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Heegaard Floer homology and
Seiberg—Witten Floer homology
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Let M be a closed, connected and oriented 3—manifold. This article is the first of a
five-part series that constructs an isomorphism between the Heegaard Floer homology
groups of M and the corresponding Seiberg—Witten Floer homology groups of M.

53C07, 53C15

1 Introduction

This article and its sequels describe an isomorphism between the Heegaard Floer
homology of a given closed, connected and oriented 3—manifold and the balanced
version of its Seiberg—Witten Floer homology. This article gives an overview of the
proof, leaving all but a few of the technical details to the sequels. What follows directly
sets the stage for a formal statement of the equivalence.

Let M be a closed, connected and oriented 3—manifold. As explained in the book [10]
by PB Kronheimer and T S Mrowka, given a Spin® structure s on M there are three
different flavors of balanced Seiberg—Witten Floer homology groups with coefficient
ring Z, denoted by HM4 (M, s, ¢p), }/H\\/I*(M,s,cb) and ﬁ-l\//l*(M,s,cb). Each of
these groups is endowed with a relative grading by a certain quotient of the group Z
determined by the given Spin€ structure, and a canonical Z[U]® A*(H, (M ; Z)/tor)—
module structure. Moreover, these groups fit into a long exact sequence where the
homomorphisms respect the Z[U]® A" (H; (M ; Z)/tor)—module structures.

The Heegaard Floer homology groups of M are graded abelian groups defined by
P Ozsvith and Z Szab6 [19; 18]. These groups are also labeled by SpinC structures
on M, and given a Spin® structure s on M there are three different flavors of Hee-
gaard Floer homology groups. These are denoted by HF*°(M, s), HF (M, s) and
HF (M, s). Each of these groups admits a relative grading by the same group as
its Seiberg—Witten counterpart and a canonical Z[U]® A" (H; (M ; Z)/tor)-module
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structure. Furthermore, these groups also fit into a long exact sequence where the
homomorphisms respect the Z[U]® A" (H; (M ; Z)/tor)-module structures.

With the preceding understood, this article and its sequels [11; 12; 13; 14] prove the
following theorem:

Main Theorem Fix a Spin(C structure s on M. There exists a commutative diagram

— S HF (M,s) — HF®(M,5) — HF"(M,s) ——

ll? ll? ll?
— HMy (M. s, cp) — HM4 (M, 5, cp) —— HM4 (M, 5, cp) ——

where the vertical arrows are isomorphisms and the top and bottom rows are the
respective long exact sequences for Heegaard Floer homology and Seiberg—Witten
Floer homology. The vertical homomorphisms preserve the relative gradings and
intertwine the respective Z[U]® A\"(H; (M ; Z) /tor)—module structures.

Our proof of the Main Theorem invokes a third sort of homology theory for 3—manifolds.
This is a version of M Hutchings’ embedded contact homology (see [5]). The embedded
contact homology groups in the present context are defined with the choice of a stable
Hamiltonian structure. A stable Hamiltonian structure on a closed, oriented 3—manifold
is a pair (a, w) where a is a 1-form, w is a closed 2—form such that a A w is nowhere
zero, and da = hw for some smooth function /. The embedded contact homology
groups are also labeled in part by the SpinC structures on the ambient manifold.
Moreover, they admit relative gradings that are analogous to those of the Heegaard
Floer homology groups, and an analogous module structure for the tensor product
of Z[U] with the exterior product of the first homology modulo torsion. The version
used here is defined for a particular stable Hamiltonian structure and for certain Spin<C
structures on the connect sum of M with certain number of copies of S x §2. This
number is denoted in what follows by G; it is the genus of a Heegaard surface for M
that is used to define the Heegaard Floer homology. We denote by Y the connect sum
with the orientation induced from M and by Y the connect sum with the orientation
induced from — M. Of interest here is the manifold ¥ . The details of our construction
of Y and the particular stable Hamiltonian structure are given in Section 1 of [11].
It suffices to say here that Y and its geometry are constructed using a chosen Spin®
structure on M and the data that is used to define the corresponding Heegaard Floer
homology groups of M. (This data consists in part of a pointed Heegaard diagram
for M ; in particular, it determines the number G.) Use s to denote this Spin(C structure.
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We consider a variant of embedded contact homology on Y that is defined for a Spin©
structure that corresponds in a natural way to the chosen Spin(C structure s. This
variant is denoted by ech® and it is of the sort described by Hutchings and Sullivan
[7, Definition 11.8]. The special geometry of Y is used to write the ech® chain com-
plex and the differential using the chain complex and the differential for HF*° (M, s).
We say more about this in Section 2. Theorems 2.2-2.4 describe the relationship
between the relevant versions of embedded contact homology of Y and the Heegaard
Floer homology of M.

We also use the special geometry of Y to identify our ech® chain complex with
a chain complex that computes the three flavors of a version of the Seiberg—Witten
Floer homology on Y with a particular local coefficient system. This is a version of
the sort of Seiberg—Witten Floer homology that is described in Section 3.7 of [10].
The relevant version of the Seiberg—Witten equations on Y and the chain complex
that computes the corresponding three homology groups are described in Section 3.
Theorem 3.3 states the relationship between the Seiberg—Witten Floer chain complex
and the chain complex for ech®. Theorem 3.4 exploits Theorem 3.3 to identify the
relevant Seiberg—Witten Floer homology groups on Y with three homology groups
computed using the embedded contact homology chain complex on Y .

The identifications given by Theorems 2.4 and 3.4 between our version of embedded
contact homology on Y and the Heegaard Floer homology on M and our version of
Seiberg—Witten Floer homology on Y are used to write the latter groups in terms of the
former. Meanwhile, a connect sum formula is used to write these same Seiberg—Witten
Floer homology groups in terms of the groups HM, (M, s, cp), Iql\\/l*(M ,8,cp) and
HM, (M, s, cp). The form of the connect sum formula is analogous to a corresponding
Heegaard Floer connect sum formula in [19] and was suggested to the second author by
Mrowka and Ozsvéth. The connect sum formula is stated in Section 4. These identifi-
cations lead directly to a proof of the Main Theorem. In particular, our Main Theorem
follows directly from the upcoming Theorems 2.4, 3.4 and 4.1. To be more explicit, it
follows from these theorems that there exists a commutative diagram

— SHF (M,s)® V®— HF®(M,s) ® V®— HFH(M,s5) @ V® ——
[ b? J|?
—HM4 (M, 5,¢p) ® VO —HM (M, 5,¢p) ® VO —HM(M, 5, cp) @ VO —

where V denotes the graded Z-module N\"H'(S' x S2;7Z). The latter is isomorphic
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to Z @ Z with the grading of the leftmost summand being 0 and that of the rightmost
summand being 1. Viewing the Z-module V as A" H!(S!xS2;7Z) defines the action
of H{(S!x S?;7Z) on 1% by interior product. The arrows in the preceding diagram
are as follows: the top and the bottom rows are the respective long exact sequences
for Heegaard Floer and Seiberg—Witten Floer homologies tensored with the identity
homomorphism on V®S . The vertical arrows are isomorphisms that preserve the
relative gradings and intertwine the Z[U]® A" (Hl (M ;7Z)/tor® Hy (#g SlxS2; Z))
actions, whereby Z[U]® A" (H; (M ; Z)/tor) acts on the Floer homologies ignoring the
V®6 factors while H 1 (# ¢S Iy 82 Z) acts on V' ®S viewed as the exterior product of
G copies of 1% ignoring the Floer homology factors. In the preceding, Hq (M ;Z) and
H, (# ) I'x §2; Z) refer respectively to the first and second summands in a splitting
of Hi(Y;Z) as

H\(M;Z)® H, (#,S' xS*Z)d H'(S' x S*, 7).

