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Recognition of being fibered for compact 3–manifolds

ANDREI JAIKIN-ZAPIRAIN

Let M be a compact orientable aspherical 3–manifold. We show that if the profinite
completion of �1.M / is isomorphic to the profinite completion of a free-by-cyclic
group or to the profinite completion of a surface-by-cyclic group, then M fibers over
the circle with compact fiber.

57M27; 20E18, 20J05, 57M05

1 Introduction

Let � be a finitely generated residually finite group. It is natural to ask what properties
of � are determined by the set of its finite quotients. Recall that two finitely generated
groups have the same collection of finite quotients if and only if their profinite comple-
tions are isomorphic (see the discussion around Theorem 2.2 of A Reid [15]). Thus,
our previous question can be reformulated as follows:

Question 1 Let �1 and �2 be two finitely generated groups. Assume that they have
isomorphic profinite completions. What group-theoretic properties are shared by �1

and �2 ?

There are many recent developments around this question. We recommend the reader
to consult the survey of Reid [15], where all these new results are described.

In this paper we consider a particular case of Question 1, where the groups �1 and �2

are the fundamental groups of 3–manifolds. This case has been also studied actively
in recent years (for more details, see [15, Section 4]).

Throughout this paper, all manifolds are connected and aspherical. We allow 3–
manifolds to have nonempty boundary, but we assume that there are no spherical
components.

By a free-by-cyclic group we mean a group F ÌZ, where F is a finitely generated free
group, and a surface-by-cyclic group is a group S Ì Z, where S is the fundamental
group of a compact closed orientable surface. Our result shows that the profinite
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completion of the fundamental group of a 3–manifold determines whether the manifold
fibers over the circle with compact fiber.

Theorem 1.1 Let M be a compact orientable 3–manifold. Assume that the profinite
completion of �1.M / is isomorphic to the profinite completion of a free-by-cyclic
group or to the profinite completion of a surface-by-cyclic group. Then M fibers over
the circle with compact fiber.

Under some additional conditions, this result has been proved by Bridson and Reid [5],
Boileau and Friedl [4] and Bridson, Reid and Wilton [6]. Our proof and all the
previous proofs use in an essential way results of I Agol [1; 2] and P Przytycki and
D Wise [14; 18] on separability of 3–manifold groups.

Corollary 1.2 Let M and N be two compact orientable 3–manifolds such that
2�1.M / Š2�1.N / . Then M fibers over the circle if and only if N does.

Let us explain briefly the strategy of the proof of Theorem 1.1. If � is a finitely
generated group, then we say that a nontrivial class � 2 H 1.�;Z/ D Hom.�;Z/ is
fibered if ker� is finitely generated. If � D �1.M / is the fundamental group of a
compact orientable 3–manifold M, then, by a well-known result of J Stallings [17],
fibered classes in H 1.�1.M /;Z/ are in one-to-one correspondence with fibrations
of M over the circle with compact fiber.

Now, let us assume that M satisfies the conditions of Theorem 1.1. First we have
to find a useful criterion for a class � 2H 1.�1.M /;Z/ to be fibered. We start with
a criterion proved by S Friedl and S Vidussi (Proposition 3.3). In Section 3.1 we
explain the notion of cohomological goodness introduced by J-P Serre [16]. Using
that the fundamental group of a 3–manifold is cohomologically good we reformulate
Proposition 3.3 in terms of the profinite completion of �1.M / and obtain Corollary 3.4.
It tells us that � 2 H 1.�1.M /;Z/ is fibered if certain homology groups of some
subgroups of 2�1.M / are finite. The latter property can be understood in terms of
certain rank functions, which we study in Section 2. In Section 4 we prove a proposition
that together with Corollary 2.2 allows us to find a desired class. All this is explained
again in more detail in Section 5.
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2 Rank functions

Let R be a commutative domain and let Q.R/ denote its field of fractions. Given a ma-
trix A over R we denote by rkR.A/ the Q.R/–rank of A. Similarly, if �W M1!M2

is a homomorphism of finitely generated free left R–modules, we denote by rkR.�/

the Q.R/–rank of the induced map Q.R/˝R M1!Q.R/˝R M2 .

