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Simplifying Weinstein Morse functions

OLEG LAZAREV

We prove that the minimum number of critical points of a Weinstein Morse function
on a Weinstein domain of dimension at least six is at most two more than the minimum
number of critical points of a smooth Morse function on that domain; if the domain
has nonzero middle-dimensional homology, these two numbers agree. There is
also an upper bound on the number of gradient trajectories between critical points in
smoothly trivial Weinstein cobordisms. As an application, we show that the number of
generators for the Grothendieck group of the wrapped Fukaya category is at most the
number of generators for singular cohomology and hence vanishes for any Weinstein
ball. We also give a topological obstruction to the existence of finite-dimensional
representations of the Chekanov–Eliashberg DGA for Legendrians.

57R17; 53D37, 53D40, 57R80

1 Introduction and main results

Weinstein domains are exact symplectic manifolds equipped with Morse functions
compatible with their symplectic structures. These domains encompass a large class of
symplectic manifolds, eg cotangent bundles, and are closely related to Stein manifolds
in complex geometry; see Cieliebak and Eliashberg [7]. The Weinstein Morse function
gives a symplectic handlebody presentation of the domain and allows one to study its
symplectic geometry via high-dimensional Legendrian knot theory. This handlebody
presentation is not unique and, like a smooth handlebody presentation, a Weinstein
handlebody presentation can be modified by a series of moves, or Weinstein homotopies,
that preserve the symplectic structure of the ambient domain; see Section 2. In this paper,
we study how these moves can be used to simplify an arbitrary Weinstein presentation.

Abouzaid and Seidel [1] introduced the complexity WCrit.W / of a Weinstein struc-
ture W as the minimal number of critical points of a Weinstein Morse function on W ,
up to Weinstein homotopy. The corresponding notion for Stein domains was introduced
by Eliashberg [17]. Complexity is tautologically a Weinstein homotopy invariant. The
analog of WCrit in the smooth setting is Crit.M /, the minimal number of critical
points of any Morse function on a smooth manifold M. This is a classical invariant of
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smooth manifolds and we will study the relationship between WCrit.W / and Crit.W /

as a way of investigating the difference between symplectic and smooth topology and
the corresponding handlebody moves.

We first recall some results about Crit.M /. A priori Crit.M / is just a smooth invariant
of M. Morse proved that there is a lower bound for Crit.M / in terms of the integral
homology H�.M IZ/. Smale [39] showed in the proof of the h–cobordism theorem
that if M n is simply connected and n� 6, then this lower bound is in fact sharp. More
precisely, it is possible to simplify an arbitrary Morse function on M n to another Morse
function whose number of critical points agrees with the homological lower bound. So
in this case, Crit.M / is actually a homotopy invariant of M n . To simplify an arbitrary
Morse function, Smale uses certain moves called handle-slides and the Whitney trick,
which requires M n to be simply connected and n � 6. The h–cobordism theorem
generally fails without these assumptions.

In this paper, we will study how much of Smale’s h–cobordism theorem holds in the
symplectic setting. Since any Weinstein Morse function is a smooth Morse function,
we have the inequality WCrit.W /� Crit.W / and Eliashberg [17] asked whether there
are examples where WCrit.W / and Crit.W / differ. As first shown by Seidel and
Smith [37], such examples do exist. For example, Crit.B2n/D 1 but any Weinstein
structure †2n on B2n that is not symplectomorphic to (the completion of) B2n

std must
have WCrit.†2n/ � 2; see [7, Corollary 11.27]. In fact, WCrit.†2n/ � 3, since the
Euler characteristic of B2n is 1. Seidel and Smith constructed such an exotic †2n and
distinguished it from B2n

std by the presence of a Floer-theoretically essential Lagrangian
torus. Hence the proof of the inequality WCrit.†/ � Crit.†/C 2 depends crucially
on J–holomorphic curve type invariants. From a Weinstein homotopy point of view,
WCrit and Crit differ because the Whitney trick, the key part of Smale’s proof of the
h–cobordism theorem, does not generally work in the symplectic setting; more precisely,
smoothly isotopic Legendrian submanifolds are not necessarily Legendrian isotopic.

Given that Crit and WCrit can indeed be different, it is natural to ask how big this
difference can be. We first note that for domains of dimension at least six, there
are infinitely many different Weinstein structures in the same almost Weinstein class
[1; 7; 32]. So, in principle, WCrit.W / can be arbitrarily larger than Crit.W /. The
first construction of infinitely many exotic Weinstein structures is due to McLean [32].
He constructed a single exotic ball †2n

1
and then showed that †2n

k
WD \

k

iD1
†2n

1
, the

boundary connected sum of k copies of †2n
1

, are pairwise nonsymplectomorphic,
distinguished by a J –holomorphic curve invariant called symplectic homology. In
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particular, †2n
k

has a natural Weinstein presentation with at least 4k � 1 handles
(3k handles for

`k
iD1†

2n
1

and k � 1 index 1 handles) making it seem that these
structures have unbounded complexity. Later, Abouzaid and Seidel [1] constructed
infinitely many exotic Weinstein structures that do have bounded complexity.

On the other hand, recent work has shown that certain Weinstein structures have minimal
complexity, ie WCrit.W /DCrit.W /. Cieliebak and Eliashberg [7] proved that flexible
Weinstein structures, which satisfy an h–principle that reduces their symplectic topology
to the underlying algebraic topology, have minimal complexity. Later Eliashberg,
Ganatra, and the author [18] constructed infinitely many examples of exotic (nonflexible)
Weinstein structures on T �Sn and showed that they also have minimal complexity.
We will show that minimal complexity holds quite generally.

1.1 Almost minimal Weinstein presentations

The above examples due to Seidel and Smith and to McLean show that there exist W

for which WCrit.W /� Crit.W /C 2. This lower bound comes from J–holomorphic
curve invariants (and some mild use of h–principles). Our main result shows that
this is the only constraint on WCrit. In the following, we say a smooth domain W 2n

(with the homotopy type of an n–dimensional CW complex) is smoothly critical if
every smooth proper Morse function has a critical point of index n; for example,
if H n.W 2nIZ/ is nonzero. A smooth domain W 2n is smoothly subcritical if W 2n

admits a smooth Morse function all of whose critical points have index strictly less
than n. A (smoothly subcritical) Weinstein domain is Weinstein subcritical if it admits
a Weinstein Morse function all of whose critical points have index strictly less than n.
Subcritical Weinstein domains are flexible and hence have minimal complexity as
mentioned above [7]; see Section 2.2 for details.

Theorem 1.1 If W 2n , where n � 3, is a Weinstein domain, then WCrit.W / �

Crit.W /C 2. Furthermore, if W is smoothly critical , then WCrit.W / D Crit.W /.
If W is smoothly subcritical and �1.W /D 0, then WCrit.W /D Crit.W / if and only
if W is a subcritical Weinstein domain; otherwise , WCrit.W /D Crit.W /C 2.

More precisely, let WCritk.W 2n/ denote the minimum number of index k critical
points of a Weinstein Morse function on W 2n ; let Critk.W / denote the same for a
smooth Morse function. Then the proof of Theorem 1.1 actually shows that

WCritk.W
2n/D Critk.W

2n/ for k � n� 2
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and either

WCritn�1.W
2n/D Critn�1.W

2n/ and WCritn.W 2n/D Critn.W 2n/

or
WCritn�1.W

2n/D Critn�1.W
2n/C 1 and WCritn.W 2n/D 1:

The second case can only happen when Critn.W 2n/D 0, ie W is smoothly subcritical.
So we always have WCritn.W 2n/�maxf1;Critn.W 2n/g.

Now we give some examples illustrating Theorem 1.1.

Example 1.2 If M n , where n� 3, is a closed smooth manifold, then

WCrit.T �M /D Crit.T �M /� Crit.M /

for any Weinstein structure on T �M because it is smoothly critical; if n � 6 and
�1.M /D 0, then the second inequality is also an equality. In particular, all Weinstein
structures on T �Sn have WCrit.T �Sn/D 2; this generalizes the result in [18], where
it was proven that this holds for a particular infinite collection of exotic structures
on T �Sn .

Example 1.3 Any Weinstein ball †2n that is smoothly subcritical with Crit.†2n/D 1

has either WCrit.†2n/ D 1 or 3. Since �1.†
2n/ D 0, the structure is Weinstein

homotopic to the standard structure B2n
std if and only if WCrit.†2n/D 1. In particular,

McLean’s exotic structures †2n
k

, which have natural presentations with at least 4k � 1

critical points, can be Weinstein homotoped to presentations with just 3 critical points,
corresponding to handles of index 0, n�1, and n. They are all nonstandard structures
and so WCrit.†2n

k
/D 3.

Our proof of Theorem 1.1 relies on Murphy’s h–principle for loose Legendrians [33]
(and its consequences for flexible domains) as well as the smooth Whitney trick. Both
of these results hold only for n� 3, hence our restriction on dimension.

Question 1.4 Is WCrit.W 4/� Crit.W 4/C 2 for any Weinstein domain W 4 ?

1.2 Flexible subdomains

Our main result Theorem 1.1 essentially follows from the following theorem. For
a Weinstein domain W 2n where n � 3, let W 2n

flex be the unique flexible Weinstein
structure almost symplectomorphic to W 2n ; see Section 2.2.
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Theorem 1.5 Any Weinstein domain W 2n where n� 3 can be Weinstein homotoped
to W 2n

flex [C 2n , where C 2n is a smoothly trivial Weinstein cobordism with two critical
points of respective indices n� 1 and n.

This result implies that the smooth topology and the symplectic topology can be
separated in the sense that all the smooth topology can be put into a symplectically trivial
(flexible) domain W 2n

flex while all the symplectic topology can be put into a smoothly
trivial cobordism C 2n , which is a smooth collar of the boundary of W 2n . In particular,
Theorem 1.5 shows that Wflex is a Weinstein subdomain of W . This extends previous
work of Eliashberg and Murphy [19], who proved that Wflex is a Liouville subdomain
of W , ie W nWflex is an exact symplectic cobordism, perhaps without a compatible
Weinstein Morse function. The decomposition in Theorem 1.5 has several applications,
explored in later work; for example, it is used to prove an existence h–principle for
regular Lagrangians with boundary in arbitrary Weinstein domains as well as regular
Lagrangian caps [29] and construct “maximal” Weinstein domains that contain a
complicated set of Lagrangians [30]. Theorem 1.5 implies most of Theorem 1.1. The
presentation in Theorem 1.5 shows that WCrit.W /�WCrit.Wflex/C 2. Since flexible
structures have minimal complexity [7], WCrit.Wflex/D Crit.W /. Combining these
results, we get WCrit.W /� Crit.W /C 2, the first claim in Theorem 1.1. The proof
of the smoothly critical case of Theorem 1.1 is similar.

Flexible Weinstein domains are defined only for n� 3. The analog of these domains
for nD 2 are Weinstein domains whose index 2 handles are attached along stabilized
Legendrians; we will call these stabilized domains. However, neither stabilized Legen-
drians nor stabilized domains satisfy an h–principle and so we do not know whether
Theorem 1.1 holds for nD 2. However an analog of Theorem 1.5 holds for nD 2 if
we replace flexible domains and loose Legendrians with these analogous domains and
Legendrians respectively.

Theorem 1.6 Any Weinstein domain W 4 can be Weinstein homotoped to V 4[H 2 ,
where V 4 is a stabilized domain that is simply homotopy equivalent to W 4[H 1 .

The notation H n
ƒ denotes a Weinstein handle attached along an isotropic attaching

sphere ƒ, and we write H n if we do not specify the attaching sphere; see Section 2.
Theorem 1.6 cannot be improved so that V 4 is diffeomorphic to W 4[H 1 . For example,
there is a unique Weinstein structure on T �T 2 and it has nonvanishing symplectic
homology — see Eliashberg [16] and Wendl [40]; the same holds for T �T 2[H 1 [7].
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On the other hand, stabilized domains have vanishing symplectic homology and so
T �T 2 [H 1 does not admit a stabilized Weinstein structure. The reason for this is
that stabilizing a 1–dimensional Legendrian knot changes its Thurston–Bennequin
invariant, which affects the framing used to attach the Weinstein handle and hence the
intersection form of the resulting Weinstein domain.

Theorem 1.5 shows that any Weinstein domain W 2n where n � 3 can be presented
as a flexible domain W 2n

flex [H n�1 plus a single critical handle. In fact, the proof of
Theorem 3.1 is a bit more explicit about the single extra handle.

Corollary 1.7 Every Weinstein domain W 2n where n � 3 can be Weinstein ho-
motoped to a subcritical domain Vsub with handles attached to the Legendrian link
ƒ1q� � �qƒk�1qƒk � @Vsub such that ƒ1q� � �qƒk�1 is a loose link and ƒk is
a loose Legendrian.

Even though all of the Legendrians in Corollary 1.7 are individually loose, the entire
link ƒ1q� � �qƒk�1qƒk may not be loose, ie the loose charts of ƒi intersect ƒk

and the loose chart of ƒk intersects ƒi . Otherwise all Weinstein domains would
be flexible. So the attaching Legendrians are themselves symplectically trivial but
their linking is symplectically nontrivial, ie the symplectic topology of the domain is
captured in this linking. Of course, ƒk becomes nonloose once we attach handles
to ƒ1; : : : ; ƒk�1 (and vice versa).

Now we present an example demonstrating Theorem 1.5.

