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Geometry of compact complex manifolds associated to
generalized quasi-Fuchsian representations

DAVID DUMAS

ANDREW SANDERS

We study the topology and geometry of compact complex manifolds associated to
Anosov representations of surface groups and other hyperbolic groups in a complex
semisimple Lie group G. We compute the homology of the manifolds obtained
from G–Fuchsian representations and their Anosov deformations, where G is simple.
We show that in sufficiently high rank, these quotient complex manifolds are not
Kähler. We also obtain results about their Picard groups and existence of meromorphic
functions.

In a final section, we apply our topological results to some explicit families of domains
and derive closed formulas for certain topological invariants. We also show that the
manifolds associated to Anosov deformations of PSL3 C–Fuchsian representations
are topological fiber bundles over a surface, and we conjecture this holds for all
simple G.

32Q30, 57M50

1 Introduction

This paper is concerned with the following general question: which aspects of the
complex-analytic study of discrete subgroups of PSL2 C can be generalized to discrete
subgroups of other semisimple complex Lie groups?

To make this more precise, we recall the classical situation that motivates our discussion.
A torsion-free cocompact Fuchsian group � < PSL2 R acts freely, properly discontinu-
ously, and cocompactly by isometries on the symmetric space PSL2 R=PSO.2/'H2.
The quotient S D �nH2 is a closed surface of genus g > 2. When considering � as
a subgroup of PSL2 C , it is natural to consider either its isometric action on the
symmetric space H3 ' PSL2 C=PSU.2/ or its holomorphic action on the visual
boundary P1

C ' PSL2 C=BPSL2 C . The latter action has a limit set ƒ D P1
R and

a disconnected domain of discontinuity �DHtH . The quotient �n� is a compact
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Kähler manifold — more concretely, it is the union of two complex conjugate Riemann
surfaces.

Quasiconformal deformations of such groups � give quasi-Fuchsian groups in PSL2 C .
Each such group acts on P1

C in topological conjugacy with a Fuchsian group, hence
the limit set ƒ is a Jordan curve, the domain of discontinuity has two contractible
components, and the quotient manifold is a union of two Riemann surfaces (which are
not necessarily complex conjugates of one another).

If G is a complex simple Lie group of adjoint type (such as PSLn C for n > 2), there
is a distinguished homomorphism �G W PSL2 C!G introduced by Kostant [29] and
called the principal three-dimensional embedding. Applying �G , a discrete subgroup
of PSL2 R or PSL2 C gives rise to a discrete subgroup of G. When this construction
is applied to a torsion-free cocompact Fuchsian group �1S ' �, the resulting G–
Fuchsian representation �1S ! G lies in the Hitchin component of the split real
form GR < G. Representations in the Hitchin component have been extensively
studied in recent years, and the resulting rich geometric theory has shown them to be a
natural higher-rank generalization of Fuchsian groups. In the same way, we propose to
generalize the theory of quasi-Fuchsian groups by studying complex deformations of
these G–Fuchsian and Hitchin representations and the associated holomorphic actions
on parabolic homogeneous spaces of G.

The existence of domains of proper discontinuity for such actions follows from a theory
developed by Kapovich, Leeb and Porti [28] and Guichard and Wienhard [20], which
applies in the more general setting of Anosov representations of word-hyperbolic groups
in a semisimple1 Lie group G. In fact, a key component of this theory, as developed
in [28], is the construction of many distinct cocompact domains of proper discontinuity
for the action of a given Anosov representation on a parabolic homogeneous space G=P,
each labeled by a certain combinatorial object — a Chevalley–Bruhat ideal in the Weyl
group of G.

Applying this theory to a G–Fuchsian representation of a surface group, or more gener-
ally to an Anosov representation of a word-hyperbolic group in a complex semisimple
group G, we consider the compact, complex quotient manifold WD �n� associated

1For this paper, a semisimple Lie group G is a real Lie group with finite center, finitely many connected
components, semisimple Lie algebra, and no compact factors. For the reader who prefers algebraic groups,
one may also work with the K–points of a semisimple linear algebraic group defined over K , where KDR
or KDC depending on the situation.
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to a cocompact domain of discontinuity ��G=P arising from the construction of [28].
Concerning such a manifold, we ask:

� What is the homology of W?

� Does W admit a Kähler metric? Is it a projective algebraic variety?

� What is the Picard group of W?

� What are the cohomology groups of holomorphic line bundles on W?

� Does W admit nonconstant meromorphic functions?

In considering these questions, our restriction to complex Lie groups has the simultane-
ous advantages that it simplifies topological questions and that it paves the way for the
rich holomorphic geometry of generalized flag varieties over C to assume a prominent
role.

Our answers to these questions rest on the fact that if W were replaced by one of
the complex partial flag varieties G=P, classical Lie theory would give a complete
answer: The homology of G=P admits a preferred basis in terms of Schubert cells,
which are B–orbits on G=P, where B <G is a Borel subgroup. The classification of
line bundles on G=B and their sheaf cohomology is the content of the Borel–Bott–Weil
theorem; see Bott [7].

In the remainder of this introduction we survey our results, after introducing enough
terminology to formulate them precisely.

Choosing Cartan and Borel subgroups H < B <G, we obtain the Weyl group W and
a natural partial order on it, the Chevalley–Bruhat order. A subset I �W which is
downward-closed for this order is a Chevalley–Bruhat ideal (or briefly, an ideal). An
ideal I is balanced if W D I tw0I where w0 2W is the unique element of maximal
length.

Each element of W corresponds to a Schubert cell in the space G=B . The union of the
cells corresponding to elements of an ideal I gives a closed set ˆI �G=B , the model
thickening. For a general parabolic subgroup P < G, there is a similar construction
of a model thickening ˆI � G=P if we also assume that I is invariant under right
multiplication by WP <W , the Weyl group of P.

Now let � be a word-hyperbolic group. A homomorphism %W �!G is B–Anosov if
there exists a %–equivariant continuous map

�W @1�!G=B
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which satisfies certain additional properties that are described in Section 2.3; roughly
speaking, these conditions say that % is “undistorted” at a large scale; in particular
such a representation is a discrete, quasi-isometric embedding with finite kernel. The
map � is the limit curve associated to the Anosov representation %. (Section 2.3 also
describes a more general notion of Anosov representation where B is replaced by an
arbitrary symmetric parabolic subgroup of G.)

The work of Kapovich, Leeb and Porti [28] establishes that if %W �!G is B–Anosov,
then for every balanced and right-WP –invariant ideal I �W one obtains a � WD %.�/–
invariant open set � � G=P upon which the action of � is properly discontinuous
and cocompact. The set � is defined as the complement �D .G=P /�ƒ, where the
limit set ƒ is a union over points in the limit curve � of G–translates of the model
thickening ˆI.

Using the continuous variation of the limit curve as a function of the Anosov represen-
tation (established in [20]), and the fact that the Anosov property is an open condition
among representations [ibid], elementary arguments establish that if % and %0 are in the
same path component of the space of Anosov representations, then the corresponding
compact quotient manifolds are homotopy equivalent. In fact, we provide a slightly
more sophisticated argument which shows that the resulting compact quotient manifolds
are diffeomorphic.

We focus on the path component of the space of B–Anosov representations �1S !G

that contains the G–Fuchsian representations, which we regard as a complex analogue of
the Hitchin component of GR . This component also contains the compositions of quasi-
Fuchsian representations with �G , which we call G–quasi-Fuchsian representations.
Using the invariance of topological type described above, when studying topological
invariants of quotient manifolds for representations in this component, it suffices to
consider the G–Fuchsian case. Concerning homology, we find:

Theorem A Let G be a complex simple Lie group of adjoint type and let %W �1S!G

be a G–Fuchsian representation. Let I �W be a balanced and right-WP –invariant
ideal, where P <G is parabolic. Then if �I

% �G=P is the corresponding cocompact
domain of discontinuity, the quotient manifold WI

% D %.�1S/n�I
% satisfies

H�.W
I
% ;Z/'H�.S;Z/˝Z H�.�

I
% ;Z/:

Furthermore, we calculate the homology of the domain of discontinuity �I
% :
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Theorem B Let % and I be as in the previous theorem, and let ˆI � G=P be the
associated model thickening. Then for any integer k > 0 the homology of the domain
of discontinuity �I

% �G=P fits in a split exact sequence

0!H 2n�2�k.ˆI;Z/!Hk.�
I
% ;Z/!Hk.ˆ

I;Z/! 0;

where nD dimC G=P is the complex dimension of the flag variety.

The correspondence between Weyl group elements, Schubert cells, and cohomology
classes in G=P makes the calculation of the outer terms in the exact sequence above
an entirely combinatorial matter. More precisely, we find:

Theorem C The domains �I
% �G=P as above have the following properties:

(i) The odd homology groups of �I
% vanish.

(ii) The even cohomology groups of �I
% are free abelian.

(iii) The rank of H2k.�
I
%/ is equal to rk C rn�1�k , where n D dimC G=P and

where rj denotes the number of elements of I=WP of length j with respect to
the Chevalley–Bruhat order on W =WP .

(iv) For each k > 0 there is a natural isomorphism Hk.�
I
% ;Z/'H 2n�2�k.�I

% ;Z/.

Taken together, these results are consistent with the possibility that WI
% is a bundle

over the surface S with fiber a compact, oriented manifold of dimension .2n� 2/

homotopy equivalent to �I
% ; if so, property (iv) would follow from Poincaré duality

for this fiber manifold. We conjecture a weaker form of this:

Conjecture 1.1 There is a compact .2n�2/–dimensional Poincaré duality space FI
%

homotopy equivalent to �I
% and a continuous fiber bundle

FI
% !WI

% ! S:

In Section 7.6 we verify this conjecture in the case G D PSL3 C . We have been
informed of work in progress by Alessandrini and Li [2] and Alessandrini, Maloni and
Wienhard [3] that provides other examples in which Conjecture 1.1 holds. Some of
these results are announced in [1].

These homological results also yield a simple formula for the Euler characteristic of
the quotient manifold:

Corollary 1.2 The Euler characteristic of WI
% satisfies

�.WI
%/D �.S/�.G=P /:
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Note in particular that the Euler characteristic is independent of the choice of balanced
ideal I � W . It also follows that an affirmative answer to Conjecture 1.1 would
necessarily produce a fiber space FI

% which satisfies �.FI
% /D �.G=P /.

In Section 6, we turn to the complex geometry of quotients. Here our work parallels
the study of quotient manifolds associated to complex Schottky groups by a number
of authors, eg Lárusson [33], Seade and Verjovsky [41], and especially Miebach and
Oeljeklaus [35]. As in [33] and [41], one of our main techniques is to use a bound on
the Hausdorff dimension of the limit set to apply complex-analytic extension results
(eg from Shiffman [44] and Harvey [21]) and show that the quotient manifold inherits
holomorphic characteristics from G=P. The more recent results of [35] in the Schottky
case are probably the most analogous to our study of Anosov representations, though
their results are stated with hypotheses about extensions of sheaves in place of the
Hausdorff dimension assumptions we use.

In this complex-geometric part of the paper it is natural for us to work in the more
general setting of a complex Lie group G and N D G=H a complex homogeneous
space (where H < G is a closed complex Lie subgroup). We say that a complex
manifold W is a uniformized .G;N /–manifold with data .�; �/ if

� there exists a discrete torsion-free group � < G and a �–invariant domain of
proper discontinuity ��N upon which � acts freely with compact quotient,
and

� there is a biholomorphism W' �n�.

(Such manifolds are sometimes called Kleinian in the literature.) Note that a uniformized
.G;N /–manifold is a special case of a locally homogeneous geometric structure mod-
eled on .G;N / and that the manifold WI

% associated to a right-WP –invariant ideal I

is a uniformized .G;G=P /–manifold with data .�I
% ; %.�//. Following terminology

from the study of convex–cocompact group actions, we call ƒ WDN �� the limit set
of W. Denote by mk.ƒ/ the k–dimensional Riemannian Hausdorff measure of ƒ.

Theorem D Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that N is compact and 1–connected and that m2n�2.ƒ/D 0 where
nD dimC N. If X is a Riemann surface and X 6' P1

C , then every holomorphic map
W! X is constant. More generally, if Y is a complex manifold whose universal
cover is biholomorphic to an open subset of Ck, then any holomorphic map W! Y is
constant.
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Using a theorem of Eyssidieux, we also show that under mild conditions on the
complexity of �1W, such a uniformized manifold does not admit a Kähler metric:

Theorem E Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that N is compact and 1–connected and that m2n�2.ƒ/D 0 where
nD dimC N. If �1W has an infinite linear group (eg a surface group) as a quotient ,
then W does not admit a Kähler metric. In particular , W is not a complex projective
variety.

In order to apply Theorems D and E to examples arising from Anosov representations,
it is necessary to verify the hypothesis concerning the Hausdorff measure of the limit
set. We do this in the technical Section 4, which relies on a combinatorial property of
balanced ideals in Weyl groups. Namely, except for some low-rank aberrations, every
balanced ideal I �W contains every element w 2W of length at most 2. (We note
that a similar result was proved by Seppänen and Tsanov [43] for a similar purpose,
but only for a certain class of Chevalley–Bruhat ideals.) This translates to a lack of
high-dimension cells in ˆI, which allows us to show that m2n�2.ƒ

I
%/ vanishes in the

G–quasi-Fuchsian case. We conclude:

Theorem F Let %W �1S ! G be a G–quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not isomorphic to PSL2 C , and let P < G

be a parabolic subgroup. Let I �W be a balanced and right-WP –invariant ideal in
the Weyl group. Then the associated compact quotient manifold WI

% has the following
properties:

(i) Any holomorphic map from WI
% to a manifold whose universal cover embeds

in Ck (eg any Riemann surface not isomorphic to P1
C ) is constant. In particular ,

W is not a holomorphic fiber bundle over such a manifold.

(ii) The complex manifold WI
% does not admit a Kähler metric , and in particular it

is not a complex projective variety.

We remark that results announced in a recent preprint of Pozzetti, Sambarino and
Wienhard [40] would allow this theorem to be extended to an open neighborhood of
the space of G–quasi-Fuchsian representations. We discuss this further in Section 1.1.

While Theorems D–F are essentially negative results — they rule out the use of cer-
tain techniques in understanding these manifolds — our methods also lead to positive
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results concerning the behavior of holomorphic line bundles on uniformized .G;G=P /–
manifolds W' �n�. Specifically, we find that the behavior of such holomorphic line
bundles is closely related to the representation theory of the discrete group � <G.

Let Pic�.G=P / be the space of �–equivariant isomorphism classes of �–equivariant
line bundles on G=P . Then there is a homomorphism

p�� W Pic�.G=P /! Pic.W/;

the invariant direct image. In favorable circumstances, the extension theorems of
Harvey (see [21] and Theorem 6.3 below) allow us to show that p�� is an isomorphism.
In fact, we have:

Theorem G Let G be a connected semisimple complex Lie group , P <G a parabolic
subgroup, and W a uniformized .G;G=P /–manifold with data .�; �/ and limit
set ƒ. Suppose that m2n�4.ƒ/ D 0 where n D dimC G=P. Then there is a natural
isomorphism

(1-1) Pic.W/ '�! Pic�.G=P /

which is split by the invariant direct image homomorphism p�� W Pic�.G=P /! Pic.W/.

Moreover , the kernel of the composition

(1-2) Pic.W/ '�! Pic�.G=P /! Pic.G=P /

is naturally isomorphic to Hom.�;C�/.

As before, after excluding some low-dimensional cases, this allows us to compute the
Picard group of manifolds arising from G–quasi-Fuchsian representations.

Theorem H Let %W �1S !G be a G–quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not of type A1 , A2 , A3 , or B2 . Let P <G

be a parabolic subgroup , I �W a balanced and right-WP –invariant ideal in the Weyl
group, and WI

% the uniformized .G;G=P /–manifold associated to these data. Then
there is a short exact sequence

(1-3) 1! Hom.�1S;C�/! Pic.WI
%/! Pic.G=P /! 1:

Having calculated the Picard group, in Section 6.3 we turn to calculations of sheaf
cohomology groups of line bundles on W in the image of the invariant direct image
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homomorphism. Here we restrict to the case P DB to simplify the discussion, though
analogous statements could be derived for any parabolic subgroup.

Recall that a holomorphic line bundle L on G=B is G–equivariant if it admits an action
of G by bundle automorphisms covering the G–action on G=B . Isomorphism classes
of G–equivariant bundles on G=B are in bijection with 1–dimensional representations
B ! C�. We say a line bundle L is effective if it admits a nonzero holomorphic
section.

Theorem I Let L be a G–equivariant effective line bundle on G=B and let W

be a uniformized .G;G=B/–manifold with data .�; �/ and limit set ƒ satisfying
m2n�2k�2.ƒ/D 0 for some k > 1, where nD dimC G=B . Then, for all 0 6 i < k ,

H i.W;p�� .L//'H i.�;H 0.G=B;L//:

In this theorem, the expression H i.�;H 0.G=B;L// denotes the group cohomology
of � with twisted coefficients. Since L is G–equivariant and � < G, the space
H 0.G=B;L/ has the structure of a �–module.

When i exceeds the cohomological dimension cd.�/, the previous theorem becomes
the vanishing result:

(1-4) H i.W;p�� .L//D 0 for cd.�/ < i < k:

We close the discussion of the complex geometry of quotients with the following
theorem regarding the existence of meromorphic functions on uniformized .G;G=B/–
manifolds arising from G–quasi-Fuchsian representations. Recall that an ample line
bundle L on G=B is one which gives rise to a projective embedding.

Theorem J Let %W �1S ! G be a G–quasi-Fuchsian representation with image �,
where G is a complex simple adjoint Lie group that is not of type A1 , A2 , A3 , or B2 .
Let I be a balanced ideal in the Weyl group W of G. Let WI

% denote the uniformized
.G;G=B/–manifold associated to these data. For any ample, G–equivariant line
bundle L on G=B , the following properties hold :

(i) There exists a k > 0 such that

H 0.WI
% ;p

�
� .L

k//'H 0.�;H 0.G=B;Lk//¤ 0:

(ii) The manifold WI
% admits a nonconstant meromorphic function.
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The same techniques show that the transcendence degree over C of the field of mero-
morphic functions on WI

% is large whenever the rank of H 0.WI
% ;p

�
� .L

k// is large;
however, whether or not there are any cases where this transcendence degree is equal
to the complex dimension of WI

% , so that WI
% is Moishezon, is yet to be seen. In the

analogous setting of quotient manifolds associated to complex Schottky groups, these
questions are studied by Lárusson [33] and Miebach and Oeljeklaus [35].

1.1 The role of Hausdorff dimension and G –quasi-Fuchsian assumptions

Most of our results include a hypothesis concerning the Hausdorff dimension of the
limit set or an assumption that the representation is G–quasi-Fuchsian. We briefly
discuss the prospects for weakening or removing these hypotheses.

In Theorems F and H, the Anosov representation is required to be G–quasi-Fuchsian,
but this hypothesis is only used to obtain a bound on the Hausdorff dimension of the limit
curve. In a recent preprint, Pozzetti, Sambarino, and Wienhard [40] have announced
results that in particular imply continuous variation of the Hausdorff dimension of
the limit curve as a function of the representation, for a particular subclass of Anosov
representations. This would allow Theorems F and H to be immediately extended to a
neighborhood of the G–quasi-Fuchsian locus.

Theorem J is also stated for G–quasi-Fuchsian representations, but here that hypothesis
is more fundamental, as it is used to ensure the existence of vectors in irreducible
representations of G which are invariant under a principal PSL2 C . It seems likely that
a generic uniformized .G;N /–manifold has no nonconstant meromorphic functions.

