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The Segal conjecture for infinite discrete groups

WOLFGANG LÜCK

We formulate and prove a version of the Segal conjecture for infinite groups. For
finite groups it reduces to the original version. The condition that G is finite is
replaced in our setting by the assumption that there exists a finite model for the
classifying space EG for proper actions. This assumption is satisfied for instance
for word hyperbolic groups or cocompact discrete subgroups of Lie groups with
finitely many path components. As a consequence we get for such groups G that the
zeroth stable cohomotopy of the classifying space BG is isomorphic to the I–adic
completion of the ring given by the zeroth equivariant stable cohomotopy of EG for
I the augmentation ideal.
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0 Introduction

We first recall the Segal conjecture for a finite group G . The equivariant stable coho-
motopy groups �n

G
.X / of a G –CW–complex are modules over the ring �0

G
D �0

G
.�/,

which can be identified with the Burnside ring A.G/. Here and elsewhere � de-
notes the one-point space. The augmentation homomorphism A.G/ ! Z is the
ring homomorphism sending the class of a finite set to its cardinality. The augmen-
tation ideal IG � A.G/ is its kernel. Let �m

G
.X /bIG

be the IG –adic completion
invlimn!1 �

m
G
.X /=In

G
��m

G
.X / of �m

G
.X /.

The following result was formulated as a conjecture by Segal and proved by Carlsson [6].

Theorem 0.1 (Segal conjecture for finite groups) For every finite group G and finite
G–CW–complex X there is an isomorphism

�m
G .X /bIG

Š�! �m
s .EG �G X /:

In particular we get for X D � and mD 0 an isomorphism

A.G/bIG

Š�! �0
s .BG/:
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966 Wolfgang Lück

The purpose of this paper is to formulate and prove a version of it for infinite (discrete)
groups, ie we will show:

Theorem 0.2 (Segal conjecture for infinite groups) Let G be a (discrete) group. Let
X be a finite proper G–CW–complex. Let L be a proper finite-dimensional G–CW–
complex with the property that there is an upper bound on the order of its isotropy
groups. Let f W X !L be a G–map.

Then the map of pro-Z–modules

�m
G.X /W f�

m
G .X /=IG.L/

n
��m

G .X /gn�1
Š�! f�m

s ..EG �G X /.n�1//gn�1

defined in (3.3) is an isomorphism of pro-Z–modules.

In particular we obtain an isomorphism

�m
G .X /1IG.L/

Š �m
s .EG �G X /:

If there is a finite G–CW–model for EG , we obtain an isomorphism

�m
G .EG/2IG.EG/

Š �m
s .BG/:

Here EG is the classifying space for proper G–actions and ��
G
.X / is equivariant stable

cohomotopy as defined in Lück [11, Section 6]. The ideal IG.L/ is the augmentation
ideal in the ring �0

G
.L/; see Definition 3.1. We view ��

G
.X / as a �0

G
.L/–module

by the multiplicative structure on equivariant stable cohomotopy and the map f . We
denote by �m

G
.X /1IG.L/

its IG.L/–completion. More explanations will follow in the
main body of the text.

In [11] various mutually distinct notions of a Burnside ring of a group G are introduced,
which all agree with the standard notion for finite G . If there is a finite G–CW–model
for EG , then the homotopy theoretic definition is A.G/ WD �0

G
.EG/; we define the

ideal IG � A.G/ to be IG.EG/, and we get in this notation from Theorem 0.2 an
isomorphism

A.G/bIG
Š �0

s .BG/:

We will actually formulate for every equivariant cohomology theory H�
?

with multi-
plicative structure a “completion theorem”; see Problem 3.4. It is not expected to be
true in all cases. We give a strategy for its proof in Theorem 4.1. We show that this
applies to equivariant stable cohomotopy, thus proving Theorem 0.2. It also applies to
equivariant topological K–theory, where the completion theorem for infinite groups
has already been proved in Lück and Oliver [16].
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If G is finite, we can take LDEGD�, then Theorem 0.2 reduces to Theorem 0.1. We
will not give a new proof of Theorem 0.1, but use it as input in the proof of Theorem 0.2.

This paper is part of a general program to systematically study equivariant homotopy
theory, which is well-established for finite groups and compact Lie groups, for infinite
groups and noncompact Lie groups. The motivation comes among other things from
the Baum–Connes conjecture and the Farrell–Jones conjecture.
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1 Equivariant cohomology with multiplicative structure

We briefly recall the axioms of a (proper) equivariant cohomology H�
?

theory with
values in R–modules and with multiplicative structure. More details can be found
in [12].

Let G be a (discrete) group. Let R be a commutative ring with unit. A (proper)
G–cohomology theory H�

G
with values in R–modules assigns to any pair .X;A/ of

(proper) G–CW–complexes a Z–graded R–module fHn
G
.X;A/ j n 2 Zg such that

G–homotopy invariance holds and there exist long exact sequences of pairs and long
exact Mayer–Vietoris sequences. Often one also requires the disjoint union axiom,
which we will need not here since all our disjoint unions will be over finite-index sets.

A multiplicative structure is given by a collection of R–bilinear pairings

[W Hm
G .X;A/˝R Hn

G.X;B/!HmCn
G

.X;A[B/:

This product is required to be graded commutative, to be associative, to have a unit
1 2H0

G
.X / for every (proper) G–CW–complex X , to be compatible with boundary

homomorphisms and to be natural with respect to G–maps.

