε, �2

/ε, f̄in/ε, f̄out/ε) after possibly adding a suitable perturbation (see
Section 6).
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This section is organized as follows: In Section 5A, we will introduce a certain hierarchy of parameters
that will be necessary for the construction of (r/ε, �2

/ε, f̄in/ε, f̄out/ε) in Section 5B. In Section 5C, we
will introduce some basic notation related to the maximal future development (Uε; rε, �2

ε, f̄inε, f̄outε)

of (r/ε, �2
/ε, f̄in/ε, f̄out/ε). Finally, in Section 5D, we will perform some basic geometric constructions

on (Uε; rε, �2
ε, f̄inε, f̄outε), related to the separation of Uε into various subregions by the Vlasov beams

arising from the initial data.

5A. Parameters and auxiliary functions. Let us fix some smooth and strictly increasing functions
h0, h1, h2 : (0, 1)→ (0, 1), so that

limε→0+ h0(ε)= limε→0+ h1(ε)= limε→0+ h2(ε)= 0, (5-1)

lim
ε→0+

ε · exp
(

1
(h1(ε))6

)
= lim
ε→0+

h1(ε) · exp
(

exp
(

1
(h0(ε))6

))
= 0, (5-2)

lim
ε→0+

h2(ε) · exp(ε−2)= 0. (5-3)

In particular, the following relations hold for ε� 1:

h2(ε)� ε� h1(ε)� h0(ε)� 1. (5-4)

Let χ : R→ [0, 1] be a smooth cut-off function, satisfying χ |[−1,1] = 1, χ |R\[−2,2] = 0 and

χ |(−2,2) > 0, (5-5)

and let ε0� 1 be a small enough absolute constant. For any 0< ε < ε0 and any r0 > 0 satisfying

1− exp(−2(h0(ε))
−4) <

r0

(2/
√
−3)ε− 1

33r3
0

< 1− 1
2 exp(−2(h0(ε))

−4) (5-6)

(note that (5-6) implies that r0
√
−3/(2ε) = 1+ O(exp(−2(h0(ε))

−4)) as ε→ 0), we will define the
following function on [0,+∞)× (0,+∞):

f̄ε(v, pu)
.
= Cεr0

d1/h1(ε)e∑
j=0

χ(pu
− 3) ·

1
h2(ε)

χ

(
(v− v( j))

√
−3− 2h2(ε)

h2(ε)

)
· h( j)(ε) · ε (5-7)

for some constant Cεr0 to be specified in terms of ε, r0 later, where d1/h1(ε)e denotes the least integer
greater than or equal to 1/h1(ε),

v( j)
=

π
√
−3
− j

ε

h1(ε)
√
−3

(5-8)

for any 0≤ j ≤ d1/h1(ε)e,

h(0) = h0, (5-9)

h( j) = h1 (5-10)

for all 1≤ j ≤ d1/h1(ε)e.
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5B. Construction of the initial data family . For any 0<ε<ε0 and any r0 satisfying (5-6), we will define
the following asymptotically AdS boundary-characteristic initial data set according to Definition 3.1:

Definition 5.1. For any 0< ε < ε0 and any r0 satisfying (5-6), we define v0 = v0(r0, ε) > 0 and the set
of smooth functions r/ε : [0, v0)→ [r0,+∞), �2

/ε : [0, v0)→ (0,+∞), f̄in/ε : [0, v0)× (0,+∞)→
[0,+∞), and f̄out/ε : [0, v0)× (0,+∞)→ [0,+∞) by the requirement that (r/ε, �2

/ε, f̄in/ε, f̄out/ε) is
an asymptotically AdS boundary-characteristic initial data set on [0, v0) for the system (2-28)–(2-33)
satisfying the reflecting gauge condition at r = r0,+∞, so that

∂vr/ε
1− 2m/ε/r/ε

=
�2
/ε

4∂vr/ε
,

∂vr/ε
1− 1

33r/ε

∣∣∣∣
v=0
=

1
2
,

(5-11)

f̄out/ε = 0, (5-12)

f̄in/ε(v, pu)= f̄ε(v, pu) (5-13)

for all 0≤ v ≤ v0 and pu > 0. The constant Cεr0 in (5-7) is fixed in terms of ε, r0 by the requirement that

lim
v→v0

m̃/ε =
ε
√
−3

(5-14)

(in particular, there exists some fixed (large) C0 > 1, independent of ε, r0, so that Cεr0 ∈ [C
−1
0 ,C0] for

any 0< ε < ε0, any r0 satisfying (5-6).14 See Figure 7.

Remark. The conditions (5-11)–(5-13) determine (implicitly) v0 and r/ε, �2
/ε uniquely in terms of ε, r0,

provided ε0 has been fixed small enough: in view of the fact that (5-11) is equivalent to
∂vr/ε

1− 2m/ε/r/ε
=

−∂ur/ε
1− 2m/ε/r/ε

,

∂vr/ε
1− 1

33r/ε

∣∣∣∣
v=0
=

1
2

(5-15)

(where m/ε is defined in terms of r/ε, �2
/ε by (3-12)), from (5-14) and (2-44) (which is equivalent to the

constraint equation (3-4)) we infer that

∂vr/ε
1− 1

33r/ε
=

1
2
+ O(ε) (5-16)

and, therefore,

v0 =

√
−

3
3
π + O(ε). (5-17)

While (r/ε, �2
/ε, f̄in/ε, f̄out/ε) depend on both ε and r0, we will only use the subscript ε in their notation,

since most of the estimates that we will later establish for their maximal development will depend only
on ε.

14In fact, it suffices to choose C0 = 50.
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v
=
v (1)
+

2h
2 (ε)l

u =
0

v
=
v (0)
+

2h
2 (ε)l

v
=
v (k)
+

2h
2 (ε)l

v
=
v (2)
+

2h
2 (ε)l

ε

h 1(
ε)
l

2h
2(
ε)

l

ε

h 1(
ε)
l

2h
2(
ε)

l

2h
2(
ε)

l

2h
2(
ε)

l

D
m̃
(1
)

/

D
m̃
(2
)

/

'
εh

1(
ε)

l
'
εh

1(
ε)

l
'
εh

0(
ε)

l
D

m̃
(0
)

/

D
m̃
(k
)

/

'
εh

1(
ε)

l

Dm̃(0)
/ + · · ·+Dm̃(k)

/ =
ε
√
−3

Figure 7. The initial data (rε/, �2
ε/, f̄inε/, f̄outε/) give rise to k+1 Vlasov beams, initially

arranged as depicted above (using, for convenience, the abbreviation k = d1/h1(ε)e

and l = (−3)−1/2). For any 0 ≤ j ≤ k, we can associate to the beam centered around
v= v( j)

+2h2(ε)l the initial mass difference Dm̃( j)
/ , defined as the renormalized Hawking

mass difference between the two vacuum regions surrounding the beam. The top beam
(centered initially around v = v0

+ 2h2(ε)l) has a greater initial mass difference than the
rest of the beams.

The initial data (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/) in the statement of Theorem 1 will eventually be chosen to
be small perturbations of (r/ε, �2

/ε, f̄in/ε, f̄out/ε) (see Section 6).

5C. Notational conventions and basic computations. For any 0 < ε < ε0 and any r0 satisfying (5-6),
let (r/ε, �2

/ε, f̄in/ε, f̄out/ε) be the initial data set defined by Definition 5.1. Assuming that ε0 is fixed small
enough, for any 0< ε < ε0 and any r0 satisfying (5-6), the initial data set (r/ε, �2

/ε, f̄in/ε, f̄out/ε) satisfies
the following estimate depending only on ε:

‖(r/ε, �2
/ε, f̄in/ε, f̄out/ε)‖CS ≤ Ch0(ε), (5-18)

where ‖ · ‖CS is defined by (3-41) and C > 0 is a fixed constant.
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Let (Uε; rε, �2
ε, f̄inε, f̄outε) be the maximal future development of (r/ε, �2

/ε, f̄in/ε, f̄out/ε) (see
Theorem 3.4). In view of Proposition 3.5, the bound (5-18) implies that, for any fixed u∗ > 0
and any δ > 0, there exists an εδu∗ > 0 sufficiently small depending only on δ and u∗ so that, for any
0≤ ε < εδu∗ ,

Wu∗
.
= {0< u < u∗} ∩ {u < v < u+ v0} ⊂ U (5-19)

and

√
−3 sup

Wu∗

|m̃ε| + sup
Wu∗

log
(

1− 1
33r2

ε

1−max{2mε/rε, 0}

)
+ sup

ū

∫
{u=ū}∩Wu∗

rε(Tvv)ε
∂vrε

dv+ sup
v̄

∫
{v=v̄}∩Wu∗

rε(Tuu)ε

(−∂urε)
du < δ, (5-20)

where mε, m̃ε, (Tuu)ε, (Tvv)ε are defined in terms of rε, �2
ε f̄inε, f̄outε by (2-5), (2-42), (2-19) and (2-20).

In particular, if
gAdS =−�

2
AdS,r0,v0

du dv+ rAdS,r0,v0 gS2 (5-21)

is the pure AdS metric in a spherically symmetric coordinate chart (u, v) such that rAdS,r0,v0 = r0 on
{u = v} and rAdS,r0,v0 = +∞ on {u = v − v0},15 then (Uε; rε, �2

ε, f̄inε, f̄outε), when restricted on Wu∗ ,
is δ-close to (Wu∗; rAdS,r0,v0, �

2
AdS,r0,v0

, 0, 0) with respect to the (gauge-invariant) distance defined by
(3-41). Notice also that (5-20) implies that, provided δ is small enough, the spacetime (Wu∗ ×S2, gε)
does not contain any trapped surface, where

gε =−�2
ε du dv+ r2

ε gS2 . (5-22)

Notice that, in view of the conservation of m̃ on γ0 and I (see (3-26) and (3-27)), we have

m̃ε|γ0 = 0, (5-23)

m̃ε|I = lim
v→v0

m̃/ε(v)=
ε
√
−3

. (5-24)

For each 0≤ j ≤ d1/h1(ε)e, we can associate to the beam centered at

v = v( j)
+

2
√
−3

h2(ε)

the mass difference
Dm̃( j)

/

.
= m̃/ε

(
v( j)
+

4
√
−3

h2(ε)
)
− m̃/ε(v

( j)). (5-25)

Notice that

Dm̃(0)
/ '

h0(ε)ε
√
−3

(5-26)

and, for all 1≤ j ≤ d1/h1(ε)e,

Dm̃( j)
/ '

h1(ε)ε
√
−3

. (5-27)

15Note that such a coordinate chart is not unique.
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Furthermore
d1/h1(ε)e∑

j=0

Dm̃( j)
/ = lim

v→v0
m̃/ε(v)=

ε
√
−3

. (5-28)

5D. Some geometric constructions on Uε. For any 0<ε< ε0 and any r0 satisfying (5-6), we will define
some special subsets of the domain Uε of the maximal future development (Uε; rε, �2

ε, f̄inε, f̄outε) of the
initial data set (r/ε, �2

/ε, f̄in/ε, f̄out/ε).

Remark. In the rest of this section, we will adopt the convention that the boundary ∂A of a subset A⊆Uε
is the boundary of A as a subset of R2 (with respect to the ambient topology of R2).

Let us define the domain of outer communications Dε of Uε as

Dε
.
= J−(I )∩Uε, (5-29)

where J−(I ) is the causal past of I with respect to the reference metric (2-50) (see (3-32)). In accordance
with Theorem 3.4, we will also define the future event horizon H+ε of Uε as

H+ε
.
= ∂Dε ∩Uε. (5-30)

Note that we allow H+ε to be empty. In view of Theorem 3.4, in the case when H+ε is nonempty, it is
necessarily of the form

H+ε = {u = uH+ε } ∩Uε (5-31)

and has infinite affine length.
We will also define

Jε
.
= J−(γ0)∩Uε. (5-32)

Notice that, as a consequence of Theorem 3.4, on Jε ∪Dε we have

1− 2m
r
> 0; (5-33)

i.e., trapped spheres can only appear in the region Uε\(Jε ∪Dε). In the case H+ε 6=∅, Theorem 3.4 also
implies that Jε\Dε 6=∅.

For any v∗ ∈ [0, v0] and any integer n ≥ 1, we will define

Un(v∗)
.
= v∗+ (n− 1)v0, (5-34)

Vn(v∗)= v∗+ nv0. (5-35)

We will also set

V0(v∗)
.
= v∗. (5-36)

Notice that the segment {u =Un(v∗)}∩Uε is the image of the ingoing null geodesic of Uε emanating from
the point (0, v∗) after n reflections off γ0 and n−1 reflections off I, while the segment {v = Vn(v∗)}∩Uε
is the image of the same null geodesic after n reflections off γ0 and n reflections off I; see Figure 8.
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γ0 I

(Un(v∗), Vn−1(v∗))

(Un(v∗), Vn(v∗))

v
=

V
n
−1 (v
∗ )

u =
U n(
v ∗
)

v
=

V
n (v
∗ )

Figure 8. Schematic depiction of the lines v = Vn−1(v∗), u =Un(v∗), and v = Vn(v∗).

Let us define the domains R(i, j)
εn ⊂ Uε for any n ∈N, 0≤ i ≤ d1/h1(ε)e, and i ≤ j ≤ d1/h1(ε)e+ i+1

by the relation

R(i, j)
εn =

{
Un

(
v(i)+

4
√
−3

h2(ε)
)
< u <Un(v

(i−1))
}

∩

{
Vn

(
v( j)
+

4
√
−3

h2(ε)
)
< v < Vn(v

( j−1))
}
∩Uε, (5-37)

where we have used the following conventions in the expression (5-37):

(1) Un(v
(−1))

.
=Un+1(v

(d1/h1(ε)e)).

(2) Vn(v
(d1/h1(ε)e+l)

+ c) .= Vn−1(v
(l−1)
+ c) for any integer 1≤ l ≤ d1/h1(ε)e and any c ≥ 0.

Remark. The boundary of the domains R(i,i)
εn , 0 ≤ i ≤ d1/h1(ε)e, contains a segment I, while the

boundary of the domains R(i,d1/h1(ε)e+1+i)
εn , 0≤ i ≤ d1/h1(ε)e, contains a segment in γ0. See Figure 9.

Notice that Tuu = Tvv = 0 in R(i, j)
εn . In particular, all the domains (R(i, j)

εn ×S2, gε) are isometric to
a region of a member of the Schwarzschild-AdS family (or to a region of pure AdS spacetime), and
the renormalized mass function m̃ε is constant on them. We will define for any 0 ≤ i ≤ d1/h1(ε)e,
i ≤ j ≤ d1/h1(ε)e+ i + 1 and n ∈ N such that R(i, j)

εn 6=∅,

m̃(i, j)
εn

.
= m̃ε|R(i, j)

εn
. (5-38)

In view of (5-23) and (5-24), we immediately calculate that for all 0≤ i ≤ d1/h1(ε)e and all n ∈N such
that R(i,i)

εn ,R(i,d1/h1(ε)e+1+i)
εn 6=∅,

m̃(i,d1/h1(ε)e+1+i)
εn = 0, (5-39)

m̃(i,i)
εn = m̃(i,i)

ε0 =
ε
√
−3

. (5-40)
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R(0,0)
εn

R
(0,1)εn

R(0,k+1)
εn

R
(0,k)εn

R(1,1)
εn

R(k,k)
εn

R
(1
,k+

1)

εn

R(1,k+2)
εn

R(k,2k+1)
εn

γ0 I

R
(k
,k+

1)

εn

(u(0)n , v
(0)
n )

(u(k)n , v(k)n )

(u(0)n , v
(0)
n−1)

(u(k)n , v
(k)
n−1)

(u(k)n+1, v
(k)
n )

(u(0)n+1, v
(0)
n )

Figure 9. Schematic depiction of the domains R(i, j)
εn for 0≤ i ≤ k and i ≤ j ≤ k+ i + 1

(where k = d1/h1(ε)e). We have used the shorthand notation u( j)
n = Un(v

( j)) and
v
( j)
n = Vn(v

( j)). Having assumed that h2(ε)� ε), all the beams of the form {Un(v
(i))≤

u ≤Un(v
(i)
+ (4/

√
−3)h2(ε))} and {Vn(v

( j))≤ v ≤ Vn(v
( j)
+ (4/

√
−3)h2(ε))}, which

separate the domains R(i, j)
εn , are depicted as straight line segments.



