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Salem number stretch factors and totally real fields
arising from Thurston’s construction

JOSHUA PANKAU

In 1974, Thurston proved that, up to isotopy, every automorphism of a closed orientable
surface is either periodic, reducible, or pseudo-Anosov. The latter case has led to a
rich theory with applications ranging from dynamical systems to low-dimensional
topology. Associated with every pseudo-Anosov map is a real number A > 1, known
as the stretch factor. Thurston showed that every stretch factor is an algebraic unit but
it is unknown exactly which units can appear as stretch factors. We show that every
Salem number has a power that is the stretch factor of a pseudo-Anosov map arising
from a construction due to Thurston. We also show that every totally real number field
K is of the form K = Q(A + A1), where A is the stretch factor of a pseudo-Anosov
map arising from Thurston’s construction.

11R80, 37E30, 57M99

1 Introduction

A homeomorphism ¢ from a closed orientable surface Sg to itself is called pseudo-
Anosov if there is a pair of transverse measured foliations Fy and F, of Sg in which
¢ stretches F, by a real number A > 1, and contracts Fy by a factor of A~!. The
number A is known as the stretch factor of ¢. Thurston showed in [10] that the stretch
factor of any pseudo-Anosov map is an algebraic unit whose degree over QQ is bounded
above by 6g — 6. It is an open problem as to exactly which algebraic units appear as
stretch factors of pseudo-Anosov maps.

There are several well-known constructions of pseudo-Anosov maps. Thurston provided
a construction, known as Thurston’s construction, which describes pseudo-Anosov
maps as products of Dehn twists around simple closed curve that divide the surface into
disks. We will give an overview of this construction in the next section but for a more
complete treatment see either Laudenbach [4, Exposé 13] or Farb and Margalit [3].
In [7], Penner describes another construction involving products of Dehn twists. These
constructions can produce the same pseudo-Anosov map but there are pseudo-Anosov
maps that arise from one and not the other. In a recent paper [9], Shin and Strenner
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showed that if A is a stretch factor of a pseudo-Anosov map coming from Penner’s
construction then A does not have Galois conjugates on the unit circle, whereas Hubert
and Lanneau [5] showed that if A is a stretch factor coming from Thurston’s construction
then Q(A 4+ A1) is a totally real number field, for which we provide a proof in the
next section.

Here we will focus on Thurston’s construction, and a certain type of algebraic unit
known as a Salem number. Salem numbers have complex conjugates on the unit circle
so they cannot arise as stretch factors from Penner’s construction. On the other hand,
there are Salem numbers that appear as stretch factors from Thurston’s construction,
and many of the smallest known stretch factors are Salem numbers. A natural question
to ask is if we can get every Salem number as a stretch factor. We prove the following:

Theorem A For any Salem number A, there are positive integers k and g such
that Ak is the stretch factor of a pseudo-Anosov homeomorphism of Sg arising from
Thurston’s construction, where g depends only on the degree of A over Q.

As stated, g depends only on the degree of A over Q, but we will make the bound
on g explicit in the proof of Theorem A using Proposition 3.2 below. As for k we
do not explicitly calculate a bound, but by following the proof of Theorem A, one can
take k to be the smallest integer such that Ak satisfies a finite list of inequalities.

Now, since we know that Q(A + A1) is a totally real number field when A is a stretch
factor from Thurston’s construction, it is natural to ask which totally real number fields
arise this way. We also prove:

Theorem B  Every totally real number field is of the form K = Q(A 4+ A~!), where A
is the stretch factor of a pseudo-Anosov map arising from Thurston’s construction.

The structure of the paper is as follows: In Section 2 we discuss Thurston’s construction,
highlighting the information that will be relevant to results of the paper. In Section 3
we discuss a new way of constructing a closed orientable surface from a nonsingular
positive integer matrix. This will allow us to convert our algebraic results back into
topological information, which will be important for proving both Theorems A and B. In
Section 4 we define Salem numbers and discuss their relation to Thurston’s construction,
then prove Theorem A in Section 5. In Sections 6 and 7 we develop some algebraic
number theory and conclude by proving Theorem B.
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2 Thurston’s construction

In this section we give an overview of Thurston’s construction of pseudo-Anosov maps.
Our goal is to provide the basic framework of the construction and establish some of
the key ideas that we will use in this paper. For a more in-depth discussion see [4].
We also provide an alternative proof of the result from Hubert and Lanneau [5] that
if A is a stretch factor of a pseudo-Anosov map arising from this construction then
Q(A + A1) is a totally real number field. We begin with the following definitions:

Definition 2.1 A multicurve C = {C{,C,,...,Cy} on a surface S is a union of
finitely many disjoint simple closed curves on S. For the purposes of this paper we
will also require that each C; is essential, ie not isotopic to a point, and no two C;’s
are parallel, ie not isotopic.

