
msp
Algebraic & Geometric Topology 20 (2020) 643–698

The Reidemeister graph is a complete knot invariant

AGNESE BARBENSI

DANIELE CELORIA

We describe two locally finite graphs naturally associated to each knot type K , called
Reidemeister graphs. We determine several local and global properties of these graphs
and prove that in one case the graph-isomorphism type is a complete knot invariant
up to mirroring. Lastly, we introduce another object, relating the Reidemeister and
Gordian graphs, and determine some of its properties.

57M25

1 Introduction

The Gordian graph is a well-known graph in knot theory; its vertices are given by
knot types, and two knots have an edge between them whenever they are related by
a single crossing change. This graph can be thought of as describing knot theory at
“large scales”.

The Gordian graph is, however, very ill behaved: Each vertex of this graph has infinite
valence, and vertices at distance 2 are connected by infinitely many distinct minimal
paths; see Baader [3]. For every n� 1 there are embeddings of the graphs Zn into it;
see Marché [14].

This pathological nature of the Gordian graph makes it usually difficult to pinpoint its
properties. For example, it is still unknown whether the Gordian graph is homogeneous;
see Budney [4]. Also, figuring out the path distance between two knots is regarded as
a hard problem (the computation of unknotting numbers is a subproblem).

The aim of this paper is to study the opposite point of view: instead of zooming out on
the set of all knots, we will describe a way to observe “under the microscope” each
knot type.

To this end, we associate to each knot K � S3 a graph, the Reidemeister graph G.K/,
having a vertex for each diagram of K , and an edge between two diagrams whenever
one can be converted into the other by a single Reidemeister move. We will make
these definitions precise in the next section, but we note here that, unlike the Gordian
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graph, each G.K/ is locally finite, so it is in some sense better behaved, and many of
its properties can be studied through combinatorial techniques.

The definitions and proofs in this paper are quite natural and elementary in spirit: the
only nontrivial tools we are going to use are the diagram invariants of Arnold [2]
and Hass and Nowik [10] introduced in Section 2. An analogous construction in
a slightly different context (see Section 4) has been carried out by Miyazawa [15].
Subtle differences in our initial setting will allow us to prove Theorem 1.1 (see also
Question 6.6).

The paper is structured as follows: Section 2 gives the basic definitions of the planar
and S2–Reidemeister graphs, collectively called R–graphs.

In Section 3 we analyse some local properties of these graphs; in particular we will
classify all short paths in them (Theorem 3.2), and examine the change in valence
between adjacent vertices. These technical results are going to be crucial to establish
the main result of the paper. As a preliminary step we will prove in Theorem 3.23 that
the graph can detect which Reidemeister move corresponds to each of its edges, and
define a related notion of diagram complexity.

Section 4 instead deals with global properties of the R–graphs; we show that unsurpris-
ingly they are nonplanar (Figure 43) and not hyperbolic (Proposition 4.1). In addition
we show that each Reidemeister graph has only one thick end (Proposition 4.3), and
compute the homology groups of an associated simplicial complex, following the
definition of Miyazawa [15].

In Section 5 we are going to prove the main result of this paper, concerning the
completeness of the S2–Reidemeister graph invariant:

Theorem 1.1 The S2–Reidemeister graph is a complete knot invariant up to mirroring;
that is, G.K/� G.K0/ if and only if K0 is isotopic to K or K .

Indeed the proof of this theorem will guarantee a stronger result (Proposition 5.3): the
isomorphism type of the graph does not only distinguish all knots, but contains enough
information to recover some diagrams of the knot (up to mirroring). Moreover, all this
data can be extracted from finite portions of the graph (Corollary 5.4).

We remark that, unlike the previously known complete invariants — such as knot
complement in Gordon and Luecke [8], quandles in Joyce [11] and conormal tori
in Ekholm, Ng and Shende [6] — the proof of completeness for the S2–graph is
substantially more elementary, and self-contained.
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Finally, in Section 6 we define yet another kind of graph, relating the Gordian and
Reidemeister graphs by a “blowup” construction.
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2 The graph

We start by giving some precise definitions of the well-known objects we are going to
use extensively in the following.

As usual by knot we mean the ambient isotopy class of a tame embedding of S1 in S3 .
The set of unoriented knot types in S3 will be denoted by K , and the set of diagrams
representing a knot K by D.K/. A knot diagram D 2 D.K/ can be thought of as
a 4–valent graph in R2 or S2 , by disregarding the crossing information. In order
to avoid confusion, we are going to refer the 4–valent graph associated to a diagram
as the knot projection. We will call an arc each portion of a diagram or projection
which connects two crossing points, and denote by ˛.D/ the number of arcs in D.
By the handshaking lemma we have ˛.D/D 2 cr.D/, where cr.D/ is the number of
crossings in D. From now on, we are going to assume that, unless otherwise stated,
each diagram D contains at least one crossing.

The complement of a planar knot projection is composed of polygons, with the exception
of the “external” region which is a punctured polygon; we will call this external part a
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Figure 1: Example of a local planar isotopy acting on an arc.

polygon as well. As is customary we denote by pk.D/ the number of polygons with
k–edges.

We have

(2-1) ˛.D/D
1

2

X
k�1

k �pk.D/;

and the number of regions in S2 nD is
P

k�1 pk.D/.

We say that a planar diagram D is periodic if there exists a nontrivial rotation of the
projection plane taking D to itself, and a knot K is periodic if it admits a periodic
diagram. The order of periodicity is then just the order of the rotation acting on the
diagram.

A diagram on the 2–sphere is said to be periodic if there is a nontrivial, finite-order,
orientation-preserving self-diffeomorphism of the sphere that takes it to itself. The
.2nC1; 2/–torus knots are an example of knots that exhibit a D2nC1 periodicity1 on
the 2–sphere and cyclic periodicity of order 2 or d (with d j 2.2nC 1/) on the plane.

Conversely, a knot which does not admit any periodic diagram is said to be nonperiodic.

A planar isotopy can modify locally a knot diagram by moving slightly an arc as in
Figure 1, or by displacing a whole diagram, without creating or removing any crossing.

Note that by considering R2 rather than S2 as the ambient space we get a “larger” set
of diagrams; the two diagrams of the left trefoil minimising its crossing number shown
in Figure 2 are planar isotopic on the 2–sphere but not on the plane.

Probably the most fundamental result in knot theory is Reidemeister’s theorem [17],2

stating that two diagrams represent the same knot type if and only if they are related
by a finite sequence of local moves, known as Reidemeister moves, together with
planar isotopy. These moves are described in Figure 3. Note that this set of moves is

1Here Dm denotes the dihedral group of order 2m .
2We will adhere to the standard attribution of the theorem, which in fact was independently discovered

by Alexander and Briggs [1].
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Figure 2: These two diagrams of the left trefoil are planar isotopic on S2 ,
but not on R2 .

not minimal (see [16] for the statement in the oriented case); in fact one of the two
�1 moves could be discarded (Figure 10). However the choice of this slightly larger
set will be crucial in the proof of all the upcoming results. In what follows we will
find it convenient to divide the �2 moves into two kinds. The first kind consists of
those �2 moves performed on the configuration in Figure 4, which is called a tentacle.
We will denote them by �T , and call them tentacle moves. In other words, �T moves
are the �2 moves that create a tentacle (and their inverses), as in Figure 5. We will
say that a tentacle configuration has height m if it can be expressed as the composition
of mC1 �1 moves (with alternating signs). In particular a tentacle of height 1 is the
result of performing two �1 moves with opposite curls, or an �T move in which the
two affected strands belong to the same arc (Figure 5, top). A tentacle of height m

contains m�1 subtentacles of heights m� 1; : : : ; 1 as subconfigurations.

The other kind (which we will simply call �2 ) instead is any other Reidemeister move
of type 2. The reason for this distinction will become apparent in the next sections
(see Theorem 3.2); in fact we are going to prove that tentacle moves are intrinsically
distinguished from the other moves (Theorem 3.23).

Additionally, if � denotes a Reidemeister move which is not an �3 , there are two
cases, according to whether we are doing or undoing the move. Hence, when necessary,

�1

�2 �3

Figure 3: The standard Reidemeister moves on knot diagrams.
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Figure 4: A tentacle configuration of height 3 . Note that the crossings have
alternating signs.

we are going to denote a move by �C or �� if it increases (respectively decreases)
the crossing number.

Recall that the writhe of a diagram D is the sum of the signs of the crossings; it changes
by ˙1 when an �1 move is performed, and is left unchanged by the other moves. The
last definition we will need is the mirror D of a diagram D, which is just the diagram
obtained by switching all crossings in D. A knot is said to be amphicheiral if it is
unchanged under mirroring of its diagrams.

We are ready to introduce the two basic versions of the object we are going to study
throughout the rest of the paper.

Definition 2.1 Given a knot K � S3 define the Reidemeister graph of K , denoted
by G.K/, as the graph whose vertices are the diagrams of K on the 2–sphere (up to
isotopies of S2 ) and which has an edge between two diagrams if and only if they are
connected by a single Reidemeister move. If we replace diagrams in S2 with planar
diagrams, we obtain the planar Reidemeister graph GP .K/.

In what follows we will use the term “Reidemeister graph” or R–graph to denote both
G.K/ and GP .K/.

Figure 5: The tentacle moves. In the top part of the figure a tentacle move
creating a tentacle configuration of height 1 is shown; such a move always
arises as the superposition of an arc on itself.
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Figure 6: A matched �2 move (left) and an unmatched �2 move (right).

Remark 2.2 It might happen that two diagrams are connected by two different moves
(see eg Figure 8), which will be considered as different edges in the graphs except that
moves coinciding up to a planar isotopy will be represented by a single edge.

There are a few immediate consequences of this definition; first of all the isomorphism
class of the graphs G.K/ and GP .K/ are knot invariants, and they are unchanged
under mirroring of the knot.

Also, Reidemeister’s theorem implies that for each K 2K the corresponding R–graphs
are connected.

It might seem strange to define invariants that are more complicated than the object we
started with. However, beyond their intrinsic interest, the R–graphs will allow us to
produce several related simple numerical invariants.

To prove many of the local structure results of Section 3 for the graphs G.K/ and GP .K/,
we will need the diagram invariant introduced by Hass and Nowik in [10], whose
properties are concisely recalled below. In the specialised form we are going to
use it, this invariant takes values in the free abelian group generated by the formal
variables fXs;Ysgs2Z . We call an �C

1
positive if the crossing (for an arbitrary choice

of orientation) is positive, and negative otherwise; we will call an �2 move matched
if the two strands go in the same direction, and unmatched otherwise (see Figure 6).
Note that �T moves are always unmatched.

