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Geometry of compact complex manifolds associated to
generalized quasi-Fuchsian representations

DAVID DUMAS
ANDREW SANDERS

We study the topology and geometry of compact complex manifolds associated to
Anosov representations of surface groups and other hyperbolic groups in a complex
semisimple Lie group G. We compute the homology of the manifolds obtained
from G-Fuchsian representations and their Anosov deformations, where G is simple.
We show that in sufficiently high rank, these quotient complex manifolds are not
Kéhler. We also obtain results about their Picard groups and existence of meromorphic
functions.

In a final section, we apply our topological results to some explicit families of domains
and derive closed formulas for certain topological invariants. We also show that the
manifolds associated to Anosov deformations of PSL3; C—Fuchsian representations
are topological fiber bundles over a surface, and we conjecture this holds for all
simple G.

32Q30, 57M50

1 Introduction

This paper is concerned with the following general question: which aspects of the
complex-analytic study of discrete subgroups of PSL, C can be generalized to discrete
subgroups of other semisimple complex Lie groups?

To make this more precise, we recall the classical situation that motivates our discussion.
A torsion-free cocompact Fuchsian group I' < PSL, R acts freely, properly discontinu-
ously, and cocompactly by isometries on the symmetric space PSL, R /PSO(2) ~ H?.
The quotient S = I'\H? is a closed surface of genus g > 2. When considering I" as
a subgroup of PSL, C, it is natural to consider either its isometric action on the
symmetric space H3 ~ PSL,C/PSU(2) or its holomorphic action on the visual
boundary PL ~ PSL,C /Bpsi,c. The latter action has a limit set A = IP’]I%{ and
a disconnected domain of discontinuity 2 = H L H. The quotient T'\ 2 is a compact
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Kihler manifold — more concretely, it is the union of two complex conjugate Riemann
surfaces.

Quasiconformal deformations of such groups I' give quasi-Fuchsian groups in PSL, C.
Each such group acts on IP’(é in topological conjugacy with a Fuchsian group, hence
the limit set A is a Jordan curve, the domain of discontinuity has two contractible
components, and the quotient manifold is a union of two Riemann surfaces (which are
not necessarily complex conjugates of one another).

If G is a complex simple Lie group of adjoint type (such as PSL, C for n > 2), there
is a distinguished homomorphism tg: PSL, C — G introduced by Kostant [29] and
called the principal three-dimensional embedding. Applying (g, a discrete subgroup
of PSL, R or PSL, C gives rise to a discrete subgroup of G. When this construction
is applied to a torsion-free cocompact Fuchsian group 715 =~ T, the resulting G—
Fuchsian representation w1S — G lies in the Hitchin component of the split real
form Gg < G. Representations in the Hitchin component have been extensively
studied in recent years, and the resulting rich geometric theory has shown them to be a
natural higher-rank generalization of Fuchsian groups. In the same way, we propose to
generalize the theory of quasi-Fuchsian groups by studying complex deformations of
these G-Fuchsian and Hitchin representations and the associated holomorphic actions
on parabolic homogeneous spaces of G.

The existence of domains of proper discontinuity for such actions follows from a theory
developed by Kapovich, Leeb and Porti [28] and Guichard and Wienhard [20], which
applies in the more general setting of Anosov representations of word-hyperbolic groups
in a semisimple! Lie group G. In fact, a key component of this theory, as developed
in [28], is the construction of many distinct cocompact domains of proper discontinuity
for the action of a given Anosov representation on a parabolic homogeneous space G/ P,
each labeled by a certain combinatorial object—a Chevalley—Bruhat ideal in the Weyl
group of G.

Applying this theory to a G—Fuchsian representation of a surface group, or more gener-
ally to an Anosov representation of a word-hyperbolic group in a complex semisimple
group G, we consider the compact, complex quotient manifold W = I'\Q2 associated

IFor this paper, a semisimple Lie group G is a real Lie group with finite center, finitely many connected
components, semisimple Lie algebra, and no compact factors. For the reader who prefers algebraic groups,
one may also work with the K—points of a semisimple linear algebraic group defined over K, where K =R
or K = C depending on the situation.
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to a cocompact domain of discontinuity €2 C G/ P arising from the construction of [28].
Concerning such a manifold, we ask:

e What is the homology of W?

e Does W admit a Kéhler metric? Is it a projective algebraic variety?

e What is the Picard group of W?

e What are the cohomology groups of holomorphic line bundles on ' W?

e Does W admit nonconstant meromorphic functions?

In considering these questions, our restriction to complex Lie groups has the simultane-
ous advantages that it simplifies topological questions and that it paves the way for the
rich holomorphic geometry of generalized flag varieties over C to assume a prominent
role.

Our answers to these questions rest on the fact that if W were replaced by one of
the complex partial flag varieties G/ P, classical Lie theory would give a complete
answer: The homology of G/P admits a preferred basis in terms of Schubert cells,
which are B-orbits on G/ P, where B < G is a Borel subgroup. The classification of
line bundles on G/ B and their sheaf cohomology is the content of the Borel-Bott—Weil
theorem; see Bott [7].

In the remainder of this introduction we survey our results, after introducing enough
terminology to formulate them precisely.

Choosing Cartan and Borel subgroups H < B < G, we obtain the Weyl group W and
a natural partial order on it, the Chevalley—Bruhat order. A subset I C W which is
downward-closed for this order is a Chevalley—Bruhat ideal (or briefly, an ideal). An
ideal I is balanced if W = I Uwgl where wo € W is the unique element of maximal
length.

Each element of W corresponds to a Schubert cell in the space G/B. The union of the
cells corresponding to elements of an ideal I gives a closed set ®/ C G/ B, the model
thickening. For a general parabolic subgroup P < G, there is a similar construction
of a model thickening ®/ C G/P if we also assume that I is invariant under right
multiplication by Wp < W, the Weyl group of P.

Now let 7 be a word-hyperbolic group. A homomorphism g: w — G is B—Anosov if
there exists a p—equivariant continuous map

& 0o —> G/B
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which satisfies certain additional properties that are described in Section 2.3; roughly
speaking, these conditions say that o is “undistorted” at a large scale; in particular
such a representation is a discrete, quasi-isometric embedding with finite kernel. The
map & is the limit curve associated to the Anosov representation o. (Section 2.3 also
describes a more general notion of Anosov representation where B is replaced by an
arbitrary symmetric parabolic subgroup of G.)

The work of Kapovich, Leeb and Porti [28] establishes that if o: # — G is B—Anosov,
then for every balanced and right- Wp—invariant ideal / C W one obtains a " := o()-
invariant open set 2 C G/ P upon which the action of I' is properly discontinuous
and cocompact. The set Q2 is defined as the complement 2 = (G/P) — A, where the
limit set A is a union over points in the limit curve £ of G—translates of the model
thickening ®7.

Using the continuous variation of the limit curve as a function of the Anosov represen-
tation (established in [20]), and the fact that the Anosov property is an open condition
among representations [ibid], elementary arguments establish that if ¢ and o’ are in the
same path component of the space of Anosov representations, then the corresponding
compact quotient manifolds are homotopy equivalent. In fact, we provide a slightly
more sophisticated argument which shows that the resulting compact quotient manifolds
are diffeomorphic.

We focus on the path component of the space of B—Anosov representations 7;.S — G
that contains the G—Fuchsian representations, which we regard as a complex analogue of
the Hitchin component of G . This component also contains the compositions of quasi-
Fuchsian representations with (g, which we call G—quasi-Fuchsian representations.
Using the invariance of topological type described above, when studying topological
invariants of quotient manifolds for representations in this component, it suffices to
consider the G—Fuchsian case. Concerning homology, we find:

Theorem A Let G be a complex simple Lie group of adjoint type and let o: 1S — G
be a G—Fuchsian representation. Let I C W be a balanced and right- Wp—invariant
ideal, where P < G is parabolic. Then if QZ, C G/ P is the corresponding cocompact
domain of discontinuity, the quotient manifold WLI) = o(m15)\Q2 éI? satisfies

Hy(Wg.Z) = Hi(S.Z) ®z Hi(Q}. L).

I.

Furthermore, we calculate the homology of the domain of discontinuity €2, :
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Theorem B Let ¢ and I be as in the previous theorem, and let ®! C G/ P be the
associated model thickening. Then for any integer k = 0 the homology of the domain
of discontinuity Qé C G/ P fits in a split exact sequence

0— H* 27Kl 7) > H Q). 2) > H (@', 2) >0,
where n = dimc G/ P is the complex dimension of the flag variety.

The correspondence between Weyl group elements, Schubert cells, and cohomology
classes in G/ P makes the calculation of the outer terms in the exact sequence above
an entirely combinatorial matter. More precisely, we find:

Theorem C The domains €2 é C G/ P as above have the following properties:

(i) The odd homology groups of 2 é vanish.
(i) The even cohomology groups of 2 Z, are free abelian.
(iii) The rank of sz(Qé) is equal to ry + ry_1_g, where n = dim¢ G/ P and
where r; denotes the number of elements of I/ Wp of length j with respect to
the Chevalley—Bruhat order on W/ Wp.

(iv) Foreach k =0 there is a natural isomorphism Hy (Q!,7) ~ H?*"=27k(Q! 7).
Taken together, these results are consistent with the possibility that Wé is a bundle
over the surface S with fiber a compact, oriented manifold of dimension (2n — 2)

homotopy equivalent to £ ; if so, property (iv) would follow from Poincaré duality
for this fiber manifold. We conjecture a weaker form of this:

Conjecture 1.1 There is a compact (2n—2)—dimensional Poincaré duality space F QI
homotopy equivalent to 2 é and a continuous fiber bundle

1 1
FQ —>WQ—>S.

In Section 7.6 we verify this conjecture in the case G = PSL3;C. We have been
informed of work in progress by Alessandrini and Li [2] and Alessandrini, Maloni and
Wienhard [3] that provides other examples in which Conjecture 1.1 holds. Some of
these results are announced in [1].

These homological results also yield a simple formula for the Euler characteristic of
the quotient manifold:

Corollary 1.2 The Euler characteristic of Wé satisfies

x(Wh) = x(S)x(G/P).

Geometry & Topology, Volume 24 (2020)
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Note in particular that the Euler characteristic is independent of the choice of balanced
ideal I C W. It also follows that an affirmative answer to Conjecture 1.1 would
necessarily produce a fiber space F é which satisfies y(F éf )= x(G/P).

In Section 6, we turn to the complex geometry of quotients. Here our work parallels
the study of quotient manifolds associated to complex Schottky groups by a number
of authors, eg Larusson [33], Seade and Verjovsky [41], and especially Miebach and
Oeljeklaus [35]. As in [33] and [41], one of our main techniques is to use a bound on
the Hausdorff dimension of the limit set to apply complex-analytic extension results
(eg from Shiffman [44] and Harvey [21]) and show that the quotient manifold inherits
holomorphic characteristics from G/ P. The more recent results of [35] in the Schottky
case are probably the most analogous to our study of Anosov representations, though
their results are stated with hypotheses about extensions of sheaves in place of the
Hausdorff dimension assumptions we use.

In this complex-geometric part of the paper it is natural for us to work in the more
general setting of a complex Lie group G and N = G/H a complex homogeneous
space (where H < G is a closed complex Lie subgroup). We say that a complex
manifold W is a uniformized (G, N )-manifold with data (2,T") if

e there exists a discrete torsion-free group I' < G and a I'-invariant domain of
proper discontinuity €2 C N upon which I' acts freely with compact quotient,
and

e there is a biholomorphism W ~ I'\ Q2.

(Such manifolds are sometimes called Kleinian in the literature.) Note that a uniformized
(G, N)-manifold is a special case of a locally homogeneous geometric structure mod-
eled on (G, N) and that the manifold Wé associated to a right- Wp—invariant ideal 7
is a uniformized (G, G/ P)-manifold with data (Qé ,0(m)). Following terminology
from the study of convex—cocompact group actions, we call A := N — Q2 the limit set
of W. Denote by my (A) the k—dimensional Riemannian Hausdorff measure of A.

Theorem D Let W be a uniformized (G, N )—manifold with data (2, ") and limit
set A. Suppose that N is compact and 1—connected and that my,_,(A) = 0 where
n =dimc N. If X is a Riemann surface and X % P(é, then every holomorphic map
W — X is constant. More generally, if Y is a complex manifold whose universal
cover is biholomorphic to an open subset of C k then any holomorphic map W — Y is
constant.
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Using a theorem of Eyssidieux, we also show that under mild conditions on the
complexity of 71W, such a uniformized manifold does not admit a Kihler metric:

Theorem E Let W be a uniformized (G, N )—manifold with data (2, T") and limit
set A. Suppose that N is compact and 1—connected and that my,—,(A) = 0 where
n =dimc N. If 7;'W has an infinite linear group (eg a surface group) as a quotient,
then 'W does not admit a Kahler metric. In particular, W is not a complex projective
variety.

In order to apply Theorems D and E to examples arising from Anosov representations,
it is necessary to verify the hypothesis concerning the Hausdorff measure of the limit
set. We do this in the technical Section 4, which relies on a combinatorial property of
balanced ideals in Weyl groups. Namely, except for some low-rank aberrations, every
balanced ideal I C W contains every element w € W of length at most 2. (We note
that a similar result was proved by Seppinen and Tsanov [43] for a similar purpose,
but only for a certain class of Chevalley—Bruhat ideals.) This translates to a lack of
high-dimension cells in ®f, which allows us to show that 71,,_> (Aé) vanishes in the
G—quasi-Fuchsian case. We conclude:

Theorem F Let o: 1S — G be a G—quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not isomorphic to PSL, C, and let P < G
be a parabolic subgroup. Let I C W be a balanced and right-Wp—invariant ideal in
the Weyl group. Then the associated compact quotient manifold WLI, has the following
properties:

(i) Any holomorphic map from Wé to a manifold whose universal cover embeds
in CK (eg any Riemann surface not isomorphic to P(é) is constant. In particular,
‘W is not a holomorphic fiber bundle over such a manifold.

(i) The complex manifold Wé does not admit a Kdhler metric, and in particular it
is not a complex projective variety.

We remark that results announced in a recent preprint of Pozzetti, Sambarino and
Wienhard [40] would allow this theorem to be extended to an open neighborhood of
the space of G—quasi-Fuchsian representations. We discuss this further in Section 1.1.

While Theorems D—F are essentially negative results — they rule out the use of cer-
tain techniques in understanding these manifolds — our methods also lead to positive
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results concerning the behavior of holomorphic line bundles on uniformized (G, G/ P)-
manifolds W >~ '\ Q2. Specifically, we find that the behavior of such holomorphic line
bundles is closely related to the representation theory of the discrete group I' < G.

Let Picl' (G/ P) be the space of I'—equivariant isomorphism classes of I'—equivariant
line bundles on G/ P. Then there is a homomorphism

pL: Picl' (G/ P) — Pic(W),

the invariant direct image. In favorable circumstances, the extension theorems of
Harvey (see [21] and Theorem 6.3 below) allow us to show that pI is an isomorphism.
In fact, we have:

Theorem G Let G be a connected semisimple complex Lie group, P < G a parabolic
subgroup, and W a uniformized (G, G/ P)-manifold with data (Q2,T") and limit
set A. Suppose that my,_4(A) = 0 where n = dim¢ G/ P. Then there is a natural
isomorphism

(1-1) Pic(W) = Picl' (G/ P)

which is split by the invariant direct image homomorphism pl': Picl (G/P) — Pic(W).
Moreover, the kernel of the composition

(1-2) Pic(W) => Picl'(G/ P) — Pic(G/ P)

is naturally isomorphic to Hom(T", C*).

As before, after excluding some low-dimensional cases, this allows us to compute the
Picard group of manifolds arising from G-quasi-Fuchsian representations.

Theorem H Let o: 71 S — G be a G—quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not of type Ay, Ay, A3,or By. Let P < G
be a parabolic subgroup, I C W a balanced and right-Wp—invariant ideal in the Weyl
group, and Wé the uniformized (G, G/ P)—manifold associated to these data. Then
there is a short exact sequence

(1-3) 1 — Hom(r; S, C*) — Pic(W}) — Pic(G/P) — 1.

Having calculated the Picard group, in Section 6.3 we turn to calculations of sheaf
cohomology groups of line bundles on 'W in the image of the invariant direct image
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homomorphism. Here we restrict to the case P = B to simplify the discussion, though
analogous statements could be derived for any parabolic subgroup.

Recall that a holomorphic line bundle £ on G/ B is G-equivariant if it admits an action
of G by bundle automorphisms covering the G-action on G/ B. Isomorphism classes
of G—equivariant bundles on G/ B are in bijection with 1-dimensional representations
B — C*. We say a line bundle £ is effective if it admits a nonzero holomorphic
section.

Theorem I Let £ be a G—equivariant effective line bundle on G/B and let W
be a uniformized (G, G/B)-manifold with data (2,T") and limit set A satisfying
Mop_sk—2(A) =0 for some k = 1, where n = dimc G/B. Then, forall 0 <i <k,

H' (W, pL' (L)) ~ H' (T, H*(G/B, L)).
In this theorem, the expression H(I", H*(G/B, £)) denotes the group cohomology

of I' with twisted coefficients. Since £ is G—equivariant and I < G, the space
H°(G/B, L) has the structure of a '—module.

When i exceeds the cohomological dimension c¢d(I"), the previous theorem becomes
the vanishing result:

(1-4) H'W, pT'(£)) =0 for cd(T) <i < k.

We close the discussion of the complex geometry of quotients with the following
theorem regarding the existence of meromorphic functions on uniformized (G, G/ B)-
manifolds arising from G—quasi-Fuchsian representations. Recall that an ample line
bundle £ on G/B is one which gives rise to a projective embedding.

Theorem J Let o: 1S — G be a G—quasi-Fuchsian representation with image T,
where G is a complex simple adjoint Lie group that is not of type Ay, Ay, A3, or B;.
Let I be a balanced ideal in the Weyl group W of G. Let Wé denote the uniformized
(G, G/ B)-manifold associated to these data. For any ample, G—equivariant line
bundle £ on G/ B, the following properties hold:

(i) There exists a k > 0 such that
HO(Wg, p¥(£5) =~ HO(T, H(G/ B, £F)) # 0.

(i1) The manifold WZ, admits a nonconstant meromorphic function.
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The same techniques show that the transcendence degree over C of the field of mero-
morphic functions on Wé is large whenever the rank of HO(W!, pT (£5)) is large;
however, whether or not there are any cases where this transcendence degree is equal
to the complex dimension of W! | so that Wé is Moishezon, is yet to be seen. In the
analogous setting of quotient manifolds associated to complex Schottky groups, these
questions are studied by Larusson [33] and Miebach and Oeljeklaus [35].

1.1 The role of Hausdorff dimension and G —quasi-Fuchsian assumptions

Most of our results include a hypothesis concerning the Hausdorff dimension of the
limit set or an assumption that the representation is G—quasi-Fuchsian. We briefly
discuss the prospects for weakening or removing these hypotheses.