Definition 2.2 Let C ={Cy,...,C,} and D={Dy,..., Dy} be a pair of multicurves
on a closed orientable surface Sg. We say that C U D fills S, if every component of
S¢ —(C U D) is a disk. We also say that C and D are tight if i (C;, D;) = |C; N Dj|,
where i(-,-) denotes the geometric intersection number.

We will denote the Dehn twist about a simple closed curve o by 7, with the convention
that we are twisting to the right with respect to the orientation of Sg. We now give an
overview of Thurston’s construction following the discussion given in [6].

Theorem 2.3 (Thurston’s construction) Suppose that C = {Cy,...,Cy}, D =
{D1,..., Dp} are tight, filling multicurves on a closed, orientable surface Sg. To
each C; € C assign an integer n; > 0 and to each D; € D assign an integer m; > 0.
Then the maps
— n — mj
Tc = ]_[ T¢ and Tp = ]_[ T,
i J

can be represented by matrices in PSL(2;R) and any word 6 = w(T¢, Tp) which
corresponds to a hyperbolic class [0] € SL(2; R) is pseudo-Anosov with stretch factor
the larger of the two eigenvalues.
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Figure 1: A pair of tight, filling multicurves on S, with cocells at each vertex.

The first step in this construction is to give a branched flat structure to Sy, that is, a
way to view the surface as a flat manifold except at a finite number of points. We do
this by describing a way of decomposing the surface into glued-up rectangles. Let
C={Ci,....,Cp} and D ={Dy,..., Dy} be tight, filling multicurves on Sg. Then
C U D defines a cell structure on S since the complement of C U D is a union of
disks. We define a dual cell structure of C U D where we take a covertex for each cell,
a coedge for each edge, and a cocell for each vertex. In a neighborhood of each vertex,
we see four segments originating from the vertex, so each cocell will have four sides.
We can think of the dual cell structure as placing rectangles on each vertex and then
identifying sides of the rectangles that have an arc of some C; or D; between them.

Assigning lengths to sides of the rectangles allows us to identify each cocell with a
rectangle in R?. So we can view S ¢ as a union of these metric rectangles, hence we
have given Sg a branched flat structure. See Figure 2. There is quite a bit of choice
for the length of the sides of each rectangle and this freedom can be used to show the
following:

Proposition 2.4 Assign a positive integer n; to each C; € C and a positive integer
mj to Dj. Then there is a branched flat structure on Sg for which both the maps

Tczl_[Tg; and TD=]_[T,’)’7
; )

J
are affine.

By affine we mean that lines in the branched flat structure are mapped to lines. The
Dehn twists about the C; and Dj act on the branched flat structure by skewing the
rectangles, so we wish to find a choice for side lengths so that the slope of the sides after
twisting 7; times about C; is constant in 7. Similarly, twisting /; times about D; is
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Figure 2: S, as a union of rectangles; each side has length 1.

constant in j. We require that the height of each rectangle lying along C; have constant
height /; and that each rectangle lying along D; have constant width £;. If we let
i(Dy,Cs) = Qs then it can be shown that T¢ is affine if

hi
nj Zr L, Qri

where 6 is the angle between the image of the vertical edges along C; with the

tan(0) = for all i,

horizontal edges along C; after skewing by T¢ . Similarly, the condition that 7p is
affine is

i
mj Y s hs Qs
It can be shown that the choice of ¢; are from a Perron—Frobenius eigenvector with

eigenvalue v of the matrix MQNQT, where Q;; = i(D;,C;) and M and N are
diagonal matrices whose diagonal entries are m; and n;, respectively. The #; come

tan(¢) = for all ;.

from a Perron—Frobenius eigenvector, also with eigenvalue v, of the matrix NOT M Q.
These give dimensions of the rectangles in which T¢ and Tp are affine. With our
chosen convention of twisting, these lengths give representations (after some rescaling
of the £;)

11 10

which are matrices in PSL(2; R). Now any word ¢ = w(7T¢, Tp) such that [¢] €
SL(2; R) is hyperbolic (|tr([¢])| > 2) will be pseudo-Anosov. Since [¢] is hyperbolic,
it has two real eigenvalues, A and A~!, the stretch factor of ¢ is |A|, and all lines
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parallel to the eigenspaces descend to transverse measured foliations on Sg. We end
this section by giving a short proof of a theorem by Hubert and Lanneau [5].

Theorem 2.5 (Hubert and Lanneau) If A is the stretch factor of a pseudo-Anosov
map arising from Thurston’s construction then Q(A + A~!) is a totally real number
field.