Example 1.8 Any Weinstein structure on T �Sn where n � 3 can be Weinstein
homotoped to T �Sn

flex[H n�1[H n
ƒ for some Legendrian ƒ in the contact manifold

@.B2n
std [H n�1/. A slightly modified version of Theorem 1.5 shows that T �Sn can

also be homotoped to B2n
std [H n

ƒ ; this is why we always have WCrit.T �Sn/D 2 in
Example 1.2. We can reformulate this as follows. Let Legendrian..Y; �/Iƒ0/ denote
parametrized Legendrians in the contact manifold .Y; �/, up to Legendrian isotopy, that
are in some fixed Legendrian formal isotopy class ƒ0 . Let X 2n be an almost Weinstein
domain, ie an almost complex domain with the homotopy type of an n–dimensional
CW complex; see Section 2. Then let Weinstein.X 2n/ denote Weinstein structures
on X 2n up to Weinstein homotopy. There is a natural map

(1-1) HcritW Legendrian..S
2n�1; �std/Iƒunknot/!Weinstein.T �Sn/

taking a Legendrian ƒ� .S2n�1; �std/D @B
2n
std which is formally isotopic to ƒunknot
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to the Weinstein structure B2n
std [H n

ƒ on T �Sn . The statement that WCrit D 2 for
any Weinstein structure on T �Sn implies that this map is surjective, ie the class of
connected Legendrians is as complicated as the class of Weinstein structures.

Although our main result shows that Weinstein homotopy moves are more flexible
than they might seem, there are limits to this flexibility. For example, Theorem 1.5
shows that any Weinstein domain can be presented as a flexible domain plus a single
extra handle, which is possibly nonflexible. As we now explain, it is crucial that the
nonflexible critical handle is attached last, and in general, it is impossible to first attach
nonflexible handles and then attach flexible handles. So order of flexibility/nonflexibility
matters, which is a sign of rigidity. As expected, this rigidity ultimately comes from
J–holomorphic curves.

Example 1.9 By Theorem 1.5, T �Sn
std is Weinstein homotopic to

T �Sn
flex[H n�1

[H
n
ƒ D .B

2n
std [H n

flex/[H n�1
[H

n
ƒ

for some Legendrian ƒ. In this case, we attach flexible handles first and then nonflexible
handles. However, T �Sn

std cannot be presented as .B2n
std [H n�1[H n

ƒ/[H n
flex , where

we first attach nonflexible handles and then flexible handles. This presentation is
equivalent to a Weinstein structure of the form †2n[H n

flex , for some exotic ball †2n .
We claim that T �Sn

std is not symplectomorphic to †2n[H n
flex for any †2n . To see this,

let C �†2n[H n
flex be the Lagrangian cocore of H n

flex . Since H n
flex is attached along a

loose Legendrian in @†2n , the wrapped Floer homology WH.C;C IT �Sn
std/ vanishes.

But C generates Hn.T
�Sn; @T �Sn/Š Z and so C �Sn D 1, where Sn � T �Sn

std is
the zero section, a closed exact Lagrangian. But WH.C;C IT �Sn

std/D 0 implies that
WH.C;SnIT �Sn

std/D 0 and so C �SnD �.WH.C;SnIT �Sn
std//D 0, a contradiction.

Since T �Sn
std is not of the form †2n[H n

flex , the map

(1-2) HlooseW Weinstein.B2n/!Weinstein.T �Sn/

obtained by attaching a critical handle along a loose Legendrian unknot to an exotic
Weinstein ball is not surjective. This map is well defined since any contact struc-
ture @†2n in the almost contact structure .S2n�1;Jstd/ has a unique loose Legendrian
in the standard formal class. Furthermore, it has infinite image; for example, Hloose is
injective on the exotic structures †2n

k
constructed by McLean [32]. We contrast the

nonsurjectivity of Hloose , a rigidity result, to the surjectivity of the map Hcrit in (1-1),
a flexibility result.
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Now we sketch the proof of Theorem 1.5, which implies the main result Theorem 1.1.
The key idea is that certain Weinstein homotopy moves called handle-slides can be used
to make a Legendrian loose; see Section 2. More precisely, given two Legendrians and
a local chart intersecting them, the handle-slide produces another Legendrian, which
was described by Casals and Murphy [4]. We will show that there is a special choice of
local chart such that the handle-slid Legendrian is loose (not all choices of charts result
in loose Legendrians). For an arbitrary Weinstein domain, we fix one Legendrian and
handle-slide the rest of the Legendrians over that fixed Legendrian. For appropriate
choices of local charts, the resulting Legendrians form a loose link except for the fixed
Legendrian, which will in general intersect the loose charts of the other Legendrians;
this is the content of Theorem 1.5.

1.3 Weinstein presentations with few gradient trajectories

As mentioned before, our goal is to study to what extent Smale’s h–cobordism theorem
holds in the symplectic setting. This theorem has two main steps. The first step is
to apply handle-slides to make handles with consecutive indices cancel algebraically,
ie for the belt sphere of a k–handle and the attaching sphere of a .kC1/–handle to
have algebraic intersection number one. The second step is to use the Whitney trick
to reduce the number of intersection points between algebraically canceling handles
to make them geometrically canceling, ie have geometric intersection number one.
Since Weinstein handles can be handle-slid in the same way as smooth handles, the
first step can be done in the Weinstein setting. However the second step necessarily
fails since WCrit.W / ¤ Crit.W / in general. By Theorem 1.5, any smoothly trivial
Weinstein cobordism W can be Weinstein homotoped to have two Weinstein handles
of respective indices n� 1 and n that cancel algebraically, ie W DH n�1[H n

ƒ . The
Whitney trick shows that in this case, it is possible to smoothly isotope the attaching
sphere ƒ so it intersects the belt sphere of H n�1 in exactly one point. However, if ƒ
intersects the belt sphere of H n�1 in a single point, it is loose [7] and the Weinstein
cobordism is flexible. Hence, in general it is impossible to realize this smooth isotopy
by a Legendrian isotopy and to reduce the geometric intersection number to one. The
minimal possible number is therefore three; it is greater than one and must be odd for
homological reasons. Although we do not know whether the geometric intersection
number can always be reduced to three, in the following result we reduce this number
to some universal constant independent of the Weinstein structure. So we can get
uniformly close to realizing the second step of Smale’s h–cobordism proof.
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Theorem 1.10 There exists a constant Cn � 3 depending only on n such that any
smoothly trivial Weinstein cobordism W 2n where n � 3 can be Weinstein homo-
toped to a presentation with two handles of respective indices n � 1 and n such
that the belt sphere of the .n�1/–handle and the attaching sphere of the n–handle
intersect Cn times.

This is equivalent to having a Weinstein Morse function with two critical points of
respective indices n� 1 and n such that there are Cn gradient trajectories from the
index n to the index n�1 critical point. The proof of Theorem 1.10 actually shows that
it is possible in principle to compute Cn but this depends on a good understanding of a
certain (local) Legendrian isotopy which comes from an h–principle and is therefore not
very explicit. As we explain in the following example, the situation is more complicated
when the Weinstein cobordism is not smoothly trivial. Namely, in the presence of
multiple .n�1/–handles, the attaching Legendrian for the n–handle might have to pass
through all .n�1/–handles, even when this is topologically unnecessary. Again this
rigidity comes from J–holomorphic curves.

Example 1.11 Consider a subflexible Weinstein structure W 2n on B2n [ H n�1

that is not flexible. Such an example was constructed by Murphy and Siegel [34]
and has zero symplectic homology SH.W 2n/ but nonzero deformed symplectic ho-
mology SH˛.W 2n/; here ˛ is the generator of H n�1.B2n [H n�1/ Š Z. So this
domain is smoothly subcritical but is not symplectically subcritical and hence by
Theorem 1.1 admits a Weinstein presentation of the form B2n

std [H n�1
1
[H n�1

2
[H n

ƒ .
Here ƒ has algebraic intersection number 1 with H n�1

1
and 0 with H n�1

2
. How-

ever, ƒ has geometric intersection number at least 3 with H n�1
1

since otherwise ƒ
would be loose. Furthermore, ƒ must have geometric intersection number at least 2

with H n�1
2

; therefore, ƒ must interact with both H n�1
1

and H n�1
2

. Otherwise,
the domain would be of the form .B2n

std [ H n�1
1
[ H n

ƒ/ [ H n�1
2
D †2n [ H n�1 ,

for some exotic structure †2n on B2n . However †2n [H n�1 has zero deformed
symplectic homology as we now show. Since H n�1 is a subcritical handle, the
Viterbo transfer map SH˛.†2n [H n�1/! SHi�˛.†2n/ is an isomorphism, where
i�W H n�1.†2n [H n�1/! H n�1.†2n/ is the induced map on cohomology. Since
i�˛2H n�1.†2n/D0, SHi�˛.†2n/ agrees with the undeformed symplectic homology
SH.†2n/. Since †2n is a subdomain of W 2n , which has vanishing SH, and the Viterbo
map is unital, SH.†/ also vanishes. Therefore SH˛.†2n[H n�1/ is also zero and so
†2n[H n�1 cannot be Weinstein homotopic to W 2n .
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Since W is not of the form †2n[H n�1 for any exotic Weinstein ball †2n , the map

(1-3) HsubW Weinstein.B2n/!Weinstein.B2n
[H n�1/

obtained by attaching a subcritical handle to an exotic Weinstein ball is not surjective;
see Ghiggini, Niederkrüger, and Wendl [25] for an analog in the contact case. This
rigidity result is similar to the nonsurjectivity of the map Hloose in (1-2) for flexible
handle attachment and in contrast to the surjectivity of Hcrit in (1-1) for critical handle
attachment to the standard ball.

1.4 Results for the wrapped Fukaya category and
the Chekanov–Eliashberg DGA

We now give some applications of the flexibility results in Sections 1.1 and 1.2 to certain
J–holomorphic curve invariants. To a Weinstein (or Liouville) domain X 2n (with a
choice of grading data), one can associate the wrapped Fukaya category W.X / of X,
a certain A1–category. The objects of W.X / are (graded) exact Lagrangians in X 2n

that are closed or have Legendrian boundary in @X 2n ; the morphisms are wrapped
Floer cochains. In homological mirror symmetry, one considers the derived Fukaya
category DbW.X / WDH 0.Tw.W.X //, the cohomology category of twisted complexes
over W.X /. To obtain a more explicit description of the wrapped Fukaya category, it is
useful to find a set of generators. The derived Fukaya category DbW.X / is triangulated
so mapping cones exist. A set of objects Gi are generators of DbW.X / if every object
of the category is isomorphic to an iterated mapping cone on them; equivalently,
DbW.X / Š H 0.Tw.G//, where G is the A1–subcategory with objects Gi . Let
g.W.X // denote the minimum number of generators for DbW.X /. Many proofs of ho-
mological mirror symmetry involve finding some collection of generators for DbW.X /

and then showing that the endomorphism algebra of these generators is quasi-isomorphic
to the endomorphism algebra of some generating coherent sheaves on the mirror.

Theorem 1.1 can be used to bound the number of generators g.W.X // for DbW.X /.
The unstable manifold of an index n critical point of a Weinstein Morse function, or
cocore, is a Lagrangian disk with Legendrian boundary and hence defines an object
in DbW.X /. As proven by Chantraine, Dimitroglou Rizell, Ghiggini, and Golovko [6]
and Ganatra, Pardon, and Shende [23], the cocores of the index n critical points of any
Weinstein Morse function on X generate DbW.X /, ie g.W.X 2n//�WCritn.X 2n/.
Theorem 1.1 shows that there is a topological bound on WCritn.X 2n/ and hence on
the number of generators needed. In the following, let g.A/ denote the minimum
number of generators of an abelian group A.
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Corollary 1.12 If X 2n , where n� 3, is a Weinstein domain , then

g.W.X //�maxf1;g.H n.X IZ//g:

A related notion is that of split-generation: a set of objects are split-generators if every
object is a summand of a twisted complex on these objects. This is a useful notion since
there are closed symplectic manifolds whose Fukaya categories have finitely many
split-generators but no finite collection of generators, eg the 2–torus. We emphasize
that Corollary 1.12 concerns generation, not split-generation. Whenever there is a finite
collection of generators (or split-generators), there is a single split-generator, namely
the sum of all these objects. So the number of split-generators is not an interesting
invariant.

The number of generators, on the other hand, is a meaningful invariant, and in certain
cases, the inequality in Corollary 1.12 is sharp. For example, if X 2n is a Weinstein
ball, then Corollary 1.12 shows that at most one generator is needed and if the Fukaya
category of this ball is nontrivial (as is the case for the exotic structures constructed
by McLean [32]), then at least one generator is needed. In certain cases, the number
of generators needed for W.X / is greater than one. Since DbW.X / is a triangulated
category, we can consider its Grothendieck group K0.W.X // WDK0.D

bW.X //. For
any triangulated category, the minimum number of generators for the Grothendieck
group gives a lower bound on the number of generators of the category. In particular,
Corollary 1.12 implies that for any Weinstein domain X 2n where n� 3 we have

(1-4) g
�
K0.W.X //

�
� g.W.X //�max

˚
1;g.H n.X 2n

IZ//
	
:

There are Weinstein domains for which g
�
K0.W.X //

�
is bigger than one. For example,

consider the boundary connected sum \ kT �Sn of k copies of T �Sn
std . As explained

to the author by Abouzaid, K0

�
W
�
\ kT �Sn

��
has rank at least k . Namely, let

'i W K0

�
W
�
\ kT �Sn

��
!Z be �.HW.� ;Sn

i //, the Euler characteristic of morphisms
from the i th zero section Sn

i . Then .'1; : : : ; 'k/W K0

�
W
�
\ kT �Sn

��
!Zk is surjec-

tive, so g
�
K0

�
W
�
\ kT �Sn

���
� k . On the other hand, g

�
H n

�
\ kT �SnIZ

��
D k and

so all the inequalities in (1-4) are all actually equalities. The following result shows
that (1-4) can actually be improved.