In Theorems F and H, the Anosov representation is required to be G—quasi-Fuchsian,
but this hypothesis is only used to obtain a bound on the Hausdorff dimension of the limit
curve. In a recent preprint, Pozzetti, Sambarino, and Wienhard [40] have announced
results that in particular imply continuous variation of the Hausdorff dimension of
the limit curve as a function of the representation, for a particular subclass of Anosov
representations. This would allow Theorems F and H to be immediately extended to a
neighborhood of the G—quasi-Fuchsian locus.

Theorem J is also stated for G—quasi-Fuchsian representations, but here that hypothesis
is more fundamental, as it is used to ensure the existence of vectors in irreducible
representations of G which are invariant under a principal PSL, C. It seems likely that
a generic uniformized (G, N)-manifold has no nonconstant meromorphic functions.

Theorems E, G, and I require specific upper bounds on the Hausdorff dimension of
the limit set, but we do not know if the threshold dimensions in those statements are
optimal. Producing examples with limit sets of large Hausdorff dimension, as might
be used to show the necessity of the hypothesis, seems to be out of reach of current
methods. Furthermore, the delicate nature of extension problems in several complex
variables could make analyzing such examples quite challenging.

1.2 An illustrative example

In formulating the main results of this paper, we strive for the maximum level of
generality that our arguments allow. However, in reading the proofs it may be helpful to
have a concrete example in mind. While Section 7 develops various aspects of certain
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examples in detail, here we discuss how all of the main results apply to one class of
examples (which is also discussed in Sections 7.2—7.3 and in Guichard and Wienhard
[20, Section 10.2.2]).

Consider a torsion-free cocompact Fuchsian group I) < SL,R and fix n = 2. Let T’
denote the image of Iy in SL, R using the n—dimensional irreducible representation
of SL,R. Thus I" acts on Pg_l preserving a rational normal curve X of degree n—1,
and it also preserves the set of real points Xg C X.

Let J} ,—1 denote the SL, C-homogeneous manifold consisting of pairs (£, H) where
¢ C C" is aline and H C C”" is a hyperplane containing £. Define A; C Fy 51
as the set of all pairs (£, H) where [{] € Xr, and A,_; as the set of all (¢, H)
where [H] C Pé_l is an osculating hyperplane of X at a point of Xg. Then I'
acts properly discontinuously and cocompactly on Q1 ,—1 = J1 -1 — (A1 UA,—1)
by [20, Theorem 8.6 and Section 10.2.2]. As we explain in Section 7.3, the set €21,
is the domain corresponding to the ideal in W(SL, C) >~ S, consisting of permuta-
tions x with x(1) < x(n). Letting My ,—1 = Q1,,—1/ T, we have:

* Theorems B—C allow the computation of the (free abelian) homology of 1 ,_1;
explicitly, the Betti numbers are

2n—2 if k=n-2,
max(0,n—1—|n—k —2|) otherwise

b2k(Ql,n—1) = {
and byx—1(821,,—1) = 0. The details of this calculation can be found in Theorem 7.4.

* Theorem A then gives the homology of M ,,_; itself and in particular implies that
X(M1n—1) = 2g —2)x(F1,n—1) = (2g —2)(n* —n) (an application of Corollary 1.2)
where g is the genus of the Riemann surface uniformized by Ij.

e For n > 2, Theorems D-F show that any holomorphic map from M; ,_; to a
manifold uniformized by a domain in C¥ is constant and in particular that M 1,n—1 18
not a holomorphic fiber bundle over a Riemann surface of positive genus.

¢ On the other hand, for n = 3 we show in Theorem 7.10 that the conclusion of
Conjecture 1.1 holds, ie that M 5 is a fiber bundle over the surface H?/Ty. A
related special feature of n = 3 is that M , is a compactification of a finite quotient
of SL2 C/ F() .

e For n > 3, Theorems G-H show that the Picard group of M} ,_; is isomorphic
to Hom(Ty, C*) x Pic(F; 4—1).
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While Theorems I-J do not apply directly to this example, they can be applied to
its natural lift to a domain of proper discontinuity in the full flag variety SL,,C/B
to conclude, for example, vanishing of cohomology of line bundles on the quotient
manifold in large degree (when n is correspondingly large) and also that the quotient
manifold admits meromorphic functions (again, for n large).

1.3 Outline

In Section 2 we recall some facts from Lie theory and introduce the notion of an Anosov
representation of a word-hyperbolic group.

In Section 3 we review the geometry of flag varieties and discuss the construction of
Kapovich, Leeb and Porti which produces domains of proper discontinuity for Anosov
representations. For the benefit of readers familiar with Kapovich, Leeb and Porti [28],
we note that in some cases our notation and terminology are different from that of the
above-cited paper; this is done to adapt their theory to suit the specific cases we study
(ie complex Lie groups).

In Section 4 we derive estimates for the Hausdorff dimension of the complement of
a domain of discontinuity for an Anosov representation. While these estimates are
essential in Section 6, their derivation represents a technical excursion into combinatorial
and geometric considerations that are not used elsewhere in the paper. (A reader might
skip this section on first reading if seeking an efficient route to the results of Section 6.)

Section 5 contains the main results concerning the topology of domains of discontinuity
and of quotient manifolds, including the proofs of Theorems A, B, and C. The results on
homology and cohomology of flag varieties from Section 3.4 are used extensively here.

In Section 6 we turn to the complex geometry of quotients, proving Theorems D, E, G,
and I on embedded (G, G/ P)-manifolds, and their consequences for G—quasi-Fuchsian
representations, Theorems F, H, and J. The Borel-Bott—Weil theorem and related notions
that are used in our analysis of holomorphic line bundles and sheaves on uniformized
(G, G/ P)—manifolds are also recalled here. This section does not use the results of
Section 5 and could be read independently of it.

Finally, in Section 7 we present some explicit examples of ideals in the Weyl group.
We apply the results of Section 5 to these examples, in some cases obtaining explicit
formulas for the Betti numbers of these domains and their quotient manifolds. We
also give an alternative description of the unique cocompact domain of discontinuity
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in G/ B for a G-Fuchsian representation 1S — G in the case G = PSL; C, showing
that it is a compactification of a finite quotient of the frame bundle of S x R. Using
this description, we verify that Conjecture 1.1 holds in this case.
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2 Lie groups and Anosov representations

2.1 Complex semisimple groups

This section serves as a rapid review of the basic Lie theory which we will use throughout
this paper.

We use the term complex semisimple Lie group to mean a complex Lie G group with
finitely many connected components and semisimple Lie algebra. If G is connected
and its Lie algebra is simple, we say G is a complex simple Lie group.

Let G be a complex semisimple Lie group with Lie algebra g. A Cartan subalgebra
h C g is a maximal abelian subalgebra such that the linear map ad(X): g — g is
diagonalizable for every X €.
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There is a unique Cartan subalgebra up to adjoint action of G. The rank of G is the
dimension (over C) of any Cartan subalgebra.

Given « € h*\{0}, define
g ={X eg:ad(Y)(X)=a(Y)X forall Y €b}.

An element « € h* is a root if gy # {0} and g, is the associated root space. The set of
all roots is denoted by X. It is possible to partition the set of roots as £ = 2T LI X~ so
that ¥~ = —X% and so that the sets % are separated by a hyperplane in the R—span
of . Fix such a partition. Elements of X are positive roots, and those of ¥~ are
negative roots. A positive root « is simple if it cannot be written as a sum of two
positive roots. The set of simple roots is denoted by A C =+

These data define the standard Borel subalgebra
b = h @ @ ga’
aext
which is a maximal solvable subalgebra of g.
Next, let ® C A be a subset of the simple roots. Let Xg C X~ denote the set of

negative roots that can be expressed as an integer linear combination of elements
of A —©® with nonpositive coefficients. The subset ® defines a standard parabolic

subalgebra via pg = (@aezg ga) ®b.
We define the corresponding Lie subgroups by
H=Cg(h), B=Ng(). Pg=Nghe).

It is a standard fact that fj, b, and pg are the Lie algebras of the above-defined Lie
groups.

The subgroup H < G is called a Cartan subgroup and is a maximal torus? in G. A
subgroup P < G is parabolic if it is conjugate to Pg for some subset of simple roots
® C A. We call Pg a standard parabolic subgroup.

Two parabolic subgroups Pt and P~ are opposite if PT N P~ = L is a maximal
reductive subgroup of both P and P~ : that is, the subgroup L is a common Levi
factor of Pt and P,

Next, choose a maximal compact subgroup K < G with Lie algebra £ such that €N h
is a maximal compact torus inside of €. Let g = £ @& m be the associated Cartan

2 A maximal torus H < G is an abelian subgroup which is isomorphic to (C *yrank(G)
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decomposition of g. The (real) subspace a:=h Nm is a maximal abelian subspace
of m consisting of semisimple elements, called a Cartan subspace. Furthermore,
if @ € X is any root, the restriction of « to a is real-valued, and this restriction (a
restricted root) uniquely determines «.

A positive Weyl chamber a™ C a is defined by X € a™ if and only if a(X) > 0 for all
a € A. Let A C G be defined by exp(a™). This gives rise to a Cartan decomposition
G = KAK on the group level.

If g¢ = ky(exp X)k;, then the element X € @™ is uniquely determined, which defines
a continuous, proper map
w G —at

called the Cartan projection.

The Weyl group W associated to these data is the group Ng (a)/Zx (a), which acts on
the Cartan subspace a via the adjoint action and thus also on the space Homg (a, R)
containing the simple restricted roots. The restricted simple roots are the restrictions
of the simple roots A to the Cartan subspace a. The Weyl group is a Coxeter group
which is generated by reflections in the kernels of the restricted simple roots (the simple
root hyperplanes). The action of W on Homp (a, R) permutes the restricted roots, and
through the bijection of this set with X, we can regard W as a group of permutations
of X. Finally, by construction, there is an inclusion Ng (a) — Ng(H) which induces
an isomorphism W ~ Ng(H)/H . Note that in this isomorphism, the left-hand side
acts on restricted roots, while the right-hand side acts on roots. Since these determine
one another, we will freely use this isomorphism without further comment when it is
clear from the context.

As a Coxeter group, W has a unique element of maximal length wy which has order
two. The opposite involution acting on the set of roots is defined by () = —wqg(®).

A subset ® C A is symmetric if ((®) = @. A parabolic subgroup is symmetric if and
only if it is conjugate to any (hence all) of its opposite parabolic subgroups. This is
equivalent to P being conjugate to Pg for ® C A symmetric. We remark that if all
simple factors of G are of type A1, Byz2, Dagx=4, E7, Eg, Fyq, 0r Gy, then ¢ is
the identity and all parabolic subgroups are symmetric.

If g is a complex semisimple Lie algebra, then a split real form ggr is a real form
of g such that the restriction of the Killing form to gr has maximal index. There is a
single equivalence class of split real forms under the adjoint G—action on g; choosing
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a representative of this class, we refer to the split real form gr C g. When G is
connected, the connected Lie subgroup Gr < G with Lie algebra gg is the split real
form of G.

2.2 Principal three-dimensional subgroups

For more information on the objects in this section, see the discussion in [43] and the
original paper of Kostant [29].

Let g be a complex simple Lie algebra of rank ¢ and Borel subalgebra b < g. Choose
a nilpotent element e; € b which has {-dimensional centralizer (a regular nilpotent).
By the Jacobson—Morozov theorem [24; 37], there exist elements x, f; € g such that
the triple { f1, x,e;} spans a subalgebra s isomorphic to sl,C, with f1, x, and e;
respectively corresponding to (9 9), (5 _Y).and ({ §). Such a subalgebra s is called a
principal three-dimensional subalgebra. There is a single conjugacy class of principal
three-dimensional subalgebras under the adjoint G—action on g, corresponding to
the single conjugacy class of regular nilpotents. Abusing terminology, we use this

uniqueness to refer to the principal three-dimensional subalgebra of g.

If G >~ Auty(g) is the adjoint complex simple group associated to g, and s C g is the
principal three-dimensional subalgebra, then associated to the isomorphism sl[,C ~ s
described above is a unique injective homomorphism

LG PSLz(C —G.

Moreover, the restriction of ¢ to PSL, R takes values in the split real form of G. The
image & of this homomorphism is the principal three-dimensional subgroup of G.

Given a maximal torus and Borel subgroup Hs < Bs < & in the principal three-
dimensional subgroup, there is a unique maximal torus and Borel subgroup H < B < G
in G suchthat Hg < H and Bs < B. When considering the principal three-dimensional
subgroup, we always assume that the maximal tori and Borel subgroups for G and G
have been chosen in this compatible way. We further assume that the isomorphism ¢
is chosen so that Hg and Bg correspond, respectively, to the set of diagonal and
upper-triangular matrices in PSL, C. Then, identifying the quotient of PSL, C by its
upper-triangular subgroup with P, we obtain an equivariant holomorphic embedding

fc: IP’(é ~&/Bs - G/B

called the principal rational curve, following [43]. The principal rational curve can
also be characterized as the unique closed orbit of the action of G on G/B.
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Since B is self-normalizing, the space G/ B is equivariantly isomorphic to the space of
Borel subgroups of G, where G acts on the latter space by conjugation. Using this iso-
morphism, two points p, p’ € G/ B are defined to be opposite if the corresponding Borel
subgroups are opposite. More generally, a pair of points p € G/PT and p’ € G/ P~
corresponds to a pair of parabolic subgroups conjugate, respectively, to P* and P~;
we say in this case that p and p’ are opposite if the corresponding parabolic subgroups
are opposite.

We will need the following essential property of the principal rational curve.

Proposition 2.1 Given distinct points z,z' € PL, the images fg(z), fg(z') € G/B
are opposite.

Proof The statement is invariant under conjugation of & by elements of G, and
therefore we can fix a convenient choice of principal three-dimensional subalgebra
s = span(eq, Xg, fo) as in [43, Proposition 1.1] so that a(xg) = 2 for all « € A. Recall
that in terms of the derivative of (g, the element x( is given by (tg)« ((1) _(1)).

Let Hy C PSL, C denote the diagonal subgroup. Identify the Weyl group of PSL, C
01
-10

izes Hy, the image (g (u) normalizes (g (Hy). Since H is the unique maximal torus

with Z /2, with the nontrivial element represented by u = ( ) Since u normal-
containing tg(Hp), it follows that g (1) € Ng(H). Thus (g induces a homomorphism
W(PSL, C) = Npsv,c(Ho)/Ho - W(G) = Ng(H)/H.

We claim that the image of u under this map is the longest element wo € W = W(G).
This element is uniquely characterized by the condition that it maps every simple root
to a negative root. Note that Ad(tg(u))(xg) = —x¢. Thus for each &« € A we have

tG () (@) (xo) = a(Ad(tg (1)) (x0)) = a(=x0) = —2.

It follows that when expressing (g (#)(c) as a linear combination of the simple roots,
there is exactly one nonzero coefficient, which is equal to —1. Hence (g (u)(«) is a
negative simple root for all « € A, and we conclude (g (1) represents wy.

Because the longest element of W maps B to an opposite Borel, it follows from
the tg—equivariance of the map fg that if z¢ € Pé is the unique point such that

fg(zo) =eB € G/B, then fg(zo) and fg(uzg) =tg(u) fG(zp) are opposite. Finally,
since PSL, C acts transitively on pairs of distinct points in IP’((I:, equivariance of fg

implies that the same condition holds for all pairs of distinct points. a
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2.3 Anosov representations

In this subsection we recall the definition of an Anosov representation and some
related notions that are used extensively in the sequel. We follow the exposition
of [19] quite closely. Additional background on Anosov representations can be found
in [30; 20; 28; 27]. The principal distinction in our treatment is that we work exclusively
with complex semisimple Lie groups.

Let d, denote the word metric on the Cayley graph of a finitely generated group 7z
corresponding to some finite generating set. Recall that 7 is word-hyperbolic if this
Cayley graph is a Gromov hyperbolic metric space. Write |-| for the associated
word-length function, ie |y| = dr (e, y). The translation length of y € m is defined by

l(y) = gglﬂyﬂ‘ll-

We denote by deor the Gromov boundary of the Cayley graph of 7 ; points in deo7
are equivalence classes of geodesic rays in the Cayley graph. The m—action by left
translation on its Cayley graph extends to a continuous action on deo7r. Under this
action, each infinite-order element y € 7 has a unique attracting fixed point ¥+ € doo1
and a unique repelling fixed point ¥y~ € oo .

Let (P, P™) be a pair of opposite parabolic subgroups of a complex semisimple
group G. Let o: 1 — G be a homomorphism and suppose there exists a pair of
continuous, g—equivariant maps

£%: doom — G/ PT.

The pair (§1,£7) is dynamics-preserving for o if for each infinite-order element y €
the point £ (y ™) (resp. £ (y ™)) is an attracting fixed point for the action of o(y)
on G/P* (resp. G/ P™). Here, a fixed point x € G/ P is attracting for g € G if the
linear map given by the differential

dgx: TxG/P — TxG/P
has spectral radius strictly less than one.

We now come to the definition of an Anosov representation.

Definition 2.2 Let (P, P7) be a pair of opposite parabolic subgroups of G, and
let o: m — G be a homomorphism. Then o is (P, P™)—Anosov if there exists a pair
of p—equivariant, continuous maps

£t oo —> G/ PE
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such that the following conditions hold:

(i) For all distinct pairs ¢,1’ € oo, the points £7(t) € G/P and £ (¢') € G/ P~
are opposite.
(i) The pair of maps (§*,£7) is dynamics-preserving for o.
(iii) Realize (P, P™) as a pair of standard opposite parabolics (Pg, Pg) for suit-
able choices of Cartan subalgebra b, system of positive roots T, and subset
® C A. Then, for each « € ©, any sequence {y,}oo ; C 7 with divergent word

length

lim sup £, (yn) — 0o
n—00

satisfies the following a—divergence condition of the Cartan projections of its
o—images:
lim sup({a, p(e(yn))) = .

n—>o0

Here (-,-) denotes the evaluation pairing a* x a — R, we view the root « as
an element of a* by restriction, and p denotes the Cartan projection.

Because of the works [20; 19] and [28; 27], there are now many equivalent definitions of
Anosov representations. The definition given above (taken from [19, Theorem 1.3]) is
the most economical one for our purposes. However, condition (iii) from this definition
is evidently quite technical, and the details of this part of the definition will not be
used at all in what follows. Most readers can therefore proceed without careful study
of this last condition. In particular, it is shown in [20] that if G is a real algebraic
group and the representation is Zariski dense, then condition (iii) is a consequence of
conditions (i) and (i1).

The maps £*: doo — G/ P¥ in the definition above are called the limit curves of the
Anosov representation.

If P is a symmetric parabolic subgroup, we can apply the definition above with
(PT,P7)=(P,gPg™") (for suitable g € G) as the pair of opposite parabolic sub-
groups. In this case both spaces G/ P¥ are canonically and G—equivariantly identified
with G/ P, and the limit maps £* are related to one another by this identification. We
therefore consider such a representation to have a single limit curve

& oot —> G/ P,

and in this situation we simply say that o is P—Anosov.
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The following property of Anosov representations follows quickly from the definitions.