PROOF OF THE INSTABILITY OF ADS FOR THE EINSTEIN-NULL DUST SYSTEM WITH AN INNER MIRROR 1713

R(i, j)
n

R(i+1, j+1)
n

R(i+1, j)
nR(i, j+1)

n

u =
U n(
v
(i) )

v
=

V
n (v ( j)

)

u =
U n(
v
(i)
+

4h
2(
ε)

l)

v
=

V
n (v ( j)
+

4h
2 (ε)l)

A

N (i, j)
n

Figure 10. Typical arrangement of neighboring vacuum domains not intersecting γ0

or I. The point A at the lower corner of R(i, j)
n satisfies r(A)= r (i, j)

n . For simplicity, we
have used the shorthand notation l = (−3)−1/2.

For any n ∈N, 0≤ i ≤ d1/h1(ε)e and i+1≤ j ≤ d1/h1(ε)e+ i , we will define the interaction regions

N (i, j)
εn

.
=

{
Un(v

(i))≤ u ≤Un

(
v(i)+

4
√
−3

h2(ε)
)}
∩

{
Vn(v

( j))≤ u ≤ Vn

(
v( j)
+

4
√
−3

h2(ε)
)}
∩Uε,

(5-41)
where the conventions stated below (5-37) hold regarding indices smaller than 0 or larger than d1/h1(ε)e.
See Figure 10.

Let us define for any 0≤ i ≤ d1/h1(ε)e, i ≤ j ≤ d1/h1(ε)e+ i + 1, and n ∈ N such that R(i, j)
εn 6=∅

r (i, j)
εn

.
= rε

(
Un

(
v(i)+

4
√
−3

h2(ε)
)
, Vn

(
v( j)
+

4
√
−3

h2(ε)
))
. (5-42)

Note that r (i,i)εn =+∞ and r (i,d1/h1(ε)e+i+1)
εn = r0ε.

Finally, let us remark that, in view of property (6-204) of the cut-off used in the construction of the
initial data and (2-48)–(2-49), for any 1≤ n≤ n f , 0≤ i ≤d1/h1(ε)e, i ≤ j ≤d1/h1(ε)e+ i+1, we have

Tuu > 0 on
{

Un(v
(i)) < u <Un(v

(i)
+

4
√
−3

h2(ε))
}
, (5-43)

Tvv > 0 on
{

Vn(v
( j)) < u < Vn(v

( j)
+

4
√
−3

h2(ε))
}
. (5-44)

6. Proof of Theorem 1

In this section, we will prove Theorem 1. In order to simplify our notation, from now on, we will often
drop the subscripts ε in notation related to the maximal future development (Uε; rε, �2

ε, f̄inε, f̄outε) of the
initial data (r/ε, �2

/ε, f̄in/ε, f̄out/ε) (see Definition 5.1).
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For any 0 < ε < ε0 (provided ε0 is fixed sufficiently small) and any r0 > 0 satisfying (5-6), let
(Uε; r, �2, f̄in, f̄out) be the maximal future development of (r/ε, �2

/ε, f̄in/ε, f̄out/ε), and let us define

u+
.
= sup

{
u∗ > 0 : 1− 2m

r
> h3(ε) on Uε ∩ {u < u∗}

}
(6-1)

and
U+ε = Uε ∩ {u <min{u+, (h1(ε))

−2v0ε}}, (6-2)

where
h3(ε)= exp{− exp((h1(ε))

−5 exp(−2(h0(ε))
−4))}. (6-3)

Let us also set

k .
= d1/h1(ε)e, (6-4)

n f
.
= b(u+− v(0))/v0c, (6-5)

where dxe denotes the least integer greater than or equal to x , while bxc denotes the largest integer less
than or equal to x .

The proof of Theorem 1 will follow in two steps: First, in Section 6B, we will show that

sup
U+ε

(
1− 2m

r

)
= h3(ε), (6-6)

i.e., that U+ε contains a nearly trapped sphere. Then, in Section 6C, we will show that, at the final step of
the evolution, either a trapped sphere is formed, or there exists a small perturbation of the initial data
(r/ε, �2

/ε, f̄in/ε, f̄out/ε) giving rise to a trapped sphere.
Before proving (6-6), we need to establish some necessary bounds for the evolution of (r, �2, f̄in, f̄out)

in the region U+ε . These bounds, which will be obtained in Section 6A, will be used both in Section 6B
and in Section 6C.

6A. Inductive bounds for the evolution in the region U+
ε . In this section, we will establish a number of

useful bounds for (U+ε ; r, �2, f̄in, f̄out). These bounds will include a number of inductive bounds for the
quantities m̃(1,k+1)

n , r (k,k+1)
n , and r (1,k+1)

n (with k defined by (6-4)) that will be of fundamental significance
in the proof of Theorem 1.

In particular, we will prove the following result:

Proposition 6.1. For any 0< ε < ε0, the following bounds hold for (U+ε ; r, �2, f̄in, f̄out):

(1) On U+ε , we can estimate∣∣∣∣log
(
−∂ur

1− 1
33r2

)∣∣∣∣+ ∣∣∣∣log
(

∂vr
1− 2m/r

)∣∣∣∣≤ (h1(ε))
−4 log((h3(ε))

−1). (6-7)

(2) For any 1≤ n ≤ n f ,

r (0,k)n ≥
ε−1/2
√
−3

, (6-8)

r (k,k+1)
n ≤

ε1/2
√
−3

, (6-9)
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2(m̃|I − m̃(1,k+1)
n )

r0
≥ exp(−2(h0(ε))

−4), (6-10)

2(m̃|I − m̃(1,k+1)
n )

r0
≤ 1−

1
C0

h0(ε), (6-11)

r (1,k+1)
n

r0
− 1≥ exp(−(h0(ε))

−4), (6-12)

where C0 > 1 is a large fixed constant (independent of all the parameters).

(3) For any 2≤ n ≤ n f ,

m̃(1,k+1)
n

m̃(1,k+1)
n−1

≥ 1+ 1
4 exp(−2(h0(ε))

−4)
r0

r (k,k+1)
n

, (6-13)

r (k,k+1)
n − r0

r (k,k+1)
n−1 − r0

≤ 1+ 2C0
r0

r (k,k+1)
n−1

(∣∣∣∣log
(

1−
2m̃(1,k+1)

n−1

r0

)∣∣∣∣+ (h0(ε))
−4
)
. (6-14)

Before presenting the proof of Proposition 6.1 (in Section 6A2), we will briefly comment on the nature
of the bounds (6-7)–(6-14) and their relation with the specific choice of the parameters (5-2)–(5-3).

6A1. Remarks on Proposition 6.1. The bounds (6-7)–(6-14) in Proposition 6.1 lie at the heart of the
proof of Theorem 1. The precise form of the initial data (5-7), the range (5-6) for the mirror radius r0 and
the asymptotic bounds (5-2)–(5-3) on the parameters h0, h1, h2 were carefully chosen so that (6-7)–(6-14)
can be obtained. We will now proceed to briefly comment on the role of the bounds (6-7)–(6-14) in the
proof of Theorem 1. The reader is advised to review first the sketch of the proof in Section 1D of the
Introduction. Let us remark that, in the notation of Section 1D,

Eζ0;n = m̃(1,k+1)
n , (6-15)

rγ0;n = r (k,k+1)
n , (6-16)

r (1)γ0;n = r (1,k+1)
n . (6-17)

The bound (6-7) is a “trivial” bound controlling quantities related to the chosen gauge. The right-hand
side of (6-7), upon integration across any specific beam (in a direction transversal to the beam), will yield
a small quantity, in view of the fact that the width of the null beams emanating from u = 0, v ∼ v( j) was
chosen to be∼ h2(ε) and, moreover, h2(ε) was chosen in (5-3) to be small compared to the right-hand side
of (6-7). This fact will prove convenient for the proof of Proposition 6.1 and Theorem 1, as it will enable
us to “ignore” the variation of certain quantities across the width of any specific beam. That is to say, the
bound (6-7) will enable us to frequently treat the null beams as line segments having negligible width.

The bounds (6-8)–(6-9) are quantitative expressions of the fact that the set of interactions of the beams
splits into two portions, one close to r = r0 and one close to I.

The lower bound (6-10) is necessary in order to establish (6-13). In order to obtain (6-10), it is
necessary that r0 satisfies the upper bound of (5-6).
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The upper bound (6-11) implies that a trapped sphere (i.e., a sphere where 2m/r > 1) cannot be formed
at R(i, j)

εn for any j > k+ 1, since one can also show that m̃ ≤ m̃|I − m̃(1,k+1)
n in those regions. In order to

obtain (6-11), it is necessary that the mirror radius r0 satisfy the lower bound of (5-6).
In the language of Section 1D of the Introduction, the bound (6-12) states that, when ζ0 reaches {r = r0}

for the n-th time, the r -distance of the top beam ζ0 from the second-to-top beam ζ1, i.e., r (1,k+1)
n − r0, can

be bounded from below by a small multiple of r0 which is large compared to h1(ε)r0. As a consequence
of (6-12) and the bound (5-6) for r0, for any i 6= 1, R(i,k+1)

εn does not contain a trapped sphere. As a result,
combining (6-11), (6-8) and (6-12), we infer that, among all regions R(i, j)

εn , a trapped sphere can only
appear for i = 1, j = k+ 1. This fact serves to simplify the proof of Theorem 1, by avoiding considering
multiple scenarios of trapped surface formation. Furthermore, it is crucial in obtaining (6-14).

Establishing (6-12) is the most demanding part of the proof of Proposition 6.1. It requires obtaining a
lower bound in the rate of decrease of r (1,k+1)

n in terms of the rate of increase of m̃(1,k+1)
n , using also the

fact that m̃(1,k+1)
n . r0 before a trapped sphere is formed (see the relations (6-129) and (6-154) in the next

section).
The bound (6-13) is a technical version of the bound (1-42), and its proof follows from the ideas

outlined in Section 1D. In obtaining (6-13), the lower bound of (6-10) is necessary.
Finally, the bound (6-14) is a technical version of the bound (1-46) in Section 1D and provides an

estimate for the decrease of the multiplicative factor in the right-hand side of (6-13). In obtaining (6-14)
when 2m/r ' 1, the fact that 2m/r is bounded away from 1 everywhere but on R(i, j)

εn is crucially used
(in particular, the bound (6-12) is necessary for (6-14)).

Remark. As is evident from the above discussion, most of the technical difficulties in the proof of
Proposition 6.1 are associated to issues related with the near-trapped regime 2m/r ' 1. In the case when,
instead of the stronger bound (4-4), one is merely interested in establishing the weaker instability estimate
(4-8), the proof of Proposition 6.1 simplifies substantially: In that case, it is not necessary to demand that
the worst instability scenario take place in R(1,k+1)

εn . In particular, the bounds (6-11) and (6-12) can be
omitted from the proof. Moreover, the lower bound for r0 in (5-6) can be relaxed, and the exponentials in
the relations (5-2) between h0(ε), h1(ε) can be replaced by polynomial functions.

6A2. Proof of Proposition 6.1. In this section, we will make use of the O( · ) convention: for any pair of
functions F,G defined on the same domain, with G ≥ 0, the notation

F = O(G)
will imply that

|F | ≤ C ·G

for some universal constant C>0 which is independent of all the parameters in the statement of Theorem 1.
We should also remark that, throughout this proof, we will adopt the convention on the indices stated
under (5-37); i.e.,

(1) Un(v
(−1))

.
=Un+1(v

(k)),

(2) Vn(v
(k+l)
+ c) .= Vn−1(v

(l−1)
+ c) for any integer 1≤ l ≤ k and any c ≥ 0.
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In view of (6-1), on U+ε we have
∂ur < 0< ∂vr, (6-18)

∂um̃ ≤ 0≤ ∂vm̃. (6-19)

We will split the proof of Theorem 1 into two parts: In the first (and shortest) part, we will establish
the bound (6-7) through a standard continuity argument. The proof of (6-7) will also yield (6-8) and (6-9).
In the second (and more extended) part, we will establish the bounds (6-10)–(6-14) by induction on n.

Part I: proof of (6-7)–(6-9). Let u∗ > 0 be such that on

U∗ε
.
= U+ε ∩ {u < u∗}, (6-20)

we can bound ∣∣∣∣log
(
−∂ur

1− 1
33r2

)∣∣∣∣+ ∣∣∣∣log
(

∂vr
1− 2m/r

)∣∣∣∣≤ 2(h1(ε))
−4 log((h3(ε))

−1). (6-21)

By showing that (6-7) holds on U∗ε , it will follow (by applying a standard continuity argument) that (6-7)
holds on the whole of U+ε .

Inductive formulas for ∂ur and ∂vr and proof of (6-7). From (2-45), we can readily derive the following
renormalized equation:

∂v∂u

{√
−

3
3

tan−1
(√
−
3

3
r
)}
=−2

m̃
r2

(1−3r2)(
1− 1

33r2
)( −∂ur

1− 1
33r2

)(
∂vr

1− 2m/r

)
. (6-22)

Let n ≥ 1, 0≤ i ≤ k, i ≤ j ≤ k+ i , ū < u∗ and vb be such that

Un

(
v(i)+

4
√
−3

h2(ε)
)
≤ ū ≤Un(v

(i−1))

and
Vn(v

( j))≤ vb ≤ Vn

(
v( j)
+

4
√
−3

h2(ε)
)
.

Integrating (6-22) for u = ū from v = Vn(v
( j)) up to v = vb, using also the fact that

∂u

{√
−

3
3

tan−1
(√
−
3

3
r
)}
=

∂ur

1− 1
33r2

,

we obtain

−∂ur

1−1
33r2

∣∣∣∣
(ū,Vn(v( j)))

=
−∂ur

1− 1
33r2

∣∣∣∣
(ū,vb)

+O
(

sup
{u=ū}∩{Vn(v( j)+(4/

√
−3)h2(ε))≤v≤Vn(v( j−1))}

∣∣∣∣ m̃r2

(
−∂ur

1−1
33r2

)(
∂vr

1−2m/r

)∣∣∣∣h2(ε)

)
. (6-23)

Using the bootstrap bound (6-21), combined with the trivial bounds

m̃ ≤ m̃|I =
ε
√
−3

, (6-24)

r ≥ r0 (6-25)
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(following from (2-46), (2-47) and (6-18)), as well as the relation (5-3) for h2(ε), the relation (6-23)
yields

−∂ur

1− 1
33r2

∣∣∣∣
(ū,Vn(v( j)))

=
−∂ur

1− 1
33r2

∣∣∣∣
(ū,vb)

+ O((h2(ε))
1/2). (6-26)

Similarly, integrating (6-22) for v = v̄ from u =Un(v
(i)) up to u = ub for any

Vn

(
v( j)
+

4
√
−3

h2(ε)
)
≤ v̄ ≤ Vn(v

( j−1))

and any

Un(v
(i))≤ ub ≤Un

(
v(i)+

4
√
−3

h2(ε)
)

(assuming that ub < u∗), we infer

∂vr

1− 1
33r2

∣∣∣∣
(Un(v(i)),v̄)

=
∂vr

1− 1
33r2

∣∣∣∣
(ub,v̄)

+ O((h2(ε))
1/2). (6-27)

By multiplying and dividing each factor by

1− 2m
r
= 1− 2m̃

r
−

1
3
3r2,

the relations (6-26) and (6-27) are equivalent to

−∂ur
1− 2m/r

∣∣∣∣
(ū,Vn(v( j)))

=
−∂ur

1− 2m/r

∣∣∣∣
(ū,vb)

·

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū,vb)

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū,Vn(v( j)))

+ O((h2(ε))
1/2)

)
(6-28)

and

∂vr
1− 2m/r

∣∣∣∣
(Un(v(i)),v̄)

=
∂vr

1− 2m/r

∣∣∣∣
(ub,v̄)

·

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ub,v̄)

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(i)),v̄)

+ O((h2(ε))
1/2)

)
. (6-29)

Remark. In the vacuum case, where m̃ is constant, the factors in the right-hand side of (6-28) and (6-29)
become identically 1. In our case, however, where matter is present, by relaxing our definition of h2

and considering the limit h2→ 0 for fixed ε, the dominant terms in the factors in the right-hand side of
(6-28) and (6-29), i.e., the first summands, do not converge to 1. This is because, in this limit, while the
function r remains C1, the renormalized Hawking mass m̃ has a jump discontinuity across the beam.