Corollary 1.13 If X 2n , where n� 3, is a Weinstein domain , then

g
�
K0.W.X //

�
� g.H n.X IZ//:

In particular , if H n.X IZ/D 0, then K0.W.X //D 0.
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If H n.X IZ/ ¤ 0, then the result follows from (1-4). If H n.X IZ/ D 0, we use an
additional boundary connected sum argument, which was explained to the author by Ivan
Smith in the case when X 2n is a ball. In particular, any Weinstein ball †2n must have
K0.W.†//D 0. There are many exotic Weinstein balls †2n with nonzero symplectic
homology [32]. So their wrapped Fukaya categories are examples of triangulated
categories with nonzero Hochschild cohomology but zero Grothendieck group; such
phantom categories have been studied in algebraic geometry — see Galkin, Katzarkov,
Mellit, and Shinder [21] and Gorchinskiy and Orlov [26] — and are possibly related
to our wrapped Fukaya categories via mirror symmetry. The vanishing of K0.W.†//

implies that any object Q that has finite-dimensional morphism spaces with all other
objects K has �.HW.Q;K//D 0, generalizing the geometric result that any closed
exact Lagrangian L � †2n has L �K D 0 for any other Lagrangian K ; however
the object Q need not be a twisted complex of closed exact Lagrangians. We also
note that the inequality in Corollary 1.13 is sharp, eg consider \ kT �Sn

std . Conversely,
for any integer j � k D g

�
H n

�
\ kT �SnIZ

��
, there is a Weinstein structure X 2n

j

on \ kT �Sn so that g
�
K0.W.Xj //

�
D j , eg X 2n

j D \ j T �Sn
std \ \

k�j T �Sn
flex .

One natural question is which triangulated categories can arise as the wrapped Fukaya
category of Weinstein domains. For example, the wrapped Fukaya category of a
Weinstein domain is a smooth category with a noncompact Calabi–Yau structure;
see Chantraine, Dimitroglou Rizell, Ghiggini, and Golovko [6] and Ganatra [22].
Corollary 1.13 further restricts which categories can arise as the Fukaya categories
of Weinstein domains and shows that in general the answer depends on the smooth
topology of the domain.

Corollary 1.14 There is no Weinstein ball †2n such that Db.W.†2n// is exact
equivalent Db.W.T �Sn

std//. There is no Weinstein structure X 2n on T �Sn such that
DbW.X 2n/ is exact equivalent to DbW.T �Sn

std \T �Sn
std/.

Proof As noted above,

g
�
K0.W.T �Sn

std//
�
D 1 and g

�
K0.W.T �Sn

std \T �Sn
std//

�
D 2:

However, if †2n is a ball, then g
�
K0.W.†2n//

�
D 0; if H n.X IZ/ Š Z, then

g
�
K0.W.X //

�
� 1.

On the other hand, for any Weinstein ball †2n , the Weinstein structure T �Sn
flex \†

2n

on T �Sn has the same Fukaya category as †2n . So the class of categories arising

Geometry & Topology, Volume 24 (2020)



Simplifying Weinstein Morse functions 2615

as Fukaya categories of Weinstein structures on T �Sn is genuinely larger than that for
a ball B2n .

Since Weinstein domains are constructed by attaching handles along Legendrians,
Corollary 1.13 has implications for J–holomorphic curve invariants of Legendrians.
Given a Legendrian sphere ƒn�1 in a contact manifold .Y 2n�1; �/ with a Weinstein
filling W 2n , there are (at least) two associated Legendrian isotopy invariants: the
Chekanov–Eliashberg algebra CE.ƒ/ of ƒ (augmented by the filling W 2n ) and the
wrapped Floer cochains CW.C;C / of the cocore C n of the Weinstein n–handle H n

ƒ

in the Weinstein domain W 2n [H n
ƒ . For both invariants, we work over a common

ground field K. The former invariant is only rigorously defined when .Y 2n�1; �/

is P2n�2 � R for some exact symplectic manifold P — see Ekholm, Etnyre, and
Sullivan [12]; the latter is always defined. A proof was sketched bu Bourgeois, Ekholm,
and Eliashberg [3] that these two invariants are quasi-isomorphic and for the results in
the rest of this section, we will assume this.

Remark 1.15 Alternatively, let CF.Dn;DnI .W; ƒ// denote the Floer cochains of the
linking disk Dn of ƒ in the partially wrapped Fukaya category of W 2n stopped at ƒ; a
proof was sketched by Ekholm and Lekili [14] that this is quasi-isomorphic to the version
of CE.ƒ/ with coefficients in C.�Sn�1/, chains on the based loop space of Sn�1 .
Without any reference to CE.ƒ/, it was proven by Ganatra, Pardon, and Shende [23] that
CF.Dn;DnI .W; ƒ//˝C�.�Sn�1/ C�.�Dn/ D CF.Dn;DnI .W; ƒ//˝C�.�Sn�1/ K

is quasi-isomorphic to CW.C;C / and so this invariant can be considered as a rigorous
replacement for CE.ƒ/; using this alternative invariant, all our results have complete
proofs.

Certain geometric properties of a Legendrian have algebraic consequences for its
Chekanov–Eliashberg DGA. For example, an exact Lagrangian filling of ƒ induces
an augmentation of CE.ƒ/, ie a differential graded algebra (DGA) map CE.ƒ/!K,
where the latter has the zero differential and is concentrated in degree zero; see Ekholm,
Honda, and Kálmán [13]. However, not all augmentations come from exact Lagrangian
fillings — see Etnyre and Ng [20] — and furthermore, there are examples of Legendrians
such that CE.ƒ/ is not acyclic but admits no augmentations. More generally, we can
consider n–dimensional representations of CE.ƒ/, ie DGA maps CE.ƒ/!Mat.n;K/.
There are examples [9; 38] of Legendrians for which CE.ƒ/ has a 2–dimensional
representation but no augmentations. This is a useful notion since Dimitroglou Rizell
and Golovko [9] showed that Legendrians with finite-dimensional representations have
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an Arnold-type lower bound on the number of Reeb chords. On the other hand, they
showed that for each n� 1, there is a Legendrian ƒ� .R2n�1; �std/ such that CE.ƒ/ is
not acyclic but has no finite-dimensional representations (although any nonacyclic DGA
has an infinite-dimensional “representation” to its characteristic algebra; see Ng [35]).
These examples are obtained by spinning a particular 1–dimensional Legendrian studied
by Sivek [38], who proved that it has no finite-dimensional representations by explicit
calculation. We now show that such Legendrians occur generally.

Consider a Legendrian ƒ in .Sn�1 � Sn; �std/ D @.B2n
std [ H n�1/, where n � 3,

that has algebraic intersection number one with fpg � Sn for some p 2 Sn�1 ,
ie Œƒ� D ˙1 2 Hn�1.S

n�1 � SnIZ/ Š Z is primitive in homology. This implies
that Œƒ� D 1 2 Hn�1.B

2n
std [H n�1IZ/ Š Z and hence ƒ has no exact Lagrangian

fillings in B2n
std [H n�1 for purely topological reasons. So there are no augmentations

of CE.ƒ/ that come from fillings. Using Corollary 1.13, we show that CE.ƒ/ has no
augmentations at all and, in fact, no finite-dimensional representations.

Corollary 1.16 If a Legendrian ƒn�1 � .Sn�1 �Sn; �std/, where n� 3, is primitive
in homology , CE.ƒ/ has no finite-dimensional representations and no DGA maps to a
commutative ring.

If ƒ intersects fpg � Sn geometrically once, then ƒ is a loose Legendrian; see
Casals and Murphy [4] and Section 1.3. In this case, CE.ƒ/ is acyclic and hence
has no finite representations for trivial reasons. Corollary 1.16 generalizes this to the
case of algebraic intersection one, a topological condition. Although our proof of
Corollary 1.16 holds only for n� 3, the nD 2 case for augmentations was proven by
Leverson [31] using a different approach. We also note that a homological condition is
necessary since the Chekanov–Eliashberg DGA of Legendrians in .Sn�1 �Sn; �std/

that have Lagrangian fillings in B2n
std [H n�1 have augmentations.

Corollary 1.16 has applications to the C 0–topology of the space of Legendrians. Murphy
[33] proved that any Legendrian can be C 0–approximated by a loose Legendrian. On
the other hand, Dimitroglou Rizell and Sullivan [10] recently used persistent homology
to show that loose Legendrians cannot be C 0–approximated by certain nonloose
Legendrians: if ƒ� .R2n�1; �std/ is in a contact neighborhood N.ƒloose/ of a loose
Legendrian ƒloose and the map i�W Hn�1.ƒIZ=2/!Hn�1.N.ƒloose/IZ=2/ŠZ=2 is
nonzero, then CE.ƒ/ has no augmentations. Using Corollary 1.16, we give a different
proof of a slightly different result.
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Corollary 1.17 If ƒ � .S2n�1; �std/, where n � 3, is in a contact neighborhood of
a loose Legendrian ƒloose and is primitive in Hn�1.ƒlooseIZ/, then CE.ƒ/ has no
finite-dimensional representations or DGA maps to a commutative ring.

So the size of contact neighborhoods depends on the Legendrian isotopy class. In the
proof of Corollary 1.17, the condition that ƒ is in N.ƒloose/ is used to show that a
related Legendrian is disjoint from the loose chart of another loose Legendrian; the
homological condition is needed to apply Corollary 1.16. Some homology condition
is necessary since otherwise any Legendrian in .S2n�1; �std/ could be isotoped into a
neighborhood of any other Legendrian.

Corollaries 1.16 and 1.17 place strong restrictions on the Chekanov–Eliashberg DGAs
of certain Legendrians. Furthermore, if these Legendrians satisfy stronger conditions, eg
have geometric intersection one with fpg�Sn instead of algebraic intersection one, then
they are loose, showing there is not much room for interesting Legendrians. Nonetheless,
we show there are many examples of such Legendrians with nontrivial DGAs, essentially
one for each exotic Weinstein ball; this shows that Corollaries 1.16 and 1.17 are sharp.

Corollary 1.18 For n � 4, there exist infinitely many different Legendrian spheres
ƒk � .S

n�1�Sn; �std/ for which CE.ƒk/ is not acyclic but has no finite-dimensional
representations. The same holds for .S2n�1; �std/ for n� 4. Furthermore , these Legen-
drians are C 0–close to loose Legendrians ƒloose and are primitive in Hn�1.ƒlooseIZ/.

The restriction n� 4 is because we currently have examples of exotic Weinstein balls
only in such dimensions [32]. The Legendrians ƒk are distinguished by the Hochschild
homology of CE.ƒk/, which is isomorphic to the symplectic cohomology of these
Weinstein balls.

In Section 2, we provide some background material on Weinstein domains, loose
Legendrians, and handle-slides. In Section 3, we give proofs of the results stated in the
introduction.

Acknowledgements We thank Mohammed Abouzaid, Roger Casals, Emmy Murphy,
Kyler Siegel, Semon Rezchikov, and Ivan Smith for many helpful discussions. This
work was partially supported by an NSF postdoc fellowship.

2 Background

In this section, we present some background material, including necessary definitions
and theorems that were assumed in the introduction.
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2.1 Liouville and Weinstein domains

2.1.1 Definitions A Liouville domain is a pair .W 2n; �/ such that

� W 2n is a compact manifold with boundary,

� d� is a symplectic form on W , and

� the Liouville field X� , defined by iX d�D �, is outward transverse along @W .

A Weinstein domain is a triple .W 2n; �; '/ such that

� .W; �/ is a Liouville domain,

� 'W W !R is a Morse function with maximal level set @W , and

� X� is a gradient-like vector field for ' .

Liouville and Weinstein cobordisms are defined similarly.

Because W is compact and ' is a Morse function with maximal level set @W ,
' has finitely many critical points. We will call ' a Weinstein Morse function. Note
that if c is any regular value, W c D f' � cg is also a Weinstein domain and is called
a Weinstein subdomain.

If †2n�1� .W 2n; �/ is a hypersurface such that X� is transverse to †, then ker.�j†/
is a contact structure on †. In the Weinstein case, a regular level set Y c D '�1.c/

of ' is such a hypersurface and so .Y c ; �jY c / is a contact manifold. In particular, the
boundary @W of a Liouville or Weinstein domain W has a natural contact structure
given by � D ker.�j@W /. The completion �W of W is the noncompact, exact sym-
plectic manifold obtained by attaching the symplectization

�
@W � Œ0;1/; d.et�j@W /

�
of .@W; �/ to W . Whenever we speak of the symplectomorphism type of a Weinstein
domain, we will mean the symplectomorphism type of its completion.

2.1.2 Weinstein handle attachment A Weinstein structure yields a special handle-
body decomposition for W . First, recall that � vanishes on the X�–stable disc Dp of
a critical point p ; see [7]. In particular, Dp is isotropic with respect to d� and so all
critical points of ' have index less than or equal to n. If all critical points of ' have
index strictly less than n, then the Weinstein domain is subcritical.

Since � vanishes on Dp , then ƒp WDDp\Y c� .Y c ; �jY c / is an isotropic sphere, where
c D '.p/� " for sufficiently small ". Furthermore, ƒp comes with a parametrization
and framing, ie a trivialization of its normal bundle. Note that a framing of ƒp is
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equivalent to the framing of the conformal symplectic normal bundle of ƒp ; see [24].
Hence parametrized Legendrians come with a canonical framing.

Suppose that c1 < c2 are regular values of ' and W c2 nW c1 contains a unique
critical point p of ' . Then W c2nW c1 is an elementary Weinstein cobordism between
Y c1 and Y c2 and the symplectomorphism type of W c2 is determined by the symplec-
tomorphism type of W c1 along with the framed isotopy class of the isotropic sphere
ƒp � Y c1 . If ' is an arbitrary Weinstein Morse function on W with distinct critical
values, then W can be viewed as the concatenation of such elementary Weinstein
cobordisms.