If two diagrams D and D0 differ by a single Reidemeister move, the corresponding
Ilk–invariants differ as shown below, for some n;m; r 2 Z:

Ilk.D
0/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Ilk.D/CX0 if the move is a positive �C
1
;

Ilk.D/CY0 if the move is a negative �C
1
;

Ilk.D/CXnCYnC1 if the move is a matched �C
2
;

Ilk.D/CXmCYm if the move is a unmatched �C
2
;

Ilk.D/CX0CY0 if the move is an �C
T
;

Ilk.D/C

�
˙.Xr �XrC1/

˙.Yn�YnC1/
if the move is an �3:
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Figure 7: A triple-point perestroika, followed by the two possible self-
tangency perestroikas.

The only other nontrivial invariants we are going to use are Arnold’s perestroika
invariants St and J˙ , first defined in [2]. These are invariants of regular homotopy
classes of immersions of S1 in R2 or S2 . They change in a controlled way under
perestroikas, that is, the analogues of Reidemeister moves for immersions S1 # R2

(or S2 ), as shown in Figure 7. We will use them on the knot projections associated
to the diagrams. Note that there is no analogue of �1 moves for immersions, since
performing it would change the index of the curve.

The invariant St changes by ˙1 under a triple-point perestroika (which corresponds to
an �3 move in our setting), and is left unchanged under self-tangency perestroikas
(corresponding to �2 moves and �T moves). On the other hand, the invariant JC is
unchanged under triple-point perestroikas and changes by a fixed positive amount (con-
ventionally 2), when a direct-tangency perestroika is performed (that is, a matched �C

2
).

The invariant J� behaves similarly, but changes only for inverse self-tangency pere-
stroikas (that is, an unmatched �C

2
or �C

T
in our case).

3 Local properties

Given a knot K 2K and D 2D.K/, the Reidemeister graphs can be naturally endowed
with the path metric. Note that the distance induced by this metric coincides with
the minimal number of Reidemeister moves connecting two diagrams. We denote
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D0

D

D0

D

Figure 8: In the top part some curls on an arc inducing a multiedge on the
graph, together with the corresponding configuration. In the central part, a
multiedge induced by �2 (or �T ) moves, and in the lower part a 2 multiedge
induced by �2 moves.

by S.D/ the subgraph induced by the vertices having distance � 1 from D, and more
generally SR.D/ will denote the subgraph spanned by the diagrams with distance �R

from D. As we will see in what follows, a lot of information about a diagram D can
be extracted from S.D/.

The next results are aimed at understanding in detail the structure of small portions of
the Reidemeister graph, in both the periodic and nonperiodic cases.

We will find it convenient to denote by #�˙i .D/ the number of Reidemeister i moves
of type ˙ which can be applied to D.

This next result states that there are no “cosmetic” Reidemeister moves, meaning that a
Reidemeister move necessarily changes the diagram, even up to planar isotopy.

Figure 9: There are two inequivalent �1 moves that take one diagram to
the other. Note that, even if the diagrams are not periodic, they represent a
periodic knot type.
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�1

�T �1

Figure 10: A triangle �˙T –��1 –��1 .

Proposition 3.1 The graphs GP .K/ and G.K/ do not contain any self-edges.

Proof Since �1 and �2 moves change the crossing number, they can be immediately
ruled out. The only possibility is then to have an �3 move that, if performed, takes a
diagram D 2 D.K/ to itself (up to planar isotopy). It is, however, easy to exclude this
case as well using the Hass–Nowik Ilk invariant (or Arnold’s St): as recalled in the
previous section this invariant changes in a nontrivial manner under �3 moves.

It is easy to realise that for a given knot, its R–graph contains infinitely many multiedges,
of any order: just take n identical curls on the same arc for one diagram and nC1 on
the other. Then there are nC1 edges connecting them, corresponding to the possible
choices for adding another curl, as shown in the top part of Figure 8 for nD 2.

It is also possible to find multiedges induced by �2 moves, as shown in the middle
and lower parts of Figure 8.

In fact, using the configuration in the lower part of Figure 8, it is immediate to show
that the only radius 1 ball not containing multiedges is centred in the crossingless
diagram of the unknot.

If the knot is periodic, one can also have multiedges of the form shown in Figure 9.
It is, however, easy to prove3 that each multiedge must be composed of moves of the
same kind.

We will say that a graph contains a triangle if there are three distinct vertices such that
each vertex is at distance 1 from the other two.

We want to analyse the shape of the cycles in S.D/, other than the multiedges. It is
easy to find a cycle of length 3, shown in Figure 10. Moreover, since this cycle can

3For example, using Arnold’s invariants for �2 and �3 moves, and Ilk for �1 moves.
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Figure 11: A triangle involving some tentacle configurations.

start from any unknotted portion of an arc, it is ubiquitous in all Reidemeister graphs.
A similar and slightly more elaborate example involving a “higher” tentacle is shown
in Figure 11. The following result will establish that in some sense these are the only
possible cases. Moreover it will permit us to explore the main properties of the graph.
Its proof is roughly based on the following idea: the total sum of any diagram invariant
has to vanish on a closed cycle. In most cases it will be sufficient to consider very
simple diagram invariants, such as the crossing number.

Theorem 3.2 If K is a nontrivial knot, the only triangles in its Reidemeister graphs
are of the form �˙

T
–��

1
–��

1
. If instead K is the unknot 
, there are some sporadic

exceptions (shown in Figure 12) of cycles of the form �˙
2

–��
1

–��
1

.

Proof Suppose we have a length 3 cycle, connecting the diagrams D0 , D1 and D2 .
The total change of crossing number must be 0, hence we can immediately exclude

Figure 12: On the top, a diagram for the unknot obtained from the cross-
ingless one by an �2=T move followed by successive �C1 moves creating
crossings of any sign. On the bottom, an example of a triangle involving
diagrams of this kind: performing the central ��

2
move or the two lateral ��

1

moves produces the same diagram.
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B

A

B

A

SI.A/
SI.B/

SI.A/
SI.B/� 1

Figure 13: Undoing an �1 move decreases SI.B/ by 1 and leaves SI.A/ unchanged.

most cases; a priori the only possible combinations (up to permutations) of three
Reidemeister moves that could work are

(1) �3 –�3 –�3 ,

(2) �3 –�2 –�2 ,

(3) �3 –�T –�2 ,

(4) �3 –�T –�T ,

(5) �3 –�1 –�1 ,

(6) �2 –�1 –�1 ,

(7) �T –�1 –�1 .

It is easy to exclude cases .1/ to .4/ using Arnold’s St invariant: in any cycle (not
containing �1 moves) the number of �3 moves must be even. Case .5/ can instead
be excluded using the Hass–Nowik invariant: the �3 move contributes to Ilk with two
consecutive terms (that is, terms of the form An�AnC1 for ADX or Y and n 2Z),
while the �1 moves can only add some terms of the form ˙A0 . Hence the total
change in the sum cannot be 0.

Finally we can focus on cases .6/ and .7/ and exclude the former. First notice that,
in order to preserve the crossing number, an �˙

2
, must be followed by two �

�

1
.

Moreover, using the Hass–Nowik invariant we can conclude that the crossings involved
in the �1 moves have different signs, and that the �2 is unmatched.

Define the self-intersection number SI.P / of a region P in the complement S2 nD as
the number of crossings in the boundary of P that connect P to itself. We can associate
to each diagram D an unordered N –tuple SI.D/ D .SI.P1/;SI.P2/; : : : ;SI.PN //

where N is the number of regions in S2 nD.

Performing an ��
1

move always decreases the self-intersection number of a single
region by 1, and leaves the self-intersection numbers of the other regions unchanged;
see Figure 13.
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A

B C

A

A

F

A

SI.A/
SI.B/

SI.C /

SI.A/� 2

SI.F /

A

B C

E

A

F

E

SI.A/

SI.E/
SI.B/

SI.C /

SI.A/

SI.E/

SI.F /

Figure 14: Changes in the self-intersection numbers for an ��
2

move.

On the other hand, an ��
2

move can change the self-intersection N –tuple in two differ-
ent ways, depending on whether the regions denoted by A and E in Figure 14, right
coincide or not.4 If A and E coincide, then the component SI.A/ of SI.D/ decreases
by 2 when the move is performed (as in Figure 14, left). In the other scenario, the
only change in SI.D/ comes from the merging of the regions B and C ; the new
region formed has as self-intersection number greater than or equal to SI.B/CSI.C /
(Figure 14, right).

Suppose now, for a contradiction, that there exists a cycle of the form �˙
2

–��
1

–��
1

.
That means we can obtain a diagram D0 from D either by performing an ��

2
move or

a sequence of two ��
1

moves on D and that the changes in SI.D/ must be the same.
Now observe that, while the self-intersection number of at least one region decreases
with two consecutive ��

1
moves, if in the �2 move the regions A and E are distinct,

the sum of the self-intersections over all regions is increased or left unchanged. This
fact allows us to exclude the case in which the �2 move is as in Figure 14, right.

We will find it useful to divide the discussion in cases, depending on the mutual positions
of the curls undone by the ��

1
moves. The relevant portions of the initial diagram D0

are displayed in Figure 15 for each of these possibilities: in the first and second rows we
show the mutual positions the curls can have if they do not both appear in D0 ; in other
words, the 1–region undone by the second �1 appears after undoing the first curl.5

In the third row letters indicate the regions touched by the curls: these regions can
either coincide or not.

4The regions denoted by B and C are always distinct, otherwise the diagram would represent a
two-component link.

5Recall that these two moves must have opposite signs.
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A B

C D

Figure 15: In each row we show the portions of D0 involved in the ��
moves. In the first and second rows, which refer to as cases .1/ and .2/ , we
assume that the curls undone by the �1 moves do not both appear in the
diagram, while in the third row, case .3/ , they do. Letters in the third row
indicate the regions touched by the curls.

In what follows, for each one of these cases we will either prove that the ��
2

needs
to be a tentacle move (Figure 5), or exclude the configuration.

The first case in Figure 15 can be settled as follows: Consider Figure 16. We can see
that in the diagram D2 there is a tentacle appearing. Since the diagrams D1 and D2 are
equivalent by hypothesis, the tentacle in D2 must appear somewhere in D1 . Moreover,
since they coincide out of the portions of diagram drawn in the figure, the presence of
a tentacle in D1 far away6 from the portions drawn would imply the existence of an
identical tentacle somewhere in D2 , and we would still have one more tentacle in D2

than in D1 .

A similar recursive argument applies if the tentacle appears by undoing the �1 moves,
as in Figure 17. In fact, in each of the cases shown in Figure 17, there is a configuration
in D2 which does not appear in D1 , and the only way to have D1 DD2 is to find this
configuration in D1 . Iterating this procedure, one sees that the two diagrams cannot
be equivalent.