Since Tuu = Tvv = 0 on R(i, j)
εn for any n ≥ 1, any 0 ≤ i ≤ k and any i ≤ j ≤ k + i + 1, the relations

(2-43)–(2-44) imply

∂v

(
−∂ur

1− 2m/r

)∣∣∣∣
R(i, j)
εn

= ∂u

(
∂vr

1− 2m/r

)∣∣∣∣
R(i, j)
εn

= 0. (6-30)

In particular, along lines of the form {u = ū}, the quantity −∂ur/(1 − 2m/r) remains constant on
{u = ū} ∩R(i, j)

εn for any ū < u∗ such that {u = ū} ∩R(i, j)
εn is nontrivial. In view of (6-28), the quantities
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−∂ur/(1−2m/r)|
{u=ū}∩R(i, j+1)

εn
and−∂ur/(1−2m/r)|

{u=ū}∩R(i, j)
εn

(for any ū< u∗ such that {u= ū}∩R(i, j)
εn

is nontrivial) are related by
−∂ur

1− 2m/r

∣∣∣∣
{u=ū}∩R(i, j)

εn

=
−∂ur

1− 2m/r

∣∣∣∣
{u=ū}∩R(i, j+1)

εn

·

( 1−
(
2m̃/r

(
1− 1

33r2
))∣∣

(ū,Vn(v( j)))

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū,Vn(v( j)+(4/
√
−3)h2(ε)))

+ O((h2(ε))
1/2)

)
. (6-31)

Similarly, the quantity ∂vr/(1− 2m/r) remains constant along segments of the form {v = v̄}∩R(i, j)
εn , and

∂vr/(1− 2m/r)|
{v=v̄}∩R(i+1, j)

εn
and ∂vr/(1− 2m/r)|

{v=v̄}∩R(i, j)
εn

are related (in view of (6-29)) by

∂vr
1− 2m/r

∣∣∣∣
{v=v̄}∩R(i, j)

εn

=
∂vr

1− 2m/r

∣∣∣∣
{v=v̄}∩R(i+1, j)

εn

·

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(i)),v̄)

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(i)+(4/
√
−3)h2(ε)),v̄)

+ O((h2(ε))
1/2)

)
. (6-32)

We infer, therefore, that for any point (ū, v̄) ∈R(i, j)
ε,n for some n ≥ 2, 0≤ i ≤ k and i ≤ j ≤ k+ i + 1

such that ū < u∗, the following relations hold between (ū, v̄) and (ū− v0, v̄− v0) ∈R
(i, j)
ε,n−1:

−∂ur
1− 2m/r

∣∣∣∣
(ū,v̄)
=
−∂ur

1− 2m/r

∣∣∣∣
(ū−v0,v̄−v0)

×

k+i∏
j̄= j

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū,Vn(v( j̄)))

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū,Vn(v( j̄)+(4/
√
−3)h2(ε)))

+ O((h2(ε))
1/2)

)

×

k+i∏
ī=i

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(ī)),ū)

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(ī)+(4/
√
−3)h2(ε)),ū)

+ O((h2(ε))
1/2)

)

×

k+ j∏
j̄=k+i+1

( 1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū−v0,Vn(v( j̄)))

1− 2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū−v0,Vn(v( j̄)+(4/
√
−3)h2(ε)))

+ O((h2(ε))
1/2)

)
(6-33)

and
∂vr

1−2m/r

∣∣∣∣
(ū,v̄)
=

∂vr
1−2m/r

∣∣∣∣
(ū−v0,v̄−v0)

×

j−1∏
ī=i

( 1−2m̃/
(
r
(
1−1

33r2
))∣∣

(Un(v(ī)),v̄)

1−2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(ī)+(4/
√
−3)h2(ε)),v̄)

+O((h2(ε))
1/2)

)

×

k+ j∏
j̄= j

( 1−2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū−v0,Vn(v( j̄)))

1−2m̃/
(
r
(
1− 1

33r2
))∣∣

(ū−v0,Vn(v( j̄)+(4/
√
−3)h2(ε)))

+O((h2(ε))
1/2)

)

×

k+i∏
ī= j

( 1−2m̃/
(
r
(
1−1

33r2
))∣∣

(Un(v(ī)),v̄−v0)

1−2m̃/
(
r
(
1− 1

33r2
))∣∣

(Un(v(ī)+(4/
√
−3)h2(ε)),v̄−v0)

+O((h2(ε))
1/2)

)
. (6-34)
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I

C

C ′

γ0

Figure 11. In order to obtain the formula (6-33) relating −∂ur/(1− 2m/r) at the point
C = (ū, v̄) with the same quantity at the point C ′= (ū−v0, v̄−v0), we apply the relations
(6-31) and (6-32) along the dashed path depicted above, using also the reflecting gauge
condition on γ0 and I.

The relation (6-33) is obtained as follows (see also Figure 11): First, (6-31) determines the evolution
of −∂ur/(1− 2m/r) (according to (6-31)) along the line {u = ū} in the past direction, from (ū, v̄) up
to γ0. Then, using the boundary relation

−∂ur
1− 2m/r

∣∣∣∣
γ0

=
∂vr

1− 2m/r

∣∣∣∣
γ0

, (6-35)

one repeats the same procedure for ∂vr/(1− 2m/r) along {v = ū} from γ0 up to I. Finally, using

−∂ur
1− 2m/r

∣∣∣∣
I
=

∂vr
1− 2m/r

∣∣∣∣
I
, (6-36)

and following the evolution of −∂ur/(1− 2m/r) along {u = ū− v0} from I up to (ū− v0, v̄− v0), one
arrives at (6-33). The relation (6-34) is similarly obtained by following the same procedure along the
lines {v = v̄} (up to I ), {u = v̄− v0} (from I up to γ0) and {v = v̄− v0} (from I up to (ū− v0, v̄− v0)).

In view of the bound
1− 2m

r
≥ h3(ε) (6-37)

on U+ε (see (6-1)), we can estimate in the region {r ≤ ε1/2(−3)1/2} ∩U+ε

1−
2m̃

r
(
1− 1

33r2
) = 1− 2m/r

1− 1
33r2

≥
1
2 h1(ε). (6-38)
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On the other hand, in the region {r ≥ ε1/2(−3)1/2} ∩ U+ε , using (5-24) to bound m̃ we can trivially
estimate (in view also of (5-2))

1−
2m̃

r
(
1− 1

33r2
) ≥ 1−

2ε
ε1/2 ≥ h1(ε). (6-39)

Combining (6-38) and (6-39), using also that m̃ ≥ m̃|γ0 = 0 on U+ε , we can bound 1−2m̃/
(
r
(
1− 1

33r2
))

from above and below everywhere on U+ε as

1
2 h3(ε)≤ 1−

2m̃

r
(
1− 1

33r2
) ≤ 1. (6-40)

Thus, by considering the logarithm of the relations (6-33)–(6-34) and noting that the resulting right-hand
side contains ∼ k = d1/h1(ε)e summands, each controlled with the help of (6-40), we readily obtain for
any n ≥ 2, 0≤ i ≤ k, and i ≤ j ≤ k+ i + 1 and any point (ū, v̄) ∈R(i, j)

εn with ū < u∗∣∣∣∣log
(
−∂ur

1− 2m/r

)∣∣∣∣
(ū,v̄)
− log

(
−∂ur

1− 2m/r

)∣∣∣∣
(ū−v0,v̄−v0)

∣∣∣∣≤ C
h1(ε)

log((h3(ε))
−1) (6-41)

and ∣∣∣∣log
(

∂vr
1− 2m/r

)∣∣∣∣
(ū,v̄)
− log

(
∂vr

1− 2m/r

)∣∣∣∣
(ū−v0,v̄−v0)

∣∣∣∣≤ C
h1(ε)

log((h3(ε))
−1). (6-42)

In view of (6-28)–(6-29), the bounds (6-41) and (6-42) (stated in the case when (ū, v̄) belongs to a vacuum
region R(i, j)

εn ) also hold when (ū, v̄) belongs to a beam, i.e., when

Un(v
(i))≤ ū ≤Un

(
v(i−1)

+
4
√
−3

h2(ε)
)

or
Vn(v

( j))≤ v̄ ≤ Vn

(
v(i−1)

+
4
√
−3

h2(ε)
)

for some n ≥ 2, 0 ≤ i ≤ k, and i ≤ j ≤ k + i + 1. Therefore, for any n ≥ 2, the bounds (6-28)–(6-29)
hold on the whole of

U∗ε;n
.
= {Un(v

(k))≤ u ≤Un+1(v
(k))} ∩U∗ε . (6-43)

From (6-2) and the definition (6-5), it follows that

n f ≤ (h1(ε))
−2. (6-44)

Since n ≤ n f (because U∗ε ⊂ U+ε ), by substituting (ū, v̄)→ (ū− v0, v̄− v0) in (6-41)–(6-42) n− 2 times
and using (6-44), (5-16), (6-40) as well as the Cauchy stability estimate of Proposition 3.5 for the region
{0≤ u ≤ 2v0}, we readily obtain

sup
U∗ε

{∣∣∣∣log
(
−∂ur

1− 1
33r2

)∣∣∣∣+ ∣∣∣∣log
(

∂vr
1− 2m/r

)∣∣∣∣}≤ C
(h1(ε))3

log((h3(ε))
−1). (6-45)

Thus, (6-7) holds on U∗ε in view of the relation (5-2) for the parameter h1(ε) (provided ε0 is small enough).
Therefore (as explained in the beginning of the proof), a standard continuity argument yields that (6-7)
actually holds on the whole of U+ε .
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Proof of (6-8) and (6-9). For any 1≤ n ≤ n f , we can bound, in view of the definition (5-8) of v( j) and
the bound (6-7),∣∣∣∣tan−1

(√
−
3

3
r
)∣∣∣
(Un(v(0)+(4/

√
−3)h2(ε)),Vn(v(k)+(4/

√
−3)h2(ε)))

− tan−1
(√
−
3

3
r
)∣∣∣

I∩{v=Vn(v(k)+(4/
√
−3)h2(ε))}

∣∣∣∣
=

√
−
3

3

∫ Un(v
(0)
+(4/
√
−3)h2(ε))

Un(v(k)+(4/
√
−3)h2(ε))

−∂ur

1− 1
33r2

∣∣∣∣
(u,Vn(v(k)+(4/

√
−3)h2(ε)))

du

≤
C
√
−3

(h1(ε))4
log((h3(ε))

−1)|v(k)− v(0)|

≤
Cε

(h1(ε))6
log((h3(ε))

−1) (6-46)

and∣∣∣∣tan−1
(√
−
3

3
r
)∣∣∣
(Un(v(k)+(4/

√
−3)h2(ε)),Vn(v(k+1)+(4/

√
−3)h2(ε)))

−tan−1
(√
−
3

3
r
)∣∣∣
γ0∩{v=Vn(v(k+1)+(4/

√
−3)h2(ε))}

∣∣∣∣
=

√
−
3

3

∫ Un(v
(0)
+(4/
√
−3)h2(ε))

Un(v(k)+(4/
√
−3)h2(ε))

−∂ur

1− 1
33r2

∣∣∣∣
(u,Vn(v(k+1)+(4/

√
−3)h2(ε)))

du

≤
C
√
−3

(h1(ε))4
log((h3(ε))

−1)|v(k)−v(0)|

≤
Cε

(h1(ε))6
log((h3(ε))

−1). (6-47)

From (6-46) and (6-47) we readily obtain (6-8) and (6-9), respectively, in view of the relations (5-2) and
(6-3) for h1, h3, respectively, and the fact that r |γ0 = r0, r |I =+∞.

Part II: proof of (6-10)–(6-14). We will now proceed to establish the bounds (6-10)–(6-14). To this end,
we will first derive some useful estimates for the differences of the renormalized masses m̃(i, j)

n associated
to the vacuum regions around each interaction region N (i, j)

εn .16

Relations for the change in the mass difference of the beams. Let us introduce the notion of the
mass difference for the beams {Un(v

(i)) ≤ u ≤ Un(v
(i)
+ (4/

√
−3)h2(ε))} and {Vn(v

( j)) ≤ v ≤

Vn(v
( j)
+ (4/

√
−3)h2(ε))} around their interaction region N (i, j)

εn : For any 1 ≤ n ≤ n f , 0 ≤ i ≤ k,
and i + 1≤ j ≤ k+ i , we define the initial mass differences

(D−m̃)(i, j)
n

.
= m̃(i+1, j+1)

n − m̃(i, j+1)
n ,

(D−m̃)(i, j)
n

.
= m̃(i+1, j)

n − m̃(i+1, j+1)
n

(6-48)

and the final mass differences
(D+m̃)(i, j)

n
.
= m̃(i+1, j)

n − m̃(i, j)
n ,

(D+m̃)(i, j)
n

.
= m̃(i, j)

n − m̃(i, j+1)
n .

(6-49)

16A relation for the change the mass differences of two intersecting, infinitely thin null dust beams was also obtained in
[Poisson and Israel 1990].
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m̃ = m̃(i, j)
n

m̃ = m̃(i+1, j+1)
n

m̃ = m̃(i+1, j)
nm̃ = m̃(i, j+1)

n

u =
U n(
v
(i) )

v
=

V
n (v ( j)

)

u =
U n(
v
(i)
+

4h
2(
ε)

l)

v
=

V
n (v ( j)
+

4h
2 (ε)l)

A

N (i, j)
n

B

(D−m̃)(i, j)
n (D−m̃)(i, j)

n

(D+m̃)(i, j)
n (D+m̃)(i, j)

n

Figure 12. Schematic depiction of two intersecting beams, with associated incoming
and outcoming mass differences (D−m̃)(i, j)

n , (D−m̃)(i, j)
n and (D+m̃)(i, j)

n , (D+m̃)(i, j)
n ,

respectively. The point A satisfies r(A)= r (i, j)
n , while the point B satisfies r(B)= r̄ (i, j)

n .
For simplicity, we have used the shorthand notation l = (−3)−1/2.

Note that (D−m̃)(i, j)
n and (D+m̃)(i, j)

n are the mass differences around the outgoing beam {Un(v
(i))≤ u ≤

Un(v
(i)
+(4/

√
−3)h2(ε))} before and after crossing the region N (i, j)

εn , respectively, while (D−m̃)(i, j)
n and

(D+m̃)(i, j)
n are the mass differences around the ingoing beam {Vn(v

( j))≤ v≤Un(v
( j)
+(4/
√
−3)h2(ε))}

before and after crossing the region N (i, j)
εn . See Figure 12. Note the trivial identity

(D−m̃)(i, j)
n + (D−m̃)(i, j)

n = (D+m̃)(i, j)
n + (D+m̃)(i, j)

n . (6-50)

We will establish the following bounds for any 1≤ n ≤ n f , 1≤ i ≤ k and i + 1≤ j ≤ k+ i :

(D+m̃)(i, j)
n = (D−m̃)(i, j)

n exp
(

2

r̄ (i, j)
n

(D−m̃)(i, j)
n

1−2m̃(i+1, j)
n /r̄ (i, j)

n −
1
33(r̄

(i, j)
n )2

(1−Err(i, j)
1,n )(1−Err

(i, j)
\n )

)
, (6-51)

(D+m̃)(i, j)
n = (D−m̃)(i, j)

n exp
(
−

2

r̄ (i, j)
n

(D+m̃)(i, j)
n

1−2m̃(i+1, j)
n /r̄ (i, j)

n −
1
33(r̄

(i, j)
n )2

(1−Err(i, j)
1,n )(1−Err

(i, j)
/n )

)
, (6-52)

where the terms Err(i, j)
1,n in (6-51) and (6-52) are allowed to be different from each other, but they both

satisfy the bound

0≤Err(i, j)
1,n ≤1−

r̄ (i, j)
n − 2m̃(i+1, j)

n −
1
33(r̄

(i, j)
n )3

r |(Un(v(i)),Vn(v( j)+(4/
√
−3)h2(ε)))

− 2m̃(i, j+1)
n −

1
33r3|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

(6-53)
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and Err
(i, j)
\n , Err

(i, j)
/n satisfy the bounds

0≤ Err
(i, j)
\n ≤ 1−

(D+m̃)(i, j)
n

(D−m̃)(i, j)
n

, (6-54)

0≤ Err
(i, j)
/n ≤ 1−

(D−m̃)(i, j)
n

(D+m̃)(i, j)
n

. (6-55)

Moreover, the following estimate will be useful in the proof of (6-12): for any 1 ≤ n ≤ n f , 1 ≤ i ≤ k,
and k+ 1≤ j ≤ k+ i ,

(D+m̃)(i, j)
n ≥ (D−m̃)(i, j)

n · exp
(

1
5C0

(D−m̃)(i, j)
n

r̄ (i, j)
n

)
. (6-56)

Remark. Notice that, as a consequence of (6-51) and (6-52), during the interaction of the two beams
at N (i, j)

εn , the mass difference Dm̃ of the ingoing beam increases, while the mass difference Dm̃ of the
outgoing beam decreases.