Proof Let C and D be tight, filling multicurves on a closed orientable surface, and let
M, N and Q be nonnegative integer matrices defined as above. Consider the matrix

1/2 1/2
A~ 1 0 M'“QN -
N /2 QTM1/2 0
This A is symmetric, so it has real eigenvalues, which means
A2_ MI/ZQNQTMI/Z 0
- 0 NI/ZQTMQNI/Z

has nonnegative eigenvalues, hence M /2QNQT M '/2 has nonnegative eigenvalues.
Conjugating this matrix by M 1/2 gives MONQT, thus MONQT has nonnegative
eigenvalues. This tells us that v is totally nonnegative, so Q(v) is totally real. Now, if
A is a stretch factor arising from the above construction then A is a root of a degree 2
polynomial in Q(v)[x] of the form

x2—A+ A Hx+1,

so A+ A1 € Q(v), and therefore Q(A 4+ A~1) is also totally real. O

3 Constructing surfaces from positive integer matrices

In this section we describe a new construction in which we build a closed orientable
surface S from a nonsingular positive integer matrix Q, where on S are two tight,
filling multicurves C and D whose intersection matrix is Q. This construction serves
as the central link between the algebraic results of this paper and topological ones. We
will need it to prove both Theorems A and B, so we state and prove it here.

Theorem 3.1 Given a nonsingular positive square integer matrix Q, there is a closed

orientable surface S with tight, filling multicurves C = {Cy,...,Cy,} and D =
{Di,..., Dy} such that Q;; =i(D;,Cj).
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Proof We start by taking 7 rectangular strips, where the j® strip is divided into
>, Qij rectangles each oriented clockwise. Since the matrix Q 0T is positive, it
has a positive eigenvector with entries ;. All vertical edges along the j™ strip will
have length £;, where £; will be the width of the first Q; rectangles, and £, will be
the width of the next Q5 ; rectangles, etc. We now take the central curve of each strip
and callit C; for j =1,...,n.

Remark The choice of side lengths actually has no bearing on this proof; we could
have chosen all the side lengths to be 1 and the argument would go through the same.
We specify the above lengths in preparation for using Thurston’s construction on the
multicurves we are constructing.

Now we construct curves D; as follows: For a fixed i € {1,...,n} there are Q;;j
rectangles of size {; x £; lying along the j™ strip, and we imagine a curve that passes
from the top of the leftmost ¢; x £; rectangle through the bottom, then wraps back
around the j™ strip and passes through the next £; x {; rectangle and continues this
way until it reaches the rightmost £; x £; rectangle. The curve then continues to the
J+1° strip and wraps around each {; x £;; rectangle in similar fashion. After the
curve wraps around each strip it closes up, so we have a simple closed curve which
we call D;. This gives us gluing instructions where we glue two edges, matching
orientation, if they are connected by an arc of some D;. We also identify the two
vertical sides of each strip. See Figure 3.

D1 D2

Gi+1

Figure 3: A piece of the cell structure. Edges of different cells are identified
if there is an arc of some D; between them.
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Since we glue these strips together where each edge is identified with another, always
matching orientation, we get a closed orientable surface S. The condition that the
matrix be nonsingular ensures that no two rows are the same, which means that none
of the D; intersects a C; in exactly the same way, so no two components of C and
no two components of D are parallel. By construction, every intersection of Dj
with C; has the same sign, so the geometric and algebraic intersection numbers of
these curves are the same. This ensures that no D; forms a bigon with any Cj, hence
the multicurves C = {Cy,...,C,} and D = {Dq,..., D,} are tight. Finally, taking
the dual cell structure gives a cell structure of S whose vertices are the points of
intersection between each D; and Cj, and whose edges are arcs of some D; or Cj.
Hence, the complement of C U D are disks, so C and D fill S. O

Remark We can do this construction more generally where you label each box along
a Cj strip with some ordering of each of the D;, making sure that D; appears Q;;
times. Then you make some choice of how to connect the various D; boxes across each
strip, keeping in mind that the intersections must all have the same sign to ensure there
are no bigons. For example, you can have D; wrap around C; twice then hit C, once,
then (5 twice, back up to C; once, etc, until all the D; boxes have been connected.
This will still give an orientable surface with C and D as tight, filling multicurves that
intersect the correct number of times. For this more general construction, the genus
of the surface is difficult to ascertain as different choices in arranging the curves can
change the surface you obtain. For the construction given in the proof of Theorem 3.1
we can explicitly find the genus.

Proposition 3.2 Let Q be a nonsingular positive integer nxn matrix whose entries are
all greater than or equal to 2. If S is the closed orientable surface of genus g obtained
by following the construction given in the proof of Theorem 3.1, then g =n* —n + 1.

