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Simplifying Weinstein Morse functions

OLEG LAZAREV

We prove that the minimum number of critical points of a Weinstein Morse function
on a Weinstein domain of dimension at least six is at most two more than the minimum
number of critical points of a smooth Morse function on that domain; if the domain
has nonzero middle-dimensional homology, these two numbers agree. There is
also an upper bound on the number of gradient trajectories between critical points in
smoothly trivial Weinstein cobordisms. As an application, we show that the number of
generators for the Grothendieck group of the wrapped Fukaya category is at most the
number of generators for singular cohomology and hence vanishes for any Weinstein
ball. We also give a topological obstruction to the existence of finite-dimensional
representations of the Chekanov—Eliashberg DGA for Legendrians.

57R17; 53D37, 53D40, 57R80

1 Introduction and main results

Weinstein domains are exact symplectic manifolds equipped with Morse functions
compatible with their symplectic structures. These domains encompass a large class of
symplectic manifolds, eg cotangent bundles, and are closely related to Stein manifolds
in complex geometry; see Cieliebak and Eliashberg [7]. The Weinstein Morse function
gives a symplectic handlebody presentation of the domain and allows one to study its
symplectic geometry via high-dimensional Legendrian knot theory. This handlebody
presentation is not unique and, like a smooth handlebody presentation, a Weinstein
handlebody presentation can be modified by a series of moves, or Weinstein homotopies,
that preserve the symplectic structure of the ambient domain; see Section 2. In this paper,
we study how these moves can be used to simplify an arbitrary Weinstein presentation.

Abouzaid and Seidel [1] introduced the complexity WCrit(W') of a Weinstein struc-
ture W as the minimal number of critical points of a Weinstein Morse function on W,
up to Weinstein homotopy. The corresponding notion for Stein domains was introduced
by Eliashberg [17]. Complexity is tautologically a Weinstein homotopy invariant. The
analog of WCrit in the smooth setting is Crit(M ), the minimal number of critical
points of any Morse function on a smooth manifold M. This is a classical invariant of
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smooth manifolds and we will study the relationship between WCrit(W) and Crit(W)
as a way of investigating the difference between symplectic and smooth topology and
the corresponding handlebody moves.

We first recall some results about Crit(M ). A priori Crit(M) is just a smooth invariant
of M. Morse proved that there is a lower bound for Crit(M) in terms of the integral
homology H«(M ;7). Smale [39] showed in the proof of the s—cobordism theorem
that if M" is simply connected and n > 6, then this lower bound is in fact sharp. More
precisely, it is possible to simplify an arbitrary Morse function on M " to another Morse
function whose number of critical points agrees with the homological lower bound. So
in this case, Crit(M) is actually a homotopy invariant of M". To simplify an arbitrary
Morse function, Smale uses certain moves called handle-slides and the Whitney trick,
which requires M" to be simply connected and n > 6. The h—cobordism theorem
generally fails without these assumptions.

In this paper, we will study how much of Smale’s s—cobordism theorem holds in the
symplectic setting. Since any Weinstein Morse function is a smooth Morse function,
we have the inequality WCrit(W') > Crit(W) and Eliashberg [17] asked whether there
are examples where WCrit(W) and Crit(W) differ. As first shown by Seidel and
Smith [37], such examples do exist. For example, Crit(B%") = 1 but any Weinstein
structure 2" on B?”" that is not symplectomorphic to (the completion of) Bsztg must
have WCrit(X?") > 2; see [7, Corollary 11.27]. In fact, WCrit(X2") > 3, since the
Euler characteristic of B2" is 1. Seidel and Smith constructed such an exotic £2” and
distinguished it from Bsztg by the presence of a Floer-theoretically essential Lagrangian
torus. Hence the proof of the inequality WCrit(X) > Crit(X) + 2 depends crucially
on J-holomorphic curve type invariants. From a Weinstein homotopy point of view,
WCrit and Crit differ because the Whitney trick, the key part of Smale’s proof of the
h—cobordism theorem, does not generally work in the symplectic setting; more precisely,
smoothly isotopic Legendrian submanifolds are not necessarily Legendrian isotopic.

Given that Crit and WCrit can indeed be different, it is natural to ask how big this
difference can be. We first note that for domains of dimension at least six, there
are infinitely many different Weinstein structures in the same almost Weinstein class
[1; 7; 32]. So, in principle, WCrit(W) can be arbitrarily larger than Crit(W). The
first construction of infinitely many exotic Weinstein structures is due to McLean [32].
He constructed a single exotic ball Ef” and then showed that 212{" = uf;l E%" , the
boundary connected sum of k copies of X2”, are pairwise nonsymplectomorphic,
distinguished by a J—holomorphic curve invariant called symplectic homology. In
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Simplifying Weinstein Morse functions 2605

particular, Ei” has a natural Weinstein presentation with at least 4k — 1 handles
(3% handles for ]_[f;l E%” and k — 1 index 1 handles) making it seem that these
structures have unbounded complexity. Later, Abouzaid and Seidel [1] constructed
infinitely many exotic Weinstein structures that do have bounded complexity.

On the other hand, recent work has shown that certain Weinstein structures have minimal
complexity, ie WCrit(W) = Crit(W). Cieliebak and Eliashberg [7] proved that flexible
Weinstein structures, which satisfy an #—principle that reduces their symplectic topology
to the underlying algebraic topology, have minimal complexity. Later Eliashberg,
Ganatra, and the author [18] constructed infinitely many examples of exotic (nonflexible)
Weinstein structures on 7*S” and showed that they also have minimal complexity.
We will show that minimal complexity holds quite generally.

1.1 Almost minimal Weinstein presentations

The above examples due to Seidel and Smith and to McLean show that there exist W
for which WCrit(W') > Crit(W) + 2. This lower bound comes from J-holomorphic
curve invariants (and some mild use of A—principles). Our main result shows that
this is the only constraint on WCrit. In the following, we say a smooth domain W 2"
(with the homotopy type of an n—dimensional CW complex) is smoothly critical if
every smooth proper Morse function has a critical point of index 7n; for example,
if H"(W?2";7) is nonzero. A smooth domain W?" is smoothly subcritical if W?"
admits a smooth Morse function all of whose critical points have index strictly less
than 7. A (smoothly subcritical) Weinstein domain is Weinstein subcritical if it admits
a Weinstein Morse function all of whose critical points have index strictly less than 7.
Subcritical Weinstein domains are flexible and hence have minimal complexity as
mentioned above [7]; see Section 2.2 for details.

Theorem 1.1 If W?"* where n > 3, is a Weinstein domain, then WCrit(W) <
Crit(W) + 2. Furthermore, if W is smoothly critical, then WCrit(W) = Crit(W).
It W is smoothly subcritical and 71 (W) = 0, then WCrit(W) = Crit(W) if and only
if W is a subcritical Weinstein domain; otherwise, WCrit(W) = Crit(W) + 2.

More precisely, let WCrity (W 2") denote the minimum number of index k critical
points of a Weinstein Morse function on W2 ; let Crit; (W) denote the same for a
smooth Morse function. Then the proof of Theorem 1.1 actually shows that

WCrity, (W?") = Crity (W?") for k <n—2
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and either

WCrit,—; (W?") = Crit,— (W?") and WCrit, (W?") = Crit,(W?")
or
WCrit,—; (W?") = Crit,_y(W?") +1 and WCrit,(W?") = 1.
The second case can only happen when Crit, (W ?2") = 0, ie W is smoothly subcritical.
So we always have WCrit, (W 2") < max{1, Crit, (W?2™)}.

Now we give some examples illustrating Theorem 1.1.

Example 1.2 If M", where n > 3, is a closed smooth manifold, then
WCrit(T*M) = Crit(T* M) < Crit(M)

for any Weinstein structure on 7* M because it is smoothly critical; if » > 6 and
w1 (M) = 0, then the second inequality is also an equality. In particular, all Weinstein
structures on 7*S" have WCrit(7T*S™) = 2; this generalizes the result in [18], where

it was proven that this holds for a particular infinite collection of exotic structures
on T*S".

Example 1.3 Any Weinstein ball X2” that is smoothly subcritical with Crit(X2") = 1
has either WCrit(£?") = 1 or 3. Since m;(2?") = 0, the structure is Weinstein
homotopic to the standard structure B2” if and only if WCrit(£?") = 1. In particular,
McLean’s exotic structures 212{”, which have natural presentations with at least 4k — 1
critical points, can be Weinstein homotoped to presentations with just 3 critical points,
corresponding to handles of index 0, n —1, and ». They are all nonstandard structures
and so WCrit(Z,zc”) =3.

Our proof of Theorem 1.1 relies on Murphy’s A—principle for loose Legendrians [33]
(and its consequences for flexible domains) as well as the smooth Whitney trick. Both
of these results hold only for n > 3, hence our restriction on dimension.

Question 1.4 Is WCrit(W#) < Crit(W#) + 2 for any Weinstein domain W4?

1.2 Flexible subdomains

Our main result Theorem 1.1 essentially follows from the following theorem. For
a Weinstein domain W 2" where n > 3, let Wﬁzeﬁ be the unique flexible Weinstein

structure almost symplectomorphic to W?2"; see Section 2.2.
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Theorem 1.5 Any Weinstein domain W 2" where n > 3 can be Weinstein homotoped
to WZ" U C?", where C?" is a smoothly trivial Weinstein cobordism with two critical

points of respective indices n — 1 and n.

This result implies that the smooth topology and the symplectic topology can be
separated in the sense that all the smooth topology can be put into a symplectically trivial
(flexible) domain Wﬁzez while all the symplectic topology can be put into a smoothly
trivial cobordism C?", which is a smooth collar of the boundary of W 2" . In particular,
Theorem 1.5 shows that Wyex is a Weinstein subdomain of W. This extends previous
work of Eliashberg and Murphy [19], who proved that Wy, is a Liouville subdomain
of W, ie W\ Wje is an exact symplectic cobordism, perhaps without a compatible
Weinstein Morse function. The decomposition in Theorem 1.5 has several applications,
explored in later work; for example, it is used to prove an existence /i—principle for
regular Lagrangians with boundary in arbitrary Weinstein domains as well as regular
Lagrangian caps [29] and construct “maximal” Weinstein domains that contain a
complicated set of Lagrangians [30]. Theorem 1.5 implies most of Theorem 1.1. The
presentation in Theorem 1.5 shows that WCrit(W) < WCrit(Wgex) + 2. Since flexible
structures have minimal complexity [7], WCrit(Wgex) = Crit(W). Combining these
results, we get WCrit(W) < Crit(W') 4 2, the first claim in Theorem 1.1. The proof
of the smoothly critical case of Theorem 1.1 is similar.

Flexible Weinstein domains are defined only for #n > 3. The analog of these domains
for n = 2 are Weinstein domains whose index 2 handles are attached along stabilized
Legendrians; we will call these stabilized domains. However, neither stabilized Legen-
drians nor stabilized domains satisfy an A—principle and so we do not know whether
Theorem 1.1 holds for n = 2. However an analog of Theorem 1.5 holds for n = 2 if
we replace flexible domains and loose Legendrians with these analogous domains and
Legendrians respectively.

Theorem 1.6 Any Weinstein domain W* can be Weinstein homotoped to V* U H?,
where V* is a stabilized domain that is simply homotopy equivalent to W* U H!.

The notation Hj denotes a Weinstein handle attached along an isotropic attaching
sphere A, and we write H" if we do not specify the attaching sphere; see Section 2.
Theorem 1.6 cannot be improved so that V# is diffeomorphic to W*U H . For example,
there is a unique Weinstein structure on 7*72 and it has nonvanishing symplectic
homology — see Eliashberg [16] and Wendl [40]; the same holds for 7*T2 U H' [7].
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On the other hand, stabilized domains have vanishing symplectic homology and so
T*T? U H' does not admit a stabilized Weinstein structure. The reason for this is
that stabilizing a 1-dimensional Legendrian knot changes its Thurston—Bennequin
invariant, which affects the framing used to attach the Weinstein handle and hence the
intersection form of the resulting Weinstein domain.

Theorem 1.5 shows that any Weinstein domain W 2" where n > 3 can be presented
as a flexible domain Wﬂzeg U H"! plus a single critical handle. In fact, the proof of
Theorem 3.1 is a bit more explicit about the single extra handle.

Corollary 1.7 Every Weinstein domain W?2" where n > 3 can be Weinstein ho-
motoped to a subcritical domain Vg, with handles attached to the Legendrian link
AL TIAp_; A C0Vsyp such that Ay L --- 1 Aj_; is a loose link and Ay, is
a loose Legendrian.