This splitting is realized by the choice of a set of G+ 1 points ¥ introduced in [11, Sec-
tion 1C, Parts 4 and 7]. (In particular, the element zy € ¥ is the basepoint in the pointed
Heegaard diagram.) This choice also assigns an ordered basis for H; (# g S I'x S2; Z) ,
which in turn specifies an isomorphism between A\*H! (# g ST x S% Z) and V®°.
This choice is fixed throughout the entire series of papers, and the corresponding
splitting is always assumed implicitly.

By way of summary, our proof of the Main Theorem involves establishing the corre-
spondences

SW Floer homology of ¥ <« embedded contact homology of Y

¢ ¢
SW Floer homology of M ~ Heegaard Floer homology of M

There is also a fourth flavor of the Seiberg—Witten Floer homology of M, defined
by the second author in [15]. This is denoted here by }m(M ,6). The definition of
Pm(M ,5) was inspired by Ozsvéth and Szabd’s definition in [19] of a fourth version
of Heegaard Floer homology, denoted by ﬁF(M ,6). It follows from our proof of the
Main Theorem that fﬁ\ﬁ(M ,§) is isomorphic to ﬁ(M ,5). The latter result, as well as
that ﬁ-l\//l*(M ,5,cp) is isomorphic to HF' (M, s), also follows from work of V Colin,
P Ghiggini and K Honda [2; 3; 4] using open book decompositions and Hutchings’
embedded contact homology for adapted contact forms (see also [1] for a summary).

The notion of using connect sums of M with S! x S to relate the Heegaard Floer
homology on M with some version of Seiberg—Witten Floer homology has antecedents
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in the work of the second author [15] on an as yet unsuccessful strategy to prove the
Main Theorem. The appearance of the local coefficient version of Seiberg—Witten Floer
homology was foreseen and a version of the connect sum formula stated in Section 4
was proved in a somewhat different context by the second author in [15]. Bloom,
Mrowka and Ozsvéth (personal communication) have proven a related connect sum
formula for applications in a more general context.

The relationship between ech®™ on Y and a version of the Seiberg—Witten Floer
homology on Y is the analog here of the theorem by the third author proved in
[20; 21; 22; 23; 24] that equates Hutchings’ contact 1—form version of embedded
contact homology on a given 3—manifold to a version of this manifold’s Seiberg—
Witten Floer cohomology. This relationship also has antecedents in the theorem of
the second and third authors proved in [16] that equates Hutchings’ periodic Floer
homology for fibered 3—manifolds (see [6]) with a version of Seiberg—Witten Floer
cohomology.

The equivalence between various flavors of Heegaard Floer homology and Seiberg—
Witten Floer homology has been conjectured since the discovery of Heegaard Floer
homology. See for example Conjecture 1.1 in [18], Chapter 3.12 in [10] and Conjecture 1
of Kronheimer and Manolescu [9].
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2 Heegaard Floer homology of M and ech of Y

This section describes the ech® chain complex on Y and its relationship with the
Heegaard Floer chain complex on M. The first subsection to come summarizes the
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most salient features of the Heegaard Floer homology-related geometry of M. The
second subsection describes the ech®™ related geometry on Y . The final subsection
explains the precise relationship between the ech® chain complex and the relevant
Heegaard Floer chain complex. Fix once and for all a Spin€ structure on M. This
chosen Spin€ structure is denoted by s in what follows and in the subsequent sections
of this article.

2.1 Heegaard Floer geometry on M

The construction of the three Heegaard Floer homology groups HF*° (M, s), HF~ (M, 5)
and HF ™ (M, 5) requires data that consists in part of a pair ( f,v) where f: M — [0, 3]
is a self-indexing Morse function with a single local maximum and a single local
minimum. We take our function f to have G > 1 index 1 critical points. It then has G
index 2 critical points and the level set /! (%) is a smooth surface of genus G. This
surface is denoted by X. What is denoted by v is a suitably chosen pseudogradient
vector field for f which is smooth on the complement of the critical points of f and is
such that v( f) = 1. With the Spin€ structure fixed, the pseudogradient vector field v
is chosen so as to result in what Ozsvath and Szabé call a strongly admissible Heegaard
diagram (see Definition 4.10 in [19]). The diagrams we use are of the kind constructed
in the proof of Lemma 5.4 in [19].

The integral curves of v can be used to identify f~!(1,2) with (1,2) x X so that the
function f appears as the Euclidean coordinate on the (1,2) factor and v appears as
the corresponding Euclidean vector field. This view of f~1(1,2) led Robert Lipshitz
to interpret the Heegaard Floer chain complex as follows (see [17]). Introduce Zyr to
denote the set whose typical element is a collection of G integral curves of v that pair
the index 1 and index 2 critical points of f. Any given curve from such a collection
starts at an index 1 critical point of f and ends at an index 2 critical point of f.
However, no two curves share the same starting point or the same ending point. The
three Heegaard Floer chain complexes are constructed from the free module generated
by Zgr X Z. Any given element in the chain complex can be written as a formal linear
combination of elements on Zyr x Z with integer coefficients. This free module is
referred to in what follows as Z(Zyg X Z).

The differential that defines the group HF°°(M,s) is a certain endomorphism of
Z(Zyr X 7)) whose square is equal to zero. Lipshitz explains in [17] how to compute
the differential from certain geometric data on R x [1,2] x X. The latter requires
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the choice of a suitably constrained almost complex structure. The almost complex
structure is constrained in particular so as to be invariant under the action of R by
translations along the R factor and to map the Euclidean vector field on the [1,2]
factor to that on the R factor. The almost complex structure is required to preserve
the tangent plane field to X. However, it need not be constant along the [1, 2] factor
except in certain prescribed annuli and disks. In particular, it should be constant near
the segments that correspond to the integral curves of v connecting the index 1 and
index 2 critical points of f.

As explained by Lipshitz in [17], the differential for the Heegaard Floer chain complex
can be computed using pseudoholomorphic, proper submanifolds with boundary in
R x[1, 2] x ¥. These submanifolds exhibit appropriate behavior on the boundary. They
also have 2g strip-like ends such that the Euclidean coordinate of the R factor is
unbounded from above on G of these ends and it is unbounded from below on the
remaining G ends. The asymptotics on these ends with respect to the unbounded
Euclidean factor are suitably constrained by data from Zyp.