Theorems E, G, and I require specific upper bounds on the Hausdorff dimension of
the limit set, but we do not know if the threshold dimensions in those statements are
optimal. Producing examples with limit sets of large Hausdorff dimension, as might
be used to show the necessity of the hypothesis, seems to be out of reach of current
methods. Furthermore, the delicate nature of extension problems in several complex
variables could make analyzing such examples quite challenging.

1.2 An illustrative example

In formulating the main results of this paper, we strive for the maximum level of
generality that our arguments allow. However, in reading the proofs it may be helpful to
have a concrete example in mind. While Section 7 develops various aspects of certain
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examples in detail, here we discuss how all of the main results apply to one class of
examples (which is also discussed in Sections 7.2–7.3 and in Guichard and Wienhard
[20, Section 10.2.2]).

Consider a torsion-free cocompact Fuchsian group �0 < SL2 R and fix n > 2. Let �
denote the image of �0 in SLn R using the n–dimensional irreducible representation
of SL2 R. Thus � acts on Pn�1

C preserving a rational normal curve X of degree n�1,
and it also preserves the set of real points XR �X.

Let F1;n�1 denote the SLn C–homogeneous manifold consisting of pairs .`;H / where
` � Cn is a line and H � Cn is a hyperplane containing `. Define ƒ1 � F1;n�1

as the set of all pairs .`;H / where Œ`� 2 XR , and ƒn�1 as the set of all .`;H /

where ŒH � � Pn�1
C is an osculating hyperplane of X at a point of XR . Then �

acts properly discontinuously and cocompactly on �1;n�1 D F1;n�1� .ƒ1[ƒn�1/

by [20, Theorem 8.6 and Section 10.2.2]. As we explain in Section 7.3, the set �1;n�1

is the domain corresponding to the ideal in W .SLn C/ ' Sn consisting of permuta-
tions x with x.1/ < x.n/. Letting M1;n�1 D�1;n�1=�, we have:

� Theorems B–C allow the computation of the (free abelian) homology of �1;n�1 ;
explicitly, the Betti numbers are

b2k.�1;n�1/D

�
2n� 2 if k D n� 2;

max.0; n� 1� jn� k � 2j/ otherwise

and b2k�1.�1;n�1/D 0. The details of this calculation can be found in Theorem 7.4.

� Theorem A then gives the homology of M1;n�1 itself and in particular implies that
�.M1;n�1/D .2g�2/�.F1;n�1/D .2g�2/.n2�n/ (an application of Corollary 1.2)
where g is the genus of the Riemann surface uniformized by �0 .

� For n > 2, Theorems D–F show that any holomorphic map from M1;n�1 to a
manifold uniformized by a domain in Ck is constant and in particular that M1;n�1 is
not a holomorphic fiber bundle over a Riemann surface of positive genus.

� On the other hand, for n D 3 we show in Theorem 7.10 that the conclusion of
Conjecture 1.1 holds, ie that M1;2 is a fiber bundle over the surface H2=�0 . A
related special feature of nD 3 is that M1;2 is a compactification of a finite quotient
of SL2 C=�0 .

� For n > 3, Theorems G–H show that the Picard group of M1;n�1 is isomorphic
to Hom.�0;C

�/�Pic.F1;n�1/.
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While Theorems I–J do not apply directly to this example, they can be applied to
its natural lift to a domain of proper discontinuity in the full flag variety SLn C=B

to conclude, for example, vanishing of cohomology of line bundles on the quotient
manifold in large degree (when n is correspondingly large) and also that the quotient
manifold admits meromorphic functions (again, for n large).

1.3 Outline

In Section 2 we recall some facts from Lie theory and introduce the notion of an Anosov
representation of a word-hyperbolic group.

In Section 3 we review the geometry of flag varieties and discuss the construction of
Kapovich, Leeb and Porti which produces domains of proper discontinuity for Anosov
representations. For the benefit of readers familiar with Kapovich, Leeb and Porti [28],
we note that in some cases our notation and terminology are different from that of the
above-cited paper; this is done to adapt their theory to suit the specific cases we study
(ie complex Lie groups).

In Section 4 we derive estimates for the Hausdorff dimension of the complement of
a domain of discontinuity for an Anosov representation. While these estimates are
essential in Section 6, their derivation represents a technical excursion into combinatorial
and geometric considerations that are not used elsewhere in the paper. (A reader might
skip this section on first reading if seeking an efficient route to the results of Section 6.)

Section 5 contains the main results concerning the topology of domains of discontinuity
and of quotient manifolds, including the proofs of Theorems A, B, and C. The results on
homology and cohomology of flag varieties from Section 3.4 are used extensively here.

In Section 6 we turn to the complex geometry of quotients, proving Theorems D, E, G,
and I on embedded .G;G=P /–manifolds, and their consequences for G–quasi-Fuchsian
representations, Theorems F, H, and J. The Borel–Bott–Weil theorem and related notions
that are used in our analysis of holomorphic line bundles and sheaves on uniformized
.G;G=P /–manifolds are also recalled here. This section does not use the results of
Section 5 and could be read independently of it.

Finally, in Section 7 we present some explicit examples of ideals in the Weyl group.
We apply the results of Section 5 to these examples, in some cases obtaining explicit
formulas for the Betti numbers of these domains and their quotient manifolds. We
also give an alternative description of the unique cocompact domain of discontinuity
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in G=B for a G–Fuchsian representation �1S!G in the case GD PSL3 C , showing
that it is a compactification of a finite quotient of the frame bundle of S �R. Using
this description, we verify that Conjecture 1.1 holds in this case.
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2 Lie groups and Anosov representations

2.1 Complex semisimple groups

This section serves as a rapid review of the basic Lie theory which we will use throughout
this paper.

We use the term complex semisimple Lie group to mean a complex Lie G group with
finitely many connected components and semisimple Lie algebra. If G is connected
and its Lie algebra is simple, we say G is a complex simple Lie group.

Let G be a complex semisimple Lie group with Lie algebra g. A Cartan subalgebra
h � g is a maximal abelian subalgebra such that the linear map ad.X /W g ! g is
diagonalizable for every X 2 h.
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There is a unique Cartan subalgebra up to adjoint action of G. The rank of G is the
dimension (over C ) of any Cartan subalgebra.

Given ˛ 2 h�nf0g, define

g˛ WD fX 2 g W ad.Y /.X /D ˛.Y /X for all Y 2 hg:

An element ˛ 2 h� is a root if g˛ ¤ f0g and g˛ is the associated root space. The set of
all roots is denoted by †. It is possible to partition the set of roots as †D†Ct†� so
that †� D�†C and so that the sets †˙ are separated by a hyperplane in the R–span
of †. Fix such a partition. Elements of †C are positive roots, and those of †� are
negative roots. A positive root ˛ is simple if it cannot be written as a sum of two
positive roots. The set of simple roots is denoted by ��†C.

These data define the standard Borel subalgebra

b WD h˚
M
˛2†C

g˛;

which is a maximal solvable subalgebra of g.

Next, let ‚ � � be a subset of the simple roots. Let †�
‚
� †� denote the set of

negative roots that can be expressed as an integer linear combination of elements
of ��‚ with nonpositive coefficients. The subset ‚ defines a standard parabolic
subalgebra via p‚ D

�L
˛2†�

‚
g˛
�
˚ b.

We define the corresponding Lie subgroups by

H D CG.h/; B DNG.b/; P‚ DNG.p‚/:

It is a standard fact that h, b, and p‚ are the Lie algebras of the above-defined Lie
groups.

The subgroup H < G is called a Cartan subgroup and is a maximal torus2 in G. A
subgroup P <G is parabolic if it is conjugate to P‚ for some subset of simple roots
‚��. We call P‚ a standard parabolic subgroup.

Two parabolic subgroups PC and P� are opposite if PC \P� D L is a maximal
reductive subgroup of both PC and P� : that is, the subgroup L is a common Levi
factor of PC and P�.

Next, choose a maximal compact subgroup K <G with Lie algebra k such that k\ h

is a maximal compact torus inside of k. Let g D k˚ m be the associated Cartan

2A maximal torus H <G is an abelian subgroup which is isomorphic to .C�/rank.G/.
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decomposition of g. The (real) subspace a WD h\m is a maximal abelian subspace
of m consisting of semisimple elements, called a Cartan subspace. Furthermore,
if ˛ 2 † is any root, the restriction of ˛ to a is real-valued, and this restriction (a
restricted root) uniquely determines ˛ .

A positive Weyl chamber aC � a is defined by X 2 aC if and only if ˛.X / > 0 for all
˛ 2�. Let A�G be defined by exp.xaC/. This gives rise to a Cartan decomposition
G DKAK on the group level.

If g D k1.exp X /k2 , then the element X 2 xaC is uniquely determined, which defines
a continuous, proper map

�W G!xaC

called the Cartan projection.

The Weyl group W associated to these data is the group NK .a/=ZK .a/, which acts on
the Cartan subspace a via the adjoint action and thus also on the space HomR.a;R/

containing the simple restricted roots. The restricted simple roots are the restrictions
of the simple roots � to the Cartan subspace a. The Weyl group is a Coxeter group
which is generated by reflections in the kernels of the restricted simple roots (the simple
root hyperplanes). The action of W on HomR.a;R/ permutes the restricted roots, and
through the bijection of this set with †, we can regard W as a group of permutations
of †. Finally, by construction, there is an inclusion NK .a/!NG.H / which induces
an isomorphism W 'NG.H /=H . Note that in this isomorphism, the left-hand side
acts on restricted roots, while the right-hand side acts on roots. Since these determine
one another, we will freely use this isomorphism without further comment when it is
clear from the context.

As a Coxeter group, W has a unique element of maximal length w0 which has order
two. The opposite involution acting on the set of roots is defined by �.˛/D�w0.˛/.

A subset ‚�� is symmetric if �.‚/D‚. A parabolic subgroup is symmetric if and
only if it is conjugate to any (hence all) of its opposite parabolic subgroups. This is
equivalent to P being conjugate to P‚ for ‚�� symmetric. We remark that if all
simple factors of G are of type A1 , Bn>2 , D2k>4 , E7 , E8 , F4 , or G2 , then � is
the identity and all parabolic subgroups are symmetric.

If g is a complex semisimple Lie algebra, then a split real form gR is a real form
of g such that the restriction of the Killing form to gR has maximal index. There is a
single equivalence class of split real forms under the adjoint G–action on g; choosing
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a representative of this class, we refer to the split real form gR � g. When G is
connected, the connected Lie subgroup GR <G with Lie algebra gR is the split real
form of G .

2.2 Principal three-dimensional subgroups

For more information on the objects in this section, see the discussion in [43] and the
original paper of Kostant [29].

Let g be a complex simple Lie algebra of rank ` and Borel subalgebra b< g. Choose
a nilpotent element e1 2 b which has `–dimensional centralizer (a regular nilpotent).
By the Jacobson–Morozov theorem [24; 37], there exist elements x; f1 2 g such that
the triple ff1;x; e1g spans a subalgebra s isomorphic to sl2C , with f1 , x , and e1

respectively corresponding to
�

0
1

0
0

�
,
�

1
0

0
�1

�
, and

�
0
0

1
0

�
. Such a subalgebra s is called a

principal three-dimensional subalgebra. There is a single conjugacy class of principal
three-dimensional subalgebras under the adjoint G–action on g, corresponding to
the single conjugacy class of regular nilpotents. Abusing terminology, we use this
uniqueness to refer to the principal three-dimensional subalgebra of g.

If G ' Aut0.g/ is the adjoint complex simple group associated to g, and s� g is the
principal three-dimensional subalgebra, then associated to the isomorphism sl2C ' s

described above is a unique injective homomorphism

�G W PSL2 C!G:

Moreover, the restriction of �G to PSL2 R takes values in the split real form of G. The
image S of this homomorphism is the principal three-dimensional subgroup of G.

Given a maximal torus and Borel subgroup HS < BS < S in the principal three-
dimensional subgroup, there is a unique maximal torus and Borel subgroup H <B<G

in G such that HS<H and BS<B . When considering the principal three-dimensional
subgroup, we always assume that the maximal tori and Borel subgroups for S and G

have been chosen in this compatible way. We further assume that the isomorphism �G

is chosen so that HS and BS correspond, respectively, to the set of diagonal and
upper-triangular matrices in PSL2 C . Then, identifying the quotient of PSL2 C by its
upper-triangular subgroup with P1

C , we obtain an equivariant holomorphic embedding

fG W P
1
C 'S=BS!G=B

called the principal rational curve, following [43]. The principal rational curve can
also be characterized as the unique closed orbit of the action of S on G=B .
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Since B is self-normalizing, the space G=B is equivariantly isomorphic to the space of
Borel subgroups of G, where G acts on the latter space by conjugation. Using this iso-
morphism, two points p;p02G=B are defined to be opposite if the corresponding Borel
subgroups are opposite. More generally, a pair of points p 2G=PC and p0 2G=P�

corresponds to a pair of parabolic subgroups conjugate, respectively, to PC and P� ;
we say in this case that p and p0 are opposite if the corresponding parabolic subgroups
are opposite.

We will need the following essential property of the principal rational curve.

Proposition 2.1 Given distinct points z; z0 2 P1
C, the images fG.z/; fG.z

0/ 2 G=B

are opposite.

Proof The statement is invariant under conjugation of S by elements of G, and
therefore we can fix a convenient choice of principal three-dimensional subalgebra
sD span.e0;x0; f0/ as in [43, Proposition 1.1] so that ˛.x0/D 2 for all ˛ 2�. Recall
that in terms of the derivative of �G , the element x0 is given by .�G/�

�
1
0

0
�1

�
.

Let H0 � PSL2 C denote the diagonal subgroup. Identify the Weyl group of PSL2 C

with Z=2, with the nontrivial element represented by u D
�

0
�1

1
0

�
. Since u normal-

izes H0 , the image �G.u/ normalizes �G.H0/. Since H is the unique maximal torus
containing �G.H0/, it follows that �G.u/2NG.H /. Thus �G induces a homomorphism
W .PSL2 C/DNPSL2 C.H0/=H0!W .G/DNG.H /=H.

We claim that the image of u under this map is the longest element w0 2W DW .G/.
This element is uniquely characterized by the condition that it maps every simple root
to a negative root. Note that Ad.�G.u//.x0/D�x0 . Thus for each ˛ 2� we have

�G.u/.˛/.x0/D ˛
�
Ad.�G.u//.x0/

�
D ˛.�x0/D�2:

It follows that when expressing �G.u/.˛/ as a linear combination of the simple roots,
there is exactly one nonzero coefficient, which is equal to �1. Hence �G.u/.˛/ is a
negative simple root for all ˛ 2�, and we conclude �G.u/ represents w0 .

Because the longest element of W maps B to an opposite Borel, it follows from
the �G–equivariance of the map fG that if z0 2 P1

C is the unique point such that
fG.z0/D eB 2G=B , then fG.z0/ and fG.uz0/D �G.u/fG.z0/ are opposite. Finally,
since PSL2 C acts transitively on pairs of distinct points in P1

C , equivariance of fG

implies that the same condition holds for all pairs of distinct points.
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2.3 Anosov representations

In this subsection we recall the definition of an Anosov representation and some
related notions that are used extensively in the sequel. We follow the exposition
of [19] quite closely. Additional background on Anosov representations can be found
in [30; 20; 28; 27]. The principal distinction in our treatment is that we work exclusively
with complex semisimple Lie groups.

Let d� denote the word metric on the Cayley graph of a finitely generated group �
corresponding to some finite generating set. Recall that � is word-hyperbolic if this
Cayley graph is a Gromov hyperbolic metric space. Write j � j for the associated
word-length function, ie j
 j D d�.e; 
 /. The translation length of 
 2 � is defined by

`�.
 / WD inf
ˇ2�
jˇ
ˇ�1

j:

We denote by @1� the Gromov boundary of the Cayley graph of � ; points in @1�
are equivalence classes of geodesic rays in the Cayley graph. The �–action by left
translation on its Cayley graph extends to a continuous action on @1� . Under this
action, each infinite-order element 
 2� has a unique attracting fixed point 
C 2 @1�
and a unique repelling fixed point 
� 2 @1� .

Let .PC;P�/ be a pair of opposite parabolic subgroups of a complex semisimple
group G. Let %W � ! G be a homomorphism and suppose there exists a pair of
continuous, %–equivariant maps

�˙W @1�!G=P˙:

The pair .�C; ��/ is dynamics-preserving for % if for each infinite-order element 
 2�
the point �C.
C/ (resp. ��.
C// is an attracting fixed point for the action of %.
 /
on G=PC (resp. G=P�/. Here, a fixed point x 2G=P is attracting for g 2G if the
linear map given by the differential

dgx W TxG=P ! TxG=P

has spectral radius strictly less than one.

We now come to the definition of an Anosov representation.

Definition 2.2 Let .PC;P�/ be a pair of opposite parabolic subgroups of G, and
let %W �!G be a homomorphism. Then % is .PC;P�/–Anosov if there exists a pair
of %–equivariant, continuous maps

�˙W @1�!G=P˙
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such that the following conditions hold:

(i) For all distinct pairs t; t 0 2 @1� , the points �C.t/ 2G=PC and ��.t 0/ 2G=P�

are opposite.

(ii) The pair of maps .�C; ��/ is dynamics-preserving for %.

(iii) Realize .PC;P�/ as a pair of standard opposite parabolics .P‚;P�‚/ for suit-
able choices of Cartan subalgebra h, system of positive roots †C, and subset
‚��. Then, for each ˛ 2‚, any sequence f
ng

1
nD1
� � with divergent word

length
lim sup
n!1

`�.
n/!1

satisfies the following ˛–divergence condition of the Cartan projections of its
%–images:

lim sup
n!1

h˛;�.%.
n//i D1:

Here h � ; � i denotes the evaluation pairing a� � a!R, we view the root ˛ as
an element of a� by restriction, and � denotes the Cartan projection.

Because of the works [20; 19] and [28; 27], there are now many equivalent definitions of
Anosov representations. The definition given above (taken from [19, Theorem 1.3]) is
the most economical one for our purposes. However, condition (iii) from this definition
is evidently quite technical, and the details of this part of the definition will not be
used at all in what follows. Most readers can therefore proceed without careful study
of this last condition. In particular, it is shown in [20] that if G is a real algebraic
group and the representation is Zariski dense, then condition (iii) is a consequence of
conditions (i) and (ii).

The maps �˙W @1�!G=P˙ in the definition above are called the limit curves of the
Anosov representation.

If P is a symmetric parabolic subgroup, we can apply the definition above with
.PC;P�/D .P;gPg�1/ (for suitable g 2 G ) as the pair of opposite parabolic sub-
groups. In this case both spaces G=P˙ are canonically and G–equivariantly identified
with G=P, and the limit maps �˙ are related to one another by this identification. We
therefore consider such a representation to have a single limit curve

�W @1�!G=P;

and in this situation we simply say that % is P–Anosov.
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The following property of Anosov representations follows quickly from the definitions.

Proposition 2.3 Let P;Q<G be symmetric parabolic subgroups such that P <Q. If
%W �!G is P–Anosov , then % is also Q–Anosov. Furthermore , if �W @1�!G=P

is the limit curve for % as a P–Anosov representation , then p ı �W @1�!G=Q is the
limit curve for % as a Q–Anosov representation , where pW G=P !G=Q is the natural
projection.

There is also no loss of generality in considering only P–Anosov representations for
symmetric parabolics P rather than the a priori more general classes of .PC;P�/–
Anosov representations:

Proposition 2.4 [20] Let %W � ! G be .PC;P�/–Anosov. Then there exists a
symmetric parabolic subgroup P <G such that % is P–Anosov.