Even though all of the Legendrians in Corollary 1.7 are individually loose, the entire
link A; II--- 1 Ag_q LI Ax may not be loose, ie the loose charts of A; intersect Ay
and the loose chart of Ay intersects A;. Otherwise all Weinstein domains would
be flexible. So the attaching Legendrians are themselves symplectically trivial but
their linking is symplectically nontrivial, ie the symplectic topology of the domain is
captured in this linking. Of course, Aj; becomes nonloose once we attach handles
to Ay,...,Ar_; (and vice versa).

Now we present an example demonstrating Theorem 1.5.

Example 1.8 Any Weinstein structure on 7*S” where n > 3 can be Weinstein
homotoped to 7*Sf, U H n=1'y H} for some Legendrian A in the contact manifold
d(B21U H"1). A slightly modified version of Theorem 1.5 shows that 7*S™ can
also be homotoped to B2" U Hy ; this is why we always have WCrit(7*S") =2 in
Example 1.2. We can reformulate this as follows. Let Legenovian((Y, £); Ag) denote
parametrized Legendrians in the contact manifold (Y, &), up to Legendrian isotopy, that
are in some fixed Legendrian formal isotopy class Aq. Let X2” be an almost Weinstein
domain, ie an almost complex domain with the homotopy type of an n—dimensional
CW complex; see Section 2. Then let QWeinstein(X 2") denote Weinstein structures
on X2" up to Weinstein homotopy. There is a natural map

(1-1) Heri: Legendrian((S2" 1, £4q): Aunknot) — Weinstein(7*S™)

taking a Legendrian A C (S?"7 ! &) = aBgtg which is formally isotopic to A ynknot
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to the Weinstein structure Bsztg U Hj on T*S". The statement that WCrit = 2 for
any Weinstein structure on 7*S” implies that this map is surjective, ie the class of
connected Legendrians is as complicated as the class of Weinstein structures.

Although our main result shows that Weinstein homotopy moves are more flexible
than they might seem, there are limits to this flexibility. For example, Theorem 1.5
shows that any Weinstein domain can be presented as a flexible domain plus a single
extra handle, which is possibly nonflexible. As we now explain, it is crucial that the
nonflexible critical handle is attached last, and in general, it is impossible to first attach
nonflexible handles and then attach flexible handles. So order of flexibility/nonflexibility
matters, which is a sign of rigidity. As expected, this rigidity ultimately comes from
J—holomorphic curves.

Example 1.9 By Theorem 1.5, T* S, is Weinstein homotopic to

T*SEL UH"'UH) =(BXUHL)UH""UH),

for some Legendrian A . In this case, we attach flexible handles first and then nonflexible
handles. However, 7* S, cannot be presented as (Bstd UH" 'UHR)UH, s s
we first attach nonflexible handles and then flexible handles. This presentation is

where

equivalent to a Weinstein structure of the form X2” U H”_, for some exotic ball %2".

flex’
We claim that 7* S, is not symplectomorphic to »2ny H{. for any ¥2" . To see this,
let C C ¥2"U H{. be the Lagrangian cocore of H{. . Since H, is attached along a
loose Legendrian in 822” the wrapped Floer homology WH(C, C T*S%,) vanishes.
But C generates H,(T*S",0T*S") =7 andso C-S" =1, where " C T*S!, is
the zero section, a closed exact Lagrangian. But WH(C, C; T*S,) = 0 implies that

WH(C, §": T*S%,) =0 and so C-S" = x(WH(C, S"; T*S%,)) =0, a contradiction.
Since T*S", is not of the form 2" U H/’. , the map
(1-2) Hioose: Weinstein(B>") — Weinstein(T*S™)

obtained by attaching a critical handle along a loose Legendrian unknot to an exotic
Weinstein ball is not surjective. This map is well defined since any contact struc-
ture dX2" in the almost contact structure (S2”~1, Jyq) has a unique loose Legendrian
in the standard formal class. Furthermore, it has infinite image; for example, Hioose 1S
injective on the exotic structures Ei” constructed by McLean [32]. We contrast the
nonsurjectivity of Hjoose, a rigidity result, to the surjectivity of the map Hye in (1-1),
a flexibility result.
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Now we sketch the proof of Theorem 1.5, which implies the main result Theorem 1.1.
The key idea is that certain Weinstein homotopy moves called handle-slides can be used
to make a Legendrian loose; see Section 2. More precisely, given two Legendrians and
a local chart intersecting them, the handle-slide produces another Legendrian, which
was described by Casals and Murphy [4]. We will show that there is a special choice of
local chart such that the handle-slid Legendrian is loose (not all choices of charts result
in loose Legendrians). For an arbitrary Weinstein domain, we fix one Legendrian and
handle-slide the rest of the Legendrians over that fixed Legendrian. For appropriate
choices of local charts, the resulting Legendrians form a loose link except for the fixed
Legendrian, which will in general intersect the loose charts of the other Legendrians;
this is the content of Theorem 1.5.

1.3 Weinstein presentations with few gradient trajectories

As mentioned before, our goal is to study to what extent Smale’s si—cobordism theorem
holds in the symplectic setting. This theorem has two main steps. The first step is
to apply handle-slides to make handles with consecutive indices cancel algebraically,
ie for the belt sphere of a k—handle and the attaching sphere of a (k+1)-handle to
have algebraic intersection number one. The second step is to use the Whitney trick
to reduce the number of intersection points between algebraically canceling handles
to make them geometrically canceling, ie have geometric intersection number one.
Since Weinstein handles can be handle-slid in the same way as smooth handles, the
first step can be done in the Weinstein setting. However the second step necessarily
fails since WCrit(W) # Crit(W) in general. By Theorem 1.5, any smoothly trivial
Weinstein cobordism W can be Weinstein homotoped to have two Weinstein handles
of respective indices 7 — 1 and n that cancel algebraically, ie W = H"~! U H} . The
Whitney trick shows that in this case, it is possible to smoothly isotope the attaching
sphere A so it intersects the belt sphere of H”~! in exactly one point. However, if A
intersects the belt sphere of H”~! in a single point, it is loose [7] and the Weinstein
cobordism is flexible. Hence, in general it is impossible to realize this smooth isotopy
by a Legendrian isotopy and to reduce the geometric intersection number to one. The
minimal possible number is therefore three; it is greater than one and must be odd for
homological reasons. Although we do not know whether the geometric intersection
number can always be reduced to three, in the following result we reduce this number
to some universal constant independent of the Weinstein structure. So we can get
uniformly close to realizing the second step of Smale’s s—cobordism proof.
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Theorem 1.10 There exists a constant C, > 3 depending only on n such that any
smoothly trivial Weinstein cobordism W 2" where n > 3 can be Weinstein homo-
toped to a presentation with two handles of respective indices n — 1 and n such
that the belt sphere of the (n—1)—handle and the attaching sphere of the n—handle
intersect C,, times.

This is equivalent to having a Weinstein Morse function with two critical points of
respective indices n — 1 and n such that there are C, gradient trajectories from the
index 7 to the index n—1 critical point. The proof of Theorem 1.10 actually shows that
it is possible in principle to compute Cj, but this depends on a good understanding of a
certain (local) Legendrian isotopy which comes from an /—principle and is therefore not
very explicit. As we explain in the following example, the situation is more complicated
when the Weinstein cobordism is not smoothly trivial. Namely, in the presence of
multiple (n—1)-handles, the attaching Legendrian for the n—handle might have to pass
through all (n—1)-handles, even when this is topologically unnecessary. Again this
rigidity comes from J—holomorphic curves.

Example 1.11 Consider a subflexible Weinstein structure W2" on B2?"* U H"!
that is not flexible. Such an example was constructed by Murphy and Siegel [34]
and has zero symplectic homology SH(W 2") but nonzero deformed symplectic ho-
mology SH* (W ?2™); here « is the generator of H" 1(B?" U H"™!) = Z. So this
domain is smoothly subcritical but is not symplectically subcritical and hence by
Theorem 1.1 admits a Weinstein presentation of the form B2" U H'~' U H} ™' U H; .
Here A has algebraic intersection number 1 with Hl"_1 and 0 with Hf_l. How-
ever, A has geometric intersection number at least 3 with A {1_1 since otherwise A
would be loose. Furthermore, A must have geometric intersection number at least 2
with Hé’_l; therefore, A must interact with both H{’_l and Hz”_l. Otherwise,
the domain would be of the form (B2? U H""' U H)U H}™! = 2" U H" !,
for some exotic structure $2” on B2". However X2" U H"~! has zero deformed
symplectic homology as we now show. Since H"~! is a subcritical handle, the
Viterbo transfer map SH* (22" U H"!) — SHi*“(ZZ”) is an isomorphism, where
i*: H"1 (22" U H" 1) - H"1(2?") is the induced map on cohomology. Since
i*a e H""1(22") =0, SH! *(x2") agrees with the undeformed symplectic homology
SH(X2"). Since £2" is a subdomain of W 2" which has vanishing SH, and the Viterbo
map is unital, SH(X) also vanishes. Therefore SH* (%2 U H"~1) is also zero and so
%27y H"! cannot be Weinstein homotopic to W 2",
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Since W is not of the form %2 U H"~! for any exotic Weinstein ball $2”, the map
(1-3) Houp: Weinstein(B>") — Weinstein(B>" U H" 1)

obtained by attaching a subcritical handle to an exotic Weinstein ball is not surjective;
see Ghiggini, Niederkriiger, and Wendl [25] for an analog in the contact case. This
rigidity result is similar to the nonsurjectivity of the map Hjoose in (1-2) for flexible
handle attachment and in contrast to the surjectivity of H in (1-1) for critical handle
attachment to the standard ball.

1.4 Results for the wrapped Fukaya category and
the Chekanov-Eliashberg DGA

We now give some applications of the flexibility results in Sections 1.1 and 1.2 to certain
J—-holomorphic curve invariants. To a Weinstein (or Liouville) domain X 2" (with a
choice of grading data), one can associate the wrapped Fukaya category W(X) of X,
a certain Aoo—category. The objects of W(X) are (graded) exact Lagrangians in X 2"
that are closed or have Legendrian boundary in X 2”; the morphisms are wrapped
Floer cochains. In homological mirror symmetry, one considers the derived Fukaya
category DPW(X):= HO(Tw(W(X)), the cohomology category of twisted complexes
over W(X). To obtain a more explicit description of the wrapped Fukaya category, it is
useful to find a set of generators. The derived Fukaya category D?W(X) is triangulated
so mapping cones exist. A set of objects G; are generators of DbW(X) if every object
of the category is isomorphic to an iterated mapping cone on them; equivalently,
DPW(X) =~ HO(Tw(G)), where G is the Aso—subcategory with objects G;. Let
2(W(X)) denote the minimum number of generators for D?WW(X). Many proofs of ho-
mological mirror symmetry involve finding some collection of generators for D?W(X)
and then showing that the endomorphism algebra of these generators is quasi-isomorphic
to the endomorphism algebra of some generating coherent sheaves on the mirror.

Theorem 1.1 can be used to bound the number of generators g(W(X)) for DPW(X).
The unstable manifold of an index » critical point of a Weinstein Morse function, or
cocore, is a Lagrangian disk with Legendrian boundary and hence defines an object
in DPW(X). As proven by Chantraine, Dimitroglou Rizell, Ghiggini, and Golovko [6]
and Ganatra, Pardon, and Shende [23], the cocores of the index # critical points of any
Weinstein Morse function on X generate D?W(X), ie g(W(X3")) < WCrit, (X2").
Theorem 1.1 shows that there is a topological bound on WCrit, (X ") and hence on
the number of generators needed. In the following, let g(A) denote the minimum
number of generators of an abelian group 4.
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Corollary 1.12 If X 21 where n > 3, is a Weinstein domain, then

gW(X)) <max{l, g(H"(X;7Z))}.

A related notion is that of split-generation: a set of objects are split-generators if every
object is a summand of a twisted complex on these objects. This is a useful notion since
there are closed symplectic manifolds whose Fukaya categories have finitely many
split-generators but no finite collection of generators, eg the 2—torus. We emphasize
that Corollary 1.12 concerns generation, not split-generation. Whenever there is a finite
collection of generators (or split-generators), there is a single split-generator, namely
the sum of all these objects. So the number of split-generators is not an interesting
invariant.