A proof of this is included in a forthcoming paper that will go into more detail about
properties of this construction. For now we see that this gives an upper bound for the
genus of the surface. If we use the general construction described in the above remark,
we should be able to find a smaller genus surface with tight, filling multicurves whose
intersection matrix is . We end this section by asking the following question:

Question 3.3 For a given nonsingular positive integer matrix Q, what is the minimum
genus surface that can be constructed, using the general construction, having tight,
filling multicurves C and D where Q;; =i(D;,Cj)?
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4 Initial observations

In this section we define Salem numbers, and look at two situations relating Salem
numbers to Thurston’s construction. The first observation will show that Salem numbers
arise as stretch factors of pseudo-Anosov maps coming from Thurston’s construction,
and the second will lead us to a strategy for proving Theorem A.

Definition 4.1 A real algebraic unit A > 1 is called a Salem number if A~! is a Galois
conjugate, and all other conjugates lie on the unit circle.

From this definition we can deduce the following properties of Salem numbers:

Proposition 4.2 Let A be a Salem number. Then:

(1) M is a Salem number for any positive integer k .
(2) A+ A1 is atotally real algebraic integer.
(3) The Galois conjugates of A 4+ A~! lie in the interval (—2,2).

Since A+ 7! is totally real, it is at least plausible that there are Salem numbers that are
stretch factors arising from Thurston’s construction. The following observation gives
conditions when a Salem number arises as a stretch factor from Thurston’s construction:

Observation 1 There are Salem numbers that arise as stretch factors of pseudo-Anosov
maps arising from Thurston’s construction.

Suppose you have two tight, filling multicurves C and D where |D| =2 and |C|=k;
then MONQT is a 2 x 2 matrix. If m; = m,, then it is also symmetric since M
commutes with OQNQT. This matrix has two positive eigenvalues v and p, where
v > p and which are roots of an integer polynomial

x2—ax+b,

where v+ =a and vu =b. Now T¢ and Tp are represented by the matrices in (1)
and their product gives

relmol=| ') ]

The characteristic polynomial is x> — (2 —v)x 4 1 and the polynomial

[(x)=(?=Q2=v)x+ D= Q2= wx+1)
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is an integer polynomial, and if we assume |2 —v|> 2 and |2 — | <2 then f(x) will
have two real roots, A and A~!, and two complex roots on the unit circle. This tells us
that A is a Salem number of degree 4 over the rationals.

This situation is not difficult to set up.

Example 4.3 Let C = {C;,C;,C3} and D = { Dy, D,} be the tight, filling multic-
urves on S, as in Figure 1. We will choose m| =my =n; =np; =2 and n3 = 1.
Then

T _ |84
mono =} ).

where v=74 +/17 and u =7 — +/17. We can see that |2—v|>2 and |2 —pu| < 2,
so TcTp is a pseudo-Anosov map whose stretch factor is the Salem number

h=3(+V17+V38+10V17).

The above is meant to highlight that Salem numbers arise without much effort from
Thurston’s construction, and they can appear when MQNQT is symmetric. An
obvious simplification then is if Q is symmetricand M = N = I.

Observation 2 Salem numbers can arise as stretch factors when Q is symmetric and
M=N=1

Suppose S is a surface with tight, filling multicurves C and D with |C| = |D|
whose intersection matrix Q (which is a square symmetric matrix) has A +A~! as an
eigenvalue with positive eigenvector v. Let M = N = I; then we have

MONQT = 02
So we get that

[Tc]= |:(1) ii| and [Tp]= |:_OL -l-l)u_1)2 (1):| )

I—(+A1H2 1
—A A2 1]

which gives
TelT)=|

which has characteristic polynomial x? + (A> + A2)x + 1, whose roots are —A>
and —A~2. Hence, up to projectivization, Tc Tp has A? as its stretch factor.

With the above observations in mind our strategy for proving Theorem A is as follows:
We will show that for any Salem number A there is a positive integer k for which
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A 4+ )% is the dominating eigenvalue of a positive symmetric integer matrix Q with
a corresponding positive eigenvector. From there we use the construction given in
Section 3 to build a closed orientable surface with two tight, filling multicurves having
Q as their intersection matrix. The discussion following Observation 2 shows that
applying Thurston’s construction to these multicurves with M = N = [ will give a

pseudo-Anosov map with stretch factor 22k

5 Proof of Theorem A

In this section we will assume that A is a Salem number. Some of the results here will
be used to prove Theorem B, so we state them in their full generality with the goal of
applying them to A 4+ A~!. Our starting point is the following theorem due to Estes, a
proof of which can be found in [2].

Theorem 5.1 (Estes) Let o be a totally real algebraic integer of degree n over Q,
and f(x) is its minimal polynomial. Then « is an eigenvalue of a rational symmetric
matrix of size (n + ¢) x (n + e) whose characteristic polynomial is f(x)(x —1)¢, and
ee{l,2}.