Proposition 2.3 Let P, Q < G be symmetric parabolic subgroups such that P < Q. If
o: m — G is P—Anosov, then o is also Q—Anosov. Furthermore, if &: doot — G/ P
is the limit curve for o as a P—Anosov representation, then p o &: door — G/ Q is the
limit curve for o as a Q—Anosov representation, where p: G/ P — G/ Q is the natural
projection.

There is also no loss of generality in considering only P—Anosov representations for
symmetric parabolics P rather than the a priori more general classes of (PT, P7)—
Anosov representations:

Proposition 2.4 [20] Let o: 1 — G be (PT, P7)—Anosov. Then there exists a
symmetric parabolic subgroup P < G such that o is P—Anosov. a

Furthermore, the following theorem of Guichard and Wienhard establishes some basic
properties of Anosov representations:

Theorem 2.5 [20] Let o: m — G be (P, P™)—Anosov. Then the following prop-
erties are satisfied:
(i) Forevery y € i, the holonomy o(y) is conjugate to an elementof L = PT NP,

(i) The representation o is discrete, has finite kernel, and is a quasi-isometric
embedding.

(iii) The set A of all (P, P™)—Anosov representations of 7 is an open set in the
representation variety Hom(r, G).

(iv) The map taking a (P, P~)-Anosov representation to either of its limit curves,
A= C%doom. G/ PE), o> EX,

is continuous, where C®(doom, G/ P¥) has the uniform topology. a

In the case that Ggr < G is a real form of a complex semisimple group G such that Gg

has real rank equal to one, it was also shown in [20] that the Anosov property reduces
to the well-known class of convex—cocompact subgroups of GR:

Theorem 2.6 [20] Suppose Gr < G has real rank one. Then a representation
o: m — Gr < G is Anosov if and only if o has finite kernel and its image is convex—
cocompact. a
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In particular, if T is a uniform lattice in a real rank one Lie group Gr < G (eg a lattice
in SO(n,1) <SO(n+1,C) or SU(n, 1) < SL(rn+ 1, C)), then the inclusion I' — G
is an Anosov representation.

2.4 Fuchsian and Hitchin representations

Let S be a closed, oriented surface of genus at least two. For a Lie group G we define
the character space of S in G to be the topological space

x(S,G) =Hom(m S,G)/G,
where G acts on Hom(r;S, G) by conjugation.’

Identify the hyperbolic plane H? with the upper half-plane H C C (which is oriented
by its complex structure). Then PSL, R is identified with the group of orientation-
preserving isometries of H2. A Fuchsian representation is an injective homomorphism

n: 1S — PSL, R

with discrete image such that the associated homotopy equivalence S ~ o(1S)\H?
is orientation-preserving.

Let G be a complex simple Lie group of adjoint type and fix a principal three-
dimensional subgroup (with embedding (g: PSL,C — G). Let Gr < G be a split
real form which contains ¢ (PSL, R). A representation o: 1S — G is Gr—Fuchsian
if there exists a Fuchsian representation 1 such that ¢ is conjugate to (g on. The
set of conjugacy classes of Gr—Fuchsian representations forms a connected subset
of ¥(S, Gr) that is in natural bijection with the Teichmiiller space of hyperbolic
structures on S.

A GRr-—Hitchin representation is a homomorphism go: 71 S — Gr whose conjugacy
class lies in the same path component of ¥ (S, Gr) as the Ggr—Fuchsian representa-
tions. Let H (S, Gr) C x(S, Gr) denote the set of conjugacy classes of Gg—Hitchin
representations.

The following theorem organizes the key properties of Hitchin representations which
we will use.

3In this paper we do not use the closely related notion of a character variety, and so we avoid discussion
of the subtleties necessary to define such algebraic or semialgebraic sets.
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Theorem 2.7 When considered as a subset of the Gr—character space, the set of
Gr—Hitchin representations

H(S,Gr) C x(S,GRr)

is a smooth manifold that is diffeomorphic to a Euclidean space of real dimension
—x(S) dimg (GRr) and is a connected component of X(S, Gr). Moreover, every Gr—
Hitchin representation is Anosov with respect to a Borel subgroup B < G, where G is
the complexification of GR .

Furthermore, when considered as a representation in the complex group G, each Hitchin
representation is a smooth point of the complex affine variety Hom(m1 S, G).

Proof The statement that H(S, Gr) C x(S, GRr) is a smooth manifold of the given
dimension was proved by Hitchin in [22]. When Gr = PSL, R, Labourie [30] es-
tablished that Hitchin representations are B—Anosov. For general split groups, the
analogous statement was proved by Fock and Goncharov in [15, Theorem 1.15]; also
see [20, Theorem 6.2] for further discussion.

By [17, page 204], a representation ¢ € Hom(r;.S, G) lies in the smooth locus if
and only if it has discrete centralizer. Hitchin representations are irreducible (ie not
conjugate into a proper parabolic subgroup of G ; see [30, Lemma 10.1]), which implies
that their centralizers are finite extensions of the center of G [45, Proposition 15] and
thus discrete. a

2.5 Quasi-Fuchsian and quasi-Hitchin representations

As before, let S be a closed, oriented surface of genus at least two. A representation
n: w18 — PSL, C is quasi-Fuchsian if it is obtained from a Fuchsian representation by
a quasiconformal deformation. This is equivalent to being a convex—cocompact represen-
tation or to the existence of a continuous, equivariant, injective map &,: doom1 S — IP’((IZ.
A quasi-Fuchsian representation is Fuchsian if it is conjugate to a representation with
values in PSL; R < PSL,C. The space of all quasi-Fuchsian representations up to
conjugacy will be denoted by

QF(S) C x(S,PSL,C)
and the set of Fuchsian representations by

F(S) C (S, PSL, R).
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Now, let G be a complex simple Lie group of adjoint type. A G—quasi-Fuchsian
representation o: w1S — G is a representation which admits a factorization o =tgon,
where 7 is a quasi-Fuchsian representation. Similarly, a subgroup I' < G is G—quasi-
Fuchsian if it is the image of a G—quasi-Fuchsian representation.

The chosen principal three-dimensional embedding ¢G: PSL, C — G induces a com-
mutative diagram,

F(S) —<5 X(S,Gr)

Lo

QF(S) —€% %(S.G)

Moreover, these maps are independent of the choice of three-dimensional subalgebra
and split real form.

We now show that a G—quasi-Fuchsian representation is Anosov and identify the limit
curve.

Proposition 2.8 Every G—quasi-Fuchsian representation ¢ is P—Anosov, where
P < G is any symmetric parabolic subgroup. Furthermore, if ¢ = (g o 1, where
n: w1 S — PSL, C is quasi-Fuchsian, and if n has limit curve &: 0o S — P(é, then
the limit curve of o is given by

JGo&: dom1 S - G/ P,
where fg: ]P’(é — G/ P is the principal rational curve. O
This proposition can be proved using the criterion in [20] regarding when an Anosov
representation remains Anosov after composing with a homomorphism to a larger

Lie group, but we include a sketch of a proof here to give some indication of how
Definition 2.2 is applied.

Proof First, by Proposition 2.3, if we show that the above statement is true for a Borel
subgroup P = B, then the result follows for all other symmetric parabolics.
By Proposition 2.1, the composition

fco&: 0o S — G/B

satisfies condition (i) of Definition 2.2. For condition (ii) of the definition, we use
conjugation in G to effect the same normalization of & considered in Proposition 2.1,
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where a(xg) = 2 for all @ € A, and xy € g is the semisimple element of the
sly—triple generating the principal three-dimensional subalgebra. For any nontriv-
ial element y € m;.S we can assume (after conjugating n in PSL, C) that n(y) =
exp(¢(s %)) = ("’0( L) for £ € C with Re(¢) > 0. Thus &(y4) = zo satisfies
J6(20) = eB and ¢(y) = exp({xo). Then

T.s(G/B)~ P ga.
aEX ™
and this is a decomposition into eigenspaces for the action of o(y), where the eigenvalue
on gy is exp(a(¢xg)). Since a(xy) =2 for @ € A, for @ € ¥~ we have a(xg) <0
and {exp(a (¢ xo))| < 1. This verifies that eB is the attracting fixed point for o(y), and
condition (ii) of Definition 2.2 follows.

Finally, for property (iii) of Definition 2.2, we note that for any divergent sequence
of regular semisimple elements {g,} C PSL,C, their images under the principal
three-dimensional embedding (g satisfy

Jim (1@ (gn)), o) = oo

for every simple root ¢ C A. Since every element in the image of n is regular
semisimple, this verifies property (iii) and completes the proof. O

Using Theorem 2.6 and the equivalence of quasi-Fuchsian and convex—compact for
representations 1S — PSL, C we have the well-known corollary (which was part of
the initial motivation for the study of Anosov representations):

Corollary 2.9 The set of B—Anosov representations o: w1.S — PSL, C is equal to
the set of quasi-Fuchsian representations. a

Let P be a symmetric parabolic subgroup of G. We define the space of (G, P)—quasi-
Hitchin representations

QH(S, G, P) C (S, G)

as the connected component of P—Anosov representations which contains the Hitchin
representations. When G = PSL, C this reduces to the set of quasi-Fuchsian represen-
tations, ie QF(S) = QH(S,PSL,C, B).

For later use, we denote the preimage of QH(S, G, P) under the quotient mapping
Hom(7z S, G) — x(S,G) by QH(S, G, P) CHom(m; S, G).
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3 Flag varieties and the KLP construction

In this section, we will explain in some detail the construction of Kapovich, Leeb and
Porti of domains of discontinuity for Anosov representations. Our account differs from
that of [28] in that we focus on complex semisimple Lie groups and their associated
flag varieties and avoid the discussion of visual boundaries of symmetric spaces. This
presentation is tailored to the applications of Sections 4 and 5.

3.1 Length function and Chevalley—Bruhat order

References for the following standard material include [8] and [6].

Let G be a complex semisimple Lie group. As in Section 2 let W denote the Weyl
group of G associated to a maximal torus H < G. Fix a system A of simple roots
and let S = {ry : @ € A} denote the associated system of reflection generators for W.
Then (W, S) is a Coxeter system and hence gives rise to a partial order < on W,
the Chevalley—Bruhat order, which can be defined as follows: A word in S that has
minimum length among all words representing the same element of W is called a
reduced word. Given a word w in S, we say that z is a subword of w if z is the
result of deleting zero or more letters from arbitrary positions within w. Then x < y
if and only if x can be represented by a subword of a reduced word for y. It can be
shown that this definition gives a partial order on W (and in particular is transitive);
see eg [6, Definition 2.1.1 and Corollary 2.2.3].

Closely related to this partial order on W is the length function
0w — 779

where £(x) is the length of any reduced word for x. It is immediate that x < y implies
£(x) <L(y).

Inversion in W preserves both of these structures, ie £(x~!) = £(x) and x < y if and
only if x™! < y~1. When a < b for a,b € W, we say that b dominates a. In the
usual way we use < to denote the associated nonstrict comparison operation of the
Chevalley—Bruhat order.

The longest element wy € W was introduced in Section 2 and defined relative to
its action on the roots; equivalently, wg is the unique element of W on which the
function £ attains its maximum. Multiplication by wq on the left defines an antiauto-
morphism of the Chevalley—Bruhat order and length function; that is, it inverts length
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and comparisons:

(3-1) L(wow) = £(wg) —£(w) and (a <b) < (wob < wpa).

Now let P < G be a standard parabolic subgroup. The Weyl group of P is defined as
Wp = (Ng(H)N P)/H.

Note that Wp < W = Ng(H)/H, and for the Borel subgroup we have Wp = {e}. The
space W /Wp of left Wp—cosets inherits a partial order from that of W as follows:
Each coset wWp has a unique minimal element, and letting W denote the set of
such minimal elements, we have a canonical bijection W/ Wp =~ W . Restricting the
Chevalley—Bruhat order to W ¥ gives the desired partial order on W/ Wp . Extending
the previous terminology, we also call this order on W/ Wp the Chevalley—Bruhat
order, and we call the resulting rank function the length function on W/ Wp. Explicitly,
the latter function is

W/ Wp —77° L(wWp):= min £(w).
w ewWp

We also note that the length function on W/ Wp satisfies
LwowWp) = L(woWp) —L(wWp),
and £(woWp) is the maximum value of £ on W/ Wp.

There is a further extension of the Chevalley—Bruhat order for a pair P and Q of
standard parabolic subgroups of G: each double coset in Wp\W /Wg contains a
unique minimal element, and restricting the Chevalley—Bruhat order to the set W €
of such minimal elements gives a partial order on Wp\W /Wy .

3.2 Chevalley-Bruhat ideals

A Chevalley—Bruhat ideal (or briefly, an ideal) is a subset I C W such thatif b € [
and a < b, then a € I. That is, I is downward closed for the partial order. (In [28]
ideals are called thickenings, though several other objects are given that name as
well; we reserve the term thickening for a subset of the flag variety that is defined
below.) Associated to any element x € W there is the principal ideal defined as

(x) ={w e W :w < x}. Itis easy to see that every ideal / C W is a union of

r

principal ideals and in fact has a unique minimal description / = (_J;_; (x;) as a union

of principal ideals. The elements x; appearing in this minimal presentation are exactly
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those which lie in / but are not dominated by any element of /. We call {xq,...,x,}
the minimal generating set of I.

If I C W isanideal, then /7! = {x~1:x € I} is also an ideal. The complement of a
nonempty ideal is never an ideal; however, if we define

It = wo(W - 1),

then, by the antiautomorphism property of w — wow, we find that 7= is an ideal. We
call this the orthogonal of I. Note that it is always the case that

W=1IUwyl"t.

Following the terminology of [28], we say that an ideal 7 C W is slim if I C I+,
fat if I D I+, and balanced if I = I+ (equivalently, if it is both fat and slim). Note
in particular that a balanced ideal satisfies |/| = %|W| and that for slim ideals, this
cardinality condition is equivalent to being balanced.

3.3 Flag variety and Schubert cells

We now discuss the cell structures of flag varieties in relation to the Weyl group and the
Chevalley—Bruhat order; this material is standard and can be found in eg [5; 16; 31; 10].

Let B < G be the Borel subgroup associated to the choice A of simple roots fixed
above. The homogeneous space G/B is the full flag variety of G. If P C G is a
parabolic subgroup, then G/ P is the partial flag variety associated to P. All flag
varieties are smooth projective varieties over C and in particular are compact oriented
manifolds.

The full flag variety G/ B has a natural decomposition into a disjoint union of B—orbits
called Schubert cells,
{Cy = BwB:weW}.

Each Cy, is diffeomorphic to Ct@W) The closure X. w = Cy is a Schubert variety and
can be described as the union of the cells that are dominated by w in the Chevalley—
Bruhat order:

Xy ={Cyp :w' < w}.

Therefore, there is a bijection between W and the set of Schubert cells, where ideals
I C W correspond to unions of Schubert varieties. In topological terms, ideals
I C W are in bijection with closed, cellular subcomplexes of G/ B with respect to the
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cellular structure given by the Schubert cells. In algebraic terms, Schubert varieties are
irreducible projective subvarieties of G/B.

For a parabolic P < G containing B, we have the projection 7: G/B — G/ P. Under
this projection, the Schubert cell decomposition of G/ B projects to a cell decomposition
of G/ P, and the projection of a Schubert cell Cy, to G/ P depends only on the coset
wWp € W/ Wp. Thus, the cells in G/ P are indexed by the coset space W/ Wp or
by the collection of coset representatives W ¥, We define

Cpr = JT(Cw) and XwWP = 5pr-

The set Xy, is called a Schubert variety in G/ P and is an irreducible projective
subvariety. As before, the Chevalley—Bruhat order (now on W/ Wp) is equivalent to
the inclusion partial order on these Schubert varieties. Note that the real dimension
of G/B is 2¢(wg), while that of G/ P is 2¢(woWp).

The Schubert cells are defined as B—orbits in flag varieties of G. In what follows,
we will also need to understand the structure of the P—orbits on G/Q for P and Q
parabolic subgroups. We summarize the results in the following (see [39] and [38]):

Theorem 3.1 (i) Every P-orbitin G/Q can be written as PwQ for some w € W.

(ii) This description gives a bijection between the set of P—orbits in G/Q and
the double cosets Wp\W /Wg, where Wp and Wy denote the Weyl groups
of P and Q.

(iii) The inclusion partial order on closures of P—orbits in G/ Q corresponds, under
this bijection, to the Chevalley—Bruhat order on Wp\W /Wy .

(iv) Each P-orbit is a union of B—orbits; specifically, we have

(3-2) PwQ = U Bwpwwg Q. |
(wp,wp)eWpxWop

3.4 Homology and cohomology of the flag variety

First, we fix the following notation for the rest of the paper: If E is a set, then Zg
denotes the free abelian group on E, ie the set of all formal finite linear combinations
of elements of E with integer coefficients. Of course if E is itself a group, then Z g
is the underlying abelian group of the integral group ring of E£. However, we will not
use any ring structure on Z g in the sequel. Also, we observe that any function £ — Z
gives Z g the structure of a graded abelian group.
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As in the previous section, let P be a parabolic subgroup of G, a complex semisimple
Lie group. The integral homology Hx(G/ P, Z) is naturally isomorphic to Zy
with grading given by twice the length function, 2¢. This can be seen using cellular
homology for the Schubert cell decomposition of G/ P; then Zyy y,, with grading 2¢
is the cellular chain complex, and the boundary maps are zero since all cells have
even dimension. Concretely, in this isomorphism the element wWp € W/ Wp cor-
responds to the cell Cypy, (in the cellular resolution) or to the fundamental class
[Xwwp] € Hypwwp)(G/ P, Z) of the Schubert variety Xyw, .

Correspondingly, the universal coefficients theorem identifies H*(G/ P, Z) with the
dual abelian group ZWIWP of Zw wp > here the Kronecker function

5pr: W/ WP — 7
corresponds to a cohomology class [X “"7], and these form the dual basis to
{[Xwwpl: wWp € W/Wp}.

In terms of these models, the Poincaré duality isomorphism is given by left multiplica-
tion by wq (see eg [5]),

PD: Hi(G/P) — H*"*(G/P), [Xyw,]r> [XP0WWP],
where n = dimc G/ P. Equivalently, the intersection pairing
(-,-): H«(G/P)x H,(G/P) — 7
is given by

1 if wlwow’ € Wp,

((Xuwwp). [(Xwwp]) = {0 otherwise.

3.5 Relative position

In this subsection, we give a more algebraic exposition of [28, Section 3.3].

There is a combinatorial, W-valued invariant associated to a pair of points p,q € G/B
called the relative position and denoted by pos(p, ¢). It can be defined as follows:
Choose an element g € G such that g- p = eB. Then g - ¢ lies in the Schubert cell
Cy C G/ B for a unique w € W, and we define pos(p, g) = w. One can check that
this is independent of the choice of g.

To generalize this construction, let P and Q be standard parabolic subgroups of G
corresponding to subsets ©®p, @ C A, so that in particular B < P N Q and we have
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natural surjections G/B — G/P and G/B — G/Q. Given pe G/P and ¢ € G/Q
we can select respective preimages p,g € G/B and consider their relative posi-
tion pos(p,q) € W. While this element will depend on the choices of preimages,
its double coset in Wp\W/Wg depends only on p and g; we therefore define the
relative position of p and ¢ by

posp o(p.q) = Wp(pos(p.q))Wo € Wp\W/Wop.