Furthermore, the following theorem of Guichard and Wienhard establishes some basic
properties of Anosov representations:

Theorem 2.5 [20] Let %W �!G be .PC;P�/–Anosov. Then the following prop-
erties are satisfied :

(i) For every 
 2� , the holonomy %.
 / is conjugate to an element of LDPC\P�.

(ii) The representation % is discrete, has finite kernel , and is a quasi-isometric
embedding.

(iii) The set A of all .PC;P�/–Anosov representations of � is an open set in the
representation variety Hom.�;G/.

(iv) The map taking a .PC;P�/–Anosov representation to either of its limit curves ,

A! C 0.@1�;G=P
˙/; % 7! �˙% ;

is continuous , where C 0.@1�;G=P
˙/ has the uniform topology.

In the case that GR <G is a real form of a complex semisimple group G such that GR

has real rank equal to one, it was also shown in [20] that the Anosov property reduces
to the well-known class of convex–cocompact subgroups of GR :

Theorem 2.6 [20] Suppose GR < G has real rank one. Then a representation
%W �!GR <G is Anosov if and only if % has finite kernel and its image is convex–
cocompact.
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In particular, if � is a uniform lattice in a real rank one Lie group GR <G (eg a lattice
in SO.n; 1/ < SO.nC 1;C/ or SU.n; 1/ < SL.nC 1;C/), then the inclusion � ,!G

is an Anosov representation.

2.4 Fuchsian and Hitchin representations

Let S be a closed, oriented surface of genus at least two. For a Lie group G we define
the character space of S in G to be the topological space

x�.S;G/D Hom.�1S;G/=G;

where G acts on Hom.�1S;G/ by conjugation.3

Identify the hyperbolic plane H2 with the upper half-plane H�C (which is oriented
by its complex structure). Then PSL2 R is identified with the group of orientation-
preserving isometries of H2. A Fuchsian representation is an injective homomorphism

�W �1S ! PSL2 R

with discrete image such that the associated homotopy equivalence S ' %.�1S/nH2

is orientation-preserving.

Let G be a complex simple Lie group of adjoint type and fix a principal three-
dimensional subgroup (with embedding �G W PSL2 C! G ). Let GR < G be a split
real form which contains �G.PSL2 R/. A representation %W �1S!G is GR–Fuchsian
if there exists a Fuchsian representation � such that % is conjugate to �G ı �. The
set of conjugacy classes of GR–Fuchsian representations forms a connected subset
of x�.S;GR/ that is in natural bijection with the Teichmüller space of hyperbolic
structures on S.

A GR–Hitchin representation is a homomorphism %W �1S ! GR whose conjugacy
class lies in the same path component of x�.S;GR/ as the GR–Fuchsian representa-
tions. Let H.S;GR/� x�.S;GR/ denote the set of conjugacy classes of GR–Hitchin
representations.

The following theorem organizes the key properties of Hitchin representations which
we will use.

3In this paper we do not use the closely related notion of a character variety, and so we avoid discussion
of the subtleties necessary to define such algebraic or semialgebraic sets.
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Theorem 2.7 When considered as a subset of the GR–character space, the set of
GR–Hitchin representations

H.S;GR/� x�.S;GR/

is a smooth manifold that is diffeomorphic to a Euclidean space of real dimension
��.S/ dimR.GR/ and is a connected component of x�.S;GR/. Moreover , every GR–
Hitchin representation is Anosov with respect to a Borel subgroup B <G , where G is
the complexification of GR .

Furthermore , when considered as a representation in the complex group G, each Hitchin
representation is a smooth point of the complex affine variety Hom.�1S;G/.

Proof The statement that H.S;GR/� x�.S;GR/ is a smooth manifold of the given
dimension was proved by Hitchin in [22]. When GR D PSLn R, Labourie [30] es-
tablished that Hitchin representations are B–Anosov. For general split groups, the
analogous statement was proved by Fock and Goncharov in [15, Theorem 1.15]; also
see [20, Theorem 6.2] for further discussion.

By [17, page 204], a representation % 2 Hom.�1S;G/ lies in the smooth locus if
and only if it has discrete centralizer. Hitchin representations are irreducible (ie not
conjugate into a proper parabolic subgroup of G ; see [30, Lemma 10.1]), which implies
that their centralizers are finite extensions of the center of G [45, Proposition 15] and
thus discrete.

2.5 Quasi-Fuchsian and quasi-Hitchin representations

As before, let S be a closed, oriented surface of genus at least two. A representation
�W �1S! PSL2 C is quasi-Fuchsian if it is obtained from a Fuchsian representation by
a quasiconformal deformation. This is equivalent to being a convex–cocompact represen-
tation or to the existence of a continuous, equivariant, injective map ��W @1�1S! P1

C.
A quasi-Fuchsian representation is Fuchsian if it is conjugate to a representation with
values in PSL2 R < PSL2 C . The space of all quasi-Fuchsian representations up to
conjugacy will be denoted by

QF.S/� x�.S;PSL2 C/

and the set of Fuchsian representations by

F.S/� x�.S;PSL2 R/:
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Now, let G be a complex simple Lie group of adjoint type. A G–quasi-Fuchsian
representation %W �1S!G is a representation which admits a factorization %D �G ı�,
where � is a quasi-Fuchsian representation. Similarly, a subgroup � <G is G–quasi-
Fuchsian if it is the image of a G–quasi-Fuchsian representation.

The chosen principal three-dimensional embedding �G W PSL2 C!G induces a com-
mutative diagram,

(2-1)
F.S/ x�.S;GR/

QF.S/ x�.S;G/

�Gı

�Gı

Moreover, these maps are independent of the choice of three-dimensional subalgebra
and split real form.

We now show that a G–quasi-Fuchsian representation is Anosov and identify the limit
curve.

Proposition 2.8 Every G–quasi-Fuchsian representation % is P–Anosov, where
P < G is any symmetric parabolic subgroup. Furthermore, if % D �G ı �, where
�W �1S ! PSL2 C is quasi-Fuchsian , and if � has limit curve �W @1�1S ! P1

C , then
the limit curve of % is given by

fG ı �W @1�1S !G=P;

where fG W P
1
C!G=P is the principal rational curve.

This proposition can be proved using the criterion in [20] regarding when an Anosov
representation remains Anosov after composing with a homomorphism to a larger
Lie group, but we include a sketch of a proof here to give some indication of how
Definition 2.2 is applied.

Proof First, by Proposition 2.3, if we show that the above statement is true for a Borel
subgroup P D B , then the result follows for all other symmetric parabolics.

By Proposition 2.1, the composition

fG ı �W @1�1S !G=B

satisfies condition (i) of Definition 2.2. For condition (ii) of the definition, we use
conjugation in G to effect the same normalization of S considered in Proposition 2.1,
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where ˛.x0/ D 2 for all ˛ 2 �, and x0 2 g is the semisimple element of the
sl2–triple generating the principal three-dimensional subalgebra. For any nontriv-
ial element 
 2 �1S we can assume (after conjugating � in PSL2 C ) that �.
 / D
exp

�
�
�

1
0

0
�1

��
D
�

e�

0
0

e��

�
for � 2 C with Re.�/ > 0. Thus �.
C/ D z0 satisfies

fG.z0/D eB and %.
 /D exp.�x0/. Then

TeB.G=B/'
M
˛2†�

g˛;

and this is a decomposition into eigenspaces for the action of %.
 /, where the eigenvalue
on g˛ is exp.˛.�x0//. Since ˛.x0/D 2 for ˛ 2�, for ˛ 2 †� we have ˛.x0/ < 0

and
ˇ̌
exp.˛.�x0//

ˇ̌
< 1. This verifies that eB is the attracting fixed point for %.
 /, and

condition (ii) of Definition 2.2 follows.

Finally, for property (iii) of Definition 2.2, we note that for any divergent sequence
of regular semisimple elements fgng � PSL2 C , their images under the principal
three-dimensional embedding �G satisfy

lim
n!1

h�.�G.gn//; ˛i D1

for every simple root ˛ � �. Since every element in the image of � is regular
semisimple, this verifies property (iii) and completes the proof.

Using Theorem 2.6 and the equivalence of quasi-Fuchsian and convex–compact for
representations �1S ! PSL2 C we have the well-known corollary (which was part of
the initial motivation for the study of Anosov representations):

Corollary 2.9 The set of B–Anosov representations %W �1S ! PSL2 C is equal to
the set of quasi-Fuchsian representations.

Let P be a symmetric parabolic subgroup of G. We define the space of .G;P /–quasi-
Hitchin representations

QH.S;G;P /� x�.S;G/

as the connected component of P–Anosov representations which contains the Hitchin
representations. When G D PSL2 C this reduces to the set of quasi-Fuchsian represen-
tations, ie QF.S/D QH.S;PSL2 C;B/.

For later use, we denote the preimage of QH.S;G;P / under the quotient mapping
Hom.�1S;G/! x�.S;G/ by gQH.S;G;P /� Hom.�1S;G/.
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3 Flag varieties and the KLP construction

In this section, we will explain in some detail the construction of Kapovich, Leeb and
Porti of domains of discontinuity for Anosov representations. Our account differs from
that of [28] in that we focus on complex semisimple Lie groups and their associated
flag varieties and avoid the discussion of visual boundaries of symmetric spaces. This
presentation is tailored to the applications of Sections 4 and 5.

3.1 Length function and Chevalley–Bruhat order

References for the following standard material include [8] and [6].

Let G be a complex semisimple Lie group. As in Section 2 let W denote the Weyl
group of G associated to a maximal torus H < G. Fix a system � of simple roots
and let S D fr˛ W ˛ 2�g denote the associated system of reflection generators for W .
Then .W;S/ is a Coxeter system and hence gives rise to a partial order < on W ,
the Chevalley–Bruhat order, which can be defined as follows: A word in S that has
minimum length among all words representing the same element of W is called a
reduced word. Given a word w in S, we say that z is a subword of w if z is the
result of deleting zero or more letters from arbitrary positions within w . Then x < y

if and only if x can be represented by a subword of a reduced word for y . It can be
shown that this definition gives a partial order on W (and in particular is transitive);
see eg [6, Definition 2.1.1 and Corollary 2.2.3].

Closely related to this partial order on W is the length function

`W W ! Z>0;

where `.x/ is the length of any reduced word for x . It is immediate that x < y implies
`.x/ < `.y/.

Inversion in W preserves both of these structures, ie `.x�1/D `.x/ and x < y if and
only if x�1 < y�1. When a < b for a; b 2 W , we say that b dominates a. In the
usual way we use 6 to denote the associated nonstrict comparison operation of the
Chevalley–Bruhat order.

The longest element w0 2 W was introduced in Section 2 and defined relative to
its action on the roots; equivalently, w0 is the unique element of W on which the
function ` attains its maximum. Multiplication by w0 on the left defines an antiauto-
morphism of the Chevalley–Bruhat order and length function; that is, it inverts length
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and comparisons:

(3-1) `.w0w/D `.w0/� `.w/ and .a< b/ () .w0b <w0a/:

Now let P <G be a standard parabolic subgroup. The Weyl group of P is defined as

WP D .NG.H /\P /=H:

Note that WP <W DNG.H /=H, and for the Borel subgroup we have WB Dfeg. The
space W =WP of left WP –cosets inherits a partial order from that of W as follows:
Each coset wWP has a unique minimal element, and letting W P denote the set of
such minimal elements, we have a canonical bijection W =WP 'W P. Restricting the
Chevalley–Bruhat order to W P gives the desired partial order on W =WP . Extending
the previous terminology, we also call this order on W =WP the Chevalley–Bruhat
order, and we call the resulting rank function the length function on W =WP . Explicitly,
the latter function is

`W W =WP ! Z>0; `.wWP / WD min
w02wWP

`.w0/:

We also note that the length function on W =WP satisfies

`.w0wWP /D `.w0WP /� `.wWP /;

and `.w0WP / is the maximum value of ` on W =WP .

There is a further extension of the Chevalley–Bruhat order for a pair P and Q of
standard parabolic subgroups of G : each double coset in WPnW =WQ contains a
unique minimal element, and restricting the Chevalley–Bruhat order to the set W P;Q

of such minimal elements gives a partial order on WPnW =WQ .

3.2 Chevalley–Bruhat ideals

A Chevalley–Bruhat ideal (or briefly, an ideal) is a subset I �W such that if b 2 I

and a < b , then a 2 I. That is, I is downward closed for the partial order. (In [28]
ideals are called thickenings, though several other objects are given that name as
well; we reserve the term thickening for a subset of the flag variety that is defined
below.) Associated to any element x 2 W there is the principal ideal defined as
hxi D fw 2 W W w 6 xg. It is easy to see that every ideal I � W is a union of
principal ideals and in fact has a unique minimal description I D

Sr
iD1hxii as a union

of principal ideals. The elements xi appearing in this minimal presentation are exactly
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those which lie in I but are not dominated by any element of I. We call fx1; : : : ;xr g

the minimal generating set of I.

If I �W is an ideal, then I�1 D fx�1 W x 2 Ig is also an ideal. The complement of a
nonempty ideal is never an ideal; however, if we define

I? D w0.W � I/;

then, by the antiautomorphism property of w 7!w0w , we find that I? is an ideal. We
call this the orthogonal of I. Note that it is always the case that

W D I tw0I?:

Following the terminology of [28], we say that an ideal I � W is slim if I � I?,
fat if I � I?, and balanced if I D I? (equivalently, if it is both fat and slim). Note
in particular that a balanced ideal satisfies jI j D 1

2
jW j and that for slim ideals, this

cardinality condition is equivalent to being balanced.

3.3 Flag variety and Schubert cells

We now discuss the cell structures of flag varieties in relation to the Weyl group and the
Chevalley–Bruhat order; this material is standard and can be found in eg [5; 16; 31; 10].

Let B < G be the Borel subgroup associated to the choice � of simple roots fixed
above. The homogeneous space G=B is the full flag variety of G. If P � G is a
parabolic subgroup, then G=P is the partial flag variety associated to P. All flag
varieties are smooth projective varieties over C and in particular are compact oriented
manifolds.

The full flag variety G=B has a natural decomposition into a disjoint union of B–orbits
called Schubert cells,

fCw D BwB W w 2W g:

Each Cw is diffeomorphic to C`.w/. The closure Xw D Cw is a Schubert variety and
can be described as the union of the cells that are dominated by w in the Chevalley–
Bruhat order:

Xw D fCw0 W w
0 6 wg:

Therefore, there is a bijection between W and the set of Schubert cells, where ideals
I � W correspond to unions of Schubert varieties. In topological terms, ideals
I �W are in bijection with closed, cellular subcomplexes of G=B with respect to the
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cellular structure given by the Schubert cells. In algebraic terms, Schubert varieties are
irreducible projective subvarieties of G=B .

For a parabolic P <G containing B , we have the projection � W G=B!G=P. Under
this projection, the Schubert cell decomposition of G=B projects to a cell decomposition
of G=P, and the projection of a Schubert cell Cw to G=P depends only on the coset
wWP 2W =WP . Thus, the cells in G=P are indexed by the coset space W =WP or
by the collection of coset representatives W P. We define

CwWP
WD �.Cw/ and XwWP

WD CwWP
:

The set XwWP
is called a Schubert variety in G=P and is an irreducible projective

subvariety. As before, the Chevalley–Bruhat order (now on W =WP ) is equivalent to
the inclusion partial order on these Schubert varieties. Note that the real dimension
of G=B is 2`.w0/, while that of G=P is 2`.w0WP /.

The Schubert cells are defined as B–orbits in flag varieties of G. In what follows,
we will also need to understand the structure of the P–orbits on G=Q for P and Q

parabolic subgroups. We summarize the results in the following (see [39] and [38]):

Theorem 3.1 (i) Every P–orbit in G=Q can be written as PwQ for some w 2W .

(ii) This description gives a bijection between the set of P–orbits in G=Q and
the double cosets WPnW =WQ , where WP and WQ denote the Weyl groups
of P and Q.

(iii) The inclusion partial order on closures of P–orbits in G=Q corresponds , under
this bijection , to the Chevalley–Bruhat order on WPnW =WQ .

(iv) Each P–orbit is a union of B–orbits; specifically, we have

(3-2) PwQD
[

.wP ;wQ/2WP�WQ

BwPwwQQ:

3.4 Homology and cohomology of the flag variety

First, we fix the following notation for the rest of the paper: If E is a set, then ZE

denotes the free abelian group on E , ie the set of all formal finite linear combinations
of elements of E with integer coefficients. Of course if E is itself a group, then ZE

is the underlying abelian group of the integral group ring of E . However, we will not
use any ring structure on ZE in the sequel. Also, we observe that any function E!Z

gives ZE the structure of a graded abelian group.
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As in the previous section, let P be a parabolic subgroup of G, a complex semisimple
Lie group. The integral homology H�.G=P;Z/ is naturally isomorphic to ZW =WP

with grading given by twice the length function, 2`. This can be seen using cellular
homology for the Schubert cell decomposition of G=P ; then ZW =WP

with grading 2`

is the cellular chain complex, and the boundary maps are zero since all cells have
even dimension. Concretely, in this isomorphism the element wWP 2 W =WP cor-
responds to the cell CwWp

(in the cellular resolution) or to the fundamental class
ŒXwWP

� 2H2`.wWP /.G=P;Z/ of the Schubert variety XwWP
.

Correspondingly, the universal coefficients theorem identifies H�.G=P;Z/ with the
dual abelian group ZW =WP of ZW =WP

; here the Kronecker function

ıwWP
W W =WP ! Z

corresponds to a cohomology class ŒXwWP �, and these form the dual basis to

fŒXwWP
� W wWP 2W =WP g:

In terms of these models, the Poincaré duality isomorphism is given by left multiplica-
tion by w0 (see eg [5]),

PDW Hk.G=P /!H 2n�k.G=P /; ŒXwWP
� 7! ŒXw0wWP �;

where nD dimC G=P. Equivalently, the intersection pairing

h � ; � iW H�.G=P /�H�.G=P /! Z

is given by

hŒXwWP
�; ŒXw0WP

�i D

�
1 if w�1w0w

0 2WP ;

0 otherwise.

3.5 Relative position

In this subsection, we give a more algebraic exposition of [28, Section 3.3].

There is a combinatorial, W –valued invariant associated to a pair of points p; q 2G=B

called the relative position and denoted by pos.p; q/. It can be defined as follows:
Choose an element g 2 G such that g �p D eB . Then g � q lies in the Schubert cell
Cw � G=B for a unique w 2W , and we define pos.p; q/D w . One can check that
this is independent of the choice of g .

To generalize this construction, let P and Q be standard parabolic subgroups of G

corresponding to subsets ‚P ; ‚Q ��, so that in particular B < P \Q and we have
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natural surjections G=B! G=P and G=B! G=Q. Given p 2 G=P and q 2 G=Q

we can select respective preimages zp; zq 2 G=B and consider their relative posi-
tion pos. zp; zq/ 2 W . While this element will depend on the choices of preimages,
its double coset in WPnW =WQ depends only on p and q ; we therefore define the
relative position of p and q by

posP;Q.p; q/DWP .pos. zp; zq//WQ 2WPnW =WQ:

Our previous definition is the special case posB;B D pos. It is immediate from the
definition that the relative position is G–invariant in the sense that

(3-3) posP;Q.p; q/D posP;Q.g.p/;g.q//

for all g 2G. Moreover, from its construction the relative position function is closely
tied to the decompositions of G=P and G=Q into Schubert cells. We summarize its
key properties in the following proposition, which follows easily from Theorem 3.1:

Proposition 3.2 Suppose p 2G=P, q 2G=Q, and g 2G satisfies g �p D eP. Then
we have posP;Q.p; q/ D WPwWQ if and only if g � q is contained in the P–orbit
on G=Q which is labeled by the double coset WPwWQ in the sense of Theorem 3.1(ii ).
Thus the level set fq 2G=Q W posP;Q.p; q/DWPwWQg is a gPg�1–orbit on G=Q.
Moreover , the closure of this gPg�1–orbit is given by the sublevel set

fq0 2G=Q W posP;Q.p; q
0/6 posP;Q.p; q/g;

where 6 is the Chevalley–Bruhat order on WPnW =WQ .