On the other hand, one can explicitly construct such elementary cobordisms and use
them to modify Liouville domains. Given a Liouville domain X and a framed isotropic
sphere ƒ in its contact boundary Y D @X, we can attach an elementary Weinstein
cobordism with critical point p and ƒpDƒ to X to obtain a new Liouville domain that
we denote by Xƒ or X [H k

ƒ
, where k D ind pD dimƒC1. This operation is called

Weinstein handle attachment and ƒ is called the attaching sphere of the Weinstein
handle. If X is Weinstein, then so is Xƒ . If the dimension of ƒ � Y 2n�1 is less
than n� 1, the handle attachment operation and ƒ itself are all called subcritical. So
any (subcritical) Weinstein domain can be obtained by attaching (subcritical) Weinstein
handles to the standard Weinstein structure on B2n .

The corresponding modification of contact manifolds by Weinstein handle attachment
is called contact surgery. If ƒ� .Y; �/ is a framed isotropic sphere, then there exists an
elementary Weinstein cobordism W with @�W D .Y; �/ and attaching sphere ƒ. Then
we say @CW is the result of contact surgery on ƒ and denote this by Yƒ or Y [H k

ƒ
. In

particular, the contact boundary of any (subcritical) Weinstein domain can be obtained
by doing (subcritical) contact surgery to .S2n�1; �std/D @B

2n .

2.1.3 Weinstein homotopies The natural notion of equivalence between Weinstein
structures .W; �0; '0/ and .W; �1; '1/ on a fixed manifold W is a Weinstein homotopy,
ie a 1–parameter family of Weinstein structures .W; �t ; 't / for t 2 Œ0; 1� connecting
them, where 't is allowed to have birth-death critical points. Weinstein homotopic
domains have exact symplectomorphic completions [7].

We will prove our main result Theorem 3.1 by starting with an arbitrary Weinstein
domain and then applying a special Weinstein homotopy. As in the smooth setting,
Weinstein homotopies consist of three elementary moves: doing an isotopy of the
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†

ƒ

R�".ƒ/

hƒ;".†/

ƒ

Figure 1: Front projection of handle-slide hƒ.†/ of † over ƒ .

attaching spheres through isotropic submanifolds, moving critical points that are not
connected by gradient trajectories past each other, and sliding handles of the same
index over each other. The only difference between the Weinstein and smooth setting
is the first move: in the Weinstein case, the isotopies of attaching spheres must be
through isotropics instead of arbitrary embedded spheres. Since subcritical handles
satisfy an h–principle [7], Weinstein domains are essentially characterized by their
index n handles, in particular the Legendrian attaching spheres of these critical handles.
Therefore, it suffices to see how these moves affect Legendrians.

The first move implies that if ƒ1 and ƒ2 are isotopic Legendrians in @W , then
W [H n

ƒ1
and W [H n

ƒ2
are Weinstein homotopic. The second move implies that

if ƒ1 and ƒ2 are disjoint Legendrians in @W (which is true by dimension reasons
if they are in general position), then .W [H n

ƒ1
/ [H n

ƒ2
and .W [H n

ƒ2
/ [H n

ƒ1

are Weinstein homotopic. In particular, we can write the resulting Weinstein domain
as W [H n

ƒ1
[H n

ƒ2
without any parentheses and it will be well defined up to Weinstein-

homotopy.

We now discuss the last move, the handle-slide, which will be the most important
for us. We will study Legendrians via their front projection. If ƒ� .R2nC1; �std/D

Rn �Rn �R1 , then the front projection of ƒ is the image of ƒ in RnC1 under the
projection to the first Rn and R1 components. Handles-slides were described in terms
of front projections by Casals and Murphy [4].

Proposition 2.1 [4, Proposition 2.4] Let .Y; �/ be a contact manifold , and let
ƒ;†� .Y; �/ be two disjoint Legendrian submanifolds such that ƒ is a sphere. Suppose
there exists a Darboux chart U where the front projections of † and ƒ look as in
the left-hand side of Figure 1. Then, for sufficiently small " > 0, the Legendrians
† and hƒ;".†/ presented in Figure 1 are Legendrian isotopic in the surgered contact
manifold Yƒ .
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Here R�".ƒ/ is the image of ƒ under the negative time " Reeb flow. We also note
that the Legendrians in Figure 1 are extended by spherical symmetry out of the page.
Furthermore, we note that the Darboux chart must have sufficient size so that front
projections depicted in Figure 1 make sense; in particular, the size of the chart in the yi

direction must be at least as big as the slope of the front projection of hƒ;".ƒ/. For us,
the key implication of Proposition 2.1 is that W [H n

ƒ[H n
† is Weinstein homotopic

to W [H n
ƒ[H n

h†.ƒ/
(and also to W [H n

h†.ƒ/
[H n

ƒ by the above discussion).

Remark 2.2 Proposition 2.1 also holds if †D†1q� � �q†k is a Legendrian link with
several components. We inductively construct the new handle-slid link and show that it
is isotopic to † in Yƒ . We first take "1> 0 sufficiently small that † is disjoint from an
"1–neighborhood of ƒ in J 1.ƒ/� Y . We also take U1 so that †1\U1 and ƒ\U1

look as in the left-hand side of Figure 1 and †i \U1 D ∅ for i � 2. Then we can
handle-slide †1 over ƒ via U1 and the resulting Legendrian hƒ;"1

.†1/ is isotopic
to †1 in Yƒ by Proposition 2.1. In fact, something stronger holds. The isotopy in
Proposition 2.1 is local since it is obtained by pushing a small disk of †1 (starting from
the chart U1 ) past the belt sphere of ƒ in Yƒ . Therefore, since †2; : : : ; †k are disjoint
from an "1–neighborhood of ƒ in Y and the chart U1 , the handle-slid Legendrian
hƒ;"1

.†1/ is isotopic to †1 in Yƒn.†2q � � � q†k/, where we view †2; : : : ; †k

as Legendrians of Yƒ . Hence the link hƒ;"1
.†1/q†2 q � � � q†k is isotopic to

†1q†2q� � �q†k in Yƒ . Now we build the rest of the handle-slid link by induction
and show that it is isotopic to the original link † at each stage. Namely, suppose we have
constructed the i th link hi.†/ WD hƒ;"1

.†1/q � � � q hƒ;"i
.†i/q†iC1q � � � q†k

and proved that it is isotopic to hi�1.†/ in Yƒ . Next we construct hiC1.†/ WD

hƒ;"1
.†1/q� � �qhƒ;"i

.†i/qhƒ;"iC1
.†iC1/q†iC2q� � �q†k by taking sufficiently

small "iC1 < "j for all j � i and a chart UiC1 disjoint from hi.†/n†iC1 such that
†iC1 and ƒ appear in UiC1 as in Figure 1. As explained above, the new link
hiC1.†/ is Legendrian isotopic to the previous link hi.†/ in Yƒ since hi.†/n†iC1

is disjoint from UiC1 and hi.†/ is disjoint from an "iC1–neighborhood of ƒ (since
the Legendrians in hi.†/ are at most "i–close to ƒ), which proves the inductive iC1

case. For i D k , we get the desired Legendrian hk.†/ which is isotopic to † in Yƒ

by induction. This implies that W [H n
ƒ[H n

†1
[ � � � [H n

†k
is Weinstein homotopic

to W [H n
ƒ[H n

hƒ.†1/
[ � � � [H n

hƒ.†k/
, a fact that we will use repeatedly later.

We also note that the handle-slide depends on more than just the data of † and ƒ.
The resulting Legendrian depends crucially on the choice of chart U , where ƒ and †
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Figure 2: Handle-slides using different charts result in nonisotopic Legendrians.

appear as in the left-hand side of Figure 1. We will use the notation hƒ;";U .†/ when
we emphasize the dependence on U. In particular, different chart choices U1 and U2

can result in Legendrians hƒ;";U1
.†/ and hƒ;";U2

.†/ that are not Legendrian isotopic
in Y (but are still smoothly isotopic in Y ); however, hƒ;";U1

.†/ and hƒ;";U2
.†/ are

Legendrian isotopic in Yƒ . We also note that † and hƒ;".†/ will generally not be
smoothly isotopic in Y , while they are Legendrian isotopic in Yƒ .

Example 2.3 We start with a Legendrian link consisting of two linked unknots
in .R2n�1; �std/, with one Legendrian the Reeb push-off of the other Legendrian;
see Figure 2. The blue box in the left of each row is the Darboux chart used in
the handle-slide. In the top row, the handle-slide produces a linked pair of Legen-
drian unknots (which can be seen by doing a Legendrian Reidemeister move), ie
htop
ƒunknot

.ƒunknot/Dƒunknot . In the bottom row, the handle-slide results in a link where
one of the Legendrians is loose, ie hbottom

ƒunknot
.ƒunknot/Dƒloose . The blue box on the right

is the loose chart of this Legendrian; see Section 2.2 for definition. Since the Legendrian
unknot is not loose, the handle-slid Legendrians htop

ƒunknot
.ƒunknot/ and hbottom

ƒunknot
.ƒunknot/

are not isotopic in the original contact manifold .R2n�1; �std/. Of course, these Leg-
endrians are both isotopic in the surgered manifold Yƒunknot since they are both isotopic
to the push-off of the attaching sphere there, ie the image of ƒunknot in Yƒunknot .

2.2 Loose Legendrians and flexible Weinstein domains

There exist many Legendrians with rich symplectic topology invisible from the point
of view of algebraic topology. On the other hand, Murphy [33] showed that exists a
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Figure 3: Front projection of ƒ0 .

certain class of loose Legendrians which satisfy a h–principle and whose symplectic
topology is governed by their underlying algebraic topology. These loose Legendrians
are defined using a local model. We will use the following local model from Section 2.1
of [5]. Let B3 � .R3; �std D ker˛std/ be a unit ball, and let ƒ0 be the 1–dimensional
Legendrian whose front projection is shown in Figure 3. Let Qn�2 , where n � 3,
be a closed manifold and U a neighborhood of the zero section Q � T �Q. Then
ƒ0 �Q� .B3 �U; ker.˛stdC�std// is a Legendrian submanifold. This Legendrian is
the stabilization over Q of the Legendrian fyD zD 0g�Q� .B3�U; ker.˛stdC�std//.

Definition 2.4 A Legendrian ƒn�1 � .Y 2n�1; �/, where n � 3, is loose if there
is a neighborhood V � .Y; �/ of ƒ such that .V;V \ ƒ/ is contactomorphic to
.B3 �U; ƒ0 �Q/.

Remark 2.5 If f W .U 2n�1; �1/! .V 2n�1; �2/ is an equidimensional contact embed-
ding and ƒ� .U; �1/ is loose, then f .ƒ/� .V; �2/ is also loose.

A formal Legendrian embedding is an embedding f W ƒ! .Y; �/ together with a homo-
topy of bundle monomorphisms FsW Tƒ!TY covering f for all s such that F0Ddf

and F1.Tƒ/ is a Lagrangian subspace of � with its conformal symplectic structure. A
formal Legendrian isotopy is an isotopy through formal Legendrian embeddings. Using
these notions, we can state the h–principle for Legendrian embeddings, which has an
existence and a uniqueness part:

� Any formal Legendrian of dimension at least two is formally Legendrian isotopic
to a loose Legendrian [11; 15].

� Any two loose Legendrians that are formally Legendrian isotopic are genuinely
Legendrian isotopic [33].

We now define a class of Weinstein domains introduced in [7] that are constructed by
iteratively attaching Weinstein handles along loose Legendrians.
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Definition 2.6 A Weinstein domain .W 2n; �; '/, where n� 3, is flexible if there exist
regular values c1; : : : ; ck of ' such that c1 <min' < c2 < � � �< ck�1 <max' < ck

and, for all i D 1; : : : ; k � 1, fci � ' � ciC1g is a Weinstein cobordism with a
single critical point p whose the attaching sphere ƒp is either subcritical or a loose
Legendrian in .Y ci ; �jY ci /.

Flexible Weinstein cobordisms are defined similarly. Also, Weinstein handle attachment
or contact surgery is called flexible if the attaching Legendrian is loose. So any flexible
Weinstein domain can be constructed by iteratively attaching subcritical or flexible
handles to .B2n; !std/. A Weinstein domain that is Weinstein homotopic to a Weinstein
domain satisfying Definition 2.6 will also be called flexible. Finally, we note that
subcritical domains are automatically flexible.

Our definition of flexible Weinstein domains is a bit different from the original definition
in [7], where several critical points are allowed in fci�'� ciC1g. There are no gradient
trajectories between these critical points and their attaching spheres form a loose link
in .Y ci ; �jY ci /, ie each Legendrian is loose in the complement of the others. These
two definitions are the same up to Weinstein homotopy. Indeed if we have an ordered
collection of Legendrians such that each one is loose in the complement of the previous
ones, then we can use the loose Legendrian h–principle to move each Legendrian away
from the loose charts of the previous ones so that all Legendrians are loose in the
complement of each other.

Since they are built using loose Legendrians, which satisfy an h–principle, flexible
Weinstein domains also satisfy an h–principle as proven by Cieliebak and Eliashberg [7].
Again, the h–principle has an existence and a uniqueness part:

� Any almost Weinstein domain of dimension at least six admits a flexible Wein-
stein structure in the same almost symplectic class.

� Any two flexible Weinstein domains that are almost symplectomorphic are
Weinstein homotopic (and hence have exact symplectomorphic completions and
contactomorphic boundaries).