Our previous definition is the special case posp p = pos. It is immediate from the
definition that the relative position is G—invariant in the sense that

(3-3) posp o(p.q) =posp o(g(p).£(q))

for all g € G. Moreover, from its construction the relative position function is closely
tied to the decompositions of G/ P and G/Q into Schubert cells. We summarize its
key properties in the following proposition, which follows easily from Theorem 3.1:

Proposition 3.2 Suppose p € G/P, g € G/Q, and g € G satisfies g- p = eP. Then
we have posp o(p,q) = WpwWy if and only if g - q is contained in the P—orbit
on G/ Q which is labeled by the double coset WpwW( in the sense of Theorem 3.1(ii).

Thus the level set {g € G/Q :posp o(p,q) = WpwWyp} isa gPg '—orbiton G/Q.

-1

Moreover, the closure of this gPg~ " —orbit is given by the sublevel set

{q¢' €G/Q :posp o(p.q") <posp o(p.q)},
where < is the Chevalley—Bruhat order on Wp\W /W .

In particular, the Schubert cell in G/ Q labeled by the coset wW(y is given by the level
set

Cuww, =1q :posp g(eB.q) =wWp},

and the corresponding Schubert variety Xyw,, is the sublevel set

Xwwy = EwWQ ={q:posp g(eB,q) < wWp}. O

This proposition shows that the ideal I in the Weyl group W, which corresponds to a
closed union of Schubert varieties, equally corresponds to a union of sublevel sets of
the relative position function over the generators of the ideal.
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3.6 Parabolic pairs and thickenings

We have considered pairs of standard parabolic subgroups (P, Q) and the corresponding
Wp\W /Wg—valued relative position function.

Now fix such a pair (P4, Pp) of parabolics with P4 symmetric, and consider P4—
Anosov representations o: ¥ — (. (Recall that by Proposition 2.4 there is no loss
of generality in requiring P4 to be symmetric.) We consider the action of 7 on the
partial flag variety G/ Pp induced by @, with the goal of finding a domain Q2 C G/ Pp
on which the action is properly discontinuous. Thus the notation for the parabolics
signifies that P4 is the “Anosov parabolic”’, while Pp is the “domain parabolic”.

We make corresponding abbreviations Wy := Wp, and Wp = Wp, for the Weyl
groups and abbreviate the relative position function posp, p, by posy p.

We say that an ideal I C W has type (P4, Pp) if I is left Wy—invariant and right
Wp—invariant. Equivalently, / is a union of double cosets WywWp. Let I C W be
such an ideal. We can define the associated union of P4—orbits

ol .= U P4wPp C G/Pp,
WAwWDGWA\I/WD

which we call the model thickening associated to I. (In [28, Section 3.4.2] this is
called a thickening at infinity.) By Theorem 3.1 the set ®/ is a union of Schubert cells,
and since I is an ideal, the set ®7 is in fact a finite union of Schubert varieties. In
particular it is a closed set.

In the sequel, the sets obtained from ®! by applying an element of G play a key
role. It is evident from the definition of ® that the set g - ®! depends only on the
coset gPy4. Thus for any p € G/ P4 we have a well-defined subset of G/ Pp),

CI>£ = g-dDI for any g € G such that gP4 = p.

We call CI>[£ the thickening of p associated with I. This set can also be characterized
in terms of relative position; using G-invariance of the relative position function and
Proposition 3.2, it follows that

@l ={q€G/Pp:posy p(p.q) € Wa\I/Wp}.

It is immediate from the definition that the construction of <I>II, is compatible with the
G-action in the following sense:
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Proposition 3.3 For g € G and p € G/ P4, the thickenings satisfy
I _ . &l
Pe(p) =8 Pp- =

3.7 Limit sets and domains

Let P4 and Pp be parabolic subgroups, with P4 symmetric. For any subset V' C
G/ P4, define the thickening of V, denoted by ®,, as the union of the thickenings of

its points:
I _ I
o, = J .
peV
Let o: 1 — G be a P4—Anosov representation with limit curve &: doom — G/ Py,
and let I be an ideal of type (P4, Pp). The limit set of o relative to I C W is defined
as the thickening of the limit curve, ie

I._ 51 _ 1
A= P4 m= U P CG/Pp.
t€0coT
The complement

I._ 1
Q,:=G/Pp—A,
is the associated domain, which by the equivariance of £ is a o(s;r)—invariant open set.
Let I' ;== o().

The paramount result of [28] establishes that if [ is balanced, then the complement of
the limit set furnishes a cocompact domain of proper discontinuity for the action of '
on G/ Pp. More generally:

Theorem 3.4 [28] (i) If I is a slim, then the action of T" on Qé is properly
discontinuous.

(i1) If I is fat, then the action of T" on QLI) is cocompact. a

In this construction, there remains the question of whether the domain €2 é could be
empty. In [28] and [20], various conditions are obtained ensuring the nonemptiness of
the domains. In our primary applications, we will show that the corresponding domains
are nonempty.

Regarding the structure of the limit set, the same authors show:

Theorem 3.5 [28, Lemmas 3.38 and 7.4] If I is a slim ideal of type (P4, Pp), then
the set Aé is a locally trivial topological fiber bundle over doo7 with typical fiber ®.
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More generally, if V C G/ P4 is a compact set consisting of pairwise opposite points,
then the set CD{, is a locally trivial topological fiber bundle over V, where the projection
p: (D{, — V is given by p(®L) = x. In particular, the thickenings {®L : x € V'} are
pairwise disjoint.

It will be important in what follows to know that this bundle is trivial for G—Fuchsian
representations (which, we recall, are defined when G is simple and of adjoint type).
This follows from considerations similar to those used in the proof of the theorem
above.

Lemma 3.6 Let G be a complex simple Lie group of adjoint type. If o: m1S — G is
G-Fuchsian and [ is a slim ideal of type (P4, Pp), then there is a homeomorphism
AL~ @l xSt

Proof Recall that a locally trivial fiber bundle over S is trivial if and only if it
extends over the closed 2—disk. We show that A é, admits such an extension.

By Proposition 2.1, the entire principal curve in G/ B consists of pairwise opposite
points. Under the projection G/ B — G/ P4, opposite Borel subgroups map to opposite
parabolics, hence the principal curve X := fg (]P’é) C G/ P4 has the same property.
By Theorem 3.5, the set <I>§( is a fiber bundle over X. By Proposition 2.8, the limit
curve of a G—Fuchsian representation is the image of the limit curve of the associated
Fuchsian group, which is simply the extended real line in the principal curve:

£(doo1S) = fG(Pg) C G/ Py.
Denoting the image as Xgr := fg (IP’Ié) C X, the limit set Aé is
A} =p1(XR) C ©F.

where
p: <I>§( - X

is the aforementioned projection.

We have thus described the bundle A é over base S! ~ IP’]IIQ ~ XRr as the restriction
to the equator of a bundle over S? ~ ]Pé ~ X. Since S' bounds a disk in ]P)(lj, the
lemma follows. a

For later use, we record that the domains constructed in Theorem 3.4 for a G—Fuchsian
representation are invariant under the full group (g (PSL,R).
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Proposition 3.7 Let G be a complex simple Lie group of adjoint type and I C W
an ideal of type (B, Pp). If 0: m1S — G is a G—Fuchsian representation, then the
domain Qé C G/ Pp is invariant under tg (PSL, R).

Proof Because the limit curve £(doom1S) = fg (IP’HIQ) in this case is an orbit of
tg(PSL,R) on G/ P4, this is immediate from Proposition 3.3. a

4 Size of the limit set

We now consider combinatorial properties of Weyl ideals and apply them to estimate
the Hausdorff dimension of the limit sets described above. The results of this section
are not used in Section 5, however they are essential to the complex geometry results
of Section 6.

4.1 Weyl ideal combinatorics

As before we refer the reader to [8] or [6] for more detailed discussion of the Cox-
eter group structure of the Weyl group W. We will also use the classification of
complex simple Lie algebras into Cartan types A—G as described for example in
[8, Section VI.2].

As in the previous section we assume G is a complex semisimple Lie group, hence g
decomposes as a direct sum of simple Lie algebras, which we call the simple factors.
There is a corresponding direct product decomposition of the Weyl group W = W(G).

Our goal in this section is to show:

Theorem 4.1 Let I C W be a fat ideal.

(1) If G has no factors of type A, then I contains each element w € W with
L(w) < 1.

(i) If G has no factors of type Ay, A,, A3z, or By, then I contains each element
w e W with £(w) < 2.

Note that by the exceptional isomorphisms, this also excludes types B;, C;, Cs,
and Dj. In terms of the classical matrix groups, representatives of the excluded types
are given by A1 =slL,C, 4, =sl3C, A3 =5l4C, and B, = s05C.

Toward the proof of the theorem, we introduce the following terminology: an element
x € W will be called small if x < wyx, where wg € W is the longest element (as in
Section 2.1).
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Lemmad4.2 If I C W isafatideal and x € W is small, then x € I.

Proof Suppose for contradiction that x is small, I is a fat ideal, but x & I. Then
wox € wo(W —1), and since [ is fat we have wo(W — 1) C I, thus wox € 1. Since x
is small we have x < wgx, and [ is an ideal, so we find x € I, a contradiction. O

Theorem 4.1 will follow from showing that elements of W of small length (ie “short”
elements) are small. To do this we will require some additional properties of the length
function and Chevalley—Bruhat order on W, which we now state.

First, we need a construction of reduced words representing wg. The description
of these will involve a positive integer associated to W, the Coxeter number, which
is defined as the order in W of any element that is the product of all of the simple
root reflections (in some order). We denote the Coxeter number by /, and abusing
the terminology we will also refer to it as the Coxeter number of G or g. (Further
discussion of the Coxeter number can be found in eg [8, Section V.6.1].)

Lemma 4.3 (Bourbaki [8, pages 150-151]) Suppose G is simple and has Coxeter
number h. Let S = S’ U S” be a partition such that each of S’ and S” generates
an abelian subgroup of W. Let a (resp. b) denote the product of the elements of S’
(resp. S”). Then:

(1) If h is even, then wg = (ab)%h is a reduced word.

(ii) If h is odd, then wog = (ab)%(h_l)a is a reduced word. a

Note that the order in the product a does not matter since elements of S’ commute,
and similarly for b. Partitions S = S’ LU S” of the type considered here always exist,
as each Dynkin diagram admits a 2—coloring and nonadjacent vertices correspond to
commuting simple root reflections.

Lemma 4.3 also gives reduced words for wy when G is semisimple, by taking a
product [[; w(()i) of words of type (i) or (ii) for the longest elements w(()i) of the Weyl
groups of the simple factors.

Next, we need the following relation between a reduced word for an element x € W
and for its product xs with a simple root reflection:

Lemma 4.4 Suppose x € W and s € S satisty £(xs) = £(x) — 1 and that

x:sl...SZ(x)
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is a reduced word for x. Then for some k € {1,...,£(x)} we have that
Xs =51 "'§k"‘S€(x)v

and turthermore, sy, is conjugate to s. a

Proofs of these standards facts about Coxeter groups can be found, for example,
in [6, Corollary 1.4.4]. Note that these properties are often stated in terms of left
multiplication by a reflection; the version for right multiplication stated above is

1

equivalent, however, since the inversion map w +— w™ " is an automorphism of the

Chevalley—Bruhat order.

Combining the previous lemmas we can now establish the key combinatorial property
that underlies Theorem 4.1:

Lemma 4.5 (i) If each simple factor of G has Coxeter number at least 3, then
each element of S is small.

(ii) If each simple factor of G has Coxeter number at least 5, then for any s,t € S
the element st € W is small.

Proof First suppose G is simple with Coxeter number /# = 3 and let s € S. Note that
L(wgs) = £(wg) — 1 by (3-1). Apply Lemma 4.3 to a partition of S with s € S’ to
obtain a reduced expression of the form wo = abaz, where z is a (possibly empty)
alternating product of a and b. The simple root reflection s appears at least twice in
this word (once in each copy of a), hence by Lemma 4.4 we find that s appears at
least once in a reduced expression for wgys. This shows s < wgs and thus s is small.

Now suppose G is simple with Coxeter number /# = 6. (The case & = 5 is considered
separately below.) Let 5,7 € S. We will show st is small. If s = ¢ then s> = ¢
and this is trivial, so we assume s # ¢. Then £(st) =2, £(stwg) = £(wo) — 2, and
£(twg) = £(wg) — 1. Proceeding as before and using # = 6 we obtain a reduced
expression wo = abababz, where we can assume s appears in product a. Applying
Lemma 4.4 twice we find that a reduced word for wgs? can be obtained from this
one for wy by deleting two letters, and each such deletion may alter one of the copies
of a or b in this word. However, this leaves at least one unaltered copy « to the left of
an unaltered copy of b. That is, ab is a subword of a reduced expression for wqsz.

The simple root reflection ¢ appears in either ¢ or b. If it appears in b, then st is
evidently a subword of ab. If ¢ appears in a, then s and ¢ commute and one of the
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equivalent words st =ts is a subword of ab. Thus in either case we conclude st < wgst,
hence st is small.

If G is simple and & = 5 then G is of type A4, hence W ~ S5. In this case it can be
checked directly that the nine nontrivial elements which are products of pairs of simple
root reflections are small. We omit the details of this verification.

Finally suppose G is semisimple. We have a reduced expression for wg that is a
product over the simple factors. If each simple factor has Coxeter number at least 3,
we find as before that the reduced expression for wq can be constructed to use a given
simple root reflection s at least twice, and hence that s is small. If each simple factor
has Coxeter number at least 5 and if s and ¢ are simple root reflections (s # t), then
a reduced word for wyst is obtained by deleting two letters from the word for wy,
and the deleted letters are respective conjugates of s and ¢. If s and ¢ lie in the same
simple factor of W, then the deleted letters are both in the corresponding factor of wy,
and the argument above in the simple case shows that st is a subword of the result.
If s and ¢ lie in distinct simple factors (and hence commute), we recall that each can
be assumed to appear at least twice in its factor and hence each appears at least once
after the deletion. Thus s¢ = ts is also a subword of a reduced expression for wys? in
this case. We have therefore shown s¢ is small. a

Using this lemma, the proof of Theorem 4.1 is straightforward:

Proof of Theorem 4.1 The elements x € W with £(x) < | are the simple root
reflections and the identity element. The only simple Lie algebra of Coxeter number
less than 3 is A1, hence if G has no simple factors of this type then Lemma 4.5(i)
shows that the simple root reflections are small. The identity element is also small. By
Lemma 4.2 we find that these elements lie in any fat ideal 7 C W, and part (i) of the
theorem follows.

In exactly the same way, part (ii) follows from Lemma 4.5(ii) because the elements
x € W with £(x) < 2 are the products of at most two simple root reflections, and the
only simple Lie algebras with Coxeter number less than 5 are A;, 4,, A3,and B,. O

4.2 Hausdorff dimension of limit sets

Now we will bound the Hausdorff dimension of the limit set of an Anosov representation
in terms of the Hausdorff dimension of its limit curve and the combinatorial size of the
ideal defining the thickening.

Geometry & Topology, Volume 24 (2020)



1652 David Dumas and Andrew Sanders

All of the sets for which we discuss dimension are closed subsets of compact manifolds.
When regarding such sets as metric spaces (for example when computing dimensions)
we always consider them to be equipped with the distance obtained by restricting the
distance induced by an arbitrary Riemannian metric on the ambient manifold. Since
any two Riemannian metrics on a compact manifold are bi-Lipschitz, our results will
not depend on the particular metric chosen.

Let P4 < G be a symmetric parabolic subgroup of a complex semisimple Lie group G.
Let V C G/ P4 be a closed subset consisting of pairwise opposite points. The property
of a pair of points being opposite is an open condition since it coincides with the unique
open orbit of G acting diagonally on G/ P4 x G/ P,4. (Here we are using the fact
that P4 is symmetric, so it is conjugate to any of its opposite parabolic subgroups.)

Let W be the Weyl group of G. We begin with the following general fact, which is a
straightforward generalization of Theorem 3.5:

Proposition 4.6 Let Pp < G be a parabolic subgroup and let I C W be a slim ideal of
type (P4, Pp). Let V C G/ P4 denote a compact subset consisting of pairwise opposite
points. Then the fiber bundle p: <I>II/ — V' admits Lipschitz local parametrizations;
that is, each point x € V has a neighborhood U, such that there exists a Lipschitz
homeomorphism

Uy x ®1 — p~1(Uy).

In fact, this proposition follows easily from the proofs of [28, Lemmas 3.39 and 7.4],
which we stated as Theorem 3.5 above. We will simply recall enough of the construction
used by those authors to make the Lipschitz property evident.

Proof Note that the set ® is compact. For x € V let Uy be a relatively compact
neighborhood of x in V' over which there exists a smooth section s: Uy — G of the
quotient map G — G/ P4, and choose such a section. In the proof of [28, Lemma 7.4]
it is shown that the map

Ue x @' — p7'(Ux) =D, (x, ) > s(x) (1),

gives a local trivialization of the bundle CID{, — V. However, as it is the restriction of
the smooth action map G x G/ Pp — G/ Pp to the relatively compact set s(Uy) x ®1,,
this map is also Lipschitz. |

We now come to the main result of this section.
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Theorem 4.7 Let P4, Pp < G be a pair of parabolic subgroups with P4 symmetric.
Let o: m — G be a P4—Anosov representation of a word-hyperbolic group with limit
curve £: doot — G/ P4. Let I C W be a slim ideal of type (P4, Pp). Then the limit
set AZ, C G/ Pp satisfies

dimp(A}) < dimp(§(doo7)) + 2w€n}%V L(w).
D

Here, the Hausdortf dimensions are computed with respect to any Riemannian metrics
on G/ P4 and G/ Pp, and £ denotes the length function associated to the Chevalley—
Bruhat order on W/ Wp.

Proof Recall Aé = Qg(amn) and £(0xo7r) is a compact set consisting of pairwise
opposite points (by Theorem 3.5). Applying Proposition 4.6 we obtain a finite open
cover {U;} of dsom by sets whose images by & are trivializing open sets for the
bundle A é, and over which this bundle has Lipschitz parametrizations. Since Lipschitz
maps do not increase Hausdorff dimension, and since Hausdorff dimension is finitely
stable, we find

(4-1) dimp(A}) < max dimp(§(U;) x 7).

On the other hand, the Hausdorff dimension of a product can be bounded in terms
of the Hausdorff dimension and upper Minkowski dimension (also known as upper
box-counting dimension) of the factors [14, Formula 7.3]:

dimp (& (U;) x @) < dimp (& (U)) + dimp (@7).