In particular , the Schubert cell in G=Q labeled by the coset wWQ is given by the level
set

CwWQ
D fq W posB;Q.eB; q/D wWQg;

and the corresponding Schubert variety XwWQ
is the sublevel set

XwWQ
D CwWQ

D fq W posB;Q.eB; q/6 wWQg:

This proposition shows that the ideal I in the Weyl group W , which corresponds to a
closed union of Schubert varieties, equally corresponds to a union of sublevel sets of
the relative position function over the generators of the ideal.
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3.6 Parabolic pairs and thickenings

We have considered pairs of standard parabolic subgroups .P;Q/ and the corresponding
WPnW =WQ–valued relative position function.

Now fix such a pair .PA;PD/ of parabolics with PA symmetric, and consider PA–
Anosov representations %W � ! G. (Recall that by Proposition 2.4 there is no loss
of generality in requiring PA to be symmetric.) We consider the action of � on the
partial flag variety G=PD induced by %, with the goal of finding a domain ��G=PD

on which the action is properly discontinuous. Thus the notation for the parabolics
signifies that PA is the “Anosov parabolic”, while PD is the “domain parabolic”.

We make corresponding abbreviations WA WD WPA
and WD D WPD

for the Weyl
groups and abbreviate the relative position function posPA;PD

by posA;D .

We say that an ideal I �W has type .PA;PD/ if I is left WA–invariant and right
WD–invariant. Equivalently, I is a union of double cosets WAwWD . Let I �W be
such an ideal. We can define the associated union of PA–orbits

ˆI
WD

[
WAwWD2WAnI=WD

PAwPD �G=PD ;

which we call the model thickening associated to I. (In [28, Section 3.4.2] this is
called a thickening at infinity.) By Theorem 3.1 the set ˆI is a union of Schubert cells,
and since I is an ideal, the set ˆI is in fact a finite union of Schubert varieties. In
particular it is a closed set.

In the sequel, the sets obtained from ˆI by applying an element of G play a key
role. It is evident from the definition of ˆI that the set g �ˆI depends only on the
coset gPA . Thus for any p 2G=PA we have a well-defined subset of G=PD ,

ˆI
p WD g �ˆI for any g 2G such that gPA D p:

We call ˆI
p the thickening of p associated with I. This set can also be characterized

in terms of relative position; using G–invariance of the relative position function and
Proposition 3.2, it follows that

ˆI
p D fq 2G=PD W posA;D.p; q/ 2WAnI=WDg:

It is immediate from the definition that the construction of ˆI
p is compatible with the

G–action in the following sense:
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Proposition 3.3 For g 2G and p 2G=PA , the thickenings satisfy

ˆI
g.p/ D g �ˆI

p :

3.7 Limit sets and domains

Let PA and PD be parabolic subgroups, with PA symmetric. For any subset V �

G=PA , define the thickening of V , denoted by ˆI
V

, as the union of the thickenings of
its points:

ˆI
V D

[
p2V

ˆI
p :

Let %W � ! G be a PA–Anosov representation with limit curve �W @1� ! G=PA ,
and let I be an ideal of type .PA;PD/. The limit set of % relative to I �W is defined
as the thickening of the limit curve, ie

ƒI
% WDˆ

I
�.@1�/

D

[
t2@1�

ˆI
�.t/ �G=PD :

The complement
�I
% WDG=PD �ƒ

I
%

is the associated domain, which by the equivariance of � is a %.�/–invariant open set.
Let � WD %.�/.

The paramount result of [28] establishes that if I is balanced, then the complement of
the limit set furnishes a cocompact domain of proper discontinuity for the action of �
on G=PD . More generally:

Theorem 3.4 [28] (i) If I is a slim, then the action of � on �I
% is properly

discontinuous.

(ii) If I is fat , then the action of � on �I
% is cocompact.

In this construction, there remains the question of whether the domain �I
% could be

empty. In [28] and [20], various conditions are obtained ensuring the nonemptiness of
the domains. In our primary applications, we will show that the corresponding domains
are nonempty.

Regarding the structure of the limit set, the same authors show:

Theorem 3.5 [28, Lemmas 3.38 and 7.4] If I is a slim ideal of type .PA;PD/, then
the set ƒI

% is a locally trivial topological fiber bundle over @1� with typical fiber ˆI.
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More generally , if V �G=PA is a compact set consisting of pairwise opposite points ,
then the set ˆI

V
is a locally trivial topological fiber bundle over V , where the projection

pW ˆI
V
! V is given by p.ˆI

x/D x . In particular , the thickenings fˆI
x W x 2 V g are

pairwise disjoint.

It will be important in what follows to know that this bundle is trivial for G–Fuchsian
representations (which, we recall, are defined when G is simple and of adjoint type).
This follows from considerations similar to those used in the proof of the theorem
above.

Lemma 3.6 Let G be a complex simple Lie group of adjoint type. If %W �1S !G is
G–Fuchsian and I is a slim ideal of type .PA;PD/, then there is a homeomorphism
ƒI
% 'ˆ

I �S1.

Proof Recall that a locally trivial fiber bundle over S1 is trivial if and only if it
extends over the closed 2–disk. We show that ƒI

% admits such an extension.

By Proposition 2.1, the entire principal curve in G=B consists of pairwise opposite
points. Under the projection G=B!G=PA , opposite Borel subgroups map to opposite
parabolics, hence the principal curve X WD fG.P

1
C/� G=PA has the same property.

By Theorem 3.5, the set ˆI
X

is a fiber bundle over X. By Proposition 2.8, the limit
curve of a G–Fuchsian representation is the image of the limit curve of the associated
Fuchsian group, which is simply the extended real line in the principal curve:

�.@1�1S/D fG.P
1
R/�G=PA:

Denoting the image as XR WD fG.P
1
R/�X, the limit set ƒI

% is

ƒI
% D p�1.XR/�ˆ

I
X ;

where
pW ˆI

X !X

is the aforementioned projection.

We have thus described the bundle ƒI
% over base S1 ' P1

R ' XR as the restriction
to the equator of a bundle over S2 ' P1

C ' X. Since S1 bounds a disk in P1
C , the

lemma follows.

For later use, we record that the domains constructed in Theorem 3.4 for a G–Fuchsian
representation are invariant under the full group �G.PSL2 R/.
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Proposition 3.7 Let G be a complex simple Lie group of adjoint type and I �W

an ideal of type .B;PD/. If %W �1S ! G is a G–Fuchsian representation, then the
domain �I

% �G=PD is invariant under �G.PSL2 R/.

Proof Because the limit curve �.@1�1S/ D fG.P
1
R/ in this case is an orbit of

�G.PSL2 R/ on G=PA , this is immediate from Proposition 3.3.

4 Size of the limit set

We now consider combinatorial properties of Weyl ideals and apply them to estimate
the Hausdorff dimension of the limit sets described above. The results of this section
are not used in Section 5, however they are essential to the complex geometry results
of Section 6.

4.1 Weyl ideal combinatorics

As before we refer the reader to [8] or [6] for more detailed discussion of the Cox-
eter group structure of the Weyl group W . We will also use the classification of
complex simple Lie algebras into Cartan types A–G as described for example in
[8, Section VI.2].

As in the previous section we assume G is a complex semisimple Lie group, hence g

decomposes as a direct sum of simple Lie algebras, which we call the simple factors.
There is a corresponding direct product decomposition of the Weyl group W DW .G/.

Our goal in this section is to show:

Theorem 4.1 Let I �W be a fat ideal.

(i) If G has no factors of type A1 , then I contains each element w 2 W with
`.w/6 1.

(ii) If G has no factors of type A1 , A2 , A3 , or B2 , then I contains each element
w 2W with `.w/6 2.

Note that by the exceptional isomorphisms, this also excludes types B1 , C1 , C2 ,
and D3 . In terms of the classical matrix groups, representatives of the excluded types
are given by A1 D sl2C , A2 D sl3C , A3 D sl4C , and B2 D so5C .

Toward the proof of the theorem, we introduce the following terminology: an element
x 2W will be called small if x 6 w0x , where w0 2W is the longest element (as in
Section 2.1).
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Lemma 4.2 If I �W is a fat ideal and x 2W is small , then x 2 I.

Proof Suppose for contradiction that x is small, I is a fat ideal, but x 62 I. Then
w0x 2w0.W �I/, and since I is fat we have w0.W �I/� I, thus w0x 2 I. Since x

is small we have x <w0x , and I is an ideal, so we find x 2 I, a contradiction.

Theorem 4.1 will follow from showing that elements of W of small length (ie “short”
elements) are small. To do this we will require some additional properties of the length
function and Chevalley–Bruhat order on W , which we now state.

First, we need a construction of reduced words representing w0 . The description
of these will involve a positive integer associated to W , the Coxeter number, which
is defined as the order in W of any element that is the product of all of the simple
root reflections (in some order). We denote the Coxeter number by h, and abusing
the terminology we will also refer to it as the Coxeter number of G or g. (Further
discussion of the Coxeter number can be found in eg [8, Section V.6.1].)

Lemma 4.3 (Bourbaki [8, pages 150–151]) Suppose G is simple and has Coxeter
number h. Let S D S 0 t S 00 be a partition such that each of S 0 and S 00 generates
an abelian subgroup of W . Let a (resp. b ) denote the product of the elements of S 0

(resp. S 00 ). Then:

(i) If h is even , then w0 D .ab/
1
2

h is a reduced word.

(ii) If h is odd , then w0 D .ab/
1
2
.h�1/a is a reduced word.

Note that the order in the product a does not matter since elements of S 0 commute,
and similarly for b . Partitions S D S 0 tS 00 of the type considered here always exist,
as each Dynkin diagram admits a 2–coloring and nonadjacent vertices correspond to
commuting simple root reflections.

Lemma 4.3 also gives reduced words for w0 when G is semisimple, by taking a
product

Q
i w

.i/
0

of words of type (i) or (ii) for the longest elements w.i/
0

of the Weyl
groups of the simple factors.

Next, we need the following relation between a reduced word for an element x 2W

and for its product xs with a simple root reflection:

Lemma 4.4 Suppose x 2W and s 2 S satisfy `.xs/D `.x/� 1 and that

x D s1 � � � s`.x/
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is a reduced word for x . Then for some k 2 f1; : : : ; `.x/g we have that

xs D s1 � � � ysk � � � s`.x/;

and furthermore , sk is conjugate to s .

Proofs of these standards facts about Coxeter groups can be found, for example,
in [6, Corollary 1.4.4]. Note that these properties are often stated in terms of left
multiplication by a reflection; the version for right multiplication stated above is
equivalent, however, since the inversion map w 7! w�1 is an automorphism of the
Chevalley–Bruhat order.

Combining the previous lemmas we can now establish the key combinatorial property
that underlies Theorem 4.1:

Lemma 4.5 (i) If each simple factor of G has Coxeter number at least 3, then
each element of S is small.

(ii) If each simple factor of G has Coxeter number at least 5, then for any s; t 2 S

the element st 2W is small.

Proof First suppose G is simple with Coxeter number h > 3 and let s 2 S. Note that
`.w0s/ D `.w0/� 1 by (3-1). Apply Lemma 4.3 to a partition of S with s 2 S 0 to
obtain a reduced expression of the form w0 D abaz , where z is a (possibly empty)
alternating product of a and b . The simple root reflection s appears at least twice in
this word (once in each copy of a), hence by Lemma 4.4 we find that s appears at
least once in a reduced expression for w0s . This shows s <w0s and thus s is small.

Now suppose G is simple with Coxeter number h > 6. (The case hD 5 is considered
separately below.) Let s; t 2 S. We will show st is small. If s D t then s2 D e

and this is trivial, so we assume s ¤ t . Then `.st/D 2, `.stw0/D `.w0/� 2, and
`.tw0/ D `.w0/ � 1. Proceeding as before and using h > 6 we obtain a reduced
expression w0 D abababz , where we can assume s appears in product a. Applying
Lemma 4.4 twice we find that a reduced word for w0st can be obtained from this
one for w0 by deleting two letters, and each such deletion may alter one of the copies
of a or b in this word. However, this leaves at least one unaltered copy a to the left of
an unaltered copy of b . That is, ab is a subword of a reduced expression for w0st .

The simple root reflection t appears in either a or b . If it appears in b , then st is
evidently a subword of ab . If t appears in a, then s and t commute and one of the
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equivalent words stD ts is a subword of ab . Thus in either case we conclude st<w0st ,
hence st is small.

If G is simple and hD 5 then G is of type A4 , hence W ' S5 . In this case it can be
checked directly that the nine nontrivial elements which are products of pairs of simple
root reflections are small. We omit the details of this verification.

Finally suppose G is semisimple. We have a reduced expression for w0 that is a
product over the simple factors. If each simple factor has Coxeter number at least 3,
we find as before that the reduced expression for w0 can be constructed to use a given
simple root reflection s at least twice, and hence that s is small. If each simple factor
has Coxeter number at least 5 and if s and t are simple root reflections (s ¤ t ), then
a reduced word for w0st is obtained by deleting two letters from the word for w0 ,
and the deleted letters are respective conjugates of s and t . If s and t lie in the same
simple factor of W , then the deleted letters are both in the corresponding factor of w0 ,
and the argument above in the simple case shows that st is a subword of the result.
If s and t lie in distinct simple factors (and hence commute), we recall that each can
be assumed to appear at least twice in its factor and hence each appears at least once
after the deletion. Thus st D ts is also a subword of a reduced expression for w0st in
this case. We have therefore shown st is small.

Using this lemma, the proof of Theorem 4.1 is straightforward:

Proof of Theorem 4.1 The elements x 2 W with `.x/ 6 1 are the simple root
reflections and the identity element. The only simple Lie algebra of Coxeter number
less than 3 is A1 , hence if G has no simple factors of this type then Lemma 4.5(i)
shows that the simple root reflections are small. The identity element is also small. By
Lemma 4.2 we find that these elements lie in any fat ideal I �W , and part (i) of the
theorem follows.

In exactly the same way, part (ii) follows from Lemma 4.5(ii) because the elements
x 2W with `.x/6 2 are the products of at most two simple root reflections, and the
only simple Lie algebras with Coxeter number less than 5 are A1 , A2 , A3 , and B2 .

4.2 Hausdorff dimension of limit sets

Now we will bound the Hausdorff dimension of the limit set of an Anosov representation
in terms of the Hausdorff dimension of its limit curve and the combinatorial size of the
ideal defining the thickening.
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All of the sets for which we discuss dimension are closed subsets of compact manifolds.
When regarding such sets as metric spaces (for example when computing dimensions)
we always consider them to be equipped with the distance obtained by restricting the
distance induced by an arbitrary Riemannian metric on the ambient manifold. Since
any two Riemannian metrics on a compact manifold are bi-Lipschitz, our results will
not depend on the particular metric chosen.

Let PA <G be a symmetric parabolic subgroup of a complex semisimple Lie group G.
Let V �G=PA be a closed subset consisting of pairwise opposite points. The property
of a pair of points being opposite is an open condition since it coincides with the unique
open orbit of G acting diagonally on G=PA �G=PA . (Here we are using the fact
that PA is symmetric, so it is conjugate to any of its opposite parabolic subgroups.)

Let W be the Weyl group of G. We begin with the following general fact, which is a
straightforward generalization of Theorem 3.5:

Proposition 4.6 Let PD <G be a parabolic subgroup and let I �W be a slim ideal of
type .PA;PD/. Let V �G=PA denote a compact subset consisting of pairwise opposite
points. Then the fiber bundle pW ˆI

V
! V admits Lipschitz local parametrizations;

that is, each point x 2 V has a neighborhood Ux such that there exists a Lipschitz
homeomorphism

Ux �ˆ
I
! p�1.Ux/:

In fact, this proposition follows easily from the proofs of [28, Lemmas 3.39 and 7.4],
which we stated as Theorem 3.5 above. We will simply recall enough of the construction
used by those authors to make the Lipschitz property evident.

Proof Note that the set ˆI is compact. For x 2 V let Ux be a relatively compact
neighborhood of x in V over which there exists a smooth section sW Ux!G of the
quotient map G!G=PA , and choose such a section. In the proof of [28, Lemma 7.4]
it is shown that the map

Ux �ˆ
I
! p�1.Ux/Dˆ

I
Ux
; .x;y/ 7! s.x/.y/;

gives a local trivialization of the bundle ˆI
V
! V . However, as it is the restriction of

the smooth action map G�G=PD!G=PD to the relatively compact set s.Ux/�ˆ
I
V

,
this map is also Lipschitz.

We now come to the main result of this section.
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Theorem 4.7 Let PA;PD <G be a pair of parabolic subgroups with PA symmetric.
Let %W �!G be a PA–Anosov representation of a word-hyperbolic group with limit
curve �W @1�!G=PA . Let I �W be a slim ideal of type .PA;PD/. Then the limit
set ƒI

% �G=PD satisfies

dimH.ƒ
I
%/6 dimH.�.@1�//C 2 max

w2I=WD

`.w/:

Here , the Hausdorff dimensions are computed with respect to any Riemannian metrics
on G=PA and G=PD , and ` denotes the length function associated to the Chevalley–
Bruhat order on W =WD .

Proof Recall ƒI
% D ˆ

I
�.@1�/

and �.@1�/ is a compact set consisting of pairwise
opposite points (by Theorem 3.5). Applying Proposition 4.6 we obtain a finite open
cover fUig of @1� by sets whose images by � are trivializing open sets for the
bundle ƒI

%, and over which this bundle has Lipschitz parametrizations. Since Lipschitz
maps do not increase Hausdorff dimension, and since Hausdorff dimension is finitely
stable, we find

(4-1) dimH.ƒ
I
%/6 max

i
dimH.�.Ui/�ˆ

I /:

On the other hand, the Hausdorff dimension of a product can be bounded in terms
of the Hausdorff dimension and upper Minkowski dimension (also known as upper
box-counting dimension) of the factors [14, Formula 7.3]:

dimH.�.Ui/�ˆ
I /6 dimH.�.Ui//C dimM.ˆ

I /:

However, ˆI has a finite stratification by manifolds (the Schubert cells corresponding to
elements of I ), and hence its upper Minkowski dimension is equal to the maximum real
dimension of these manifolds (see eg [14, Section 3.2]), which is 2 maxw2I=WD

`.w/.
Also, since �.Ui/ is a subset of �.@1�/ we have dimH.�.Ui//6 dimH.�.@1�//. We
conclude

dimH.�.Ui/�ˆ
I /6 dimH.�.@1�//C 2 max

w2I=WD

`.w/:

Substituting this bound into (4-1), the theorem follows.

We note that when the right-hand side of the bound from Theorem 4.7 is less than the
real dimension of G=PD itself, it follows that the limit set has positive “Hausdorff
codimension” and that �I

% is nonempty. We state the resulting criterion separately:
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Theorem 4.8 Let %W �!G be a PA–Anosov representation for a symmetric parabolic
subgroup PA <G, with limit curve �W @1�!G=PA . Suppose I �W is a balanced
ideal of type .PA;PD/ with corresponding domain �I

%�G=PD . Let nDdimC G=PD .
Then:

(i) If dimH �.@1�/ < 4 and G is not isomorphic to PSL2 C , then the domain �I
%

is nonempty.