Since A + A1 is a totally real algebraic integer, then by Estes we know that there is a
rational symmetric matrix Q having the following eigenvalues: A + A~!, the Galois
conjugates of A +A~1, and 1 with multiplicity 1 or 2. Though Estes makes no claims
about the eigenvectors related to these eigenvalues, we can without loss of generality
assume that A + A~! has a positive eigenvector. We do this by using the following:

Proposition 5.2 The set O(n; Q), orthogonal matrices with rational entries, is a dense
subgroup of O(n). Consequently, SO(n; Q) is a dense subgroup of SO(n).

A proof for this can be found in [8]. We use Proposition 5.2 as follows: Since every
element U of SO(n) has the property that U ! = U7, a symmetric matrix conjugated
by an SO(n) matrix remains symmetric. Now Q has eigenvalue A + A~!, so we
conjugate Q by an SO(n) matrix so that the resulting matrix has a positive eigenvector
corresponding to A + A~!. We then perturb the entries of U so that they are all
rational and now the resulting matrix is still rational and symmetric, having a positive
eigenvector v corresponding to A 4+ A7 L.
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We now want a rational matrix having A as an eigenvalue with the goal of finding a
power of that matrix that has integer entries. Consider the matrix
m=2 1!
I 0}
where [ is the (n + e) X (n 4 e) identity matrix. We will use powers of this matrix to

find a positive symmetric integer matrix having A¥ + A% as an eigenvalue for some &
We will now establish several important properties:

Proposition 5.3 The characteristic polynomial of M is p(x)(x? —x + 1)¢, where
p(x) is the minimal polynomial of A over Q. Therefore, M has integral characteristic
polynomial, and det(M) = 1.

1

Proof We will first show that p is an eigenvalue for M if and only if £+ p™" is an

eigenvalue for Q. If p is an eigenvalue for M then there is a vector [;] such that

S ) B A

x, and thus we have Qx = (u + ™ !)x, therefore p + ™

1

SOy =u" must be an

eigenvalue of Q.

1

Now, if 4+ p~ " is an eigenvalue of Q with corresponding eigenvector x, then we

have
x ] [Ox—p x| [(p+puHx—plx] x
SN N e R AR RPN

Hence, p is an eigenvalue of M. Therefore, since A + A~! and its conjugates are
eigenvalues of Q, also A and its conjugates are eigenvalues of M. Also, 1 is an
eigenvalue with multiplicity e, so M must have an eigenvalue p such that u+u ="' =1;
in other words pu? —u + 1 = 0, hence

p=11+iv3) and p'=1(1-iv3)

(where p is a primitive 61 root of unity) and if y is an eigenvector of Q corresponding
to 1 then [M_yly] and [ Myy] are eigenvectors of M corresponding to  and !,
respectively. So if 1 has multiplicity e, then p and p~! are eigenvalues of M both
with multiplicity e. Therefore, we have shown that the characteristic polynomial of M

has the desired form.
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Finally, since A and p are algebraic units then the characteristic polynomial of M is
integral, and the product of the eigenvalues is 1, so det(M) = 1. a

The fact that det(M) =1 is true for any square matrix Q, since / and 0 commute, so
we have
det(M) =det(Q -0+ %) =1,

but most importantly this tells us that M~ exists. It is easy to check that

-1 _| 01
M= [_1 Q}
and notice that 00
-1 _
MM = [0 Q]'

We will show that this behavior holds for all powers of M.

Proposition 5.4 (skew property) MX + M™* is a block diagonal matrix of the form

Qr 0
0 9
for any integer k. Here Q. is a rational symmetric matrix whose characteristic

polynomial is gy (x)(x — a)¢, where gy (x) is the minimal polynomial of Xk + =%
and a € {-2,—1,1,2}.

Proof First we will show that for any & we have
Mk = [ Ok — Q-1 ]
Ok—1 Ok — Q- Qk—1
where Qy is an integral combination of powers of Q. We define Qg =1 and Q1= Q.
We will proceed by induction: For £k = 2 we get

2
2_|O°—1 -0
M? = [ ; _1]-
So O, =0%—1,and —I = 0, — Q- Q;. Now assume that this form holds for k;
then
ik :[ Ok — Q-1 ]
Ok—1 Qk— Q- Qk—1]"

in which case we have

kT = [Q —1}[ Ok —QOk—1 ] _ [Q'Qk_Qk—l — Ok }
I 0]|Qk—1 Ok—Q:Qk—1 Ok —Qk—1]’
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soif Qr+1 = Q- 0k — Ok—1 then we have

[Qk+1 -0k ]
Or Ok+1—0- 0]

A similar inductive argument shows that M™* has the form

|:Qk — Q- 0k Qk—l]
—Qk—1 Ok

for all k. Therefore, we have that

k —k _ |29k — Q- Ok 0

el IR P £
s0 Qr =20k — Q- Qk—1, which is an integral combination of powers of Q, so Oy
is a rational symmetric matrix. Now that we have established the skew property, where
MK + MF is a block diagonal matrix where the (1, 1)—block and the (2, 2)—block
are equal rational symmetric matrices, we can see that not only are the eigenvalues
of MK 4+ M~k of the form Vi + v,:l , Where vy is an eigenvalue of MFE, but also that
Vi + v;l is an eigenvalue of MK + M7k if and only if vg + v;l is an eigenvalue of
each diagonal block.