However, ®/ has a finite stratification by manifolds (the Schubert cells corresponding to
elements of 7), and hence its upper Minkowski dimension is equal to the maximum real
dimension of these manifolds (see eg [14, Section 3.2]), which is 2 maxy,e 7/ w;, £(w).
Also, since £(Uj;) is a subset of &(doom) we have dimy (£(U;)) < dimy(£(0oo7)). We
conclude

dimp (& (U;) x 1) < dimp(E(door)) +2 max £(w).
wEI/WD

Substituting this bound into (4-1), the theorem follows. a
We note that when the right-hand side of the bound from Theorem 4.7 is less than the

real dimension of G/ Pp itself, it follows that the limit set has positive “Hausdorff
codimension” and that é is nonempty. We state the resulting criterion separately:
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Theorem 4.8 Let o: m — G be a P4—Anosov representation for a symmetric parabolic
subgroup P4 < G, with limit curve &: 0oom — G/ P4. Suppose I C W is a balanced
ideal of type (P4, Pp) with corresponding domain Qé CG/Pp. Let n=dimc G/ Pp.
Then:

(1) If dimg &(dsom) < 4 and G is not isomorphic to PSL, C, then the domain Qé
is nonempty.

(i) If dimy &(deom) < 6 and G is not isomorphic to types Ay, A, Az, or By,
then QZ, is nonempty.

(iii) If dimy & (doom) < 2(n —maxyeq/wy, £(w)), then Qé is nonempty.
Proof For (iii), the assumption on dimy &(dso7) is exactly what is needed so that

Theorem 4.7 gives dimH(Aé) < 2n = dimy(G/ Pp), so the complement of AZ, is
nonempty.

For (ii), by Theorem 4.1 the exclusion of these types gives maxy,er/mwy, £(w) <n—3,
and thus 2(n — maxy,ez/mwy, £(w)) = 6. Therefore this case follows from (iii).

For (i), Theorem 4.1 similarly gives 2(n —maxy,e 7/, £(w)) = 4 and hence the claim

again follows from (iii). O

Note that the hypothesis G % PSL, C in part (i) of Theorem 4.8 is necessary, as
the example of a cocompact lattice in PSL, C acting on IP’(é with empty domain of
discontinuity shows.

Our main application of Theorem 4.7 will be to estimate the Hausdorff dimension of

limit sets for G—quasi-Fuchsian groups. We find:

Theorem 4.9 Let G be a complex simple Lie group of adjoint type and rank at least
two with Weyl group W. Let o: m1S — G be a G—quasi-Fuchsian representation
and I C W a balanced ideal of type (B, Pp). Let n denote the complex dimension
of G/ Pp. Then the limit set Aé C G/ Pp satisfies

Man—a(A}) =0.
Furthermore, if G is not of type A, A3z, or By, then
man-a(Ag) =0.

Here my, denotes the k—dimensional Hausdorff measure associated to any Riemannian
metric on G/ Pp .
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Proof By Theorem 4.1, the hypotheses imply maxy,ec7/w;, £(w) <n—2. As the limit
curve of a quasi-Fuchsian group is a quasicircle in PL, its Hausdorff dimension is
strictly less than 2. By Proposition 2.8, the limit curve of a G—quasi-Fuchsian group is
the image of such a quasicircle by the smooth embedding fg: IP’(é — G/ Pp, hence
£(0doom1S) also has Hausdorff dimension less than 2. Applying Theorem 4.7 gives

dimpy(A}) <242(n—2) =2n-2,
and thus mzn_z(Aé) =0.

If we also exclude types A5, A3, and B;, then Theorem 4.1 gives maxy,e 1/ wy, £(w) <
n — 3, and proceeding as above we find n15,_4 (Aé) =0. a

We note that, in particular, the domains in these cases considered in Theorem 4.1 are
always nonempty.

S Topology

We now begin one of our central investigations of the paper — studying the topology
of the domains and quotient manifolds for G—quasi-Hitchin representations. We do
this by first reducing to the G—Fuchsian case (in Sections 5.1-5.2) and then studying
the Fuchsian case in Sections 5.3-5.5.

5.1 Anosov components

Let 7 be a finitely generated group and G a complex semisimple Lie group. By
choosing a finite generating set of 7, the set Hom(m, G) can be identified with a
complex affine subvariety of GV for some N € N. Thus Hom(z, G) has both the
Zariski topology and the compact-open topology of maps from the discrete space m to
the manifold G, the latter of which we will call the analytic topology. Throughout this
section, we use component to mean a connected component of a set with respect to the
analytic topology.

Let P4 be a symmetric parabolic subgroup of G. Given a P4—Anosov representation
o: m — G, let A(o, P4) C Hom(sm, G) denote the connected component of the set of
P 4—Anosov representations that contains ¢. We call A(g, P4) the Anosov component
of o.

For example, the quasi-Hitchin set QT‘R(S, G, P4) for a complex simple adjoint
group G, as defined in Section 2.5, is equivalently described as the Anosov component
A(o, P4) of any G—Fuchsian representation go: 71S — G.
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5.2 Constant diffeomorphism type

Next we show that the diffeomorphism type of the compact quotient manifold associated
to a balanced ideal is constant on each Anosov component:

Theorem 5.1 Let P4 and Pp be parabolic subgroups of G, with P4 symmetric, and
let I C W be a balanced ideal of type (P4, Pp). Let o: 1 — G be a P4—Anosov
representation. Then, for any o' € A(g, P4), the quotient manifolds Wé and Wé, are
diffeomorphic.

In a similar spirit, in [20] it was shown that the homeomorphism type is constant on
Anosov components for the quotients of the domains of discontinuity constructed by
those authors. The argument given there is quite general, however, and would also
apply in the present situation. We give a detailed argument in order to emphasize the
smoothness of the resulting map.

In preparation for the proof, we define a smooth 1-parameter family of representa-
tions to be a collection {¢; € Hom(7z, G) : t € [0, 1]} such that for each y € & the
map [0, 1] — G defined by ¢ — @;(y) is smooth. This is equivalent to requiring
that # — o; define a smooth map of [0, 1] into G/ that takes values in the subvariety
Hom(r, G) ¢ GV.

Lemma 5.2 Let P4, Pp, and I be as in Theorem 5.1. If o is a smooth 1—parameter

family of representations and if for each t € [0, 1] the representation o;: w1 — G is

1

P4—Anosov, then the quotient manifolds W,

I . .
and W, are diffeomorphic.

Proof First, the domains 2 ét can be assembled into a family; define the set v C
[0, 1] x G/ Pp by

V. . 1

Vi={(t,x):x €, }.

By Theorem 2.5(iv) this is an open subset of [0, 1] x G/ Pp. Let :vV— [0, 1] denote
the projection onto the first factor, so that IT=1(¢) = {r} x Q ét .

The group m acts smoothly and properly discontinuously on Y by

y-(1.x) = (1.0:(y)(x)).

Let V:= v/ 7 denote the quotient by this action, which is a smooth manifold (with
boundary). Because I1(y - (¢, x)) = I1(¢, x) = ¢, there is an induced smooth map
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IT: V — [0, 1] such that TI7!(¢) = {¢} x Wét. By compactness of Wét, the map I1
is proper. Also, the map II is a submersion, because its lift to the cover V is the
projection of the product manifold [0, 1] x G/ Pp onto its first factor.

By Ehresmann’s lemma [12], a proper smooth submersion is a smoothly locally trivial
fiber bundle. Thus the fibers of IT are pairwise diffeomorphic. a

Proof of Theorem 5.1 We abbreviate A = A(p, P4). Recall that Hom(x, G) is a
complex affine algebraic variety, and by Theorem 2.5(iv) we have that A is an open
subset of Hom(sr, G) in the analytic topology.

Consider the equivalence relation on A given by diffeomorphism of quotient manifolds,
ie o' ~ o” if and only if Wé, is diffeomorphic to WLI)//. We will show that A consists
of a single equivalence class.

First, let H be an irreducible component of Hom(rr, G) and let B be a component
of AN H, so that B is a connected open subset of H. The singular locus H*"¢ of H

is a proper algebraic subvariety, and its complement /5™t

is a connected complex
manifold that is dense in H. In the analytic topology, a subvariety of an irreducible
algebraic variety over C does not locally separate, and so B N H*™°" is also a
connected complex manifold. Any two points of B N H*™°" are therefore joined by a

smooth path, and Lemma 5.2 shows that B N H*™°™ Jies in a single equivalence class.

By Milnor’s curve selection lemma [36, Section 3] for any x € H Sing there exists a
smooth path y: [0, 1] = H so that y(0) = x and y(¢) € H*™°" for ¢ > 0. Thus for
any x € B N H%"¢ we have such a path with y (1) € BN H™°" for 0 <t < ¢
(using that B is open in H). Applying Lemma 5.2 to such paths, we find that
each x € B N H¥" lies in the same equivalence class as B N H*™°°"  That is,
B consists of a single equivalence class.

Now for any point x € A, let Hy, ..., Hj be the irreducible components of Hom(rr, G)
that contain x. The argument above gives neighborhoods B; of x in AN H; such that
each B; lies in a single equivalence class. Thus the union (_J; B; also lies in a single
equivalence class, and it contains a neighborhood of x in A.

This shows that the equivalence classes in A are open. Since A is connected, there
is only one equivalence class. |

Since the set QK (S, G, Py) is the Anosov component of a G—Fuchsian representation
(for G simple and adjoint), we have the immediate corollary:
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Corollary 5.3 The quotient manifold WLI) obtained from any p € Q\ﬂ-/f(S ,G, Py) is
diffeomorphic to the corresponding quotient manifold for a G—Fuchsian representation.

5.3 Homology and cohomology of thickenings

Starting toward our study of the topology of G—Fuchsian quotient manifolds associated
to a Chevalley—Bruhat ideal I, we begin by considering the topology of the model
thickening ®! ¢ G/Pp.

Lemma 5.4 Let I CW be aright Wp—invariant ideal. Then in the Schubert cell basis
for H«(G/Pp), the map

i: Hy(®') > H.(G/Pp)

induced by the inclusion ®! < G/Pp corresponds to the natural embedding of free
abelian groups

ZI/WD —> ZW/WD-

Proof The model thickening ®/ is a closed set that is a union of Schubert cells,
hence it is a subcomplex of the cell structure on G/ Pp . Using the labeling of cells by
Wp—cosets, the natural map Zj,;w,, <> Zw /w;, becomes the map on cellular chain
complexes induced by the inclusion of ®/. Since the boundary maps of these chain
complexes vanish identically (as there are no odd-dimensional cells), this is naturally
isomorphic to the induced map on homology. |

Taking duals, Lemma 5.4 identifies the cohomology pullback map associated to the
inclusion ®! < G/Pp with the natural surjective map Z%/Wp — 71/Wp

Next, we show that the pair of orthogonal ideals / and I+ corresponds naturally to a
splitting of the homology H.(G/Pp) as a direct sum.

Lemma 5.5 For each right Wp—invariant ideal I there is a split exact sequence
0— Ho(®!) L H.(G/Pp) — H>* *(@1) >0,

where i is the map induced by ®! < G/Pp and n = dimc G/ Pp .

Proof Splitting is automatic since H 2" *(d L) is free abelian (by the previous
lemma). To construct the exact sequence, let j: Hyx(G/Pp) — H?*"* (! L) denote
the composition of the Poincaré duality map with the pullback map on cohomology
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from the inclusion ®/* — G/Pp. As a composition of an isomorphism and a
surjection (the latter using the previous lemma), we see j is itself surjective. Its
kernel consists of classes that are orthogonal (with respect to the intersection pairing)
to H2n_*(CI>IL). Identifying H2n_*(<l>ll) with the subgroup Zj 1y, of Zy wy
the description of the intersection pairing from Section 3.4 shows that this subgroup
pairs nontrivially with basis elements in wo/- and is zero otherwise. That is, the
orthogonal is Zy _y,, 1)/ w,, - Recalling that I+ =wo(W —1) and wg = e we see
that this is simply Zj w,, ~1i (Hx(®1)), as required. a
We remark that this lemma essentially describes the (co)homological consequence
of the disjoint union decomposition (W /Wp) = (I/Wp) U (wolL/Wp). When I
is slim the description of the intersection pairing on G/Pp from Section 3.4 shows
that the image of Hy(®7) is an isotropic space for this pairing (ie the restriction of
the intersection form vanishes identically). Therefore, for a balanced ideal I the

exact sequence of Lemma 5.5 represents an associated “Lagrangian splitting” of the
homology H.«(G/Pp).

5.4 Homology of domains of proper discontinuity
We now turn to the topology of domains 2 é.

Theorem 5.6 Let G be a complex simple Lie group of adjoint type and let o €
Q\U:’C(S, G, P4) CHom(m S, G). If I is a slim ideal of type (P4, Pp) with associated
model thickening ®! and domain Qé C G/ Pp, then there is a split short exact
sequence

(5-1) 0> H* 2% 7) > Hy(Ql,7) - H (o7, 2) >0,

where n = dimc G/ Pp . In particular, the homology groups of 2 é are free abelian.
In addition:
(1) The odd homology groups of €2 é vanish.
(i1) If I is balanced, then the homology of Qé satisfies
H(QL,7)~ H*" 2, Q! 7).

Observe that when applied to a balanced ideal , this theorem incorporates the results
stated as Theorems B and C in the introduction, with the exception of statement (iii)
of Theorem C.

In the proof, we will omit the Z—coefficients to simplify notation.
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Proof By Corollary 5.3 it suffices to consider the case when ¢ is G—Fuchsian. As-
sume this from now on. Poincaré—Alexander-Lefschetz duality yields a canonical
isomorphism

(5-2) H"1(G/Pp, A}) ~ H;(@]).

Since the cohomology of G/ Pp vanishes in odd degrees, the long exact sequence in
cohomology of the pair (G/Pp, A LI? ) decomposes into five-term sequences centered
on the even-degree cohomology groups of G/ Pp:

(5-3) 0— H* 7Y (AL - H>"2/(G/Pp, AL) — H*" ">/ (G/Pp)
©, @22 (AL H2+(G/Pp, L) — 0.

Using Lemma 3.6, the Kiinneth theorem implies H?2"~2/ (A{?) ~ H?*"=2J (®). Post-
composing with this isomorphism, the map labeled () becomes the pullback map on
cohomology of degree (21 —2 ) induced by the inclusion ®! < G/ Pp . Taking the
dual of the exact sequence from Lemma 5.5, we find that this map is surjective with
kernel isomorphic to H;; (qDIL).

By the surjectivity of () and the Poincaré—Alexander—Lefschetz isomorphism (5-2),
the exactness of (5-3) at the right implies that

0= H>""2*(G/Pp, Ap) = Haj-1(Qp).

which is statement (i) of the theorem. Since the (co)homology of ®! and ®I" vanish
in odd degrees (by Lemma 5.4), this also trivially verifies the existence of the exact
sequence (5-1) when the degree is odd.

. . . s
For even degrees, since the map labeled () has kernel isomorphic to H; (®17), the
five-term exact sequence restricts to a short exact sequence

(5-4) 0— H> 2=V ALy H?""2(G/Pp, AL) — Hp; (@) — 0.

The Kiinneth theorem, Lemma 3.6, and the vanishing of the odd-dimensional co-
homology of ® imply H?"~2/~1 (Aé) ~ {221l x STy ~ g2 2072(9]),
Using this isomorphism to replace the initial term in (5-4) and the Poincaré—Alexander—
Lefschetz duality isomorphism (5-2) to replace the central term with H,; (2 Z,) yields
the desired short exact sequence

0— H>22(@1) > Hy (@) - Hyj (@) - 0.
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Since H; (! l) is a free abelian group, the sequence splits.

Finally, statement (ii) follows immediately by taking the dual of the exact sequence (5-1)
and applying the universal coefficients theorem. a

As a corollary of this result, we find a simple formula for the Betti numbers of the
domain of discontinuity, which we state only for the case when [ is balanced. Note
that Lemma 5.4 shows that b, (®) is the number of elements of I/ Wp of length k.
Thus, if I = IL, the theorem above gives:

Corollary 5.7 Under the hypotheses of Theorem 5.6, if I is a balanced ideal, then
the Betti numbers of the domain of discontinuity in G/ Pp are given by

bok (D) = rie + ru—1x.
where ry is the number of elements of I/Wp of length k and n = £(woWp) =

dimc G/ Pp . a

As this corollary is statement (iii) of Theorem C , we have now completed the proofs
of Theorems B and C. Using the corollary above to calculate the Euler characteristic
of é, we also obtain:

Corollary 5.8 Under the hypotheses of Theorem 5.6, if I is a balanced ideal, then
the Euler characteristic of the domain of discontinuity is given by

x(Q1) = x(G/Pp) = |W/Wp|.

Proof Since ! has only even-dimensional homology, the Euler characteristic is
the sum of its Betti numbers. Using the formula of Corollary 5.7, each term ry
appears twice in this sum, hence ¥ (2 L{ ) = 2|1/ Wp]|. Since a balanced ideal satisfies
2|I| = |W|, a balanced Wp—invariant ideal satisfies 2|1/ Wp| = |W/Wp]|, and the
desired formula for (€2 é ) follows. a

5.5 Homology of quotient manifolds

Next we show that Serre spectral sequence for the covering 2 é — Wé degenerates,
yielding:

Geometry & Topology, Volume 24 (2020)



1662 David Dumas and Andrew Sanders

Theorem 5.9 Let G be a complex simple Lie group of adjoint type and let o €
QH(S, G, Pyq), where P4 < G is a symmetric parabolic subgroup.

If I is a balanced ideal of type (P4, Pp) with associated domain 2 Z, CG/Pp,let Wé
denote the compact quotient manifold. Then there is an isomorphism of graded abelian
groups

H.W., 2)~ H.(S,2) ® H:(QL, 7).

As in Corollary 5.7, this shows Hy(WZ,7Z) is free abelian for each k and its rank
is computable from the combinatorial data of the ideal / and the length function ¢
on W/ Wp. Also, using Corollary 5.8, we obtain the result stated in the introduction
as Corollary 1.2:

Corollary 5.10 For Wé as above we have X(Wé) = x(S)x(G/Pp), so, in particular,
X(Wé) =2-2g)|W/Wp| <0, where g = 2 is the genus of S. O

This corollary indicates the importance of the (co)homology calculation since we cannot
distinguish the quotient manifolds for different choices of ideals I C W using the
Euler characteristic.

Proof of Theorem 5.9 As before, Corollary 5.3 reduces the statement to the case
of G-Fuchsian p. Let Eg,q = Hp(S, Hy (Q!,7)) denote the E2—page of the Serre
spectral sequence for homology of the regular covering Qé — Wé. Because S is
a K(mS,1), there is an isomorphism

E}  ~ Hy(m1S. Hy(Q}.2),).

where the right-hand side is group homology, and where the 71 S—action on Hj QL. 7)
is prescribed by o. Furthermore, we claim

(5-5) Hy(m, S, Hy(QL.7),) ~ Hy(S.7Z) @ Hy(RL, 7)),

which follows if we show that Hy(Q2L,Z) is a trivial 71 S—module. However, by
Proposition 3.7, the domain €2 Z, associated to a G—Fuchsian representation is invariant
under the action of the real principal three-dimensional subgroup tg(PSL, R) := Gr
on G/Pp. Since R is a connected Lie group, the action of any element of this
group on Qé is homotopic to the identity and hence acts trivially on Hy (QZ,, Z).
Since o(7; S) C G, this gives the desired triviality of the 71 S—module Hy(Q2!,7).
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Next, we claim that the spectral sequence degenerates at the E2—page. First, from (5-5)
we find £ If,q =0 if p > 2 (since S has real dimension 2) or if ¢ is odd (by the
vanishing of the odd homology of €2 é ). The condition on p leaves the E>—differentials
812,’(]: E 1%, ¢ E ;_2, g+1 33 the only potentially nontrivial maps, however these change
the parity of ¢ and hence either the domain or codomain is trivial. Thus all differentials
vanish at the E2—page.