Let dyr denote the differential on Z(Zgr x Z). The homology of the resulting
chain complex is HF*°(M,s). As explained by Ozsvith and Szabé [19], dyr pre-
serves the filtration on Z(Zyr x Z) defined by the submodules freely generated by
Zypx{i € Z|i <k} for any given k € Z. Granted that such is the case, dyr defines
a differential on the submodule Z(Zyr x {i € Z | i < —1}) as well as on the quotient
Z(ZupxZ)]Z(Zapx{i € Z |i < —1}). The homology of the former chain complex
gives HF~ (M, 5), while the homology of the latter chain complex is HF ' (M, s).

Any Spin® structure on M has an associated class in H?(M ; Z). The latter is said to
be the first Chern class of the SpinC structure. The first Chern class defines via the
canonical pairing a homomorphism from the group H,(M;Z) into Z. The image of
the latter homomorphism, a subgroup of Z, is generated by an even integer p € Z. The
Heegaard Floer chain complex for the given SpinC structure can be given a relative
7/ pZ grading so that the differential acts to decrease the grading by 1.

The action of Z on ZypxZ that translates the Z factor by —1 induces an endomorphism
of Z(Z2yr x 7Z) that commutes with dgr and decreases the grading by 2. The induced
endomorphism of HF*®® (M, 5), HF~ (M, s) and HF ' (M, 5) is the U-map. As noted
in the introduction, there is also a commuting action of A" (H; (M ;Z)/tor) on these
groups. This action is induced by endomorphisms of the module Z(Zyr X Z) that
anticommute with dgp and decrease the grading by 1.
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2.2 Embedded contact geometry on Y

The manifold Y is obtained from M by a surgery that first excises small radius Euclid-
ean balls around the critical points of f and subsequently sutures G + 1 1-handles,
copies of [—1, 1] x S2, to the resulting 2(G + 1) boundary 2—spheres. The result is
diffeomorphic to M # (#¢+1 S' x S2). This surgery is done so that the respective
spheres around the index 0 and index 3 critical points of f connect through one of
the attached handles, and the spheres around any given index 1 critical point connects
through a handle to the sphere around one of the index 2 critical points of f. The
handle that connects the spheres around the index 0 and index 3 critical points of f is
denoted by Hg. The set of G pairs of index 1 and index 2 critical points of f that are
defined by the remaining G handles is denoted by A. Given p € A, the corresponding
1-handle is denoted by H,. The complement in Y of the handles is identified with
the complement in M of the small radius balls around the critical points of f'. The
corresponding parts of ¥ and M are denoted by Mj. The manifold Y is oriented so
that the induced orientation on Mj is the opposite of the orientation of M.

The data (M, f,v) are then used to construct a pair (a, w) of a 1-form and a closed
2—form on Y such that a Aw > 0 at all points, and such that da is in the span of w.
A pair with these properties is said to be a stable Hamiltonian structure. The 2—form
w is chosen so as to be positive on the cross-sectional spheres in H( and to define an
area form on the level sets of f in Msj.

The 2—form w is closed and so defines a de Rham cohomology class on Y . To say
more about this class, use the Mayer—Vietoris sequence to identify H,(Y;Z) with

Hy(M;Z)® Hy(Ho; Z) ® (@ Hy (Hy; Z))-
peEA

To elaborate, the identification with the above direct sum follows from an application
of the Mayer—Vietoris sequence to the union

MsUHo U ( U ’Hp)
peA

using the fact that H, (M ; Z) can be seen as a subgroup of H,(Ms;Z) via the part of
the long exact sequence for the pair (M, Ms),

0— H3(M;Z)— H3(M, Mgs; 7)) — Hy(Ms; Z) — Hy(M:;Z) — 0.
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Note that Hy (M, Ms;Z) = 0 if k # 3 by the excision theorem, and that H,(M ;Z)
is free abelian. With the above identification understood, the cohomology class of the
form w is determined by the linear functional that it defines on the various summands.
This linear functional pairs with the generator of H,(H;Z) that is defined by the
cross-sectional spheres in H( oriented by w to give 2. It has pairing zero with any
p € A version of the summands H(H,: Z), and it restricts to the H,(M ; Z) summand
so as to give the pairing on M that is defined by the first Chern class of s. The strong
admissibility of the chosen Heegaard diagram on M is needed to construct a pair
(a, w) with all of these listed properties.

The kernel of w is generated by a nowhere-zero vector field, denoted by v. The
construction of (@, w) is such that v is normal to the cross-sectional spheres in
and such that v = on Mj. The vector field v is normalized so that a(v) = 1.

The embedded contact homology chain complex on Y is defined using a set Z described
as follows. An element ® € Z is a finite set of pairs of the form (y, m) where y is a
closed integral curve of the vector field v and m € Z. The collections of pairs in Z
with certain constraints on the allowed integer components are used to define embedded
contact homology. The precise constraints are described in [5]. The relevant subset
of Z here is denoted by Zec,.

The elements in Z are labeled in part by the Spin(C structures on Y. The SpinC
structure of a given element ® € Z is determined by data consisting of the 2—plane
field kernel(¢) C TY and a class that © defines in H;(Y;Z). What follows is the
definition of this class. Use v to orient its closed integral curves so as to view them
as closed 1—cycles. If y is such a curve, use [y] to denote the corresponding 1-cycle.
The cycle ), sy 7[Y] is then the desired class in H; (Y:Z). The first Chern class
of the corresponding Spin€ structure is

2-1) ex-1+2 ) ™
(v;n)€®

where [y]Pd denotes the class in H2(Y; Z) that is the Poincaré dual of [y], and where
ex—1 is the Euler class of the oriented 2—plane field defined by kernel(a) C TY with
the orientation given by w.

Our constructions give a natural 1—1 correspondence between the set of Spin€ struc-
tures on M and the set of Spin‘C structures on Y that obey the following constraints:
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(2-2) o The first Chern class has pairing 2 with the cross-sectional spheres in H.

» The first Chern class has pairing 0 with the cross-sectional spheres in H,,
forany p € A.

With the preceding understood, of particular interest in what follows is the subset
Zech,M C Zech of elements whose first Chern class obeys (2-2) and which correspond
to the chosen Spin® structure on M.

The pair (a, w) is constructed so as to obtain an essentially explicit description of the
set Zech, M » Which we summarize in the next theorem. The latter uses O to denote the
set {0,1,—1,{1,—1}}.

Theorem 2.1 The set Z.y pr is in 1-1 correspondence with Zyp X ]_[pe AZ x0),
and this correspondence is canonical given the choice for 0 in each p € A factor of Z.
This identification preserves the labeling by Spin(C structures.

This theorem is proved in [11, Proposition 2.8]. The remarks that follow say something
about how the asserted identification comes about.