We immediately get from this that M+ 17k and its conjugates are eigenvalues of Q.
Since MK has % and u=* as eigenvalues, we need to determine the possibilities for
uk 4+ 7k Since p is a primitive 6" root of unity, we have the following chart, where
g% (x) denotes the minimal polynomial of XX 4 A%

k=bmod6 uk+ % Ccharacteristic polynomial of Oy
b=0 2 gr(x)(x —2)¢
b=1,5 1 gr(x)(x =1)¢
b=24 —1 gr(x)(x + 1)
bh=3 -2 gk (X)(x +2)¢
Therefore, we have proved Proposition 5.4. a

Since Qy is an integral combination of powers of @, it is clear that the eigenspaces
of Qp and Q are exactly the same for all k. Therefore, since Q has a positive
eigenvector v corresponding to A + A1, also Q has an eigenvector v corresponding
to Ak 4+ A%, The goal now is to use this, in conjunction with the next proposition, to
show that there is a k where Q. is a positive symmetric integral matrix.
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Proposition 5.5 Let M € M, (Q) such that det(M) = +1 and the characteristic
polynomial of M has integer coefficients. Then some power of M is integral.

Proof Since we can replace M with M2, without loss of generality we can assume
det(M) = 1. Let Q be the rational canonical form of M, which by assumption has
integer entries. Thus, there is a nonsingular rational matrix A such that A7 MA4 = Q.
Now 4 = %P and 471 = %P’, where

PP =cdl,

c and d are nonzero integers, and P and P’ are integer matrices. Let Q be the matrix
obtained from 2 by reducing its entries modulo c¢d. Since det(2) = 1, we have
det(Q) =1, s0 Q € SL(n;Z/cdZ). Since SL(n;Z/cdZ) is a finite group, there is a
positive integer k such that

Q%=1 mod cd,

that is, there an integer matrix B such that QX = I + ¢dB. Now
M*=AQ%A™ " = A +cdB)A™"' =1 +cdABA™" = I + PBP/,

where PBP’ is an integer matrix, and thus M k is an integer matrix. a

Since M is a rational matrix with determinant 1 and integer characteristic polynomial,
then by the above proposition there is a k such that MK is an integer matrix. This
means that Qy is a symmetric integer matrix having A 4 27* as an eigenvalue. We
have now shown that every Salem number has a power k such that 437 is an
eigenvalue of a symmetric integral matrix. Now we want to show that we can raise k&
high enough to get a positive matrix.

Each 9y is symmetric so we know there is an orthonormal basis of eigenvectors of Q.
Since there is a positive eigenvector v corresponding to A4+ A7k for any standard
basis vector e;,

ej = Civ + w;,

where w; lies in the orthogonal complement of Span{v}, which is spanned by the
other eigenvectors of Q. Thus, for each i we have ¢; = v-e; > 0. Applying 9y to
both sides gives

Qe = ;i OF +17%)e; + Qpw;.

Since A¥ is a Salem number, the conjugates of M 4 3% are real numbers in the interval
(—2,2). As we see above, the vectors making up w; are each scaled by a number
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in the interval [—2,2], but A¥ + A7% grows without bound, so eventually Qge; is a
positive vector for any i .

So, if we start with an integer k such that M¥ is integral, then M”* is integral for any
positive integer n, so choose n large enough that Q,; is a positive symmetric integer
matrix. Therefore, we have shown that for any Salem number A there is a positive
integer k such that A¥ + A= is an eigenvalue of a positive symmetric integral matrix.

With this we can finish the proof as follows: Since O is a nonsingular positive
symmetric integer matrix having 437 as an eigenvalue with positive eigenvector v,
we can use Theorem 3.1 to find a surface with tight, filling multicurves C and D
whose intersection matrix is Q. By Proposition 3.2, the genus of this surface is
g=m+e)>—@m+e)+1, where n = [Q(L) : Q]. Choosing M = N = I and
following the discussion preceding Observation 2, we see that T¢ Tp is a pseudo-
Anosov map coming from Thurston’s construction with stretch factor A2%.