The number of generators, on the other hand, is a meaningful invariant, and in certain
cases, the inequality in Corollary 1.12 is sharp. For example, if X" is a Weinstein
ball, then Corollary 1.12 shows that at most one generator is needed and if the Fukaya
category of this ball is nontrivial (as is the case for the exotic structures constructed
by McLean [32]), then at least one generator is needed. In certain cases, the number
of generators needed for W(X) is greater than one. Since D?W(X) is a triangulated
category, we can consider its Grothendieck group Ko(W(X)) := KO(DbW(X )). For
any triangulated category, the minimum number of generators for the Grothendieck
group gives a lower bound on the number of generators of the category. In particular,
Corollary 1.12 implies that for any Weinstein domain X 2" where n > 3 we have

(1-4) g(KoW(X))) < gV(X)) <max{l, g(H" (X", Z))}.

There are Weinstein domains for which g (K oW(X ))) is bigger than one. For example,
consider the boundary connected sum t] kT*S" of k copies of T *Sh,. As explained
to the author by Abouzaid, Ko(W([J¥7T*S")) has rank at least k. Namely, let
9i: KoW(§5T*S")) —>Z be x(HW(—, SI)), the Euler characteristic of morphisms
from the i™ zero section S?. Then (g1, ..., px): Ko(W(Q*¥T*S™)) — Z* is surjec-
tive, so g(Ko(W(]]¥T*S™"))) = k. On the other hand, g(H" (R *T*S";Z)) =k and
so all the inequalities in (1-4) are all actually equalities. The following result shows
that (1-4) can actually be improved.

Corollary 1.13 If X 2% where n > 3, is a Weinstein domain, then
g(KoW(X))) < g(H"(X; Z)).
In particular, if H"(X;Z) =0, then KoOWV(X)) =0.
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If H*(X;Z) # 0, then the result follows from (1-4). If H"(X;Z) = 0, we use an
additional boundary connected sum argument, which was explained to the author by Ivan
Smith in the case when X 2" is a ball. In particular, any Weinstein ball £2” must have
Ko(W(X)) = 0. There are many exotic Weinstein balls 2" with nonzero symplectic
homology [32]. So their wrapped Fukaya categories are examples of triangulated
categories with nonzero Hochschild cohomology but zero Grothendieck group; such
phantom categories have been studied in algebraic geometry — see Galkin, Katzarkov,
Mellit, and Shinder [21] and Gorchinskiy and Orlov [26] — and are possibly related
to our wrapped Fukaya categories via mirror symmetry. The vanishing of Ko(W(X))
implies that any object Q that has finite-dimensional morphism spaces with all other
objects K has xy(HW(Q, K)) = 0, generalizing the geometric result that any closed
exact Lagrangian L C %2" has L - K = 0 for any other Lagrangian K; however
the object QO need not be a twisted complex of closed exact Lagrangians. We also
note that the inequality in Corollary 1.13 is sharp, eg consider ﬂ k T*S],. Conversely,
for any integer j < k = g(H" (] kT*S":7)), there is a Weinstein structure ij”
on RT*S" so that g(KoW(X)))) = j,eg X" =R/ T*Si 0 kI T*S!

flex *

One natural question is which triangulated categories can arise as the wrapped Fukaya
category of Weinstein domains. For example, the wrapped Fukaya category of a
Weinstein domain is a smooth category with a noncompact Calabi—Yau structure;
see Chantraine, Dimitroglou Rizell, Ghiggini, and Golovko [6] and Ganatra [22].
Corollary 1.13 further restricts which categories can arise as the Fukaya categories
of Weinstein domains and shows that in general the answer depends on the smooth
topology of the domain.

Corollary 1.14 There is no Weinstein ball £2" such that D®(W(Z?")) is exact
equivalent D? W(T'*SZ,)). There is no Weinstein structure X2" on T*S" such that
DPW(X?") is exact equivalent to DPW(T*S" 1 T*S",).

Proof As noted above,

g(KoW(T*S4y))) =1 and g(KoOW(T*Si 0 T*SLy)) =2.
However, if £2" is a ball, then g(Ko(W(Z?"))) = 0; if H"(X;Z) = Z, then
g(KoW(X))) < 1. o

On the other hand, for any Weinstein ball £2”, the Weinstein structure 7*S%_f %2

flex
on T*S" has the same Fukaya category as X2”. So the class of categories arising
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as Fukaya categories of Weinstein structures on 7*S" is genuinely larger than that for
aball B*".

Since Weinstein domains are constructed by attaching handles along Legendrians,
Corollary 1.13 has implications for J—holomorphic curve invariants of Legendrians.
Given a Legendrian sphere A”~! in a contact manifold (Y2"~1 &) with a Weinstein
filling W2", there are (at least) two associated Legendrian isotopy invariants: the
Chekanov—Eliashberg algebra CE(A) of A (augmented by the filling W?2") and the
wrapped Floer cochains CW(C, C) of the cocore C" of the Weinstein n—handle H
in the Weinstein domain W?2" U HY . For both invariants, we work over a common
ground field K. The former invariant is only rigorously defined when (Y21 §)
is P2""2 x R for some exact symplectic manifold P —see Ekholm, Etnyre, and
Sullivan [12]; the latter is always defined. A proof was sketched bu Bourgeois, Ekholm,
and Eliashberg [3] that these two invariants are quasi-isomorphic and for the results in
the rest of this section, we will assume this.

Remark 1.15 Alternatively, let CF(D", D"; (W, A)) denote the Floer cochains of the
linking disk D" of A in the partially wrapped Fukaya category of W 2" stopped at A ; a
proof was sketched by Ekholm and Lekili [14] that this is quasi-isomorphic to the version
of CE(A) with coefficients in C(25”~1), chains on the based loop space of S"~!.
Without any reference to CE(A), it was proven by Ganatra, Pardon, and Shende [23] that
CE(D", D"; (W, A)) ®c, @sn—1) Cx(QD") = CF(D", D"; (W, A)) ®¢, (@sn-1) K
is quasi-isomorphic to CW(C, C) and so this invariant can be considered as a rigorous
replacement for CE(A); using this alternative invariant, all our results have complete
proofs.

Certain geometric properties of a Legendrian have algebraic consequences for its
Chekanov—FEliashberg DGA. For example, an exact Lagrangian filling of A induces
an augmentation of CE(A), ie a differential graded algebra (DGA) map CE(A) — K,
where the latter has the zero differential and is concentrated in degree zero; see Ekholm,
Honda, and Kéalman [13]. However, not all augmentations come from exact Lagrangian
fillings — see Etnyre and Ng [20] — and furthermore, there are examples of Legendrians
such that CE(A) is not acyclic but admits no augmentations. More generally, we can
consider n—dimensional representations of CE(A), ie DGA maps CE(A) — Mat(n, K).
There are examples [9; 38] of Legendrians for which CE(A) has a 2—dimensional
representation but no augmentations. This is a useful notion since Dimitroglou Rizell
and Golovko [9] showed that Legendrians with finite-dimensional representations have
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an Arnold-type lower bound on the number of Reeb chords. On the other hand, they
showed that for each n > 1, there is a Legendrian A C (R?"~!, £4q) such that CE(A) is
not acyclic but has no finite-dimensional representations (although any nonacyclic DGA
has an infinite-dimensional “representation” to its characteristic algebra; see Ng [35]).
These examples are obtained by spinning a particular 1-dimensional Legendrian studied
by Sivek [38], who proved that it has no finite-dimensional representations by explicit
calculation. We now show that such Legendrians occur generally.

Consider a Legendrian A in (§"7! x S", £&4q) = 8(BS2H’1’ U H" 1), where n > 3,
that has algebraic intersection number one with {p} x S” for some p € S" 7!,
ie [A]= £1 € H,_(S" ! x S";7Z) = 7 is primitive in homology. This implies
that [A] =1 € H,_;(B2" U H"!;Z) =~ Z and hence A has no exact Lagrangian
fillings in Bsztg U H™™! for purely topological reasons. So there are no augmentations
of CE(A) that come from fillings. Using Corollary 1.13, we show that CE(A) has no
augmentations at all and, in fact, no finite-dimensional representations.

Corollary 1.16 If a Legendrian A"~! C (§"~! x 8", £yq), where n > 3, is primitive
in homology, CE(A) has no finite-dimensional representations and no DGA maps to a
commutative ring.

If A intersects {p} x S™ geometrically once, then A is a loose Legendrian; see
Casals and Murphy [4] and Section 1.3. In this case, CE(A) is acyclic and hence
has no finite representations for trivial reasons. Corollary 1.16 generalizes this to the
case of algebraic intersection one, a topological condition. Although our proof of
Corollary 1.16 holds only for n > 3, the n = 2 case for augmentations was proven by
Leverson [31] using a different approach. We also note that a homological condition is
necessary since the Chekanov—Eliashberg DGA of Legendrians in (S~ x §”, £4q)
that have Lagrangian fillings in Bsztg U H"! have augmentations.

Corollary 1.16 has applications to the C °—topology of the space of Legendrians. Murphy
[33] proved that any Legendrian can be C%—approximated by a loose Legendrian. On
the other hand, Dimitroglou Rizell and Sullivan [10] recently used persistent homology
to show that loose Legendrians cannot be C°-approximated by certain nonloose
Legendrians: if A C (R?"71, &) is in a contact neighborhood N (Ajgese) of a loose
Legendrian Ajgpse and the map ix: Hy—1(A;7Z/2) — Hy—1(N(Aioose); Z/2) = 7.]2 is
nonzero, then CE(A) has no augmentations. Using Corollary 1.16, we give a different
proof of a slightly different result.
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Corollary 1.17 If A C (S?"!,&4q), where n > 3, is in a contact neighborhood of
a loose Legendrian A\gose and is primitive in Hy_1(Ajoose; Z), then CE(A) has no
finite-dimensional representations or DGA maps to a commutative ring.

So the size of contact neighborhoods depends on the Legendrian isotopy class. In the
proof of Corollary 1.17, the condition that A is in N (Ajgese) is used to show that a
related Legendrian is disjoint from the loose chart of another loose Legendrian; the
homological condition is needed to apply Corollary 1.16. Some homology condition
is necessary since otherwise any Legendrian in (S2"~!, £4q) could be isotoped into a
neighborhood of any other Legendrian.

Corollaries 1.16 and 1.17 place strong restrictions on the Chekanov—Eliashberg DGAs
of certain Legendrians. Furthermore, if these Legendrians satisfy stronger conditions, eg
have geometric intersection one with { p}xS” instead of algebraic intersection one, then
they are loose, showing there is not much room for interesting Legendrians. Nonetheless,
we show there are many examples of such Legendrians with nontrivial DGAs, essentially
one for each exotic Weinstein ball; this shows that Corollaries 1.16 and 1.17 are sharp.

Corollary 1.18 For n > 4, there exist infinitely many different Legendrian spheres
A C (8" 1 x 8™, Eqq) for which CE(Ay) is not acyclic but has no finite-dimensional
representations. The same holds for (S?>"~!, £y4) for n > 4. Furthermore, these Legen-
drians are C°—close to loose Legendrians Ajoose and are primitive in Hy—1(Apose; 7).

The restriction n > 4 is because we currently have examples of exotic Weinstein balls
only in such dimensions [32]. The Legendrians A are distinguished by the Hochschild
homology of CE(A), which is isomorphic to the symplectic cohomology of these
Weinstein balls.

In Section 2, we provide some background material on Weinstein domains, loose
Legendrians, and handle-slides. In Section 3, we give proofs of the results stated in the
introduction.

Acknowledgements We thank Mohammed Abouzaid, Roger Casals, Emmy Murphy,
Kyler Siegel, Semon Rezchikov, and Ivan Smith for many helpful discussions. This
work was partially supported by an NSF postdoc fellowship.

2 Background

In this section, we present some background material, including necessary definitions
and theorems that were assumed in the introduction.
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2.1 Liouville and Weinstein domains

2.1.1 Definitions A Liouville domain is a pair (W 2", 1) such that

e W?2" is a compact manifold with boundary,
e dA is a symplectic form on W, and

¢ the Liouville field X}, defined by ix dA = A, is outward transverse along dW.
A Weinstein domain is a triple (W?2", A, ¢) such that

e (W,X) is a Liouville domain,
e ¢: W — R is a Morse function with maximal level set dW, and

e X, is a gradient-like vector field for ¢.
Liouville and Weinstein cobordisms are defined similarly.

Because W is compact and ¢ is a Morse function with maximal level set W,
¢ has finitely many critical points. We will call ¢ a Weinstein Morse function. Note
that if ¢ is any regular value, W€ = {¢p < ¢} is also a Weinstein domain and is called
a Weinstein subdomain.