Let ˛W H!G be a group homomorphism. Given an H –space X , define the induction
of X with ˛ to be the G–space ind˛ X which is the quotient of G �X by the right
H –action .g;x/ � h WD .g˛.h/; h�1x/ for h 2H and .g;x/ 2G �X . If ˛W H !G

is an inclusion, we also write indG
H instead of ind˛ .
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968 Wolfgang Lück

A (proper) equivariant cohomology theory H�
?

with values in R–modules consists of
a collection of (proper) G–cohomology theories H�

G
with values in R–modules for

each group G , together with the following so-called induction structure: given a group
homomorphism ˛W H ! G and a (proper) H –CW–pair .X;A/ there are for each
n 2 Z natural homomorphisms

(1:1) ind˛W Hn
G.ind˛.X;A//!Hn

H .X;A/:

If ker.˛/ acts freely on X , then ind˛W Hn
G
.ind˛.X;A//!Hn

H
.X;A/ is bijective for

all n 2 Z. The induction structure is required to be compatible with the boundary
homomorphisms, to be functorial in ˛ and to be compatible with inner automorphisms.

Sometimes we will need the following lemma, whose elementary proof is analogous to
the one in [10, Lemma 1.2].

Lemma 1.2 Consider finite subgroups H;K � G and an element g 2 G with
gHg�1 � K . Let Rg�1 W G=H ! G=K be the G–map sending g0H to g0g�1K

and let c.g/W H !K be the group homomorphism sending h to ghg�1. Denote by
prW .indc.g/WH!K �/!� the projection to the one-point space �.

Then the following diagram commutes:

Hn
G
.G=K/

Hn
G
.R

g�1 /
//

indG
K

��

Hn
G
.G=H /

indG
H

��

Hn
K
.�/

indc.g/ ıHn
K
.pr/

// Hn
H
.�/

Let H�
?

be a (proper) equivariant cohomology theory. A multiplicative structure on it
assigns a multiplicative structure to the associated (proper) G–cohomology theory H�

G

for every group G such that for each group homomorphism ˛W H!G , the maps given
by the induction structure of (1.1) are compatible with the multiplicative structures on
H�

G
and H�

H
.

Example 1.3 (equivariant cohomology theories coming from nonequivariant ones)
Let K� be a (nonequivariant) cohomology theory with multiplicative structure, for
instance singular cohomology or topological K–theory. We can assign to it an equi-
variant cohomology theory with multiplicative structure H�

?
in two ways. Namely,

for a group G and a pair of G–CW–complexes .X;A/, we define Hn
G
.X;A/ by

Kn.Gn.X;A// or by Kn.EG �G .X;A//.
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Example 1.4 (equivariant topological K–theory) In [16], equivariant topological
K–theory is defined for finite proper equivariant CW–complexes in terms of equivariant
vector bundles. It reduces to the classical notion, which appears for instance in [2]. Its
relation to equivariant KK–theory is explained in [17]. This definition is extended to
(not necessarily finite) proper equivariant CW–complexes in [16] in terms of equivariant
spectra using � –spaces and yields a proper equivariant cohomology theory K�

?
with

multiplicative structure, as explained in [12, Example 1.7]. It has the property that for
any finite subgroup H of a group G we have

Kn
G.G=H /DKn

H .�/D

�
RC.H / for n even;
f0g for n odd;

where RC.H / denotes the complex representation ring of H .

Example 1.5 (equivariant stable cohomotopy) In [11, Section 6], equivariant stable
cohomotopy ��

?
is defined for finite proper equivariant CW–complexes in terms of

maps of sphere bundles associated to equivariant vector bundles. For finite G it reduces
to the classical notion. This definition is extended to arbitrary proper G–CW–complexes
by Degrijse–Hausmann–Lück–Patchkoria–Schwede [7], where a systematic study of
equivariant homotopy theory for (not necessarily compact) Lie groups and proper
G–CW–complexes is developed.

Let H � G be a finite subgroup. Recall that by the induction structure we have
�n

G
.G=H /D �n

H
.�/. The equivariant stable homotopy groups �n

H
are computed in

terms of the splitting due to Segal [18, Proposition 2] and tom Dieck [8, Chapter II,
Theorem 7.7 on page 154] by

�H
n D �

H
�n D

M
.K /

�s
�n.BWH K/;

where �s
�n denotes (nonequivariant) stable homotopy and .K/ runs through the conju-

gacy classes of subgroups of H . In particular, we get

j�n
G.G=H /j<1 for n��1; �0

G.G=H /DA.H /; �n
G.G=H /Df0g for n�1;

where A.H / is the Burnside ring.

2 Some preliminaries about pro-modules

It will be crucial to handle pro-systems and pro-isomorphisms and not to pass directly
to inverse limits. In this section we fix our notation for handling pro-R–modules for a
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commutative ring with unit R. For the definitions in full generality see for instance
[1, Appendix] or [4, Section 2].

For simplicity, all pro-R–modules dealt with here will be indexed by the positive
integers. We write fMn; ˛ng, or briefly fMng, for the inverse system

M0
˛1
 �M1

˛2
 �M2

˛3
 �M3

˛4
 � � � � ;

and also write ˛m
n WD ˛mC1 ı � � � ı˛nW Mn!Mm for n>m, and put ˛n

n D idMn
. For

the purposes here, it will suffice (and greatly simplify notation) to work with “strict”
pro-homomorphisms ffngW fMn; ˛ng ! fNn; ˇng, ie a collection of homomorphisms
fnW Mn!Nn for n�1 such that ˇnıfnDfn�1ı˛n holds for each n�2. Kernels and
cokernels of strict homomorphisms are defined in the obvious way, namely levelwise.

A pro-R–module fMn; ˛ng will be called pro-trivial if, for each m � 1, there is
some n � m such that ˛m

n D 0. A strict homomorphism f W fMn; ˛ng ! fNn; ˇng

is a pro-isomorphism if and only if ker.f / and coker.f / are both pro-trivial, or,
equivalently, for each m � 1 there is some n �m such that im.ˇm

n / � im.fm/ and
ker.fn/� ker.˛m

n /. A sequence of strict homomorphisms

fMn; ˛ng
ffng
��! fM 0

n; ˛
0
ng

gn
�! fM 00

n ; ˛
00
ng

will be called exact if the sequences of R–modules Mn
fn
�! Nn

gn
�! M 00

n is exact
for each n � 1, and it is called pro-exact if gn ı fn D 0 holds for n � 1 and the
pro-R–module fker.gn/= im.fn/

	
is pro-trivial.