Remark 1 The vector field v is normal to the cross-sectional spheres in H( and, as
a consequence, the class e g—1 has pairing 2 with these spheres. It also means that
the integral curves of v through H, have transverse intersections with these spheres
with positive local intersection number. These observations with those of the first
bullet in (2-2) imply that no curve that contributes to a collection from Z.., ps can
intersect Hyg.

Remark 2 The vector field v on Mj is the pseudogradient vector field v. This implies
that any integral curve of v that intersects either the f <1 or the f > 2 part of Mj
must cross Hgo. As a consequence, a given integral curve that appears in an element
from Z.y pr and intersects My does so as an integral curve of v that is very near an
integral curve that connects an index 1 critical point of f with an index 2 critical
point of f.

Remark 3 The class e ;-1 has pairing —2 with the cross-sectional spheres in Upe AHp
with respect to a suitable orientation. This and the second bullet of (2-2) imply that
the collection of curves from any given element in Z.c, p7 must have intersection
number 1 with the cross-sectional spheres in Upe AHp.

Remark 4 The geometry in the 1-handles labeled by A is such that an integral curve
that has intersection number —1 with any cross-sectional sphere in these handles will
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intersect either the f <1 or the f > 2 part of Mj. This together with Remark 3 has
the following consequence. Suppose that ® € Z., pr. Then there is precisely one
segment in each #,, from the union of the integral curves from © that enters the handle
or leaves the handle. Moreover, this segment must cross the handle from the index 2
critical point end towards the index 1 critical point end.

Remark S What is said in Remarks 2 and 4 implies that any given element in Zch pr
defines a canonical corresponding element in Zyg.

Remark 6 The factor of [[,c 5 (Z x 0) in Theorem 2.1 labels the possible ways in
which a given element in Zyr can be extended over (J,ep Hp s0 as to define an
element in Z.., a7 . In particular, there are precisely two closed integral curves of v
that lie entirely in any given #,,. One lies north of the equatorial circle in the central
cross-sectional sphere of Hj, and the other lies south of this circle. The factor O labels
whether a pair from ® contains none of these curves, just the one on the northern
hemisphere, just the one on the southern hemisphere, or both of these curves. The
segment that crosses the handle with positive intersection number does so very near
the equator in each cross-sectional sphere. The Z factor describes the number of times
this segment winds around the equator as it traverses the handle.

Remark 7 Any given © € Z. p contains only pairs of the form (y, 1), which
follows from Remarks 4 and 6. This is consistent with Hutchings’ constraints on the set
of generators of the embedded contact homology chain complex because the linearized
return map of y is hyperbolic.

Any given ® € Z has a length, namely Z(V’n) col fy a. With this in mind, parametrize
an element in Z.c, ps by its corresponding Zyp x ]_[pe A(Z x 0) label. As it turns out,
the length of a given element is bounded from below by a fixed multiple of the sum
of the absolute values of the integers from the ]_[pe A(Z x 0) factor. This observation
motivates the introduction of a filtration of the set Z..y ps by a nested sequence of
finite sets

1 2 L
(2'3) Zech,M C Zech,M c---C Zech,M c---C Zech,M~

The set Zecp, mL contains the following sorts of elements. Write a given © € Z.o, s
using Theorem 2.1 as ® = (U, (my, Op)pep) With U € Zyr and with each p € A
version of (my, 0p) denoting a pair in Z x 0. Then, ® € Zy, mL if and only if
ZpeA(|mp| +2|0p|) < L, where |0,| denotes the sum of the absolute values of the
elements of Oy.
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2.3 The ech® chain complex and its homology

The chain complex for ech® is a twisted version of embedded contact homology as
described in Section 11 of [7] and in [5]. The definition of twisted embedded contact
homology in [7] requires the choice of a subgroup of H,(Y;Z). The subgroup used
here is Hy(M;7Z) & (EBpGA Hy(Hy: Z)) seen as a subgroup of H,(Y;Z) via the
Mayer—Vietoris sequence. The corresponding chain complex is viewed here as the free
module generated by the elements of a certain principal H,(Hg; Z)-bundle over the
discrete set Zech, pr. The latter bundle is denoted in what follows by f:\fech, am and the
free module that it generates by Z(éech, M ). Here is the precise definition: A given
element in Z(éeoh, M) is a formal, integer-weighted sum of finitely many elements
from ﬁech’ M- The action of Hy(Ho;Z) >~ Z on Z,A’ech, M induces a corresponding
H»(Ho:Z) action on the module Z(éech, M) and endows it with the structure of a
Z[t, t']-module. Here, ¢ acts as the class represented by the cross-sectional spheres
in Ho. The module Z(éech, M) has a relative embedded contact homology grading by
the same cyclic group that grades the corresponding Zyr labels.

The differential for the ech® chain complex is constructed using a certain endomor-
phism of Z(gech, M) which decreases the relative grading by 1 and has square equal
to zero. The U—map and the action of A"(H; (M ;Z)/tor) on the embedded contact
homology are likewise given by endomorphisms of Z(é’ech, Mm)- Let T denote any one
of these endomorphisms. The endomorphism T is defined by its action on generators
of Z(éech’ M ). Meanwhile, its action on any given generator can be written as a finite
sum

(2-4) TO= >  z549.

O€Z(Zecn, M)
where the coefficients zg, g are integers.
The integer coefficients in (2-4) are constructed using pseudoholomorphic submanifolds
in R x Y that are defined by a suitably constrained almost complex structure on the
latter. The almost complex structure is chosen so as to have various special properties.

The most salient features are listed below. The notation uses s to denote the Euclidean
coordinate on the R factor of R x Y .

(2-5) e The almost complex structure is invariant under translations along the R

factor of R x Y and it maps % to v.

e The almost complex structure tames the 2—form ds Aa + w.
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* The complement in Y of the union of closed integral curves of v in each #,
is foliated by pseudoholomorphic submanifolds. The leaves intersect Mg as
level sets of f and they intersect # as the cross-sectional spheres.

e The almost complex structure is constrained to conform up to the change in
orientation to that used by Lipshitz on the relevant part of R x Mj.

The conditions in the first two bullets above are standard requirements for defining
embedded contact homology. The condition in the third bullet is very special to the
geometry at hand. In particular, it severely constrains the sorts of pseudoholomorphic
submanifolds that contribute to the embedded contact homology differential and other
endomorphisms defining additional algebraic structure. The fourth bullet brings the
corresponding Heegaard Floer version of T into the story. These four constraints
lead to the characterization of the differential and other endomorphisms given in the
upcoming Theorem 2.3. Theorem 2.2 serves to set the stage for Theorem 2.3.

Theorem 2.2 makes the formal statement that the relevant endomorphisms can be
defined by the rules laid out by Hutchings in [5].