(ii) If dimH �.@1�/ < 6 and G is not isomorphic to types A1 , A2 , A3 , or B2 ,
then �I

% is nonempty.

(iii) If dimH �.@1�/ < 2.n�maxw2I=WD
`.w//, then �I

% is nonempty.

Proof For (iii), the assumption on dimH �.@1�/ is exactly what is needed so that
Theorem 4.7 gives dimH.ƒ

I
%/ < 2n D dimH.G=PD/, so the complement of ƒI

% is
nonempty.

For (ii), by Theorem 4.1 the exclusion of these types gives maxw2I=WD
`.w/6 n� 3,

and thus 2.n�maxw2I=WD
`.w//> 6. Therefore this case follows from (iii).

For (i), Theorem 4.1 similarly gives 2.n�maxw2I=WD
`.w//> 4 and hence the claim

again follows from (iii).

Note that the hypothesis G 6' PSL2 C in part (i) of Theorem 4.8 is necessary, as
the example of a cocompact lattice in PSL2 C acting on P1

C with empty domain of
discontinuity shows.

Our main application of Theorem 4.7 will be to estimate the Hausdorff dimension of
limit sets for G–quasi-Fuchsian groups. We find:

Theorem 4.9 Let G be a complex simple Lie group of adjoint type and rank at least
two with Weyl group W . Let %W �1S ! G be a G–quasi-Fuchsian representation
and I �W a balanced ideal of type .B;PD/. Let n denote the complex dimension
of G=PD . Then the limit set ƒI

% �G=PD satisfies

m2n�2.ƒ
I
%/D 0:

Furthermore , if G is not of type A2 , A3 , or B2 , then

m2n�4.ƒ
I
%/D 0:

Here mk denotes the k–dimensional Hausdorff measure associated to any Riemannian
metric on G=PD .
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Proof By Theorem 4.1, the hypotheses imply maxw2I=WD
`.w/6 n�2. As the limit

curve of a quasi-Fuchsian group is a quasicircle in P1
C , its Hausdorff dimension is

strictly less than 2. By Proposition 2.8, the limit curve of a G–quasi-Fuchsian group is
the image of such a quasicircle by the smooth embedding fG W P

1
C! G=PD , hence

�.@1�1S/ also has Hausdorff dimension less than 2. Applying Theorem 4.7 gives

dimH.ƒ
I
%/ < 2C 2.n� 2/D 2n� 2;

and thus m2n�2.ƒ
I
%/D 0.

If we also exclude types A2 , A3 , and B2 , then Theorem 4.1 gives maxw2I=WD
`.w/6

n� 3, and proceeding as above we find m2n�4.ƒ
I
%/D 0.

We note that, in particular, the domains in these cases considered in Theorem 4.1 are
always nonempty.

5 Topology

We now begin one of our central investigations of the paper — studying the topology
of the domains and quotient manifolds for G–quasi-Hitchin representations. We do
this by first reducing to the G–Fuchsian case (in Sections 5.1–5.2) and then studying
the Fuchsian case in Sections 5.3–5.5.

5.1 Anosov components

Let � be a finitely generated group and G a complex semisimple Lie group. By
choosing a finite generating set of � , the set Hom.�;G/ can be identified with a
complex affine subvariety of GN for some N 2 N . Thus Hom.�;G/ has both the
Zariski topology and the compact-open topology of maps from the discrete space � to
the manifold G, the latter of which we will call the analytic topology. Throughout this
section, we use component to mean a connected component of a set with respect to the
analytic topology.

Let PA be a symmetric parabolic subgroup of G. Given a PA–Anosov representation
%W �!G , let A.%;PA/� Hom.�;G/ denote the connected component of the set of
PA–Anosov representations that contains %. We call A.%;PA/ the Anosov component
of %.

For example, the quasi-Hitchin set gQH.S;G;PA/ for a complex simple adjoint
group G, as defined in Section 2.5, is equivalently described as the Anosov component
A.%;PA/ of any G–Fuchsian representation %W �1S !G.
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5.2 Constant diffeomorphism type

Next we show that the diffeomorphism type of the compact quotient manifold associated
to a balanced ideal is constant on each Anosov component:

Theorem 5.1 Let PA and PD be parabolic subgroups of G, with PA symmetric , and
let I � W be a balanced ideal of type .PA;PD/. Let %W � ! G be a PA–Anosov
representation. Then , for any %0 2A.%;PA/, the quotient manifolds WI

% and WI
%0 are

diffeomorphic.

In a similar spirit, in [20] it was shown that the homeomorphism type is constant on
Anosov components for the quotients of the domains of discontinuity constructed by
those authors. The argument given there is quite general, however, and would also
apply in the present situation. We give a detailed argument in order to emphasize the
smoothness of the resulting map.

In preparation for the proof, we define a smooth 1–parameter family of representa-
tions to be a collection f%t 2 Hom.�;G/ W t 2 Œ0; 1�g such that for each 
 2 � the
map Œ0; 1� ! G defined by t 7! %t .
 / is smooth. This is equivalent to requiring
that t 7! %t define a smooth map of Œ0; 1� into GN that takes values in the subvariety
Hom.�;G/�GN.

Lemma 5.2 Let PA , PD , and I be as in Theorem 5.1. If % is a smooth 1–parameter
family of representations and if for each t 2 Œ0; 1� the representation %t W � ! G is
PA–Anosov, then the quotient manifolds WI

%0
and WI

%1
are diffeomorphic.

Proof First, the domains �I
%t

can be assembled into a family; define the set �V �
Œ0; 1��G=PD by �V WD f.t;x/ W x 2�I

%t
g:

By Theorem 2.5(iv) this is an open subset of Œ0; 1��G=PD . Let �…W �V! Œ0; 1� denote
the projection onto the first factor, so that �…�1.t/D ftg ��I

%t
.

The group � acts smoothly and properly discontinuously on �V by


 � .t;x/D .t; %t .
 /.x//:

Let V WD�V=� denote the quotient by this action, which is a smooth manifold (with
boundary). Because �….
 � .t;x// D �….t;x/ D t , there is an induced smooth map
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…W V! Œ0; 1� such that …�1.t/ D ftg �WI
%t

. By compactness of WI
%t

, the map …
is proper. Also, the map … is a submersion, because its lift to the cover �V is the
projection of the product manifold Œ0; 1��G=PD onto its first factor.

By Ehresmann’s lemma [12], a proper smooth submersion is a smoothly locally trivial
fiber bundle. Thus the fibers of … are pairwise diffeomorphic.

Proof of Theorem 5.1 We abbreviate A D A.%;PA/. Recall that Hom.�;G/ is a
complex affine algebraic variety, and by Theorem 2.5(iv) we have that A is an open
subset of Hom.�;G/ in the analytic topology.

Consider the equivalence relation on A given by diffeomorphism of quotient manifolds,
ie %0 � %00 if and only if WI

%0 is diffeomorphic to WI
%00. We will show that A consists

of a single equivalence class.

First, let H be an irreducible component of Hom.�;G/ and let B be a component
of A\H, so that B is a connected open subset of H. The singular locus H sing of H

is a proper algebraic subvariety, and its complement H smooth is a connected complex
manifold that is dense in H. In the analytic topology, a subvariety of an irreducible
algebraic variety over C does not locally separate, and so B \ H smooth is also a
connected complex manifold. Any two points of B\H smooth are therefore joined by a
smooth path, and Lemma 5.2 shows that B\H smooth lies in a single equivalence class.

By Milnor’s curve selection lemma [36, Section 3] for any x 2 H sing there exists a
smooth path 
 W Œ0; 1�!H so that 
 .0/D x and 
 .t/ 2H smooth for t > 0. Thus for
any x 2 B \H sing we have such a path with 
 .t/ 2 B \H smooth for 0 < t 6 �

(using that B is open in H ). Applying Lemma 5.2 to such paths, we find that
each x 2 B \ H sing lies in the same equivalence class as B \ H smooth . That is,
B consists of a single equivalence class.

Now for any point x 2A, let H1; : : : ;Hk be the irreducible components of Hom.�;G/
that contain x . The argument above gives neighborhoods Bi of x in A\Hi such that
each Bi lies in a single equivalence class. Thus the union

S
i Bi also lies in a single

equivalence class, and it contains a neighborhood of x in A.

This shows that the equivalence classes in A are open. Since A is connected, there
is only one equivalence class.

Since the set gQH.S;G;PA/ is the Anosov component of a G–Fuchsian representation
(for G simple and adjoint), we have the immediate corollary:
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Corollary 5.3 The quotient manifold WI
% obtained from any % 2gQH.S;G;PA/ is

diffeomorphic to the corresponding quotient manifold for a G–Fuchsian representation.

5.3 Homology and cohomology of thickenings

Starting toward our study of the topology of G–Fuchsian quotient manifolds associated
to a Chevalley–Bruhat ideal I, we begin by considering the topology of the model
thickening ˆI �G=PD .

Lemma 5.4 Let I �W be a right WD–invariant ideal. Then in the Schubert cell basis
for H�.G=PD/, the map

i W H�.ˆ
I /!H�.G=PD/

induced by the inclusion ˆI ,!G=PD corresponds to the natural embedding of free
abelian groups

ZI=WD
,! ZW =WD

:

Proof The model thickening ˆI is a closed set that is a union of Schubert cells,
hence it is a subcomplex of the cell structure on G=PD . Using the labeling of cells by
WD–cosets, the natural map ZI=WD

,! ZW =WD
becomes the map on cellular chain

complexes induced by the inclusion of ˆI. Since the boundary maps of these chain
complexes vanish identically (as there are no odd-dimensional cells), this is naturally
isomorphic to the induced map on homology.

Taking duals, Lemma 5.4 identifies the cohomology pullback map associated to the
inclusion ˆI ,!G=PD with the natural surjective map ZW =WD ! ZI=WD .

Next, we show that the pair of orthogonal ideals I and I? corresponds naturally to a
splitting of the homology H�.G=PD/ as a direct sum.

Lemma 5.5 For each right WD–invariant ideal I there is a split exact sequence

0!H�.ˆ
I / i
!H�.G=PD/!H 2n��.ˆI?/! 0;

where i is the map induced by ˆI ,!G=PD and nD dimC G=PD .

Proof Splitting is automatic since H 2n��.ˆI?/ is free abelian (by the previous
lemma). To construct the exact sequence, let j W H�.G=PD/!H 2n��.ˆI?/ denote
the composition of the Poincaré duality map with the pullback map on cohomology
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from the inclusion ˆI? ! G=PD . As a composition of an isomorphism and a
surjection (the latter using the previous lemma), we see j is itself surjective. Its
kernel consists of classes that are orthogonal (with respect to the intersection pairing)
to H2n��.ˆ

I?/. Identifying H2n��.ˆ
I?/ with the subgroup ZI?=WD

of ZW =WD
,

the description of the intersection pairing from Section 3.4 shows that this subgroup
pairs nontrivially with basis elements in w0I? and is zero otherwise. That is, the
orthogonal is Z.W �w0I?/=WD

. Recalling that I? D w0.W � I/ and w2
0
D e we see

that this is simply ZI=WD
' i.H�.ˆ

I //, as required.

We remark that this lemma essentially describes the (co)homological consequence
of the disjoint union decomposition .W =WD/D .I=WD/t .w0I?=WD/. When I

is slim the description of the intersection pairing on G=PD from Section 3.4 shows
that the image of H�.ˆ

I / is an isotropic space for this pairing (ie the restriction of
the intersection form vanishes identically). Therefore, for a balanced ideal I the
exact sequence of Lemma 5.5 represents an associated “Lagrangian splitting” of the
homology H�.G=PD/.

5.4 Homology of domains of proper discontinuity

We now turn to the topology of domains �I
%.

Theorem 5.6 Let G be a complex simple Lie group of adjoint type and let % 2gQH.S;G;PA/�Hom.�1S;G/. If I is a slim ideal of type .PA;PD/ with associated
model thickening ˆI and domain �I

% � G=PD , then there is a split short exact
sequence

(5-1) 0!H 2n�2�k.ˆI;Z/!Hk.�
I
% ;Z/!Hk.ˆ

I?;Z/! 0;

where nD dimC G=PD . In particular, the homology groups of �I
% are free abelian.

In addition:

(i) The odd homology groups of �I
% vanish.

(ii) If I is balanced , then the homology of �I
% satisfies

Hk.�
I
% ;Z/'H 2n�2�k.�I

% ;Z/:

Observe that when applied to a balanced ideal I, this theorem incorporates the results
stated as Theorems B and C in the introduction, with the exception of statement (iii)
of Theorem C.

In the proof, we will omit the Z–coefficients to simplify notation.
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Proof By Corollary 5.3 it suffices to consider the case when % is G–Fuchsian. As-
sume this from now on. Poincaré–Alexander–Lefschetz duality yields a canonical
isomorphism

(5-2) H 2n�j .G=PD ; ƒ
I
%/'Hj .�

I
%/:

Since the cohomology of G=PD vanishes in odd degrees, the long exact sequence in
cohomology of the pair .G=PD ; ƒ

I
%/ decomposes into five-term sequences centered

on the even-degree cohomology groups of G=PD :

(5-3) 0!H 2n�2j�1.ƒI
%/!H 2n�2j .G=PD ; ƒ

I
%/!H 2n�2j .G=PD/

.�/
�!H 2n�2j .ƒI

%/!H 2n�2jC1.G=PD ; ƒ
I
%/! 0:

Using Lemma 3.6, the Künneth theorem implies H 2n�2j .ƒI
%/'H 2n�2j .ˆI /. Post-

composing with this isomorphism, the map labeled .�/ becomes the pullback map on
cohomology of degree .2n� 2j / induced by the inclusion ˆI ,!G=PD . Taking the
dual of the exact sequence from Lemma 5.5, we find that this map is surjective with
kernel isomorphic to H2j .ˆ

I?/.

By the surjectivity of .�/ and the Poincaré–Alexander–Lefschetz isomorphism (5-2),
the exactness of (5-3) at the right implies that

0DH 2n�2jC1.G=PD ; ƒ
I
%/'H2j�1.�

I
%/;

which is statement (i) of the theorem. Since the (co)homology of ˆI and ˆI? vanish
in odd degrees (by Lemma 5.4), this also trivially verifies the existence of the exact
sequence (5-1) when the degree is odd.

For even degrees, since the map labeled .�/ has kernel isomorphic to H2j .ˆ
I?/, the

five-term exact sequence restricts to a short exact sequence

0!H 2n�2j�1.ƒI
%/!H 2n�2j .G=PD ; ƒ

I
%/!H2j .ˆ

I?/! 0:(5-4)

The Künneth theorem, Lemma 3.6, and the vanishing of the odd-dimensional co-
homology of ˆI imply H 2n�2j�1.ƒI

%/'H 2n�2j�1.ˆI �S1/'H 2n�2j�2.ˆI /.
Using this isomorphism to replace the initial term in (5-4) and the Poincaré–Alexander–
Lefschetz duality isomorphism (5-2) to replace the central term with H2j .�

I
%/ yields

the desired short exact sequence

0!H 2n�2j�2.ˆI /!H2j .�
I
%/!H2j .ˆ

I?/! 0:
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Since H2j .ˆ
I?/ is a free abelian group, the sequence splits.

Finally, statement (ii) follows immediately by taking the dual of the exact sequence (5-1)
and applying the universal coefficients theorem.

As a corollary of this result, we find a simple formula for the Betti numbers of the
domain of discontinuity, which we state only for the case when I is balanced. Note
that Lemma 5.4 shows that b2k.ˆ/ is the number of elements of I=WD of length k .
Thus, if I D I?, the theorem above gives:

Corollary 5.7 Under the hypotheses of Theorem 5.6, if I is a balanced ideal , then
the Betti numbers of the domain of discontinuity in G=PD are given by

b2k.�
I
%/D rk C rn�1�k ;

where rk is the number of elements of I=WD of length k and n D `.w0WD/ D

dimC G=PD .

As this corollary is statement (iii) of Theorem C , we have now completed the proofs
of Theorems B and C. Using the corollary above to calculate the Euler characteristic
of �I

%, we also obtain:

Corollary 5.8 Under the hypotheses of Theorem 5.6, if I is a balanced ideal , then
the Euler characteristic of the domain of discontinuity is given by

�.�I
%/D �.G=PD/D jW =WD j:

Proof Since �I has only even-dimensional homology, the Euler characteristic is
the sum of its Betti numbers. Using the formula of Corollary 5.7, each term rk

appears twice in this sum, hence �.�I
%/D 2jI=WD j. Since a balanced ideal satisfies

2jI j D jW j, a balanced WD–invariant ideal satisfies 2jI=WD j D jW =WD j, and the
desired formula for �.�I

%/ follows.

5.5 Homology of quotient manifolds

Next we show that Serre spectral sequence for the covering �I
% !WI

% degenerates,
yielding:
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Theorem 5.9 Let G be a complex simple Lie group of adjoint type and let % 2gQH.S;G;PA/, where PA <G is a symmetric parabolic subgroup.

If I is a balanced ideal of type .PA;PD/ with associated domain �I
% �G=PD , let WI

%

denote the compact quotient manifold. Then there is an isomorphism of graded abelian
groups

H�.W
I
% ;Z/'H�.S;Z/˝H�.�

I
% ;Z/:

As in Corollary 5.7, this shows Hk.W
I
% ;Z/ is free abelian for each k and its rank

is computable from the combinatorial data of the ideal I and the length function `
on W =WD . Also, using Corollary 5.8, we obtain the result stated in the introduction
as Corollary 1.2:

Corollary 5.10 For WI
% as above we have �.WI

%/D�.S/�.G=PD/, so , in particular ,
�.WI

%/D .2� 2g/jW =WD j< 0, where g > 2 is the genus of S .

This corollary indicates the importance of the (co)homology calculation since we cannot
distinguish the quotient manifolds for different choices of ideals I � W using the
Euler characteristic.

Proof of Theorem 5.9 As before, Corollary 5.3 reduces the statement to the case
of G–Fuchsian %. Let E2

p;q DHp.S;Hq.�
I
% ;Z// denote the E2–page of the Serre

spectral sequence for homology of the regular covering �I
% ! WI

%. Because S is
a K.�1S; 1/, there is an isomorphism

E2
p;q 'Hp.�1S;Hq.�

I
% ;Z/%/;

where the right-hand side is group homology, and where the �1S–action on Hq.�
I
% ;Z/

is prescribed by %. Furthermore, we claim

(5-5) Hp.�1S;Hq.�
I
% ;Z/%/'Hp.S;Z/˝Hq.�

I
% ;Z/;

which follows if we show that H�.�
I
% ;Z/ is a trivial �1S–module. However, by

Proposition 3.7, the domain �I
% associated to a G–Fuchsian representation is invariant

under the action of the real principal three-dimensional subgroup �G.PSL2 R/ WDSR

on G=PD . Since SR is a connected Lie group, the action of any element of this
group on �I

% is homotopic to the identity and hence acts trivially on H�.�
I
% ;Z/.

Since %.�1S/�SR , this gives the desired triviality of the �1S–module H�.�
I
% ;Z/.
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Next, we claim that the spectral sequence degenerates at the E2–page. First, from (5-5)
we find E2

p;q D 0 if p > 2 (since S has real dimension 2) or if q is odd (by the
vanishing of the odd homology of �I

% ). The condition on p leaves the E2–differentials
@2

p;qW E
2
p;q!E2

p�2;qC1
as the only potentially nontrivial maps, however these change

the parity of q and hence either the domain or codomain is trivial. Thus all differentials
vanish at the E2–page.

Finally, since all groups on the E2–page are free abelian (which follows from the
homology of both �I

% and S being free abelian), there is no extension problem to solve
and we conclude that H�.W

I
% ;Z/ is isomorphic to the total complex of the E2–page,

which by (5-5) is simply H�.S;Z/˝H�.�
I
% ;Z/.