3 Proofs of main results

In this section, we prove the results described in the introduction. We first prove a
simpler version of Theorem 1.5 without as much control on the topology of the flexible
subdomain.
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Theorem 3.1 Any Weinstein domain W 2n where n� 3 can be Weinstein homotoped
to a Weinstein domain V 2n

flex [H n obtained by attaching a single n–handle to a flexible
Weinstein domain V 2n

flex .

Remark 3.2 Theorem 3.1 also holds for Weinstein cobordisms.

Proof of Theorem 3.1 Let W 2nD .W 2n; �; '/, where n� 3, be a Weinstein domain.
By Lemma 12.20 of [7], we can Weinstein homotope W so that ' is self-indexing,
ie if p is a critical point of index k , then '.p/Dk . In particular, we can assume that W

is the result of attaching k index n handles to a subcritical Weinstein domain Wsub

along disjoint Legendrians ƒ1; : : : ; ƒk .

If k D 0, then W D Wsub D Wsub [H n�1 [H n , where H n�1 and H n are two
canceling handles of respective indices n � 1 and n; the domain Wsub [H n�1 is
subcritical and hence flexible. If k D 1, then W D Wsub [ H n

ƒ1
; again Wsub is

subcritical and hence flexible. Therefore we can assume W DWsub[H n
ƒ1
[� � �[H n

ƒk

for some k � 2.

The key step is to handle-slide Hƒ2
; : : : ;Hƒk

over Hƒ1
. We will do this by induction.

More precisely, we will prove that for every j with 2 � j � k , W is Weinstein
homotopic to Wsub [ H n

ƒ0
1
[ � � � [ H n

ƒ0
k

for some Legendrian link
`k

iD1ƒ
0
i such

that
`j

iD2
ƒ0i is a loose link in @Wsub . Then the case j D k completes the proof since

then W is Weinstein homotopic to the flexible domain Wsub[H n
ƒ0

2
[ � � � [H n

ƒ0
k

with
the single handle H n

ƒ0
1

attached. The proof shows that we can assume that ƒ1 actually
stays fixed throughout.

We first prove the base case j D 2. We begin by modifying ƒ1 and ƒ2 by Legendrian
isotopies that move only a small neighborhood of a single point, ie the resulting
Legendrians are the Legendrian connected sum of ƒ1 and ƒ2 with certain Legendrian
unknots. More precisely, let U2 be a Darboux ball in the contact manifold @Wsub that
is disjoint from ƒ1[ � � � [ƒk . Let S2 be a Legendrian unknot in U2 and let T2 be a
negative Reeb push-off of S2 also contained in U2 so that S2 and T2 are symplectically
unlinked. We apply a Legendrian “Reidemeister move” to S2 so that it appears as
in Figure 4; this move is a Legendrian isotopy which is contained in U2 and the
resulting Legendrian, which we also call S2 , is still symplectically unlinked with T2 .
For 1–dimensional Legendrians, this isotopy is the first Reidemeister move and in
higher dimensions (as in our situation) it results in a spherically rotated version of this

Geometry & Topology, Volume 24 (2020)



2626 Oleg Lazarev


j


1

Sj

Tj

ƒ0j

ƒ01

Figure 4: Left: front projections of Sj and Tj and isotropic arcs 
1 and 
j

(in red) in Uj ; right: front projections of the connected sums ƒ0j WDƒj ]Sj

and ƒ0
1
WDƒ1 ]Tj formed along 
j and 
1 , respectively; the blue box is the

chart we will use to handle-slide ƒ0j over ƒ01 .

Reidemeister move. Note that the isotopy is not obtained by spherically rotating the
1–dimensional isotopy; see [4] for details on this isotopy.

Now we choose isotropic arcs 
1 and 
2 connecting ƒ1 to T2 and ƒ2 to S2 respec-
tively. Since these arcs are subcritical, we can assume that they are disjoint; furthermore,
we can assume that 
1 is disjoint from ƒi for i¤1 and 
2 is disjoint from ƒi for i¤2.
We can also ensure that they intersect U2 as depicted in the left-hand side of Figure 4.
Let ƒ0

1
WDƒ1 ]T2 be the Legendrian connected sum of ƒ1 and T2 along 
1 ; see [8]

for details about the connected sum operation. Similarly, let ƒ0
2
WD ƒ2 ] S2 be the

Legendrian connected sum of ƒ2 and S2 along 
2 . By choice of 
1 and 
2 , the
Legendrians ƒ0

1
\U2 and ƒ0

2
\U2 look as in right-hand side of Figure 4. Since U2

is disjoint from ƒ1 and T2 is a Legendrian unknot in U2 , ƒ0
1

is isotopic to ƒ1 ; we
pull the unknot T2 to ƒ1 using the isotropic arc 
1 . Similarly, ƒ0

2
is Legendrian

isotopic to ƒ2 . In fact, the entire Legendrian link ƒ0
1
qƒ0

2
qƒ3 q � � � qƒk is

Legendrian isotopic to the link ƒ1qƒ2qƒ3q � � � qƒk because 
1 and 
2 are
disjoint from ƒ3; : : : ; ƒk and S2 and T2 are symplectically unlinked in U2 .

Now we handle-slide ƒ0
2

over ƒ0
1

. We first take sufficiently small "2 > 0 so that
an "2–neighborhood of ƒ0

1
is disjoint from all other Legendrians. The ball U2 contains

a smaller chart V2 where ƒ0
1

and ƒ0
2

look as in Figure 1; see the blue box in the
right-hand side of Figure 4. So we can use this chart to handle-slide ƒ0

2
over ƒ0

1
and

produce hƒ0
1
;"2
.ƒ0

2
/; see the Legendrian in black in the right-hand side of Figure 5.

Then hƒ0
1
;"2
.ƒ0

2
/ is isotopic to the Legendrian ƒ0

2
in @.Wsub [H n

ƒ0
1
/; in fact, the
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entire link hƒ0
1
;"2
.ƒ0

2
/qƒ3q� � �qƒk is Legendrian isotopic to ƒ0

2
qƒ3q� � �qƒk

in @.Wsub[H n
ƒ0

1
/, as explained in Remark 2.2. In particular,

Wsub[H
n
ƒ0

1
[H

n
h

ƒ0
1
;"2
.ƒ0

2
/[H

n
ƒ3
[ � � � [H

n
ƒk

is Weinstein homotopic to Wsub [H n
ƒ0

1
[H n

ƒ0
2
[H n

ƒ3
[ � � � [H n

ƒk
and hence to W .

Finally, we note that the size requirement of the Darboux chart for the handle-slide is
satisfied in our situation. We can take the bottom branch of S2 and the top branch of T2

to be close enough that the slope of the front projection of the handle-slid Legendrian
is arbitrarily small; hence the yi coordinate of the chart can be arbitrarily small for our
handle-slide.

We observe that hƒ0
1
.ƒ0

2
/ is loose in @Wsub . The blue box in Figure 5 is the loose

chart of hƒ0
1
;"2
.ƒ0

2
/ in U2 . Recall that we have spherical symmetry in the handle-slide

region so it is loose with Qn�2 D Sn�2 ; see Definition 2.4. However, hƒ0
1
;"2
.ƒ0

2
/ is

not loose in the complement of ƒ0
1

since ƒ0
1

intersects the loose chart of hƒ0
1
;"2
.ƒ0

2
/.

This completes the case j D 2. Note that we can extend the Legendrian isotopy of ƒ0
1

back to ƒ1 to an ambient contact isotopy and hence assume that ƒ0
1
Dƒ1 .

Now suppose that the j � 1 case holds for some j � 3. So we have Weinstein
homotoped W to Wsub[H n

ƒ1
[� � �[H n

ƒk
(relabeling the Legendrians) so that

`j�1
iD2

ƒi

is a loose link (but not loose in the complement of ƒ1 ). Again we take a Darboux
ball Uj that is disjoint from all the Legendrians and unlinked Legendrian unknots
Sj ;Tj � Uj . Then we form ƒ0

1
WDƒ1 ]Sj and ƒ0j WDƒj ]Tj using arcs 
1 and 
j

that are disjoint from the other Legendrians. Then we take sufficiently small "j (smaller
than the previous "j�1 ) and use the chart in Uj to handle-slide ƒ0j over ƒ0

1
and get a

new Legendrian hƒ0
1
.ƒ0j /. Then by Proposition 2.1 (and Remark 2.2),

Wsub[H
n
ƒ0

1
[H

n
ƒ2
[ � � � [H

n
ƒj�1

[H
n
h

ƒ0
1
.ƒ0

j
/[H

n
ƒjC1

[ � � � [H
n
ƒk

is Weinstein homotopic to Wsub[H n
ƒ0

1
[H n

ƒ2
[� � �[H n

ƒj�1
[H n

ƒ0j
[H n

ƒjC1
[� � �[H n

ƒk

and hence to W . As before, we can see explicitly that hƒ0
1
.ƒ0j / is loose in @Wsub

(but not in the complement of ƒ0
1

, which intersects its loose chart). Most importantly
the loose chart of hƒ0

1
.ƒ0j / is contained in Uj , which is disjoint from ƒ2; : : : ; ƒj�1 .

Therefore hƒ0
1
.ƒ0j / is loose in the complement of these Legendrians, which form a

loose link by the induction hypothesis. So ƒ2 q � � � qƒj�1 q hƒ0
1
.ƒ0j / is also a

loose link, which proves the j th inductive case. Again by applying an ambient contact
isotopy to all the Legendrians, we can assume that ƒ0

1
Dƒ1 .

Now we give an example illustrating the entire procedure in Theorem 3.1.
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ƒ0j

ƒ01

R�"j .ƒ
0
1
/

hƒ0
1
;"j
.ƒ0j /

ƒ01

Figure 5: Left: front projection of ƒ0j , ƒ01 , and R�"j .ƒ
0
1/ in Uj ;

right: front projection of hƒ0
1
;"j
.ƒ0j / in Uj ; the blue box is a loose chart

of hƒ0
1
;"j
.ƒ0j / in Uj .

Example 3.3 This example shows that T �Sn\T �Sn\T �Sn , the boundary connected
sum of three copies of T �Sn , can be Weinstein homotoped to Wflex[H n for some flex-
ible domain Wflex . We begin with the “natural” presentation of T �Sn \T �Sn \T �Sn

of the form B2n [H n
ƒ1
[H n

ƒ2
[H n

ƒ3
, where ƒ1 , ƒ2 and ƒ3 are three unlinked

Legendrian unknots in .S2n�1; �std/. In Figure 6, ƒ1 is in red, ƒ2 (and its im-
age after handle-slides) is in black, and ƒ3 (and its image after handle-slides) is
in blue. The top diagram in Figure 6 denotes the setup after one iteration of the
construction; the Legendrians are now ƒ1 , hƒ1

.ƒ2/, and ƒ3 . The middle diagram
in Figure 6 is the first part of the second iteration when we change ƒ1 to ƒ0

1
and it

bring it closer to ƒ3 . The bottom diagram in Figure 6 shows the three Legendrians
ƒ1 , hƒ1

.ƒ2/, and hƒ0
1
.ƒ3/ after the second iteration of the construction, ie handle-

sliding ƒ3 over ƒ0
1

. Then hƒ1
.ƒ2/ and hƒ0

1
.ƒ3/ form a loose link since hƒ1

.ƒ2/ is
a loose Legendrian and hƒ0

1
.ƒ3/ is loose in the complement of hƒ1

.ƒ2/. We take Wflex

to be B2n[H n
hƒ1

.ƒ2/[H n
hƒ0

1
.ƒ3/ . Thus the original domain T �Sn \T �Sn \T �Sn

is homotopic to Wflex[H n
ƒ0

1
. Note that hƒ1

.ƒ2/ and hƒ0
1
.ƒ3/ are not loose in the

complement of ƒ0
1

, which intersects their loose charts. For simplicity’s sake, Wflex in
this example is not actually .T �Sn \ T �Sn/flex ; it will have the wrong intersection
form (in some dimensions n) and so will not even be diffeomorphic to T �Sn \T �Sn .
However it is possible to do the construction so that Wflex is .T �Sn \T �Sn/flex[H n .

Although the order in which handles are attached does not affect the ambient domain (up
to homotopy), it does affect which Weinstein subdomains are produced by a particular
Weinstein presentation. To emphasize this, in Figure 7 we have depicted the Cerf
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Figure 6: Theorem 3.1 applied to T �Sn
std \T �Sn

std \T �Sn
std .

diagram of the Weinstein homotopy for T �Sn \T �Sn \T �Sn discussed above, ie the
graph of critical values of the index n critical points of the Weinstein Morse functions 't

over the parameter space t 2 Œ0; 1�. That is, if pi for i D 1; 2; 3 are the critical points
with respective attaching spheres ƒi in the regular level set .S2n�1; �std/, then the
three line graphs depict 't .pi/ for t 2 Œ0; 1�. In Figure 7, we have labeled the graph
of 't .pi/ by its attaching sphere. Handles are attached in order of the critical values
of the corresponding critical points, from lowest to highest. At the beginning of the
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ƒ3

ƒ2

ƒ1

ƒ0
1

hƒ0
1
.ƒ3/

hƒ1
.ƒ2/

t D 0 t D 1

Figure 7: Cerf diagram of the Weinstein homotopy for T �Sn
std \T �Sn

std \T �Sn
std .

homotopy, '0.p2/ and '0.p3/ are greater than '0.p1/ since we need to handle-slide
the ƒ2 and ƒ3 handles over ƒ1 . These handle-slide moments are depicted by the
two vertical blue lines in Figure 7. After the two handle-slides are performed, the
attaching spheres of p2 and p3 become hƒ1

.ƒ2/ and hƒ0
1
.ƒ3/ respectively, as shown

on the right-hand side of Figure 7. Away from the handle-slide moments, the homotopy
changes the Legendrian attaching spheres just by Legendrian isotopy. Finally, the
homotopy makes the critical value of p1 greater than the critical values of p2 and p3 ,
which is possible by the second Weinstein homotopy move (see Section 2.1.3). As a
result, the Weinstein domain Wflex with attaching spheres hƒ1

.ƒ2/ and hƒ0
1
.ƒ3/ is a

sublevel set of '1 and hence a Weinstein subdomain of T �Sn \T �Sn \T �Sn .