It follows that the only way D1 can be equivalent to D2 is if the �2 is in fact an �T ;
thus the corresponding part of the diagram is a portion of a tentacle.7

6Here and in what follows, by “far away” we mean that the configuration is left untouched by the
moves considered.

7If the portion of diagram involved in the ��
2

is attached to a piece whose projection is the same as a
tentacle, but with “wrong” crossings, then the diagram does not fit in a triangle.
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D0

D1 D2

Figure 16: D1 is the diagram obtained after performing the two ��
1

moves:
together they cancel the tentacle appearing in D0 . D2 is the result of undoing
the �2 move in the left-hand portion of the diagram in D0 .

For the second case consider Figure 18: we apply the same argumentation of case .1/.
Since the diagrams D1 and D2 are equivalent the “heart-shaped” configuration in D2

must appear somewhere in D1 . Moreover, since the diagrams coincide out of the
portions drawn in the figure, the presence of a heart in D1 far away from the portions
drawn would imply the existence of an identical heart somewhere in D2 , and we
would still have one more heart in D2 than in D1 . The same argument of case .1/
(as in Figure 17) works if we assume that the heart appears after undoing two �1

moves. It follows that the only possibility is the one depicted in Figure 19.

Figure 17: The only possible ways a tentacle can appear in case .1/ after
performing two ��

1
moves. In each of these cases we can exclude that the

diagrams form a triangle by a recursive argument.
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D0

D1 D2

Figure 18: D1 is the diagram we obtain after performing the two ��1 moves:
together they cancel the heart configuration appearing in D0 . D2 is the result
of undoing the �2 move in the left-hand portion of diagram in D0 .

We can, however, prove that in this case D1 and D2 cannot be equivalent diagrams, and
thus exclude it. To this end, consider the blackboard framing of the projection: there are
two possibilities to be considered, since we can draw the framing curve on either side
of the diagram. Then, since we do not know how the portions of diagrams involving the
moves are positioned with respect to each other, we need to consider four different cases,
all shown in Figure 20. It is easy to argue that D1 and D2 cannot be equivalent, since
the number of curls having the blackboard framing “inside” is different in all four cases.

We are now left with case .3/ from Figure 15. As usual, it is convenient to have in
mind all the diagrams involved in the triangle, as in Figure 21.

From Figure 21 it is apparent that there are two more visible 1–regions in D2 than
in D1 : since by hypothesis the diagrams are equivalent, there must be two curls in D1

as well. Suppose, for a contradiction, that the �2 is not a tentacle (that is, b; c ¤ 1).

D0

D1 D2

Figure 19: D1 is the diagram we obtain after performing the two ��1 moves:
together they cancel the heart configuration appearing in D0 , leaving a curl.
D2 is the result of undoing the �2 move in the left-hand portion of diagram
in D0 .
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D0

D1 D2

D0

D1 D2

D0

D1 D2

D0

D1 D2

Figure 20: The four possible choices for the blackboard framing.

Then, the straight lines in D1 left by undoing the �1 moves must be part of two curls.
If we assume (Figure 21) that the regions touching the curls in D0 are different, this
means that at least two among d � 1, e � 2, f � 1 and g � 2 must be equal to 1.
Since the cases .e; d/D .3; 2/ and .f;g/D .2; 3/ are impossible, we are in one of
the cases described in Figure 22.

D0

D1 D2

a

b c

d

e

f

g

a

b c

d

e

f

g

d � 1

e� 2

f � 1

g� 2 a� 4

bC c � 2

Figure 21: Lowercase letters indicate the number of edges in each region.
Keep in mind that, even if in the picture all the regions are depicted as
different, some of them might coincide.
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D0

D1 D2
D0

D1 D2

D0

D1 D2

Figure 22: The three possible kinds of triangles, assuming that the regions
touching the curls undone by the �1 moves do not coincide.

Before dealing with the configurations described in Figure 22, we need to consider the
cases in which some of the regions touching the curls coincide, keeping in mind that
we are assuming that the �2 is not a tentacle move. We have the following possibilities
(capital letters denote regions, as in Figure 15):

(I) AD B and C DD ;

(II) ADD and B D C ;

(III) AD B and C ¤D ;

(IV) C DD and A¤ B ;

(V) ADD and B ¤ C ;

(VI) C D B and A¤D.

Note that the upper and lower regions left by undoing a curl cannot be both 1–regions.
Thus, cases (I) and (II) are straightforward to exclude, since if the regions coincided
pairwise it would be impossible to recover two 1–regions from the straight lines left
by undoing the starting curls. For the same reason, in the third case the only way to
have two curls left after the ��

1
moves have been performed is to have a 2–region
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D

Figure 23: A triangle for the unknot fitting in the family described in the
statement of Theorem 3.2.

below each 1–region in D0 . Thus, case (III) fits in the bottom configuration described
in Figure 22. Similarly, in case (IV), we would necessarily have both the curls in D0

lying inside a 4–region, forming a heart and fitting in the top case shown in Figure 22.
The latter two cases are symmetric, and it is enough to discuss only the first one. Again,
since it is impossible to have both the upper and lower region left by undoing a curl
as 1–regions, it follows that the ��

1
moves must be performed in portions of diagrams

identical to the ones drawn in the middle case of Figure 22.

Let’s now discuss carefully Figure 22. Consider the configuration at the top of the
figure: since the diagrams D1 and D2 are equivalent, the heart configurations in D2

must appear somewhere in D1 . Moreover, since they coincide out of the portions
drawn in the figure, and since using again a recursive argument we can exclude that
they are created by undoing the curls in D0 , the only possibility is that these hearts
are attached to the �2–portion in D1 , as shown in Figure 23.

D0

D1 D2

Figure 24: D1 is the diagram we obtain after performing the two ��1 moves:
with the first one we cancel the curl inside the heart, while the other has the
effect of decreasing the height of the left tentacle by 1 . D2 is the result of
undoing the �2 move in the left-hand portion of D0 .
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D0

D1 D2

D0

D1 D2

Figure 25: Two of the four possible choices of framing. The remaining two
can be treated in the exact same way.

Note that even if in this case D1 and D2 turn out to be equivalent, the diagrams
represent the trivial knot, and more precisely they fit in the family described in the
statement of the theorem.

Notice that this can only happen if we are working with diagrams on S2 ; if we are
working with planar diagrams instead, this configuration does not fit in a triangle. Now,
call generalised tentacles the configurations formed by two successive �1 moves made
one on top of the other, as appearing in D2 and D0 on the bottom of Figure 22. If
the crossings are such that the configurations form tentacles, then this implies (as in
case .1/ of Figure 15) that the �2 is in fact a tentacle move.

Otherwise, by using a similar recursive argument as before, together with the fact that
the upper and lower regions involved in the �2 move coincide, we can exclude both
the possibility that the configurations appear in D1 by performing the ��

1
moves,

and that they appear somewhere far away from the portions of diagram shown. Thus,
we see that the only possibility for D1 and D2 to be equivalent occurs when the
generalised tentacles are attached8 to the �2–portion of D2 , forming a diagram for the
unknot fitting in the family described in the statement of the theorem (see Figure 12).
Notice that the triangle in G.
/ involving the heart configurations described before
is a special case of this situation.

8Or they are part of longer generalised tentacles attached to the �2–portion of D1 .
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2

2

3

nC1 nC1 n�1

nC2 nC2 n n n�2

Figure 26: Some of the possible configurations in S.D/ involving at least
one �1 move (D is contained in the dotted circles). The top left one is
present in any S.D/ , while the others can be found whenever there is an ��1
(top right), a height 1 tentacle (bottom left), or a tentacle of height n � 2

(bottom right). Numbered edges denote the valence of the corresponding
multiedge.

Finally, we are left with the middle configuration in Figure 22. As usual, since
D1 and D2 are equivalent by hypothesis, the tentacle configuration in D1 has to
appear somewhere in D2 as well. Assuming that the �2 is not a tentacle move, since
the diagrams coincide out of the portions drawn, using yet again a recursive argument
we can exclude that the tentacle is created by undoing the curls in D0 ; hence the
only way to have a tentacle in D1 is the one shown in Figure 24. We can, however,
exclude this case as well by adding the blackboard framings. In Figure 25 two of the
possible choices of framings are displayed: in both cases D1 and D2 are nonequivalent
diagrams, since the framings do not coincide on the tentacles or in the 1–regions left.

Remark 3.3 In what follows, unless otherwise specified, all the results will hold for
every knot type with the exception of the unknot 
.

For each diagram D 2 D.K/, the subgraph S.D/ consists of triangles (possibly
attached to one another) with one vertex in D, and edges emanating from D. Each of
these might be a multiedge. If we want to study the possible configurations in S.D/
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2 2

3

2

Figure 27: Other qualitatively different triangle configurations formed by
�T –�1 –�1 can be found whenever there are multiple curls or height 1

tentacles on the same arc.

involving triangles, by Theorem 3.2, we just need to restrict to those containing at least
one �1 move; various possibilities involving one or more curls/tentacles are shown in
Figures 26 and 27.

So we have a complete description of the short paths that can appear in G.K/; note
that it makes less sense to pursue a systematic study of longer (� 3) cycles, since any
pair of “distant” moves on a diagram produces a cycle of length 4. In the following we
are going to examine more closely the properties and shapes of the various triangles
that have been produced during the proof of Theorem 3.2. This technical analysis is
going to be crucial in the proof of the results leading to Theorem 1.1.

Definition 3.4 We will call a triangle normal if it is of the form described in Figure 10,
meaning that all the Reidemeister moves are performed locally on the same arc.

Lemma 3.5 p1.D/D 0 if and only if all the triangles in S.D/ are normal.

Proof If p1.D/ ¤ 0, then there are at least two triangles sharing an �C
1

edge, as
shown in the top-right part of Figure 26. This implies that there are at least two
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Figure 28: In each row the portions of D0 involved in the �� moves are
shown. In the first and second rows, which we refer to as cases .1/ and .2/ ,
we assume that the curls undone by the �1 moves do not both appear in the
diagram. Case .3/ is the third row.

nonnormal triangles, since one can perform the first �C
1

move on either side of the
preexisting twirl, and complete this edge to a triangle by performing the successive
�C

1
and ��

T
on the preexisting twirl.

To show the converse, suppose that p1.D/ D 0. Thanks to Theorem 3.2 we know
that all triangles are of the form �T –�1 –�1 ; moreover, every �1 and �T is part of
at least one triangle. We wish to understand all the possible configurations forming
a triangle. To this end, we can use Figure 15, substituting9 with �T configurations
the �2 moves, as in Figure 28.