6 Complex geometry

In this section, we will study some fundamental features of the complex geometry of
the manifolds WI

% arising from quotients of domains in flag varieties by images of
Anosov representations. As mentioned in the introduction, it is natural to work in a
slightly more general setting.

Recall that if N D G=H is a complex homogeneous space of G, then we say a
complex manifold W is a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ WD N �� if � < G acts freely, properly discontinuously, and cocompactly
on ��N and there is a biholomorphism W' �n�. For example, if %W �!G is
PA–Anosov (with � torsion-free) and I is a balanced ideal of type .PA;PD/, then
the manifold WI

% is a uniformized .G;G=PD/–manifold with data .�I
% ; %.�// and

limit set ƒI
% .

6.1 Nonexistence of Kähler metrics and maps to Riemann surfaces

Let m˛ denote the ˛–dimensional Hausdorff measure on N associated to any Rie-
mannian metric. As in Section 4 the particular metric will not matter.

The following classical extension theorem in several complex variables is due to
Shiffman:

Theorem 6.1 [44, Lemma 3] Let Z be a complex manifold of dimension n and
let A�Z be a closed set satisfying m2n�2.A/D 0. Then any holomorphic function
on Z �A extends to a unique holomorphic function on Z .
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An immediate consequence of this extension theorem adapted to our situation is:

Lemma 6.2 Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that N is compact and connected and that m2n�2.ƒ/ D 0 where
nD dimC N . Then any holomorphic map �!Ck is constant.

Using this theorem, we now prove Theorem D from the introduction. We recall the
statement:

Theorem D Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that N is compact and 1–connected and that m2n�2.ƒ/D 0 where
nD dimC N. If X is a Riemann surface and X 6' P1

C , then every holomorphic map
W! X is constant. More generally, if Y is a complex manifold whose universal
cover is biholomorphic to an open subset of Ck, then any holomorphic map W! Y is
constant.

Proof By the Koebe–Poincaré uniformization theorem, a Riemann surface X 6' P1
C

has universal cover biholomorphic to a domain in C , so it suffices to prove the second
assertion.

Because N is 1–connected, the condition m2n�2.ƒ/ D 0 implies that � is also
1–connected (see eg [23, Chapter 7]) and hence is biholomorphic to the universal cover
of W. Using the Hausdorff dimension assumption again, Lemma 6.2 shows that every
holomorphic map �W!Ck is constant.

If Y is a complex manifold whose universal cover is biholomorphic to a domain
in Ck, then lifting a holomorphic map f W W! Y to the universal covers gives a map
zf W �W! zY �Ck which is therefore constant, and f is constant as well.

Next, we establish the obstruction to the existence of Kähler metrics which was stated
in the introduction:

Theorem E Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that N is compact and 1–connected and that m2n�2.ƒ/D 0 where
nD dimC N. If �1W has an infinite linear group (eg a surface group) as a quotient ,
then W does not admit a Kähler metric. In particular , W is not a complex projective
variety.
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Proof As in the preceding proof, we conclude that �W ' � has no nonconstant
holomorphic maps to Ck. However, Eyssidieux shows in [13] that if the fundamental
group of a compact Kähler manifold has an infinite linear quotient, then its universal
cover admits a nonconstant map to Ck for some k . Therefore W is not Kähler.

Applying these theorems to the study of manifolds which are quotients by G–quasi-
Fuchsian groups and using the Hausdorff dimension bounds of Section 4, we now give
the proof of:

Theorem F Let %W �1S ! G be a G–quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not isomorphic to PSL2 C , and let P < G

be a parabolic subgroup. Let I �W be a balanced and right-WP –invariant ideal in
the Weyl group. Then the associated compact quotient manifold WI

% has the following
properties:

(i) Any holomorphic map from WI
% to a manifold whose universal cover embeds

in Ck (eg any Riemann surface not isomorphic to P1
C ) is constant. In particular ,

W is not a holomorphic fiber bundle over such a manifold.

(ii) The complex manifold WI
% does not admit a Kähler metric , and in particular it

is not a complex projective variety.

Note that for consistency of notation with the introduction, we are now considering the
parabolic pair .PA;PD/D .B;P /.

Proof By Theorem 4.9, for such % and I the limit set satisfies m2n�2.ƒ
I
%/ D 0.

The flag variety G=P is compact and 1–connected. Thus, statement (i) follows from
Theorem D.

Since �I
%!WI

% is a �1S–covering, we have a surjection �1W
I
%! �1S. Since �1S

is an infinite linear group, statement (ii) follows from Theorem E.

6.2 Picard group

The following theorem of Harvey is an analogue of Shiffman’s extension theorem
(Theorem 6.1) for holomorphic line bundles and their cohomology:

Theorem 6.3 [21, Theorems 1 and 4] Let Y be a complex manifold of dimension n

and A � Y a closed subset satisfying m2n�4.A/D 0. Then every holomorphic line
bundle L! .Y �A/ extends uniquely to a holomorphic line bundle on Y .
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Furthermore , if m2n�2k�2.A/D 0, then the inclusion map .Y �A/ ,! Y induces an
isomorphism

H i.Y;L/!H i.Y �A;L/

for all 0 6 i 6 k .

Let W be a uniformized .G;N /–manifold with data .�; �/. A line bundle L on N

is �–equivariant if it carries an action of � by bundle automorphisms lifting the action
of � on N .

Let pW �!�=� 'W be the covering map. Given a �–equivariant line bundle L

on N, there is a naturally associated line bundle p��L on W which, as a sheaf, is
defined by setting p��L.U / to be the space of �–invariant sections of Ljp�1.U / . This
prescription defines the invariant direct image homomorphism

(6-1) p�� W Pic�.N /! Pic.W/;

where Pic.W/ is the Picard group of isomorphisms classes of holomorphic line bundles
on W, and where Pic�.N / is the group of �–equivariant isomorphism classes of
�–equivariant line bundles on N .

Using Theorem 6.3 we obtain a sufficient condition for the homomorphism (6-1) to
admit a section:

Proposition 6.4 Let W be a uniformized .G;N /–manifold with data .�; �/ and limit
set ƒ. Suppose that m2n�4.ƒ/D 0 where nD dimC N . Then, for any holomorphic
line bundle L on W, we have:

(i) The pullback of L to � extends uniquely to a �–equivariant line bundle on N .

(ii) If N is compact and connected and if the pullback of L to � is holomorphically
trivial , then L'��� C , where �W �!C� is a homomorphism.

Proof As before let pW �!W denote the quotient by �. Under the given hypotheses,
Theorem 6.3 shows that p�L extends uniquely to a holomorphic line bundle L on N .
By the uniqueness of the extension, L is �–equivariant, and (i) follows.

Suppose p�L is holomorphically trivial. Then the canonical �–action on p�L is
transported by the trivialization to a holomorphic function q
 W �!C�. By Shiffman’s
extension theorem (Theorem 6.1) q
 extends holomorphically to N . Therefore, if N

is compact and connected, this map is constant. Thus the map �W � ! C� given
by �.
 /D q
 is a homomorphism such that L'��� C , and (ii) follows.
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Using the previous theorem, we can now establish the classification of holomorphic
line bundles on uniformized .G;G=P /–manifolds with sufficiently “small” limit sets
which was given in the introduction; we recall the statement:

Theorem G Let G be a connected semisimple complex Lie group , P <G a parabolic
subgroup, and W a uniformized .G;G=P /–manifold with data .�; �/ and limit
set ƒ. Suppose that m2n�4.ƒ/ D 0 where n D dimC G=P. Then there is a natural
isomorphism

(1-1) Pic.W/ '�! Pic�.G=P /

which is split by the invariant direct image homomorphism p�� W Pic�.G=P /! Pic.W/.

Moreover , the kernel of the composition

(1-2) Pic.W/ '�! Pic�.G=P /! Pic.G=P /

is naturally isomorphic to Hom.�;C�/.

Proof Let L be a holomorphic line bundle on W. By Proposition 6.4(i), the pull-
back p�L extends to a �–equivariant holomorphic line bundle L on G=P. It is
easily checked that the lift–extend map Pic.W/! Pic�.G=P / thus constructed is a
homomorphism. Since p� ıp�� .L/D L, the lift–extend homomorphism is surjective
and split by the invariant direct image.

Next, suppose L is a �–equivariant line bundle on G=P and 'W L!G=P �C is an
isomorphism. Then there exists a holomorphic automorphic function j W ��G=P!C�

and a �–action on G=P �C specified by 
 � .x; v/D .
 � x; j .x; 
 /v/ for which '
is �–equivariant. Since G=P is compact and connected, j .�; 
 /W G=P ! C� is
constant, and therefore j 2 Hom.�;C�/ is a character. This proves that the kernel
of (1-2) contains Hom.�;C�/.

Finally, if � 2 Hom.�;C�/, then p�.��� C/'��C , and therefore Hom.�;C�/
contains the kernel of (1-2), completing the proof.

The term Pic�.G=P / appearing in Theorem G is often easy to compute in practice. For
example, if G is simply connected then every line bundle on G=P is G–equivariant,
and hence �–equivariant by restriction. In this case, there is a short exact sequence

(6-2) 1! Hom.�;C�/! Pic.W/! Pic.G=P /! 1;

which is split by the invariant direct image.

Finally, we prove Theorem H from the introduction.
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Theorem H Let %W �1S !G be a G–quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not of type A1 , A2 , A3 , or B2 . Let P <G

be a parabolic subgroup , I �W a balanced and right-WP –invariant ideal in the Weyl
group, and WI

% the uniformized .G;G=P /–manifold associated to these data. Then
there is a short exact sequence

(1-3) 1! Hom.�1S;C�/! Pic.WI
%/! Pic.G=P /! 1:

Proof Any quasi-Fuchsian representation �W �1S ! PSL2 C can be lifted to a repre-
sentation z�W �1S!SL.2;C/ (see eg [11]). Such a lift z� determines a lift z%W �1S! zG

of %, where zG is the simply connected cover of G.

The covering map zG!G induces an equivariant biholomorphic map zG= zP 'G=P

where zP < zG is the corresponding parabolic subgroup. Therefore, if ��I
z%
� zG= zP is

the corresponding domain whose quotient by z%.�1S/ is denoted �WI
z%

, then there is an
induced biholomorphic map �WI

z%
'WI

% .

By Theorem 4.9, the exclusion of types A1 , A2 , A3 , and B2 guarantees that the
hypotheses of Theorem G are met. Hence, by (6-2) and Theorem G there is an exact
sequence

1! Hom.�1S;C�/! Pic.�WI
z%/! Pic. zG= zP /! 1:

Since zG= zP 'G=P and �WI
z%
'WI

% , this gives the desired exact sequence.

6.3 Cohomology of holomorphic line bundles

Next we consider the calculation of cohomology of line bundles on uniformized
.G;G=P /–manifolds where G is a connected complex semisimple Lie group. We will
restrict to the case P D B to simplify the discussion.

Our results are based on reducing these calculations to the Borel–Bott–Weil theorem,
whose statement we recall before proceeding. Fix a Cartan subalgebra h � g and a
system of simple roots �� h�; let L� h� denote the lattice of algebraically integral
weights and ı 2 h� half the sum of the positive roots. Finally, let Lan �L denote the
sublattice of analytically integral weights consisting of those � 2L which integrate to
a character z�W B!C�. Note that Lan DL if G is simply connected.

To each � 2Lan there is an associated right action of B on G�C given by .g; t/ �bD
.gb; z�.b/t/. We denote by L� the quotient of G � C by this action of B . The
projection G�C!G is B–equivariant and hence descends to a map � W L�!G=B ,
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which gives L� the structure of a G–equivariant holomorphic line bundle over G=B .
Define L� WD Lı�� .

The coroots fH˛g˛2� � h are elements uniquely defined by the set of conditions
H˛ 2 Œg�˛; g˛ � and ˛.H˛/ D 2. A weight � 2 L is dominant if �.H˛/ > 0 for
all ˛ 2�, strictly dominant if �.H˛/ > 0 for all ˛ 2�, and regular if its W –orbit
contains a strictly dominant weight.

The Borel–Bott–Weil theorem is the following:

Theorem 6.5 [7] The map � 7!L� is an isomorphism Lan' PicG.G=B/ of abelian
groups. Furthermore , the cohomology of L� satisfies:

(i) If � is not regular , then H i.G=B;L�/D 0 for all i > 0.

(ii) If � is regular , let w 2W be the unique element such that w.�/ is strictly domi-
nant. Then H i.G=B;L�/D 0 for all i ¤ `.w/, while H `.w/.G=B;L�/¤ 0 and
as a G–module this cohomology space is dual to the irreducible representation
of G with highest weight w.�/� ı .

Expositions of this theorem and associated background material can be found in [4; 25]
(focusing on algebraic groups) or [42] (focusing on compact groups).

Returning to our discussion of a uniformized .G;G=B/ manifold W, we can cast
the problem of determining cohomology of a line bundle on W in the more general
framework of relating the cohomology of a locally free sheaf F on Y and that of the
pullback p�F to the universal cover zY . Here the Grothendieck spectral sequence [18]
can be applied to the composition of the �–invariants and global sections functors,
giving a cohomology spectral sequence with E2–page

(6-3) E
p;q
2
DH p.�;H q. zY ;p�F//

and which converges to the cohomology of F . Using this spectral sequence, we show:

Theorem 6.6 Let G be a connected semisimple complex Lie group , B <G a Borel
subgroup , and W a uniformized .G;G=B/–manifold with data .�; �/ and limit set ƒ.
Suppose that m2n�2k�2.ƒ/D 0, where nD dimC G=B and k > 1.

Let � 2 Lan be an algebraically integral weight and let p�� W PicG.G=B/! Pic.W/
denote the invariant direct image functor.
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(i) If � is not regular , then

H i.W;p�� .L
�//D 0 for all 0 6 i < k:

(ii) If � is regular and w.�/ is dominant for w 2W with `.w/ > k , then

H i.W;p�� .L
�//D 0 for all 0 6 i < k:

(iii) If � is regular and w.�/ is dominant for w 2W with `.w/ < k , then

H i.W;p�� .L
�//'

�
0 for 0 6 i < `.w/;

H i�`.w/.�;H `.w/.G=B;L�// for `.w/6 i < k:

In particular , the group

H `.w/.W;p�� .L
�//'H 0.�;H `.w/.G=B;L�//

equals the space of �–invariants in the dual of the irreducible G–representation
with highest weight w.�/� ı .

(iv) In particular , if � is a regular , dominant weight then

H i.W;p�� .L
�//'H i.�;H 0.G=B;L�// for all 0 6 i < k:

Note that statement (iv) of this theorem is exactly Theorem I from the introduction,
since effective G–equivariant line bundles on G=B are exactly those of the form L�

for regular, dominant � 2Lan .

Proof By Harvey’s extension theorem (Theorem 6.3), the hypothesis on Hausdorff
dimension gives an isomorphism

H i.G=B;L�/'H i.�;L�/

for all 0 6 i 6 k . Since k > 1, the same hypothesis ensures that � is simply connected,
and thus is the universal cover of W. Thus the spectral sequence (6-3) applies and its
E2–page is determined up to the k th row:

k H 0.�;H k.G=B;L�// H 1.�;H k.G=B;L�// � � � H cd.�/.�;H k.G=B;L�//
:::

:::
:::

:::
:::

1 H 0.�;H 1.G=B;L�// H 1.�;H 1.G=B;L�// � � � H cd.�/.�;H 1.G=B;L�//

0 H 0.�;H 0.G=B;L�// H 1.�;H 0.G=B;L�// � � � H cd.�/.�;H 0.G=B;L�//

0 1 � � � cd.�/
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Here cd.�/ 2 Z>0 denotes the cohomological dimension of � ; by definition of this
integer, entries in the E2–page to the right of those indicated here are zero. Meanwhile,
entries above the k th row involve groups of the form H j .�;L�/ we do not know how
to compute.

The entire proposition now follows simply by applying the Borel–Bott–Weil theorem.
For instance, if � is not regular, then all the coefficients appearing in the above rectangle
of the E2–page vanish, which immediately yields statement (i). The same is true if �
is regular, but the w 2W such that w.�/ is dominant satisfies `.w/ > k , from which
statement (ii) follows.

In the case that `.w/ < k , only the `.w/th row is nonzero, so all relevant differentials
are zero. Using the description of the entries in this row from the Borel–Bott–Weil
theorem, statements (iii) and (iv) follow. This completes the proof.

We now explain a connection between these computations and classical questions in
geometric invariant theory (a theme which is also explored in [28] and [43]). Note
that the complex semisimple group G is an affine algebraic group over C . For a
G–equivariant line bundle L, the representation � of G on H 0.G=B;L/ is a rational
representation. Therefore, given a subspace V �H 0.G=B;L/, its stabilizer

fg 2G W �.g/s� s D 0 for all s 2 V g

is Zariski closed. We record this in the following proposition.

Proposition 6.7 Let G be a connected complex semisimple Lie group and � 2Lan a
regular , dominant weight. If � <G is a subgroup with Zariski closure Q<G , then

H 0.�;H 0.G=B;L�//DH 0.Q;H 0.G=B;L�//;

where the right-hand side is the space of Q–invariant sections of L�.

This leads to the following result:

Theorem 6.8 Let G be a connected semisimple complex Lie group , B <G a Borel
subgroup, and W a uniformized .G;G=B/–manifold with data .�; �/ and limit
set ƒ. Let Q<G denote the Zariski closure of �. Suppose that m2n�4.ƒ/D 0 where
nD dimC G=B .
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Let � 2Lan be a regular , dominant weight and let p�� W PicG.G=B/! Pic.W/ denote
the invariant direct image homomorphism. Then

H 0.W;p�� .L
�//'H 0.Q;H 0.G=B;L�//;

where the latter is the space of Q–invariant sections. In particular , if � is Zariski dense
in G, then H 0.W;p�� .L

�//D 0.

Proof The isomorphisms

H 0.W;p�� .L
�//'H 0.�;H 0.G=B;L�//DH 0.Q;H 0.G=B;L�//

follow from Theorem 6.6 and Proposition 6.7, respectively. If QDG , then the irre-
ducibility H 0.G=B;L�/ as a G–representation implies that the space of G–invariants
is trivial.

In the ensuing applications, we will give explicit examples where H 0.W;p�� .L
�// is

nonvanishing.

6.4 Applications

We will now present some applications of the previous calculations: in particular
we show that, excluding some low-dimensional cases, every manifold arising from a
G–quasi-Fuchsian representation admits a meromorphic function. In this section, we
will return to the notation L� DG ��C and note that Lk� D Lk

�
, where the latter is

the k th tensor power. Given a subgroup H <G, we say that L� is twice H–ample if
some power Lk� admits a pair of nonproportional H–invariant sections.

We begin with the following, which follows quickly from results in [43].

Theorem 6.9 Let G be an adjoint complex simple Lie group not of type A1 , A2 ,
or B2 with principal three-dimensional embedding �G W PSL2 C ! G. Let S D

�G.PSL2 C/. Then every ample, G–equivariant line bundle L on G=B is twice S–
ample.

Proof First, recall that ample, G–equivariant line bundles on G=B are of the form L��

for � 2 Lan some regular, dominant weight. Consider the graded ring R.�/ DL
k>0 H 0.G=B;L�k�/ and the subring R.�/S of S–invariant elements. Define

the subset Y .�/�G=B by

Y .�/ WD fx 2G=B W s.x/D 0 for every s 2R.�/Sg:
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Under the hypotheses, it is shown in [43] that the complex codimension of Y .�/

is at least two. Since the vanishing locus of a nonzero holomorphic section has
complex codimension one, this implies that there exists a pair of S–invariant sections
si 2H 0.G=B;L�ki�/ for i D 1; 2 with distinct vanishing loci. Then s

k2

1
and s

k1

2
are

nonproportional sections of L�.k1Ck2/� .