Theorem 2.2 The almost complex structure on R x Y can be chosen to satisfy
the conditions in (2-5) to the following end. The differential, the U—map and the
N (Hy(Y; Z)/tor) action on Z(Qech, M) can be defined according to the rules laid out
by Hutchings. The latter are represented by endomorphisms that have the form depicted
in (2-4). The differential and the action by generators of H;(Y;Z)/tor reduce the
relative grading by 1 and anticommute. The U —map reduces the relative grading by 2
and commutes with the other endomorphisms. All of these endomorphisms commute
with the action of Hy(Ho:Z).

Theorem 2.2 is proved in [11, Theorem A.1].

The next theorem views the product Ze.y ar X Z as a principal H,(Ho: Z)-bundle over
Zecn,m as follows. The generator given by the cross-sectional sphere in H,(Ho; Z)
acts on the Z factor so as to send any given integer k£ to k — 1. This theorem also
uses Theorem 2.1 to write Zeep ps as ZHp X ]—[)Je A (Z x0) and having done that it then
moves the Z factor in Z..p pr X Z to write the latter as (Zpr X Z) X ]_[pe A(Z x0).

The last bit of notation concerns conventions. Suppose that £ and E’ are graded chain
complexes and that A and A’ are respective graded endomorphisms. Then E ® E’
inherits a differential that is written as A + A’. These are defined by their actions
on the decomposable elements as follows. Suppose that ¢ € E and ¢’ € E’. Then
(A + A/)(e ® e/) = Ae®e + (_l)degree(A’) degree(e)e Q N
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Theorem 2.3 There exists a principal Z —bundle isomorphism between éech, M and
(Zup X Z) x ]_[pe A(Z x 0) with the pfoperties detailed momentarily. Use this isomor-
phism to identify the Z—module Z(Z¢ch,p) With Z(Zup X Z) ® Z(]_[peA(Z X 0)).
This Z —module isomorphism identifies the ech® differential as

8ec:h = 8HF + Z ap,
peEA
where the endomorphism dyp denotes the differential on Z(Zur x Z), and each 0,
acts on the corresponding 7Z(Z x 0O) factor as the square-zero endomorphism 0, given
by the rule

e 0+(m,0)=0 foreachme Z,

e 0J4x(m,1)=(m,0)+ (m+1,0) foreachm € Z,

e 0x(m,—1)=(m,0)+ (m—1,0) foreachm € Z,

e Os(m,{l,—1})=(m,—-1)—(m,1)+(m+1,—-1)—(m—1,1) foreachm € Z.

Meanwhile, this Z —module isomorphism identifies the U —map on Z(éech’ M) with the
endomorphism Uyr ® I of Z(Zur X Z) ® Z([ 1,5 (Z x 0)) . The isomorphism also
identifies the endomorphisms that define the action of Hy(M ;Z)/tor on Z(Zech, M)
with the endomorphisms that only involve the factor Z(Zyg X Z), and they act on
this factor so as to define the action of Hy(M ;Z)/tor on the Heegaard Floer chain
complex.

This theorem is proved in [12, Theorem 1.1].

As noted in Section 2.1, the differential dyp on Z(Zyg X Z) preserves the submodules
Z(Zyr x{i € Z | i <k}) defined for each k € Z. Therefore, Theorem 2.2 implies
that the differential decp, On Z(éech, M) preserves the filtration of Z(Zn X Z) by the
submodules Z(Zen X {i € Z | i < k}) defined for each k € Z. The incarnation in
Z(Zur X 7)) of the submodule Z(Zch x {i € Z | i < 0}) is denoted in what follows
by Z(é’;(e)ch,M)'

Remark Use Theorem 2.2 to write éech, M a8 Zech, M X Z . Having done so, Theorem
2.3 asserts that the U—map endomorphism acts on a given generator (®, i) to yield
(®,i —1). This is not a trivial statement as the embedded contact homology version of
the U-map is defined using pseudoholomorphic submanifolds. By way of comparison,
the Heegaard Floer U —map is defined so as to send any given generator (0, i) € ZypXZ
to (U, —1).

Geometry & Topology, Volume 24 (2020)



HF =HM, I 2843

The endomorphism 94 preserves a filtration of Z(Z x 0) that is defined as follows.
Define a function |- |, on O by the rule [0]o =0, |—1|o =1=|1]|, and |{l, —1}|o =2.
For each nonnegative integer L, let V;, denote the submodule of Z(Z x 0) that is
generated by elements of the form (11, %) with |m|+2|*|o < L. The nested collection
VL}L=0,1,... of submodules gives a filtration

(2-6) VoC V1 C---CVL C---CZ(Z x0)

with the property that dx: V7, — Vr,. The homology of d. on Z(Z x 0) is that of the
direct limit of the endomorphism that is defined by the restriction of d4 to the nested
set of submodules in (2-6). That is to say, any given z € Z(Z x 0) is an element of
some Vy, and z € Vy, and z’ € V., which are both in the kernel of d, represent the
same class in the homology of the chain complex (Z(Z x 0), d«) when there exists
L” > max{L, L'} and an element z”" € V;» such that z = z" + 04z".

With these last remarks in mind, reintroduce from (2-3) the filtration {Zc, mE YL=12...

of Zeen,pr- Given L €{1,2,...}, use éech, ulc éech, M to denote the corresponding
principal bundle over Zq, wm L. The module Z(éech, mL) has the filtration

(2'7) Z(éech,Ml) C Z(éech,Mz) c---C Z(2'/;6ch,ML) c---C Z(éech,M)-

It follows from Theorem 2.2 that this filtration is preserved by dech, the U—map and
the action of N*(H, (M Z)/tor).

The next theorem describes the homology of the chain complexes

(Z(Zeen M) Dect)s (FZ(ZQy pp)sOec)  and  (Z(Zeen,mr)/tL(Z24 pp). Oech)-

These respective homology groups are denoted by ech®, ech™ and ech™. Each of the
latter has an appropriate relative grading, a corresponding U—-map that reduces the
degree by 2 and an action of AN*(Hy (M Z)/tor) whose generators reduce the degree
by 1. In what follows, we use V to denote the graded abelian group Z & Z with the
first factor at grading 0 and the second at grading 1. The next theorem also refers to
a U—map and an action of A\"(H; (M ;Z)/tor) on the tensor product of HF® (M, s),
HF~(M,s) and HF" (M, s) with V®9 These are defined via the U-map and the
N (Hy (M ;Z)/tor) action on HF*®(M,s), HF~(M,s) and HF (M, s) by simply
ignoring the V® factor.

Theorem 2.4 The 7Z —module isomorphism depicted in Theorem 2.3 induces isomor-
phisms indicated by the vertical arrows in the commutative diagram
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ech™ ech®™ ech™

! | |

— S HF (M,s)® V® — HF®(M,5) @ V® — 5 HF T (M,5) @ V& —

where both the top and the bottom rows are long exact sequences. All homomor-
phisms preserve the relative gradings, and intertwine the respective U —maps and the
N (H1 (M ;Z)/tor & Hy (#g S!xs2: Z)) actions. Furthermore, the middle vertical
arrow intertwines the action of H,(H:; 7).