Since p1.D/D 0, we can exclude the occurrence of cases .2/ and .3/ of Figure 28.
In fact, in each of these triangles, the diagram with lower crossing number admits
at least one 1–region. Let’s suppose that there exists a nonnormal triangle fitting in
case .1/ of Figure 28. By definition, this means that the moves are not performed
on the same arc. Then, in the lower crossing number diagram, there is at least one
1–region (see Figure 29), contradicting the hypothesis that p1.D/D 0.

Remark 3.6 If p1.D/ ¤ 0, then more complicated triangles appear. We show an
example of a nonnormal triangle fitting in case .1/ of Figure 15 in Figure 30.

In what follows we are going to analyse what happens in the remaining cases. In fact,
case .2/ of Figure 15 can be excluded as in the proof of Theorem 3.2.

It is convenient to divide the investigation on triangles fitting in case .3/ of Figure 15
in two subcases (denoted by .3a/ and .3b/ respectively), differing in whether or not

9We can assume that the �T move happens on the top of the tentacle.

Algebraic & Geometric Topology, Volume 20 (2020)



666 Agnese Barbensi and Daniele Celoria

D

D

Figure 29: On the left, a nonnormal triangle fitting in case .1/ . The diagrams
with the lowest crossing number (on the bottom) are identified. On the right,
a normal triangle fitting in case .1/ . Here the diagrams with the greatest
crossing number are identified, and there is an �T multiedge.

one of the ��
1

moves happens on the top part of the tentacle undone by the �T . If
it does, then we are in the situation described in Figure 31, and we notice that the
diagram with the lowest crossing number contains at least one 1–region; an example
of a nonnormal triangle fitting in case .3a/ is shown in Figure 32.

Finally, if both the curls undone by the �1 moves are not the top part of the tentacle,
then the diagrams appear as in Figure 33.

Again, we can conclude that the diagram with the lowest crossing number presents a
tentacle configuration. We show an example of a nonnormal triangle fitting in case .3b/
in Figure 34. In all the nonnormal cases above two diagrams are identified, and this
implies either the existence of a periodicity for the knot, or that the moves happen on
the same edge, involving adjacent curls or tentacles.

Figure 30: A triangle for a periodic knot fitting in case .1/ . The left and
lower vertices are connected by a multiedge.
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D

Figure 31: A nonnormal triangle fitting in case .3a/ . Notice that the diagrams
with the lowest crossing number (on the bottom) are identified and present at
least a curl.

Lemma 3.7 Given any knot diagram D, there exists an arc on D such that after
performing either an �C

1
or an �C

T
belonging to a normal triangle, the resulting

diagrams are nonperiodic. Moreover, if we perform another �C
T

on the top of the
tentacle created, the diagram obtained and all of the diagrams in its radius 1 ball are
nonperiodic.

Proof This follows from the fact that the height h tentacle configurations are permuted
by any symmetry of the diagram, so if there’s only one the diagram cannot be periodic.
So, just take any diagram D ; if p1.D/D 0, then performing any �C

1
or the �C

T
it

is paired with will produce a nonperiodic diagram. If instead D contains at least one
curl, choose the one which appears on the top of the highest tentacle, and perform there

Figure 32: A triangle for a periodic (un)knot, fitting in case .3a/ . Dotted
circles enclose the ��

1
moves, and the dashed one the ��

T
. This specific

example was pointed out by M Marengon.
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�T �1–�1

D

Figure 33: A nonnormal triangle fitting in case .3b/ . Notice that the diagrams
with the lowest crossing number (on the bottom) are identified and present at
least a tentacle configuration. See also Figure 34 for an explicit example.

the �C
1

/�C
T

pair (with appropriate signs). Since the new diagram will have only one
tentacle of maximal height we can conclude. Finally, if we further increase the length of
the tentacle, we are sure that we are at least at distance 2 from any periodic diagram.

Unlike the Gordian graph, the Reidemeister graphs are locally finite, even though the
valence is not uniformly bounded (Remark 3.9). The first invariant we can extract from
them is in some sense a measure of the minimal complexity of the diagrams of K :

Definition 3.8 Let v.D/ denote the valence of the vertex D. The diagram complexity
of a knot K is

ı.K/D min
D2D.K /

v.D/:

If v.D/D ı.K/ we say that D is a minimum. We also define #ı.K/ as the number
of minima of G.K/; if a knot type K is such that #ı.K/ D 1, we call K simple.
Both ı and #ı are N–valued knot invariants. There is of course an identical definition
for GP .K/; we denote by ıP and #ıP the corresponding invariants.

Remark 3.9 We will postpone the proof that #ı.K/ is in fact well defined until
Corollary 3.13. Note that the diagram complexity is not a function of the crossing
number, as one might naively think. In Remark 3.22 we are going to provide some
examples of this phenomenon. It is, however, true that for a fixed knot type K , the
valence becomes arbitrarily high as the crossing number of the diagrams representing K

increases.

Given a nonperiodic diagram D 2D.K/, one can enumerate the possible Reidemeister
moves on D, in order to compute

v.D/D #�˙1 .D/C #�˙T .D/C #�˙2 .D/C #�3.D/:
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Figure 34: A triangle for a periodic (un)knot, fitting in case .3b/ .

We start by counting the possible number of �C
1

and �C
T

. For each arc in D we can
perform four �C

1
moves, as shown in Figure 35, and the same holds for �C

T
.

When working with GP .K/, so with diagrams on the plane, we must put a bit of care
in counting �C

2
moves, since the number of such possible moves depends on whether

we are in the “external” polygon or not. If a polygon P 2R2 nD has k edges, there
are 2

�
k
2

�
D k.k�1/ possible10 �C

2
moves we can perform in it (the factor of 2 comes

from the two possible choices of which arc passes over the other). In the external
zone, however, we need to double the previous quantity, since there are two cases to be
considered, as shown in Figure 36. So if we denote by kext the number of edges of the
external zone, we have an extra contribution of kext.kext� 1/. This extra term does not
appear when working with diagrams on the 2–sphere, as there is no preferential polygon.

Adding everything up, we end with this rather unpleasant equation for the valence of a
nonperiodic planar diagram:

(3-1) v.D/D 8˛.D/C
X
k�2

pk.D/k.k � 1/C kext.kext� 1/

C #�3.D/C #��2 .D/C #��T .D/C #��1 .D/:

Note that multiedges do not create issues in the sum, as they are counted separately.

It follows from (3-1) that the valence of any diagram is bounded from above by
quantities depending only on the knot projection:

(3-2) v.D/� 8˛.D/Cp1.D/Cp2.D/Cp3.D/C 2
X
k�2

pk.D/k.k � 1/:

Equation (3-2) is obtained by giving an upper bound on the possible �� and �3

moves in terms of the number of edges of the regions interested by the moves (ie on
the number of 1–, 2– and 3–regions for ��

1
, ��

2
–��

T
and �3 moves respectively).

10In the present discussion we find it convenient to blur a bit the distinction between �2 and �T ,
since we are only interested in the total count.
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Figure 35: The possible �C
1

moves that can be performed on each arc.

Looking at (3-1) we can obtain a lower bound as well, which allows to say that the
valence grows at least linearly with the crossing number. Define P .D/, the maximal
period of a nontrivial diagram D, as the maximal order of a finite group acting on the
sphere (or the plane), preserving the diagram setwise.11 Recall that if K is not the
unknot, then K admits finitely many orders of periodicity (see [7, Theorem 3]).

Lemma 3.10 If D is a nontrivial knot diagram with periodicity P .D/ (where P .D/

is equal to 1 if D is nonperiodic), then

(3-3) v.D/�
8˛.D/

P .D/
:

This follows easily by observing that each fundamental domain for the periodic action
must contain at least one arc.

Of course if D is nonperiodic, the lower bound

(3-4) v.D/� 8˛.D/C
X
k�2

pk.D/k.k � 1/C kext.kext� 1/

holds as well.

Proposition 3.11 The minimal valence ı detects the unknot 
.

Proof ı.
/D 3, as shown in Figure 37, while if K ¤
, then for every diagram D

representing K we have v.D/ � 4, since each fundamental domain for a periodic
action must contain at least one arc (as in the proof of Lemma 3.10), and for every arc
there are at least 4 (two �C

T
and two �C

1
) possible moves.

Lemma 3.12 For each knot K , the number of vertices in GP .K/ or G.K/ whose
valence is bounded by a constant is finite.

11We need to exclude the trivial diagram of the unknot to ensure that P .D/ is in fact finite.
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D D
D

Figure 36: The two nonequivalent possibilities for an �2 move in the external zone.

Proof This follows immediately from the fact that there are only finitely many dia-
grams of a knot with crossing number bounded by a constant, finitely many periods
for each knot, and by (3-3) the valence is bounded from below by a linear function
in cr.D/.

In particular, choosing ı.K/ as the constant in the previous lemma, we get:

Corollary 3.13 #ı.K/ is well defined.

Following [12], we call a diagram D 2 D.K/ hard if

#��1 .D/D #��2 .D/D #��T .D/D #�3.D/D 0:

We can refine (3-1) for hard diagrams:

Corollary 3.14 If D is a hard diagram of a nonperiodic knot K , then

vS .D/D 8˛.D/C
X
k>1

k.k � 1/pk.D/:

The analogous result for GP .K/ is obtained by adding kext.kext� 1/.

Figure 37: The ball S.
/ in the planar (left) and S2 (right) graphs.
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U

U

U

Figure 38: How to kill Reidemeister moves.

In [12] Kauffman and Lambropoulou exhibit an infinite family of hard unknots. Using
their result, it is not difficult to argue that every knot admits (infinitely many) hard
diagrams. Take any diagram D 2 D.K/, and choose a (nontrivial) hard diagram U

of the unknot. If D is not hard, choose an ��i or �3 move and perform a diagram
connected sum with U to “kill” it as in Figure 38. Generally, hard diagrams of
nonperiodic knots are interesting from the R–graphs viewpoint, since for them the
valence is completely determined by the knot projection, rather than by the diagram. In
particular this implies that given a hard diagram, it will have minimal valence among
all the diagrams obtained from it by changing any number of crossings.12

Remark 3.15 It is possible to compute the valence of the two trefoil knots of Figure 2
in GP .31/. Taking into account the periodicities of the two diagrams (it is of order 3 for
the first and 2 for the other), one gets that (as planar diagrams) the first has valence 24

and the second 32, so they are set apart in GP .31/. The valence in G.31/ instead is 12.
We will in fact prove in an upcoming paper that ıP .31/D 24 and ı.31/D 12, and that
in both cases #ı.31/D 1.