Finally, since all groups on the E2-page are free abelian (which follows from the
homology of both Qé and S being free abelian), there is no extension problem to solve
and we conclude that Hyx(WZ, Z) is isomorphic to the total complex of the E?—page,
which by (5-5) is simply Hy«(S,Z) @ H«(QL,7). i

6 Complex geometry

In this section, we will study some fundamental features of the complex geometry of
the manifolds Wé arising from quotients of domains in flag varieties by images of
Anosov representations. As mentioned in the introduction, it is natural to work in a
slightly more general setting.

Recall that if N = G/H is a complex homogeneous space of G, then we say a
complex manifold W is a uniformized (G, N )-manifold with data (2, T") and limit
set A := N —Q if ' < G acts freely, properly discontinuously, and cocompactly
on Q C N and there is a biholomorphism W ~ T'\ Q. For example, if o: 7 — G is
P4—Anosov (with 7 torsion-free) and [/ is a balanced ideal of type (P4, Pp), then
the manifold Wé is a uniformized (G, G/ Pp)—manifold with data (!, o(:r)) and
limit set AJ.

6.1 Nonexistence of Kihler metrics and maps to Riemann surfaces

Let my denote the o—dimensional Hausdorff measure on N associated to any Rie-
mannian metric. As in Section 4 the particular metric will not matter.

The following classical extension theorem in several complex variables is due to

Shiffman:

Theorem 6.1 [44, Lemma 3] Let Z be a complex manifold of dimension n and
let A C Z be a closed set satisfying m,—>(A) = 0. Then any holomorphic function
on Z — A extends to a unique holomorphic function on Z . a
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An immediate consequence of this extension theorem adapted to our situation is:

Lemma 6.2 Let W be a uniformized (G, N)-manitold with data (2,T") and limit
set A. Suppose that N is compact and connected and that m,,_>(A) = 0 where
n = dimg N. Then any holomorphic map Q — C¥ is constant. a

Using this theorem, we now prove Theorem D from the introduction. We recall the
statement:

Theorem D Let W be a uniformized (G, N )—manifold with data (€2, ") and limit
set A. Suppose that N is compact and 1—connected and that m,,_,(A) = 0 where
n =dimc N. If X is a Riemann surface and X # P/, then every holomorphic map
W — X is constant. More generally, if Y is a complex manifold whose universal
cover is biholomorphic to an open subset of C, then any holomorphic map W — Y is
constant.

Proof By the Koebe—Poincaré uniformization theorem, a Riemann surface X % ]P’é
has universal cover biholomorphic to a domain in C, so it suffices to prove the second
assertion.

Because N is l-connected, the condition m,, >(A) = 0 implies that 2 is also
1—connected (see eg [23, Chapter 7]) and hence is biholomorphic to the universal cover
of W. Using the Hausdorff dimension assumption again, Lemma 6.2 shows that every
holomorphic map W — C¥ is constant.

If Y is a complex manifold whose universal cover is biholomorphic to a domain
in C, then lifting a holomorphic map f: W — Y to the universal covers gives a map
ffW—->YcCC k which is therefore constant, and f is constant as well. a

Next, we establish the obstruction to the existence of Kihler metrics which was stated
in the introduction:

Theorem E Let W be a uniformized (G, N )-manifold with data (2, T") and limit
set A. Suppose that N is compact and 1—connected and that m,,_,(A) = 0 where
n =dimc N. If 7{'W has an infinite linear group (eg a surface group) as a quotient,
then W does not admit a Kdhler metric. In particular, W is not a complex projective
variety.
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Proof As in the preceding proof, we conclude that W ~ Q has no nonconstant
holomorphic maps to C*. However, Eyssidieux shows in [13] that if the fundamental
group of a compact Kdhler manifold has an infinite linear quotient, then its universal
cover admits a nonconstant map to C k for some k. Therefore W is not Kiihler. O

Applying these theorems to the study of manifolds which are quotients by G—quasi-
Fuchsian groups and using the Hausdorff dimension bounds of Section 4, we now give
the proof of:

Theorem F Let o: m1S — G be a G—quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not isomorphic to PSL, C, and let P < G
be a parabolic subgroup. Let I C W be a balanced and right-Wp—invariant ideal in
the Weyl group. Then the associated compact quotient manifold Wé has the following
properties:

(i) Any holomorphic map from WZ, to a manifold whose universal cover embeds
in CK (eg any Riemann surface not isomorphic to P(é) is constant. In particular,
‘W is not a holomorphic fiber bundle over such a manifold.

(i) The complex manifold Wé does not admit a Kdhler metric, and in particular it
is not a complex projective variety.

Note that for consistency of notation with the introduction, we are now considering the
parabolic pair (P4, Pp) = (B, P).

Proof By Theorem 4.9, for such o and I the limit set satisfies n1,,_» (Aé) = 0.
The flag variety G/ P is compact and 1-connected. Thus, statement (i) follows from
Theorem D.

Since Qé — Wé is a r; S—covering, we have a surjection JTIWé — m1S. Since 7S
is an infinite linear group, statement (ii) follows from Theorem E. |

6.2 Picard group

The following theorem of Harvey is an analogue of Shiffman’s extension theorem
(Theorem 6.1) for holomorphic line bundles and their cohomology:

Theorem 6.3 [21, Theorems 1 and 4] Let Y be a complex manifold of dimension n
and A C Y aclosed subset satistying m,,_4(A) = 0. Then every holomorphic line
bundle L — (Y — A) extends uniquely to a holomorphic line bundle on Y.
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Furthermore, if m,,_,,_»(A) = 0, then the inclusion map (Y — A) — Y induces an
isomorphism
H'(Y,L)— H'(Y — A, L)

forall 0<i <k.

Let W be a uniformized (G, N)-manifold with data (€2, T"). A line bundle £ on N
is I'—equivariant if it carries an action of I" by bundle automorphisms lifting the action
of I" on N.

Let p: Q@ — Q/T' ~ W be the covering map. Given a I'—equivariant line bundle £
on N, there is a naturally associated line bundle pl'L on W which, as a sheaf, is
defined by setting pI' £(U) to be the space of I'-invariant sections of £| p—1()- This
prescription defines the invariant direct image homomorphism

(6-1) pL': Picl (N) — Pic(W),

where Pic(W) is the Picard group of isomorphisms classes of holomorphic line bundles
on W, and where Picl (N) is the group of I'—equivariant isomorphism classes of
I'—equivariant line bundles on N.

Using Theorem 6.3 we obtain a sufficient condition for the homomorphism (6-1) to
admit a section:

Proposition 6.4 Let W be a uniformized (G, N )—manifold with data (2, I") and limit
set A. Suppose that my,_4(A) = 0 where n = dimc N. Then, for any holomorphic
line bundle L on ‘W, we have:

(i) The pullback of L to 2 extends uniquely to a I'—equivariant line bundle on N.

(i) If N is compact and connected and if the pullback of L to 2 is holomorphically
trivial, then L ~ Q x, C, where x: I' — C* is a homomorphism.

Proof As before let p: 2 — W denote the quotient by I'. Under the given hypotheses,
Theorem 6.3 shows that p* L extends uniquely to a holomorphic line bundle £ on N.
By the uniqueness of the extension, £ is ['—equivariant, and (i) follows.

Suppose p*L is holomorphically trivial. Then the canonical I'-action on p*L is
transported by the trivialization to a holomorphic function ¢,,: € — C*. By Shiffman’s
extension theorem (Theorem 6.1) ¢, extends holomorphically to N. Therefore, if N
is compact and connected, this map is constant. Thus the map x: I' — C* given
by x(¥) = ¢y, is a homomorphism such that L ~ Q x, C, and (ii) follows. a
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Using the previous theorem, we can now establish the classification of holomorphic
line bundles on uniformized (G, G/ P)-manifolds with sufficiently “small” limit sets
which was given in the introduction; we recall the statement:

Theorem G Let G be a connected semisimple complex Lie group, P < G a parabolic
subgroup, and W a uniformized (G, G/ P)-manifold with data (2,T") and limit
set A. Suppose that my,_4(A) = 0 where n = dim¢c G/ P. Then there is a natural
isomorphism

(1-1) Pic(W) => Picl'(G/ P)

which is split by the invariant direct image homomorphism pl': Picl' (G/P) — Pic(W).
Moreover, the kernel of the composition

1-2) Pic(W) => Picl' (G/ P) — Pic(G/ P)

is naturally isomorphic to Hom(I", C*).

Proof Let L be a holomorphic line bundle on 'W. By Proposition 6.4(i), the pull-
back p*L extends to a I'—equivariant holomorphic line bundle £ on G/P. It is
easily checked that the lift—extend map Pic(W) — Pic’ (G/ P) thus constructed is a

homomorphism. Since p* o pl' (L) = £, the lift—extend homomorphism is surjective
and split by the invariant direct image.

Next, suppose £ is a '—equivariant line bundle on G/ P and ¢: L — G/P x C is an
isomorphism. Then there exists a holomorphic automorphic function j: I'xG/P — C*
and a '-action on G/ P x C specified by y - (x,v) = (y - x, j(x, y)v) for which ¢
is I'—equivariant. Since G/P is compact and connected, j(—,y): G/P — C* is
constant, and therefore j € Hom(I', C*) is a character. This proves that the kernel
of (1-2) contains Hom(T", C*).

Finally, if x € Hom(I", C*), then p*(Q x, C) ~ Q x C, and therefore Hom(T", C*)
contains the kernel of (1-2), completing the proof. a

The term Picl' (G/ P) appearing in Theorem G is often easy to compute in practice. For
example, if G is simply connected then every line bundle on G/ P is G—equivariant,
and hence I'—equivariant by restriction. In this case, there is a short exact sequence

(6-2) 1 — Hom(T", C*) — Pic(W) — Pic(G/P) — 1,
which is split by the invariant direct image.

Finally, we prove Theorem H from the introduction.
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Theorem H Let o: 71 S — G be a G—quasi-Fuchsian representation, where G is a
complex simple adjoint Lie group that is not of type Ay, A, A3,or By. Let P < G
be a parabolic subgroup, I C W a balanced and right- W p—invariant ideal in the Weyl
group, and Wé the uniformized (G, G/ P)—-manifold associated to these data. Then
there is a short exact sequence

(1-3) 1 = Hom(r; S, C*) — Pic(W}) — Pic(G/P) — 1.

Proof Any quasi-Fuchsian representation n: 71 S — PSL, C can be lifted to a repre-
sentation 7: 1S — SL(2, C) (see eg [11]). Such alift 7 determines a lift o: 71 S — G
of o, where G is the simply connected cover of G.

The covering map G — G induces an equivariant biholomorphic map G / P~ G/ P
where P < G is the corresponding parabolic subgroup. Therefore, if QI cG / Pis
the corresponding domain whose quotient by ¢(7r1S) is denoted WI then there is an
induced biholomorphic map WI WI

By Theorem 4.9, the exclusion of types A1, A, A3, and B, guarantees that the
hypotheses of Theorem G are met. Hence, by (6-2) and Theorem G there is an exact
sequence

1 - Hom(m;S,C*) — Pic(%é) — Pic(G/P) — 1.

Since G / P~ G/ P and Wé ~ WLI), this gives the desired exact sequence. |

6.3 Cohomology of holomorphic line bundles

Next we consider the calculation of cohomology of line bundles on uniformized
(G, G/ P)-manifolds where G is a connected complex semisimple Lie group. We will
restrict to the case P = B to simplify the discussion.

Our results are based on reducing these calculations to the Borel-Bott—Weil theorem,
whose statement we recall before proceeding. Fix a Cartan subalgebra h C g and a
system of simple roots A C h*; let L C h* denote the lattice of algebraically integral
weights and § € h* half the sum of the positive roots. Finally, let L*" C L denote the
sublattice of analytically integral weights consisting of those A € L which integrate to
a character A: B — C*. Note that L™ = L if G is simply connected.

To each A € L?" there is an associated right action of B on G x C given by (g,?)-b =
(gb,A(b)t). We denote by L) the quotient of G x C by this action of B. The
projection G x C — G is B—equivariant and hence descends to a map n: L) — G/B,
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which gives £ the structure of a G—equivariant holomorphic line bundle over G/B.
Define £ := Ls_a.

The coroots {Hy}aea C b are elements uniquely defined by the set of conditions
Hy € [g—a,9e] and a(Hy) = 2. A weight A € L is dominant if A(Hy) = 0 for
all @ € A, strictly dominant if A(Hy) > 0 for all « € A, and regular if its W—orbit
contains a strictly dominant weight.

The Borel-Bott—Weil theorem is the following:

Theorem 6.5 [7] The map A+ L; is an isomorphism L®™ ~ Pic%(G/B) of abelian
groups. Furthermore, the cohomology of L satisfies:

(i) If A is not regular, then H'(G/B, L*) =0 forall i = 0.

(ii) If A isregular, let w € W be the unique element such that w(A) is strictly domi-
nant. Then H'(G/B, L*) =0 forall i # {(w), while H*®)(G/B, £*) #0 and
as a G—module this cohomology space is dual to the irreducible representation
of G with highest weight w(A) —§. o

Expositions of this theorem and associated background material can be found in [4; 25]
(focusing on algebraic groups) or [42] (focusing on compact groups).

Returning to our discussion of a uniformized (G, G/B) manifold 'W, we can cast
the problem of determining cohomology of a line bundle on ‘W in the more general
framework of relating the cohomology of a locally free sheaf & on Y and that of the
pullback p*J to the universal cover Y . Here the Grothendieck spectral sequence [18]
can be applied to the composition of the I'-invariants and global sections functors,
giving a cohomology spectral sequence with E,—page

(6-3) E}? = HP(T, HI(Y, p*9))
and which converges to the cohomology of J. Using this spectral sequence, we show:
Theorem 6.6 Let G be a connected semisimple complex Lie group, B < G a Borel

subgroup, and W a uniformized (G, G/ B)-manifold with data (2, I') and limit set A .
Suppose that m,,_2,_>(A) =0, where n = dimc G/B and k > 1.

Let A € L™ be an algebraically integral weight and let pL': Pic®(G/B) — Pic(W)
denote the invariant direct image functor.
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(1) If A is not regular, then
HI(W, pL(£*) =0 forall 0<i <k.
(i) If A is regular and w(A) is dominant for w € W with £(w) > k, then
H'(W, pL(£*) =0 forall 0<i <k,
(iii) If A is regular and w(A) is dominant for w € W with £(w) < k, then

0 for 0 <i </{(w),

H' W, pL ety ~{ .
(W, px (L% {Hl-“w)(r,H“W(G/B,Ll)) for £(w) <i <k.

In particular, the group
H* (W, pL(eh) = HO(T, H*™)(G/B. 1)

equals the space of I'—invariants in the dual of the irreducible G -representation
with highest weight w(A) —§.

(iv) In particular, if A is a regular, dominant weight then

H{(W, pL(£*) ~ H/(T, H*(G/B. £*)) forall 0<i <k.

Note that statement (iv) of this theorem is exactly Theorem I from the introduction,
since effective G—equivariant line bundles on G/ B are exactly those of the form £
for regular, dominant A € L®".

Proof By Harvey’s extension theorem (Theorem 6.3), the hypothesis on Hausdorff
dimension gives an isomorphism
H(G/B.L*) ~ H\(Q., L")

forall 0 <i < k. Since k > 1, the same hypothesis ensures that Q2 is simply connected,
and thus is the universal cover of 'W. Thus the spectral sequence (6-3) applies and its
E,—page is determined up to the k™ row:

k| HO(T, HkK(G/B,L*) HY(T,H*(G/B,L*)) --- HYO(T, HK(G/B, L))

i HO(F,HI(G/B,LA)) HI(F,HI(G/B,U)) . HCd(F)(F,H'l(G/B,LA))

0| H(I, H*(G/B.L*») HY(T,H°(G/B.L*) --- H9O(T, HY(G/B, L))
0 1 cd(T)
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Here cd(I") € Z*° denotes the cohomological dimension of I'; by definition of this
integer, entries in the E,—page to the right of those indicated here are zero. Meanwhile,
entries above the k™ row involve groups of the form H7/ (2, £*) we do not know how
to compute.

The entire proposition now follows simply by applying the Borel-Bott—Weil theorem.
For instance, if A is not regular, then all the coefficients appearing in the above rectangle
of the E,—page vanish, which immediately yields statement (i). The same is true if A
is regular, but the w € W such that w(A) is dominant satisfies £(w) > k, from which
statement (i1) follows.

In the case that £(w) < k, only the £(w)™ row is nonzero, so all relevant differentials
are zero. Using the description of the entries in this row from the Borel-Bott—Weil
theorem, statements (iii) and (iv) follow. This completes the proof. a

We now explain a connection between these computations and classical questions in
geometric invariant theory (a theme which is also explored in [28] and [43]). Note
that the complex semisimple group G is an affine algebraic group over C. For a
G—equivariant line bundle £, the representation v of G on H°(G/B, L) is a rational
representation. Therefore, given a subspace V C H°(G/B, L), its stabilizer

{geG:v(g)s—s=0forallseV}

is Zariski closed. We record this in the following proposition.

Proposition 6.7 Let G be a connected complex semisimple Lie group and A € L*" a
regular, dominant weight. If I' < G is a subgroup with Zariski closure Q < G, then

H°(T, H*(G/B, L") = H*(Q, H*(G/B, L"),

where the right-hand side is the space of Q—invariant sections of L, a
This leads to the following result:

Theorem 6.8 Let G be a connected semisimple complex Lie group, B < G a Borel
subgroup, and W a uniformized (G, G/B)—-manifold with data (2,T) and limit
set A. Let Q < G denote the Zariski closure of I'. Suppose that m,,_4(A) =0 where
n =dimc G/B.
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Let A € L™ be a regular, dominant weight and let pI': Pic®(G/B) — Pic(W) denote
the invariant direct image homomorphism. Then

HO(W, pL(£t) ~ HO(Q, H*(G/ B, £)),

where the latter is the space of Q—invariant sections. In particular, if " is Zariski dense
in G, then HO(W, pL'(L*)) =0.

Proof The isomorphisms
HO(W, pL (&) ~ HO(T', H*(G/B, £*)) = H°(Q, H°(G/ B, £))

follow from Theorem 6.6 and Proposition 6.7, respectively. If Q = G, then the irre-
ducibility H°(G/B, £*) as a G-representation implies that the space of G—invariants
is trivial. i

In the ensuing applications, we will give explicit examples where H®(W, pI (L)) is
nonvanishing.