Proof The top row is the long exact sequence for the chain complex inclusion
Z(ﬁgch’ M) C Z(Z?ech, M) with the differential given by de.n. The bottom row is
the long exact sequence for the short exact sequence defined by the chain complex
Z(Zur xZ)® V' ®S and its subcomplex Z(Zurx{i € Z |i <k})® V®°. The following
lemma is needed to discuss the vertical arrows. The proof of this lemma amounts to a

straightforward exercise left to the reader.

Lemma 2.5 The homology of the chain complex (Z(Z X 0), 0«) is isomorphic to
Z @ Z.. The elements (0,0) and (0, 1) — (1, —1) are closed and generate the homology.

What with Lemma 2.5, the assertions about the vertical arrows follow directly from
Theorem 2.3 and an application of the Kiinneth theorem. a

3 Seiberg—Witten Floer homology of Y and ech of Y

This section first describes the relevant versions of the Seiberg—Witten equations on Y’
and the corresponding chain complex that computes the associated Seiberg—Witten
Floer homology. The last part of the section describes the relationship between the
corresponding Seiberg—Witten Floer chain complex and the ech® chain complex.

3.1 The Seiberg—Witten equations on Y

A detailed discussion of the Seiberg—Witten equations and the corresponding Seiberg—
Witten Floer homology groups is given in [10]. What follows is a brief summary of the
story for the case at hand. The story here is much like what is told in [20; 21; 22; 23; 24]
and [16].
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The definition of the Seiberg—Witten equations on any given oriented 3—manifold
requires first the choice of a Riemannian metric. The metric we use to define the
Seiberg—Witten equations on Y is determined using the almost complex structure
from (2-5) by the following three rules. First, the vector v has norm 1. Second, it is
orthogonal to the 2—plane bundle in T'Y that defines the +i eigenspace in TcY for
the action of the chosen almost complex structure on 7 (R x Y). Third, the chosen
almost complex structure acts as a skew-symmetric endomorphism of this eigenspace.
The equations also require the choice of a Spin(C structure on Y .

The chosen Spin<C structure has an associated rank 2 complex bundle with Hermitian
metric denoted by S. The corresponding Seiberg—Witten equations are equations
for a pair (A, ) where A is a Hermitian connection on the complex line bundle
det(S) := A*S and Y is a smooth section of S. The equations are written in terms
of the curvature of A and the Dirac operator on sections of S that is defined by the
Levi-Civita connection on 7Y and the connection A on det(S). To set the notation,
introduce F4 to denote the curvature 2—form of the connection A and Dy to denote
the action of the Dirac operator on {r. Use * to denote the Hodge star operator for
the chosen Riemannian metric. The equations also refer to a section of i 7*Y that is
defined using . This 1—form is written as s\ t{. The definition of Yty is the
same as that used in [20], for example. Under certain circumstances, the equations
also require a perturbation term. The latter is described momentarily. The final input
is the choice of a parameter r > 1. Then, the relevant version of the Seiberg—Witten
equations read

xFa = 2r(WT oy —i % w) + Ta g,

Doy = & (a,p)»

where T and & constitute the perturbation term. What is denoted by T4 y) is a

(3-D

section of iT*Y that can be written as *dt(4 y,). where in most cases t(4 y,) has
nonlocal dependence on the pair (A, {). Meanwhile, &4 ) is a section of S that
also depends in a nonlocal fashion on (A, {r). These are added to ensure that the set
of solutions to (3-1) and also the solutions to the upcoming (3-3) are well behaved.
In any case, these terms have very small norm. The analogous perturbation term is
discussed at length in [20] in the case when «a is a contact form. But for notational
changes, the discussion there applies here. This said, the subsequent discussion is
worded as if these terms are zero with it understood that everything said applies if they
are needed. By way of a parenthetical remark, the term —2ri * w on the right-hand
side of the top equation in (3-1) is an example of what Kronheimer and Mrowka call a
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nonexact perturbation. The Seiberg—Witten equations with nonexact perturbations and
their associated Floer homology groups are discussed in Chapters 29-32 of [10] (see
Definition 30.1.1).

If (A, ) is a solution of the equations in (3-1), then so is (A —2u~'du, u\r) where
u is any smooth map from Y into S! with S regarded as the unit circle in C. Two
solutions that are related in such a way are said to be gauge equivalent. A solution
(A, V) of the equations in (3-1) is said to be reducible if { is identically zero, otherwise
it is called irreducible.

Of particular interest here with regard to our Main Theorem are the versions of (3-1) for
the SpinC structure that is used to define ech® . With this SpinC structure understood,
the term —2ri * w in (3-1) constitutes what is said to be a monotone perturbation.
Note that all solutions of the equations in (3-1) for the Spin(C structure of interest are
irreducible. This is because the first Chern class of S is represented by the 2—form
% F and therefore by %r w if there were a reducible solution of the equations in (3-1).
The latter 2—form with » > & has integral greater than 2 over any given cross-sectional
sphere of H( and hence the top constraint in (2-2) would be violated.

3.2 The Seiberg—Witten Floer chain complex on Y

Let Gps, denote the subgroup of C%°(Y; S!) that is defined as follows. An element
of Gpr, represents a class in H 1(Y'; Z) whose Poincaré dual in H,(Y;Z) belongs to
the group Hy(M;Z) ® (D,ecp Ha(Hy; Z)) regarded as a subgroup of the latter via
the Mayer—Vietoris sequence. With r > 1 fixed, introduce Zgw y,, to denote the union
over the relevant SpinC structures of the corresponding set of equivalence classes of
solutions to the equations in (3-1) with the equivalence relation given by

(3-2) (A, ) ~ (A —2u" " du, u)

with u € Gy, . Let Zgw,y,, denote the union over the relevant Spin(c structures of the
corresponding sets of equivalence classes of solutions to the equations in (3-1) with
the equivalence relation defined by (3-2) with u € C*®°(Y; S'). The set Z Sw,Y,r isa
principal H,(Ho; Z)-bundle over Zgw y,,. Meanwhile, Zsw y,, is a finite set for a
suitably generic choice of a perturbation term to use in (3-1).

The Seiberg—Witten Floer chain complex of interest here is the free Z—module generated
by the set Z sw,Y,r- This module is denoted by Z(ésw,y, ). The corresponding homol-
ogy is a version of twisted Seiberg—Witten Floer homology as described in Section 3.7
of [10]. What follows directly lists two properties of the module Z(§ SW,Y,r)-
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Property 1 The module Z(é sw.v,r) has a relative grading by the same cyclic group
that grades the embedded contact homology chain complex and the Heegaard Floer
chain complex.

Property 2 The action of Hy(Ho;7Z) on ésw,y,r gives Z(Ej’sw’y,r) the structure of
a Z[t, t~']-module, where t represents the class defined by the cross-sectional spheres
in 7‘[0 .