In order to facilitate the proof of Theorem 1.1, understanding how the valence of a
diagram can change under the various Reidemeister moves is crucial.

It is of course impossible to a priori compute the difference of the valence between
two vertices at distance 1, since this value depends on the crossings and specific
configurations in the diagrams involved. It is, however, possible to pinpoint a quite
good bound by accounting for the number of edges of the regions interested by the
Reidemeister move.

This last task is a quite tedious exercise; in the following we denote by13 "j ;i and "j ;3
the difference in the number of Reidemeister moves of type ��i and �3 , respectively,

12This is no longer true if one of the diagrams obtained by changing some crossings in a hard one is
periodic.

13We suppress the dependency of the "j ;i from the diagrams in the notation for aesthetic reasons.
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D0

D0

D0

D0

D

D

D

D

a

1

b

a

1

2

b

a

b c2

d

a

b c2

a� 2

b� 1

a� 4

b� 1

a� 2

bC c � 2

d � 2

a� 4

bC c � 2

Figure 39: The four possible configurations considered in Propositions 3.16–3.19.

that can be performed on two diagrams differing by a single Reidemeister move �Cj
with i; j 2 f1;T; 2g.

If D0 D�C
1
.D/, then

� "1;1 D #��
1
.D0/� #��

1
.D/ 2 f0; 1g;

� "1;T C "1;2 D .#��T .D
0/� #��

T
.D//C .#��

2
.D0/� #��

2
.D// 2 f�2; 0; 1g;14

� "1;3 D #��
3
.D0/� #��

3
.D/ 2 f�4; : : : ; 4g.

We denote the sum of the " contributions in each case as
P

i "1;i ; these count the part
of the valence of a diagram that is not completely determined by the knot projection.
In particular, we have that

(3-5) �6�
X

i2f1;2;T;3g

"1;i � 6:

14Here we consider the sum "1;T C "1;2 since performing an �C
1

move at the top of a preexisting
tentacle may decrease the number of �T moves, changing them in �2 moves.
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Proposition 3.16 If K is a nonperiodic knot and D0 2 D.K/ is obtained from D by
adding a curl (ie performing an �C

1
move, as in the upper part of Figure 39), then

v.D0/ > v.D/. More precisely, if the move is internal, that is, the two zones involved
are not the external one, then

(3-6) v.D0/D v.D/C 8C 4aC 2bC
X

j

"1;j :

If the zone with a edges is external, then

(3-7) v.D0/D v.D/C 2C 8aC 2bC
X

j

"1;j :

And finally if the zone with b edges is external, then

(3-8) v.D0/D v.D/C 6C 4aC 4bC
X

j

"1;j :

Moreover, we have
P

j "1;j 2 f�6; : : : ; 6g. Thus, performing an �C
1

move always
increases the valence.

Proof After performing an �C
1

move, the number of arcs in D0 increases by 2, that
is, ˛.D0/D ˛.D/C 2. Moreover, assuming that a, b , a� 2 and b� 1 are pairwise
distinct, we have the following changes in the pk :

pa.D
0/D pa.D/C 1;

pa�2.D
0/D pa�2.D/� 1;

pb.D
0/D pb.D/C 1;

pb�1.D
0/D pb�1.D/� 1:

Adding everything up, and keeping in mind (3-1), we obtain

v.D0/�v.D/D 8 �2Ca.a�1/�.a�2/.a�3/CCb.b�1/�.b�1/.b�2/C
X

j

"1;j :

That is, precisely

v.D0/D v.D/C 8C 4aC 2bC
X

j

"1;j :

Notice that even if a, b , a�2 and b�1 are not pairwise distinct, the same computation
holds. All other ��j moves (that do not depend solely on the knot projection) add up
to
P

j "1;j .

To obtain (3-7) and (3-8) it is enough to add the contribution of the external region, which
is a.a�1/�.a�2/.a�3/D4a�6 in the first case, and b.b�1/�.b�1/.b�2/D2b�2

in the second.
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The proof is identical in the other cases considered below, and we are going to omit it.

Proposition 3.17 Let D;D0 2D.K/ be two nonperiodic diagrams differing by an �T

creating a tentacle of length 1 (as in the upper-middle part of Figure 39). Then, if the
zones involved are not external,

(3-9) v.D0/D v.D/C 12C 8aC 2bC
X

j

"T;j :

If the zone with a edges is external,

(3-10) v.D0/D v.D/� 8C 16aC 2bC
X

j

"T;j :

And finally if the zone with b edges is external,

(3-11) v.D0/D v.D/C 10C 8aC 4bC
X

j

"T;j :

Proposition 3.18 If two nonperiodic diagrams D;D0 2 D.K/ differ by an �2 move
in which the regions with a and d edges do not coincide (as in the middle part of
Figure 39), then if the move is internal,

(3-12) v.D0/D v.D/C 16C 4.aC bC cC d/� 2bcC
X

j

"2;j :

Proposition 3.19 If two nonperiodic diagrams D;D0 2 D.K/ differ by an �2 move
in which the regions with a and d edges coincide (as in the lower part of Figure 39),
then if the move is internal,

(3-13) v.D0/D v.D/C 8C 4.2aC bC c/� 2bcC
X

j

"2;j :

Remark 3.20 An �T creating a tentacle of length greater than 1 is a special case of
Proposition 3.19 in which c D 2. Thus, in this case we obtain

v.D0/D v.D/C 8C 4.2aC bC 2/� 4bC
X

j

"i D v.D/C 16C 8aC
X

j

"T;j :

It is worth remarking that, when dealing with G.K/, the change of the valence is
determined by (3-6), (3-9) and (3-12) in the respective cases.

Remark 3.21 We will find it useful to divide the valence of every vertex in two parts,
namely the positive valence vC.D/ and the negative valence v�.D/. The positive
valence is defined as the number of edges emanating from D which correspond
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Figure 40: By performing an �C2 move in the central (or external) region,
we obtain a diagram with lower valence.

to �C� moves, where � 2 f1; 2;T g. Note that vC.D/ only depends on the projection
of D. If we wish to consider only the positive valence, (3-6), (3-9), (3-12) and (3-13)
can be rewritten as

vC.D0/D vC.D/C 8C 4aC 2b;(3-14)

vC.D0/D vC.D/C 12C 8aC 2b;(3-15)

vC.D0/D vC.D/C 16C 4.aC bC cC d/� 2bc;(3-16)

vC.D0/D vC.D/C 8C 4.2aC bC c/� 2bc:(3-17)

Remark 3.22 Proposition 3.17 suggests how to produce examples of knots in which
the minimal complexity is not realised by a diagram minimising the crossing number.
From (3-12) it is apparent that if b or c is sufficiently large, then the diagram D0 (with
higher crossing number than D ) obtained by performing an �C

2
move will have a

lower valence. An easy example of this phenomenon is given in Figure 40. This is the
twist knot with 17 crossings; note that the example shown is also alternating, reduced
and nonperiodic. When the internal (and external) region has more than 12 faces,
performing an �C

2
move decreases the valence, according to (3-12) (with aD d D 4

and b D c D 8).

In particular, any knot in which all diagrams realising the crossing number have many
regions with a sufficiently high number of edges provides an example where the minimal
valence is not realised in the diagram with minimal crossing number.

We prove here some facts that are going to be useful in the next sections. First of
all we show that the S2–graph can distinguish between the different Reidemeister
moves. This means that by looking at a neighbourhood of an edge of G.K/, we can
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��1 �C
1

��T ��1 �C
T

�C
1

Figure 41: The grey dots represent the diagram D we start from.

tell which Reidemeister move it represents; furthermore this will provide a way to read
the crossing number of a diagram D from the combinatorial structure of S.D/.

Theorem 3.23 The S2–graph distinguishes the Reidemeister moves and detects the
crossing number of a diagram.

Proof In the interest of clarity we are going to start by examining the nonperiodic
case. Fix a diagram D 2D.K/ for a nonperiodic knot K . The combinatorics of S.D/

will allow us to distinguish the various moves.

Since by Theorem 3.2 all �1 moves are paired with at least one �T move in a triangle,
it is easy to argue that the graph can tell apart the two sets of moves M1 D f�

˙
1
; �˙

T
g

and M2 D f�
˙
2
; �3g.

To further separate the elements of M1 we can thus restrict to triangles in S.D/.
Choose an edge emanating from a vertex D which is part of a triangle. There are three
possibilities, shown in Figure 41.

From this, using Proposition 3.16, it is easy to argue that G.K/ can tell apart the
elements in M1 ; indeed, if only one of the two moves decreases the valence, then they
are both �1 moves, and the one which decreases it is the ��

1
. If both moves decrease

the valence, then the one that decreases it most is the ��
T

, and the other is an ��
1

.
Lastly, if both moves increase the valence, then the one that increases it most is an �C

T
,

and the other is an �C
1

.

Now, since the number of �C
1

moves is a multiple of the arc number of the diagram
(see Figure 35), the crossing number cr.D/ corresponds to 1

8
.#�C

1
.D//. Hence, since

we can distinguish and count such moves, we can read the crossing number of a diagram
from S.D/.

Using this information we can tell apart the elements of M2 as well and conclude
that the only remaining moves are �˙

2
moves and �3 moves, all of which are not

part of a triangle. These appear as edges connected only to the centre of S.D/. We
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can distinguish between them by counting the crossing number of the vertices they
connect D to; one then just needs to recall that �3 moves do not increase it, while �2

increase or decrease it by 2. Hence it follows that we can distinguish among �C
2

, ��
2

and �3 moves as well.

In all the previous discussion, in order to determine cr.D/, we only used the fact that
all diagrams in S.D/ were nonperiodic; this fact will allow us to compute it in the
periodic case as well.

If K is periodic we cannot use directly the various equations relating the valence of
two neighbouring vertices, since one15 could be periodic.