If £27=1 C (W?", ) is a hypersurface such that X; is transverse to X, then ker(A|x)
is a contact structure on ¥. In the Weinstein case, a regular level set Y¢ = ¢~ (c)
of ¢ is such a hypersurface and so (Y ¢, A|yc) is a contact manifold. In particular, the
boundary dW of a Liouville or Weinstein domain W has a natural contact structure
given by £ = ker(A|yp). The completion W of W is the noncompact, exact sym-
plectic manifold obtained by attaching the symplectization (8W x [0, 00), d (! AlaW))
of (IW, &) to W. Whenever we speak of the symplectomorphism type of a Weinstein
domain, we will mean the symplectomorphism type of its completion.

2.1.2 Weinstein handle attachment A Weinstein structure yields a special handle-
body decomposition for W. First, recall that A vanishes on the X —stable disc D, of
a critical point p; see [7]. In particular, D), is isotropic with respect to dA and so all
critical points of ¢ have index less than or equal to n. If all critical points of ¢ have
index strictly less than n, then the Weinstein domain is subcritical.

Since A vanishes on D, then A, :=D,NY“C (Y, A|yc) is anisotropic sphere, where
¢ = ¢(p) — ¢ for sufficiently small e. Furthermore, A, comes with a parametrization
and framing, ie a trivialization of its normal bundle. Note that a framing of A is

Geometry & Topology, Volume 24 (2020)



Simplifying Weinstein Morse functions 2619

equivalent to the framing of the conformal symplectic normal bundle of A, ; see [24].
Hence parametrized Legendrians come with a canonical framing.

Suppose that ¢; < ¢, are regular values of ¢ and W€ \ W€ contains a unique
critical point p of ¢. Then W2\ W€l is an elementary Weinstein cobordism between
Y€1 and Y2 and the symplectomorphism type of W2 is determined by the symplec-
tomorphism type of W€l along with the framed isotopy class of the isotropic sphere
Ap C Y If ¢ is an arbitrary Weinstein Morse function on W with distinct critical
values, then W can be viewed as the concatenation of such elementary Weinstein
cobordisms.

On the other hand, one can explicitly construct such elementary cobordisms and use
them to modify Liouville domains. Given a Liouville domain X and a framed isotropic
sphere A in its contact boundary Y = dX, we can attach an elementary Weinstein
cobordism with critical point p and A, = A to X to obtain a new Liouville domain that
we denote by XA or X U HX where k =ind p = dim A + 1. This operation is called
Weinstein handle attachment and A is called the attaching sphere of the Weinstein
handle. If X is Weinstein, then so is X . If the dimension of A C Y2771 is less
than n — 1, the handle attachment operation and A itself are all called subcritical. So
any (subcritical) Weinstein domain can be obtained by attaching (subcritical) Weinstein
handles to the standard Weinstein structure on B2".

The corresponding modification of contact manifolds by Weinstein handle attachment
is called contact surgery. If A C (Y, &) is a framed isotropic sphere, then there exists an
elementary Weinstein cobordism W with d_W = (Y, £) and attaching sphere A. Then
we say d+ W is the result of contact surgery on A and denote thisby YA or YUH K .In
particular, the contact boundary of any (subcritical) Weinstein domain can be obtained
by doing (subcritical) contact surgery to (S2"~!, £q) = 0B?".

2.1.3 Weinstein homotopies The natural notion of equivalence between Weinstein
structures (W, Ag, ¢o) and (W, A1, ¢1) on a fixed manifold W is a Weinstein homotopy,
ie a 1-parameter family of Weinstein structures (W, A¢, ¢;) for ¢ € [0, 1] connecting
them, where ¢; is allowed to have birth-death critical points. Weinstein homotopic
domains have exact symplectomorphic completions [7].

We will prove our main result Theorem 3.1 by starting with an arbitrary Weinstein
domain and then applying a special Weinstein homotopy. As in the smooth setting,
Weinstein homotopies consist of three elementary moves: doing an isotopy of the
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)y hA,e(E)
A A
R_¢(7) \ /[

Figure 1: Front projection of handle-slide /15 (X) of ¥ over A.

attaching spheres through isotropic submanifolds, moving critical points that are not
connected by gradient trajectories past each other, and sliding handles of the same
index over each other. The only difference between the Weinstein and smooth setting
is the first move: in the Weinstein case, the isotopies of attaching spheres must be
through isotropics instead of arbitrary embedded spheres. Since subcritical handles
satisfy an A—principle [7], Weinstein domains are essentially characterized by their
index n handles, in particular the Legendrian attaching spheres of these critical handles.
Therefore, it suffices to see how these moves affect Legendrians.

The first move implies that if A; and A, are isotopic Legendrians in dW, then
WUH Xl and WU H 1’{2 are Weinstein homotopic. The second move implies that
if Ay and A, are disjoint Legendrians in dW (which is true by dimension reasons
if they are in general position), then (W U H}x ) U Hx, and (W U Hy,) U H} |
are Weinstein homotopic. In particular, we can write the resulting Weinstein domain
as WUH 1'{1 UHX , without any parentheses and it will be well defined up to Weinstein-
homotopy.

We now discuss the last move, the handle-slide, which will be the most important
for us. We will study Legendrians via their front projection. If A C (R?"1 £4) =
R” x R” x R, then the front projection of A is the image of A in R”*! under the
projection to the first R” and R! components. Handles-slides were described in terms
of front projections by Casals and Murphy [4].

Proposition 2.1 [4, Proposition 2.4] Let (Y,&) be a contact manifold, and let
A, X C (Y, &) betwo disjoint Legendrian submanifolds such that A is a sphere. Suppose
there exists a Darboux chart U where the front projections of ¥ and A look as in
the left-hand side of Figure 1. Then, for sufficiently small ¢ > 0, the Legendrians
X and h (%) presented in Figure 1 are Legendrian isotopic in the surgered contact
manifold Yy .
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Here R_.(A) is the image of A under the negative time ¢ Reeb flow. We also note
that the Legendrians in Figure 1 are extended by spherical symmetry out of the page.
Furthermore, we note that the Darboux chart must have sufficient size so that front
projections depicted in Figure 1 make sense; in particular, the size of the chart in the y;
direction must be at least as big as the slope of the front projection of /15 ¢(A). For us,
the key implication of Proposition 2.1 is that W U H) U Hy, is Weinstein homotopic
to WUH)UH; _, (andalsoto WUH ) UHJ by the above discussion).

Remark 2.2 Proposition 2.1 also holds if ¥ =3 LI-.-11 ¥ is a Legendrian link with
several components. We inductively construct the new handle-slid link and show that it
is isotopic to X in Y . We first take ; > 0 sufficiently small that X is disjoint from an
£1-neighborhood of A in J1(A) C Y. We also take U; so that ¥; NU; and A NU;
look as in the left-hand side of Figure 1 and ¥; N U; = @ for i > 2. Then we can
handle-slide X, over A via U; and the resulting Legendrian /4 ¢, (X) is isotopic
to X1 in Y5 by Proposition 2.1. In fact, something stronger holds. The isotopy in
Proposition 2.1 is local since it is obtained by pushing a small disk of ¥, (starting from
the chart Uy ) past the belt sphere of A in Y . Therefore, since X,, ..., ¥; are disjoint
from an e¢;—neighborhood of A in Y and the chart U;, the handle-slid Legendrian
hae (X1) is isotopic to Xj in YA \(Xp L --- LI Xf), where we view X, ..., Xg
as Legendrians of Y. Hence the link /p ¢ (21) O X, II--- II Xy is isotopic to
U3, .- X, in YA . Now we build the rest of the handle-slid link by induction
and show that it is isotopic to the original link 3 at each stage. Namely, suppose we have
constructed the i™ link /;(X) := hp ¢ () U --- 1 hpe () DX O--- 1 Xy
and proved that it is isotopic to h;—1(X) in Y. Next we construct s; (%) :=
hpe (B U Lhp g (Zi)Uhp g (Zigp1) UE; 40 -+ 113, by taking sufficiently
small ¢;4; <¢; forall j <i and a chart U;; disjoint from 5;(X)\ ;4 such that
¥iy1 and A appear in U;4; as in Figure 1. As explained above, the new link
h;i+1(X) is Legendrian isotopic to the previous link /4;(X) in Y since h;(X)\X;+1
is disjoint from U;4+1 and £;(X) is disjoint from an ;4 ;—neighborhood of A (since
the Legendrians in /;(X) are at most g;—close to A ), which proves the inductive 7 + 1
case. For i = k, we get the desired Legendrian /4 (X¥) which is isotopic to X in Yz
by induction. This implies that W U Hy U Hy, U---U Hy, is Weinstein homotopic
to WUHRUH, (v U---UH] (5,,afact that we will use repeatedly later.

We also note that the handle-slide depends on more than just the data of ¥ and A.
The resulting Legendrian depends crucially on the choice of chart U, where A and X
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Figure 2: Handle-slides using different charts result in nonisotopic Legendrians.

appear as in the left-hand side of Figure 1. We will use the notation /15 ¢ (%) when
we emphasize the dependence on U. In particular, different chart choices U; and U,
can result in Legendrians /1 .y, (£) and /4 ¢y, (%) that are not Legendrian isotopic
in Y (but are still smoothly isotopic in Y ); however, hp ¢y, () and hp v, () are
Legendrian isotopic in Y5 . We also note that ¥ and /4 »(X) will generally not be
smoothly isotopic in Y, while they are Legendrian isotopic in Y .

Example 2.3 We start with a Legendrian link consisting of two linked unknots
in (R2"~1, £,4), with one Legendrian the Reeb push-off of the other Legendrian;
see Figure 2. The blue box in the left of each row is the Darboux chart used in
the handle-slide. In the top row, the handle-slide produces a linked pair of Legen-
drian unknots (which can be seen by doing a Legendrian Reidemeister move), ie
ht}{ﬁnm (Aunknot) = Aunknot- In the bottom row, the handle-slide results in a link where

Bottom (A not) = Aloose. The blue box on the right

Aunknol
is the loose chart of this Legendrian; see Section 2.2 for definition. Since the Legendrian

one of the Legendrians is loose, ie /

unknot is not loose, the handle-slid Legendrians 4'R®  (Aunknot) and h'j\onom (A unknot)

unknot unknot

are not isotopic in the original contact manifold (R?"~!, £,4). Of course, these Leg-

endrians are both isotopic in the surgered manifold Yp since they are both isotopic

unknot

to the push-off of the attaching sphere there, ie the image of Aynknot in YA

unknot *

2.2 Loose Legendrians and flexible Weinstein domains

There exist many Legendrians with rich symplectic topology invisible from the point
of view of algebraic topology. On the other hand, Murphy [33] showed that exists a
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Figure 3: Front projection of Ayg.

certain class of loose Legendrians which satisfy a h—principle and whose symplectic
topology is governed by their underlying algebraic topology. These loose Legendrians
are defined using a local model. We will use the following local model from Section 2.1
of [5]. Let B3 C (R3, £4q = ker agg) be a unit ball, and let A be the 1-dimensional
Legendrian whose front projection is shown in Figure 3. Let Q"~2, where n > 3,
be a closed manifold and U a neighborhood of the zero section Q C T*Q. Then
Ao x O C (B3 x U, ker(agg + Agq)) is a Legendrian submanifold. This Legendrian is
the stabilization over Q of the Legendrian {y =z =0}x Q C (B> x U, ker(cgg+Asd)) -

Definition 2.4 A Legendrian A”~! C (Y?"71,§), where n > 3, is loose if there
is a neighborhood V C (Y,&) of A such that (V,V N A) is contactomorphic to
(B3xU,Agx Q).

Remark 2.5 If f: (U?"! &) — (V?"1 &) is an equidimensional contact embed-
ding and A C (U, &) is loose, then f(A) C (V,&,) is also loose.

A formal Legendrian embedding is an embedding f: A — (Y, &) together with a homo-
topy of bundle monomorphisms Fg: TA — TY covering f forall s such that Fy =df
and Fy(TA) is a Lagrangian subspace of £ with its conformal symplectic structure. A
formal Legendrian isotopy is an isotopy through formal Legendrian embeddings. Using
these notions, we can state the s—principle for Legendrian embeddings, which has an
existence and a uniqueness part:

¢ Any formal Legendrian of dimension at least two is formally Legendrian isotopic
to a loose Legendrian [11; 15].

¢ Any two loose Legendrians that are formally Legendrian isotopic are genuinely
Legendrian isotopic [33].