Note that the Weinstein homotopy in Theorem 3.1 involved just handle-slides. If we
first create a pair of symplectically canceling handles and then handle-slide, we can
achieve better control over the topology of the flexible subdomain. This is the approach
we will take in the following proof of Theorem 1.5, which shows that W can be
homotoped to Wflex[C 2n for some smoothly trivial Weinstein cobordism C 2n with
two Weinstein handles. For example, this result shows that T �Sn \T �Sn \T �Sn can
be Weinstein homotoped to .T �Sn \T �Sn \T �Sn/flex[H n�1[H n

ƒ , where the last
two handles are smoothly canceling.

Proof of Theorem 1.5 We will assume W DWsub[H n
ƒ1
[� � �[H n

ƒk
for k� 1. First,

we attach a symplectically canceling pair of index n�1 and n handles H n�1 and H n
ƒ0

to W in a small Darboux chart B2n so that W D W \ .B2n [H n�1 [H n
ƒ0
/ D

Wsub [ .H
n�1 [ H n

ƒ0
/ [ H n

ƒ1
[ � � � [ H n

ƒk
. Now we proceed as in the proof of

Theorem 3.1, with slight modifications. We first bring all the ƒi for i � 1 close to ƒ0

by taking Ui in the proof of Theorem 3.1 to be contained in @B2n . The main difference
from before is that now we do two handle-slides of ƒi , for each i � 1, over ƒ0 ,
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Figure 8: Front projections of ƒn�1
0

(in red) and ƒn�1
i (in black) and their

subsequent images under the moves in Theorems 1.5 and 1.10, for n even;
the blue box appearing in the fourth and fifth diagrams is the loose chart of
h2
ƒ0
.ƒi/ and '.h2

ƒ0
.ƒi// respectively; the green portion of the Legendrian

in the fourth diagram is the boundary of the Whitney disk between h2
ƒ0
.ƒi/

and the belt sphere of H n�1 .

which produces the Legendrian h2
ƒ0
.ƒi/. Before doing the second handle-slide, we

perform a Reidemeister move. This move depends slightly on the parity of n. For n

even, we do the usual Reidemeister move which modifies the Legendrian in just a
point; see Figure 4. As a result, h2

ƒ0
.ƒi/ is loose. Note that h2

ƒ0
.ƒi/ intersects

the belt sphere of H n�1 two times. We will now show that h2
ƒ0
.ƒi/ has algebraic

intersection number zero with this belt sphere. Indeed, consider the orientation of the
two branches of h2

ƒ0
.ƒi/ as they approach the belt sphere. The tangent space of these

branches can be decomposed into a 1–dimensional part in the “page” (as depicted
in Figure 8) and an .n�2/–dimensional part transverse to the page. The tangent spaces
parallel to the page have opposite orientations for the two branches; see the arrows
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in Figure 8. The tangent spaces transverse to the page differ by the antipodal map
on Dn�1 due to passage through the crossing point of the Reidemeister move. Hence
if n is even, the two branches of h2

ƒ0
.ƒi/ have opposite orientations and so h2

ƒ0
.ƒi/

has algebraic intersection zero with the belt sphere of H n�1 as desired. If n is odd, the
Legendrian h2

ƒ0
.ƒi/ as described above has algebraic intersection two with the belt

sphere. So instead of doing the Reidemeister move as in the even case, we perform the
1–dimensional Reidemeister move spun by Sn�2�ƒn�1 ; so this move modifies ƒn�1

in a neighborhood of Sn�2 . Then we form h2
ƒ0
.ƒi/ by handle-sliding using a chart

that intersects the bottom branch of this Legendrian. Now there is no crossing point
and so h2

ƒ0
.ƒi/ has algebraic intersection zero with the belt sphere of H n�1 ; this

modified procedure works for the n even case as well but it is more complicated
to depict, which is why we have explained the n even case separately. Finally, we
note that h2

ƒ0
.ƒi/ is loose, even though we have used a different Reidemeister move

and so a loose chart as defined in Definition 2.4 does not obviously appear. Namely,
h2
ƒ0
.ƒi/ has a 1–dimensional zigzag arc and since this arc is in a Darboux ball, it

has arbitrary thickness and so defines a loose chart; see [4]. In conclusion, h2
ƒ0
.ƒi/

is loose for all n� 3 and has algebraic intersection number zero with the belt sphere
of H n�1 . We do this procedure for all the Legendrian ƒi and so, as in Theorem 3.1,
h2
ƒ0
.ƒ1/q � � �q h2

ƒ0
.ƒk/ forms a loose link; more precisely, the i th Legendrian is

loose in the complement of the previous .i � 1/ Legendrians, which implies that the
link is loose. Hence W 0 WDWsub[H n�1[H

n
h2

ƒ0
.ƒ1/
[� � �[H

n
h2

ƒ0
.ƒk/

is flexible and
W DW 0[H n

ƒ0
.

Since the algebraic intersection number of h2
ƒ0
.ƒi/ with the belt sphere of H n�1 is

zero, n� 3, and �1.@.B
2n[H n�1//D 0, we can use the Whitney trick to smoothly

isotope h2
ƒ0
.ƒi/ away from this belt sphere. In fact, we can assume that this smooth

isotopy is supported in @.B2n[H n�1/. To see this, note that we can take the boundary
of the Whitney disk to lie in this region; see the green portion of Legendrian in the
fourth diagram of Figure 8. This region is simply connected and hence the Whitney
disk also lies in this region; so the isotopy is also supported in this region. Since n� 3,
the Whitney disks will be generically disjoint for different i and so we can smoothly
isotope the entire link h2

ƒ0
.ƒ1/q� � �q h2

ƒ0
.ƒk/ off the belt sphere of H n�1 (again

via an isotopy supported in @.B2n[H n�1/).

The Legendrian link h2
ƒ0
.ƒ1/q � � � q h2

ƒ0
.ƒk/ is loose and so the smooth isotopy

can be approximated by a Legendrian isotopy. Since the smooth isotopy is supported
in @.B2n[H n�1/ and the Legendrians are loose in this region, the Legendrian isotopy
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is also supported in this region. Let 't be the ambient contact isotopy inducing this
Legendrian isotopy and supported in a small neighborhood of the Legendrian isotopy;
in particular 't is also supported in @.B2n[H n�1/. Since h2

ƒ0
.ƒ1/q� � �qh2

ƒ0
.ƒk/

is a loose link, so is '.h2
ƒ0
.ƒ1//q� � �q'.h

2
ƒ0
.ƒk//, where ' WD '1 . Furthermore,

we can assume that this link is loose in the complement of H n�1 and ƒ0 but not in
the complement of '.ƒ0/. See the fifth diagram in Figure 8. The upper Legendrian in
black is '.h2

ƒ0
.ƒi// and the blue box is its loose chart. The red Legendrian is '.ƒ0/.

This fifth diagram is purely schematic and is meant to demonstrate that '.ƒ0/ intersects
the belt sphere of H n�1 some number of times and is linked with '.h2

ƒ0
.ƒ1// in some

way such that '.ƒ0/ intersects the loose chart of '.h2
ƒ0
.ƒi// (since ƒ0 intersected

the loose chart of h2
ƒ0
.ƒi/).

Now we apply the contact isotopy ' to all attaching Legendrians; see the transition
from the fourth to the fifth diagram in Figure 8. As a result, we get that W D

Wsub[H n�1[H n
h2

ƒ0
.ƒ1/
[ � � � [H n

h2
ƒ0
.ƒk/
[H n

ƒ0
is Weinstein homotopic to

Wsub[H n�1
[H

n
'.h2

ƒ0
.ƒ1//[ � � � [H

n
'.h2

ƒ0
.ƒk//[H

n
'.ƒ0/:

The key point is that the latter presentation is Weinstein homotopic to

Wsub[H
n
'.h2

ƒ0
.ƒ1//[ � � � [H

n
'.h2

ƒ0
.ƒk//[H n�1

[H
n
'.ƒ0/

because we can attach the handles H n
'.h2

ƒ0
.ƒ1//[� � �[H n

'.h2
ƒ0
.ƒk// before H n�1 since

'.h2
ƒ0
.ƒ1//q� � �q'.h

2
ƒ0
.ƒk// is disjoint from the belt sphere of H n�1 . Let W 00

be the domain

Wsub[H
n
'.h2

ƒ0
.ƒ1//[ � � � [H

n
'.h2

ƒ0
.ƒk//

obtained by viewing '.h2
ƒ0
.ƒ1//q� � �q'.h

2
ƒ0
.ƒk// as a Legendrian link in @Wsub .

Then W is Weinstein homotopic to W 00[H n�1[H n
'.ƒ0/ . We note that W 00 is flexible

since '.h2
ƒ0
.ƒ1//q� � �q'.h

2
ƒ0
.ƒk// is loose in the complement of H n�1 .

Finally, we show that the Weinstein cobordism W nW 00DH n�1[H n
'.ƒ0/ is smoothly

trivial. Since ' is smoothly isotopic to the identity, '.ƒ0/ is smoothly isotopic to ƒ0

in @.Wsub[H n�1/. Since ƒ0 intersects the belt sphere of H n�1 exactly once, this
isotopy gives Whitney disks that cancel out all intersection points between '.ƒ0/

and the belt sphere of H n�1 (except for one). Since n � 3, the Whitney disks will
be generically disjoint from the link '.h2

ƒ0
.ƒ1//q � � � q '.h

2
ƒ0
.ƒk//. So '.ƒ0/

can be smoothly isotoped in the complement of this link to a sphere that intersects
the belt sphere of H n�1 exactly once. This means that '.ƒ0/ can be smoothly
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isotoped in @.W 00 [H n�1/ to intersect this belt sphere exactly once, which proves
that W nW 00 DH n�1[H n

'.ƒ0/ is smoothly trivial.

Any almost symplectic structure on a smoothly trivial cobordism can be deformed
relative to the negative end to the product almost symplectic structure. In particular,
W and W 00 are almost symplectomorphic. Since W 00 is flexible, by the uniqueness
h–principle [7] it is the flexibilization Wflex of W .

Now we prove the 4–dimensional analog of Theorem 1.5.

Proof of Theorem 1.6 We take V 4 to be W 0 from the proof of Theorem 1.5, so that
W DV [H 2

ƒ0
. Note that V 4 is obtained by attaching a 1–handle and some 2–handles

along h2
ƒ0
.ƒk/ to W 4

sub . Each attaching knot for the 2–handles is stabilized in the
complement of the previous ones; hence V 4 is a stabilized domain. Finally, we note
that V 4 is simply homotopy equivalent to W 4 [H 1 . To see this, we consider the
6–dimensional domain V 4�B2 ; as can be seen explicitly, the attaching knots h2

ƒ0
.ƒk/

are unknotted in the B6[H 1 region and hence can be smoothly isotoped to ƒk . As
a result, this domain is diffeomorphic to .W 4 [H 1/�B2 . Here we do not use the
Whitney trick directly since the region B6[H 1 is not simply connected.

Using Theorem 1.5, we can prove Theorem 1.1, our result relating WCrit and Crit.

Proof of Theorem 1.1 By Theorem 1.5, we can Weinstein homotope any Weinstein
domain W 2n where n� 3 to its flexibilization plus two smoothly canceling handles
of respective indices n � 1 and n, ie to Wflex [ H n�1 [ H n

ƒ1
, where ƒ1 can be

smoothly isotoped to intersect the belt sphere of H n�1 exactly once. For any smooth
Morse function f with critical points of index at most n on W , there is a Weinstein
homotopy of Wflex to a Weinstein presentation with Weinstein Morse function f ;
see Theorem 14.1 of [7]. Furthermore, if f has @Wflex as a regular level set, then
this Weinstein homotopy is fixed on @Wflex up to scaling. By Smale’s handle-trading
trick, there exists such a smooth function on W that minimizes the number of critical
points, ie with Crit.W / critical points, and so we can Weinstein homotope Wflex to a
Weinstein presentation with Crit.W / critical points. Since this homotopy is fixed up to
scaling on @Wflex , it extends to a Weinstein homotopy of Wflex[H n�1[H n

ƒ1
, which

is fixed up to scaling in W nWflex . In particular, this homotopy on Wflex[H n�1[H n
ƒ1

does not alter the number of critical points in W nWflex . Combining the homotopy
of W to Wflex [H n�1 [H n

ƒ1
and this second homotopy of Wflex [H n�1 [H n

ƒ1

to a presentation with few critical points, we get a Weinstein homotopy of W to
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a Weinstein presentation with Crit.W /C 2 critical points: Crit.W / critical points
in Wflex and 2 critical points in W nWflex due to the handles H n�1 and H n

ƒ1
. This

proves the first claim in Theorem 1.1.