We may extend the previous notation in the following way. Let S be a ring and assume
that S0 is a subring of S such that S Š .S0/

k for some k � 1 as a left S0 –module. If
˛W S0!R is a homomorphism of rings, then ˛ induces a structure of right S0 –module
on R. Take A 2Matn�m.S/ and consider the homomorphism of finitely generated
free left R–modules

�A
˛ W .R˝S0

S/n! .R˝S0
S/m; .x1; : : : ;xn/ 7! .x1; : : : ;xn/A:

If R is a commutative domain, then we put rk˛.A/D rkR.�
A
˛ /.

Let us describe two concrete examples of rank functions that will appear in this paper.
Let � be a residually finite group and H a subgroup of finite index. Put S D ZŒ��

and S0 D ZŒH �. It is clear that S is a left free S0 –module. We fix a prime p once
and for all throughout the paper.

(A) Let K be a normal subgroup of � such that �=K is abelian and torsion-free. Let
˛1W ZŒH �! Fp ŒH=H \K� be the canonical map. We define

rkH ;K .A/D
rk˛1

.A/

j� WH j
; where A is a matrix over ZŒ��:

(B) For a profinite group G and a profinite ring T we denote by T ŒŒG�� the completed
group algebra

T ŒŒG��D lim
 ��

U EoG

T ŒŒG=U ��:
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Now let G be a profinite completion of � . We identify � with its canonical image in G.
Let U be the closure of H in G and let N be a closed normal subgroup of G such
that G=N is an abelian and torsion-free pro-p group. Let ˛2W ZŒH �! Fp ŒŒU=U \N ��

be the canonical map. In this context we define

rkH ;N .A/D
rk˛2

.A/

jG WU j
; where A is a matrix over ZŒ��:

This rank function coincides with the previous one in the case K D � \N . Indeed, for
every matrix A over ZŒ�� we have the equality

rk˛1
.A/D rk˛2

.A/

because ˛2 is the composition of ˛1 and the canonical embedding of Fp ŒH=H \K�

into Fp ŒŒU=U \N ��. Thus, we obtain that

(1) rkH ;�\N .A/D rkH ;N .A/:

The rank functions rkH ;K and rkH ;N are examples of Sylvester matrix rank functions
on ZŒ��. The interested reader can find more information about them in [11]. We need
the following elementary lemma about rank functions:

Lemma 2.1 Let S be a ring and assume that S0 is a subring of S such that S is a
finitely generated free left S0 –module. Let � W R1!R2 be a homomorphism between
two commutative domains and ˛1W S0!R1 a homomorphism. We put ˛2 D � ı˛1 .
Then for any matrix A over S we have

rk˛1
.A/� rk˛2

.A/:

Proof For simplicity of exposition, let us assume that A 2 S (that is, A is a 1-by-1
matrix).

Let fv1; : : : ; vkg be a basis of S as a left S0 –module. Consider the matrix associated
to �A

Id with respect to fv1; : : : ; vkg. It is a k -by-k matrix B D .bij / over S0 defined
by means of

viAD

kX
jD1

bijvj :

Let B1 D ˛1.B/ and B2 D ˛2.B/, and observe that B2 D �.B1/. Thus, rkR1
.B1/�

rkR2
.B2/. Therefore, we obtain that

rk˛1
.A/D rkR1

.B1/� rkR2
.B2/D rk˛2

.A/:
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We will apply the lemma in the following situation:

Corollary 2.2 Let � be a residually finite group and let G D y� . Let N be a closed
normal subgroup of G such that G=N Š Zp and let K be a normal subgroup of �
such that �=K Š Z. Assume that � \N �K. Then, for every matrix A over ZŒ��

and every subgroup H of � of finite index,

rkH ;N .A/� rkH ;K .A/:

Proof Using (1), we obtain that rkH ;�\N .A/D rkH ;N .A/. Since � \N �K, the
previous lemma implies that rkH ;�\N .A/� rkH ;K .A/ Hence we are done.