The elementary proofs of the following two lemmas can be found for instance in
[14, Section 2].

Lemma 2.1 Let 0! fM 0
n; ˛
0
ng
ffng
��! fMn; ˛ng

fgng
��! fM 00

n ; ˛
00
ng ! 0 be a pro-exact

sequence of pro-R–modules. Then there is a natural exact sequence

0! invlim
n�1

M 0
n

invlim
n�1

fn

��������! invlim
n�1

Mn

invlim
n�1

gn

��������! invlim
n�1

M 00
n

ı
�! invlim1

n�1
M 0

n

invlim1
n�1 1fn

����������! invlim1

n�1
Mn

invlim1
n�1 1gn

����������! invlim1

n�1
M 00

n ! 0:

In particular, a pro-isomorphism ffngW fMn; ˛ng ! fNn; ˇng induces isomorphisms

invlim
n�1

fnW invlim
n�1

Mn
Š�! invlim

n�1
Nn; invlim1

n�1
fnW invlim1

n�1
1Mn

Š�! invlim1

n�1
Nn:
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Lemma 2.2 Fix any commutative Noetherian ring R, and any ideal I �R. Then for
any exact sequence M 0!M !M 00 of finitely generated R–modules, the sequence

fM 0=InM 0
g ! fM=InM g ! fM 00=InM 00

g

of pro-R–modules is pro-exact.

3 The formulation of a completion theorem

Consider a proper equivariant G–cohomology theory H�
?

with multiplicative structure.
In the sequel, H� is the nonequivariant cohomology theory with multiplicative structure
given by H�

G
for G D f1g. Notice that H0.�/ is a commutative ring with unit and

Hn
G
.X / is a H0.�/–module. In some future applications H0.�/ will be just Z. In the

sequel, ŒY;X �G denotes the set of G–homotopy classes of G–maps Y !X . Notice
that evaluation at the unit element of G induces a bijection ŒG;X �G Š�! �0.X /. It is
compatible with the left G–actions, which are induced on the source by precomposing
with right multiplication rgW G! G , g0 7! g0g , and on the target by the given left
G–action on X .

So we can represent elements in Gn�0.X / by classes xx of G–maps xW G!X , where
xW G!X and yW G!X are equivalent if for some g 2G , the composite y ı rg is
G–homotopic to x .

Definition 3.1 (augmentation ideal) For any proper G–CW–complex X , define the
augmentation module In

G
.X /�Hn

G
.X / to be the kernel of the map

Hn
G.X /

Q
xx2Gn�0.X/

indf1g!G ıHn
G
.x/

���������������������!

Y
xx2Gn�0.X /

Hn.�/:

(The composite above is independent of the choice of x 2 xx by G–homotopy invariance
and Lemma 1.2.) If nD0, the map above is a ring homomorphism and IG.X / WDI0

G
.X /

is an ideal called the augmentation ideal.

Given a G–map f W X ! Y , the induced map Hn
G
.f /W Hn

G
.Y /!Hn

G
.X / restricts to

a map In
G
.Y /! In

G
.X /.

We will need the following elementary lemma:

Lemma 3.2 Let X be a CW–complex of dimension n� 1. Then any n–fold product
of elements in I�

G
.X / is zero.

Algebraic & Geometric Topology, Volume 20 (2020)
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Proof Write X D Y [A, where Y and A are closed subsets, Y contains X .n�2/

as a homotopy deformation retract, and A is a disjoint union of .n�1/–disks. Fix
elements v1; v2; : : : ; vn2I�

G
.X /. We can assume by induction that v1 � � � vn�1 vanishes

after restricting to Y , and hence that it is the image of an element u 2 H�
G
.X;Y /.

Also, vn clearly vanishes after restricting to A, and hence is the image of an element
v 2 H�

G
.X;A/. The product of v1 � � � vn�1 and vn is the image in H�

G
.X / of the

element uv 2H�
G
.X;Y [A/DH�

G
.X;X /D 0, and so v1 � � � vn D 0.

Now fix a map f W X !L between G–CW–complexes. Consider H�
G
.X / as a module

over the ring H0
G
.L/. Consider the composition

IG.L/
n
�Hm

G .X /
i
�!Hm

G .X /
Hm

G
.pr/

�����!Hm
G .EG �X /

.indG!f1g/
�1

���������!Hm.EG �G X /
Hm.j/
����!Hm..EG �G X /.n�1//;

where i and j denote the inclusions, pr the projection and .EG �G X /.n�1/ is the
.n�1/–skeleton of EG �G X . This composite is zero because of Lemma 3.2 since
its image is contained in In..EG �G X /.n�1//. Thus we obtain a homomorphism of
pro-H0.�/–modules,

(3:3) �m
G.f W X !L/W fHm

G .X /=IG.L/
n
�Hm

G .X /gn�1

! fHm
G ..EG �G X /.n�1//gn�1:

We will sometimes write �m
G

or �m
G
.X / instead of �m

G
.f W X ! L/, if the map

f W X !L is clear from the context. Notice that the target of �m
G
.f W X!L/ depends

only on X and not on the map f W X !L, whereas the source does depend on f .

Problem 3.4 (completion problem) Under which conditions on H�
?

and L is the
map of pro-H0.�/–modules �m

G
.f W X ! L/, defined in (3.3), an isomorphism of

pro-H0.�/–modules?

Remark 3.5 (consequences of the completion theorem) Suppose that the map of pro-
H0.�/–modules �m

G
.X / defined in (3.3) is an isomorphism of pro-H0.�/–modules.