Proof of (6-51) and (6-52). By differentiating (2-47) in u and using (2-43) and (2-48), we readily obtain
the wave-type equation for m̃

∂u∂vm̃ =−F(r, m̃) ∂um̃∂vm̃, (6-57)
where

F(r, m̃) .=
2

r − 2m̃− 1
33r3

. (6-58)

Note that, formally, (6-57) can be rewritten as

∂v log(−∂um̃)=−F(r, m̃) ∂vm̃ (6-59)
or

∂u log(∂vm̃)= F(r, m̃)(−∂um̃) (6-60)

(note, however, that log(−∂um̃), log(∂vm̃) will not be well-defined when ∂um̃ = 0 or ∂vm̃ = 0).
For any 1≤ n ≤ n f , 1≤ i ≤ k, and i + 1≤ j ≤ k+ i , integrating (6-57) first in u, for Un(v

(i)))≤ u ≤
Un(v

(i)
+ (4/

√
−3)h2(ε)), and then in v, for Vn(v

( j))≤ v ≤ Vn(v
( j)
+ (4/

√
−3)h2(ε)), we obtain

m̃(i, j)
n − m̃(i, j+1)

n

=

∫ Vn(v
( j)
+(4/
√
−3)h2(ε))

Vn(v( j))

∂vm̃|(Un(v(i))),v)
· exp

(
2
∫ Un(v

(i)
+(4/
√
−3)h2(ε))

Un(v(i))

−∂um̃
r − 2m

∣∣∣∣
(u,v)

du
)

dv. (6-61)

Remark. Note that, at the formal level, the derivation of (6-61) is easiest seen by integrating (6-60) first
in u, then exponentiating, and then integrating in v. This procedure can actually be done rigorously, since
∂um̃ < 0< ∂vm̃ in the interior of N (i, j)

εn , in view of (2-46)–(2-47) and (5-43)–(5-44).

In view of (6-18)–(6-19), we can bound for any Un(v
(i)) ≤ u ≤ Un(v

(i)
+ (4/

√
−3)h2(ε)) and any

Vn(v
( j))≤ v ≤ Vn(v

( j)
+ (4/

√
−3)h2(ε))

r̄ (i, j)
n − 2m̃(i+1, j)

n −
1
33(r̄

(i, j)
n )3

≤ (r − 2m)|(u,v)

≤ r |(Un(v(i)),Vn(v( j)+(4/
√
−3)h2(ε)))

− 2m̃(i, j+1)
n −

1
33r3
|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

, (6-62)
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where
r̄ (i, j)

n
.
= r |(Un(v(i)+(4/

√
−3)h2(ε)),Vn(v( j))).

Therefore, using (6-62) to estimate 1/(r − 2m), from (6-61) we readily infer that

m̃(i, j)
n − m̃(i, j+1)

n =

∫ Vn(v
( j)
+(4/
√
−3)h2(ε))

Vn(v( j))

∂vm̃|(Un(v(i))),v)

· exp
(

2

r̄ (i, j)
n

m̃|(Un(v(i)),v)
− m̃|(Un(v(i)+(4/

√
−3)h2(ε)),v)

1− 2m̃(i+1, j)
n /r̄ (i, j)

n −
1
33(r̄

(i, j)
n )2

(1−Err
(i, j)
1,n (v))

)
dv, (6-63)

where, for any Vn(v
( j))≤ v ≤ Vn(v

( j)
+ (4/

√
−3)h2(ε)), Err

(i, j)
1,n (v) satisfies the bound (6-53).

Equations (2-46), (2-44) and (2-23) imply that, for any Vn(v
( j))≤ v ≤ Vn(v

( j)
+ (4/

√
−3)h2(ε)),

∂v(m̃|(Un(v(i)),v)
− m̃|(Un(v(i)+(4/

√
−3)h2(ε)),v)

)≤ 0 (6-64)

and, therefore, for any Vn(v
( j))≤ v ≤ Vn(v

( j)
+ (4/

√
−3)h2(ε)),

(D+m̃)(i, j)
n ≤ m̃|(Un(v(i)),v)

− m̃|(Un(v(i)+(4/
√
−3)h2(ε)),v)

≤ (D−m̃)(i, j)
n . (6-65)

The bound (6-65) implies that (6-63) can be expressed as

m̃(i, j)
n − m̃(i, j+1)

n = (m̃(i+1, j)
n − m̃(i+1, j+1)

n )

· exp
(

2

r̄ (i, j)
n

(D−m̃)(i, j)
n

1− 2m̃(i+1, j)
n /r̄ (i, j)

n −
1
33(r̄

(i, j)
n )2

(1−Err
(i, j)
1,n )(1−Err

(i, j)
\n )

)
, (6-66)

where Err
(i, j)
1,n satisfies the bound (6-53) and Err

(i, j)
\n satisfies the bound (6-54). In view of (6-48) and

(6-49), (6-66) is equivalent to (6-51).
Similarly, integrating (6-57) first in v, for Vn(v

( j)) ≤ v ≤ Vn(v
( j)
+ (4/

√
−3)h2(ε)), and then in u,

for Un(v
(i)))≤ u ≤Un(v

(i)
+ (4/

√
−3)h2(ε)) (see also (6-59)), we obtain (6-52). �

Proof of (6-56). Recall F defined by (6-58) and let us define the function F : DF → (0,+∞), where

DF =
{
(x, y) ∈ R2x > 0 and x − y− 2

33x2 > 0
}
, (6-67)

by the relation

F(x, y) .=
2

x − y− 2
33x2

. (6-68)

Note that, in view of (6-7), (6-9), (5-6) and (5-3), for any µ≥ 0 for which

inf
(u,v)∈N (i, j)

εn

{
r(u, v)− 2µ− 1

33r2(u, v)
}
> h3(ε), (6-69)

we can readily bound

max
(u,v)∈N (i, j)

εn

F(r(u, v), µ) < min
(u,v)∈N (i, j)

εn

F(r(u, v), µ) (6-70)

and
∂µF(r(u, v), µ), ∂µF(r(u, v), µ) > 0 (6-71)

(note that F(r |N (i, j)
εn
, µ) and F(r |N (i, j)

εn
, µ) are well-defined and positive under the condition (6-69)).
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For any 1 ≤ n ≤ n f , 1 ≤ i ≤ k, and k + 1 ≤ j ≤ k + i , let us consider the following characteristic
initial value problem on N (i, j)

εn :
∂u∂vm̄=−F(r, m̄)∂um̄ ∂vm̄ on N (i, j)

εn ,

m̄= m̃ on
[
Un(v

(i))),Un

(
v(i)+

4
√
−3

h2(ε)
)]
×{Vn(v

( j)))}∪{Un(v
(i)))}

×

[
Vn(v

( j))),Vn

(
v( j)
+

4
√
−3

h2(ε)
)]
.

(6-72)

Note that m̃ satisfies the same characteristic initial value problem with F(r, m̃) in place of F(r, m̄). Notice
also that, in view of (2-46)–(2-47) and (5-43)–(5-44), the initial data for m̃ and m̄ satisfy

∂um̃ < 0 on
{

Un(v
(i)) < u <Un(v

(i)
+

4
√
−3

h2(ε))
}
, (6-73)

∂vm̃ > 0 on
{

Vn(v
( j)) < u < Vn(v

( j)
+

4
√
−3

h2(ε))
}
. (6-74)

Therefore, in view of (6-70)–(6-71) and (6-73)–(6-74), an application of Lemma A.1 (see Section A1
of the Appendix) with m̃, m̄ in place of z2, z1, respectively, yields the following a priori bounds for a
solution m̄ of (6-72):

m̄ ≤ m̃ on N (i, j)
εn , (6-75)

∂um̄ < 0< ∂vm̄ in the interior of N (i, j)
εn . (6-76)

Notice that the a priori bound (6-75) and the initial data in (6-72) imply that m̄ ≥ 0 and that (6-69) holds
for µ = m̃ and µ = m̄; in particular, F(r, m̄) is well-defined and positive on N (i, j)

εn . Thus, it readily
follows (using standard arguments) that (6-72) indeed has a unique smooth solution m̄ satisfying (6-75).

With m̄ defined on N (i, j)
εn as above for any 1 ≤ n ≤ n f , 1 ≤ i ≤ k, and k + 1 ≤ j ≤ k + i , we will

define the following modified versions of (6-48) and (6-49):

(D−m̄)(i, j)
n

.
= m̄|(Un(v(i)),Vn(v( j)))− m̄|(Un(v(i)+(4/

√
−3)h2(ε)),Vn(v( j))),

(D−m̄)(i, j)
n

.
= m̄|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

− m̄|(Un(v(i)),Vn(v( j)))

(6-77)

and

(D+m̄)(i, j)
n

.
= m̄|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

− m̄|(Un(v(i)+(4/
√
−3)h2(ε)),Vn(v( j)+(4/

√
−3)h2(ε)))

,

(D+m̄)(i, j)
n

.
= m̄|(Un(v(i)+(4/

√
−3)h2(ε)),Vn(v( j)+(4/

√
−3)h2(ε)))

− m̄|(Un(v(i)+(4/
√
−3)h2(ε)),Vn(v( j))).

(6-78)

Note that, in view of the initial data for (6-72),

(D−m̄)(i, j)
n = (D−m̃)(i, j)

n ,

(D−m̄)(i, j)
n = (D−m̃)(i, j)

n ,
(6-79)

while, in view of the bound (6-75) (and the initial data for (6-72)),

(D+m̄)(i, j)
n ≥ (D+m̃)(i, j)

n ,

(D+m̄)(i, j)
n ≤ (D+m̃)(i, j)

n .
(6-80)
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By repeating exactly the same steps that led to (6-51) and (6-52) but using (6-72) instead of (6-57), we
obtain for any 1≤ n ≤ n f , 1≤ i ≤ k, and k+ 1≤ j ≤ k+ i ,

(D+m̄)(i, j)
n = (D−m̄)(i, j)

n ·exp
(

2

r̄ (i, j)
n

(D−m̄)(i, j)
n

1−m̃(i+1, j)
n /r̄ (i, j)

n −
2
33(r̄

(i, j)
n )2

(1−Err(i, j)
1,n )(1−Err

(i, j)
\n )

)
, (6-81)

(D+m̄)(i, j)
n = (D−m̄)(i, j)

n ·exp
(
−

2

r̄ (i, j)
n

(D+m̄)(i, j)
n

1−m̃(i+1, j)
n /r̄ (i, j)

n −
2
33(r̄

(i, j)
n )2

(1−Err(i, j)
1,n )(1−Err

(i, j)
/n )

)
, (6-82)

where

0≤Err
(i, j)
1,n ≤ 1−

r̄ (i, j)
n − m̃(i+1, j)

n −
2
33(r̄

(i, j)
n )3

r |(Un(v(i)),Vn(v( j)+(4/
√
−3)h2(ε)))

− m̃(i, j+1)
n −

2
33r3|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

, (6-83)

and

0≤ Err
(i, j)
\n ≤ 1−

(D+m̄)(i, j)
n

(D−m̄)(i, j)
n

, (6-84)

0≤ Err
(i, j)
/n ≤ 1−

(D−m̄)(i, j)
n

(D+m̄)(i, j)
n

(6-85)

(and, as before, we allow the terms Err(i, j)
1,n in (6-81) and (6-82) to be different).

Because

m̃(i+1, j)
n ≤ m̃|I ≤ 2

3r0 ≤
2
3 r̄ (i, j)

n (6-86)

(in view of (5-24), (5-6), (6-18) and (6-19)), from (6-82) (using also (6-9) and that Err(i, j)
1,n ,Err

(i, j)
/n ≥ 0)

we can estimate for any 1≤ n ≤ n f , 1≤ i ≤ k, and k+ 1≤ j ≤ k+ i

(D+m̄)(i, j)
n = (D−m̄)(i, j)

n · exp
(
−

2

r̄ (i, j)
n

(D+m̄)(i, j)
n

1− m̃(i+1, j)
n /r̄ (i, j)

n −
2
33(r̄

(i, j)
n )2

(1−Err
(i, j)
1,n )(1−Err

(i, j)
/n )

)

≥ (D−m̄)(i, j)
n · exp

(
−

8(D+m̄)(i, j)
n

r̄ (i, j)
n

)
. (6-87)

In view of the fact that

(D+m̄)(i, j)
n ≤ (D+m̃)(i, j)

n = m̃(i, j)
n − m̃(i, j+1)

n ≤ m̃|I − 0≤ 2
3r0 ≤

2
3 r̄ (i, j)

n

(following from (6-80)), (6-87) yields

(D+m̄)(i, j)
n ≥ e−16/3(D−m̄)(i, j)

n . (6-88)

In view of (6-84), (6-88) implies

1−Err
(i, j)
\n ≥

1
C0
. (6-89)
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Using (6-89) in (6-81), we obtain

(D+m̄)(i, j)
n ≥ (D−m̄)(i, j)

n · exp
(

2

C0r̄ (i, j)
n

(D−m̄)(i, j)
n

1− m̃(i+1, j)
n /r̄ (i, j)

n −
2
33(r̄

(i, j)
n )2

(1−Err
(i, j)
1,n )

)
. (6-90)

In view of (6-86) and (6-9), we can also estimate

1−Err
(i, j)
1,n

1− m̃(i+1, j)
n /r̄ (i, j)

n −
2
33(r̄

(i, j)
n )2

≥
1
10

(6-91)

and, thus, (6-90) yields

(D+m̄)(i, j)
n ≥ (D−m̄)(i, j)

n · exp
(

1
5C0

(D−m̄)(i, j)
n

r̄ (i, j)
n

)
. (6-92)

From (6-92) and the relations (6-79) and (6-80), we readily obtain (6-56). �

Proof of (6-11). For any 1≤ n ≤ n f , from (6-51) we readily obtain that, for any 1≤ i ≤ k,

(D+m̃)(i,k+1)
n ≥ (D−m̃)(i,k+1)

n . (6-93)

Applying (6-93) successively for i = 1, 2, . . . k, using also the identity

(D−m̃)(i, j)
n = (D+m̃)(i+1, j)

n (6-94)

(which follows from the fact that m̃ is constant over each R(i, j)
εn ), we thus infer that, for any 1≤ i ≤ k,

(D+m̃)(i,k+1)
n ≥ (D−m̃)(k,k+1)

n = (m̃(0,0)
n−1 − m̃(0,1)

n−1 ). (6-95)

Since
m̃(0,0)

n−1 = m̃(1,1)
n−1 = m̃|I (6-96)

and
(D+m̃)(0,1)n−1 = m̃(1,1)

n−1 − m̃(0,1)
n−1 = (D−m̃)(k,k+1)

n , (6-97)

from (6-95) we infer that, for any 1≤ i ≤ k,

(D+m̃)(i,k+1)
n ≥ (D+m̃)(0,1)n−1 . (6-98)

Similarly as for the derivation of (6-93), applying the relation (6-52) successively for i = 0 and
j = 1, 2, . . . , k (with n− 1 in place of n), we infer

(D+m̃)(0,1)n−1

= (D−m̃)(0,k)n−1 · exp
(
−

k∑
j=1

2

r̄ (0, j)
n−1

(D−m̃)(0, j)
n−1

1− 2m̃(0, j)
n−1 /r̄

(0, j)
n−1 −

1
33(r̄

(0, j)
n−1 )

2
(1−Err

(0, j)
1,n−1)(1−Err

(0, j)
/n−1)

)
. (6-99)

In view of the bound (5-24) for the total mass m̃|I , the lower bound (6-8) for r (0,k)n and the fact that

r̄ (0, j)
n−1 ≤ r (0,k)n−1 ≤ r̄ (0, j)

n−1 (1+ (h2(ε))
1/2)
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for 1≤ j ≤ k (following from (6-7), and (5-3)), we can estimate

k∑
j=1

2

r̄ (0, j)
n−1

(D−m̃)(0, j)
n−1

1− 2m̃(0, j)
n−1 /r̄

(0, j)
n−1 −

1
33(r̄

(0, j)
n−1 )

2
(1−Err

(0, j)
1,n−1)(1−Err

(0, j)
/n−1)≤ ε

3/2. (6-100)

Therefore, (6-99) yields

log
(D+m̃)(0,1)n−1

(D−m̃)(0,k)n−1

≥−ε3/2. (6-101)

From (6-98) and (6-101) we thus infer that, for any 1≤ i ≤ k and any 2≤ n ≤ n f ,

log
(D+m̃)(i,k+1)

n

m̃(1,k+1)
n−1

≥−ε3/2. (6-102)