Instead of trying to directly detect from the structure of the graph whether a diagram is
periodic, we can use Lemma 3.7 to bypass most complications. For every vertex D,
define the generalised triangle number by ntr.D/D #�˙

1
.D/C#�˙

T
.D/. This quantity

is computable from the graph, since by Theorem 3.2 it coincides with the number of
edges emanating from D which are part of at least one triangle. By Lemma 3.7, at least
two diagrams appearing in a triangle, reached by an �C

1
and an �C

T
respectively, will

be nonperiodic, and we claim that such diagrams maximise ntr among all the diagrams
reached by edges starting from D that are part of at least one triangle. Let ah.D/

denote the number of (maximal) height h tentacles in D, and define

n.D/D p1.D/C
X
h�1

hah.D/:

Note that n.D/ is equal to the sum ��
1
.D/C��

T
.D/ when D is not periodic. Then,

for the diagrams D00 and D0 in Lemma 3.7,

ntr.D
00/D 16 cr.D00/C n.D00/D 16.cr.D/C 2/C n.D/C 2;

ntr.D
0
1/D 16 cr.D0/C n.D0/ D 16.cr.D/C 1/C n.D/C 1:

This follows since we are performing the curls on the top of a tentacle (or on any arc,
if there are no curls in D ), and this fact ensures that the number of ��� moves is equal
to n.D/C 1 when � D 1 and to n.D/C 2 when � D T . On the other hand, for any
diagrams DC

T
and DC

1
reached from D by an �C

T
move and an �C

1
respectively,

ntr.D
C

T
/� 16.cr.D/C 2/C n.D/C 2;

ntr.D
C

1
/� 16.cr.D/C 1/C n.D/C 1:

15Or both; see also Question 6.5.

Algebraic & Geometric Topology, Volume 20 (2020)



The Reidemeister graph is a complete knot invariant 679

The presence of periodicity in DC
1

or DC
T

can only decrease the value of ntr , and
the same holds if the moves are not performed (with the appropriate sign) on the
top of a preexisting tentacle. In other words these moves maximise #��

1
C #��

T
.

If we consider moves that decrease the crossing number, disregarding the possible
periodicities, the numbers ntr we obtain have no chance of being greater than ntr.D

00/.
So, choose the diagrams in S.D/ maximising this quantity; they correspond to vertices
reached by �C

T
moves. Consider all the edges that form triangles with them: these

have to correspond to diagrams reached by �C
1

moves. Choose between them one
maximising ntr . Notice that D is nonperiodic if and only if ntr.D/Dntr.D

0/�17. Now,
choose D000 in S.D0/ forming a triangle with D00, with S.D000/ totally nonperiodic,
and such that it maximises ntr in S.D0/. We know that such a diagram exists by
Lemma 3.7, and we can check the hypothesis on the nonperiodicity of S.D000/ thanks
to the above criteria. Then, we can recover cr.D000/, and obtain cr.D/ as cr.D000/� 3.

Hence, using the crossing number as in the nonperiodic case, we can tell apart the
various types of moves, and we are done.

This last result will allow us to say “perform an �˙i move on a diagram” in a way
that is meaningful also at the level of the graph. In other words, we just proved that
the R–graphs intrinsically contain the same amount of information as the same graphs
with edges decorated according to which �˙i move we are performing.

By the previous result we know that the crossing number of a diagram can be read
by looking at S.D/. Thus if a knot is nonperiodic, taking the minimum of 1

8
.#�C

1
/

among all vertices of the corresponding Reidemeister graphs gives back cr.K/, the
crossing number of the knot. For periodic knots, this procedure produces a slightly
different invariant, which can be regarded as crossing number up to periodicities. More
precisely, define

ycr.K/D 1
8

min
D2D.K /

#�C
1
.D/:

If K is nonperiodic, ycr.K/D cr.K/, while in general ycr.K/� cr.D/. As an example,
we have ycr.31/D

1
2

.

Note that a similar consideration for the other kinds of moves does not yield useful
invariants: it is possible to show that the minimal number of �C

2
moves is simply

related to the combinatorics of the number of regions in the complement of the diagram
on R2 or S2 , and the minimal number of ��

2
and �3 moves one can perform within

a knot type is always 0 (as can be seen by “killing” all the �3 moves with an �1 in
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the region with three edges, similarly to what was done in Figure 38). Nonetheless one
might obtain some meaningful invariants by restricting diagrams not minimising the
valence.

The knowledge of the crossing number from the graph also implies that we can use a
result of Coward and M Lackenby [5] to give some upper bounds on the path distance
between two diagrams.

4 Global properties

This section is devoted to the analysis of some global properties of the R–graphs. We
begin by proving that each R–graph is not hyperbolic.

Proposition 4.1 The R–graphs are not hyperbolic.

Proof Choose a nonperiodic diagram D2D.K/ containing no 1–regions, an arc on D,
and a polygon P having this arc as a face. We can embed isometrically the rank 2

lattice graph as follows: to the pair .a; b/ 2 Z2 associate the configuration on the arc
composed of a positive curls in the region P if a> 0, and in the other region touching
the arc if a< 0; do the same for b , this time with negative crossings on the right of the
previous ones. An example is shown in Figure 42. The fact that the embeddings are
isometric follows, for example, from an analysis of the Ilk invariants of the diagrams:
Ilk.Da;b/ D Ilk.D/C aX0C bY0 , where Da;b is the diagram corresponding to the
element .a; b/.

Proposition 4.2 The Reidemeister graphs GP .K/ and G.K/ are not planar.

Proof We are going to prove that for every knot K we can find a K5 minor16 contained
in each R–graph of K . This is achieved by considering the local construction shown
in Figure 43. The edges denoted with a Greek letter are length 2 paths; as shown in
Figure 44, these can be obtained by putting the two moves alongside each other and
then resolving either one.

In graph theory, it is customary to consider coarse properties of a (infinite and locally
finite) graph. One way to do this is to study the quasi-isometry class of the graph, often
through related invariants.

16As is customary, Kn denotes the complete graph on n vertices.
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Figure 42: This configuration represents .�1; 2/ 2 Z2 .

A ray of a locally finite graph G is a semi-infinite simple path in G ; two rays r1; r2�G

are regarded as equivalent if there exists a third ray r3 containing infinitely many vertices
of both r1 and r2 .

An end is an equivalence class of rays, and it is called thick if it contains infinitely
many pairwise disjoint rays.

Proposition 4.3 Each S2–Reidemeister graph has only one thick end.

Proof It is immediate to show (eg using paths such as those in Figure 45 or tentacle
configurations) that there are infinitely many disjoint rays in GP .K/ and G.K/ for
each choice of K 2K . To show that there is only one end, we will prove that removing
any ball with arbitrary radius does not disconnect the graphs into two pieces, each
containing infinitely many vertices. This in turn would immediately imply that there is
only one equivalence class of rays in the graph.

Consider a diagram D 2 D.K/ for a knot K , and the radius R ball SR.D/ in G.K/
(or equivalently in GP .K/). Call H the maximal height among the tentacles of the

˛

ˇ ı




Figure 43: A local embedding of K5 as a minor of any G.K/ .
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Figure 44: The path corresponding to the ˇ edge in Figure 43.

diagrams contained in SR.D/, and take any two diagrams D0;D12D.K/ which do not
belong to SRCHC1.D/; we need to find a path in G.K/nSR.D/ connecting D0 to D1 .
Choose an arc on D0 and on D1 , and create on each a tentacle of height greater
than H. These two new diagrams D0

0
and D0

1
can be connected through moves

that avoid the newly created tentacles,17 and this path 
 from D0
0

to D0
1

will not
intersect SR.D/, thanks to the hypothesis on H. Attaching to the ends of 
 the two
paths y
i from Di to D0i induced by the creation of the tentacles gives the desired path
from D0 to D1 . Note that the hypothesis on the height of the tentacle allows us to say
that the paths y
i do not intersect SR.D/, and SRCHC1.D/ nSR.D/ contains only
finitely many vertices.

The S2–Reidemeister graphs contain only one end, but infinitely many disjoint rays,
hence by Halin’s grid theorem [9], each must contain a subdivision of the planar
hexagonal tiling.

Remark 4.4 One might find it reasonable to assume that the graphs GP .K/ and G.K/
are quasi-isometric; it is, however, easy to see that the “natural” map18 GP .K/ ,!G.K/
between the two graphs fails to be a quasi-isometry. This can be seen from Figure 36:
the two diagrams on the left and right can have arbitrarily large distance in GP .K/,
but are identified in G.K/.

These graphs also exhibit a fractal behaviour, which can be observed, for example, by
considering sequences of �1 moves as in Figure 45. The corresponding subgraph can
be embedded (infinitely many times) in each R–graph for any knot K .

The R–graphs can be filtered in several ways; the easiest one is to consider the filtration
induced by the distance from the vertices with minimal valence.

Given a knot K , denote by Fm.K/ the subgraph spanned by those vertices whose
distance from the minimal diagrams of K is �m, and denote by #Fm.K/ the number
of vertices it contains.

17Remember that we are working on S2 .
18Here we map a planar diagram D to its equivalence class in G.K/ .
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We can extract some numerical invariants from this filtration on G.K/:

Definition 4.5 Define

fK W N!N; fK .m/D #Fm.K/;

and
M.K/D min

m�ı.K /
f�0.Fm.K//D Zg:

In other words, M.K/ measures the minimal distance between the diagrams of minimal
complexity in G.K/. In particular, M.K/D 0 if and only if a knot type is simple.

Recalling the proof of Lemma 3.12, we can also define another filtration on G.K/:

Definition 4.6 Let zFK be the filtration of G.K/ whose m–level consists of the vertices
of G.K/ with valence less or equal to m. Let also

gK W N!N

be defined as the associated counting function

gK .m/D #fD 2 G.K/ j v.D/�mg:

Clearly gK .m/D 0 for all m< ı.K/, and gK .ı.K//D #ı.K/.

Both these filtrations F and zF , together with the associated integer-valued counting
functions fK and gK , are knot invariants, and it is not hard to show that they both
distinguish the unknot. Moreover one can consider the homology groups of the various
level sets and obtain yet other knot invariants.

In [15], Miyazawa computes the homology groups of the Reidemeister complex,
which he denotes by M.K W P5; 1/, in the case of oriented diagrams with a minimal
generating set of Reidemeister moves. Along these lines we can define a slightly
different version of Reidemeister complex, denoted by CG.K/, as follows: an n–
simplex �nD hD0; : : : ;Dni is given by a string of nC1 distinct diagrams such that19

d.Di ;Dj /D 1� ıi;j , considered up to permutations of the indices.

Define Cn.CG.K// as the free abelian group generated by n–simplices, with the obvious
boundary operator induced by simplicial homology,

(4-1) @.hD0; : : : ;Dni/D

nX
iD0

.�1/ihD0; : : : ; �Dj ; : : : ;Dni:

19Here ıi;j denotes Kronecker’s delta function, and d is the path distance.
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Figure 45: The “fractal behaviour” of G.K/ .

From this perspective, G.K/ is the 1–skeleton of CG.K/. Miyazawa proved that
H0.M.K W P5; 1/IZ/ D Z (which follows from Reidemeister’s theorem), and that
Hn.M.K W P5; 1/IZ/D 0 for every n� 2 and K 2 K .

Our situation is slightly different; with the methods developed in Section 2 we can
easily establish the triviality of Hn.CG.K/IZ/ for n� 3:

Proposition 4.7 For any knot K we have Hn.CG.K/IZ/D 0 for n� 3 (in both the
planar and S2 cases).