3 Preliminaries on 3–manifolds

3.1 Cohomologically good groups

Let � be a group and y� its profinite completion. The group � is called cohomologically
good if the homomorphism of cohomology groups

in.M /W H n.y�;M /!H n.�;M /

induced by the natural homomorphism i W �! y� is an isomorphism for every ZŒ��–
module M having a finite number of elements. This notion was introduced by Serre (see
[16, Section I.2.6]) and has been studied in several papers (see for example [10; 9; 13]).

It is known that free, surface, free-by-cyclic, surface-by-cyclic and 3–manifold groups
are cohomologically good. The result on 3–manifold groups (see for example [7; 9,
Remark 5.14; 3]) uses the recent advances in the theory of 3–manifolds, including the
solution of the virtual Haken conjecture by Agol [2]. We want to point out that under
the hypothesis of Theorem 1.1 that the profinite completion of �1.M / is isomorphic
to the profinite completion of a free-by-cyclic group or to the profinite completion of a
surface-by-cyclic group, the cohomological goodness of �1.M / can be proved directly
as in [9, Corollary 5.4].

In the case where � is an FP1–group there is an alternative way to define the coho-
mological goodness.

Proposition 3.1 Let � be an FP1–group and let

� � � ! ZŒ��di
�i
�! ZŒ��di�1 ! � � � ! ZŒ��d1

�1
�! ZŒ��! Z! 0
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be a resolution of the trivial ZŒ��–module Z. Then � is cohomologically good if and
only if the induced sequence

� � � ! yZŒŒy���di
y�i
�! yZŒŒy���di�1 ! � � � ! yZŒŒy���d1

y�1
�! yZŒŒy���! yZ! 0

is exact.

Proof The “if” part is clear. Let us show the “only if” part.

By [16, page 15], since � is cohomologically good we have that for every n � 1,
every prime p , every subgroup H of � of finite index and every ˛ 2 H k.H;Fp/,
there exists another subgroup T of finite index in H such that the restriction of ˛
to T vanishes in H k.T;Fp/. Hence the direct limit of H k.H;Fp/ (when H runs
over all subgroups of finite index of � ) is equal to zero, and so the inverse limit of
Hk.H;Fp/ is also equal to zero. Now we can apply [12, Theorem 2.5] and conclude
that Hk.�;Zp ŒŒy���/D 0 for each p , and therefore Hk.�; yZŒŒy���/D 0. This implies the
exactness of the second sequence in the statement of the proposition.

3.2 Profinite completions of 3–manifold groups

In the following proposition we show that the hypotheses of Theorem 1.1 impose
several restrictions on the boundary of M.

Proposition 3.2 Let M be a compact orientable 3–manifold and let � be a free-
by-cyclic group or a surface-by-cyclic group. Assume that 2�1.M / Š y� . Then the
boundary of M is a union of incompressible tori or it is empty.

Proof If � is a free-by-cyclic group, the proposition follows from [5, Corollary 4.3].
If � is a surface-by-cyclic group, then 2�1.M / is of cohomological dimension 3. Since
�1.M / is cohomologically good, �1.M / is of cohomological dimension 3 as well,
and so M does not have boundary.

3.3 A criterion for fibering

Let �W �! Z be a nontrivial homomorphism and let H be a subgroup of finite index
in � . We denote by H� the intersection H \ ker� . We have the following criterion
of fibering, stated in a slightly different way in a paper of Friedl and Vidussi [8]:
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Proposition 3.3 Let M be a compact orientable 3–manifold with toroidal or empty
boundary and let �W �1.M /!Z be a nontrivial map. Then the class � is fibered if and
only if for every normal subgroup H of �1.M / of finite index the group H1.H� ;Fp/

is finite.

Proof The “only if” part is clear, since if � fibers, ker� is finitely generated.