Brief summary Let A be a Salem number. Using Estes we find a rational symmetric
matrix Q having A + A~!, its conjugates, and 1 as eigenvalues. Without loss of
generality we can assume that Q has a positive eigenvector v corresponding to A 4+ A"
since we can always conjugate Q by an SO(n; Q) matrix to rotate an eigenvector
of A + A~! into the first orthant. We define the matrix M = [? _6], which has A,

its conjugates, and the 6™ roots of unity p and p !

as eigenvalues. Thus, M has
determinant 1 and integer characteristic polynomial, and M ™! exists and has the skew
property where M¥ + M™% is a block diagonal matrix where the (1, 1) and (2,2)

blocks are equal; call these blocks Oy .

Each Qy has A¥ + A% as an eigenvalue, and all other eigenvalues lie in the interval
[—2,2] and by the above arguments we can power up M so that Qj is positive
and integral. Using Theorem 3.1, we know there is a surface with two tight, filling
multicurves C and D having Qj, as their intersection matrix. Applying Thurston’s
construction with M = N = I, we get a pseudo-Anosov map T¢7Tp having 22k as
its stretch factor.

6 Powers of rational symmetric matrices
Over the next two sections we will establish some final results, develop some background

algebraic number theory and prove Theorem B. We start this section by proving a
condition for when a real symmetric matrix will have a positive power and then conclude
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this section by showing that any rational symmetric matrix with a dominating eigenvalue
larger than 1 is conjugate to a rational symmetric matrix that has a positive power.

Proposition 6.1 If Q is a real symmetric matrix with a unique dominating eigenvalue
A > 1 and a positive eigenvector v, then there is some power of Q that is positive.

Sketch of proof The proof of this is very similar to the proof that Qy is eventually
positive. Every standard basis vector can be written as
e; =Civ+ w;
with ¢; > 0 for each 7, and applying 0¥ to both sides gives
lei = c,-)»kv + kai.

Since A > u for all other eigenvalues , the sum ciXko + Qk w; is eventually a positive
vector. Hence, Qk e; is eventually positive for all i. So there is a k such that Qk isa
positive matrix. |

Proposition 6.2 If Q € M,(Q) is symmetric, and has a unique dominating eigenvalue
A > 1 with corresponding eigenvector v. Then there is a matrix U € SO(n; Q) such
that UQ*UT is a positive symmetric rational matrix for some positive integer k .

Proof By Proposition 5.2, SO(n; Q) is dense in SO(n), so we can conjugate Q by an

SO(n, Q) matrix U so that A now has a positive eigenvector. By Proposition 6.1, we
know there is some k such that UQ¥UT is a positive symmetric rational matrix. O

7 Proof of Theorem B

Before getting to the proof of Theorem B we will develop some algebraic number
theory that we will use to prove the following:

Theorem 7.1 Given a totally real number field K, there is an algebraic unit o € K
suchthat « > 1, K =Q(«a), K = Q(a™) for all positive integers m , and all conjugates

of « are positive, less than 1.

First a couple of definitions:
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Definition 7.2 Given a basis ey, ..., e, for R” the e; form a basis for a free Z—
module L of rank n, namely

L=Ze169~--€BZen.

A set L constructed this way is called a lattice in R”,

It is a well-known fact that every number field K of degree n over Q has exactly
n embeddings into C. Since we are talking about totally real number fields, these
embeddings will be into R. Let oy, ...,0;, be these embeddings, where o; denotes
the inclusion embedding.

Definition 7.3 Let K be a totally real number field of degree n. We define the
logarithmic embedding of K into R” by

A(x) = (logloy(x)].....log |on (x)])

for all nonzero x € K. Note that A(xy) = A(x) + A(»), so A is a homomorphism from
the multiplicative group K* to the additive group R".

The logarithmic embedding is used to prove the Dirichlet unit theorem, which gives a
complete description of the unit group of a number field. A proof for this theorem can
be found in [1], but we will just state it:

Theorem 7.4 (Dirichlet unit theorem) Let K be a number field, r{ the number of
real embeddings, and r, the number of complex embeddings (up to conjugacy). Then
the unit group U of K is isomorphic to G x Z"'T"2~1  where G is a finite cyclic
group consisting of all the roots of unity in K.

Since we are considering number fields K that are totally real, if [K : Q] = n then we
have ry =n, r, =0 and G = {—1, 1}. Hence, the unit group of K is isomorphic to
{—1,1} x Z"! . That is, there are units u, ..., u,—; such that every unit of K is of
the form

:]:u’lﬂl . u;"fl—l ,
where the m; are integers.

The logarithmic embedding maps the unit group U of K to the hyperplane

i=1

H={(x1,...,x,,)
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In fact, if uq,...,uy—1 are the generators for U then {A(uy),...,A(u,—1)} is a basis
for H, hence A(U) is a lattice in H.

Proof of Theorem 7.1 We proceed in two steps.