Obviously the pro-module fHm
G
.X /=IG.L/

n �Hm
G
.X /gn�1 satisfies the Mittag-Leffler

condition since all structure maps are surjective. This implies that its lim1 –term
vanishes. We conclude from Lemma 2.1 that

invlim1

n!1
Hm..EG �G X /.n�1//D 0;

invlim
n!1

Hm..EG �G X /.n�1//Š invlim
n!1

Hm
G .X /=IG.L/

n
�Hm

G .X /:
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Milnor’s exact sequence

0! invlim1

n!1
Hm�1..EG �G X /.n�1//!Hm.EG �G X /

! invlim
n!1

Hm..EG �G X /.n�1//! 0

implies that we obtain an isomorphism

Hm.EG �G X /Š invlim
n!1

Hm
G .X /=IG.L/

n
�Hm

G .X /:

Remark 3.6 (taking LDEG ) The classifying space EG for proper G–actions is a
proper G–CW–complex such that the H –fixed point set is contractible for every finite
subgroup H � G . It has the universal property that for every proper G–CW–complex
X there is, up to G–homotopy, precisely one G–map f W X ! EG . Recall that a
G–CW–complex is proper if and only if all its isotropy groups are finite, and is finite
if and only if it is cocompact. There is a cocompact G–CW–model for the classifying
space EG for proper G–actions if, for instance, G is word-hyperbolic in the sense
of Gromov, or if G is a cocompact subgroup of a Lie group with finitely many path
components, or if G is a finitely generated one-relator group, or if G is an arithmetic
group, a mapping class group of a compact surface or the group of outer automorphisms
of a finitely generated free group. For more information about EG we refer for instance
to [5] and [13].

Suppose that there is a finite model for the classifying space of proper G–actions EG .
Then we can apply this to idW EG!EG and obtain an isomorphism

Hm.BG/Š invlim
n!1

Hm
G .EG/=IG.EG/n �Hm

G .EG/:

Remark 3.7 (the free case) The statement of the completion theorem as stated in
Problem 3.4 is always true for trivial reasons if X is a free finite G–CW–complex.
Then induction induces an isomorphism

indG!f1gW Hm.GnX / Š�!Hm
G .X /:

Since I.GnX /n D 0 for large enough n by Lemma 3.2, the canonical map

fHm.GnX /gn�1
Š�! fHm.GnX /=IG.L/

n
�Hm.GnX /gn�1

with the constant pro-H0.�/–module as source is an isomorphism. Hence the source of
�m

G
.f W G!X / can be identified with constant pro-H0.�/–module fHm.GnX /gn�1 .
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The projection EG �G X !GnX is a homotopy equivalence and induces an isomor-
phism of pro-Z–modules

fHm..GnX /.n�1//gn�1
Š�! fHm..EG �G X /.n�1//gn�1:

Since GnX is finite-dimensional, the canonical map

fHm.GnX /gn�1
Š�! fHm..GnX /.n�1//gn�1

is an isomorphism of pro-Z–modules. Hence also the target of �m
G
.f W G!X / can be

identified with the constant pro-H0.�/–module fHm.GnX /gn�1 . One easily checks
that under these identifications, �m

G
.f W G!X / is the identity.

Hence the completion theorem is only interesting in the case where G contains torsion.

4 A strategy for a proof of a completion theorem

Theorem 4.1 (strategy for the proof of Theorem 0.2) Let H?
� be an equivariant

cohomology theory with values in R–modules and with a multiplicative structure. Let
L be a proper G–CW–complex. Let F.L/ be the family of subgroups of G given by
fH �G jLH ¤∅g, and suppose that the following conditions are satisfied:

(1) The ring H0.�/ is Noetherian.

(2) For any H 2F.L/ and m 2Z, the H0.�/–module Hm
H
.�/ is finitely generated.

(3) Let H 2 F.L/, let P �H0
H
.�/ be a prime ideal, and let f W G=H !L be any

G–map. Then the augmentation ideal

I.H /D ker
�
H0

H .�/
H0

H
.pr/

�����!H0
H .H /

indf1g!H

������!H0.�/
�

is contained in P if H0
G
.L/

H0
G
.f /

�����!H0
G
.G=H /

indG!f1g

������!H0
H
.�/ maps IG.L/

into P .

(4) The completion theorem is true for every finite group H with H 2 F.L/ in the
case where X D L D � and f D idW � ! �. In other words, for every finite
group H with LH ¤∅, the map of pro-H0.�/–modules

�m
H .�/W fH

m
H .�/=I.H /ngn�1! fHm..BH /.n�1//gn�1

defined in (3.3) is an isomorphism of pro-H0.�/–modules.
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Then, under the conditions above, the completion theorem is true for H?
� and every

G–map f W X ! L from a finite proper G–CW–complex X to L; ie the map of
pro-H0.�/–modules

�m
G.X /W fH

m
G .X /=IG.L/

n
�Hm

G .X /gn�1! fHm
G ..EG �G X /.n�1//gn�1

defined in (3.3) is an isomorphism of pro-H0.�/–modules.

Proof We first prove the completion theorem for X D G=H , ie for any a G–map
f W G=H!L. Obviously H belongs to F.L/. The following diagram of pro-modules
commutes:

fHm
G
.G=H /=IG.L/

n�Hm
G
.G=H /gn�1

findH!Ggn�1

��

�m
G
.f WG=H!L/

// fHm..EG�GG=H /.n�1//gn�1

fHm
H
.�/=IG.L/

n�Hm
H
.�/gn�1

pr

��

fHm
H
.�/=I.H /n�Hm

H
.�/gn�1

�m
H
.idW �!�/

// fHm..BH /.n�1//gn�1

fHm
G
.pr/gn�1

OO

where pr denotes the obvious projection. The lower horizontal arrow is an isomorphism
of pro-modules by condition (4). The right vertical arrow and the upper-left vertical
arrow are obviously isomorphisms of pro-modules. Hence the upper horizontal arrow
is an isomorphism of pro-modules if we can show that the lower-left vertical arrow is
an isomorphism of pro-modules.