From (6-102) for i = 1 and the fact that, for any 1≤ n ≤ n f ,

(D+m̃)(1,k+1)
n = (D−m̃)(0,k)n = m̃(1,k+1)

n , (6-103)

we thus infer that, for all 2≤ n ≤ n f ,

log
m̃(1,k+1)

n

m̃(1,k+1)
n−1

≥−ε3/2. (6-104)

Applying (6-104) successively n− 1 times, we thus infer, for any 2≤ n ≤ n f ,

log
m̃(1,k+1)

n

m̃(1,k+1)
1

≥−ε3/2(n− 1). (6-105)

The bound (5-6) for r0 and the form (5-7) of the initial data imply

2(m̃/(v
(0)
+ (4/

√
−3)h2(ε))− m̃/(v

(0)))

r0
≥

4
C0

h0(ε). (6-106)

Therefore, from (6-95) and (6-106) we infer that, for all 1≤ i ≤ 1,

2(D+m̃)(i,k+1)
1

r0
≥

4
C0

h0(ε). (6-107)

From (6-105) and (6-107) for i=1 (when (D+m̃)(1,k+1)
1 = m̃(1,k+1)

1 ), using also the fact that n f ≤ (h1(ε))
−2,

we thus deduce that, for all 1≤ n ≤ n f ,

2m̃(1,k+1)
n

r0
≥

2
C0

h0(ε). (6-108)

The relations (5-24) and (6-108) readily yield (6-11). �

Proof of (6-10). In view of the bound (6-37), we infer that, for any 1≤ n ≤ n f ,

1−
2m̃(1,k+1)

n

r |(Un(v(1)),Vn(v(k+1)+(4/
√
−3)h2(ε)))

−
1
33r2
|(Un(v(1)),Vn(v(k+1)+(4/

√
−3)h2(ε)))

≥ h3(ε). (6-109)
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Using the bounds
r |(Un(v(1)),Vn(v(k+1)+(4/

√
−3)h2(ε)))

r0
≤ 1+ (h2(ε))

1/2 (6-110)

(derived from (6-7), (6-9) and (5-3)) and

r0

(2/
√
−3)ε− 1

33r3
0

< 1− 1
2 exp(−2(h0(ε))

−4) (6-111)

(from (5-6)), as well as the relation (5-24) for m̃|I , we can readily derive from (6-109) that

2(m̃|I − m̃(1,k+1)
n )

r0
≥ 2(1+ (h2(ε))

1/2)−1 exp(−2(h0(ε))
−4)+ 1

33r2
0 (1+ (h2(ε))

1/2). (6-112)

The bound (6-10) follows readily from (6-111) and (6-112). �

Proof of (6-13). For any 2 ≤ n ≤ n f , applying the relation (6-51) successively for j = k + 1 and
i = 1, 2, . . . , k, using also the identity (6-94) and the trivial bound

(D−m̃)(i, j)
n (1−Err(i,k+1)

\n )≥ (D+m̃)(i,k+1)
n (6-113)

(following directly from (6-54)), we obtain

(D+m̃)(1,k+1)
n

= (m̃(0,0)
n−1−m̃(0,1)

n−1 )·exp
( k∑

i=1

2

r̄ (i,k+1)
n

(D−m̃)(i,k+1)
n

1−2m̃(i+1,k+1)
n /r̄ (i, j)

n −
1
33(r̄

(i,k+1)
n )2

(1−Err(i,k+1)
1,n )(1−Err(i,k+1)

\n )

)

≥ (m̃(0,0)
n−1−m̃(0,1)

n−1 )·exp
( k∑

i=1

2

r̄ (i,k+1)
n

(D+m̃)(i,k+1)
n

1−2m̃(i+1,k+1)
n /r̄ (i, j)

n −
1
33(r̄

(i,k+1)
n )2

(1−Err(i,k+1)
1,n )

)
. (6-114)

In view of (6-7), (5-3), (6-53), (6-9) and the fact that

r0 ≤ r̄ (i,k+1)
n ≤ r̄ (k,k+1)

n ,

for 1≤ i ≤ k (following from (6-18)), we can bound, for any 1≤ i ≤ k,

2

r̄ (i,k+1)
n

1

1− 2m̃(i+1,k+1)
n /r̄ (i, j)

n −
1
33(r̄

(i,k+1)
n )2

(1−Err(i,k+1)
1,n )

≥ 2 min
{

1

r |(Un(v(i)),Vn(v( j)+(4/
√
−3)h2(ε)))

− 2m̃(i, j+1)
n −

1
33r3|(Un(v(i)),Vn(v( j)+(4/

√
−3)h2(ε)))

,

1

r̄ (i, j)
n − 2m̃(i+1,k+1)

n −
1
33(r̄

(i,k+1)
n )3

}
≥

2− O(ε)

r (k,k+1)
n

. (6-115)
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Furthermore,
k∑

i=1

(D+m̃)(i,k+1)
n =

k∑
i=1

(m̃(i+1,k+1)
n − m̃(i,k+1)

n )= m̃|I − m̃(1,k+1)
n . (6-116)

Therefore, in view of (6-10), (6-115), (6-116) and the fact that

(D+m̃)(1,k+1)
n = m̃(1,k+1)

n − m̃(1,k+2)
n = m̃(1,k+1)

n , (6-117)

the bound (6-114) yields

m̃(1,k+1)
n ≥ (m̃(0,0)

n−1 − m̃(0,1)
n−1 ) · exp

(
2− O(ε)

r (k,k+1)
n

(m̃|I − m̃(1,k+1)
n )

)
≥ (m̃(0,0)

n−1 − m̃(0,1)
n−1 ) · exp

(
r0

2r (k,k+1)
n

exp(−2(h0(ε))
−4)

)
. (6-118)

Using the bound (6-101) and the fact that

(D+m̃)(0,1)n−1 = m̃(1,1)
n−1 − m̃(0,1)

n−1 = m̃(0,0)
n−1 − m̃(0,1)

n−1 ,

(D−m̃)(0,k)n−1 = m̃(1,k+1)
n−1 ,

we can estimate
(m̃(0,0)

n−1 − m̃(0,1)
n−1 )≥ e−ε

3/2
m̃(1,k+1)

n−1 . (6-119)

From (6-118) and (6-119) we thus obtain (in view also of (6-9) and the properties (5-2) of h0(ε))

m̃(1,k+1)
n ≥ m̃(1,k+1)

n−1 exp
(

r0

4r (k,k+1)
n

exp(−2(h0(ε))
−4)

)
. (6-120)

In particular, (6-13) holds for all 2≤ n ≤ n f . �

Proof of (6-12). Combining (6-102) and (6-11) (using also (6-107) in the case n = 1, as well as (5-24)
and (5-6) for m̃|I , r0), we can readily estimate for any 1≤ n ≤ n f and any 1≤ i ≤ k

2(D+m̃)(i,k+1)
n

r0
≥

1
C0

h0(ε). (6-121)

Similarly, in view of (6-94), (6-97) and (6-101), we can bound for any 1≤ n ≤ n f and any 1≤ i ≤ k

2(D−m̃)(i,k+1)
n

r0
≥

1
C0

h0(ε). (6-122)

Using the relation
(D+m̃)(i,k+1)

n = m̃(i,k+1)
n − m̃(i,k+2)

n (6-123)

and the trivial bounds
m̃(i,k+1)

n ≤ m̃|I (6-124)

and
max

k+2≤ j≤k+i+1
m̃(i, j)

n = m̃(i,k+2)
n (6-125)
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(following from the monotonicity properties (6-19) of m̃), from (6-121) we obtain for any 1≤ n ≤ n f

min
1≤i≤k

k+2≤ j≤k+i+1

2(m̃|I − m̃(i, j)
n )

r0
≥

1
C0

h0(ε). (6-126)

In view of (5-24) and (5-6) and the properties (5-2) of h0(ε), from (6-126) we infer that, for any
1≤ n ≤ n f ,

max
1≤i≤k

k+2≤ j≤k+i+1

2m̃(i, j)
n

r0
≤ 1−

1
3C0

h0(ε). (6-127)

In particular, for any 1≤ n ≤ n f , (6-127) implies

sup
{u≤v≤Vn(v(k+1))}∩{u≥Un(v(k))}

1
1− 2m/r

≤ 4C0(h0(ε))
−1. (6-128)

The main estimate that will be used in the proof of (6-12) is the following bound: for any 1≤ n1 <

n2 ≤ n f and any Vn2(v
(k+2)
+ (4/

√
−3)h2(ε))≤ v ≤ Vn2(v

(k+1))

∂vr |(Un2 (v
(1)+(4/

√
−3)h2(ε)),v)

≥ ∂vr |(Un1−1(v(1)+(4/
√
−3)h2(ε)),v−(n2−n1−1)v0)

×exp
(
−C5

0(h0(ε))
−3 max

n1≤n≤n2

{
r (1,k+1)

n

r0

}
log
(

m̃(1,k+1)
n2

m̃(1,k+1)
n1

)
−2ε1/2

)
. (6-129)

Proof of (6-129). For any 1≤ n≤ n f , 1≤ i ≤ k, and k+1≤ j ≤ k+i , integrating (2-43) from u=Un(v
(i))

up to Un(v
(i)
+ (4/

√
−3)h2(ε)) (and using (2-46)), we infer that, for all Vn(v

( j+1)
+ (4/

√
−3)h2(ε))≤

v̄ ≤ Vn(v
( j)),

log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)),v̄)

− log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v̄)

= 4π
∫ Un(v

(i)
+(4/
√
−3)h2(ε))

Un(v(i))

rTuu

−∂ur

∣∣∣∣
(u,v̄)

du

= 2
∫ Un(v

(i)
+(4/
√
−3)h2(ε))

Un(v(i))

−∂um̃
r(1− 2m/r)

∣∣∣∣
(u,v̄)

du. (6-130)

In view of the monotonicity properties (6-18), (6-19) of r and m̃, we can estimate

2
∫ Un(v

(i)
+(4/
√
−3)h2(ε))

Un(v(i))

−∂um̃
r(1−2m/r)

∣∣∣∣
(u,v̄)

du

≤ sup
Un(v(i))≤ū≤Un(v(i)+(4/

√
−3)h2(ε))

(
2

r(1−2m/r)

)∣∣∣∣
(u,v̄)

∫ Un(v
(i)
+(4/
√
−3)h2(ε))

Un(v(i))

(−∂um̃)
∣∣∣∣
(u,v̄)

du

≤
2

r(Un(v(i)+(4/
√
−3)h2(ε)), v̄)

sup
Un(v(i))≤ū≤Un(v(i)+(4/

√
−3)h2(ε))

(
1

1−2m/r |(ū,v̄)

)
(D−m̃)(i, j)

n . (6-131)
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From (6-130), (6-131) and the bound (6-128) for 1− 2m/r , we infer that

log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)),v̄)

− log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v̄)

≤ 8C0(h0(ε))
−1 r̄ (i, j)

n

r(Un(v(i)+ (4/
√
−3)h2(ε)), v̄)

·
(D−m̃)(i, j)

n

r̄ (i, j)
n

. (6-132)

Notice that, in view of the bound (6-56), we can estimate

(D−m̃)(i, j)
n

r̄ (i, j)
n

≤ 5C0 log
(
(D+m̃)(i, j)

n

(D−m̃)(i, j)
n

)
. (6-133)

Thus, from (6-132) and (6-133), we deduce that, for any 1≤ n ≤ n f , 1≤ i ≤ k, and k+ 1≤ j ≤ k+ i
and any Vn(v

( j+1)
+ (4/

√
−3)h2(ε))≤ v̄ ≤ Vn(v

( j)),

log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)),v̄)

− log
(

∂vr
1− 2m/r

)∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v̄)

≤ 40C2
0(h0(ε))

−1 r̄ (i, j)
n

r(Un(v(i)+ (4/
√
−3)h2(ε)), v̄)

log
(
(D+m̃)(i, j)

n

(D−m̃)(i, j)
n

)
. (6-134)

Applying the relation (6-134) successively for i = 1, . . . , k and v̄ = v, using also the fact that

∂u

(
∂vr

1− 2m/r

)
= 0

on each R(i, j)
εn , we obtain

∂vr
1− 2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v̄)

≥
∂vr

1− 2m/r

∣∣∣∣
(Un−1(v(0)+(4/

√
−3)h2(ε)),v̄)

× exp
(
−40C2

0(h0(ε))
−1

k∑
i=1

r̄ (i,k+1)
n

r(Un(v(i)+ (4/
√
−3)h2(ε)), v̄)

log
(
(D+m̃)(i,k+1)

n

(D−m̃)(i,k+1)
n

))
. (6-135)

For any i = 1, . . . , k, integrating (2-43) in u from u =Un(v
(i)) up to Un(v

(1)
+ (4/

√
−3)h2(ε)) for

v = v∗ ∈ [v̄, Vn(v
( j))] and using (2-46) and the fact that ∂um̃ = 0 on R(i, j)

εn , we infer

∂vr
1−2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v∗)

=
∂vr

1−2m/r

∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v∗)

exp
(
−2

∫ Un(v
(1)
+(4/
√
−3)h2(ε))

Un(v(i))

−∂um̃

r−2m̃−1
33r3

∣∣∣∣
(u,v∗)

du
)
. (6-136)

Using the fact that r ≥ r0, from (6-136) we infer (in view of the monotonicity property (6-19) for m̃) that
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∂vr
1−2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v∗)

≥
∂vr

1−2m/r

∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v∗)

exp
(
−2

∫ Un(v
(1)
+(4/
√
−3)h2(ε))

Un(v(i))

−∂um̃|(u,v∗)
r0−2m̃|(u,v∗)−

1
33r3

0

du
)

=
∂vr

1−2m/r

∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v∗)

exp
(
−

∫ Un(v
(1)
+(4/
√
−3)h2(ε))

Un(v(i))

∂u

(
log
(

1−
2m̃|(u,v∗)

r0
−

1
33r2

0

))
du
)

=
∂vr

1−2m/r

∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v∗)

·

(
1−2m̃|(Un(v(i)),v∗)

/r0−
1
33r2

0

1−2m̃|(Un(v(1)+(4/
√
−3)h2(ε)),v∗)

/r0−
1
33r2

0

)
. (6-137)

In view of the bounds (6-9) and (6-127), (6-137) yields
∂vr

1− 2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v∗)

≥
∂vr

1− 2m/r

∣∣∣∣
(Un(v(i)+(4/

√
−3)h2(ε)),v∗)

h0(ε)

4C0
. (6-138)

Integrating (6-138) in v∗ ∈ [v̄, Vn(v
( j))] and using (6-128) (and (6-9)) for the 1/(1− 2m/r) factors, we

thus obtain

r̄ (1,k+1)
n − r0 ≥

(
r̄ (i,k+1)

n − r(Un(v
(i)
+

4
√
−3

h2(ε)), v̄)
)(h0(ε))

2

16C2
0

(6-139)

and, thus (in view of (6-7), (5-3) and the fact that r0 ≤min{r (1,k+1)
n , r(Un(v

(i)
+ (4/

√
−3)h2(ε)), v̄)})

r̄ (i,k+1)
n

r(Un(v(i)+ (4/
√
−3)h2(ε)), v̄)

≤ 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0
. (6-140)

From (6-140) and (6-94), it follows that
k∑

i=1

r̄ (i,k+1)
n

r(Un(v(i)+ (4/
√
−3)h2(ε)), v)

log
(
(D+m̃)(i,k+1)

n

(D−m̃)(i,k+1)
n

)

≤ 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0

k∑
i=1

log
(
(D+m̃)(i,k+1)

n

(D−m̃)(i,k+1)
n

)

= 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0

{k−1∑
i=1

log
(
(D+m̃)(i,k+1)

n

(D+m̃)(i+1,k+1)
n

)
+ log

(
(D+m̃)(k,k+1)

n

m̃|I − m̃(0,1)
n−1

)}

= 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0
log
(
(D+m̃)(1,k+1)

n

m̃|I − m̃(0,1)
n−1

)

= 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0
log
(
(D+m̃)(1,k+1)

n

(D+m̃)(0,1)n−1

)

≤ 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0

{
log
(
(D+m̃)(1,k+1)

n

(D−m̃)(0,k)n−1

)
+ ε3/2

}

= 16C2
0(h0(ε))

−2 r (1,k+1)
n

r0

{
log
(

m̃(1,k+1)
n

m̃(1,k+1)
n−1

)
+ ε3/2

}
(6-141)
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(where the inequality at the sixth line of (6-141) follows from (6-101)). Therefore, (6-135) and (6-141)
yield, for any 1≤ n ≤ n f and any Vn(v