Now we prove the third claim in Theorem 1.1 about smoothly subcritical domains W 2n .
If W 2n is Weinstein subcritical, then W 2n is flexible and so by the above discussion can
be homotoped to a Weinstein presentation with Crit.W / critical points, ie WCrit.W /D

Crit.W /. Conversely, suppose WCrit.W /DCrit.W / and �1.W /D 0. If �1.W /D 0,
the proof of Smale’s h–cobordism theorem shows that Crit.W / equals the number of
generators and relations for integral homology; see Theorem 6.1 of [39]. Then any
minimizing smooth Morse function on W cannot have any critical points of index
greater than n� 1 since these critical points are algebraically unnecessarily; we can
remove them and still have generators for integral homology since Hn.W IZ/ D 0

and Hn�1.W IZ/ is torsion-free for smoothly subcritical W . Hence if �1.W / D 0

and WCrit.W /D Crit.W /, then the minimal Weinstein presentation gives a minimal
smooth presentation and so cannot have any critical points of index greater than n� 1.
Thus W is Weinstein subcritical. Finally, we note that if WCrit.W 2n/¤ Crit.W 2n/,
then WCrit.W 2n/D Crit.W 2n/C 2 since WCrit.W 2n/� Crit.W 2n/C 2 by the first
claim and WCrit.W 2n/� .Crit.W 2n/C 2/ mod 2 by the Euler characteristic.

Now we prove the smoothly critical case. Suppose that  is a minimal smooth Morse
function on W with k D Crit.W / critical points. By assumption, one of these critical
points has index n (and the rest of the critical points have index at most n). By the
previous discussion, we can assume that  is a Weinstein Morse function on Wflex

and two other smoothly canceling handles H n�1 and H n
ƒ1

are attached to Wflex to
form W . The smooth isotopy from ƒ1 to canceling position gives some number of
Whitney disks in @.Wflex[H n�1/ pairing off all intersection points of ƒ1 and the belt
sphere of H n�1 (except for one intersection point).

We can suppose that the index n critical point of  on Wflex is attached along a loose
Legendrian ƒ0 ; so WflexDW 0flex[H n

ƒ0
and W DW 0flex[H n�1[H n

ƒ0
[H n

ƒ1
. Note

that ƒ0 is disjoint from the belt sphere of H n�1 (since H n�1 is attached after H n
ƒ0

).
We view ƒ1 � @.W

0
flex [H n�1/ by taking any Legendrian in @.W 0flex [H n�1/ that

is isotopic to ƒ1 in @.W 0flex [H n�1 [H n
ƒ0
/; in general, there will be many such

Legendrians, which are nonisotopic in @.W 0flex[H n�1/. Since n� 3, we can assume
that the Whitney disks of ƒ1 in @.Wflex [H n�1/ are disjoint from the belt sphere
of H n

ƒ0
and hence lie in @.W 0flex[H n�1/. In particular, ƒ1 can be smoothly isotoped

in @.W 0flex[H n�1/ to intersect the belt sphere of H n�1 in a single point. Furthermore,
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since the Whitney disks are disjoint from ƒ0 (since they are disjoint from its belt sphere),
we can assume that this isotopy is supported away from ƒ0 . We can also assume that
this smooth isotopy of ƒ1 is the identity in a neighborhood of some point x in ƒ1 .
We take an isotropic path 
 from x to ƒ0 and also assume that the isotopy is the
identity in a neighborhood of this path.

Now we handle-slide ƒ1 over ƒ0 using the path 
 . More precisely, we take the
Legendrian connected sum of ƒ1 with a Legendrian unknot near ƒ0 via the isotropic
arc 
 and then handle-slide using a chart near this Legendrian unknot as in Theorem 3.1.
We also do the handle-slide so that the resulting Legendrian hƒ0

.ƒ1/ is loose in
@.W 0flex[H n�1/ (but not in the complement of ƒ0 ). Now we note that hƒ0

.ƒ1/ can
also be smoothly isotoped in @.W 0flex [H n�1/ to a canceling sphere that intersects
the belt sphere of H n�1 once. Namely, we can use exactly the same smooth isotopy
that takes ƒ1 to a canceling sphere. This is because hƒ0

.ƒ1/ is topologically the
connected sum of ƒ0 and ƒ1 . Since the previous isotopy is supported away from ƒ0

and the path 
 used for the connected sum, we can extend it to the connected sum.
Furthermore, ƒ0 is disjoint from the belt sphere of H n�1 and so after the smooth
isotopy, hƒ0

.ƒ1/ intersects this belt sphere once.

Since hƒ0
.ƒ1/ is loose in @.W 0flex [H n�1/ and smoothly cancels H n�1 , we can

symplectically cancel H n�1 and H n
hƒ0

.ƒ1/ . Thus W 0flex[H n�1[H n
ƒ0
[H n

hƒ0
.ƒ1/ is

Weinstein homotopic to W 0flex[H n
ƒ0

0
. Here ƒ0

0
is the Legendrian obtained by handle-

sliding ƒ0 off the canceling pair H n�1 [H n
hƒ0

.ƒ1/ , ie ƒ0
0

is the image of ƒ0 in
W 0flexDW 0flex[H n�1[H n

hƒ0
.ƒ1/ . Since W 0flex has a Weinstein presentation with k�1

critical points, W 0flex[H n
ƒ0

0
has a presentation with k D Crit.W / critical points. This

completes the proof since W DW 0flex[H n�1[H n
ƒ0
[H n

ƒ1
is Weinstein homotopic

to W 0flex[H n�1[H n
ƒ0
[H n

hƒ0
.ƒ1/ , which is homotopic to W 0flex[H n

ƒ0
0

.

The proof of Theorem 1.1 can be used to prove Corollary 1.7: all Legendrians in our
Legendrian link can be made individually loose.

Proof of Corollary 1.7 The proof of Theorem 1.1 in the smoothly critical case
shows that W DW 0flex[H n�1[H n

ƒ0
[H n

hƒ0
.ƒ1/ where ƒ0 and hƒ0

.ƒ1/ are both
loose; ƒ0 is loose by assumption and hƒ0

.ƒ1/ is loose because of the handle-slide.
Combining ƒ0 with the attaching spheres of the n–handles of W 0flex[H n�1 (which
form a loose link for some presentation), we get the desired result. For general W , we
first add a pair of symplectically canceling handles to Wflex and then proceed as in the
smoothly critical case.
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Next we prove Theorem 1.10 about the number of intersection points between the belt
and attaching spheres of smoothly canceling handles.

Proof of Theorem 1.10 By Theorem 3.1, we can assume that the smoothly trivial
Weinstein cobordism W consists of two smoothly canceling handles H n�1

1
and H n

ƒ1
,

ie ƒ1 is smoothly isotopic to a Legendrian that intersects the belt sphere of H n�1
1

in a
single point. Now we follow the proof of Theorem 1.5. We first attach two canceling
handles H n�1

0
and H n

ƒ0
in a small Darboux ball and do two handle-slides (of opposite

orientations) of ƒ1 over ƒ0 so that the resulting Legendrian h2
ƒ0
.ƒ1/ is loose. Then

we use the contact isotopy ' to isotope h2
ƒ0
.ƒ1/ away from the belt sphere of H n�1

0
.

The result is W DH n�1
0
[H n�1

1
[H n

'.h2
ƒ0
.ƒ1// [H n

'.ƒ0/ ; see the fifth diagram in
Figure 8. The key observation is that this local diagram is independent of ƒ1 since all
isotopies were done near H n�1

0
[H n

ƒ0
. In particular, let Cn be the number of times

that '.ƒ0/ intersects the belt sphere of H n�1
0

; in Figure 8, this number is 5 but since
we do not compute this isotopy ' explicitly we do not know the exact number.

Next we note that the Legendrian '.h2
ƒ0
.ƒ1// is still smoothly isotopic to a Legendrian

that intersects the belt sphere of H n�1
1

in a single point. This is because '.h2
ƒ0
.ƒ1//

is exactly the same as ƒ1 except for a loose chart; see the blue box in the fifth
diagram of Figure 8. Furthermore, we can assume that this smooth isotopy is supported
away from H n�1 [H n

ƒ0
. Since '.h2

ƒ0
.ƒ1// is loose, there is a contact isotopy  

taking it to a Legendrian that intersects the belt sphere of H n
1

in one point; since
'.h2

ƒ0
.ƒ1// is loose away from H n�1 [H n

ƒ0
and the smooth isotopy is supported

away from this region, we can assume that this contact isotopy is also supported away
from H n�1

0
[H n

ƒ0
. In particular,  .'.ƒ0// still intersects the belt sphere of H n�1

0

in Cn points. Finally, we handle-slide  .'.ƒ0// over  .'.h2
ƒ0
.ƒ1// and off H n�1

1
.

This also does not change its geometric intersection number with the belt sphere
of H n�1

0
since  .'.h2

ƒ0
.ƒ1// is disjoint from this belt sphere. We call the resulting

Legendrian ƒ0
0

. Then W DH n�1
0
[H n

ƒ0
0

and ƒ0
0

intersects the belt sphere of H n�1
0

exactly Cn times as desired. The Legendrian ƒ0
0

is depicted in the sixth diagram of
Figure 8. This diagram is also schematic and is meant to signify that ƒ0

0
has an upper

and a lower part; the lower part of ƒ0
0

is close to H n�1
0

and is independent of ƒ1

while the upper part of ƒ0
0

depends on ƒ1 (and hence on W ).

Now we give proofs of the results in Section 1.4. We first prove Corollary 1.12
concerning the number of generators g.W.X // of the wrapped Fukaya category W.X /.
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Proof of Corollary 1.12 The proof of Theorem 1.1 shows that

WCritn.X /�maxf1;Critn.X /g

for all X 2n . Combining this with the result from [6; 23], we get the inequality
g.W.X //�maxf1;Critn.X /g. If X 2n is simply connected, then Smale’s h–cobordism
theorem (which holds since n�3) implies that Critn.X /Dg.H n.X IZ//, which proves
the result in that case. If X 2n is not simply connected, we attach some 2–handles
to X 2n to get a simply connected Weinstein domain Y 2n . Since n � 3, we have
H n.Y 2nIZ/ŠH n.X 2nIZ/ and so g.H n.Y 2nIZ//Dg.H n.X 2nIZ//. Furthermore,
since n � 3, the 2–handles are subcritical and hence DbW.Y / is exact equivalent
to DbW.X / by [23] and so g.W.X //D g.W.Y //. Then the result for Y 2n , which
is simply connected, implies the result for X 2n .

Next we prove Corollary 1.13 that g
�
K0.W.X //

�
� g.H n.X IZ//.

Proof of Corollary 1.13 The case g.H n.X IZ//� 1 is proven by (1-4) so it suffices
to handle the case when g.H n.X IZ// D 0. Then g

�
K0.W.X //

�
� 1 by (1-4) and

if g
�
K0.W.X //

�
D 0, we are done. Otherwise, g

�
K0.W.X //

�
D 1 and therefore

K0.W.x//Š Z=kZ for some integer k � 0. Now we take the boundary connected
sum and form the new Weinstein domain X \ X. Since 1–handles are subcritical,
DbW.X \X /ŠDbW.XqX / by [23] and DbW.XqX /ŠDbW.X /˚DbW.X /.
As a result, K0.W.X \X // Š K0.W.X //˚K0.W.X // Š Z=kZ˚Z=kZ. This
implies that g

�
K0.W.X \ X //

�
D 2 since Z=kZ ˚ Z=kZ is not a cyclic group.

On the other hand, we also have H n.X \X IZ/ŠH n.X IZ/˚H n.X IZ/Š 0 and
therefore g.H n.X \X IZ// D 0. Again using the previous inequality, we get that
g
�
K0.W.X \X //

�
� 1, which contradicts g

�
K0.W.X \X //

�
D 2. Therefore, we

must have that g
�
K0.W.X //

�
D 0 and so K0.W.X //D 0 as desired.

Remark 3.4 A similar boundary connected sum trick was used by Smith [36] to
show that all exact symplectic fillings of .S2n�1; �std/ have vanishing symplectic
cohomology; also see [41].

Next we prove our results about the Chekanov–Eliashberg algebra CE.ƒ/ of Leg-
endrians. These results depend on the surgery formula [3]; alternatively, we can
use the partially wrapped invariant CF.D;DI .W; ƒ// and the rigorous proof of the
surgery formula given in [23]. We first prove Corollary 1.16: the Chekanov–Eliashberg
algebra of a Legendrian ƒn�1 � .Sn�1 �Sn; �std/ that is primitive in homology has
no finite-dimensional representations.
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Proof of Corollary 1.16 We first assume that ƒ is a sphere and prove the general
case later. Let X 2n WDB2n

std [H n�1[H n
ƒ . Since Œƒ�D 12Hn�1.S

n�1�SnIZ/ŠZ,
H n.X 2nIZ/D 0 and so K0.W.X //D 0 by Corollary 1.13. Let C n � X 2n be the
cocore of H n

ƒ . Since C n is the only index n cocore for X 2n , it generates W.X / and so
DbW.X / WDH 0

�
Tw.Fuk.X //

�
is equivalent to H 0

�
Tw.CW.C;C //

�
, where we treat

CW.C;C / is an A1–category with one object. By [3], CW.C;C / is quasi-isomorphic
to CE.ƒ/ and hence DbW.X / is exact equivalent to H 0

�
Tw.CE.ƒ//

�
.