Let If be the image of IG.L/ under the composite of ring homomorphisms,

H0
G.L/

H0
G
.f /

�����!H0
G.G=H /

indH!G
������!H0

H .�/:

Let Jf be the ideal in H0
H
.�/ generated by If . Obviously If � Jf � I.H /. Then

the lower-left vertical arrow is the composite

Hm
H .�/=IG.L/

n
�Hm

H .�/!Hm
H .�/=.Jf /

n
�Hm

H .�/!Hm
H .�/=I.H /n �Hm

H .�/;

where the first map is already levelwise an isomorphism, and in particular an isomor-
phism of pro-modules. In order to show that the second map is an isomorphism of
pro-modules, it remains to show that I.H /k � Jf for an appropriate integer k � 1.
Equivalently, we want to show that the ideal I.H /=Jf of the quotient ring H0

H
.�/=Jf
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is nilpotent. Since H0
H
.�/ is Noetherian by conditions (1) and (2), the ideal I.H /=Jf is

finitely generated. Hence it suffices to show that I.H /=Jf is contained in the nilradical,
ie the ideal consisting of all nilpotent elements, of H0

H
.�/=Jf . The nilradical agrees

with the intersection of all the prime ideals of H0
H
.�/=Jf by [3, Proposition 1.8]. The

preimage of a prime ideal in H0
H
.�/=Jf under the projection H0

H
.�/!H0

H
.�/=Jf

is again a prime ideal. Hence it remains to show that any prime ideal of H0
H
.�/ which

contains If also contains I.H /. But this is guaranteed by condition (3). This finishes
the proof in the case X DG=H .

The general case of a G–map f W X ! L from a finite G–CW–complex X to a
G–CW–complex L is done by induction over the dimension r of X and subinduction
over the number of top-dimensional equivariant cells. For the induction step we write
X as a G–pushout

G=H �Sr�1 q
//

j

��

Y

k

��

G=H �Dr Q
// X

In the sequel we equip G=H �Sr�1, Y and G=H �Dr with the maps to L given by
the composite of f W X ! L with k ı q , k and Q. The long exact Mayer–Vietoris
sequence of the G–pushout above is a long exact sequence of H0

G
.L/–modules and

looks like

� � � !Hm�1.G=H �Dr /˚HmC1
G

.Y /!Hm�1
G .G=H �Sr�1/!Hm

G .X /

!Hm
G .G=H �Dr /˚Hm

G .Y /!Hm
G .G=H �Sr�1/! � � � :

Condition (2) implies that Hm
G
.G=H / and Hm

G
.G=H �Dr / are finitely generated as

H0.�/–modules. Since H0.�/ is Noetherian by condition (1), the H0.�/–module
Hm

G
.X / is finitely generated provided that the H0.�/–module Hm

G
.Y / is finitely gen-

erated. Thus we can show inductively that the H0.�/–module Hm
G
.X / is finitely

generated for every m 2 Z. In particular, the ring H0
G
.X / is Noetherian. Let

J � H0
G
.X / be the ideal generated by the image of IG.L/ under the ring homo-

morphism H0
G
.L/!H0

G
.X /. Then for every H0

G
.X /–module, the obvious map

fM=IG.L/
n
�M gn�1! fM=J n

�M gn�1

is levelwise an isomorphism, and in particular an isomorphism of H0
G
.X /–modules.

We conclude from Lemma 2.2 that the following sequence of pro-H0.�/–modules is
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exact, where M=I stands for M=I �M :

(4:2) � � � ! fHm�1.G=H �Dr /=IG.L/gn�1˚fHm�1
G .Y /=IG.L/gn�1

! fHm�1
G .G=H �Sr�1/=IG.L/gn�1! fHm

G .X /=IG.L/gn�1

! fHm
G .G=H �Dr /=IG.L/gn�1˚fHm

G .Y /=IG.L/gn�1

! fHm
G .G=H �Sr�1/=IG.L/gn�1! � � � :

Applying EG.n�1/ �G � to the G–pushout above yields a pushout and thus a long
exact Mayer–Vietoris sequence

� � � !Hm�1
�
EG.n�1/ �G .G=H �Dr /

�
˚Hm�1

G .EG.n�1/ �G Y /

!Hm�1
G

�
EG.n�1/ �G .G=H �Sr�1/

�
!Hm

G .EG.n�1/ �G X /

!Hm
G

�
EG.n�1/ �G .G=H �Dr /

�
˚Hm

G .EG.n�1/ �G Y /

!Hm
G

�
EG.n�1/ �G .G=H �Sr�1/

�
! � � � :

For any finite-dimensional G–CW–complex Z , the obvious map

fHm
G .EG.n�1/ �G Z/gn�1

Š�! fHm
G ..EG �G Z/.n�1//gn�1

is an isomorphism of pro-H0.�/–modules. Hence we obtain a long exact sequence of
pro-H0.�/–modules

(4:3) � � �!
˚
Hm�1

G

��
EG�G.G=H�Dr /

�
.n�1/

�	
n�1
˚
˚
Hm

G

�
.EG�GY /.n�1/

�	
n�1

!
˚
Hm�1

G

��
EG�G.G=H�Sr�1/

�
.n�1/

�	
n�1
!
˚
Hm

G

�
.EG�GX /.n�1/

�	
n�1

!
˚
Hm

G

��
EG�G.G=H�Dr /

�
.n�1/

�	
n�1
˚
˚
Hm

G

�
.EG�GY /.n�1/

�	
n�1

!
˚
Hm

G

��
EG�G.G=H�Sr�1/

�
.n�1/

�	
n�1
!� � � :

Now the various maps �m
G

induce a map from the long exact sequence of pro-H0.�/–
modules (4.2) to the long exact sequence of pro-H0.�/–modules (4.3). The maps for
G=H�Sr�1, G=H�Dr and Y are isomorphisms of pro-H0.�/–modules by induction
hypothesis and by G–homotopy invariance applied to the G–homotopy equivalence
G=H �Dr !G=H . By the five lemma for maps of pro-modules, the map

�m
G.X /W fH

m
G .X /=IG.L/

n
�Hm

G .X /gn�1!
˚
Hm

G

�
.EG �G X /.n�1/

�	
n�1

is an isomorphism of pro-H0.�/–modules. This finishes the proof of Theorem 4.1.