(k+2)
+ (4/

√
−3)h2(ε))≤ v ≤ Vn(v

(k+1)),

∂vr
1− 2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v)

≥
∂vr

1− 2m/r

∣∣∣∣
(Un−1(v(0)+(4/

√
−3)h2(ε)),v)

exp
(
−C5

0(h0(ε))
−3 r (1,k+1)

n

r0

{
log
(

m̃(1,k+1)
n

m̃(1,k+1)
n−1

)
+ ε3/2

})
. (6-142)

In view of (2-44), we can bound for any Un−1(v
(1)
+ (4/

√
−3)h2(ε))≤ u ≤Un−1(v

(0))

−∂ur
1− 2m/r

∣∣∣∣
(u,Vn−1(v(1)))

≥
−∂ur

1− 2m/r

∣∣∣∣
(u,Vn−1(v(k+1))

. (6-143)

Hence, using that

• from (5-39), (6-9),

∂vr
1− 2m/r

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v)

=
∂vr

1− 1
33r2

∣∣∣∣
(Un(v(1)+(4/

√
−3)h2(ε)),v)

= (1+ O(ε)) ∂vr |(Un(v(1)+(4/
√
−3)h2(ε)),v)

, (6-144)

• from (2-45), (5-24), (6-8) and (6-7)

∂vr
1− 2m/r

∣∣∣∣
(Un−1(v(0)+(4/

√
−3)h2(ε)),v)

=
∂vr

1− 2m/r

∣∣∣∣
(Un−1(v(0)),v)

(1+ O(ε)), (6-145)

• from (2-44), (2-43) and the gauge condition (3-24),

∂vr
1− 2m/r

∣∣∣∣
R(1,1)

n−1 ∩{v=v̄}

=
−∂ur

1− 2m/r

∣∣∣∣
R(1,1)

n−1 ∩{u=v̄−v0}

, (6-146)

the bounds (6-142) and (6-143) yield for any Vn(v
(k+2)
+ (4/

√
−3)h2(ε))≤ v ≤ Vn(v

(k+1))

∂vr |(Un(v(1)+(4/
√
−3)h2(ε)),v)

≥
−∂ur

1− 2m/r

∣∣∣∣
(v−v0,Vn−1(v(k+1))

exp
(
−C5

0(h0(ε))
−3 r (1,k+1)

n

r0
log
(

m̃(1,k+1)
n

m̃(1,k+1)
n−1

)
− ε1/2

)
. (6-147)

In view of (5-39), (6-9) and the fact that

−∂ur
1− 2m/r

∣∣∣∣
R(1,k+2)

n−1 ∩{u=ū}
=

∂vr
1− 2m/r

∣∣∣∣
R(1,k+2)

n−1 ∩{v=ū}
(6-148)

(following from the gauge condition (3-23)), from (6-147) we infer for any Vn(v
(k+2)
+(4/
√
−3)h2(ε))≤

v ≤ Vn(v
(k+1))

∂vr |(Un(v(1)+(4/
√
−3)h2(ε)),v)

≥ ∂vr |(Un−1(v(1)+(4/
√
−3)h2(ε)),v−v0)

exp
(
−C5

0(h0(ε))
−3 r (1,k+1)

n

r0
log
(

m̃(1,k+1)
n

m̃(1,k+1)
n−1

)
− 2ε1/2

)
. (6-149)

Iterating (6-149) for n1 < n ≤ n2, we thus obtain (6-129). �
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Let 2≤ n1 ≤ n f be such that

r (1,k+1)
n1

≤ 2r0, (6-150)

r (1,k+1)
n1−1 > 2r0. (6-151)

Note that if no such n1 exists, then (6-12) is automatically true ((6-151) holds for r (1,k+1)
1 as a corollary

of the Cauchy stability estimates of Proposition 3.5 and the choice of the initial data).
Let us also define

n2 =max{n1 ≤ n ≤ n f : r
(1,k+1)
l ≤ 2r0 for all n1 ≤ l ≤ n}. (6-152)

In order to establish (6-12), it suffices to establish that, for all n1 ≤ n ≤ n2,

r (1,k+1)
n

r0
− 1≥ exp

(
−C7

0(h0(ε))
−3 log((h0(ε))

−1)
)
. (6-153)

In view of the fact that

sup
1≤l1<l2≤n∗

m̃(1,k+1)
l2

m̃(1,k+1)
l1

≤ C0(h0(ε))
−1 (6-154)

(following from (5-7), (6-86) and the fact that the sequence m̃(1,k+1)
n is increasing in n as a consequence

of (6-120)), from (6-129) we infer that, for any n1 ≤ n ≤ n2 and any Vn2(v
(k+2)
+ (4/

√
−3)h2(ε))≤ v ≤

Vn2(v
(k+1)),

∂vr |(Un(v(1)+(4/
√
−3)h2(ε)),v)

≥ ∂vr |(Un1−1(v(1)+(4/
√
−3)h2(ε)),v−(n−n1)v0)

exp
(
−C6

0(h0(ε))
−3 log((h0(ε))

−1)
)
. (6-155)

Thus, integrating (6-155) from v = Vn(v
(k+2)
+ (4/

√
−3)h2(ε)) up to v = Vn(v

(k+1)) and using (6-151),
we immediately infer (6-153). �

Proof of (6-14). In view of (5-3), (6-32), (6-31), as well as the boundary condition (3-24) and the bounds
(6-8) and (6-9), the following one-sided bound holds for all 2≤ n ≤ n f :

r (k,k+1)
n − r0 =

∫ Vn(v
(k+1)
+(4/
√
−3)h2(ε))

Vn(v(2k))

∂vr |(Un(v(k)),v)
dv

≤

∫ Vn(v
(k+1)
+(4/
√
−3)h2(ε))

Vn(v(2k))

∂vr
1− 2m/r

∣∣∣∣
(Un(v(k)),v)

(1+ O(ε)) dv

=

∫ Un−1(v
(0)
+(4/
√
−3)h2(ε))

Un−1(v(k))

−∂ur
1− 2m/r

∣∣∣∣
(u,Vn−1(v(k+1)+(4/

√
−3)h2(ε)))

(1+ O(ε)) du. (6-156)

We can readily compute (using also (5-3), (6-9) and (6-45))
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(0))

Un−1(v(1)+(4/
√
−3)h2(ε))

−∂ur
1− 2m/r

∣∣∣∣
(u,Vn−1(v(k+1)+(4/

√
−3)h2(ε)))

du

=

∫ Un−1(v
(0))

Un−1(v(1)+(4/
√
−3)h2(ε))

(
1−

2m̃(1,k+1)
n−1

r |(u,Vn−1(v(k+1)+(4/
√
−3)h2(ε)))

−
1
33r2
|(u,Vn−1(v(k+1)+(4/

√
−3)h2(ε)))

)−1

× (−∂ur)|(u,Vn−1(v(k+1)+(4/
√
−3)h2(ε)))

du

=

∫ r (1,k+1)
n−1

r0+O((h2(ε))1/2)

(
1−

2m̃(1,k+1)
n−1

r
−

1
33r2

)−1

dr

≤ r (1,k+1)
n−1 − r0+C0m̃(1,k+1)

n−1

∣∣∣∣log
(

1−
2m̃(1,k+1)

n−1

r0

)∣∣∣∣. (6-157)

From (5-6) and (6-12) we can similarly estimate∫ Un−1(v
(1))

Un−1(v(k))

−∂ur
1−2m/r

∣∣∣∣
(u,Vn−1(v(k+1)+(4/

√
−3)h2(ε)))

du≤
∫ r (k,k+1)

n−1

r (1,k+1)
n−1 +O((h2(ε))1/2)

(
1−

2m̃|I
r
+O(ε)

)−1

dr

≤ r (k,k+1)
n−1 +C0m̃|I

∣∣log(exp(h0(ε))
−4)+1

∣∣
≤ r (k,k+1)

n−1 −r (1,k+1)
n−1 +C0m̃|I(h0(ε))

−4. (6-158)

From (5-3), (6-45), (6-156), (6-157) and (6-158) one readily obtains the bound (6-14). �

6B. Formation of a nearly trapped sphere. In this section, we will establish (6-6), using the bounds
(6-7)–(6-14) of Proposition 6.1.

Let us set
nmax

.
=max{n∗ ∈ N :R(1,k+1)

n ⊂ U+ε for all n ≤ n∗}. (6-159)

Note that, in view of (6-2) and (6-5), nmax satisfies

n f ≤ nmax ≤ n f + 1. (6-160)

Thus, (6-1) implies
nmax ≤ (h1(ε))

−2. (6-161)

Notice that (6-160) and the definition (6-2) imply that, if

nmax <
1
2(h1(ε))

−2, (6-162)

then, necessarily, (6-6) holds. Thus, in order to establish (6-6), it suffices to show (6-162).
We will show (6-162) by applying Lemma A.2 (see Section A1.1 of the Appendix). In particular,

setting for any 1≤ n ≤ nmax+ 1

µn
.
=

2m̃(1,k+1)
n−1

r0
, (6-163)

ρn
.
=

r (k,k+1)
n−1

r0
, (6-164)
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the inductive bounds (6-13) and (6-14) imply that µn, ρn satisfy

ρn+1 ≤ ρn +C1 log((1−µn)
−1
+ 1),

µn+1 ≥ µn exp
(

c1

ρn+1

) (6-165)

for any 1≤ n ≤ nmax+ 1, with
C1 = (h0(ε))

−4, (6-166)

c1 =
1

16 exp(−2(h0(ε))
−4). (6-167)

Furthermore, setting
δ = h3(ε) (6-168)

(where h3( · ) is defined by (6-3)), the definition (6-159) immediately implies

max
0≤n≤nmax

µn < 1− δ. (6-169)

Note that, in view of Definition 5.1 and Proposition 3.5, we have

µ0 ∼ h0(ε), (6-170)

ρ0 ∼ (h1(ε))
−1. (6-171)

Hence, as a consequence of (5-2) and (6-3), (
C1

c1

)8

�
ρ0

µ0
(6-172)

and

δ <

(
µ0

ρ0

)(C1/c1)
4

. (6-173)

The relations (6-165)–(6-173) allow us to apply Lemma A.2 (see Section A1.1 of the Appendix) with
n∗ = nmax + 1 for the sequence ρn, µn . Thus, in view of Lemma A.2, we obtain the following upper
bound for nmax:

nmax+ 1≤ exp(exp(2(h0(ε))
−4))(h1(ε))

−1. (6-174)

In particular, (6-162) (and, thus, (6-6)) holds.

6C. The final step of the evolution. In this section, we will complete the proof of Theorem 1, using
the near-trapping bound (6-6), the bounds (6-7)–(6-14) of Proposition 6.1, as well a backwards-in-time
Cauchy stability estimate (see Lemma A.3 in Section A1.2).

The bound (6-6), combined with the estimates (6-11) and (6-12) of Proposition 6.1, imply that,
necessarily (in view also of (5-2), (5-3), (6-7), (6-13) and (6-159))

2m̃(1,k+1)
nmax+1

r0
≥ 1− 2h3(ε). (6-175)
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Therefore, applying again Lemma A.2 for µn, ρn (defined by (6-163), (6-164)) and n∗ = nmax+ 1 yields,
in view of (6-175), that, either

µnmax+1 > 1+ h3(ε), (6-176)

or
1− 2h3(ε)≤ µnmax+1 ≤ 1+ h3(ε) (6-177)

and

µnmax ≤ 1− exp(− exp(2(h0(ε))
−4))(h1(ε))

2 (6-178)

max{ρnmax+1, ρnmax} ≤ exp(exp(2(h0(ε))
−4))(h1(ε))

−1 log((h1(ε))
−1). (6-179)

Let us set
v̄∗
.
= Vnmax+1

(
v(k+1)

+
4
√
−3

h2(ε)
)

(6-180)

(recall that (6-180) equals Vnmax(v
(0)
+ (4/

√
−3)h2(ε)), in view of our conventions on the indices). The

proof of Theorem 1 will follow by showing that

• either
inf

Uε∩{v=v̄∗}

(
1− 2m

r

)
< 0 (6-181)

(in which case (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/)= (r/ε, �
2
/ε, f̄in/ε, f̄out/ε) in the statement of Theorem 1),

• or
inf

Uε∩{v=v̄∗}

(
1− 2m′

r ′
)
< 0, (6-182)

where (r ′, (�′)2, f̄ ′in, f̄ ′out) is a (possibly different) smooth solution to the system (2-28)–(2-33) arising as a fu-
ture development of an asymptotically AdS boundary-characteristic initial data set (r ′/ε,(�

′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε)

on {u= 0}∩{0≤ v≤ v0ε} (satisfying the reflecting gauge condition at r = r0,+∞) which is (h1(ε))
2 close

to (r/ε, �2
/ε, f̄in/ε, f̄out/ε) with respect to the norm (3-41), i.e., satisfies, in particular, (A-68) and (A-69)

(in which case (r (ε)/ , (�
(ε)
/ )

2, f̄ (ε)in/ , f̄ (ε)out/)= (r
′

/ε, (�
′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε) in the statement of Theorem 1).

Notice that, in both cases, (4-3) follows readily from (5-18) and (5-2). To this end, we will proceed to
treat the cases (6-176) and (6-177) separately.

Case I: Assume that (6-176) holds. Then, we will show that (6-181) also holds. We will argue by
contradiction, assuming that

inf
Uε∩{v=v̄∗}

(
1− 2m

r

)
≥ 0. (6-183)

Let us set

C∗
.
=

{
Unmax+1

(
v(1)+

4
√
−3

h2(ε)
)
≤ u <Unmax+1(v

(0))
}
∩ {v = v̄∗} ∩Uε. (6-184)

The renormalized mass m̃ is constant on C∗, satisfying in particular

m̃|C∗ = m̃(1,k+1)
nmax+1 . (6-185)
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Since ∂ur < 0 on Uε (see (3-29)), from (6-183) and the fact that C∗ does not contain its future endpoint,
we infer the following stronger bound:

1− 2m
r

∣∣∣
C∗
> 0. (6-186)

Thus, we also have
∂vr |C∗ > 0. (6-187)

We will now show that the future endpoint of C∗ is exactly (Unmax+1(v
(0)), v̄∗). If there existed some

(ub, v̄∗) ∈ (∂Uε\I ) such that Unmax+1(v
(1)
+ (4/

√
−3)h2(ε))≤ ub <Unmax+1(v

(0)), then Theorem 3.4 on
the structure of the maximal future development would imply that r extends continuously on (ub, v̄∗)

with
r(ub, v̄∗)= r0ε. (6-188)

However, in that case, (6-176), (6-185) and (6-188) would imply that, for some ub∗ close enough to ub,

1− 2m
r

∣∣∣
(ub∗,v̄∗)

< 0, (6-189)

which is a contradiction in view of (6-183). Therefore,{
Unmax+1

(
v(1)+

4
√
−3

h2(ε)
)
≤ u <Unmax+1(v

(0))
}
∩ {v = v̄∗} ∩ (∂Uε\I )=∅,

and, thus

C∗ =
{

Unmax+1(v
(1)
+

4
√
−3

h2(ε))≤ u <Unmax+1(v
(0))
}
∩ {v = v̄∗}. (6-190)

In order to complete the proof in the case when (6-176) holds, it suffices to establish that

lim sup
ū→Unmax+1(v(0))

r |(ū,v̄∗)
r0
≤ 1+ O((h2(ε))

1/2). (6-191)

Assuming that (6-191) holds, from (6-176), (6-185) and (6-191) (in view also of (5-3), (6-3)) we readily
obtain

lim inf
ū→Unmax+1(v(0))

(
1− 2m

r

)∣∣∣
(ū,v̄∗)

<− 1
2 h3(ε) < 0, (6-192)

which is a contradiction in view of (6-183).
Let us set

B∗
.
=

{
Unmax+1

(
v(1)+

4
√
−3

h2(ε)
)
≤ u <Unmax+1(v

(0))
}
∩ {Vnmax+1(v

(k))≤ v ≤ v̄∗}. (6-193)

From (6-190) and the structure of the maximal future development of general initial data sets for (2-28)–
(2-33) (see Theorem 3.4), we infer that

B∗ ⊂ Uε.