Proof Assume there is a tetrahedron �3 in CG.K/; then it follows from Theorem 3.2
that all faces have to be composed of triples �˙

T
–��

1
–��

1
. Up to symmetries, there is

only one possibility to be considered, shown in Figure 46. However this can be excluded
as well, by taking into account the signs of the moves composing the tetrahedron. In
particular this shows that there are no simplices of dimension n � 3, hence all the
corresponding homology groups vanish.

In particular it follows that CG.K/ is just G.K/ with all triangles capped by 2–simplices.
It is not hard to prove that H1.CG.K/IZ/ is an infinitely generated free abelian group,
as any pair of distant �3 –�2 moves does not bound any union of 2–simplices. We
can now conclude the computation of the homology groups of CG.K/:

Proposition 4.8 H2.CG.K/IZ/Š Z1 .

Proof The two configurations in the top part of Figure 27 show a topologically
embedded 2–sphere in CG.K/. As these are local configurations, they can be found
infinitely many times on any G.K/.

So, as in Miyazawa’s case, the global homology does not provide useful invariants.
Nonetheless, some properties of the diagrams can be inferred from the local homology
of the complexes. Denote by S cpx.D/ the ball of radius 1 centred in D, seen as a
subcomplex of CG.K/.
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�1
�1�T

�1 �T

�1

Figure 46: The only tetrahedron with compatible faces. There is no way of
coherently orienting the signs on the edges of its faces.

Lemma 4.9 If H1.S
cpx.D/IZ/DZm , then m� ycr.D/. Also, H2.S

cpx.D/IZ/D 0

if and only if p1.D/D 0.

The first part of this lemma follows easily from Figure 8, while the second is a
consequence of Lemma 3.5 together with Theorem 3.2.

5 Completeness of the S 2–graph invariant

This section is devoted to the proof of Theorem 1.1 (recalled below). The proof will
rely solely on results from Section 3, and exploits rather large portions of the graph.

Theorem 1.1 The S2–Reidemeister graph is a complete knot invariant up to mirroring;
that is, G.K/� G.K0/ if and only if K0 is isotopic to K or K .

We will prove Theorem 1.1 by breaking it down in smaller parts, which are the content
of the following propositions.

Suppose we have a knot K 2 K , and suppose that D 2 D.K/ is any diagram. Write
P .D/D .p1.D/; : : : ;pm.D//, where m is the greatest coefficient with a nonzero entry
(or equivalently the maximal number of sides among the regions in the complement
of D in S2 ).

Proposition 5.1 The S2–graph of a knot determines P .D/ for each vertex D such
that all diagrams in S.D/ are nonperiodic and p1.D/D 0.

Proof Thanks to Lemma 3.5 we know that if a diagram D does not contain any curls,
then all the triangles in S.D/ which admit D as the vertex with lower crossing number
are normal. Moreover, since there are 8 cr.D/ �C

1
moves and �C

T
moves, we can

conclude that in S.D/ there are exactly 8 cr.D/ triangles. For each �C
1

move, choose
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the corresponding �C
T

move; call D0 and D00 respectively the diagrams obtained by
performing these �C

1
and �C

T
moves on D. By (3-14) and (3-15), the difference of

the positive valences is

vC.D00/� vC.D0/D 4aC 20;

where a is the number of edges of the region in which the tentacle and the curl will
appear.

If we do the same for all possible �C
1

moves applicable to D, we get a multiset of
numbers fn0igi2f0;:::;#�C

1
.D/g , where each entry is the difference in vC for a given �C

1
;

define a new multiset fnigi2f0;:::;#�C

1
.D/g , where ni D

1
4
.n0i � 20/. Each region

with a sides contributes to this new list with exactly20 2a entries equal to a. It
is thus immediate to show that we can compute each pa.D/ from S.D/.

However the knowledge of P .D/ on a subset of vertices does not immediately guarantee
the completeness of G.K/. A priori there might be two distinct knots (up to mirroring)
whose diagrams have the same number and types of Reidemeister moves and such that
their complement has the same number of regions. We first need to detect the structure
of D as a 4–valent graph on S2 .

Proposition 5.2 The S2–graph recognises the projections of the knot corresponding
to diagrams without 1–regions.

Proof Let us deal only with nonperiodic knots for the moment, and come back to the
periodic case afterwards.

Choose a vertex D 2D.K/ with p1.D/D 0. This is possible by Theorem 3.23, since
the condition p1.D/D 0 is equivalent to the absence of ��

1
moves emanating from D.

To obtain the structure of D as a graph, we need to be able to tell which regions are
adjacent to one another in S2 , or in other words, we want to determine the dual graph
of the projection.

We need to look for this information outside of S.D/; begin by assuming for the
moment that D only has one region R with a certain number k of edges (that is,
pk.D/D 1), and k is such that there are no regions with k˙ l sides, for any l �L

where L is a suitably big integer.

20Corresponding to the two possible �C
1

moves performed with the curl contained in the region on
one of its edges.
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To determine the number of edges of the regions adjacent to R, perform an �C
1

move on
one edge21 of R so that the curl is contained in the interior of R. We can then compute
the number of edges of the other region involved in the move as follows. The �C

1

move is associated to a unique �C
T

move, connecting D with a diagram D00 with
which they form a triangle. By counting the difference of the positive valences between
D0 and D00 and by using (3-14) and (3-15) we can compute the number of edges of R.
Once we have that, the difference in the positive valence between D and D0 gives us
the number of edges of the other region involved. Moreover, note that knowing the
number of edges in these two regions is enough to compute P .D0/ from P .D/.

Repeating for all edges22 in R we get the number of sides of each region which shares
an edge with R.

From this last paragraph it follows that if we could find a diagram of K such that, with
the exception of regions with one side, all the regions have a different and sufficiently
spaced number of sides, then we could infer how they are globally “patched together”
to form the corresponding 4–valent graph.

There is an easy way to achieve such a configuration in a controlled way. Start with a
diagram D with p1.D/D 0, and perform an �C

1
move; again by the previous line of

thought23 we can tell that the move has been made with the curl contained in a region
with a edges which is adjacent to a region with b edges (as in the top of Figure 39).

Call D1 the diagram obtained; we can recover P .D1/ from P .D/, since we know
the number of edges of the regions involved. There are only two possible choices to
perform another �C

1
move on this new diagram in such a way that an �1–multiedge

with valence 2 is created (given by performing an identical �C
1

move on the left or
right of the previous one). We can repeat this process N1� 0 times, obtaining a new
diagram DN1

with only one region with aC 2N1 edges and a region with bCN1

edges and such that there is only one multiedge of order N1 and exactly N1 regions
with one edge. Notice again that at each step we can recover P .Di/ from P .Di�1/,

21This is in fact well defined on the graph, since the valence of the diagrams obtained in this fashion
will be different from any other obtainable by making an �C

1
anywhere else.

22Thanks to the hypothesis on R , we can recognise from the graph all the �C
1

which create a curl
in R .

23Since triangles in S.D/ are normal, we can compute P .D/ by considering the difference in the
valence between diagrams reached by triangles. Moreover, by considering one triangle at the time, and
using the differences in the positive valences between D00 and D0, and between D0 and D, we can
compute the number of edges involved in the corresponding �C

1
.
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since at each step we already know the number of edges of one region involved, and
from the difference in the positive valence between Di�1 and Di we can recover the
second one. Eventually, we are able to compute P .DN1

/.

Now we have a more complicated diagram with two distinguished adjacent regions;
we can then iterate the process: choose another edge of the first region24 and make N2

identical �1 moves, with N1�N2� 0, in such a way that the curls are contained in
the first region. Again, the first step is well defined, since such �C

1
moves are the only

ones that reach diagrams whose positive valence is increased by approximately 8N1

and do not increase the multiplicity of the multiedge. From the second step on, the lack
of periodicity (see Remark 3.6) ensures that making a curl close to the previous one
is the only way to create an �C

1
multiedge. We still can recover P .Di/ at every step.

We can fill up every edge of the region which once had a edges in the same fashion,
and then move to another region. If at each step we start making curls on an edge
bounding two regions whose number of edges is different enough,25and if we keep
track of the number of curls added, we are sure that the moves are well defined on the
graph and that we can compute the n–tuples.

Notice that we need to choose the numbers Ni incredibly big and suitably distant, with
Ni �NiC1 in order to avoid confusion and ultimately get a diagram zD such that it
has region sequence of the form

P . zD/D .N; 0; : : : ; 0; 1; 0 : : : ; 0; 1; 0; : : : /;

where N D
P

i Ni , and the minimal gap between two nonzero entries is � 0. Call
a diagram with these properties sparse.

If the number of edges of the various regions are sufficiently spaced, then the previous
claim applies,26 and we can explicitly see which regions are adjacent to one another.
However thus far we have only determined the dual graph to the knot projection as an
abstract graph; we need a bit more work to find out the specific planar embedding of the
dual, in order to get back the projection of D0 . It is well known that an abstract finite
planar graph G, together with a rotational system, uniquely determines an embedding

24Such that it is not on the top of the �C
1

moves we just made.
25This can be achieved by moving through adjacent regions. Notice that every time an edge is filled

with Ni curls, we can “remember” the number of edges of the regions involved, and the number of curls
made.

26Even if p1. zD/¤ 0 , the previous claim applies, thanks to the sparseness of zD and to the fact that
the only 1–regions in zD are the ones created by the construction.
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R R

R R

Figure 47: The choice of a local orientation system for the dual. By the
previous construction the curls on the arcs can be on either side of an edge.

of G and thus G� , which is the diagram projection we want. A local rotational system
for a vertex v 2 G is just a choice of a cyclic order for the edges emanating from v .
A rotational system for G is such a choice for each v 2G, and it is said to be coherent
if all the local systems are coherently oriented.27

Choose a region R in the sparse diagram zD and suppose that R is bounded by r

edges. Choose an �C
2

move that creates a new bigon and a new 4–region and increases
the number of edges of two regions adjacent to R by 2; one example is shown in
the top-right part of Figure 47. Notice that this choice is well defined on the graph
thanks to the sparseness of zD . Indeed, we know the numbers ri of edges of all the
regions adjacent to R, and the �C

2
moves of that kind are the only ones that change

the positive valence by a value of 56C 4rj C 4ri � 4r (as in (3-16)).