The next lemma will be needed to check condition (3) appearing in Theorem 4.1.
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Given a G–cohomology theory H�
G

, there is an equivariant version of the Atiyah–
Hirzebruch spectral sequence of H0.�/–modules which converges to HpCq.L/ in the
usual sense provided that L is finite-dimensional, and whose E2 –term is

E
p;q
2
WDH

p
G
.LIHq

G
.G=?//;

where H
p
G
.X IHq

G
.G=?// is the Bredon cohomology of L with coefficients in the

ZOr.G/–module sending G=H to Hq
G
.G=H /. If H�

G
comes with a multiplicative

structure, then this spectral sequence comes with a multiplicative structure.

Lemma 4.4 Suppose that L is an l –dimensional proper G–CW–complex for some
positive integer l . Suppose that for r D 2; 3; : : : ; l , the differential appearing in the
Atiyah–Hirzebruch spectral sequence for L and H�

G
,

d0;0
r W E

0;0
r !Er;1�r

r ;

vanishes rationally.

(1) Then we can find for a given x 2H 0
G
.LIH0

G
.G=?// a positive integer k such

that xk is contained in the image of the edge homomorphism

edge0;0
W H0

G.L/!H 0
G.LIH

0
G.G=?//:

(2) Let H 2 F.L/, let P �H0
H
.�/ be a prime ideal and let f W G=H !L be any

G–map. Suppose that the augmentation ideal

I.H /D ker
�
H0

H .�/
H0

H
.pr/

�����!H0
H .H /

indf1g!H

������!H0.�/
�

is contained in P if P contains the image of the inverse limit over the orbit
category Or.GIF.L// associated to the family F.L/, under the structure map
for H ,

�H W invlim
G=K2Or.GIF.L//

I.K/! I.H /:

Then condition (3) appearing in Theorem 4.1 is satisfied for H , P and f .

Proof (1) Consider x 2H 0
G
.LIH0

G
.G=?//. We inductively construct positive inte-

gers k1; k2; : : : ; kl such that

x
Qr

iD1 ki 2E
0;0
rC1

for r D 1; 2; : : : ; l:

Put k1D 1. We have H 0
G
.LIH0

G
.G=?//DE

0;0
2

and hence xD x1D x
Q1

iD1 ki 2E
0;0
2

.
This finishes the induction base step at r D 1.
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In the induction step from r � 1 to r � 2, we can assume that we have already
constructed k1; : : : ; kr�1 and shown that x

Qr�1
iD1 ki belongs to E

0;0
r . Now choose kr

with kr � d
0;0
r

�
x
Qr�1

iD1 ki
�
D 0. This is possible since by assumption d

0;0
r ˝Z idQ D 0.

For any element y 2E
0;0
r , one checks inductively for j D 1; 2; : : : that

d0;0
r .yj /D j � d0;0

r .y/ �yj�1:

This implies

d0;0
r

�
x
Qr

iD1 ki
�
D d0;0

r

��
x
Qr�1

iD1 ki
�kr
�
D kr � d

0;0
r

�
x
Qr�1

iD1 ki
�
�
�
x
Qr�1

iD1
�kr�1

D 0:

Since E
0;0
rC1

is the kernel of d
0;0
r W E

0;0
r ! E

0;0
rC1

, we conclude x
Qr

iD1 ki 2 E
0;0
rC1

.
Since L is l –dimensional, we get for k D

Ql
iD1 ki that xk 2E

0;0
1 . Since E

0;0
1 is the

image of the edge homomorphism edge0;0, assertion (1) follows.

(2) Consider the commutative diagram

H 0
G

�
EF.L/.G/IH0

G
.G=?/

�
H 0

G
.u/

��

˛

Š
// invlimG=K2Or.GIF.L//H

0
K
.�/

ˆH

��

H0
G
.L/

edge0;0

//

H0
G
.f /

��

H 0
G
.LIH0

G
.G=?//

H 0
G
.f /

��

H0
G
.G=H /

edge0;0

Š
//

indH!G

Š

++

H 0
G
.G=H IH0

G
.G=?//

indH!G ıH
0
G
.iH /

''

H0
H
.�/

Here ˛ is the isomorphism which sends v 2H 0
G

�
EF.L/.G/IH0

G
.G=?/

�
to the system

of elements that is, for G=K 2Or.GIF.L//, the image of v under the homomorphism

H 0
G

�
EF.L/.G/IH0

G.G=?/
� H 0

G
.iK /

�����!H 0
G.G=KIH

0
G.G=?//

.edge0;0/�1

�������!H0
G.G=K/

indf1g!K

������!H0
K .�/

for the unique (up to G–homotopy) G–map iK W G=K ! EF.L/.G/. The G–map
uW L!EF.L/.G/ is the unique (up to G–homotopy) G–map from L to the classifying
space of the family F.L/, and ˆH is the structure map of the inverse limit for H . We
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have to prove that I.H / is contained in the prime ideal P provided that P contains
the image of IG.L/ under the composite

H0
G.L/

H0
G
.f /

�����!H0
G.G=H /

indH!G
������!H0

H .�/:

Consider a 2 invlimG=K2Or.GIF.L// I.K/. Let x 2 H 0
G
.LIH0

G
.G=?// be the image

of a under the composite

invlim
G=K2Or.GIF.L//

I.K/ �! invlim
G=K2Or.GIF.L//

H0
K .�/

˛�1

��!H 0
G.EF.L/.G/IH0

G.G=?//

H 0
G
.uIH0

G
.G=?//

�����������!H 0
G.LIH

0
G.G=?//:

We conclude from assertion (1) that for some positive number k , there is an element
y 2H0

G
.L/ with edge0;0.y/D xk . One easily checks that y belongs to IG.L/, just

inspecting the diagram above for H D f1g. Hence the composite

H0
G.L/

H0
G
.f /

�����!H0
G.G=H /

indH!G
������!H0

H .�/

maps y to P by assumption. An easy diagram chase shows that

�H W invlim
G=K2Or.GIF.L//

I.K/! I.H /

maps ak to P . Since P is a prime ideal and �H is multiplicative, �H sends a to P .
Hence the image of �H W invlimG=K2Or.GIF.L// I.K/! I.H / lies P . Hence we get
by assumption I.H /� P . This finishes the proof of Lemma 4.4.