Specializing now to the case of G–quasi-Fuchsian representations, this leads to a proof
of the following theorem stated in the introduction:

Theorem J Let %W �1S ! G be a G–quasi-Fuchsian representation with image �,
where G is a complex simple adjoint Lie group that is not of type A1 , A2 , A3 , or B2 .
Let I be a balanced ideal in the Weyl group W of G. Let WI

% denote the uniformized
.G;G=B/–manifold associated to these data. For any ample, G–equivariant line
bundle L on G=B , the following properties hold :

(i) There exists a k > 0 such that

H 0.WI
% ;p

�
� .L

k//'H 0.�;H 0.G=B;Lk//¤ 0:

(ii) The manifold WI
% admits a nonconstant meromorphic function.

Proof As before we have L'L�� for �2Lan regular and dominant. By Theorem 4.9,
the exclusion of types A1 , A2 , A3 and B2 implies that m2n�4.ƒ

I
%/ D 0. By

Theorem 6.6(iv),

H 0.WI
% ;p

�
� .L�k�//'H 0.�;H 0.G=B;L�k�//;

which is nonvanishing for some k > 0 by Theorem 6.9. Here, we have used that every
S–invariant section is �–invariant (since � �S). Thus statement (i) follows.

By Theorem 6.9 the ample bundle L�� is twice �–ample, and thus there exists k > 0

such that L�k� has a pair of �–invariant nonproportional holomorphic sections. The
quotient of these sections is a nonconstant �–invariant meromorphic function on G=B ,
hence its restriction to �I

% descends to a nonconstant meromorphic function on WI
% ,

giving (ii).

As a final application of our sheaf cohomology calculations, we consider the Kodaira
dimension of uniformized .G;G=B/–manifolds. Recall that a compact complex mani-
fold Y with canonical bundle KY is said to have Kodaira dimension �1 (and we write
�.Y / D �1) if H 0.Y;Kd

Y
/ vanishes for all d > 0. Because the flag variety G=B
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is rational, it satisfies �.G=B/ D �1. The same holds for uniformized .G;G=B/–
manifolds with sufficiently small limit sets:

Theorem 6.10 Let G be a connected semisimple complex Lie group of rank at
least two. Let B < G a Borel subgroup, and W a uniformized .G;G=B/–manifold
with data .�; �/ and limit set ƒ. Suppose m2n�4.ƒ/ D 0 where n is the complex
dimension of G=B . Then �.W/D�1.

Proof The canonical line bundle of G=B is isomorphic to L�ı D L2ı , where, as
before, ı is half the sum of the positive roots. Therefore, we have

Kd
W ' p�� .L

.1�2d/ı/:

For any integer d > 0, the weight .1�2d/ı is regular and w0..1�2d/ı/ is dominant,
where w0 is the longest element of the Weyl group. Therefore, by Theorem 6.6(ii), we
have

H 0.W;Kd
W/'H 0.W;p�� .L

.1�2d/ı//D 0

for all d > 0 provided that `.w0/ > 1, which is the case since the rank of G is at least
two.

Note that the corresponding statement fails for G ' SL2 C since Riemann surfaces
of higher genus can be obtained as uniformized .G;G=B/D .SL2 C;P1

C/ manifolds,
and the canonical bundle of such a Riemann surface has nontrivial sections.

7 Examples and complements

In this final section we return to the topological considerations of Section 5 and discuss
some specific examples of balanced ideals, domains, and quotient manifolds for various
complex simple Lie groups G and parabolic pairs .PA;PD/. (The survey [26] also
gives examples of balanced ideals, including some that belong to the infinite families
constructed below.)

7.1 The lower half of W

Certain ideals can be constructed easily from the length function on the Weyl group W .
Since x < y implies `.x/ < `.y/, the set

W6L WD fx W `.x/6 Lg
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is an ideal in W for any integer L, and this ideal is minimally generated by `�1.L/.
Generalizing this, if J is a subset of `�1.LC 1/, then W6L[J is also an ideal, and
the minimal generating set of this ideal contains J.

This construction can always be used to produce a balanced ideal. Define the lower
half of W to be the ideal

I1
2
DW

6 1
2
`.w0/

:

Since `.w0x/D `.w0/� `.x/, it is immediate that this ideal is balanced if `.w0/D

dimC G=B is odd, which is the case for all simple G of type Bn D PO2nC1 C ,
Cn D PSp2n C , or E7 , and for type An D PSLnC1 C when n is 1 or 2 mod 4.

In such cases, considering I1
2

as an ideal of type .B;B/ gives a model thickening

ˆ1
2
WDˆ

I1
2 �G=B

and domain of discontinuity �1
2
� G=B for B–Anosov representations. Suppose

`.w0/D 2kC 1 for k 2 Z. Then the model thickening has the same Betti numbers
as G=B itself in the range 1; : : : ; 2k , ie

ri D bi.ˆ1
2
/D bi.G=B/D j`

�1.i/j for i 6 2k:

Applying Corollary 5.7 gives a particularly simple expression for the Betti numbers of
the domain of discontinuity:

bi.�1
2
/D

8<:
bi.G=B/ if i < 2k;

2b2k.G=B/ if i D 2k;

b4k�i.G=B/ if i > 2k:

By Theorem 5.9 there is a corresponding formula for the homology of the compact
quotient manifolds.

If `.w0/D 2k is even, the construction can be modified to produce a balanced ideal.
Note that the “middle” length Wmid WD `

�1.k/ is mapped to itself under left multiplica-
tion by w0 . Let J �Wmid be a subset containing one element of each w0–orbit. Then
the set

I1
2
;J DW6.k�1/[J

is a balanced ideal whose minimal generating set contains J. (In some examples,
I1

2
;J is in fact generated by J, while in other cases there are additional generators of

length k � 1.)
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Since there are 2jWmidj=2 such sets J, this gives a large collection of balanced ideals,
all of which have the same number of elements of each length. The corresponding
generalizations of the Betti number formulas given above are

ri D bi.ˆ1
2
;J /D

8<:
bi.G=B/ if i < 2k;

1
2
bi.G=B/ if i D 2k;

0 otherwise;

and by Corollary 5.7,

(7-1) bi.�1
2
;J /D

8<:
bi.G=B/ if i < 2k � 2;

b2k�2.G=B/C
1
2
b2k.G=B/ if i 2 f2k � 2; 2kg;

b4k�2�i.G=B/ if i > 2k:

7.2 Constructions for PSLn C

In preparation for the next two types of examples, we recall how some of the combina-
torial and Lie-theoretic notions specialize to the case G DAn�1 D PSLn C ; general
references for this material include [6] (concerning Weyl groups), [31; 9] (concerning
flag varieties), and [16] (concerning both).

We choose the Borel subgroup B < G D PSLn C consisting of the upper-triangular
matrices. The manifold G=B is G–equivariantly identified with the set of complete
flags F D .F1; : : : ;Fn�1/, ie F1 � � � � � Fn�1 �Cn and dimC Fk D k . We denote
by E the standard flag of Cn in which Ek D spanfe1; : : : ; ekg, which corresponds
to eB 2G=B ; here e1; : : : ; en is the standard ordered basis of Rn .

Standard parabolic subgroups P < G are stabilizers of partial flags within E , with
associated quotients G=P parametrizing all flags of that type. An example we will focus
on is P1;n�1 , the incidence parabolic, which is defined as the stabilizer of .E1;En�1/.
Thus G=P1;n�1 is the set of pairs .`;H / of a line and a containing hyperplane.

The Weyl group W DW .PSLn C/ is isomorphic to the symmetric group Sn , with the
roots (respectively, simple roots) of G corresponding to transpositions (respectively,
transpositions of adjacent elements). We identify a permutation x 2 Sn with the tuple
.x.1/;x.2/; : : : ;x.n//.

The Weyl group W1;n�1 of P1;n�1 consists of permutations w 2 Sn with w.1/D 1

and w.n/D n. Thus, the cosets space W =W1;n�1 consists of classes of permutations
W .i; j /D f.i;�; : : : ;�; j /g � Sn for i ¤ j .
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The Chevalley–Bruhat order has a simple description in terms of permutations. For
w 2 Sn we define the set of ascents of w to be

A.w/ WD fi W w.i/ < w.i C 1/g:

This is a subset of f1; 2; : : : ; n� 1g. We also denote by wi;j the j th smallest element
of the set fw.1/; : : : ; w.i/g. Then:

Theorem 7.1 [6, Theorem 2.6.3(iii)] Elements x;y 2 Sn satisfy x 6 y if and only
if xi;j 6 yi;j for all i 2A.y/ and all j 6 i .

Note that this characterizes elements of the ideal hyi D fx W x 6 yg by an explicit set
of inequalities.

There is a corresponding formula for the length of an element w 2 Sn as its number of
inversions (see [6, Proposition 1.5.2]):

(7-2) `.x/D
ˇ̌
f.i; j / W i < j and �.i/ > �.j /g

ˇ̌
:

Thus the longest element is w0 D .n; n� 1; : : : ; 1/.

The Schubert variety Xw D BwB �G=B is defined by an explicit set of dimension
inequalities depending on the permutation w ; precisely, we have:

Theorem 7.2 [16, Section 10.5] The Schubert variety Xw consists of the flags
.F1; : : : ;Fn/ such that

dim.Fp \Eq/>
ˇ̌
f.i; j / W i 6 p and w.j /6 qg

ˇ̌
:

Finally, we note that the partial flag variety G=P1;n�1 D f.`;H /g can be embedded as
a hypersurface in Pn�1

C � .Pn�1
C /� , which we call the incidence variety, consisting of

pairs of a vector x 2Cn and a linear form � 2 .Cn/� such that �.x/D 0, modulo the
action of C��C�. Here .x; �/ corresponds to the flag .C �x; ker �/. Using the theorem
above, one can check that in this realization the Schubert variety XW .i;j/ �G=P1;n�1

is cut out by the equations xiC1 D � � � D xn D �1 D � � � D �j�1 D 0.

7.3 The .1; n�1/–examples

In this section we describe how certain domains studied by Guichard and Wienhard
in [20, Section 10.2.2] are represented in the Kapovich–Leeb–Porti formalism (ie by
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Chevalley–Bruhat ideals) and what is obtained by applying the results of Section 5 to
these examples.

We define the incidence ideal to be the subset of Sn given by

I1;n�1 D fx 2 Sn W x.1/ < x.n/g:

Equivalently, this is a union of W1;n�1–cosets, I1;n�1 D
S

i<j W .i; j /.

For 1 6 k 6 n� 1, let zk 2 Sn be defined by

zk.i/D

8̂̂̂<̂
ˆ̂:

k if i D 1;

kC 1 if i D n;

n� i C 2 if 1< i 6 n� k;

n� i otherwise.

Equivalently (and perhaps more transparently), zk is defined by the unique tuple
.k; : : : ; k C 1/ in which the omitted elements appear in decreasing order. Note that
zk 2 I1;n�1 and that zk is the unique longest element in the coset W .k; kC 1/.

Theorem 7.3 The set I1;n�1 � Sn is a balanced and right W1;n�1–invariant ideal of
the Chevalley–Bruhat order on Sn . It is minimally generated by fz1; z2; : : : ; zn�1g.

Proof Since .w0x/.i/D nC 1�x.i/ it is immediate that left multiplication by w0

exchanges I1;n�1 with its complement. Thus, if this set is an ideal, then it is balanced.
We have already seen that I1;n�1 is a union of left W1;n�1–cosets (and hence right-
W1;n�1–invariant).

Next, we claim that the Chevalley–Bruhat order satisfies

(7-3) x 6 zk if and only if x.1/6 k and x.n/ > k:

Before proving this, we derive the rest of the statements of the theorem from it.
An element x 2 W satisfies the right-hand side of (7-3) for some k if and only
if x.1/ < x.n/, hence the condition above is equivalent to the statement that I1;n�1 is
the union of the principal ideals hzki for k D 1; : : : ; n� 1 and in particular is an ideal.
It is straightforward to calculate from (7-2) that `.zk/D

1
2
.n� 1/.n� 2/ for all k , so

these elements are pairwise incomparable and of maximal length within I1;n�1 . This
shows fz1; z2; : : : ; zn�1g is the minimal generating set.

Finally we prove (7-3) using Theorem 7.1. First suppose that 1 < k < n� 1. Then
A.zk/D f1; n� 1g and we find x 6 zk if and only if

x.1/D x1;1 6 .zk/1;1 D zk.1/D k
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and

xn�1;j 6 .zk/n�1;j for j 6 n� 1:

Since fx.1/; : : : ;x.n� 1/g D f1; : : : ; ng�x.n/ (and similarly for zk ), the second set
of inequalities is equivalent to x.n/ > zk.n/D kC 1 or, equivalently, x.n/ > k , as
desired. The cases k D 1 and k D n� 1 are similar, except that zk then has only one
ascent. We omit the straightforward verification that the argument above still applies in
these cases.

Using the right-invariance of I1;n�1 we can apply the Kapovich–Leeb–Porti con-
struction with PA D B and PD D P1;n�1 to obtain a limit set ƒ1;n�1 WD ƒ

I1;n�1
%

and cocompact domain of discontinuity �1;n�1 WD�
I1;n�1
% in the incidence variety

G=P1;n�1 for a B–Anosov representation %W �!G of a word-hyperbolic group � .

Applying Theorem 7.2 to zk we find that the associated Schubert variety Xzk
�G=B is

characterized by dimension inequalities dim.F1\Ek/> 1 and dim.Ek \Fn�1/> k .
Projecting to G=P1;n�1 we obtain the Schubert variety

XW .k;kC1/ DXzkW1;n�1
D f.F1;Fn�1/ W F1 �Ek � Fn�1g:

Taking the union of these sets over k gives the model thickening ˆ1;n�1 WDˆ
I1;n�1

in G=P1;n�1 , and the limit set itself is given by

ƒ1;n�1 D

[
t2@1�

f.F1;Fn�1/ W F1 � �k.t/� Fn�1 for some kg;

where �k.t/ is the k–dimensional component of the flag corresponding to �.t/ 2G=B .
This is the domain constructed in [20, Section 10.2.2]. Using the results of Section 5
we can now derive a closed formula for the Betti numbers of �1;n�1 in the case of a
G–Fuchsian representation.

Theorem 7.4 This domain of discontinuity �1;n�1 � G=P1;n�1 in the incidence
variety associated to a G–Fuchsian representation %W �1S ! PSLn C satisfies

b2k.�1;n�1/D

�
2n� 2 if k D n� 2;

max.0; n� 1� jn� k � 2j/ otherwise.

Hence its Poincaré polynomial is

p.x/D
X

i

bix
i
D
.1� t2.n�1//2

.1� t2/2
C .n� 1/t2n�4:
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Proof Recall that rk is the number of elements of I=W1;n�1 of length k and that
I=W1;n�1 consists of the cosets W .i; j / with i < j . By (7-2), the element of W .i; j /

of minimal length,

.i; 1; 2; : : : ;yi ; : : : ; yj ; : : : ; n; j / 2W .i; j /;

has length nC i�j �1, hence rk is the number of pairs .i; j / with 1 6 i < j 6 n and
nC i � j � 1D k . Such pairs exist for 0 6 k 6 n� 2, and enumerating them we find

rk D

�
kC 1 if 0 6 k 6 n� 2;

0 otherwise.

Since dimC F1;n�1D 2n�3, Corollary 5.7 gives b2k.�/D rkCr2n�4�k . Substituting
the formula for rk we find that for all k except n�2, only one of the terms is nonzero.
Considering the various cases for k we find

b2k.�1;n�1/D

8̂̂̂<̂
ˆ̂:

kC 1 if 0 6 k < n� 2;

2n� 2 if k D n� 2;

2n� 3� k if n� 2< k 6 2n� 4;

0 if k > 2n� 4;

which is easily seen to be equivalent to the formula in the theorem. We omit verification
of the corresponding closed form for p.x/.

7.4 The 2n examples: principal balanced ideals

All of the ideals discussed so far in this section have large minimal generating sets;
this follows, for example, from their having many elements of maximal length. In this
subsection we describe a family of examples of balanced ideals that are also principal,
ie generated by a single element. In more geometric terms, these correspond to model
thickenings given by a single Schubert variety.

Let G D PSL2n C , so that W ' S2n . We have:

Theorem 7.5 The set I2n WD fw 2 S2n Ww.2n/ > ng is a principal , balanced ideal. In
fact , I2n D h�i, where �D .2n; 2n� 1; : : : ;1nC 1; : : : ; 2; 1; nC 1/.

Proof Since .w0x/.i/D 2nC 1�x.i/, it is immediate from the definition that I2n

and its complement are exchanged by left multiplication by w0 . Thus, if I2n is an
ideal, it is balanced, and it suffices to show I2n D h�i.
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Examining the explicit form of � we see there is a single ascent, A.�/ D f2n� 1g.
Applying Theorem 7.1 and computing �2n�1;j we find that x 2 h�i if and only if

(7-4) x2n�1;j 6 j for j 6 n and x2n�1;j 6 j C 1 for j > n:

But note that fx.1/; : : : ;x.2n�1/g D f1; : : : ; 2ng�fx.2n/g, hence for all x we have

x2n�1;j D

�
j if j < x.2n/;

j C 1 if j > x.2n/:

Comparing this to (7-4), we see that x 2 h�i if and only if x.2n/ < n, as desired.

As mentioned above, because I2n is principal, the associated model thickening ˆ2n WD

ˆI2n �G=B is the Schubert variety X� . While Schubert varieties can in general have
singularities, this one is smooth: This is immediate from the pattern avoidance criterion
of Lakshmibai and Sandhya [32], or it can be verified from the description of X� using
dimension inequalities for flags. The latter will give a more detailed description and
allow us to compute the Poincaré polynomial of �2n WD�

I2n :

Theorem 7.6 The domain of discontinuity �2n has Poincaré polynomial

.1C t2n�2/.1� t2n/

.1� t2/2n�1

2n�2Y
iD1

.1� t2.iC1//:

Proof For brevity, in this proof we denote by F.m/ the full flag variety of Cm and
by F.i1; : : : ; ik Im/ the variety of partial flags in Cm with components of dimensions
i1 < i2 < � � � < ik . Each such space is a smooth manifold. We write pŒX �.t/ for the
Poincaré polynomial of a space X.