6.4 Applications

We will now present some applications of the previous calculations: in particular
we show that, excluding some low-dimensional cases, every manifold arising from a
G—quasi-Fuchsian representation admits a meromorphic function. In this section, we
will return to the notation £; = G x; C and note that L) = Ll)f, where the latter is
the k™ tensor power. Given a subgroup H < G, we say that £y is twice H—ample if
some power Ly admits a pair of nonproportional H—invariant sections.

We begin with the following, which follows quickly from results in [43].

Theorem 6.9 Let G be an adjoint complex simple Lie group not of type Ay, A»,
or B, with principal three-dimensional embedding tg: PSL,C — G. Let G =
tg(PSL, C). Then every ample, G—equivariant line bundle £ on G/B is twice &—
ample.

Proof First, recall that ample, G—equivariant line bundles on G/ B are of the form £_
for A € L* some regular, dominant weight. Consider the graded ring R(A) =
Do H 9(G/B,L_g)) and the subring R(A)® of G-invariant elements. Define
the subset Y (1) C G/B by

Y(A) :={x € G/B:s(x) =0 for every s € R(1)®}.
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Under the hypotheses, it is shown in [43] that the complex codimension of Y (A)
is at least two. Since the vanishing locus of a nonzero holomorphic section has
complex codimension one, this implies that there exists a pair of G—invariant sections
si € HY(G/B, L_y;) for i = 1,2 with distinct vanishing loci. Then s]fz and sé‘l
nonproportional sections of £_(x, 4k,)a - a

are

Specializing now to the case of G—quasi-Fuchsian representations, this leads to a proof
of the following theorem stated in the introduction:

Theorem J Let o: 1S — G be a G—quasi-Fuchsian representation with image T,
where G is a complex simple adjoint Lie group that is not of type Ay, Ay, A3, or B;.
Let I be a balanced ideal in the Weyl group W of G. Let Wé denote the uniformized
(G, G/ B)—manitold associated to these data. For any ample, G—equivariant line
bundle £ on G/ B, the following properties hold:

(i) There exists a k > 0 such that
HOW}. pE(£¥)) ~ HO(T. HO(G/B. £*)) # 0.

(i1)) The manifold Wé admits a nonconstant meromorphic function.

Proof Asbefore we have £ >~ £_, for A € L*" regular and dominant. By Theorem 4.9,
the exclusion of types Ay, A,, Az and B, implies that m,,_4 (Aé) = 0. By
Theorem 6.6(iv),

HOWL, pL(L_i2)) = HO(T, H°(G/ B, £_i)),

which is nonvanishing for some k& > 0 by Theorem 6.9. Here, we have used that every
G-invariant section is I'-invariant (since I' C &). Thus statement (i) follows.

By Theorem 6.9 the ample bundle £_) is twice ['—ample, and thus there exists k > 0
such that £_j; has a pair of I'—invariant nonproportional holomorphic sections. The
quotient of these sections is a nonconstant I"—invariant meromorphic function on G/ B,
hence its restriction to 2 Z, descends to a nonconstant meromorphic function on W/,
giving (i1). a

As a final application of our sheaf cohomology calculations, we consider the Kodaira
dimension of uniformized (G, G/ B)-manifolds. Recall that a compact complex mani-
fold Y with canonical bundle Ky is said to have Kodaira dimension —oo (and we write
k(Y) = —o0) if HO(Y, Kg) vanishes for all d > 0. Because the flag variety G/B
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is rational, it satisfies k(G/B) = —oo. The same holds for uniformized (G, G/B)-
manifolds with sufficiently small limit sets:

Theorem 6.10 Let G be a connected semisimple complex Lie group of rank at
least two. Let B < G a Borel subgroup, and 'W a uniformized (G, G/ B)—manifold
with data (2, T") and limit set A. Suppose my,—_4(A) = 0 where n is the complex
dimension of G/B. Then k(W) = —o0.

Proof The canonical line bundle of G/B is isomorphic to L8 = L,5, where, as
before, § is half the sum of the positive roots. Therefore, we have

K ~ pL(£172D%),

For any integer d > 0, the weight (1 —2d)4 is regular and wo((1 —2d)8) is dominant,
where wy is the longest element of the Weyl group. Therefore, by Theorem 6.6(ii), we
have

HOW. Kif) = HOW, pL(£072D%) =0
for all d > 0 provided that £(wq) > 1, which is the case since the rank of G is at least

two. O

Note that the corresponding statement fails for G >~ SL, C since Riemann surfaces
of higher genus can be obtained as uniformized (G, G/B) = (SL, C, IP’(é) manifolds,
and the canonical bundle of such a Riemann surface has nontrivial sections.

7 Examples and complements

In this final section we return to the topological considerations of Section 5 and discuss
some specific examples of balanced ideals, domains, and quotient manifolds for various
complex simple Lie groups G and parabolic pairs (P4, Pp). (The survey [26] also
gives examples of balanced ideals, including some that belong to the infinite families
constructed below.)

7.1 The lower half of W

Certain ideals can be constructed easily from the length function on the Weyl group W.
Since x < y implies £(x) < £(y), the set

Wep i={x:4(x) < L}
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is an ideal in W for any integer L, and this ideal is minimally generated by ¢~!(L).
Generalizing this, if J is a subset of £~1(L + 1), then W<y U J is also an ideal, and
the minimal generating set of this ideal contains J.

This construction can always be used to produce a balanced ideal. Define the lower
half of W to be the ideal

Iy = Wettqoy

Since £(wox) = €(wo) — £(x), it is immediate that this ideal is balanced if £(wg) =
dimc G/B is odd, which is the case for all simple G of type B, = PO;,4;C,
C, =PSp,,,C, or E7, and for type A, =PSL, 4+, C when n is 1 or 2 mod 4.

In such cases, considering I 1 asan ideal of type (B, B) gives a model thickening
P, := o'y cG/B
and domain of discontinuity 2 L C G/B for B—Anosov representations. Suppose

£(wg) = 2k + 1 for k € Z. Then the model thickening has the same Betti numbers
as G/ B itself in the range 1, ..., 2k, ie

ri = bi(®y) = b;i(G/B) = €71 (@i)| for i < 2k.

Applying Corollary 5.7 gives a particularly simple expression for the Betti numbers of
the domain of discontinuity:
bi(G/B) if i <2k,
bi(Q%)= 2by (G/B) if i =2k,
bax—i(G/B) if i > 2k.

By Theorem 5.9 there is a corresponding formula for the homology of the compact
quotient manifolds.

If £(wg) = 2k is even, the construction can be modified to produce a balanced ideal.
Note that the “middle” length Wiy;q := £~ (k) is mapped to itself under left multiplica-
tion by wg. Let J C Wy,iq be a subset containing one element of each wg—orbit. Then
the set

I%,J =We@-nUJ

is a balanced ideal whose minimal generating set contains J. (In some examples,
1 1y is in fact generated by J, while in other cases there are additional generators of
length k —1.)
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Waial/2 guch sets J, this gives a large collection of balanced ideals,

Since there are 2!
all of which have the same number of elements of each length. The corresponding

generalizations of the Betti number formulas given above are

bi(G/B) if i <2k,
ri =bi(®y ;)= 1bi(G/B) if i =2k,

0 otherwise,
and by Corollary 5.7,
bi(G/B) it i <2k—2,
(71 bi(Qy ) = {bou—2(G/B) + 362c(G/B) if i € {2k =2, 2k},
b4k_2_i(G/B) if i > 2k.

7.2 Constructions for PSL, C

In preparation for the next two types of examples, we recall how some of the combina-
torial and Lie-theoretic notions specialize to the case G = A,_; = PSL,, C; general
references for this material include [6] (concerning Weyl groups), [31; 9] (concerning
flag varieties), and [16] (concerning both).

We choose the Borel subgroup B < G = PSL, C consisting of the upper-triangular
matrices. The manifold G/B is G—equivariantly identified with the set of complete
flags F = (Fy,...,Fy—1),ie F{1 C---C Fy,—1 C C" and dim¢ Fj, = k. We denote
by E the standard flag of C” in which Ej = span{ey, ..., ey}, which corresponds
to eB € G/B; here eq, ..., e, is the standard ordered basis of R”.

Standard parabolic subgroups P < G are stabilizers of partial flags within E, with
associated quotients G/ P parametrizing all flags of that type. An example we will focus
onis Py ,_1, the incidence parabolic, which is defined as the stabilizer of (E, E,—1).
Thus G/ Py -1 is the set of pairs (¢, H) of a line and a containing hyperplane.

The Weyl group W = W(PSL,, C) is isomorphic to the symmetric group S, with the
roots (respectively, simple roots) of G' corresponding to transpositions (respectively,
transpositions of adjacent elements). We identify a permutation x € S, with the tuple

(x(1),x2),...,x(n)).

The Weyl group W ,—1 of Py ,—; consists of permutations w € S, with w(l) =1
and w(n) = n. Thus, the cosets space W /W, ,_; consists of classes of permutations
W@, j)=4{G,*,...,%,j)} C Sy, fori #j.
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The Chevalley—Bruhat order has a simple description in terms of permutations. For
w € S, we define the set of ascents of w to be

Aw):={i :w@) <w(@ + 1)}.

This is a subset of {1,2,...,n—1}. We also denote by w;, ; the j™ smallest element
of the set {w(l),...,w(i)}. Then:

Theorem 7.1 [6, Theorem 2.6.3(iii)] Elements x, y € S, satisfy x < y if and only
if x;.j < y;j foralli € A(y) andall j <i. O

Note that this characterizes elements of the ideal (y) = {x : x < y} by an explicit set
of inequalities.

There is a corresponding formula for the length of an element w € S, as its number of
inversions (see [6, Proposition 1.5.2]):

(7-2) €(x)=|{(i.j):i <jand o (i) > a())}.
Thus the longest element is wg = (n,n—1,...,1).

The Schubert variety X, = BwB C G/ B is defined by an explicit set of dimension
inequalities depending on the permutation w; precisely, we have:

Theorem 7.2 [16, Section 10.5] The Schubert variety X, consists of the flags
(F1,...,Fy) such that

dim(FpﬂEq)B‘{(i,j):ispand w(j)§q}|. |

Finally, we note that the partial flag variety G/ Py ,—1 = {({, H)} can be embedded as
a hypersurface in P& x (P&™")*, which we call the incidence variety, consisting of
pairs of a vector x € C" and a linear form & € (C")* such that £(x) = 0, modulo the
action of C* x C*. Here (x, &) corresponds to the flag (C-x, ker£). Using the theorem
above, one can check that in this realization the Schubert variety Xyy(;, jy C G/ P pn—1
is cut out by the equations x; 4y =---=x, =& =---=§;_; =0.

7.3 The (1, n—1)-examples

In this section we describe how certain domains studied by Guichard and Wienhard
in [20, Section 10.2.2] are represented in the Kapovich-Leeb—Porti formalism (ie by
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Chevalley—Bruhat ideals) and what is obtained by applying the results of Section 5 to
these examples.

We define the incidence ideal to be the subset of S), given by
It p1 ={x €S8y : x(1) <x(n)}.
Equivalently, this is a union of W; ,_j—cosets, I ,—; = Ui<j W, j).
For 1 <k <n—1,let zx € S, be defined by
k it i =1,
k+1 if i =n,
n—i+2 ifl<i<n-—k,
n—i otherwise.

k(i) =

Equivalently (and perhaps more transparently), z; is defined by the unique tuple
(k,...,k +1) in which the omitted elements appear in decreasing order. Note that
zj € I p—1 and that zz is the unique longest element in the coset W(k,k +1).

Theorem 7.3 The set 11,1 C Sy is a balanced and right W, ,_;—invariant ideal of
the Chevalley—Bruhat order on S, . It is minimally generated by {z1,z5,...,2Zy—1}.

Proof Since (wox)(i) =n+ 1 —x(7) it is immediate that left multiplication by wy
exchanges I ,—1 with its complement. Thus, if this set is an ideal, then it is balanced.
We have already seen that 7; ,_; is a union of left W; ,_;—cosets (and hence right-
W1 n—1—invariant).

Next, we claim that the Chevalley—Bruhat order satisfies
(7-3) x <z if and only if x(1)<k and x(n)>k.

Before proving this, we derive the rest of the statements of the theorem from it.
An element x € W satisfies the right-hand side of (7-3) for some k if and only
if x(1) < x(n), hence the condition above is equivalent to the statement that Iy ,—; is
the union of the principal ideals (zz) for Kk = 1,...,n —1 and in particular is an ideal.
It is straightforward to calculate from (7-2) that £(z;) = %(n —1)(n—2) for all k, so
these elements are pairwise incomparable and of maximal length within 7; ,_;. This
shows {z1, z,...,zy—1} is the minimal generating set.

Finally we prove (7-3) using Theorem 7.1. First suppose that 1 <k <n—1. Then
A(zg) ={1,n—1} and we find x < z if and only if

x(D)=x1,1 <1 =z () =k

Geometry & Topology, Volume 24 (2020)



Geometry of compact complex manifolds associated to quasi-Fuchsian representations 1679

and

Xp—1,j < (Zg)n—1,j for j<n—1.

Since {x(1),...,x(n—1)} ={1,...,n} —x(n) (and similarly for zj ), the second set
of inequalities is equivalent to x(n) = zx(n) = k + 1 or, equivalently, x(n) > k, as
desired. The cases k = 1 and k =n — 1 are similar, except that z; then has only one
ascent. We omit the straightforward verification that the argument above still applies in
these cases. i

Using the right-invariance of 7 ,_; we can apply the Kapovich-Leeb—Porti con-
struction with P4 = B and Pp = P; ,_; to obtain a limit set Ay ,—; := Aél-"—l
and cocompact domain of discontinuity £2q ,_; := £2 éls”—l in the incidence variety
G/ Py yp—1 for a B—Anosov representation o: # — G of a word-hyperbolic group .

Applying Theorem 7.2 to z; we find that the associated Schubert variety X, C G/B is
characterized by dimension inequalities dim(F; N E) = 1 and dim(E; N F—1) = k.
Projecting to G/ Py ,—1 we obtain the Schubert variety

Xwik+1) = Xgomy oy = (F1, Fp1) : F1 C Ef C Fy—t}.

Taking the union of these sets over k gives the model thickening ®; ,—; := dl1n—1
in G/ Py y—1, and the limit set itself is given by

Aip—1= U {(F1, Fy—1) 1 F1 C&k (1) C Fy— for some k},
t€0coT
where & (¢) is the k—dimensional component of the flag corresponding to £(¢) € G/B.
This is the domain constructed in [20, Section 10.2.2]. Using the results of Section 5
we can now derive a closed formula for the Betti numbers of €2; ,,_; in the case of a
G-Fuchsian representation.

Theorem 7.4 This domain of discontinuity 21 ,—1 C G/P; - in the incidence
variety associated to a G—Fuchsian representation ¢: 1S — PSL, C satisfies
2n—2 if k=n-2
bop (R p—1) = '
2k (-1 {max(O,n— 1—|n—k—2|) otherwise.

Hence its Poincaré polynomial is

_ | — f2(n=1))2
px)=> bix' = ( )

W + (I’l — 1)12n_4.
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Proof Recall that ry is the number of elements of /W ,—; of length k and that
I/ Wi 1 consists of the cosets W (i, j) with i < j. By (7-2), the element of W(i, j)
of minimal length,

(G, 1,2, . 0 fein, j) € WG, j),
has length n 4 i — j — 1, hence rj is the number of pairs (i, j) with 1 <i < j <n and
n+i—j—1=k. Such pairs exist for 0 <k <n—2, and enumerating them we find

k+1 if0o<k<n-2,
r =
k 0 otherwise.

Since dimc F ,—1 =2n—3, Corollary 5.7 gives by (2) = ry +ry,—4—k . Substituting
the formula for r; we find that for all £ except n —2, only one of the terms is nonzero.
Considering the various cases for k we find

k+1 if0<k<n-2,
2n—2 if k=n-2,
2n—3—k iftn—-2<k<2n-4,
0 if k>2n—4,

bzk(Ql,n—l) =

which is easily seen to be equivalent to the formula in the theorem. We omit verification
of the corresponding closed form for p(x). a

7.4 The 2n examples: principal balanced ideals

All of the ideals discussed so far in this section have large minimal generating sets;
this follows, for example, from their having many elements of maximal length. In this
subsection we describe a family of examples of balanced ideals that are also principal,
ie generated by a single element. In more geometric terms, these correspond to model
thickenings given by a single Schubert variety.

Let G =PSL,, C, so that W >~ S,,. We have:

Theorem 7.5 The set 15, :={w € Sy, : w(2n) > n} is a principal,, balanced ideal. In
fact, I, = (A), where A= (2n,2n—1,...,n+1,...,2,1,n+1).

Proof Since (wox)(i) =2n+ 1—x(i), it is immediate from the definition that 7,

and its complement are exchanged by left multiplication by wq. Thus, if I, is an
ideal, it is balanced, and it suffices to show I, = (A).
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Examining the explicit form of A we see there is a single ascent, A(A) = {2n — 1}.
Applying Theorem 7.1 and computing A, ; we find that x € (A) if and only if

(7-4) Xop—1,j <J for j<nm and Xop—1,j < j+1 for j>n.
But note that {x(1),...,x2n—1)} ={1,...,2n}—{x(2n)}, hence for all x we have
{ j if j <x(2n),
X2n—1,j = . e
j+1 if j =x(2n).
Comparing this to (7-4), we see that x € (A) if and only if x(2n) < n, as desired. O

As mentioned above, because I, is principal, the associated model thickening ®,, :=
®'2n © G/B is the Schubert variety X . While Schubert varieties can in general have
singularities, this one is smooth: This is immediate from the pattern avoidance criterion
of Lakshmibai and Sandhya [32], or it can be verified from the description of X} using
dimension inequalities for flags. The latter will give a more detailed description and
allow us to compute the Poincaré polynomial of §2,,, := Q127 :

Theorem 7.6 The domain of discontinuity €2,, has Poincaré polynomial
(1 + Z2n—2)(1 _ t2n) 2n—2 2G+1)
(1 —¢2)2n—1 l_[ (1—1 )-

i=1

Proof For brevity, in this proof we denote by F(m) the full flag variety of C and
by F(iy, ..., ix;m) the variety of partial flags in C™ with components of dimensions
i1 <ip <---<i. Each such space is a smooth manifold. We write p[X](¢) for the
Poincaré polynomial of a space X.

The projection 7: (Fy,..., Fyu—1)— (Fyq, ..., Fy) is a smooth fibration of F(m) over
F(1,..., k;m) with fiber diffeomorphic to F(m — k). Furthermore, applying the Serre
spectral sequence shows that this bundle is homologically trivial. Thus the Poincaré
polynomial of the base of this bundle satisfies

o plFm)]
(7-5) plFQA,....kim)] = —p[&’"(m el

Applying Theorem 7.2 to the permutation A we find
Oop =Xy ={(F1,..., Fan—1) : Fn C E2p—1}.