The theorem that follows summarizes the salient properties of 2(2 SW.Y.r)-

Theorem 3.1 The definition given in [10] for the Seiberg—Witten Floer homology
differential supplies a square-zero endomorphism, a differential dsw on Z(Q SW.Y.r)-
The definitions in [10] also supply an endomorphism that defines the U—map for
Z(ésw,y’r) as well as endomorphisms that define the action of N\ (H;(Y;Z)/tor).
These endomorphisms have the following properties:

e The differential decreases the relative grading by 1, the U —map decreases the
relative grading by 2 and the actions by generators of H{(Y;Z)/tor decrease
the grading by 1. The generators of the U —map and the action of H;(Y ;Z)/tor
define an action of Z[U]® N"(H,(Y;Z)/tor) on the homology of the chain
complex.

e The differential, the U —map and the actions by generators of Hy(Y;Z)/tor
commute with the action of Hy(Ho;Z).

e There exists a constant k > 1 and a section 3 C 2SW,Y,r whose significance is
described next. If r >k, then the Z—m(idule generated by Q(S)W,Y, - =Ukso tk3
is a dsw—invariant submodule of Z(Zsw.y,) which is also preserved by the
U —map and the endomorphisms that define the /\"(H; (Y ; Z)/tor) action.

This theorem is proved in [13, Propositions 1.1-1.3]. It is assumed implicitly in
what follows that the constant » in (3-1) is large enough to invoke all three bullets of
Theorem 3.1.

By way of summary of what is said in [10], the endomorphisms of Z(ZA’SW,Y, ) that
represent the differential, the U—map and the action of A\*(H; (M ;Z)/tor) are defined
using certain kinds of solutions to the Seiberg—Witten equations on R x Y. The latter
are equations for an R—dependent pair of a connection on det(S) and a section of S.
Let (A, ) denote such an R—dependent pair. The equations written below use s to
denote the Euclidean coordinate on the R factor of R x Y':

(3-3) %AJF*FA =2r(UTty—i xw), %qwmq;:o.
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To say something about the kinds of solutions that are relevant, let (A_, ¥—) denote a
solution to the equations in (3-1). The differential acts on the generator defined by the
equivalence class of (A_,{y_) in ésw,Y, » S0 as to result in a finite linear combination
of generators with integer coefficients. Let (A4, {+) denote a second solution to the
equations in (3-1). The latter can represent a generator in this sum only if there exists
a solution to the equations in (3-3) with the following properties:

(3-4) e The map s — (A, {)|s converges as s tends to —oo to (A_, ).

o The map s — (A, )]s converges as s tends to 0o to (A4 —2u"'du, uly)
with u € Gpy,, -

Theorem 3.1 asserts that the two modules 2(2 sw,v,r) and Z(Z’?(S)W,Y,r) together with
the differential dgw define a pair of a chain complex and a subcomplex. Use H°(Y),
to denote the homology of the chain complex (Z(Z sw.Y.r), Osw), Hy (Y), to denote
the homology of (Z(tégw’y’ ), Osw), and H(Y), to denote the homology of the
quotient complex, namely, of the complex (Z (ZA’ sw.y.r)/ Z(té’gW’Y’ ,)» Osw). The next
theorem says something about the » —dependence of these three homology groups.

Theorem 3.2 Let k denote the constant from the third bullet of Theorem 3.1. Fix
r,r’ > k. There exists a canonical isomorphism between the respective pairs of homol-

ogy groups
(HP (V) HO(Y)r),  (Hy (Y)r, HO(Y)p) and  (HS(Y)p, HE(Y)p).
These isomorphisms are induced by an H,(Hy; Z)—equivariant homomorphism from

Z(ZA’SW,Y,,) to Z(ZA'SW,YJ/) that maps Z(é\’gw y,) o Z(Z;’(S)W y.p)» Dreserves their rel-

ative gradings, and intertwines the endomorphisms that are used to define the respective
differentials, U —maps and \"(H,(Y;Z)/tor) actions.

This theorem is also proved in [13, Proposition 1.4].

Use Theorem 3.2 to identify any two r > 1 versions of the groups HX°(Y),, H_(Y),
and H; (Y), and so define the r—independent groups H®(Y), H; (Y) and H; (Y).

3.3 Seiberg-Witten Floer homology on Y and embedded contact
homology on Y

Theorem 3.3 relates the chain complexes (Z (ésw,y’,), dsw) and (Z (éech, M) Oech) -
What follows directly sets up the notation.
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Theorem 2.3 describes a certain principal H,(Hg; Z)-bundle isomorphism from
éech, M 10 Zeen,pr X Z. Section 2.3 introduces Z(égch’ am) C Z(Z’eeh, M) to denote
the inverse image of Z(Zen,pm X {i € Z | i < 0}) via the induced isomorphism of
Z.—modules. Section 2.3 also refers to the sets {Zech,ML}Lzl,Z,... from (2-3) and the
associated filtration of Z(éech, M) given by (2-7).

Theorem 3.3 Let H°(Y), H; (Y) and Hj (Y) denote finitely generated subgroups
of the respective groups HX°(Y), H, (Y) and H(Y). Given these groups, there
exists Ly > 1, and given L > Ly, there exist ry,; > m and L’ > L with the
following significance. Take r > ry, so as to define ésw,y,,. There exists an
H,(Hy; Z)—equivariant, injective map P éech,ML/ — ésw,y,, that defines a 7.—
module monomorphism

L": Z(Zeenm™) = Z(Zsw,v,r)
such that:

e 7" reverses the sign of relative gradings.

e L7 induces monommplnsms from tZ(ZeCh [Yealin Zech M) into tZ(ZSW Yr)
and from Z(Zech M )/tZ(Zech M ﬂ Zech M) into Z(ZSW Yr)/t(st Yr)

e L7 intertwines .., With dsw, and it also intertwines the endomorphisms that
define the respective Z[U]® N (H, (Y ; Z)/tor) actions on the decn homology
and the dsw homology.

o Let Qepn™ denote any of the modules Z(Zech mb), tZ(Zech ulnzo cch, ) OF
Z(Zeant ™) JHL(Z en g™ N 20 ocn.ag) and let QeenX’ denote the L' version. Let

Qsw denote, then, Z(st Y,) tZ(ZSW Yr) or Z(ZSW y,)/tZ(ZSW Yr)
respectively. If ¢ € Qe is such that L” (¢) = dswj for some 3 € Qsw, then

§ - 8eché- for some Qech L

e The subgroups HS(Y), H, (Y) and ]HI"'(Y) are represented by elements in
the respective I.” images of the modules Z(Zech mb), tz (Zech mEn Zech M)
or Z(Zech,M )/tZ(Zech,M N Zech,M)'

Moreover, if r,r’ > 'H, L, then the homomorphism from Theorem 3.2 can be chosen
to intertwine L” and L"" .

This theorem is proved in [13, Theorem 1.5].
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Remark The arguments for the proof of Theorem 3.3 are relatively straightforward
modifications of the arguments from [16] and [20; 21; 22; 23; 24]. The most technical
and subtle parts of those arguments are in [20; 21; 22; 23], and what is done there is
likewise required to prove Theorem 3.3. Even so, Theorem 3.3 needs only the simplest
cases from [20; 21; 22; 23] because all of the integral curves of v that appear in Zecp, ps
do so with integer partner 1.