Furthermore, in view of (2-30) and (6-187), we infer that

∂vr |B∗ > 0 (6-194)
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and, thus (in view of (3-29))

1−
2m
r
|B∗ > 0. (6-195)

In view of (6-159) and the bounds (6-11) and (6-12), we have

{u ≤Unmax+1(v
(1))} ∩Uε ⊂ U+ε . (6-196)

Therefore, as a consequence of (6-7), we can estimate

log
(

∂vr
1− 2m/r

)∣∣∣∣
{u=Unmax+1(v(1))}∩Uε

≤ (h1(ε))
−4 log((h3(ε))

−1). (6-197)

Since (2-43) implies

∂u log
(

∂vr
1− 2m/r

)
≤ 0, (6-198)

from (6-197) (and (6-9)) we infer the one sided bound

∂vr |B∗ ≤ 2(h1(ε))
−4 log((h3(ε))

−1). (6-199)

Integrating (6-199) from v = Vnmax+1(v
(k)) up to Vnmax+1(v

(k+1)
+ (4/

√
−3)h2(ε)) using (5-3), we

finally obtain (6-191). Thus, the proof in the case when (6-176) holds is complete.

Case II: Assume that (6-177) holds. Then, (6-178) and (6-179) also hold.
As a consequence of (6-11), (6-12) and (6-13), the bound (6-178) implies

inf
{u≤Unmax (v

(0)+(4/
√
−3)h2(ε))}∩Uε

(
1− 2m̃

r

)
≥

1
2 exp(− exp(2(h0(ε))

−4))(h1(ε))
2. (6-200)

Therefore, using (6-11), (6-12) and (6-13) to estimate 1− 2m/r in the region{
Unmax

(
v(0)+

4
√
−3

h2(ε)
)
≤ u ≤Unmax+1(v

(0))
}
\R(1,k+1)

nmax+1 ,

we infer that

inf
{u≤Unmax+1(v(1)+(4/

√
−3)h2(ε))}∩Uε

(
1− 2m̃

r

)
≥

1
2 exp(− exp(2(h0(ε))

−4))(h1(ε))
2. (6-201)

Remark. Notice that, while 1−2m̃/r becomes ∼ h3(ε) in {u ≤Unmax+1(v
(0))}∩Uε (in view of (6-177)),

when restricting to the subregion {u ≤Unmax+1(v
(1)
+ (4/

√
−3)h2(ε))}∩Uε, the improved bound (6-201)

holds.

Let us set
u∗

.
=Unmax+1

(
v(1)+

4
√
−3

h2(ε)
)
, (6-202)

noticing that
supp(r2Tvv)∩ {u = u∗} ⊂ {r ≤ ε1/2

} (6-203)

as a consequence of (6-8). Let us also fix a smooth cut-off function χε : [u∗, u∗+v0ε)→[0, 1] such that

χε(v)= 1 for v ∈
[
Vnmax+1(v

(k+1)), Vnmax+1

(
v(k+1)

+
4
√
−3

h2(ε)
)]

(6-204)
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and

χε(v)= 0 for v ∈ [u∗, u∗+ v0ε)\
[
Vnmax+1

(
v(k+1)

−
1
√
−3

h2(ε)
)
, Vnmax+1

(
v(k+1)

+
5
√
−3

h2(ε)
)]
.

We will then define the function T̃vv : [u∗, u∗+ v0ε)→ R by the relation

T̃vv(v)
.
= exp

(
−2C2

ε

u∗
v0

)
(h1(ε))

2χε(v)Tvv(u∗, v), (6-205)

where Cε is defined by (A-62). Notice that, since

2π
∫ Vnmax+1(v

(k+1)
+(4/
√
−3)h2(ε))

Vnmax+1(v(k+1))

(1− 2m/r)
∂vr

r2Tvv

∣∣∣∣
(u∗,v)

dv = m̃(1,k+1)
nmax+1 − m̃(1,k+2)

nmax+1 = m̃(1,k+1)
nmax+1 , (6-206)

we can readily bound in view of (6-205), (6-12), (6-177) and (6-206)

sup
u∗≤v̄≤u∗+v0ε

(−3)

∫ u∗+v0ε

u∗

r2(u∗, v)|T̃vv(v)|/∂vρ(u∗, v)
|ρ(u∗, v)− ρ(u∗, v̄)| + ρ(u∗, u∗)

dv ≤ exp
(
−C2

ε

u∗
v0ε

)
(h1(ε))

2, (6-207)

where ρ is defined in terms of r by the relation

ρ
.
= tan−1

(√
−
3

3
r
)
. (6-208)

Applying the backwards-in-time Cauchy stability lemma, Lemma A.3, (see Section A1.2 of the Appen-
dix), for u∗ given by (6-202) and T̃vv given by (6-205) (in view of (6-201), (6-203) and (6-207)), we infer
that there exists a smooth asymptotically AdS boundary-characteristic initial data set (r ′/ε,(�

′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε)

on {u = 0} for the system (2-28)–(2-33) satisfying the reflecting gauge condition at r = r0ε,+∞ with the
following properties:

(1) The initial data sets (r/ε, �2
/ε, f̄in/ε, f̄out/ε) and (r ′/ε, (�

′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε) satisfy (A-68) and (A-69).

(2) The maximal development (U ′ε; r ′, (�′)2, f̄ ′in, f̄ ′out) of (r/ε, �2
/ε, f̄in/ε, f̄out/ε) satisfies (A-70), (A-71)

and (A-72).

Using primes to denote quantities associated to (r ′, (�′)2, f̄ ′in, f̄ ′out), we can readily estimate in view
of (A-70), (A-71), (A-72) and (6-205)

m̃′|(u∗,v̄∗) =
∫ Vnmax+1(v

(k+1)
+(4/
√
−3)h2(ε))

Vnmax+1(v(k+1))

(1− 2m′/r ′)
∂vr ′

(r ′)2T ′vv

∣∣∣∣
(u∗,v)

dv

=

∫ Vnmax+1(v
(k+1)
+(4/
√
−3)h2(ε))

Vnmax+1(v(k+1))

(1− 2m′/r)
∂vr

r2(Tvv + T̃vv)
∣∣∣∣
(u∗,v)

dv

≥

(
1+ exp

(
−2C2

ε

u∗
v0

)
(h1(ε))

2
)

m̃
∣∣∣∣
(u∗,v̄∗)

. (6-209)

Therefore, since m̃|(u∗,v̄∗) = m̃(1,k+1)
nmax+1 , the bound (6-177) (in view also of (6-3) and (A-62)) implies

2m̃′|(u∗,v̄∗)
r0

≥

(
1+ exp

(
−2C2

ε

u∗
v0

)
(h1(ε))

2
)
(1− 2h3(ε))≥ 1+ h3(ε). (6-210)
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Since m̃|(u∗,v̄∗) is constant on

C′
∗

.
=

{
Unmax+1

(
v(1)+

4
√
−3

h2(ε)
)
≤ u <Unmax+1(v

(0))
}
∩ {v = v̄∗} ∩U ′ε

and satisfies (6-210), we can now repeat the same arguments as in Case I (i.e., the case when (6-176)
holds) in order to infer that (6-182) holds.

Thus, the proof of Theorem 1 is complete. �

Appendix: A maximum principle and Cauchy stability backwards in time

In this section, we will prove some lemmas which are necessary for the proof of Proposition 6.1 and
Theorem 1.

A1. A maximum principle for 1+1 wave-type equations. The following lemma provides a comparison
inequality for certain 1+ 1 equations of wave type, and is used in the proof of Proposition 6.1.

Lemma A.1. For any u0 < u1, v0 < v1 and a ∈ R, let F1, F2 : [u0, u1]× [v0, v1]× (−∞, a]→ (0,+∞)
be smooth functions so that

max
(u,v)∈[u0u1]×[v0,v1]

F1(u, v, z) < min
(u,v)∈[u0u1]×[v0,v1]

F2(u, v, z) (A-1)

for any z ∈ (−∞, a] and
∂z F1(u, v, z), ∂z F2(u, v, z)≥ 0 (A-2)

for any (u, v, z) ∈ [u0, u1]× [v0, v1]× (−∞, a]. Suppose also z1, z2 : [u0, u1]× [v0, v1]→ (−∞, a] are
smooth solutions to the equations

∂v∂uz1 =−F1(u, v, z1) ∂uz1 ∂vz1, (A-3)

∂v∂uz2 =−F2(u, v, z2) ∂uz2 ∂vz2, (A-4)

satisfying the same characteristic initial data

z1(u, v0)= z2(u, v0)= z\(u), (A-5)

z1(u0, v)= z2(u0, v)= z/(v), (A-6)

where z/ : [v0, v1] → (−∞, a) and z\ : [u0, u1] → (−∞, a) are smooth functions so that

z/(v0)= z\(v1), (A-7)

∂vz/|(v0,v1) > 0, (A-8)

∂uz\|(u0,u1) < 0. (A-9)
Then, the functions z1, z2 satisfy

∂uzi < 0< ∂vzi , i = 1, 2, (A-10)

in (u0, u1)× (v0, v1) and
z1 ≤ z2 (A-11)

everywhere on [u0, u1]× [v0, v1].
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Proof. We will first establish (A-10). By applying a standard continuity argument, rewriting (A-3) as

∂v log(−∂uz1)=−∂vz1 F1(u, v, z1) (A-12)

and integrating in v, using also the property (A-9) of the initial data, we obtain that

∂uz1 < 0 (A-13)

everywhere on (u0, u1)× (v0, v1). Similarly, rewriting (A-3) as

∂u log(∂vz1)=−∂uz1 F1(u, v, z1) (A-14)

and integrating in u, using (A-9), and then repeating the same procedure for z2, we finally obtain (A-10).
In order to establish (A-11), we will argue by continuity: Let u∗ ∈ [u0, u1) be such that (A-11),

∂vz1 ≤ ∂vz2, (A-15)

∂uz1 ≤ ∂uz2 (A-16)

hold on [u0, u∗]×[v0, v1]. Note that u∗= u0 satisfies this condition: in this case, (A-11) and (A-15) follow
directly from (A-6), while (A-16) follows by integrating (A-12) (and its analogue for z2) and using (A-1).
We will show that there exists a δ > 0, such that (A-11), (A-15) and (A-16) hold on [u0, u∗+δ)×[v0, v1].

For any v̄ ∈ (v0, v1], integrating (A-3) and (A-4) in v along {u∗}× [v0, v̄], we obtain

log(−∂uz1)(u∗, v̄)=−
∫ v̄

v0

F1(u∗, v, z1) ∂vz1 dv+ log(−∂uz\)(u∗), (A-17)

log(−∂uz2)(u∗, v̄)=−
∫ v̄

v0

F2(u∗, v, z2) ∂vz2 dv+ log(−∂uz\)(u∗). (A-18)

Let us define the auxiliary functions F1;u∗v̄, F2;u∗v̄ : (−∞, a] → (0,+∞) by the relations

F1;u∗v̄(z)= max
v∈[v0,v̄]

F1(u∗, v, z), (A-19)

F2;u∗v̄(z)= min
v∈[v0,v̄]

F2(u∗, v, z). (A-20)

In view of (A-1), (A-2) and the fact that (A-11) holds on {u∗} × [v0, v̄],17 we can bound for any
v ∈ [v0, v̄]

F1;u∗v̄(z1(u∗, v)) < F2;u∗v̄(z1(u∗, v))≤ F2;u∗v̄(z2(u∗, v)). (A-21)

Thus, subtracting (A-17) and (A-18) and using (A-21) and (A-15) (and the fact that ∂vz2 > 0, v̄ > v0), we
readily infer that

log(−∂uz1)(u∗, v̄)− log(−∂uz2)(u∗, v̄)

≥

∫ v̄

v0

F2;u∗v̄(z2(u∗, v)) ∂vz2(u∗, v) dv−
∫ v̄

v0

F1;u∗v̄(z1(u∗, v)) ∂vz1(u∗, v) dv

> 0.

17Note that we can immediately restrict from [u0, u1]× [v0, v1] to {u∗}× [v0, v̄] in (A-1).
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From (A-22) we thus infer that, for any v0 < v̄ ≤ v1,

∂uz1(u∗, v̄) < ∂uz2(u∗, v̄). (A-22)

Therefore, since z1, z2 are smooth, there exists a continuous function δu : [v0, v1] → [0, 1), with
δu|(v0,v1] > 0, such that

∂uz1(u, v)≤ ∂uz2(u, v) for {v0 ≤ v ≤ v1} ∩ {u∗ ≤ u ≤ u∗+ δu(v))}. (A-23)

Similarly, by integrating (A-3) and (A-4) in u along [u0, u1]× {v0} and repeating a similar procedure
(using (A-5)), we also obtain that there exists a continuous function δv : [u0, u1]→[0, 1), with δv|(u0,u1]>0,
such that

∂vz1(ū, v0)≤ ∂vz2(ū, v0) for {u0 ≤ u ≤ u1} ∩ {v0 ≤ v ≤ v0+ δv(u))}. (A-24)

From (A-22) and (A-24), we infer that there exists some δ > 0, such that

z1 ≤ z2 on (u∗, u∗+ δ)×[v0, v1]. (A-25)

In particular, (A-11) holds on [u0, u∗ + δ)× [v0, v1]. Furthermore, for any ū ∈ (u∗, u∗ + δ) and any
v̄ ∈ (v0, v0+ δv(ū)), repeating the procedure leading to (A-22) with ū in place of u∗ and using (A-24)
and (A-25) in place of (A-15) and (A-11), respectively, we infer that

∂uz1(ū, v̄)≤ ∂uz2(ū, v̄). (A-26)

Thus, combining (A-23) and (A-26), we infer that (A-16) holds on [u0, u∗ + δ′)× [v0, v1] for some
0< δ′ ≤ δ. Finally, the bound (A-15) on [u0, u∗+ δ′)×[v0, v1] follows in a way similar to the proof of
(A-22), by integrating (A-3) and (A-4) in u ∈ [u0, u∗+ δ′) for any v̄ ∈ (v0, v1) and using (A-1), (A-11)
and (A-16) (which we have shown hold on [u0, u∗+ δ′)×[v0, v1]). We will omit the details. �

A1.1. A lemma for a system of inductive inequalities. The following lemma is used to show that the
inductive bounds (6-13) and (6-14) for m̃(1,k+1)

n and r (k,k+1)
n indeed lead to the formation of an almost-

trapped surface.

Lemma A.2. Let 0< c1� 1� C1, and 0< µ0� 1� ρ0, 0< δ� 1 be given variables, such that(
C1

c1

)8

�
ρ0

µ0
(A-27)

and

δ <

(
µ0

ρ0

)(C1/c1)
4

. (A-28)

Let also µn, ρn > 0 be sequences of positive numbers, with µn increasing in n, such that for 0≤ n ≤ n∗
they satisfy

ρn+1 ≤ ρn +C1 log((1−µn)
−1
+ 1), (A-29)

µn+1 ≥ µn exp
(

c1

ρn+1

)
, (A-30)
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and
max

0≤n≤n∗−1
µn < 1− δ. (A-31)

Then,

n∗ ≤
(

C1

c1

)3

ρ0µ
−(C1/c1)

2

0 . (A-32)

Furthermore, if 1− δ ≤ µn∗ ≤ 1+ δ, we can bound

µn∗−1 ≤ 1−
(

c1

C1

)3

ρ−2
0 µ

2(C1/c1)
2

0 (A-33)

and

max{ρn∗, ρn∗−1} ≤

(
C1

c1

)4
ρ0

µ
(C1/c1)2

0

log
(
ρ0

µ0

)
. (A-34)

Remark. Notice that the right-hand side of (A-32) is independent of δ.

Proof. Let us define for any integer k ≥ 1

nk =max
{

0≤ n ≤ n∗ : µl ≤ 1−
1
2k for all 0≤ l ≤ n

}
, (A-35)

using the convention
n0 = 0. (A-36)

Notice that, in view of the fact that the sequence µn is increasing, for all k ≥ 1 and all nk−1 < n ≤ nk we
can estimate

1−
1

2k−1 ≤ µn ≤ 1−
1
2k (A-37)

(note that, in the case nk−1 = nk , there is no n satisfying nk−1 < n ≤ nk and (A-37)).
Using (A-37), from (A-29) we can bound for any k ≥ 1 such that nk−1 < nk and any nk−1 < n ≤ nk

ρn ≤ ρnk−1 + 2C1(log 2)k(n− nk−1) (A-38)

and, therefore, for any 0≤ n ≤ nk we have

ρn ≤ 2C1(log 2)
( k−1∑

l=1

l(nl − nl−1)+ k(n− nk−1)

)
+ ρ0 (A-39)

(note that (A-39) holds for all 0 ≤ n ≤ nk , while the bounds (A-37) and (A-38) are nontrivial only for
those values of k for which nk > nk−1).