We now define a class of Weinstein domains introduced in [7] that are constructed by
iteratively attaching Weinstein handles along loose Legendrians.
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Definition 2.6 A Weinstein domain (W 2", A, @), where n > 3, is flexible if there exist
regular values cy,...,cx of ¢ such that ¢y <ming < ¢y <+ <cp—1 <maxge < ¢y
and, forall i = 1,...,k =1, {¢; < ¢ < cj+1} is a Weinstein cobordism with a
single critical point p whose the attaching sphere A, is either subcritical or a loose
Legendrian in (Y%, A|y<;).

Flexible Weinstein cobordisms are defined similarly. Also, Weinstein handle attachment
or contact surgery is called flexible if the attaching Legendrian is loose. So any flexible
Weinstein domain can be constructed by iteratively attaching subcritical or flexible
handles to (BZ”, wgtd) - A Weinstein domain that is Weinstein homotopic to a Weinstein
domain satisfying Definition 2.6 will also be called flexible. Finally, we note that
subcritical domains are automatically flexible.

Our definition of flexible Weinstein domains is a bit different from the original definition
in [7], where several critical points are allowed in {¢; <@ <¢;+1}. There are no gradient
trajectories between these critical points and their attaching spheres form a loose link
in (Y, Alyc: ), ie each Legendrian is loose in the complement of the others. These
two definitions are the same up to Weinstein homotopy. Indeed if we have an ordered
collection of Legendrians such that each one is loose in the complement of the previous
ones, then we can use the loose Legendrian s—principle to move each Legendrian away
from the loose charts of the previous ones so that all Legendrians are loose in the
complement of each other.

Since they are built using loose Legendrians, which satisfy an /A—principle, flexible
Weinstein domains also satisfy an sA—principle as proven by Cieliebak and Eliashberg [7].
Again, the h—principle has an existence and a uniqueness part:

¢ Any almost Weinstein domain of dimension at least six admits a flexible Wein-
stein structure in the same almost symplectic class.

¢ Any two flexible Weinstein domains that are almost symplectomorphic are
Weinstein homotopic (and hence have exact symplectomorphic completions and
contactomorphic boundaries).

3 Proofs of main results
In this section, we prove the results described in the introduction. We first prove a

simpler version of Theorem 1.5 without as much control on the topology of the flexible
subdomain.
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Theorem 3.1 Any Weinstein domain W 2" where n > 3 can be Weinstein homotoped
to a Weinstein domain Vﬂzez U H" obtained by attaching a single n—handle to a flexible

Weinstein domain Vﬂzez .

Remark 3.2 Theorem 3.1 also holds for Weinstein cobordisms.

Proof of Theorem 3.1 Let W2" = (W?2" A, ¢), where n > 3, be a Weinstein domain.
By Lemma 12.20 of [7], we can Weinstein homotope W so that ¢ is self-indexing,
ieif p is a critical point of index k, then ¢(p) = k. In particular, we can assume that W
is the result of attaching k£ index n handles to a subcritical Weinstein domain Wy,
along disjoint Legendrians Aq,..., Ag.

If Kk =0, then W = Wy = Wey U H* 1 U H", where H"~! and H" are two
canceling handles of respective indices n — 1 and »; the domain Wy, U H n=1 jg
subcritical and hence flexible. If kK = 1, then W = W, U HXI; again Wy is
subcritical and hence flexible. Therefore we can assume W = Wy, U Hy, U---U Hy,
for some k > 2.

The key step is to handle-slide Hy,, ..., Hp, over Hy,. We will do this by induction.
More precisely, we will prove that for every j with 2 < j <k, W is Weinstein
homotopic to Wy, U Hﬁ/l U---U HX;( for some Legendrian link ]_[f-;l A’ such
that ]_[{=2 A;. is a loose link in dW,. Then the case j = k completes the proof since
then W is Weinstein homotopic to the flexible domain Wy, U H| X/z U---u HX;( with
the single handle H X/l attached. The proof shows that we can assume that A actually
stays fixed throughout.

We first prove the base case j = 2. We begin by modifying A; and A, by Legendrian
isotopies that move only a small neighborhood of a single point, ie the resulting
Legendrians are the Legendrian connected sum of A and A, with certain Legendrian
unknots. More precisely, let U, be a Darboux ball in the contact manifold 0 Wy, that
is disjoint from A; U---U Ag. Let S, be a Legendrian unknot in U, and let 75 be a
negative Reeb push-off of .S, also contained in U, so that S, and T, are symplectically
unlinked. We apply a Legendrian “Reidemeister move” to S, so that it appears as
in Figure 4; this move is a Legendrian isotopy which is contained in U, and the
resulting Legendrian, which we also call S5, is still symplectically unlinked with 75.
For 1-dimensional Legendrians, this isotopy is the first Reidemeister move and in
higher dimensions (as in our situation) it results in a spherically rotated version of this
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. /\
Tj A A
Y1

Figure 4: Left: front projections of S; and 7; and isotropic arcs y; and y;
(inred) in Uj; right: front projections of the connected sums A} := A; 1 S;
and A := A #T; formed along y; and y;, respectively; the blue box is the
chart we will use to handle-slide A} over A'.

Reidemeister move. Note that the isotopy is not obtained by spherically rotating the
I-dimensional isotopy; see [4] for details on this isotopy.

Now we choose isotropic arcs y; and y, connecting A to 7, and A, to S, respec-
tively. Since these arcs are subcritical, we can assume that they are disjoint; furthermore,
we can assume that y; is disjoint from A; for i # 1 and y, is disjoint from A; for i #2.
We can also ensure that they intersect U, as depicted in the left-hand side of Figure 4.
Let A/1 := A1 § T, be the Legendrian connected sum of A; and 7, along y;; see [8]
for details about the connected sum operation. Similarly, let A/2 = A, 1S, be the
Legendrian connected sum of A, and S, along y,. By choice of y; and y;,, the
Legendrians A7 N U, and A’ N U, look as in right-hand side of Figure 4. Since U,
is disjoint from A; and 73 is a Legendrian unknot in U, A’1 is isotopic to Aj; we
pull the unknot T to A; using the isotropic arc y;. Similarly, A’ is Legendrian
isotopic to A,. In fact, the entire Legendrian link A} IT A, TT A3 IT--- IT Ay is
Legendrian isotopic to the link A; LI A, LI A3 II--- II Ay because y; and y, are
disjoint from Aj,..., Agx and S, and 7 are symplectically unlinked in U,.

Now we handle-slide A’, over A|. We first take sufficiently small &5 > 0 so that
an g;-neighborhood of A is disjoint from all other Legendrians. The ball U, contains
a smaller chart V, where A and A/, look as in Figure 1; see the blue box in the
right-hand side of Figure 4. So we can use this chart to handle-slide A, over A and
produce / A& (A); see the Legendrian in black in the right-hand side of Figure 5.
Then £ A6 (A)) is isotopic to the Legendrian A/, in o(Wyyp U Hl’(/l ); in fact, the

Geometry & Topology, Volume 24 (2020)



Simplifying Weinstein Morse functions 2627

entire link /157 , (A)LIA3LI---IT Ay is Legendrian isotopic to A% LT A3 II--- 1T Ag
in d(Wgyp U H, Xfl ), as explained in Remark 2.2. In particular,

n n n n
VVsubUHA’l UHhA’l,sz(AIZ)UHASU"'UHAk

is Weinstein homotopic to Wy, U HX’I U HX/Z UHX, U---UHj, and hence to W.
Finally, we note that the size requirement of the Darboux chart for the handle-slide is
satisfied in our situation. We can take the bottom branch of S, and the top branch of 73
to be close enough that the slope of the front projection of the handle-slid Legendrian
is arbitrarily small; hence the y; coordinate of the chart can be arbitrarily small for our
handle-slide.

We observe that & A (A’z) is loose in dWyy,. The blue box in Figure 5 is the loose
chart of /4 Aes (A’) in U, . Recall that we have spherical symmetry in the handle-slide
region so it is loose with Q"2 = §"~2; see Definition 2.4. However, hA’l,sz (A)) is
not loose in the complement of A, since A’/ intersects the loose chart of / A e (A)).
This completes the case j = 2. Note that we can extend the Legendrian isotopy of A’1
back to A to an ambient contact isotopy and hence assume that A/1 =A;.

Now suppose that the j — 1 case holds for some j > 3. So we have Weinstein
homotoped W to Wy UHR  U---UHj, (relabeling the Legendrians) so that ]_[{;21 A;
is a loose link (but not loose in the complement of A{). Again we take a Darboux
ball U; that is disjoint from all the Legendrians and unlinked Legendrian unknots
Sj,Tj C Uj. Then we form A := A S; and A} := A; #§ T; using arcs y; and y;
that are disjoint from the other Legendrians. Then we take sufficiently small ¢; (smaller
than the previous &;_1) and use the chart in U; to handle-slide A;. over A/1 and get a
new Legendrian / A (A}). Then by Proposition 2.1 (and Remark 2.2),

n n n n n n
Wan U HA, U HR, U+ -UHR ;U Hi g U Ry U U HE,

is Weinstein homotopic to WwaHX/l UHRX,U---UH} ., UHX;_ UHR,, U---UHR,
and hence to W. As before, we can see explicitly that & A (A}) is loose in Wy
(but not in the complement of A’,, which intersects its loose chart). Most importantly
the loose chart of hA/l (A;.) is contained in U;, which is disjoint from Aj,... , A;_;.
Therefore 5 A (A}) is loose in the complement of these Legendrians, which form a
loose link by the induction hypothesis. So A, IT--- T A;_; I hA/l (A}) is also a
loose link, which proves the j™ inductive case. Again by applying an ambient contact
isotopy to all the Legendrians, we can assume that A} = Aj. |

Now we give an example illustrating the entire procedure in Theorem 3.1.
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3 <>

A ;’\z

= Al

R (A})

Figure 5: Left: front projection of A}, A, and R, (A}) in Uj;
right: front projection of & A (A}) in Uj ; the blue box is a loose chart
of hA’l,e]- (A}) in Uj.

Example 3.3 This example shows that 7*S"§T*S"§T*S", the boundary connected
sum of three copies of T*S", can be Weinstein homotoped to Wyex U H” for some flex-
ible domain Whex. We begin with the “natural” presentation of 7*S" j T*S" §j T*S"
of the form B*" U HX U Hy, U Hj,, where Ay, Ay and Aj are three unlinked
Legendrian unknots in (S2"~! &44). In Figure 6, A; is in red, A, (and its im-
age after handle-slides) is in black, and A3 (and its image after handle-slides) is
in blue. The top diagram in Figure 6 denotes the setup after one iteration of the
construction; the Legendrians are now Ay, sa,(A3), and Ajz. The middle diagram
in Figure 6 is the first part of the second iteration when we change A to A and it
bring it closer to A3. The bottom diagram in Figure 6 shows the three Legendrians
Ay, hpa(Az), and K A (A3) after the second iteration of the construction, ie handle-
sliding A3 over AY. Then /15, (A3) and hA’l (A3) form aloose link since /15, (A3) is
aloose Legendrian and /147 (A 3) is loose in the complement of /14, (A2). We take Wiex
to be B?"U H;'JA1 (A Y H,’,’A,l (A)- Thus the original domain T*S"{ T*S" § T*S™
is homotopic to Wex U HK/1 . Note that /15, (A3) and hA/l (A3) are not loose in the
complement of A’ , which intersects their loose charts. For simplicity’s sake, Wyex in
this example is not actually (7*S” § T*S")qex; it will have the wrong intersection
form (in some dimensions 7) and so will not even be diffeomorphic to 7*S" § T*S".
However it is possible to do the construction so that Wyeyx is (T*S" §T*S")gex U H".