Let H be a normal subgroup of �1.M / of finite index and assume that H1.H� ;Fp/

is finite. Hence H1.�1.M /;Fp Œ�1.M /=H� �/ŠH1.H� ;Fp/ is also finite. Put LD

Fp Œ�1.M /=H �. The tensor product

zLD Fp Œ�1.M /= ker��˝Fp
L

is a finitely generated right �1.M /–module (the elements of �1.M / act diago-
nally on L� ). The i th twisted Alexander polynomial �L

M;�;i
is the order of the

Fp Œ�1.M /= ker��–module Hi.�1.M /; zL/ (see [4] for details). Observe that zL is a
direct sum of a finite number of copies of Fp Œ�1.M /=H� �. Therefore, H1.�1.M /; zL/

is also finite. Hence
�

FpŒ�1.M /=H �

M;�;1
¤ 0:

Thus, we can apply [8, Theorem 1.1] and obtain the “if” part of the proposition.

Let � be a finitely generated group. A map �W � ! Z induces a homomorphism
�k W
y�! Zp=p

kZp . We put

y� D lim
k
�k W
y�! Zp

and say that y� is associated to � .

Let G be a profinite group, U an open subgroup and 'W G! Zp a nontrivial homo-
morphism. We denote by U' the intersection U \ker' . Note that U=U' ŠZp . Now
we present a profinite analogue of Proposition 3.3.

Corollary 3.4 Let M be a compact orientable 3–manifold with toroidal or empty
boundary and let �W �1.M /! Z be a nontrivial map. Denote by y�W 2�1.M /! Zp

the homomorphism associated to � . Then the class � is fibered if and only if for every
normal open subgroup U of 2�1.M / the group H1.Uy� ;Fp/ is finite.

Proof The “only if” part is clear. Let us prove the “if” part.
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We write a projective resolution of Z as a left ZŒ�1.M /�–module

ZŒ�1.M /�r
mB
�! ZŒ�1.M /�d ! ZŒ�1.M /�! Z! 0;

where mB is multiplication by a matrix B. Since, �1.M / is cohomologically good,
using Proposition 3.1, we obtain an exact sequence

yZŒŒ2�1.M /��r
mB
�! yZŒŒ2�1.M /��d ! yZŒŒ2�1.M /��! yZ! 0:

Let H be a normal subgroup of �1.M / of finite index and let U be the closure of H

in 2�1.M / . Then U is a normal open subgroup of 2�1.M / . Note that

H1.Uy� ;Fp/ŠH1.2�1.M /;Fp ŒŒ2�1.M /=Uy� ��/:

Thus, since H1.Uy� ;Fp/ is finite, we obtain that rk
H ;ker y�.B/D d � 1. Now, observe

that, by (1),
rkH ;ker�.B/D rk

H ;ker y�.B/D d � 1:

Therefore,
H1.H� ;Fp/ŠH1.�1.M /;Fp Œ�1.M /=H� �/

is also finite. Hence we can apply Proposition 3.3 and obtain the “if” part of the
corollary.

4 Finding a fibered class

The following proposition will be a key result that will help us to find a fibered class in
Theorem 1.1.

Proposition 4.1 Let V DZk
p and let I Š J ŠZk be two dense subgroups of V . Put

V � D Hom.V;Zp/. For ' 2 V �we denote by 'jI the restriction of ' to I. Then, for
every  2 V � such that  .I/�Z, there exists an element ' 2 V � such that '.J /�Z

and ker'jI � ker jI .

Proof Let fv1; : : : ; vkg and fu1; : : : ;ukg be Z–bases of I and J, respectively. Define
elements v�

1
; : : : v�

k
;u�

1
; : : : ;u�

k
of V � by means of

v�i .vj /D u�i .uj /D ıij :

Since fv1; : : : ;vkg and fu1; : : : ;ukg are Zp –bases of V , fv�
1
; : : : ;v�

k
g and fu�

1
; : : : ;u�

k
g

are Zp –bases of V � . Hence there exists a matrix A 2 GLk.Zp/ such that

(2) .u�1; : : : ;u
�
k/D .v

�
1 ; : : : ; v

�
k/A:
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Write A as

(3) AD

sX
iD1

Aizi ;

where Ai 2Matk.Z/ and fz1; : : : ; zsg � Zp are Z–linearly independent.