Theorem 3.3 leads directly to the following result:
Theorem 3.4 There exist homomorphisms indicated by the arrows in the commutative

diagram

ech™ ech® echt

T

—— H; (Y) — H®Y) — H (Y) —

such that the vertical arrows are isomorphisms and both rows are long exact sequences.
All homomorphisms preserve the relative gradings, and intertwine the respective U —
maps and the \'(Hy(M;Z)/tor ® H;(#, S! x S%;Z)) actions. Furthermore, the
middle vertical arrow intertwines the action of Hy(Ho;Z).

Proof The horizontal arrows are induced from the respective short exact sequences for
the relevant chain complexes. The vertical arrows are induced by the maps {IL." }, >
from Theorem 3.3.

To elaborate, consider the middle vertical arrow. What follows first is its definition.
Keep in mind for this purpose that any given class in ech® is represented by a closed
cycle in some L > 1 version of éech, ML. This understood, suppose that L > 1 and
that z € Z(éech, mL) is annihilated by decn, and so it represents a class in ech®. Let
[z] denote this class. Fix r > 1 so that " on éech, ML/ is defined for L’ > L. The
third bullet of Theorem 3.3 guarantees that IL”z is annihilated by dsw and hence
defines a class in HZ°(Y), and it implies that [.”(z) and L”(z + dechw) define the
same class in H2°(Y'), and the final assertion of Theorem 3.3 guarantees that this class
is independent of ». The homomorphism that is denoted by the middle vertical arrow
sends [z] € ech®™ to the class represented by "z in H>°(Y).

To see that the middle vertical arrow is injective, let z be as described above and suppose
that L7z = dswj3. If r > 1 is sufficiently large—and so L’ is sufficiently large —
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then 3 can be taken to be equal to " w with w € Z’ech, ML/. This is a consequence of
the fourth bullet of Theorem 3.3. But then z = dechw and hence [z] = 0.

To see that the middle vertical arrow is surjective, suppose that [3] € HX°(Y) is a given
class. If r > 1 is sufficiently large —and so L’ is sufficiently large — then the fifth
bullet of Theorem 3.3 finds z € éech, mL’ such that L7 z represents the class [3]. The
second and the third bullets of Theorem 3.3 require that dechz = 0 and hence z defines
a class in ech®. As a result, [3] is in the image of the homomorphism indicated by the
middle vertical arrow.

The arguments just given, after only notational changes, together with the second and
the fifth bullets of Theorem 3.3 suffice to prove the assertions for the leftmost and the
rightmost vertical arrows. O

4 Seiberg—Witten Floer homology of Y and Seiberg—Witten
Floer homology of M

This section starts by summarizing what is needed about the Seiberg—Witten Floer
chain complex on M, and goes on to relate the corresponding three versions of the
Seiberg—Witten Floer homology groups to the groups H(Y), H; (Y) and H; (Y).

To start, fix a smooth Riemannian metric on M and use the SpinC structure s so as to
define the Seiberg—Witten equations on M. Use Sjs to denote the associated rank 2
Hermitian vector bundle. The relevant versions of the Seiberg—Witten equations involve
a pair (A, {r) where A is a connection on det(Sjys) and { is a smooth section of Sjs.
The version needed on M requires the choice of a closed 2—form that represents the
first Chern class of det(Sys). Let cs,, denote such a form. The equations read

xFa =200t —im xes,y,) + Ta.
Dav =&,

As in the case of (3-1), the perturbation terms are only needed to ensure that the solution

(4-1)

set of these equations and the corresponding R x M version of (3-3) are well behaved.
As was done in Section 3, the subsequent discussion is phrased as if they are absent.

The equations lead to what Kronheimer and Mrowka call balanced Floer homol-
ogy groups in [10, Definition 30.1.1]. These are discussed in Chapters 29 and 30
of [10]. There are three versions of balanced Seiberg—Witten Floer homology groups
with coefficient ring Z. These are the groups HM, (M, s, ¢p), ﬁl\\/l*(M ,8,cp) and
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HM., (M, s, cp) that appear in our Main Theorem. They reduce to the standard versions
of Seiberg—Witten Floer homology when the first Chern class of det(Sjy) is torsion,
otherwise they are different. For example, HM (M, s37) is zero when the associated
first Chern class is nontorsion while HMy (M, 57, ¢p) is not zero in general. Each of
these groups has a relative grading, a U—map that decreases the relative grading by 2,
and a commuting action of A\*(H; (M ; Z)/tor). These three groups fit into a long exact
sequence whose homomorphisms intertwine the U—maps and the A\*(H, (M ; Z)/tor)
actions.

The manifold Y is obtained from M by connect summing the latter with G+ 1 copies
of ST x S2. One of these copies accounts for the handle H and the others account for
the various p € A versions of H,. This said, the three balanced versions of the Seiberg—
Witten Floer homology on M are related to the corresponding three versions that
appear in Theorem 3.4 using Seiberg—Witten Floer homology connect sum theorems. A
G—fold iteration of one such theorem deals with the p € A labeled copies of S! x §2.
A second sort of connect sum theorem deals with the 7y labeled copy. The connect
sum theorems lead directly to:

Theorem 4.1 There exist homomorphisms indicated by the arrows in the commutative
diagram
—H(Y) HZ(Y) Hif (Y)———

I | !

—HM, (M, 5,¢p) ® VO —HM, (M, 5, ¢p) ® VO —HM.(M, 5,c5) ® VE —

such that the vertical arrows are isomorphisms and both rows are long exact sequences.
All homomorphisms preserve the relative gradings, and intertwine the respective U —
maps and the \'(Hy(M;Z)/tor & H (#4 S' x S%;Z)) actions.

This theorem is proved in [14, Theorem 1.4].
The Main Theorem from the introduction is an immediate consequence of Theorems 2.4,

3.4 and 4.1.

Remark The use of two different connect sum theorems owes allegiance to the
distinction in (2-2). The connect sum theorem that deals with the p € A labeled copies
of S! x S? is the simpler of the two. This theorem accounts for the G factors of 1%
that appear in the bottom row of the diagram in Theorem 4.1. Suffice it to say for now
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that any given factor of V reflects the following geometric fact. The space of gauge
equivalence classes of flat U(1) connections on S! x §? is a manifold, S', whose
cohomology is isomorphic to V. The second sort of connect sum theorem is a very
much more subtle affair. Its proof in a slightly different context is outlined in [15]. As
explained in [15], the theorem owes allegiance in part to various results by JD S Jones
regarding S!—equivariant homology (see [8]). As noted at the end of the introduction,
the existence of this second sort of connect sum theorem was predicted by Mrowka and
Ozsvith, and Bloom, Mrowka and Ozsvath have a proof of a closely related version
(personal communication).
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