Let us set

k1
.
= 32

⌈
log

C1

c1

⌉
. (A-40)

Then, (A-38) implies that, for all 0≤ n ≤ nk1 ,

ρn ≤ ρ0+ 2C1(log 2)k1n (A-41)
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and, thus, (A-30) implies

log
(
µnk1

µ0

)
≥ c1

nk1∑
n=1

ρ−1
n ≥ c1

nk1∑
n=1

1
ρ0+ 2C1(log 2)k1n

≥ c1 log
(
ρ0+ 2C1(log 2)k1nk1

ρ0+ 2C1(log 2)k1

)
(4C1(log 2)k1)

−1. (A-42)

From (A-35) and (A-42) we readily infer that

c1 log
(
ρ0+ 2C1(log 2)k1nk1

ρ0+ 2C1(log 2)k1

)
(4C1(log 2)k1)

−1
≤− log(µ0) (A-43)

and, therefore (using also (A-27))
nk1 ≤

ρ0

µ
(C1/c1)2

0

. (A-44)

For any k ≥ 2 such that nk > nk−1+ 1, from (A-30), (A-35), (A-37) and (A-39) we readily infer

1
2k−2 ≥ log

µnk

µnk−1+1
≥ c1

nk∑
n=nk−1+2

ρ−1
n

≥
c1

4C1(log 2)
1

(k− 1)+
∑k−1

l=2 (l − 1)(nl − nl−1)/(nk − nk−1− 1)
(A-45)

and, hence

nk − nk−1− 1≤
∑k−1

l=2 (l − 1)(nl − nl−1)

2k−2c1/(4C1(log 2))− (k− 1)

≤
k(k− 1)

2
max2≤l≤k−1(nl − nl−1)

2k−2c1/(4C1(log 2))− (k− 1)

≤
k(k− 1)

2
1

2k−2c1/(4C1(log 2))− (k− 1)
nk−1. (A-46)

The relation (A-46) also holds (trivially) when nk ≤ nk−1+ 1. Thus, for any k ≥ k1, the bound (A-46)
yields

nk ≤

(
1+

C1

c1
2−(k−2)/4

)
nk−1+ 1 (A-47)

and, therefore, for any k ≥ 2,

nk ≤ 16
C1

c1
(nk1 +max{k− k1, 0}). (A-48)

In view of (A-44), we thus obtain for any k ≥ 2

nk ≤ 16
C1

c1

(
ρ0

µ
(C1/c1)2

0

+max{k− k1, 0}
)
. (A-49)

Let us set

k2
.
= 4k1+ 2

log(ρ0/µ
(C1/c1)

2

0 )

log 2
. (A-50)
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Note that (A-28), (A-31) and (A-35) imply

nk2 ≤ n∗− 1. (A-51)

In view of (A-49), we have

nk2 ≤

(
C1

c1

)3
ρ0

µ
(C1/c1)2

0

(A-52)

and, for all k ≥ k2 (in view of (A-46) and (A-49))

nk − nk−1 ≤ 1. (A-53)

Furthermore, (A-39) implies (in view of (A-50) and (A-52)) that

max{ρnk2+1, ρnk2
} ≤

(
C1

c1

)3
ρ0

µ
(C1/c1)2

0

log
(
ρ0

µ0

)
. (A-54)

In view of (A-35), we have

µnk2
≤ 1− 2−k2 < µnk2+1. (A-55)

We will consider two cases, depending on whether µnk2+1 is larger than 1− δ or not.

(1) In the case µnk2+1 ≥ 1− δ, (A-31) implies that nk2 + 1 = n∗. Thus, (A-32) follows from (A-52).
Furthermore, (A-34) follows from (A-54), while (A-33) follows from (A-55).

(2) In the case µnk2+1 < 1− δ, we can assume without loss of generality that nk2 ≤ n∗− 2 (otherwise,
(A-32) follows from (A-52)). From (A-29), (A-54) and (A-55), we thus infer that

ρnk2+2 ≤

(
C1

c1

)3
ρ0

µ
(C1/c1)2

0

log
(
ρ0

µ0

)
+C1 log((1−µnk2+1)

−1) (A-56)

Hence, setting

M .
=

(
C1

c1

)3
ρ0

µ
(C1/c1)2

0

log
(
ρ0

µ0

)
, (A-57)

from (A-30) and (A-55) we calculate

µnk2+2 ≥ µnk2+1 exp
(

c1

ρnk2+2

)

≥


(1− 2−k2)ec1/(2M) if log((1−µnk2+1)

−1)≤ M/C1,

µnk2+1

(
1+

c1

C1 log((1−µnk2+1)−1+ 1)

)
if log((1−µnk2+1)

−1) > M/C1.
(A-58)

If log((1−µnk2+1)
−1)≤ M/C1, in view of (A-50) and (A-57) we can bound (using also (A-27))

(1− 2−k2)ec1/(2M)
≥

(
1−

µ
2(C1/c1)

2

0

ρ2
0

)(
1+

c1

2

(
c1

C1

)3 µ
(C1/c1)

2

0

ρ0 log(ρ0/µ0)

)
> 1+ δ. (A-59)
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If log((1−µnk2
+ 1)−1) > M/C1� (C1/c1)

3, we can also estimate

µnk2+1

(
1+

c1

C1 log((1−µnk2+1)−1+ 1)

)
≥ (1− e− log((1−µnk2

+1)
−1)
)

(
1+

c1

C1 log((1−µnk2+1)−1+ 1)

)
> 1+ δ. (A-60)

Therefore, (A-58) implies
µnk2+2 > 1+ δ (A-61)

and, hence, nk2+2 = n∗. Thus, (A-32) follows again from (A-52). �

A1.2. Cauchy stability backwards in time. The following lemma, which is essentially a backwards-in-
time Cauchy stability estimate for late time perturbations of (Uε; r, �2, f̄in, f̄out), is an easy corollary of
Theorem 3.6.

Lemma A.3. For any 0< ε < ε0 (provided ε0 is sufficiently small) and any r0 > 0 satisfying (5-6), let
(Uε; r, �2, f̄in, f̄out) be the maximal future development of (r/ε, �2

/ε, f̄in/ε, f̄out/ε), and let us set

Cε
.
= exp

(
exp(−2(h0(ε))

−4)(h1(ε))
−4). (A-62)

Then, for any 0≤ u∗ ≤ (h1(ε))
−2v0ε such that

Wu∗
.
= {0< u ≤ u∗} ∩ {u < v < u+ v0ε} ⊂ Uε, (A-63)

sup
Wu∗

(
1− 2m̃

r

)−1
≤ Cε, (A-64)

u∗+ v0ε /∈ supp(r2Tvv(u∗, · )), (A-65)

and for any T̃vv : (u∗, u∗+v0ε)→R smooth and compactly supported satisfying T̃vv( · )≥−Tvv(u∗, · ) and

sup
u∗≤v̄≤u∗+v0ε

(−3)

∫ u∗+v0ε

u∗

r2(u∗, v)|T̃vv(v)|/∂vρ(u∗, v)
|ρ(u∗, v)− ρ(u∗, v̄)| + ρ(u∗, u∗)

dv ≤ exp
(
−C2

ε

u∗
v0ε

)
(h1(ε))

2, (A-66)

with
ρ(u, v) .= tan−1

(√
−
3

3
r
)
, (A-67)

the following statement holds: There exists a smooth asymptotically AdS boundary-characteristic initial
data set (r ′/ε, (�

′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε) on {u = 0} for the system (2-28)–(2-33) satisfying the reflecting gauge

condition at r = r0ε,+∞ with the following properties:

(1) The initial data sets (r/ε, �2
/ε, f̄in/ε, f̄out/ε) and (r ′/ε, (�

′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε) are (h1(ε))

2 close in the
(3-41) norm, and in particular

sup
v∈[0,v0ε)

{∣∣∣∣log
(

�2
/ε

1− 1
33r2

/ε

)
− log

(
(�′/ε)

2

1− 1
33(r

′

/ε)
2

)∣∣∣∣
+

∣∣∣∣log
(

2∂vr/ε
1− 2m/ε/r/ε

)
− log

( 2∂vr ′/ε
1− 2m′/ε/r

′

/ε

)∣∣∣∣
+

∣∣∣∣log
(

1− 2m/ε/r/ε
1− 1

33r2
/ε

)
− log

(1− 2m′/ε/r
′

/ε

1− 1
33(r

′

/ε)

)∣∣∣∣+√−3|m̃/ε − m̃′/ε|
}
(v)≤ (h1(ε))

2 (A-68)
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and

sup
v̄∈[0,v0ε]

∫ v0ε

0

∣∣∣∣r2
/ε

(Tvv)/ε
∂vρ/ε

(v)− (r ′/ε)
2
(Tvv)′/ε
∂vρ
′

/ε

(v)

∣∣∣∣(|ρ/ε(v̄)− ρ/ε(v)| + ρ/ε(0))−1 dv ≤ (h1(ε))
2. (A-69)

(2) The maximal future development (U ′ε; r ′, (�′)2, f̄ ′in, f̄ ′out) of (r ′/ε, (�
′

/ε)
2, f̄ ′in/ε, f̄ ′out/ε) satisfies

Wu∗ ⊂ U ′ε, (A-70)

r ′|{u=u∗}∩supp(Tvv) = r |{u=u∗}∩supp(Tvv), (A-71)

T ′vv|{u=u∗} = Tvv|{u=u∗}+ T̃vv. (A-72)

Proof. In view of (5-6), (5-24), (6-11) and (6-12), we can readily estimate

sup
Wu∗\

⋃
n R

(1,k+1)
n

(
1− 2m̃

r

)−1
≤ 2 exp((h0(ε))

−4). (A-73)

Therefore, using (A-64) for
⋃

n R
(1,k+1)
n and (A-73) for Wu∗\

⋃
n R

(1,k+1)
n , the relations (6-33) and (6-34)

imply (in view of (5-3), (6-8) and the fact that u∗ ≤ (h1(ε))
−2v0ε) that

sup
Wu∗

(∣∣∣∣log
(
−∂ur

1− 2m/r

)∣∣∣∣+ ∣∣∣∣log
(

∂vr
1− 2m/r

)∣∣∣∣)≤ (h1(ε))
−3 exp((h0(ε))

−4). (A-74)

Similarly, (2-43) and (2-44), in view of the relations (6-33), (6-34) (using again the bounds (A-64) (A-73))
imply

sup
ū

∫
{u=ū}∩Wu∗

rTvv dv+ sup
v̄

∫
{v=v̄}∩Wu∗

rTuu du ≤ (h1(ε))
−1 exp((h0(ε))

−4). (A-75)

Let us fix a set of smooth functions r∗/ , (�
∗

/)
2
: [u∗, u∗+ v0ε)→ (0,+∞) and

f̄ ∗in/, f̄ ∗out/ : [u∗, u∗+ v0ε)× (0,+∞)→ [0,+∞)

satisfying the following requirements:

(1) (r∗/ , (�
∗

/)
2, f̄ ∗in/, f̄ ∗out/) is a smooth asymptotically AdS boundary-characteristic initial data set for the

system (2-28)–(2-33) on {u∗}×[u∗, u∗+v0ε) satisfying the reflecting gauge condition at r∗=r0ε,+∞.

(2) The function r∗/ satisfies for any v such that (u∗, v) ∈ supp(Tvv)

r∗/ (v)= r |supp(Tvv)∩{u=u∗}. (A-76)

(3) The function f̄ ∗in/ satisfies, for all v ∈ [u∗, u∗+ v0ε),∫
+∞

0
((�∗/)

2(v)pv)2 f̄ ∗in/(v; pv) (r∗/ )
2(v)

dpv

pv
= Tvv(u∗, v)+ T̃vv(v). (A-77)
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(4) The function f̄ ∗out/ satisfies, for all (v, pv) ∈ [u∗, u∗+ v0ε)× (0,+∞),

f̄ ∗out/(v; pv)= f̄out(u∗, v; pv). (A-78)

(5) The initial data sets (r, �2, f̄in, f̄out)|u=u∗ and (r∗/ , (�
∗

/)
2, f̄ ∗in/, f̄ ∗out/) satisfy

sup
v∈[u∗,u∗+v0ε)

{∣∣∣∣log
(

�2

1− 1
33r2

)∣∣∣∣
u=u∗

− log
(

(�∗/)
2

1− 1
33(r

∗

/ )
2

)∣∣∣∣
+

∣∣∣∣log
(

2∂vr
1− 2m/r

)∣∣∣∣
u=u∗

− log
( 2∂vr∗/

1− 2m∗//r
∗

/

)∣∣∣∣
+

∣∣∣∣log
(

1− 2m/r

1− 1
33r2

)∣∣∣∣
u=u∗

− log
(1− 2m∗//r

∗

/

1− 1
33(r

∗

/ )

)∣∣∣∣+√−3|m̃|u=u∗ − m̃∗/|
}
(v)

≤ exp
(
−

1
2

C2
ε

u∗
v0

)
(h1(ε))

2 (A-79)

and

sup
v∈[v1,v2]

∫ v2

v1

|r2Tvv(u∗, v̄)− (r∗/ )
2(Tvv)∗/(v̄)|

|ρ/(v)− ρ/(v̄)| + ρ/(v1)
d v̄ ≤ exp

(
−

1
2

C2
ε

u∗
v0

)
(h1(ε))

2. (A-80)

Remark. As a consequence of (A-65), by suitably deforming r∗/ near v= u∗+v0ε, we can always arrange
that (3-7) and (A-76) are satisfied simultaneously. Furthermore, since T̃vv is compactly supported in
(u∗, u∗ + v0ε), we can always choose f̄ ∗in/ = fin|{u=u∗} in a neighborhood of v = u∗, u∗ + v0ε, so that
(3-8) and (3-9) are satisfied. Finally, (r∗/ , (�

∗

/)
2, f̄ ∗in/, f̄ ∗out/) can be chosen so that (A-79) and (A-80) are

satisfied because of (A-66) and the relations (2-6), (2-44) and (2-47).

Let us now consider the two sets of initial data (r, �2, f̄in, f̄out)|u=u∗ and (r∗/ , (�
∗

/)
2, f̄ ∗in/, f̄ ∗out/) on

{u = u∗} ∩ {u∗ ≤ v < u∗+ v0ε}. The maximal past development of (r, �2, f̄in, f̄out)|u=u∗ (see the remark
below Theorem 3.4) coincides with (Wu∗; r, �

2, f̄in, f̄out) when restricted on {u ≥ 0} and, in view of
(A-74) and (A-75), satisfies

sup
Wu∗

{∣∣∣∣log
(

�2

1− 1
33r2

)∣∣∣∣+ ∣∣∣∣log
(

2∂vr
1− 2m/r

)∣∣∣∣+ ∣∣∣∣log
(

1− 2m/r

1− 1
33r2

)∣∣∣∣+√−3|m̃|}
+ sup

ū

∫
{u=ū}∩Wu∗

rTvv dv+ sup
v̄

∫
{v=v̄}∩Wu∗

rTuu du

≤ 4(h1(ε))
−3 exp(−(h0(ε))

−4). (A-81)

Therefore, in view of (A-81), (A-79) and (A-80), Theorem 3.6 applied for the past development of
(r, �2, f̄in, f̄out)|u=u∗ on Wu∗ (see the remark below Theorem 3.6) implies that the maximal past develop-
ment (U∗; r∗, (�∗)2, f̄ ∗in, f̄ ∗out) of (r∗/ , (�

∗

/)
2, f̄ ∗in/, f̄ ∗out/) satisfies

Wu∗ ⊂ U∗ (A-82)
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and

sup
Wu∗

{∣∣∣∣log
(

�2

1− 1
33r2

)
− log

(
(�∗)2

1− 1
33(r

∗)2

)∣∣∣∣+ ∣∣∣∣log
(

2∂vr
1− 2m/r

)
− log

(
2∂vr∗

1− 2m∗/r∗

)∣∣∣∣
+

∣∣∣∣log
(

1− 2m/r

1− 1
33r2

)
− log

(
1− 2m∗/r∗

1− 1
33(r

∗)2

)∣∣∣∣+√−3|m̃− m̃∗|
}

+ sup
ū

∫
{u=ū}∩Wu∗

|rTvv − r∗(Tvv)∗| dv+ sup
v̄

∫
{v=v̄}∩Wu∗

|rTuu − r∗(Tuu)
∗
| du

≤ (h1(ε))
3. (A-83)

Thus, the proof of the lemma concludes by setting

(r ′/, (�
′

/)
2, f̄ ′in/, f̄ ′out/)

.
= (r∗, (�∗)2, f̄ ∗in, f̄ ∗out)|u=0. �
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