Suppose that CE.ƒ/ has a DGA map to Mat.n;K/. Then there is an A1–functor

Tw.CE.ƒ//! Tw.Mat.n;K//

and an exact functor

H 0.Tw.CE.ƒ//!H 0
�
Tw.Mat.n;K//

�
taking CE.ƒ/ to Mat.n;K/ (considered as twisted complexes). Let D.Mat.n;K//
denote the classical derived category of Mat.n;K/–modules and D1.Mat.n;K//
its A1 analog, ie the homotopy category of A1–modules over Mat.n;K/. There is an
embedding D.Mat.n;K//!D1.Mat.n;K//; see [27]. Since H 0

�
Tw.Mat.n;K//

�
is equivalent to the subcategory of D1.Mat.n;K// generated by the free module
Mat.n;K/ and since the exact subcategory DMat.n;K/ contains this free module,
H 0

�
Tw.Mat.n;K//

�
is also equivalent to the subcategory of DMat.n;K/ gener-

ated by the free module Mat.n;K/. This subcategory is an exact subcategory of
DbProj.Mat.n;K//, the bounded derived category of projective Mat.n;K/–modules.
In summary, there is an exact functor DbW.X / ! DbProj.Mat.n;K// taking
the cocore C n to the free module Mat.n;K/. This functor induces a map of
Grothendieck groups K0.W.X // ! K0.D

bProj.Mat.n;K//, and the latter is just
the usual Grothendieck group K0.Mat.n;K// of projective Mat.n;K/–modules. It is
well known that ŒMat.n;K/� 2K0.Mat.n;K//ŠZ is nonzero. Therefore K0.W.X //

is also nonzero, which contradicts Corollary 1.13. Similarly, there are no DGA maps
from CE.ƒ/ to a commutative ring R since ŒR� 2K0.R/ is nonzero for commutative
rings.

Now we prove the case when ƒn�1 is not a sphere. In this case, we cannot attach a
standard n–handle along ƒ but we can attach a generalized handle. Namely, let M n

be a smooth manifold with boundary ƒn�1 . Then we can construct the Weinstein
domain X 2n WD B2n

std [H n�1 [ƒ T �M, where we glue T �M to B2n
std [H n�1 by

identifying the Legendrian @M � @T �M with ƒ� @.B2n
std [H n�1/; more precisely,
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we fix parametrized Legendrian embeddings

i W ƒ ,! @.B2n
std [H n�1/ and j W ƒ ,! @T �M

which give us identifications of their neighborhoods with J 1.ƒ/ that we use to
glue B2n

std [ H n�1 to T �M. Then CE.ƒIC�.�M n//, the Chekanov–Eliashberg
algebra with coefficients in chains on the loop space of M n , is quasi-isomorphic to
CW.T �x M;T �x M /, wrapped Floer cochains of the cotangent fiber T �x M�T �M�X 2n ;
the partially wrapped analog of this result is proven in [23]. The cotangent fiber T �x M

is the cocore of the only index n handle of X 2n and hence generates DbW.X /. The
condition that ƒ is primitive in Hn�1.S

n�1 �SnIZ/ again implies H n.X IZ/D 0.
Therefore, K0.W.X // D 0, and so by the same argument as when ƒ is a sphere,
CE.ƒIC�.�M n// has no finite-dimensional representations or DGA maps to a com-
mutative ring. On the other hand, there is a DGA map CE.ƒIC�.�M n//! CE.ƒ/
induced by the DGA map C�.�M / ! C�.�Dn/ D K. Any finite-dimensional
representation or map to a commutative ring from CE.ƒ/ pulls back to such a map
from CE.ƒIC�.�M n//, which we have proved cannot happen. So CE.ƒ/ also cannot
have any finite-dimensional representations or DGA maps to commutative rings.

Now we prove Corollary 1.17 concerning Legendrians that can be isotoped into a
neighborhood of a loose Legendrian ƒloose � .S

2n�1; �std/.

Proof of Corollary 1.17 We first prove the case when ƒloose is the loose Legendrian
unknot ƒunknot;loose and then prove the general case. Consider a loose Legendrian sphere
A� .Sn�1�Sn; �std/ that is primitive in Hn.S

n�1�SnIZ/. Let B� .Sn�1�Sn; �std/

be the stabilization of A, followed by a small Reeb push-off so that A and B are
disjoint and form a loose link. The stabilization is done so that A and B are formally
isotopic (and hence Legendrian isotopic). We can also assume that there exist disjoint
contact neighborhoods U and V of A and B respectively so that A and B are loose
in the complements of V and U respectively.

Since A is loose, B2n
std [H n�1[H n

A
is Weinstein homotopic to B2n

std . By attaching the
handle H n

A
using a neighborhood of A contained in U, we can assume B and its neigh-

borhood V are disjoint from the attaching neighborhood and hence extend to a Legen-
drian B0� .S2n�1; �std/D@B

2n
std and a contact neighborhood V 0 of B0. Since B is loose

in the complement of U, its loose chart extends to .S2n�1; �std/ and so B0 is loose. The
belt sphere of H n

A
is the standard Legendrian unknot and so B0 is formally isotopic to

the Legendrian unknot. Since B0 is loose, it is the loose Legendrian unknot ƒunknot;loose .
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Let ƒ � .S2n�1; �std/ be a Legendrian that can be isotoped into a neighborhood of
ƒunknot;loose D B0 and is primitive in Hn�1.ƒunknot;looseIZ/, as in the statement of
the corollary; we can assume that this neighborhood is V 0. Using the identification
between V 0 � .S2n�1; �std/ and V � .Sn�1�Sn; �std/, ƒ� V 0 defines a Legendrian
ƒ0 � V � .Sn�1 �Sn; �std/. In particular, ƒ� .S2n�1; �std/ is obtained by trivially
extending ƒ0� .S

n�1�Sn; �std/ through the Weinstein cobordism from B2n
std [H n�1

to B2n
std DB2n

std [H n�1[H n
A

given by handle attachment along A� .Sn�1�Sn; �std/.
Since ƒ0 � V , A � .Sn�1 � Sn; �std/ is loose in the complement of ƒ0 . Handle
attachment along the loose Legendrian A does not change the Chekanov–Eliashberg
algebras of Legendrians, like ƒ0 , that are disjoint from the loose chart of A; see [3; 28].
Hence CE.ƒ0/ and CE.ƒ/ are quasi-isomorphic; this is the key point where we use
the fact that ƒ is in a neighborhood of ƒunknot;loose D B0, which implies that ƒ0 is
disjoint from the loose chart of A. Without this condition, CE.ƒ0/ and CE.ƒ/ could
be completely different and, in fact, CE.ƒ0/ could be zero with CE.ƒ/ arbitrary.

That ƒ is primitive in Hn�1.ƒunknot;looseIZ/ implies that ƒ0 � .S
n�1 � Sn; �std/

is primitive in Hn�1.BIZ/ and therefore primitive in Hn�1.S
n�1 �SnIZ/. There-

fore H 0.Tw.CE.ƒ0// is equivalent to DbW.X /, where X 2n is the Weinstein ball
B2n

std [H n�1[H n
ƒ0

. Then, as in Corollary 1.16, CE.ƒ0/ has no finite-dimensional
representations or DGA maps to commutative rings. Since CE.ƒ/ is quasi-isomorphic
to CE.ƒ0/ by the previous paragraph, CE.ƒ/ also has no finite-dimensional represen-
tations or DGA maps to a commutative ring. More precisely, this quasi-isomorphism
implies that H 0

�
Tw.CE.ƒ//

�
and H 0.Tw.CE.ƒ0// are equivalent and the rest of the

proof is as in Corollary 1.16.

Next we prove the result when ƒ is a neighborhood of an arbitrary loose Legendrian
ƒloose� .S

2n�1; �std/. Note that any Legendrian ƒ� .S2n�1; �std/ can be Legendrian
isotoped to a neighborhood of the Legendrian unknot ƒunknot so that ƒ and ƒunknot

agree on a small disk Dn�1 (and hence ƒ is primitive in Hn�1.ƒunknotIZ/). To see
this, view ƒ via its front projection in Rn and add a Reidemeister twist move to the
topmost point of ƒ, ie the one with the largest z–coordinate. Note that the smoothed-
out twist is the front projection of ƒunknot . Taking this to be our copy of ƒunknot , we see
that ƒ and ƒunknot agree on a disk and ƒ is contained in a neighborhood of ƒunknot ;
most of ƒ is contained in a neighborhood of the bottommost point of ƒunknot . See
Figure 9. In particular, this construction holds for ƒloose . We simultaneously sta-
bilize ƒunknot and ƒloose using the disk Dn�1 and get ƒunknot;loose and ƒ0loose. By
construction, ƒ0loose is in a neighborhood of ƒunknot;loose and is again primitive in
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Figure 9: The black Legendrian is ƒ with a Reidemeister twist added. The
red Legendrian is a Legendrian unknot ƒunknot , which contains the black
Legendrian in its neighborhood. They can be made to agree at the upper
points of ƒunknot .

homology. Furthermore, ƒ0loose is formally Legendrian isotopic to ƒloose and hence
Legendrian isotopic to it. Combining these results, we can assume that ƒloose is a
neighborhood of ƒunknot;loose and is primitive in Hn�1.ƒunknot;looseIZ/. Therefore,
since ƒ� .S2n�1; �std/ can be isotoped into a neighborhood of ƒloose and is primitive
in Hn�1.ƒlooseIZ/, it can also be isotoped into a neighborhood of ƒunknot;loose and is
primitive in Hn�1.ƒunknot;looseIZ/ reducing this case to the previous case when ƒloose

is ƒunknot;loose .

Combining Corollary 1.16 with the existence of infinitely many exotic Weinstein balls,
we conclude that there are infinitely many Legendrian spheres in .Sn�1 � Sn; �std/

or .S2n�1; �std/ with no finite-dimensional representations; these Legendrians are also
in a contact neighborhood of loose Legendrians and are primitive in their homology.

Proof of Corollary 1.18 McLean [32] showed that there are infinitely many exotic We-
instein balls †2n

k
for each n�4, distinguished by symplectic cohomology. As explained

in Example 1.3, WCrit.†2n
k
/D 3 and so †2n

k
can be presented as B2n

std [H n�1[H n
ƒk

for some Legendrian ƒk � .S
n�1 �Sn; �std/. Since †2n

k
is a ball, ƒk is primitive in

homology, and so by Corollary 1.16, CE.ƒk/ has no finite-dimensional representations.
By [3], the symplectic cohomology of †2n

k
is isomorphic to the Hochschild homology

of CE.ƒk/ and hence the CE.ƒk/ are not acyclic and are different for different k , as
desired.

Next we show that the Legendrian ƒk can be isotoped into a contact neighborhood of
a loose Legendrian and is primitive in its homology class. Note that B2n

std [H n�1 is a
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subcritical Weinstein domain and hence Weinstein homotopic to D�Sn�1�D2 , where
D�Sn�1 is the unit disk cotangent bundle. So .Sn�1�Sn; �std/D @.B

2n
std [H n�1/ can

be viewed as the boundary of the Lefschetz fibration D�Sn�1�D2 . By smoothing the
corners of this Lefschetz fibration, .Sn�1 �Sn; �std/ has an open book decomposition
obtained by gluing .T �Sn�1�S1; �Cdz/ to .ST �Sn�1�D2; �Cx dy�y dx/ by
identifying

ST �Sn�1
� Œ1;1/�S1

� T �Sn�1
�S1

with
ST �Sn�1

� .D2
n0/� ST �Sn�1

�D2

via the contactomorphism .x; r; �/ ! .x; 1=r2; �/. The pages of the open book
decomposition are T �Sn�1 � � , where � 2 S1 . Akbulut and Arikan [2] showed that
there is a Legendrian isotopy of ƒn�1 so that it becomes disjoint from the closure
T �Sn�1 � � qST �Sn�1 � .0; 0/ of the page T �Sn�1 � � . The complement of the
closure of this page is T �Sn�1� .S1n�/, which is a standard contact neighborhood of
the Legendrian Sn�1 ��� . In particular, ƒk can be isotoped into a neighborhood of
Sn�1��� . Since Sn�1��� and ƒk are both primitive in Hn�1.S

n�1�SnIZ/ŠZ,
ƒk is primitive in Hn�1.S

n�1 ��� IZ/. Finally, we note that Sn�1 ��� is a loose
Legendrian since it passes through the belt sphere of H n�1 exactly once.

For the second part of this corollary about Legendrians in .S2n�1; �std/, we essen-
tially reverse the procedure in the proof of Corollary 1.17. Take a loose Legendrian
A � .Sn�1 �Sn; �std/ disjoint from ƒk and loose in the complement of ƒk . Then
B2n

std [H n�1 [H n
A

is flexible and hence Weinstein homotopic to B2n
std . Since ƒk

is disjoint from A, ƒk defines a Legendrian sphere ƒ0
k

in .S2n�1; �std/ D @B2n
std .

Since A is loose in the complement of ƒk , CE.ƒ0
k
/ is quasi-isomorphic to CE.ƒk/

by [3; 28], as discussed in the proof of Corollary 1.17. Therefore, H 0
�
Tw.CE.ƒk//

�
is equivalent to H 0

�
Tw.CE.ƒ0

k
//
�

and so ƒ0
k
� .S2n�1; �std/ has the same properties

as ƒk � .S
n�1 �Sn; �std/, ie the CE.ƒ0

k
/ have no finite-dimensional representations

or DGA maps to a commutative ring and their Hochschild homology is different for
different k . Finally, we observe that ƒ0

k
is in a contact neighborhood of a loose

Legendrian in .S2n�1; �std/ and is primitive in its homology. By the previous para-
graph, ƒk � .S

n�1 �Sn; �std/ is in a contact neighborhood of the loose Legendrian
Sn�1��� and is primitive in its homology. The Legendrian Sn�1��� is isotopic to
the Legendrian B obtained by stabilizing A and taking a small Reeb push-off; so we
assume from the start that ƒk is in a neighborhood of B , is primitive in Hn�1.BIZ/,
and is disjoint from A. So the extension ƒ0

k
of ƒk is in a neighborhood of the
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extension B0 of B to .S2n�1; �std/ and is primitive in Hn�1.B
0IZ/. Since B is loose

in the complement of A, its extension B0 � .S2n�1; �std/ is a loose Legendrian, in
fact the loose Legendrian unknot, which proves the claim.
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