Considering the fibration F(2n) — F(1,...,n;2n) (ic taking m = 2n and k =n above),
this description of ®,, is equivalent to identifying it with the preimage 7~ !(Y) of
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Y={(F1,...,Fp): Fy CEyp—1} >~F(,...,n;2n—1). Thus ®,, is a smooth fiber
bundle over F(1,...,n;2n — 1) with fiber F(n). Again applying the Serre spectral
sequence shows this bundle is homologically trivial and we obtain

pl®2p] = p[F(L,....0: 2n = 1)]p[F(n)].
Using (7-5) with m = 2n — 1 and k = n we find that p[F(1,...,n;2n —1)] =
plFQ2n—1)]/p[F(n—1)] and thus

pIFC2n—D]p[F(n)]

plFn-1]
Substituting the classical formula for the Poincaré polynomial of the flag variety itself
(see eg [34]),

p[q>2n] =

m—1
p[?(m)](t) = (1 _t2)1—n l_[ (1 _t2(i+1))’
i=1
and simplifying, we obtain

( _tzn) 2n—2 )
PI®2l0) = Ty [] =220y,

i=1
It follows from (7-2) that £(A) = £(wg) —n. Since it is a smooth manifold, the model
thickening ®,,, satisfies Poincaré duality in this dimension. In terms of the number ry
of elements of I of length k, this means

Tk =VL—n—k>
where L = £(wq), and the formula of Corollary 5.7 simplifies in this case to
bok(R2n) = ric + rie—(n—1)-
Returning to Poincaré polynomials, this shows
PIQ2nl(1) = (1 +12"72) p[®@24] 1),

and substituting the expression for p[®,,](¢) obtained above, the theorem follows. O

7.5 Homotopy types

For most complex adjoint groups G there are many balanced ideals in 1 C W ; it is
natural to ask whether these correspond to topologically distinct quotient manifolds WY,
We will verify this for two of the Chevalley—Bruhat ideal examples studied thus far,
applied to G—Fuchsian representations:
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Theorem 7.7 Let G = PSL,,C, wheren =2j 4+ 1 and j € Z. Let I%,Iz,, cw
denote, respectively, the lower half and principal balanced ideals constructed above.
Let o: 11 S — G be a G—Fuchsian representation. Then the quotient manifolds
W% and W,,, associated to ¢ are not homotopy equivalent.

Proof In this case L = £(wg) =2k + 1, where k = j(4j + 3). By Corollary 5.7 we
have for any balanced ideal 7 that

b (1) = 21 (I) = 21¢7 (k) N 1.
Applying this to 1 1 and using (7-1) we have
bak(S21) = 2b24 (G/B) = 217 (k)|
Now consider the element p € S5, given by the tuple
w=Qj,....j+L4j+2,j,.... 1,4 +1,....2j +1),

where in this expression a, ..., b denotes the integers between a and b in decreasing
order. Then u & I, since w(2n) =n =2j + 1. A straightforward application of (7-2)
shows £(u) = k. As p € £~V (k)— I, we have [€~1 (k) N I,,| < 2|~ (k)|, which
by the formulas above gives

(7-6) bk (R224) < bak (Q%)-

Applying Theorem 5.9, and using the vanishing of odd homology groups of ! from
Theorem 5.6, we have for any balanced ideal I that

bakt1 (WD) = b1 (S)bar ().

Combining this with (7-6) we find byx+1(W2ay) < bog41 (W% ), and these manifolds
are not homotopy equivalent. |

7.6 The PSL3;C case

In this final subsection, we consider G = PSL3; C and give an alternative description of
the limit set and domain of discontinuity in G/ B for a G—Fuchsian group. This allows
us to verify Conjecture 1.1 in this case. Chronologically, our study of this example
preceded the other results of this paper, and indeed, the main results of Sections 5-6
resulted from an attempt to generalize aspects of the picture described below to other
complex Lie groups.

Geometry & Topology, Volume 24 (2020)



1684 David Dumas and Andrew Sanders

For G = PSL;C, there is unique balanced ideal I = I 1= = I1,2 in the Weyl group
W ~ S3. Here I = {e,ay,a,}, where «; are the snnple root reflections, or in
the permutation model, I = {(1,2,3),(2,1,3),(1,3,2)}. Because [ is fixed, we
write ®, A, @, and W, for the model thickening, limit set, domain, and quotient
manifold, dropping the decoration by I from our notation.

Let o: 718 — PSL3C be a PSL3; C-Fuchsian representation, and in the rest of this
section let ¥ = G/B ={({, H) : £ C H} denote the flag variety. Let X C J denote
the principal curve and ¢ = fpsp,C: IP’(I: — X its holomorphic parametrization. Let
Y C Pé denote the projection of the principal curve under the map (¢, H) — £, and
@: P(é — Y the composition of ¢ with the same projection.

In what follows we regard an element £ € ]P’é as a point in a complex surface, rather
than as a 1-dimensional subspace of a 3—dimensional vector space. Also, we identify
the symmetric product Symd (IP’1 ) with the set of effective divisors of degree d on P,
so for example an element of Sym2 (IP ) is expressible as p + ¢ for p,q € IP’I

There is a biholomorphic map P2 ~ Sym? (]P’(é) which maps £ € IP’C to p+gq if £ lies
on distinct tangent lines 7, (,)Y and T4 Y andto 2p if £ = ¢(p). Dually there is an
identification (IP’ )* with Sym? (IP’ ), where we regard H € (IP’ )* as a projective line
in IP’(% and map H to the sum (with multiplicity) of the ¢—preimages of its intersection
points with Y.

Since P; ,—1 = B for this group, following the discussion at the end of Section 7.2,
we have the embedding F — IP’Z X (IP> )*. Composing with the maps introduced above
we then have & — Sym2 (]P’ ) X Sym (]P’ ). It is easy to check that the principal curve
X C F maps to the set {(2p,2p):p € IP’I ¢} and that (p) = (2p,2p). Recall that the
limit curve of g is the circle {o“(IP’Ié) C 97.

In order to give a geometric description of the limit set and domain of discontinuity, we
further identify P(é with the boundary at infinity of the 3—dimensional real hyperbolic
space H?3, for example using stereographic projection* to map P(é to the unit sphere
in R3 considered as the boundary of the unit-ball model of H?3. Let ¥p,q denote the
hyperbolic geodesic with ideal endpoints p, g € IP’&.

Lemma 7.8 A point x in Sym? (IP’ ) x Sym? (IP’(C) lies in the image of J if and only
if it satisfies one of the following mutually exclusive conditions:

4More intrinsically, we could view H3 ~ SL, C/SU(2) as the space of hermitian forms on the vector
space HO(Y, (1)) that induce a given volume form — a space which is compactified by Y itself.
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e x=(p+gq,r+s) where p, q, r, and s are pairwise distinct, and the hyperbolic
geodesics yp 4 and y, s intersect orthogonally, or

e x=2p,p+gq) where p#gq, or
* x=(p+4q,2q) where p #q, or
e x=(2p,2p)eX.

Proof Suppose that x = (&,n) corresponds to a flag (¢, H) where the divisors
£,n€Sym? (IP’(I:) have a point in common, say p. By the construction of the embedding
given above, this means

e the projective line H C ]P’(é passes through Y at ¢(p), and

* the tangent line Ty, ()Y contains £.

Since £ € H, both ¢(p) and ¢ liein T,(,)Y N H. Since distinct projective lines intersect
in a single point, we have either £ = ¢(p), in which case £ =2p, or Ty(p)Y = H, in
which case n = 2p, or both.

This shows that x has one of the given forms, with the exception of the orthogonality
condition in the first case. Hence we must show that for distinct p, ¢, r, and s the
geodesics yp,4 and ;s intersect orthogonally in H?3 if and only if the corresponding
pair of a point and projective line in Pé form a flag, ie the projective line spanned
by ¢(r) and ¢(s) is concurrent with the tangents 7, )Y and T4 Y. This can be done
with an elementary explicit calculation, but we prefer to give a coordinate-free proof.

Given two points p,q € PL, the half-turn Tpg: IP’(gj — IP’((Ij is the unique nontrivial
holomorphic involution fixing p and ¢. Geometrically, 7, 4 is the extension to the
ideal boundary of the isometry H?* — H?* which rotates about y, 4 by angle 7. Thus
geodesics yp 4 and y, s intersection orthogonally if and only if {r, s} is an orbit of 7, 4.

Given a pair of points {u,v} C Y, we can define a map 7,,: ¥ — Y as follows:
Let H* = T,Y N T,Y, which is a point not on Y. The projective line joining H*
to w € Y intersects Y in a second point, which is 7, ,(w). (See Figure 1.) Since this

defines an involutive, nontrivial holomorphic automorphism of Y fixing # and v, it
is ¢—conjugate to a half-turn of PL, ie

Tuw(@(t) = o(1p4(1)).

On the other hand, by definition of 7, ,, the points ¢(r) and ¢(s) form an orbit if
and only if the projective line they span is concurrent with 7,Y and 7,Y. Hence
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Ty v (w)
Figure 1: Hyperbolic and projective models of a half-turn on ]P’([lj .

the g—conjugacy of 7 and t gives the desired equivalence between orthogonality and
incidence. a

We now analyze the Kapovich—Leeb—Porti construction in terms of the divisor model
of F given by the lemma. First we note that the model thickening in this case is the union
of the complex 1-dimensional Schubert varieties, ® = X5 1,3)UX(q 3,2), and it is easily
checked that X( 13y = {(E1. H) : H € (P¢)*} while X(1 3.2 ={({, E;) : L € P&}.
The corresponding description of A is that it consists of flags {({, H)} in which
either £ € (p(IP’]llg) or H is tangent to Y along (p(IP]Il&). In terms of divisors, then, A
consists of pairs (&, n) where either § =2p or n =2p for p € IP’HIR.

Let H4+ and H_ denote the connected components of IP’(I: — ]P’]é, and Xy the compact
Riemann surfaces that are the quotients of @(H4) C Y by the p—action of m;S.
Considering each of the cases from Lemma 7.8, we find that Q@ = J — A can be
described in the divisor model as Qo U E4 U E Tu E_UE*, where

o Qo={(p+q,r+s):pFqgandr #s}NT,
e Ei={Q2p.p+q):pecHi}, and
o Ei={(p+q.2p):peHy}.
Note that these sets are pairwise disjoint except for
ELnEL ={2p.2p): p e Hy} = §(Hy).
Now we arrive at the desired hyperbolic-geometric description of 'W. Let

00: 1S — PSL,R < PSL, C ~ Isom™ (H?)
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be the Fuchsian representation through which o factors or, equivalently, so that
@: P(é — X intertwines g( acting on IP’(é with o acting on J. Let Ny denote the
oriented orthonormal frame bundle of the quotient oo (1. S)\H?> and define

N = No/(Z/2xZ]2),
where (i, j) € Z/2 x 7./2 acts on an orthonormal frame (v;, vy, v3) € TxH? by
(v1,v2,v3) = (=1 1, (=1)7va, (=1 v3).
Since 0g(1S)\H? ~ S xR, we have Ny >~ S x R x SO(3) and N ~ S xR x B,
where B =SO3)/(Z/2x7Z]2).

Theorem 7.9 The quotient o(71S)\Qo is diffeomorphic to N, and hence W =
o(1S)\Q is a compactification of N. The boundary of this compactification is the
union of the four complex surfaces

each of which is biholomorphic to a IP’& —bundle over Xy or X_, and which intersect
only in the complex curves Ey NE*¥ = X4 and E_NE* = X_.

Proof Using the divisor model, map (p + ¢,r + 5) € Q¢ to the positively oriented
orthonormal frame (v, v2,v3) at Yp g N yps € H?3 such that vy is a unit vector
along yp.4 and v, is a unit vector along y, ;. While there are two choices for each
of v and v,, the result is a well-defined point in the quotient of the frame bundle of H?
by Z/2x7Z/2. This map is easily seen to be PSL, C—equivariant, and both spaces have

Figure 2: Stratification of the PSL3; C quotient manifold W consisting of the
open stratum N, the I[J’(lj —bundles £+ and E ;, and the Riemann surfaces X4 .
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transitive, smooth PSL, C—actions with the same isotropy, so it is a diffeomorphism.
By equivariance it descends to the desired map o(71S)\Q2¢ — N.

Lemma 7.8 describes €2( as an open, dense, and p—invariant subset of the cocompact
domain of discontinuity €2, hence W is a compactification of o(7r1.5)\¢. It remains
to verify the given descriptions of the quotients of E+. We have already seen that
Ein Ei = @(H4), which has quotient X1 . To see that £y isa P&—bundle over X4,
note first that E+ ~ Hy x IP’(é by the map (2p, p+¢) +— (p,q). Thus E+ is a trivial
Pé—?undle over H , and the projection (2p, p + q) — p intertwines the p—action
on E with the gp—action on H, and g acts on E4 by a discontinuous group of
bundle automorphisms. The quotient E is therefore a locally trivial P&—bundle
over 0o(m1S)\H+ ~ o(m S)\@(H ) = X4. The cases E_ and E} are handled
similarly. a

The decomposition of W described above is pictured schematically in Figure 2.

Since the oriented orthonormal frame bundle of 3—dimensional hyperbolic space is
PSL, C—equivariantly isomorphic to PSL, C, Theorem 7.9 equivalently describes W
as a compactification of the quotient g¢(mr1 S)\PSL,C/(Z/2 % Z/2).

Finally, we will show that the divisor model and hyperbolic picture of W lead to a
verification of Conjecture 1.1 (on the existence of a fiber bundle structure) in this case.
Such a fiber bundle structure is easy to construct for the open, dense set N C W: There is
a map from the frame bundle of H? to H? which composes the projection of the frame
bundle to its base with the orthogonal projection from H? to the totally geodesic H?
preserved by PSL, R. This map is (Z/2 x Z/2)—invariant and PSL, R—equivariant;
taking the quotient by Z/2 x Z /2 and using the identification of Theorem 7.9 we
obtain an induced PSL,R—equivariant map

7 Qo — H2.

Taking a further quotient by o (71 S), amap 7: N — S =~ (0o (71 S)\H?) is obtained.
The identification of N with a product, N >~ § xR x B, can be made in such a way
that the map 7 is simply projection onto the first factor.

To show that W is also a fiber bundle, we extend 7 and 7 to 2 and ‘W, respectively:

Theorem 7.10 The map 7: 2y — H? extends to a proper PSL, R—equivariant con-
tinuous map 7: Q — H?2. Therefore,
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(i) €2 has the structure of a PSL, R—equivariant continuous fiber bundle over H?
with fiber a compact topological space F,

(i)  is homeomorphic to H? x F, and

(iii) the quotient manifold W = I'\Q2 is a continuous fiber bundle over S with
fiber F.

Proof Statements (i)—(iii) are simple consequences of the existence of such a map 7 :
Because H? is a homogeneous space of PSL, R, a continuous equivariant map from a
PSL, R—space to H? is necessarily an equivariant locally trivial fibration. The fiber is
compact by properness of 7, so (i) follows. Since H? is contractible this bundle is
trivial, giving (ii). Finally, using the equivariant structure of the bundle 7: Q — H?
we can take the quotient by oo (7r1.S) to obtain (iii).

Now we construct 7. Let Q' = Q — Q¢, which is a closed set. Since we seek an
extension of the map 7, it suffices to define 77 on the set @/, which in the divisor
model consists of pairs of the form (2p, p + ¢q) or (p + ¢,2p) with p & IP’]é. Let
: Pl — P — H? be the extension to the ideal boundary of the orthogonal pro-
jection H?® — H?; equivalently IT is the union of the natural PSL,R—equivariant
diffeomorphisms H — H? and H_ — H?2 Define

7@2p.p+q)=T(p) and 7(p+q.2p)=T(p).

This is evidently a continuous and PSL, R—equivariant map " — H?, since the map IT
itself has these properties and the two definitions above agree on their common domain

{2p.2p): p € P{ — Py}
It remains to show that 7 is continuous on the entire domain 2 and that it is proper.
Both will follow by elementary geometric arguments.

For continuity, since Q' is closed, it suffices to consider a sequence w, € Q¢ converging
t0 weo € R/ and to show 7 (wy) — 7 (weo). We suppose the limit point has the form
weo = (2p, p +¢q) with p € Hy, the argument in the other cases being completely
analogous. Since w, € Qq, we can write w, = (pn + p,,, Py + qn) Wwith each of
the sequences {p,}. {p,}, and {p,} converging to p and with g, — ¢. Recalling
the construction of 7 and the map from the frame bundle to 2 from the proof
of Theorem 7.9, we see that 7 (w,) is the orthogonal projection to H? of the point
Yousph O Vpilign € H.

Consider the disk D C H 4 of radius € centered at p with respect to the Poincaré metric
of H . The orthogonal projection to H? of any geodesic in H? with ideal endpoints
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in D is contained in the e—disk centered at T1(p) = 7 (weo). For large enough n we
have pp, p),. pn € D, and 7 (wy) is the projection to H? of a point on Ypn,p), » ENCE
dp2 (7T (wn), T(Weo)) < €. Thus 7T (w,) = 7 (wso) as 1 — 00, and 7 is continuous.

To see that 7 is proper, we consider a compact exhaustion of € constructed by taking
complements of small open neighborhoods of A. Recall A consists of divisor pairs
of the form (2p, p +¢q) or (p +¢,2p), where p lies on }P’]é. Fix an auxiliary metric
on IP’& and define N (A) to consist of divisor pairs (p + ¢,r + s) in which there
is a disk of radius ¢ in ]P’(é with center in Pﬂé which contains at least three of the
points p, g, r,and s.

Fix a basepoint xo in H? (which we could take to be the origin in the unit-ball model
of H?3). Then for each R > 0 there exists ¢ = &(R) > 0 such that if y € H3 lies in
the hyperbolic convex hull of a disk on ]P’((lj of radius ¢, then dy3(xp, y) > R. That is,
a half-space in H? bounded by a sufficiently small circle is far from x.

We claim that if @ € Ng(A) N2, then 7 (w) lies in such a half-space, and thus is far
from x¢ for ¢ small enough. To see this, first consider w € Ng(A) N 2, which we
can write as w = (p + ¢, 7 + ) with p, ¢, r, and s distinct and so that p, ¢, and r
lie in an e—disk D which is centered on IP’]IIR. Let B be the half-space in H? with ideal
boundary D; note B is invariant by reflection in H? and D is invariant by inversion
in P]é. Then 7 (w) = 7 (w) is the orthogonal projection to H? of a point x € y, 4 C H>.
Since both x and its reflection X in H? lie in B, so does the segment joining them.
The intersection of this segment with H? is the orthogonal projection of x to H?Z,
which is 7 (w), so 7(w) € B.

The remaining case is that w € @/, in which case we can write ® = 2p, p + q)
or w = (p+4q,2p), with p in an e-disk D of the type considered above. Then
7(w) = II(p), and II(p) € B because it lies on the geodesic y, 5, where p is the
inversion of p in P, and p, p € D.

Now if w, € Q satisfies w, — 0o, then for each R > 0 we have for all sufficiently
large n that w, € Ny(g)(A). The argument above shows dy2(xg, 7 (w,)) > R for
such 7. Thus 7 (w,) — oo in H? and 7 is proper. O
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