Step 1 We start by proving the following claim:

Claim Suppose « is a unit that generates the field, which is bigger than 1, and all its
Galois conjugates are less than 1 in absolute value. Then K = Q(a™) for any positive
integer m.

Proof Let {03(c),...,0,()} be the Galois conjugates of «. If there is a positive
integer m such that Q(«) is a proper subfield of Q(«), then o™ has the Galois
conjugates (reordering if necessary) {o, ()", ..., o (a)™}, where k <n. Since «
and o™ are algebraic units, we have that

lawo(at) -+ - op(a)| =1
and
la™ 02 ()™ -+~ op (@)™ | = 1.
This tells us that

laoz(@) - op (@) =1,

therefore

|lok+1() -+~ on(@)] =1,
which is impossible since |o;(«)| < 1 for i =2,...,n. Therefore, K = Q(a™) for
any positive integer m. O
Step 2 Now we will find such a unit. Let uq,...,u,—; be positive generators for the
unit group of K. Since {A(uy),...,A(u,—1)} is a basis for H, we can take rational
numbers ay, ..., a,—; such that:

(1) Yi=tailoglui| > 1.

2) Y lailogloj(u;)| <0 for2<j<n—1.

(3) The entries of ajA(uq) + -+ ap—1A(ty—1) sumto 0.
(4) All entries of ajA(uy) +---+ ap—1AM(uy—1) are distinct.
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Clearing denominators gives us an integer combination
bii(uy) + -+ bp—1A(up—1)

that also has the above properties. Now take u € U to be the element

u= u?l ---ui"_‘ll.
By construction no two entries of A(u) are identical, hence o; (1) # o (u) for i # j,
so u has n distinct Galois conjugates, therefore the minimal polynomial of u# over Q
has degree n. Hence, K = Q(u). Also, by construction, log |u| > 1, so |u| > 1 but
loi(u)| <1 forall 2 <i <n, so by Step 1 any power of u generates K. Let a = u?;
then « > 1, all its conjugates are positive less than 1, K = Q(«) and K = Q(a™) for

all positive integers . a
We now have all the pieces to prove the following:

Lemma 7.5 Let K be a totally real number field. Then there is an algebraic unit o
such that K = Q(«) and « is the dominant eigenvalue of a positive symmetric integral
matrix that is the intersection matrix of a pair of tight, filling multicurves on some
orientable closed surface.

Proof Let K be a totally real number field; then by Theorem 7.1 we can find an
algebraic unit 8 so that 8 > 1, K = Q(B™) for all positive integers m, and all
conjugates of B are positive less than 1. By Theorem 5.1 (Estes), there is a rational
symmetric matrix B having B as its unique dominating eigenvalue greater than 1,
and whose characteristic polynomial is f(x)(x — 1)¢, where f(x) is the minimal
polynomial of 8 over Q. Note that f(x) has integer coefficients and, since B is a
unit, the constant term of f(x) is 1, so det(B) = *1.

Now, by Proposition 6.2 we can conjugate B by an SO(n+e¢; Q) matrix U, where there
is a positive integer k such that Q = UBKUT isa positive rational matrix; without loss
of generality assume k is even. Now, Q is a positive rational matrix whose eigenvalues
are ﬁk, its conjugates, and 1, hence the coefficients of the characteristic polynomial
of Q are integers, and det(Q) = (£D)k =1.

Applying Proposition 5.5, we know there is some positive integer £ such that Q* is inte-
gral and if we let @ = K¢ then K = Q(«), where « is the dominating eigenvalue of Q¢
which is a positive symmetric integral matrix. Now apply Theorem 3.1 to find a closed
orientable surface with multicurves C ={Cy, ..., C4e)} and D ={Dy,..., D(4¢)}
such that i (D;, Cj) = ij. a
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We end the paper by proving Theorem B, which we restate here.

Theorem B  Every totally real number field is of the form K = Q(A + A~ '), where A
is the stretch factor of a pseudo-Anosov map arising from Thurston’s construction.

Proof Let K be a totally real number field. By Lemma 7.5, we can find a unit o such
that K = Q(«) and « is the dominating eigenvalue of a positive symmetric integral
matrix Q that is the intersection matrix of a pair of tight, filling multicurves, C and D,
on a closed orientable surface S. Without loss of generality we can assume o > 2.
Applying Thurston’s construction with M = N = I, we have a? as the dominating
eigenvalue of MONQT = Q2, and the following representations of T¢ and Tp:

7e)=y 1] e mo1=] L, 7).

Multiplying these matrices gives

)
relrol=|' 5 1]

Since a? > 4, we have that [tr([T¢c][Tp])| = |2—a?| > 2. So Tc Tp is a pseudo-Anosov
map with stretch factor

A=1((@*=2)+ava®—4).

Hence, A + A ! =a?—2,andso Q(A + A1) = Q(a? —2) = Q(a?) = K. O
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