The projection � W .F1; : : : ;Fm�1/ 7! .F1; : : : ;Fk/ is a smooth fibration of F.m/ over
F.1; : : : ; kIm/ with fiber diffeomorphic to F.m�k/. Furthermore, applying the Serre
spectral sequence shows that this bundle is homologically trivial. Thus the Poincaré
polynomial of the base of this bundle satisfies

(7-5) pŒF.1; : : : ; kIm/�D
pŒF.m/�

pŒF.m� k/�
:

Applying Theorem 7.2 to the permutation � we find

ˆ2n DX� D f.F1; : : : ;F2n�1/ W Fn �E2n�1g:

Considering the fibration F.2n/!F.1; : : : ; nI 2n/ (ie taking mD2n and kDn above),
this description of ˆ2n is equivalent to identifying it with the preimage ��1.Y / of
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Y D f.F1; : : : ;Fn/ WFn �E2n�1g ' F.1; : : : ; nI 2n�1/. Thus ˆ2n is a smooth fiber
bundle over F.1; : : : ; nI 2n� 1/ with fiber F.n/. Again applying the Serre spectral
sequence shows this bundle is homologically trivial and we obtain

pŒˆ2n�D pŒF.1; : : : ; nI 2n� 1/�pŒF.n/�:

Using (7-5) with m D 2n � 1 and k D n we find that pŒF.1; : : : ; nI 2n � 1/� D

pŒF.2n� 1/�=pŒF.n� 1/� and thus

pŒˆ2n�D
pŒF.2n� 1/�pŒF.n/�

pŒF.n� 1/�
:

Substituting the classical formula for the Poincaré polynomial of the flag variety itself
(see eg [34]),

pŒF.m/�.t/D .1� t2/1�n
m�1Y
iD1

.1� t2.iC1//;

and simplifying, we obtain

pŒˆ2n�.t/D
.1� t2n/

.1� t2/2n�1

2n�2Y
iD1

.1� t2.iC1//:

It follows from (7-2) that `.�/D `.w0/� n. Since it is a smooth manifold, the model
thickening ˆ2n satisfies Poincaré duality in this dimension. In terms of the number rk

of elements of I of length k , this means

rk D rL�n�k ;

where LD `.w0/, and the formula of Corollary 5.7 simplifies in this case to

b2k.�2n/D rk C rk�.n�1/:

Returning to Poincaré polynomials, this shows

pŒ�2n�.t/D .1C t2n�2/pŒˆ2n�.t/;

and substituting the expression for pŒˆ2n�.t/ obtained above, the theorem follows.

7.5 Homotopy types

For most complex adjoint groups G there are many balanced ideals in I �W ; it is
natural to ask whether these correspond to topologically distinct quotient manifolds WI.
We will verify this for two of the Chevalley–Bruhat ideal examples studied thus far,
applied to G–Fuchsian representations:
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Theorem 7.7 Let G D PSL2n C , where n D 2j C 1 and j 2 Z. Let I1
2
; I2n � W

denote, respectively, the lower half and principal balanced ideals constructed above.
Let %W �1S ! G be a G–Fuchsian representation. Then the quotient manifolds
W1

2
and W2n associated to % are not homotopy equivalent.

Proof In this case LD `.w0/D 2kC 1, where k D j .4j C 3/. By Corollary 5.7 we
have for any balanced ideal I that

b2k.�
I /D 2rk.I/D 2j`�1.k/\ I j:

Applying this to I1
2

and using (7-1) we have

b2k.�1
2
/D 2b2k.G=B/D 2j`�1.k/j:

Now consider the element � 2 S2n given by the tuple

�D .2j ; : : : ; j C 1; 4j C 2; j ; : : : ; 1; 4j C 1; : : : ; 2j C 1/;

where in this expression a; : : : ; b denotes the integers between a and b in decreasing
order. Then � 62 I2n since �.2n/D nD 2j C1. A straightforward application of (7-2)
shows `.�/D k . As � 2 `�1.k/� I2n we have j`�1.k/\ I2nj < 2j`�1.k/j, which
by the formulas above gives

(7-6) b2k.�2n/ < b2k.�1
2
/:

Applying Theorem 5.9, and using the vanishing of odd homology groups of �I from
Theorem 5.6, we have for any balanced ideal I that

b2kC1.W
I /D b1.S/b2k.�

I /:

Combining this with (7-6) we find b2kC1.W2n/ < b2kC1.W1
2
/, and these manifolds

are not homotopy equivalent.

7.6 The PSL3 C case

In this final subsection, we consider G D PSL3 C and give an alternative description of
the limit set and domain of discontinuity in G=B for a G–Fuchsian group. This allows
us to verify Conjecture 1.1 in this case. Chronologically, our study of this example
preceded the other results of this paper, and indeed, the main results of Sections 5–6
resulted from an attempt to generalize aspects of the picture described below to other
complex Lie groups.
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For G D PSL3 C , there is unique balanced ideal I D I1
2
D I1;2 in the Weyl group

W ' S3 . Here I D fe; ˛1; ˛2g, where ˛i are the simple root reflections, or in
the permutation model, I D f.1; 2; 3/; .2; 1; 3/; .1; 3; 2/g. Because I is fixed, we
write ˆ, ƒ, �, and W, for the model thickening, limit set, domain, and quotient
manifold, dropping the decoration by I from our notation.

Let %W �1S ! PSL3 C be a PSL3 C–Fuchsian representation, and in the rest of this
section let F D G=B D f.`;H / W `�H g denote the flag variety. Let X � F denote
the principal curve and z' D fPSL3 CW P

1
C!X its holomorphic parametrization. Let

Y � P2
C denote the projection of the principal curve under the map .`;H / 7! `, and

'W P1
C! Y the composition of z' with the same projection.

In what follows we regard an element ` 2 P2
C as a point in a complex surface, rather

than as a 1–dimensional subspace of a 3–dimensional vector space. Also, we identify
the symmetric product Symd .P1

C/ with the set of effective divisors of degree d on P1
C ,

so for example an element of Sym2.P1
C/ is expressible as pC q for p; q 2 P1

C .

There is a biholomorphic map P2
C ' Sym2.P1

C/ which maps ` 2 P2
C to pCq if ` lies

on distinct tangent lines T'.p/Y and T'.q/Y and to 2p if `D '.p/. Dually there is an
identification .P2

C/
� with Sym2.P1

C/, where we regard H 2 .P2
C/
� as a projective line

in P2
C and map H to the sum (with multiplicity) of the '–preimages of its intersection

points with Y .

Since P1;n�1 D B for this group, following the discussion at the end of Section 7.2,
we have the embedding F ,!P2

C� .P
2
C/
�. Composing with the maps introduced above

we then have F ,! Sym2.P1
C/�Sym2.P1

C/. It is easy to check that the principal curve
X � F maps to the set f.2p; 2p/ W p 2 P1

Cg and that z'.p/D .2p; 2p/. Recall that the
limit curve of % is the circle z'.P1

R/� F.

In order to give a geometric description of the limit set and domain of discontinuity, we
further identify P1

C with the boundary at infinity of the 3–dimensional real hyperbolic
space H3, for example using stereographic projection4 to map P1

C to the unit sphere
in R3 considered as the boundary of the unit-ball model of H3. Let 
p;q denote the
hyperbolic geodesic with ideal endpoints p; q 2 P1

C .

Lemma 7.8 A point x in Sym2.P1
C/� Sym2.P1

C/ lies in the image of F if and only
if it satisfies one of the following mutually exclusive conditions:

4More intrinsically, we could view H3 ' SL2 C=SU.2/ as the space of hermitian forms on the vector
space H 0.Y;O.1// that induce a given volume form — a space which is compactified by Y itself.
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� xD .pCq; rCs/ where p , q , r , and s are pairwise distinct , and the hyperbolic
geodesics 
p;q and 
r;s intersect orthogonally, or

� x D .2p;pC q/ where p ¤ q , or

� x D .pC q; 2q/ where p ¤ q , or

� x D .2p; 2p/ 2X.

Proof Suppose that x D .�; �/ corresponds to a flag .`;H / where the divisors
�; �2Sym2.P1

C/ have a point in common, say p . By the construction of the embedding
given above, this means

� the projective line H � P2
C passes through Y at '.p/, and

� the tangent line T'.p/Y contains `.

Since `2H, both '.p/ and ` lie in T'.p/Y \H. Since distinct projective lines intersect
in a single point, we have either `D '.p/, in which case � D 2p , or T'.p/Y DH, in
which case �D 2p , or both.

This shows that x has one of the given forms, with the exception of the orthogonality
condition in the first case. Hence we must show that for distinct p , q , r , and s the
geodesics 
p;q and 
r;s intersect orthogonally in H3 if and only if the corresponding
pair of a point and projective line in P2

C form a flag, ie the projective line spanned
by '.r/ and '.s/ is concurrent with the tangents T'.p/Y and T'.q/Y . This can be done
with an elementary explicit calculation, but we prefer to give a coordinate-free proof.

Given two points p; q 2 P1
C , the half-turn �p;qW P1

C ! P1
C is the unique nontrivial

holomorphic involution fixing p and q . Geometrically, �p;q is the extension to the
ideal boundary of the isometry H3!H3 which rotates about 
p;q by angle � . Thus
geodesics 
p;q and 
r;s intersection orthogonally if and only if fr; sg is an orbit of �p;q .

Given a pair of points fu; vg � Y , we can define a map y�u;vW Y ! Y as follows:
Let H� D TuY \ TvY , which is a point not on Y . The projective line joining H�

to w 2 Y intersects Y in a second point, which is y�u;v.w/. (See Figure 1.) Since this
defines an involutive, nontrivial holomorphic automorphism of Y fixing u and v , it
is '–conjugate to a half-turn of P1

C , ie

y�u;v.'.t//D '.�p;q.t//:

On the other hand, by definition of y�u;v , the points '.r/ and '.s/ form an orbit if
and only if the projective line they span is concurrent with TuY and TvY . Hence
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p
q

x

�p;q.x/

u

v
w

y�u;v.w/

Figure 1: Hyperbolic and projective models of a half-turn on P 1
C .

the '–conjugacy of y� and � gives the desired equivalence between orthogonality and
incidence.

We now analyze the Kapovich–Leeb–Porti construction in terms of the divisor model
of F given by the lemma. First we note that the model thickening in this case is the union
of the complex 1–dimensional Schubert varieties, ˆDX.2;1;3/[X.1;3;2/ , and it is easily
checked that X.2;1;3/ D f.E1;H / WH 2 .P2

C/
�g while X.1;3;2/ D f.`;E2/ W ` 2 P2

Cg.
The corresponding description of ƒ is that it consists of flags f.`;H /g in which
either ` 2 '.P1

R/ or H is tangent to Y along '.P1
R/. In terms of divisors, then, ƒ

consists of pairs .�; �/ where either � D 2p or �D 2p for p 2 P1
R .

Let HC and H� denote the connected components of P1
C�P1

R , and X˙ the compact
Riemann surfaces that are the quotients of z'.H˙/ � Y by the %–action of �1S.
Considering each of the cases from Lemma 7.8, we find that � D F � ƒ can be
described in the divisor model as �0[

zEC[ zE
�
C[
zE�[ zE

�
� , where

� �0 D f.pC q; r C s/ W p ¤ q and r ¤ sg\F ,

� zE˙ D f.2p;pC q/ W p 2H˙g, and

� zE�
˙
D f.pC q; 2p/ W p 2H˙g.

Note that these sets are pairwise disjoint except for

zE˙\ zE
�
˙ D f.2p; 2p/ W p 2H˙g D z'.H˙/:

Now we arrive at the desired hyperbolic-geometric description of W. Let

%0W �1S ! PSL2 R< PSL2 C ' IsomC.H3/
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be the Fuchsian representation through which % factors or, equivalently, so that
z'W P1

C ! X intertwines %0 acting on P1
C with % acting on F. Let N0 denote the

oriented orthonormal frame bundle of the quotient %0.�1S/nH3 and define

N DN0=.Z=2�Z=2/;

where .i; j / 2 Z=2�Z=2 acts on an orthonormal frame .v1; v2; v3/ 2 TxH3 by

.v1; v2; v3/ 7! ..�1/iv1; .�1/jv2; .�1/iCjv3/:

Since %0.�1S/nH3 ' S �R, we have N0 ' S �R� SO.3/ and N ' S �R�B ,
where B D SO.3/=.Z=2�Z=2/.

Theorem 7.9 The quotient %.�1S/n�0 is diffeomorphic to N, and hence W D

%.�1S/n� is a compactification of N. The boundary of this compactification is the
union of the four complex surfaces

E˙ WD %.�1S/n zE˙ and E�˙ WD %.�1S/n zE�˙;

each of which is biholomorphic to a P1
C–bundle over XC or X� , and which intersect

only in the complex curves EC\E�C DXC and E�\E�� DX� .

Proof Using the divisor model, map .pC q; r C s/ 2�0 to the positively oriented
orthonormal frame .v1; v2; v3/ at 
p;q \ 
r;s 2 H3 such that v1 is a unit vector
along 
p;q and v2 is a unit vector along 
r;s . While there are two choices for each
of v1 and v2 , the result is a well-defined point in the quotient of the frame bundle of H3

by Z=2�Z=2. This map is easily seen to be PSL2 C–equivariant, and both spaces have

EC

E�
C

XC X�

E�

E��

N

Figure 2: Stratification of the PSL3 C quotient manifold W consisting of the
open stratum N , the P 1

C–bundles E˙ and E�
˙

, and the Riemann surfaces X˙ .
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transitive, smooth PSL2 C–actions with the same isotropy, so it is a diffeomorphism.
By equivariance it descends to the desired map %.�1S/n�0!N .

Lemma 7.8 describes �0 as an open, dense, and %–invariant subset of the cocompact
domain of discontinuity �, hence W is a compactification of %.�1S/n�0 . It remains
to verify the given descriptions of the quotients of zE˙ . We have already seen that
zE˙\ zE

�
˙
D z'.H˙/, which has quotient X˙ . To see that EC is a P1

C–bundle over XC ,
note first that zEC'HC�P1

C by the map .2p;pCq/ 7! .p; q/. Thus zEC is a trivial
P1

C–bundle over HC , and the projection .2p;pC q/ 7! p intertwines the %–action
on zEC with the %0–action on HC , and % acts on zEC by a discontinuous group of
bundle automorphisms. The quotient EC is therefore a locally trivial P1

C–bundle
over %0.�1S/nHC ' %.�1S/nz'.HC/ D XC . The cases E� and E�

˙
are handled

similarly.

The decomposition of W described above is pictured schematically in Figure 2.

Since the oriented orthonormal frame bundle of 3–dimensional hyperbolic space is
PSL2 C–equivariantly isomorphic to PSL2 C , Theorem 7.9 equivalently describes W

as a compactification of the quotient %0.�1S/nPSL2 C=.Z=2�Z=2/.

Finally, we will show that the divisor model and hyperbolic picture of W lead to a
verification of Conjecture 1.1 (on the existence of a fiber bundle structure) in this case.
Such a fiber bundle structure is easy to construct for the open, dense set N �W: There is
a map from the frame bundle of H3 to H2 which composes the projection of the frame
bundle to its base with the orthogonal projection from H3 to the totally geodesic H2

preserved by PSL2 R. This map is .Z=2�Z=2/–invariant and PSL2 R–equivariant;
taking the quotient by Z=2 � Z=2 and using the identification of Theorem 7.9 we
obtain an induced PSL2 R–equivariant map

z� W �0!H2:

Taking a further quotient by %0.�1S/, a map � W N !S ' .%0.�1S/nH2/ is obtained.
The identification of N with a product, N ' S �R�B , can be made in such a way
that the map � is simply projection onto the first factor.

To show that W is also a fiber bundle, we extend z� and � to � and W, respectively:

Theorem 7.10 The map z� W �0!H2 extends to a proper PSL2 R–equivariant con-
tinuous map y� W �!H2. Therefore ,
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(i) � has the structure of a PSL2 R–equivariant continuous fiber bundle over H2

with fiber a compact topological space F,

(ii) � is homeomorphic to H2 �F, and

(iii) the quotient manifold W D �n� is a continuous fiber bundle over S with
fiber F.

Proof Statements (i)–(iii) are simple consequences of the existence of such a map y� :
Because H2 is a homogeneous space of PSL2 R, a continuous equivariant map from a
PSL2 R–space to H2 is necessarily an equivariant locally trivial fibration. The fiber is
compact by properness of y� , so (i) follows. Since H2 is contractible this bundle is
trivial, giving (ii). Finally, using the equivariant structure of the bundle y� W �!H2

we can take the quotient by %0.�1S/ to obtain (iii).

Now we construct y� . Let �0 D ���0 , which is a closed set. Since we seek an
extension of the map z� , it suffices to define y� on the set �0, which in the divisor
model consists of pairs of the form .2p;pC q/ or .pC q; 2p/ with p 62 P1

R . Let
…W P1

C � P1
R ! H2 be the extension to the ideal boundary of the orthogonal pro-

jection H3 ! H2 ; equivalently … is the union of the natural PSL2 R–equivariant
diffeomorphisms HC!H2 and H�!H2. Define

y�.2p;pC q/D….p/ and y�.pC q; 2p/D….p/:

This is evidently a continuous and PSL2 R–equivariant map �0!H2, since the map …
itself has these properties and the two definitions above agree on their common domain
f.2p; 2p/ W p 2 P1

C �P1
Rg.

It remains to show that y� is continuous on the entire domain � and that it is proper.
Both will follow by elementary geometric arguments.

For continuity, since �0 is closed, it suffices to consider a sequence !n2�0 converging
to !1 2�0 and to show z�.!n/! y�.!1/. We suppose the limit point has the form
!1 D .2p;pC q/ with p 2HC , the argument in the other cases being completely
analogous. Since !n 2 �0 , we can write !n D .pn C p0n;p

00
n C qn/ with each of

the sequences fpng, fp0ng, and fp00ng converging to p and with qn! q . Recalling
the construction of z� and the map from the frame bundle to �0 from the proof
of Theorem 7.9, we see that z�.!n/ is the orthogonal projection to H2 of the point

pn;p

0
n
\ 
p00n;qn

2H3.

Consider the disk D�HC of radius � centered at p with respect to the Poincaré metric
of HC . The orthogonal projection to H2 of any geodesic in H3 with ideal endpoints

Geometry & Topology, Volume 24 (2020)



1690 David Dumas and Andrew Sanders

in D is contained in the �–disk centered at ….p/D y�.!1/. For large enough n we
have pn;p

0
n;p
00
n 2D, and z�.!n/ is the projection to H2 of a point on 
pn;p

0
n

, hence
dH2.z�.!n/; y�.!1// < � . Thus z�.!n/! y�.!1/ as n!1, and y� is continuous.

To see that y� is proper, we consider a compact exhaustion of � constructed by taking
complements of small open neighborhoods of ƒ. Recall ƒ consists of divisor pairs
of the form .2p;pC q/ or .pC q; 2p/, where p lies on P1

R . Fix an auxiliary metric
on P1

C and define N".ƒ/ to consist of divisor pairs .p C q; r C s/ in which there
is a disk of radius " in P1

C with center in P1
R which contains at least three of the

points p , q , r , and s .

Fix a basepoint x0 in H2 (which we could take to be the origin in the unit-ball model
of H3 ). Then for each R > 0 there exists "D ".R/ > 0 such that if y 2H3 lies in
the hyperbolic convex hull of a disk on P1

C of radius ", then dH3.x0;y/ >R. That is,
a half-space in H3 bounded by a sufficiently small circle is far from x0 .

We claim that if ! 2N".ƒ/\�, then y�.!/ lies in such a half-space, and thus is far
from x0 for " small enough. To see this, first consider ! 2N".ƒ/\�0 , which we
can write as ! D .pC q; r C s/ with p , q , r , and s distinct and so that p , q , and r

lie in an "–disk D which is centered on P1
R . Let B be the half-space in H3 with ideal

boundary D ; note B is invariant by reflection in H2 and D is invariant by inversion
in P1

R . Then y�.!/D z�.!/ is the orthogonal projection to H2 of a point x 2 
p;q �H3.
Since both x and its reflection xx in H2 lie in B , so does the segment joining them.
The intersection of this segment with H2 is the orthogonal projection of x to H2,
which is y�.!/, so y�.!/ 2 B .

The remaining case is that ! 2 �0, in which case we can write ! D .2p;p C q/

or ! D .p C q; 2p/, with p in an "–disk D of the type considered above. Then
y�.!/ D….p/, and ….p/ 2 B because it lies on the geodesic 
p; xp , where xp is the
inversion of p in P1

R , and p; xp 2D.

Now if !n 2 � satisfies !n!1, then for each R > 0 we have for all sufficiently
large n that !n 2 N".R/.ƒ/. The argument above shows dH2.x0; y�.!n// > R for
such n. Thus y�.!n/!1 in H2, and y� is proper.
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