Then there are only two choices for a second �C
2

move that creates a new bigon adjacent
to R leaving all the 1–regions on the edge on the left of the newly created bigon,
eliminates one bigon adjacent to one of the two regions whose vertices increased in the
previous move (let us call this region M ), and replaces it with a quadrilateral. Again,
thanks to the sparseness of zD we can identify such a move on the graph, by considering

27That is, given any two adjacent regions in the (embedded) dual of G, the orientations induced on the
common edges do not coincide, as in Figure 48.
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R

M

Q

R

M

Q

Figure 48: How to choose a coherent cyclic ordering for the orientation system.

the valence of the diagram reached. In fact, we can identify all the �2 moves creating
a new bigon adjacent to R and eliminating the other bigon, since these are the only
ones changing the valence by28 40C 4r � 2n1rj C 2.n1C 2/.n1� 2/ (as in (3-16)),
where n1 is the number of 1–regions on the left of the newly created bigon. In order to
detect the correct �2 moves it is sufficient to choose the one minimising the coefficient
of rj in the previous expression.29 These two options correspond to the possible
choices of over/under passing for the first �C

2
move in Figure 47. These moves might

also decrease by a lot the number of edges of M (according to how many curls are
contained on the edge between R and M ). Now we can repeat the process, following30

Figure 47, until we get back to the first region that had its edges increased by 2 in
the first move (but was not M ). Keeping track of the various regions encountered
during this process allows to reconstruct a local orientation system about the vertex
corresponding to R in the dual graph. Since we know the numbers ri of edges of all

28The following expression is valid if the 1–regions are inside R . To consider the other case it is
enough to replace every n1 in the expression with 2n1 .

29We can do that thanks to the sparseness of the diagram.
30We only need to follow moves that do not separate curls lying on the same edge in different regions,

and we can do that again using the difference in the valence together with the sparseness of the initial
diagram.
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Figure 49: The two paths in G.K/ and G.K0/ . The grey arrows denote the
sequence of �C

2
–�3 moves connecting the two diagrams.

the regions adjacent to R, and thanks to the sparseness of the diagram, this construction
works even if two distinct edges of R are shared with the same region.

Again, this sequence of �C
2

is only well defined up to a choice of over/under passing
at each step, but this indeterminacy does not affect the result.

Finally, in order to get a proper orientation system for the dual, we need to be able
to have a coherent way of orienting these local rotational systems we obtained. The
process is shown in Figure 48. Once we have made the first �C

2
move of Figure 47

(and thus chosen a clockwise or counterclockwise orientation), there are only two
other �C

2
moves that increase the number of regions with three sides by one and

change the valence by approximately31 4q�2m. This move will also increase by 2 the
number of edges of the region denoted by Q; we are going to choose the only cyclic
orientation based at the vertex in the dual, corresponding to the region M, that has Q

after R. Repeating this process for all regions produces a well-defined and coherent
orientation system for each vertex in the dual graph and hence uniquely determines
the embedding of the dual and consequently the knot projection.

Now suppose we have a periodic knot type K ; in order to repeat the previous strategy we
need to be able, for each D2D.K/ with p1.D/D0, to find in a controlled way a sparse
diagram D0 2 D.K/ and a sufficiently large ball, centred in D0, such that all diagrams
in this ball are nonperiodic. Since we can verify whether a diagram is periodic,32

by changing the order of the �C
1

multiedges appearing in the previous construction,
and/or their valence, we can achieve a sparse configuration with these properties.

31Lower case letters denote the number of edges in the corresponding regions.
32As explained in the proof of Theorem 3.23.
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Figure 50: The two paths in G.K/ and G.K0/ . The top/middle arrows denote
an �C

2
and an �3 move respectively.

To conclude the proof, we only need to be able to say that the only possible knots
sharing all projections without curls are mirrors of one another.

Proposition 5.3 The S2–graph G.K/ detects some diagrams of K up to mirroring.

Proof Suppose we have two knots K and K0 sharing the same graph. Take a vertex D

of G.K/ such that #��
1
.D/ D 0. The corresponding vertex D0 in the isomorphic

graph G.K0/ will have the same knot projection as D by Proposition 5.2. Hence
if K¤K0 the diagrams must differ in at least one crossing. If they differ in all crossings,
then K0 is the mirror of K , and we are done. Otherwise there must be a pair of crossings
that up to mirroring looks like the pair in the top part of Figure 49 in D and D0.

Now, perform the sequence of �C
2

–�3 moves that takes the upper diagrams in
Figure 49 and ends in the lower ones. Note that these paths are well defined, since all the
diagrams involved respect the condition p1D 0; thus we are able to actually determine
the effect of these moves on the projections by Proposition 5.2. Consider Figure 50; there
are two distinct sequences of �C

2
–�3 (differing by the choice of over/under passing for

the first �C
2

move) starting from the diagram on the top left of Figure 50 and ending in
two different diagrams sharing the same projection. On the other hand, there is only one
way to perform an �C

2
from the diagram on the top right of Figure 50 in order to be able

to complete the sequence with an �3 and obtain a diagram with the same projection
as the other two. Again, these moves are all well defined thanks to Proposition 5.2.
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Hence the two graphs cannot coincide, since there is a path in one of the graphs which
is not present in the other one, and we can conclude.

The three previous propositions together with Proposition 3.11 can be easily seen to
imply Theorem 1.1, but as a matter of fact the result proved is even stronger, since
it allows to recover the actual diagrams33 represented by some specific vertex of the
graph, and not only its knot type. From the proof of Proposition 5.2 we are actually
obtaining an embedding for the graph which is dual to the knot projection corresponding
to the diagram D0 . Hence, this proves that we can actually get back the shape of any
diagram not containing any region with one edge (in the nonperiodic case).

This next result follows directly from the proofs of Propositions 5.1–5.3:

Corollary 5.4 Let K be a knot. For every vertex D 2 G.K/ there exists an integer
R > 0 such that SR.D/ is characterising, meaning that this graph can only appear
in G.K/. Moreover, in the nonperiodic case, R is computable.

A similar argument should guarantee the completeness of the planar R–graphs, even
though the whole process is complicated by the fact that the presence of the external
region does not allow a straightforward adjustment of Proposition 5.1.

6 The blown-up Gordian graph

We can unify the Gordian and Reidemeister graphs in a single object, by a sort of
“blowup” construction; just replace each vertex of the Gordian graph with the corre-
sponding G.K/. The edges between two knots in the Gordian graph can be split into
edges between the diagrams realising the crossing changes.

Definition 6.1 Define the blown-up Gordian graph G�
P

(respectively G� ) as the graph
whose vertices are knot diagrams in the plane (respectively in S2 ) up to the corre-
sponding notion of diagram isotopy; there is an edge between two vertices if and only
if they are connected by a single Reidemeister move or a crossing change.

As in the previous setting, the valence of each vertex is finite. For nonperiodic diagrams,

v�.D/D v.D/C cr.D/;

where v�.D/ denotes the valence of D in G�
P

, and v.D/ is the valence of D in the
corresponding R–graph. For periodic diagrams we only get an inequality.

33For knots K ¤
 .

Algebraic & Geometric Topology, Volume 20 (2020)



694 Agnese Barbensi and Daniele Celoria

C

�1 �1

Figure 51: The only other possible length 3 path in G� which is not a path
in any G.K/ .

Note that G� admits an order 2 automorphism, induced by changing all crossings of each
diagram, ie taking the mirror image. The only fixed points of this automorphism are the
diagrams of amphicheiral knots which are equivalent to their mirror up to planar isotopy.

Remark 6.2 There are embeddings of GP .K/ ,! G�
P

and G.K/ ,! G� for each
K 2 K , and there are many crossing-change edges in both G�

P
and G� connecting

two diagrams in the same isotopy class; according to the cosmetic crossing conjecture
[13, Problem 1.58] all these should correspond to nugatory crossings. It would be
interesting to explore the possible applications of these graphs to the conjecture.

If we look at the ball of radius 1 in G� about a diagram D, we find all the length 3

paths of Theorem 3.2, together with a new configuration, shown in Figure 51. The fact
that the only new triangle34 appearing is actually this one follows easily by considering
the Arnold and Hass–Nowik invariants, together with crossing number and writhe, as in
Theorem 3.2. More precisely, using these invariants we can restrict to cycles of the form
�1 –�1 –C, where the �1 moves create crossings of opposite sign, and C denotes a
crossing change. Then, with the same line of thought as in Theorem 3.2, we can prove
that the curls must lie in the same region by taking in account the self-touching number.
It follows that the regions under the two curls have the same number of edges. However,
we are not able to prove that the crossing change happens exactly on the curls.

By extending the proof of Theorem 3.23 to the blown-up graph it is possible to prove the
analogous result; namely that G� detects the crossing changes and Reidemeister moves.

It is also possible to employ the blown-up graph in quite different contexts, like
modelling DNA pathways or considering walks on it to produce cryptographic protocols.
These applications will be the subject of upcoming works.

34That is, triangles that contain at least one crossing change.
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Other related ongoing projects include a translation of the concepts outlined in this
paper to a plethora of other settings; the rough idea is the following: given a recipe
to present knots, and a finite set of moves to pass between equivalent presentations,
one obtains a related graph. In an upcoming paper we are going to study what happens
in the case of grids, braids, tangles and pointed and framed diagrams. We will also
provide computations for the corresponding diagram complexity invariants, for low-
crossing knots and some infinite family. Moreover, we are going to explore some of the
connections between the R–graphs defined here and the topology of the discriminant
hypersurfaces in Arnold’s and Vassiliev’s constructions [2; 18].

We conclude with some questions.

Question 6.3 Does there exists a periodic knot type K such that the minimum of the
complexity (in either graph ) is not attained at a periodic diagram?

Question 6.4 Are all knot types simple (as in Definition 3.8)?

Question 6.5 If a diagram D � S2 of a nontrivial knot is periodic, is it true that all
other diagrams in S.D/ are not periodic?

Question 6.6 Is the S2–graph obtained from a minimal set of Reidemeister moves a
complete invariant?

Question 6.7 To what extent do the filtrations F.K/ and zF.K/ classify knot types?

The following (hard) question was suggested by Lackenby:

Question 6.8 We have shown that the isomorphism class of the S2–Reidemeister
graph is a complete knot invariant. Is the quasi-isometry class of the graph a complete
invariant, or if not, to what extent does it distinguish inequivalent knots or detect
interesting properties of the knot?

The following question was asked by D Cimasoni:

Question 6.9 Which knot invariants (such as genus, absolute value of the writhe,
polynomials, : : : ) can be extracted from the R–graphs?

Question 6.10 Does the connectivity of the R–graphs coincide with the minimal
complexity?

Question 6.11 We have exhibited an infinite set of spheres representing nontrivial
elements of H2.CG.K/IZ/ (in Section 4). Are there any embedded closed surfaces of
higher genus? (Note that such surfaces would automatically be nontrivial in homology.)
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