Although the order in which handles are attached does not affect the ambient domain (up
to homotopy), it does affect which Weinstein subdomains are produced by a particular
Weinstein presentation. To emphasize this, in Figure 7 we have depicted the Cerf

Geometry & Topology, Volume 24 (2020)



Simplifying Weinstein Morse functions 2629

805 ¢

Figure 6: Theorem 3.1 applied to T*S%, i T*SZ2, 4 T*S%,.

diagram of the Weinstein homotopy for T*S" 1 T*S™" 1 T*S" discussed above, ie the
graph of critical values of the index # critical points of the Weinstein Morse functions ¢
over the parameter space ¢ € [0, 1]. That is, if p; for i = 1,2, 3 are the critical points
with respective attaching spheres A; in the regular level set (S2"~!, £4q), then the
three line graphs depict ¢;(p;) for ¢ € [0, 1]. In Figure 7, we have labeled the graph
of ¢;(p;) by its attaching sphere. Handles are attached in order of the critical values
of the corresponding critical points, from lowest to highest. At the beginning of the
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’
A3 A1
As
har (Az)
A] hAl(AZ)

Figure 7: Cerf diagram of the Weinstein homotopy for T*S% 0§ T* S}, 1 T*SZ,.

homotopy, ¢o(p2) and ¢¢(p3) are greater than ¢o(p;) since we need to handle-slide
the A, and A3 handles over A;. These handle-slide moments are depicted by the
two vertical blue lines in Figure 7. After the two handle-slides are performed, the
attaching spheres of p, and p3 become /5, (A5) and /& A (A3) respectively, as shown
on the right-hand side of Figure 7. Away from the handle-slide moments, the homotopy
changes the Legendrian attaching spheres just by Legendrian isotopy. Finally, the
homotopy makes the critical value of p; greater than the critical values of p, and ps,
which is possible by the second Weinstein homotopy move (see Section 2.1.3). As a
result, the Weinstein domain Wyex with attaching spheres /14, (A2) and A A (Aj) isa
sublevel set of ¢ and hence a Weinstein subdomain of 7*S” § T*S" §j T*S".

Note that the Weinstein homotopy in Theorem 3.1 involved just handle-slides. If we
first create a pair of symplectically canceling handles and then handle-slide, we can
achieve better control over the topology of the flexible subdomain. This is the approach
we will take in the following proof of Theorem 1.5, which shows that W can be
homotoped to Wyex U C2” for some smoothly trivial Weinstein cobordism C2” with
two Weinstein handles. For example, this result shows that 7*S” | T*S" § T*S" can
be Weinstein homotoped to (T*S™ j T*S™ § T*S")pex U H"~1 U H} , where the last
two handles are smoothly canceling.

Proof of Theorem 1.5 We will assume W = Wy, UH Kl uU---UHR . for k > 1. First,
we attach a symplectically canceling pair of index 7 —1 and # handles H"~! and H XO
to W in a small Darboux chart B?" so that W = W §(B*" U H" 1 U HXO) =
W U (H"™1 U HR ) U HX, U---U Hy, . Now we proceed as in the proof of
Theorem 3.1, with slight modifications. We first bring all the A; for i > 1 close to Ag
by taking U; in the proof of Theorem 3.1 to be contained in dB2”. The main difference
from before is that now we do two handle-slides of A;, for each i > 1, over Ay,
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o o
/
MW W

e
Figure 8: Front projections of Ag’l (in red) and A;‘fl (in black) and their
subsequent images under the moves in Theorems 1.5 and 1.10, for n even;
the blue box appearing in the fourth and fifth diagrams is the loose chart of
hA o(Ai) and (p(hio (A;)) respectively; the green portion of the Legendrian

in the fourth diagram is the boundary of the Whitney disk between hﬁ\o (Ay)
and the belt sphere of H"!.

<

which produces the Legendrian /% ,(Ai). Before doing the second handle-slide, we
perform a Reidemeister move. This move depends slightly on the parity of 7. For n
even, we do the usual Reidemeister move which modifies the Legendrian in just a
point; see Figure 4. As a result, hf\o (A;) is loose. Note that hf\o (A;) intersects
the belt sphere of H"~! two times. We will now show that 43 ,(Ai) has algebraic
intersection number zero with this belt sphere. Indeed, consider the orientation of the
two branches of 7% ,(Ai) as they approach the belt sphere. The tangent space of these
branches can be decomposed into a 1-dimensional part in the “page” (as depicted
in Figure 8) and an (n—2)—dimensional part transverse to the page. The tangent spaces
parallel to the page have opposite orientations for the two branches; see the arrows
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in Figure 8. The tangent spaces transverse to the page differ by the antipodal map
on D"~ due to passage through the crossing point of the Reidemeister move. Hence
if 7 is even, the two branches of 1% ,(Ai) have opposite orientations and so hi o (Ad)
has algebraic intersection zero with the belt sphere of H"~! as desired. If 7 is odd, the
Legendrian /1% ,(Ai) as described above has algebraic intersection two with the belt
sphere. So instead of doing the Reidemeister move as in the even case, we perform the
1-dimensional Reidemeister move spun by S”~2 C A"~!; so this move modifies A”~!
in a neighborhood of S”~2. Then we form A% ,(Ai) by handle-sliding using a chart
that intersects the bottom branch of this Legendrian. Now there is no crossing point
and so hf\o (A;) has algebraic intersection zero with the belt sphere of H”~!; this
modified procedure works for the n even case as well but it is more complicated
to depict, which is why we have explained the n even case separately. Finally, we
note that h%\ 0 (A;) is loose, even though we have used a different Reidemeister move
and so a loose chart as defined in Definition 2.4 does not obviously appear. Namely,
hi ,(Ai) has a I-dimensional zigzag arc and since this arc is in a Darboux ball, it
has arbitrary thickness and so defines a loose chart; see [4]. In conclusion, /% o (Ad)
is loose for all n > 3 and has algebraic intersection number zero with the belt sphere
of H" 1. We do this procedure for all the Legendrian A; and so, as in Theorem 3.1,
h,(Ay) O --- 1L h%  (Ag) forms aloose link; more precisely, the i™ Legendrian is
loose in the complement of the previous (i — 1) Legendrians, which implies that the
link is loose. Hence W' := Wy, U H"1U HZiO(A]) U-..-u H;’%\O(Ak) is flexible and
W =W'UH,,.

Since the algebraic intersection number of /% ,(Ai) with the belt sphere of H n=1 g
zero, n > 3, and 71 (3(B%" U H"1)) = 0, we can use the Whitney trick to smoothly
isotope h%\ ,(Ai) away from this belt sphere. In fact, we can assume that this smooth
isotopy is supported in d(B>" U H"~ ). To see this, note that we can take the boundary
of the Whitney disk to lie in this region; see the green portion of Legendrian in the
fourth diagram of Figure 8. This region is simply connected and hence the Whitney
disk also lies in this region; so the isotopy is also supported in this region. Since n > 3,
the Whitney disks will be generically disjoint for different i and so we can smoothly
isotope the entire link /% yAD -1 hi o, (Ak) off the belt sphere of H n=1 (again
via an isotopy supported in d(B>" U H"1)).

The Legendrian link hio (Apnha---ua hf\o (Ay) is loose and so the smooth isotopy
can be approximated by a Legendrian isotopy. Since the smooth isotopy is supported
in 3(B2" U H"~!) and the Legendrians are loose in this region, the Legendrian isotopy
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is also supported in this region. Let ¢; be the ambient contact isotopy inducing this
Legendrian isotopy and supported in a small neighborhood of the Legendrian isotopy;
in particular ¢, is also supported in d(B2" U H"~1). Since hf\o (ApL--- Hhio (Ag)
is a loose link, so is <p(h%\0(A1)) o---a <P(h3\0(Ak)), where ¢ := ¢;. Furthermore,
we can assume that this link is loose in the complement of H”~! and A but not in
the complement of ¢(Ag). See the fifth diagram in Figure 8. The upper Legendrian in
black is @(h% ,(Ai)) and the blue box is its loose chart. The red Legendrian is ¢(Ao).
This fifth diagram is purely schematic and is meant to demonstrate that ¢ (A o) intersects
the belt sphere of H”~! some number of times and is linked with ¢(h§\ ,(A1)) in some
way such that ¢(Ag) intersects the loose chart of ¢(h% ,(Ai)) (since Ao intersected
the loose chart of hf\o (A))).

Now we apply the contact isotopy ¢ to all attaching Legendrians; see the transition
from the fourth to the fifth diagram in Figure 8. As a result, we get that W =
—1 n n n o . . .

Wep U H* =1 U Hhio(AI) U..-U thxo(Ak) U Hp,, is Weinstein homotopic to

W U H" ™1 U Hp3 (8 Y-+ U Hpad (a0 Y Hp(ag)-
The key point is that the latter presentation is Weinstein homotopic to
W U Hg2, (a0 U+ U Hg (a0 YU H" ™' U Hgag)

because we can attach the handles H(Z(hﬁo (A))UY---U Hf;l(hio(l\k)) before H"~! since
(,o(hi0 (A)---1I <p(hf\0 (Ay)) is disjoint from the belt sphere of H"~!. Let W”
be the domain

Waab U Hgg (ai) V+++ U Hy (A1)

obtained by viewing go(hio (A))ya-.--1a (p(hio (Ag)) as a Legendrian link in Wy,
Then W is Weinstein homotopic to W”UH"~'U Hy, ). We note that W is flexible
since (p(hf\o (A))ya---1a <p(hf\0 (Ag)) is loose in the complement of H"~ !,

Finally, we show that the Weinstein cobordism W\W” = H"~1 U Hg(p,) is smoothly
trivial. Since ¢ is smoothly isotopic to the identity, ¢(Ag) is smoothly isotopic to A
in (W U H"1). Since A, intersects the belt sphere of H" ™! exactly once, this
isotopy gives Whitney disks that cancel out all intersection points between ¢(Ag)
and the belt sphere of H"~! (except for one). Since n > 3, the Whitney disks will
be generically disjoint from the link (p(hf\o (Ap))y$a..-1a w(hio (Ag)). So ¢(Ay)
can be smoothly isotoped in the complement of this link to a sphere that intersects
the belt sphere of H"~! exactly once. This means that ¢(Ag) can be smoothly
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isotoped in (W U H"™1) to intersect this belt sphere exactly once, which proves
that W\W" = H"~1 U Hp,,) is smoothly trivial.

Any almost symplectic structure on a smoothly trivial cobordism can be deformed
relative to the negative end to the product almost symplectic structure. In particular,
W and W" are almost symplectomorphic. Since W” is flexible, by the uniqueness
h—principle [7] it is the flexibilization Wyex of W. O

Now we prove the 4—dimensional analog of Theorem 1.5.

Proof of Theorem 1.6 We take V* to be W' from the proof of Theorem 1.5, so that
W =VUH3} , - Note that V4 is obtained by attaching a 1-handle and some 2-handles
along hf\ oA i) to Wsﬁb. Each attaching knot for the 2-handles is stabilized in the
complement of the previous ones; hence V4 is a stabilized domain. Finally, we note
that VV* is simply homotopy equivalent to W* U H'. To see this, we consider the
6-dimensional domain V4 x B?; as can be seen explicitly, the attaching knots hio (Ag)
are unknotted in the B® U H'! region and hence can be smoothly isotoped to Ay . As
a result, this domain is diffeomorphic to (W* U H') x B2. Here we do not use the
Whitney trick directly since the region B® U H' is not simply connected. |

Using Theorem 1.5, we can prove Theorem 1.1, our result relating WCrit and Cerit.

Proof of Theorem 1.1 By Theorem 1.5, we can Weinstein homotope any Weinstein
domain W2" where n > 3 to its flexibilization plus two smoothly canceling handles
of respective indices n — 1 and n, ie to Whex U H n=ly HXI , where A; can be
smoothly isotoped to intersect the belt sphere of H”~! exactly once. For any smooth
Morse function f with critical points of index at most n on W, there is a Weinstein
homotopy of Wyex to a Weinstein presentation with Weinstein Morse function f;
see Theorem 14.1 of [7]. Furthermore, if f has 0Whex as a regular level set, then
this Weinstein homotopy is fixed on dWsex up to scaling. By Smale’s handle-trading
trick, there exists such a smooth function on W that minimizes the number of critical
points, ie with Crit(W) critical points, and so we can Weinstein homotope Wyex to a
Weinstein presentation with Crit(W) critical points. Since this homotopy is fixed up to
scaling on dWjey, it extends to a Weinstein homotopy of Wyex U H' n=ly HX] , which
is fixed up to scaling in W\ Wjex . In particular, this homotopy on Wyex U H* 1 U H Xl
does not alter the number of critical points in W\ Wpex. Combining the homotopy
of W to Wiex U H" ! U HR | and this second homotopy of Whex U H" ™' U H,
to a presentation with few critical points, we get a Weinstein homotopy of W to
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a Weinstein presentation with Crit(W) + 2 critical points: Crit(W) critical points
in Wyex and 2 critical points in W\ Wy, due to the handles H"~! and Hxl. This
proves the first claim in Theorem 1.1.