Let RDQŒt1; : : : ; ts � be a polynomial ring. We put BD
Ps

iD1 Ai ti 2Matk.R/. Since
AD

Ps
iD1 Aizi is invertible over Zp , det A¤ 0. Hence det B ¤ 0 as well and, as a

consequence, there are q1; : : : ; qs 2 Z such that

det
� sX

iD1

Aiqi

�
¤ 0:

Let us put

(4) C D

sX
iD1

Aiqi :

We can express  as

(5)  D ˛1v
�
1 C � � �C˛kv

�
k ; where ˛i 2 Z:

Since C is invertible over Q, there are ˇ1; : : : ; ˇk 2 Z and 0¤ n 2 Z such that

(6) C

0@ ˇ1
:::
ˇk

1AD n

0@ ˛1
:::
˛k

1A :
Now we set

' D

kX
iD1

ˇiu
�
i D .v

�
1 ; : : : ; v

�
k/A

0@ ˇ1
:::
ˇk

1A (by (2))

D

sX
jD1

zj .v
�
1 ; : : : ; v

�
k/Aj

0@ ˇ1
:::
ˇk

1A (by (3));

and define

(7) 'j D .v
�
1 ; : : : ; v

�
k/Aj

0@ ˇ1
:::
ˇk

1A 2 Zv�1 C � � �CZv�k :

Then, since fz1; : : : ; zsg are Z–linearly independent,

ker'jI D ker.z1.'1/jI C � � �C zs.'s/jI /D

s\
iD1

ker.'j /jI :
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Thus, we obtain

ker'jI � ker
� sX

jD1

qj .'j /jI

�
D ker

0@.v�1 ; : : : ; v�k/C
0@ ˇ1

:::
ˇk

1A jI
1A (by (7) and (4))

D ker

0@.v�1 ; : : : ; v�k/
0@ ˛1

:::
˛k

1A jI
1A (by (6))

D ker jI (by (5)):

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let � D S Ì Z be a free-by-cyclic or a surface-
by-cyclic group. Then y� Š yS Ì yZ. We write a projective resolution of Z as a left
ZŒ��–module,

ZŒ��r
mA
�! ZŒ��d ! ZŒ��! Z! 0;

where mA is multiplication by a matrix A. We will need the following lemma:

Lemma 5.1 Let 'W y�! Zp be a nontrivial homomorphism and let H be a subgroup
of � of finite index. Denote by U the closure of H in y� . Then H1.U' ;Fp/ is finite
if and only if rkH ;ker'.A/D d � 1.

Proof We may use the same argument as in the proof of Corollary 3.4, because � is
cohomologically good.

Let M be a compact orientable 3–manifold and assume that 2�1.M / and y� are
isomorphic. By Proposition 3.2, M has toroidal or empty boundary.

Denote by ˛W 2�1.M /! y� an isomorphism between 2�1.M / and y� . In order to show
that �1.M / is fibered we want to use Corollary 3.4. To do so we are going to work
in y� and then transport the obtained information from y� to 2�1.M / using ˛�1 .

Let f W �!Z be such that kerf DS and let yf W y�!Zp be the map associated to f .
Denote by V the maximal torsion-free abelian pro-p quotient of y� . Then V ŠZk

p for
some k � 1. Let I and J be the images in V of � and ˛.�1.M //, respectively.

Applying Proposition 4.1 for  D yf , we obtain that there exists 'W y�! Zp such that

'.˛.�1.M ///� Z and ker' \� � kerf:

Geometry & Topology, Volume 24 (2020)



Recognition of being fibered for compact 3–manifolds 419

Let U be an open normal subgroup of y� . Put H D � \U. Observe that U is equal to
the closure of H in y� . By Corollary 2.2,

rkH ;ker'.A/� rkH ;kerf .A/D d � 1:

Hence, by Lemma 5.1, H1.U' ;Fp/ is finite.

Now, we put
� D ' ı˛j�1.M / 2H 1.�1.M /;Z/:

Let y�W 2�1.M /! Zp be associated to � . Then we have that y� D ' ı˛ .

Thus, we obtain that

H1.Uy� ;Fp/ŠH1.˛.Uy�/;Fp/DH1.˛.U /' ;Fp/

is finite for every normal open subgroup U of 2�1.M / . Therefore, applying Corollary
3.4, we obtain that � is fibered. This finishes the proof of Theorem 1.1.
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