5 The Segal conjecture for infinite groups

In this section we prove the Segal conjecture for infinite groups, Theorem 0.2. It is just
the completion theorem formulated in Problem 3.4 for equivariant stable cohomotopy
H�

?
D ��

?
under the conditions that there is an upper bound on the orders of finite

subgroups on L, and L has finite dimension.

Proof of Theorem 0.2 We want to apply Theorem 4.1 and therefore have to prove
conditions (1), (2), (3) and (4) appearing there.

Condition (1) is satisfied because of �0
s .�/D Z.

Condition (2) is satisfied because of Example 1.5.
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Next we prove condition (3). Recall the assumption that there is an upper bound on
the orders of finite subgroups of L and that L is finite-dimensional. Recall that F.L/
denotes the family of finite subgroups H � G with LH ¤ ∅. By Example 1.5 we
can find, for every q 2 Z with q ¤ 0, a positive integer C.q/ such that the order
of �q

H
.�/ divides C.q/ for every H 2 F.L/. Furthermore recall that L is finite-

dimensional. Consider the equivariant cohomological Atiyah–Hirzebruch spectral
sequence converging to �pCq

G
.L/. Its E2 –term is given by

E
p;q
2
DH

p
G
.LI�

q
G
.�//:

Therefore E
r;1�r
r is annihilated by multiplication with C.1� r/ and hence rationally

trivial for r � 2. Hence for r � 2 the differential

d0;0
r W E

0;0
r !Er;1�r

r

vanishes rationally. We have shown that the conditions appearing in Lemma 4.4 are
satisfied. Hence in order to verify condition (3), it suffices to prove, for any family F
of subgroups of G with the property that there exists an upper bound on the orders of
subgroups appearing F , for any H 2 F , and for any prime ideal P of the Burnside
ring A.H /, that P contains the augmentation ideal IH provided P contains the image
of the structure map for H of the inverse limit

�H W invlim
G=K2Or.GIF/

IK ! IH :

Fix a finite group H . We begin by recalling some basics about the prime ideals in the
Burnside ring A.H /, taken from [9]. In the sequel, p is a prime number or p D 0.
For a subgroup K �H , let P.K;p/ be the preimage of p �Z under the character map
for K ,

charH
K W A.H /! Z; ŒS � 7! jSK

j:

This is a prime ideal, and each prime ideal of A.H / is of the form P.K;p/. If
P.K;p/ D P.L; q/, then p D q . If p is a prime, then P.K;p/ D P.L;p/ if and
only if .KŒp�/D .LŒp�/, where KŒp� is the minimal normal subgroup of K with a
p–group as quotient. Notice for the sequel that KŒp� D f1g if and only if K is a
p–group. If p D 0, then P.K;p/D P.L;p/ if and only if .K/D .L/.

Fix a prime ideal P D P.K;p/. Choose a positive integer m such that jH j divides m

for all H 2 F . Fix H 2 F . Choose a free H –set S together with a bijection
uW S Š�! Œm�, where Œm� D f1; 2; : : : ;mg. Such an S exists since jH j divides m
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and we can take for S the disjoint union of m=jH j copies of H . Thus we obtain an
injective group homomorphism

�uW H ! Sm; h 7! u ı lh ıu�1;

where lhW S ! S is given by left multiplication with h and Sm D aut.Œm�/ is the
group of permutations of Œm�. Let SmŒ�u� denote the H –set obtained from Sm

by the H –action h � � WD �u.h/ ı � . Let Sylp.Sm/ be the p–Sylow subgroup
of Sm . Let Sm=Sylp.Sm/Œ�u� denote the H –set obtained from the homogeneous
space Sm=Sylp.Sm/ by the H –action given by h � x� D �u.h/ ı � . The H –action on
SmŒ�u� is free. If for K � H we have .Sm=Sylp.Sm/Œ�u�/

K ¤ ∅, then for some
� 2 Sm we get �u.K/� � �Sylp.Sm/ � �

�1 , and hence K must be a p–group.

Suppose that T is another free H –set together with a bijection vW T Š�! Œm�. Then we
can choose an H –isomorphism wW S ! T . Let � 2 Sm be given by the composition
vıwıu�1 . Then c.�/ı�uD �v holds, where c.�/W Sm!Sm sends � to � ı� ı��1 .
Moreover, left multiplication with � induces isomorphisms of H –sets

SmŒ�u�ŠH SmŒ�v � and Sm=Sylp.Sm/Œ�u�ŠH Sm=Sylp.Sm/Œ�v �:

Hence we obtain elements in A.H /,

ŒSm� WD ŒSmŒ�u�� and ŒSm=Sylp.Sm/� WD ŒSm=Sylp.Sm/Œ�u��;

which are independent of the choice of S and uW S Š�! Œm�. If i W H0 ! H1 is
an injective group homomorphism between elements in F , then one easily checks
that the restriction homomorphism A.i/W A.H1/! A.H0/ sends ŒSm� to ŒSm� and
ŒSm=Sylp.Sm/� to ŒSm=Sylp.Sm/�. Thus we obtain elements

ŒŒSm��; ŒŒSm=Sylp.Sm/�� 2 invlim
G=K2Or.GIF/

A.K/:

Define elements

jSmj � 1; jSm=Sylp.Sm/j � 1 2 invlim
G=K2Or.GIF/

A.K/

by the collection of elements jSmj � ŒK=K� and jSm=Sylp.Sm/j � ŒK=K� in A.K/ for
K 2 F . Thus we get elements