Now we prove the third claim in Theorem 1.1 about smoothly subcritical domains W 2",
If W2 is Weinstein subcritical, then W 2" is flexible and so by the above discussion can
be homotoped to a Weinstein presentation with Crit(W) critical points, ie WCrit(W) =
Crit(W). Conversely, suppose WCrit(W) = Crit(W) and 71 (W) =0. If 71 (W) =0,
the proof of Smale’s si—cobordism theorem shows that Crit(W) equals the number of
generators and relations for integral homology; see Theorem 6.1 of [39]. Then any
minimizing smooth Morse function on W cannot have any critical points of index
greater than n — 1 since these critical points are algebraically unnecessarily; we can
remove them and still have generators for integral homology since H,(W;Z) =0
and H,_1(W;Z) is torsion-free for smoothly subcritical W. Hence if 7{(W) =0
and WCrit(W) = Crit(W), then the minimal Weinstein presentation gives a minimal
smooth presentation and so cannot have any critical points of index greater than n — 1.
Thus W is Weinstein subcritical. Finally, we note that if WCrit(W2") # Crit(W?2"),
then WCrit(W?2") = Crit(W2") 4 2 since WCrit(W ") < Crit(W2") 4 2 by the first
claim and WCrit(W 2") = (Crit(W?2") + 2) mod 2 by the Euler characteristic.

Now we prove the smoothly critical case. Suppose that i is a minimal smooth Morse
function on W with k = Crit(W) critical points. By assumption, one of these critical
points has index 7 (and the rest of the critical points have index at most 7). By the
previous discussion, we can assume that i is a Weinstein Morse function on Wyex
and two other smoothly canceling handles H"~! and HXI are attached to Wyex to
form W. The smooth isotopy from A to canceling position gives some number of
Whitney disks in (Wyex U H" 1) pairing off all intersection points of A; and the belt
sphere of H"~! (except for one intersection point).

We can suppose that the index n critical point of ¥ on Wje is attached along a loose
Legendrian Ag; so Whex = Wy, U HA, and W = W, UH" ' U H} UH}J, . Note

flex flex
that A¢ is disjoint from the belt sphere of H"~! (since H"~! is attached after HXO ).
We view A1 C (W, U H""!) by taking any Legendrian in (W, U H""1) that

(D¢
is isotopic to Ay in d(Wy,,

uH"tu HXO); in general, there will be many such
Legendrians, which are nonisotopic in d(W,, U H n=1y_ Since n > 3, we can assume
that the Whitney disks of A in d(Wjex U H"™1) are disjoint from the belt sphere
of Hy, and hence lie in d(Wj,,

in d(Wy,UH n=1) to intersect the belt sphere of H”~! in a single point. Furthermore,

U H" 1), In particular, A can be smoothly isotoped
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since the Whitney disks are disjoint from A (since they are disjoint from its belt sphere),
we can assume that this isotopy is supported away from Ao. We can also assume that
this smooth isotopy of A is the identity in a neighborhood of some point x in Aj.
We take an isotropic path y from x to Ay and also assume that the isotopy is the
identity in a neighborhood of this path.

Now we handle-slide A{ over Ay using the path y. More precisely, we take the
Legendrian connected sum of A; with a Legendrian unknot near A via the isotropic
arc y and then handle-slide using a chart near this Legendrian unknot as in Theorem 3.1.
We also do the handle-slide so that the resulting Legendrian /15 ,(A) is loose in
oW UH "=1) (but not in the complement of A). Now we note that s ,(A1) can
also be smoothly isotoped in d(W, U H"™!) to a canceling sphere that intersects
the belt sphere of H"~! once. Namely, we can use exactly the same smooth isotopy
that takes A to a canceling sphere. This is because /15,(A ) is topologically the
connected sum of Ay and A;. Since the previous isotopy is supported away from A
and the path y used for the connected sum, we can extend it to the connected sum.
Furthermore, Ay is disjoint from the belt sphere of H”~! and so after the smooth
isotopy, h1p, (A1) intersects this belt sphere once.

Since hip, (A1) is loose in d(Wj,, U H™ 1) and smoothly cancels H"~!, we can
symplectically cancel H"~! and Hi:le(Al)' Thus Wy, UH""'UH} U H},’AO(AI) is
UH Xf)' Here Ay is the Legendrian obtained by handle-
sliding Ag off the canceling pair H"~' U H;ZAO(Al)’ ie Aj is the image of Ag in
Wy =W

flex flex

Weinstein homotopic to Wy,

UH" U H] ag(AD): Since Wy, has a Weinstein presentation with & — 1

. : p
critical points, Wy,

U be has a presentation with k& = Crit(W) critical points. This

completes the proof since W = W, U H "—luH XO UH Xl is Weinstein homotopic
to Wy, UH"™" U HX, U H}, (a,), Which is homotopic to W, U Hy, . 0

The proof of Theorem 1.1 can be used to prove Corollary 1.7: all Legendrians in our
Legendrian link can be made individually loose.

Proof of Corollary 1.7 The proof of Theorem 1.1 in the smoothly critical case
shows that W = Wy U H"~' U H} U H}}ZAO(AI) where A and sip,(Ay) are both
loose; Ay is loose by assumption and /A, (A1) is loose because of the handle-slide.
Combining A with the attaching spheres of the n—handles of W U H n=1 (which
form a loose link for some presentation), we get the desired result. For general W, we
first add a pair of symplectically canceling handles to Wyex and then proceed as in the
smoothly critical case. |
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Next we prove Theorem 1.10 about the number of intersection points between the belt
and attaching spheres of smoothly canceling handles.

Proof of Theorem 1.10 By Theorem 3.1, we can assume that the smoothly trivial
Weinstein cobordism W consists of two smoothly canceling handles H. {’_1 and H Xl ,
ie Ay is smoothly isotopic to a Legendrian that intersects the belt sphere of H. {’_1 ina
single point. Now we follow the proof of Theorem 1.5. We first attach two canceling
handles H(;’_l and H XO in a small Darboux ball and do two handle-slides (of opposite
orientations) of A over Ag so that the resulting Legendrian h%\ 0 (A1) is loose. Then
we use the contact isotopy ¢ to isotope /1% , (A1) away from the belt sphere of Hg'_l .
The resultis W = HI ' U HI'™ ' U H‘g(hio(l\l)) U Hy(a,); see the fifth diagram in
Figure 8. The key observation is that this local diagram is independent of A since all
isotopies were done near Hg’_l U HXO. In particular, let C,, be the number of times
that ¢(A) intersects the belt sphere of Hé’_l ; in Figure 8, this number is 5 but since
we do not compute this isotopy ¢ explicitly we do not know the exact number.

Next we note that the Legendrian ¢ (43 , (A1) is still smoothly isotopic to a Legendrian
that intersects the belt sphere of H' f_l in a single point. This is because ¢(h% o(A1))
is exactly the same as A; except for a loose chart; see the blue box in the fifth
diagram of Figure 8. Furthermore, we can assume that this smooth isotopy is supported
away from H"~! U HXO. Since (,o(hﬁx0 (A1)) is loose, there is a contact isotopy
taking it to a Legendrian that intersects the belt sphere of H{' in one point; since
o(hi ,(A1)) is loose away from H n=ly HXO and the smooth isotopy is supported
away from this region, we can assume that this contact isotopy is also supported away
from Hé’_l UH 1’{0. In particular, ¥ (¢(Ay)) still intersects the belt sphere of H(’)’_1
in Cy, points. Finally, we handle-slide ¥ (¢(Aq)) over w((ﬁ(h%\() (A1)) and off H{’_l.
This also does not change its geometric intersection number with the belt sphere
of H(’)’_1 since ¥ (p(h% ,(A1)) is disjoint from this belt sphere. We call the resulting
Legendrian Aj. Then W = H(;’_l UH Xf) and Ay intersects the belt sphere of H(’)’_1
exactly C, times as desired. The Legendrian Aj is depicted in the sixth diagram of
Figure 8. This diagram is also schematic and is meant to signify that A has an upper
and a lower part; the lower part of A6 is close to H(’)'_1 and is independent of A
while the upper part of Aj, depends on A (and hence on W'). |

Now we give proofs of the results in Section 1.4. We first prove Corollary 1.12
concerning the number of generators g(WW (X)) of the wrapped Fukaya category W(X).
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Proof of Corollary 1.12 The proof of Theorem 1.1 shows that
WCrit, (X)) < max{l, Crit,(X)}

for all X2". Combining this with the result from [6; 23], we get the inequality
gOW(X)) <max{l, Crit,(X)}. If X" is simply connected, then Smale’s s—cobordism
theorem (which holds since # > 3) implies that Crit, (X) = g(H"(X; Z)), which proves
the result in that case. If X'2” is not simply connected, we attach some 2-handles
to X2" to get a simply connected Weinstein domain Y2”. Since n > 3, we have
H™"(Y?";Z) = H"(X?";Z) and so g(H"(Y*";Z)) = g(H"(X?"; Z)). Furthermore,
since n > 3, the 2-handles are subcritical and hence D W(Y) is exact equivalent
to DPW(X) by [23] and so g0V (X)) = gV (Y)). Then the result for Y2, which
is simply connected, implies the result for X", |

Next we prove Corollary 1.13 that g(KO(W(X))) <g(H"(X;7Z)).

Proof of Corollary 1.13 The case g(H"(X;Z)) > 1 is proven by (1-4) so it suffices
to handle the case when g(H"(X;Z)) = 0. Then g(KO(W(X))) <1 by (1-4) and
if g(KO(W(X))) = 0, we are done. Otherwise, g(KO(W(X))) = 1 and therefore
KoW(x)) = Z/ kZ for some integer k > 0. Now we take the boundary connected
sum and form the new Weinstein domain X f X. Since l-handles are subcritical,
DPW(X X))~ DPW(X 11 X) by [23] and DPW(X L1 X) =~ D®W(X)® D®W(X).
As aresult, KoOV(X 1 X)) = KoOV(X)) @ KoOW(X)) = Z/kZ & Z/kZ. This
implies that g(Ko(W(X | X))) = 2 since Z/kZ & Z/kZ is not a cyclic group.
On the other hand, we also have H*(X 1 X;Z) =~ H*(X;Z)® H"(X;Z) =~ 0 and
therefore g(H"(X § X;Z)) = 0. Again using the previous inequality, we get that
g(KO(W(X f X))) < 1, which contradicts g(KO(W(X f X))) = 2. Therefore, we
must have that g(KO (W(X))) =0 and so Ko(W(X)) =0 as desired. |

Remark 3.4 A similar boundary connected sum trick was used by Smith [36] to
show that all exact symplectic fillings of (S2"~! &yq) have vanishing symplectic
cohomology; also see [41].

Next we prove our results about the Chekanov—Eliashberg algebra CE(A) of Leg-
endrians. These results depend on the surgery formula [3]; alternatively, we can
use the partially wrapped invariant CF(D, D; (W, A)) and the rigorous proof of the
surgery formula given in [23]. We first prove Corollary 1.16: the Chekanov—Eliashberg
algebra of a Legendrian A”~! C (S"71 x §", £yq) that is primitive in homology has
no finite-dimensional representations.
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Proof of Corollary 1.16 We first assume that A is a sphere and prove the general
case later. Let X" := B21U H" ' U H} . Since [A]=1€ H,_1(S" 'xS" Z) = Z,
H™(X?";Z) =0 and so Ko(W(X)) = 0 by Corollary 1.13. Let C" C X" be the
cocore of H . Since C" is the only index 7 cocore for X", it generates W(X) and so
D°W(X):=H° (Tw(Fuk(X))) is equivalent to H° (TW(CW(C, C))) , Where we treat
CW(C, C) is an A—category with one object. By [3], CW(C, C) is quasi-isomorphic
to CE(A) and hence D®W(X) is exact equivalent to H(Tw(CE(A))).

Suppose that CE(A) has a DGA map to Mat(n, K). Then there is an As—functor

Tw(CE(A)) — Tw(Mat(n, K))

and an exact functor
H°(Tw(CE(A)) — H°(Tw(Mat(n, K)))

taking CE(A) to Mat(n, K) (considered as twisted complexes). Let D(Mat(n, K))
denote the classical derived category of Mat(n, K)-modules and Do (Mat(n, K))
its Aco analog, ie the homotopy category of A.—modules over Mat(n, K). There is an
embedding D(Mat(n,K)) — Doo(Mat(n,K)); see [27]. Since H° (TW(Mat(n, K)))
is equivalent to the subcategory of Do (Mat(n,K)) generated by the free module
Mat(n,K) and since the exact subcategory DMat(n,K) contains this free module,
H° (Tw(Mat(n,]K))) is also equivalent to the subcategory of DMat(n,K) gener-
ated by the free module Mat(n, K). This subcategory is an exact subcategory of
DPProj(Mat(n, K)), the bounded derived category of projective Mat(n, K)-modules.
In summary, there is an exact functor D®W(X) — D?Proj(Mat(n,KK)) taking
the cocore C" to the free module Mat(n,K). This functor induces a map of
Grothendieck groups KoOW(X)) — Ko(DP?Proj(Mat(n, K)), and the latter is just
the usual Grothendieck group Ko(Mat(n, K)) of projective Mat(n, K)-modules. It is
well known that [Mat(n, K)] € Ko(Mat(n, K)) = Z is nonzero. Therefore Ko(W(X))
is also nonzero, which contradicts Corollary 1.13. Similarly, there are no DGA maps
from CE(A) to a commutative ring R since [R] € K((R) is nonzero for commutative
rings.

Now we prove the case when A”~! is not a sphere. In this case, we cannot attach a
standard n—handle along A but we can attach a generalized handle. Namely, let M"
be a smooth manifold with boundary A”~'. Then we can construct the Weinstein
domain X?" := B2" U H" ' Up T*M, where we glue T*M to B2 U H""! by
identifying the Legendrian 0M C dT*M with A C d(B2" U H"~!); more precisely,

Geometry € Topology, Volume 24 (2020)



2640 Oleg Lazarev

we fix parametrized Legendrian embeddings
it A= dBXMUH"Y) and j: A= dT*M

which give us identifications of their neighborhoods with J!(A) that we use to
glue B2" U H" ! to T*M. Then CE(A; Cx«(QM™)), the Chekanov—Eliashberg
algebra with coefficients in chains on the loop space of M", is quasi-isomorphic to
CW(TFM, T}M), wrapped Floer cochains of the cotangent fiber 75 M C T*M C X ?";
the partially wrapped analog of this result is proven in [23]. The cotangent fiber 7'; M
is the cocore of the only index n handle of X" and hence generates D®W(X). The
condition that A is primitive in H,_{(S"~! x S*; Z) again implies H"(X;Z) = 0.
Therefore, Kq(W(X)) = 0, and so by the same argument as when A is a sphere,
CE(A; C«(2M™)) has no finite-dimensional representations or DGA maps to a com-
mutative ring. On the other hand, there is a DGA map CE(A; Cx(2M")) — CE(A)
induced by the DGA map Cyx(2M) — Cx(Q2D") = K. Any finite-dimensional
representation or map to a commutative ring from CE(A) pulls back to such a map
from CE(A; C«(2M™")), which we have proved cannot happen. So CE(A) also cannot
have any finite-dimensional representations or DGA maps to commutative rings. [

Now we prove Corollary 1.17 concerning Legendrians that can be isotoped into a
neighborhood of a loose Legendrian Ajyose C (S2"7 1, £gq).

Proof of Corollary 1.17 We first prove the case when Ajgse is the loose Legendrian
unknot A ynknot,l00se and then prove the general case. Consider a loose Legendrian sphere
AC (8" 1x 8", £q) thatis primitive in H,(S" ! xS";Z). Let BC (S" ' xS", £4q)
be the stabilization of A4, followed by a small Reeb push-off so that A and B are
disjoint and form a loose link. The stabilization is done so that 4 and B are formally
isotopic (and hence Legendrian isotopic). We can also assume that there exist disjoint
contact neighborhoods U and V of A and B respectively so that A and B are loose
in the complements of V' and U respectively.

Since A4 is loose, Bsztg UH" TUH | is Weinstein homotopic to Bszu’i’. By attaching the
handle Hj using a neighborhood of 4 contained in U, we can assume B and its neigh-
borhood V' are disjoint from the attaching neighborhood and hence extend to a Legen-
drian B’ C (S?" !, £gq) = antg and a contact neighborhood V'’ of B’. Since B is loose
in the complement of U, its loose chart extends to (S 2n=1 &sa) and so B’ isloose. The
belt sphere of H is the standard Legendrian unknot and so B’ is formally isotopic to
the Legendrian unknot. Since B’ is loose, it is the loose Legendrian unknot A ynknot, loose -
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Let A C (S2"1,£4q) be a Legendrian that can be isotoped into a neighborhood of
Aunknot,loose = B’ and is primitive in Hj,_1 (Aunknot,loose; Z), as in the statement of
the corollary; we can assume that this neighborhood is V. Using the identification
between V' C (S2"71,£uq) and V C (S 1 x 8", £4q), A C V' defines a Legendrian
Ao CV C(S"™ 1 x 8" £uq). In particular, A C (S2"71, £4q) is obtained by trivially
extending Ao C (S x S", £yq) through the Weinstein cobordism from Bsztg uH"!
to B2" = B2"U H"~' U H” given by handle attachment along A C (S"~! x S", £4q).
Since Ag C V, A C (S"™ ! x 8" £qq) is loose in the complement of Ay. Handle
attachment along the loose Legendrian A does not change the Chekanov—Eliashberg
algebras of Legendrians, like A, that are disjoint from the loose chart of A4 ; see [3; 28].
Hence CE(Ag) and CE(A) are quasi-isomorphic; this is the key point where we use
the fact that A is in a neighborhood of Aunknot,l00se = B’, which implies that Ag is
disjoint from the loose chart of A. Without this condition, CE(A() and CE(A) could
be completely different and, in fact, CE(Ag) could be zero with CE(A) arbitrary.

That A is primitive in Hy,— (Aunknot,loose; Z) implies that Ay C (S"1 x S" £4q)
is primitive in H,_;(B;Z) and therefore primitive in H,_;(S""! x §";Z). There-
fore HO(Tw(CE(Ay)) is equivalent to D?W(X), where X" is the Weinstein ball
Bszt(’i’ UH" 'UH Ao - Then, as in Corollary 1.16, CE(A) has no finite-dimensional
representations or DGA maps to commutative rings. Since CE(A) is quasi-isomorphic
to CE(Ag) by the previous paragraph, CE(A) also has no finite-dimensional represen-
tations or DGA maps to a commutative ring. More precisely, this quasi-isomorphism
implies that H°(Tw(CE(A))) and H°(Tw(CE(Ay)) are equivalent and the rest of the
proof is as in Corollary 1.16.

Next we prove the result when A is a neighborhood of an arbitrary loose Legendrian
Aloose C (S, £4q). Note that any Legendrian A C (S2"~1, £q) can be Legendrian
isotoped to a neighborhood of the Legendrian unknot Aypknet SO that A and Aypknot
agree on a small disk D" (and hence A is primitive in Hy,_1 (Aunknot; Z)). To see
this, view A via its front projection in R” and add a Reidemeister twist move to the
topmost point of A, ie the one with the largest z—coordinate. Note that the smoothed-
out twist is the front projection of A ynknot- Taking this to be our copy of A ynknot, We see
that A and Aypknot agree on a disk and A is contained in a neighborhood of A ypknot;
most of A is contained in a neighborhood of the bottommost point of Aypgnot- See
Figure 9. In particular, this construction holds for Ajsese. We simultaneously sta-
bilize Aunknot and Ajgese using the disk D" ! and get Aunknot,loose and A By

loose*
!

construction, A .. is in a neighborhood of Aunknot,100se @and is again primitive in
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Figure 9: The black Legendrian is A with a Reidemeister twist added. The
red Legendrian is a Legendrian unknot A nknot, Which contains the black
Legendrian in its neighborhood. They can be made to agree at the upper
points of A ynknot -

/

loose 18 formally Legendrian isotopic to Ajgese and hence

homology. Furthermore, A
Legendrian isotopic to it. Combining these results, we can assume that Ajese 1S @
neighborhood of A ynknot,loose and is primitive in Hy—1 (Aunknot, loose; Z). Therefore,
since A C (8?71, £4q) can be isotoped into a neighborhood of Ajggse and is primitive
in Hy_1(Alose; Z), it can also be isotoped into a neighborhood of A ynknot,1oose and is
primitive in Hy_ 1 (Aynknot,loose; Z) reducing this case to the previous case when Ajgse

is Aunknot,loose . O

Combining Corollary 1.16 with the existence of infinitely many exotic Weinstein balls,
we conclude that there are infinitely many Legendrian spheres in (S”~! x 8%, &)
or (S2"~1 £.4) with no finite-dimensional representations; these Legendrians are also
in a contact neighborhood of loose Legendrians and are primitive in their homology.

Proof of Corollary 1.18 McLean [32] showed that there are infinitely many exotic We-
instein balls X ,26” for each n >4, distinguished by symplectic cohomology. As explained
in Example 1.3, WCrit(E,zc”) =3 and so Ei” can be presented as Bsztg UH" U H}'\k
for some Legendrian Ay C (S"7! x 8", £4q). Since 212(” is a ball, Ay is primitive in
homology, and so by Corollary 1.16, CE(A} ) has no finite-dimensional representations.
By [3], the symplectic cohomology of 212(” is isomorphic to the Hochschild homology
of CE(A) and hence the CE(Ay) are not acyclic and are different for different %, as
desired.

Next we show that the Legendrian Aj can be isotoped into a contact neighborhood of
a loose Legendrian and is primitive in its homology class. Note that Bszt('i’ UH" 1isa
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subcritical Weinstein domain and hence Weinstein homotopic to D*S"~! x D?, where
D*S™1 s the unit disk cotangent bundle. So (S”~ 1 x S”, £gq) = B(Bszu’i’ UH" 1) can
be viewed as the boundary of the Lefschetz fibration D*S"~! x D?. By smoothing the
corners of this Lefschetz fibration, (S~ ! x S”, £q) has an open book decomposition
obtained by gluing (T*S" ! x ST, A 4+dz) to (ST*S" ! x D2, A+ x dy —y dx) by
identifying
ST*S" 1 x[1,00) xS cT*S" 1 x §!
with
ST*S™ 1 % (D*\0) Cc ST*S"! x D?

via the contactomorphism (x,r,6) — (x,1/r%,6). The pages of the open book
decomposition are T*S"~! x 0, where 6 € S!. Akbulut and Arikan [2] showed that
there is a Legendrian isotopy of A”~! so that it becomes disjoint from the closure
T*S"™ 1 x9U ST*S™ ! x(0,0) of the page T*S"~! x . The complement of the
closure of this page is 7*S"~! x (S'\0), which is a standard contact neighborhood of
the Legendrian S~ x —@. In particular, A; can be isotoped into a neighborhood of
S"=1x—f. Since S"~!x—6 and Ay are both primitive in H,_(S" ' xS™*;Z)=7Z,
Aj is primitive in H,_;(S"~! x —6; 7). Finally, we note that S"~! x —@ is a loose
Legendrian since it passes through the belt sphere of H"~! exactly once.

For the second part of this corollary about Legendrians in (S2"~!, &), we essen-
tially reverse the procedure in the proof of Corollary 1.17. Take a loose Legendrian
A C (S™ 1 x S", £q) disjoint from Ay and loose in the complement of Aj . Then
Bszt(’i’ UH"TUH | is flexible and hence Weinstein homotopic to Bsztg. Since Ay
is disjoint from A, Aj defines a Legendrian sphere A} in (S271 Egq) = BBsztg.
Since A is loose in the complement of Ay, CE(A;{) is quasi-isomorphic to CE(Ay)
by [3; 28], as discussed in the proof of Corollary 1.17. Therefore, H®(Tw(CE(Ay)))
is equivalent to H° (TW(CE(A;C))) and so Aj C (S 2n=1 £.4) has the same properties
as Ag C (S" 1 x 8" £4q), ie the CE(A},) have no finite-dimensional representations
or DGA maps to a commutative ring and their Hochschild homology is different for
different k. Finally, we observe that A;C is in a contact neighborhood of a loose
Legendrian in (S2"7!, £4q) and is primitive in its homology. By the previous para-
graph, Ay C (S"! x 8", £4q) is in a contact neighborhood of the loose Legendrian
S"~1 x —@ and is primitive in its homology. The Legendrian S~ x —@ is isotopic to
the Legendrian B obtained by stabilizing A and taking a small Reeb push-off; so we
assume from the start that Ay is in a neighborhood of B, is primitive in H,_;(B;Z),
and is disjoint from 4. So the extension A}C of Aj is in a neighborhood of the
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extension B’ of B to (S2" 1, £.q) and is primitive in H,,_;(B’;Z). Since B is loose
in the complement of A4, its extension B’ C (S2"7!, £yq) is a loose Legendrian, in

fact the loose Legendrian unknot, which proves the claim. |
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