ŒŒSm��� jSmj � 1; ŒŒSm=Sylp.Sm/��� jSm=Sylp.Sm/j � 1 2 invlim
G=K2Or.GIF/

IK :

The image of ŒŒSm�� � jSmj � 1 (resp. ŒŒSm=Sylp.Sm/�� � jSm=Sylp.Sm/j � 1) under
the structure map of the inverse limit invlimG=K2Or.GIF/ IK for the object G=H 2
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Or.GIF/ is ŒSm�� jSmj � ŒH=H � (resp. ŒSm=Sylp.Sm/�� jSm=Sylp.Sm/j � ŒH=H �).
Hence, by assumption,

ŒSm�� jSmj � ŒH=H � 2 P.K;p/;

ŒSm=Sylp.Sm/�� jSm=Sylp.Sm/j � ŒH=H � 2 P.K;p/:

Therefore charH
K W A.H /! Z sends both ŒSm�� jSmj � ŒH=H � and ŒSm=Sylp.Sm/��

jSm=Sylp.Sm/j � ŒH=H � to elements in pZ. Since charH
K .ŒSm� � jSmj � ŒH=H �/ D

0� jSmj for K ¤ f1g, we conclude that K D f1g or that p ¤ 0. If K D f1g, then
I.H /DP.f1g; 0/ is contained in P.K;p/. Suppose that K¤ f1g. Then p is a prime.
We have

charH
K

�
ŒSm=Sylp.Sm/�� jSm=Sylp.Sm/j � ŒH=H �

�
D j.Sm=Sylp.Sm//

K
j � jSm=Sylp.Sm/j:

Since this integer must belong to pZ and jSm=Sylp.Sm/j is relatively prime to p , we
get .Sm=Sylp.Sm//

K ¤∅. Hence K must be a p–group. This implies P.K;p/D
P.f1g;p/ and therefore I.H / D P.f1g; 0/ � P.K;p/. This finishes the proof of
condition (3).

Condition (4) follows from the proof of the Segal conjecture for a finite group H due
to Carlsson [6]. This finishes the proof of Theorem 0.2.

6 An improved strategy for a proof of a completion theorem

The next result follows from Theorem 4.1, Lemma 4.4 and a construction of a modified
Chern character analogous to the one in [12, Theorem 4.6 and Lemma 6.2], which will
ensure that the condition about the differentials in the equivariant Atiyah–Hirzebruch
spectral sequence appearing in Lemma 4.4 is satisfied. We do not give more details here,
since the interesting cases of the Segal conjecture and of the Atiyah–Segal completion
theorem are already covered by Theorem 0.2 and [16].

Let G be a (discrete) group. Let F be a family of subgroups of G such that there is
an upper bound on the orders of the subgroups appearing F . Let H?

� be an equivariant
cohomology theory with values in R–modules which satisfies the disjoint-union axiom.
Define a contravariant functor

(6:1) Hq
?
.�/W FGINJ!R–MODULES;
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with the category FGINJ of finite groups with injective group homomorphism as
source, by sending an injective homomorphism ˛W H !K to the composite

Hq
K
.�/

Hq.pr/
����!Hq

K
.K=H /

ind˛
��!Hq

H
.�/;

where prW H=K D ind˛.�/!� is the projection and ind˛ comes from the induction
structure of H�

?
. Assume that H?

� comes with a multiplicative structure.

Theorem 6.2 (improved strategy for the proof of Theorem 0.2) Suppose that the
following conditions are satisfied.

(1) The ring H0.�/ is Noetherian.

(2) Let H �G be any finite subgroup and m 2 Z be any integer. Then the H0.�/–
module Hm

H
.�/ is finitely generated, there exists an integer C.H;m/ such that

multiplication with C.H;m/ annihilates the torsion submodule torsZ.Hm
H
.�//

of the abelian group Hm
H
.�/, and the R–module Hm

H
.�/=torsZ.Hm

H
.�// is

projective.

(3) Let H be any element of F . Let P � H0
H
.�/ be any prime ideal. Then the

augmentation ideal

I.H /D ker
�
H0

H .�/!H0
H .H / Š�!H0.�/

�
is contained in P if P contains the image of the inverse limit under the structure
map for H ,

�H W invlim
G=K2Or.GIF/

I.K/! I.H /:

(4) The completion theorem is true for every finite group H in the case X DLD �

and f D idW �!�, ie for every finite group H , the map of pro-H0.�/–modules

�m
H .�/W fH

m
H .�/=I.H /ngn�1! fHm..BH /.n�1//gn�1

defined in (3.3) is an isomorphism of pro-H0.�/–modules.

(5) The covariant functor (6.1) extends to a Mackey functor.

Then the completion theorem is true for H?
� and every G–map f W X !L from a finite

proper G–CW–complex X to a proper finite-dimensional G–CW–complex L with the
property that there is an upper bound on the order of its isotropy groups; ie the map of
pro-H0.�/–modules

�m
G.X /W fH

m
G .X /=IG.L/

n
�Hm

G .X /gn�1!
˚
Hm

G

�
.EG �G X /.n�1/

�	
n�1

defined in (3.3) is an isomorphism of pro-H0.�/–modules.
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Remark 6.3 The advantage of Theorem 6.2 in comparison with Theorem 4.1 is that
the conditions do not involve L and f W X ! L anymore, and only depend on the
functor Hq

?
.�/W FGINJ ! Z -MODULES. If one considers the case R D Z and

assumes H0.�/DZ, then condition (1) is obviously satisfied and condition (2) reduces
to the condition that for any finite subgroup H �G and any integer m 2Z the abelian
group Hm

H
.�/ is finitely generated.

Remark 6.4 (family version) We mention without proof that there is a also a family
version of Theorem 0.2. Its formulation is analogous to the one of the family version
of the Atiyah–Segal completion theorem for infinite groups; see [15, Section 6].
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