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Ribbon distance and Khovanov homology

SUCHARIT SARKAR

We study a notion of distance between knots, defined in terms of the number of
saddles in ribbon concordances connecting the knots. We construct a lower bound on
this distance using the X —action on Lee’s perturbation of Khovanov homology.

57TM25

1 Introduction

Ever since its inception, Khovanov homology [12], a categorification of the Jones
polynomial, has attracted tremendous interest and has produced an entire new field of
research. It has been generalized in several orthogonal directions (see Bar-Natan [3],
Khovanov [13], Khovanov and Rozansky [15] and Lee [17]) and continues to generate
intense activity. While the primary focus of the field has been categorification of
various low-dimensional topological invariants — endowing them with new algebraic
and higher categorical structure —it has also produced a small number of stunning
applications in low-dimensional topology as a byproduct. Specifically, Lee’s perturba-
tion of Khovanov homology has been instrumental in producing several applications
for knot cobordisms; the author’s personal favorites are Rasmussen’s proof of the
Milnor conjecture [23] (bypassing the earlier gauge-theoretic proof by Kronheimer and
Mrowka) and Piccirillo’s proof that the Conway knot is not slice [22].

We define a notion of distance between knots, using the number of saddles in ribbon
concordances connecting the knots. This distance is finite if and only if the knots are
concordant, but it is hard to find examples of knots arbitrarily large finite distance apart.
Using the X —action on Lee’s perturbation of Khovanov homology, we construct a
lower bound on this distance, which is the main result of this paper.

Theorem 1.1 If d is the ribbon distance (defined in Section 3) between knots K
and K’, then
(2X)?Kh(K) = 2X)?Kho(K'),

where Kh ¢ is Lee’s perturbation of Khovanov homology.
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1042 Sucharit Sarkar

In particular, the distance of K from the unknot defines a notion of complexity for K,
which produces lower bounds for many classical notions of knot complexities like band
number, ribbon number and bridge index, and it itself has a lower bound coming from
Khovanov homology. (Coincidentally, this lower bound agrees with the lower bound
on unknotting number from Alishahi and Dowlin [1].)

Corollary 1.2 For any knot K, and over any field F with 2 # 0, the extortion
order xo(K) (defined in Section 5) is a lower bound for the ribbon distance of K from
the unknot.

Acknowledgements There has been a sudden abundance of short cute papers on
applications of modern knot homology theories to knot cobordisms, and in particular
ribbon concordances [24; 1; 19; 18]; the present paper is a result of the author’s desire
to jump on the bandsumwagon. Some of the ideas of this paper are recycled from
the abovementioned papers, and therefore, he is grateful to their authors. He would
also like to thank Brendan Owens for pointing out some lower bounds for the band
number, Ciprian Manolescu for some computations, Robert Lipshitz for suggesting the
wordplay in this paragraph, and the referee for several helpful comments.

The author was supported by NSF Grant DMS-1643401.

2 Knot cobordisms

A cobordism from a link Ko C R3x{0} toalink K; C R?x{1} is a properly embedded
oriented surface F C R? x [0, 1] with boundary the union of K; and the orientation-
reversal of Kg.! Call the projection 7;: R* x [0, 1] — [0, 1] the time function, and
assume 7| F is Morse; its index 0, 1 and 2 critical points are called births, saddles
and deaths. The cobordism may be viewed as a movie as time runs from 0 to 1. For
regular values ¢ of ;|p, K; := F N (R3 x {t}) is a link; K, changes by isotopy with
time, with the following local modifications occurring at births, saddles, and deaths:

= O > </ e g O =
i
V|

I'We are working with cobordisms in R3 x [0, 1] as opposed to the more standard S3 x [0, 1] for a
couple of reasons: naturality of Khovanov cobordism maps has only been established in R3 x [0, 1] (even
up to sign); and a subtle sign discrepancy for dotted cobordism maps can be resolved in R3 x [0, 1].
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Ribbon distance and Khovanov homology 1043

We usually work with the projection 7g: R? x R x [0, 1] — R?, and represent each
K; C R3 x {t} by the link diagram 7 (K,). We then represent the cobordism as a
movie of link diagrams; usually wg(K;) changes by planar isotopy with time, with
Reidemeister moves and the above moves happening at certain time instances (which
by genericity we will assume to be distinct). Two such movies represent isotopic
cobordisms (relative Ky and K1) if and only if they are related by a sequence of movie
moves [5].

If F is diffeomorphic to a cylinder, then F is said to be a concordance® from the
knot K to the knot K;. The concordance is said to be ribbon if there are no births [8].
The famous slice-ribbon conjecture states that every slice knot has a ribbon concordance
to the unknot.

We will also be interested in dotted cobordisms, that is, cobordisms F decorated with
finite number of dots in the interior. We can also represent them by movies of link
diagrams, except now dots are present at certain instances. As before, by genericity,
we will assume these instances are separate from the births, saddles, deaths, and the
Reidemeister moves; moreover, at each such ¢, the link K; contains exactly one dot
and its projection to the link diagram 7 g(K;) is away from the crossings.

Lemma 2.1 Assume F and F’ are dotted cobordisms (in generic position) with the
same underlying surface and the same number of dots on each component, but differing
only in the placement of the dots. Then the movies for F and F’ are related by a
sequence of the following movie moves:

(1) Far commutation We may switch the order of the following operations:
(a) adding a dot, and then adding another dot;
(b) adding a dot, and then performing a birth;
(c) adding a dot, and then performing a saddle;
(d) performing a death, and then adding a dot;
(e) adding a dot, and then performing a Reidemeister move far away.
(2) Moving dots on link diagrams If we are adding a dot on one side of a crossing

on a link diagram wg(K;), then we can instead add it on the other side of the
crossing.

2In old literature, the word “cobordism” was used instead of “concordance”.
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Proof We can use the second movie move to move dots freely on K; for each ¢. To
move dots in the time direction, we use the first movie move, which allows us to move
dots past each other, and also past births, deaths, saddles, and Reidemeister moves; all
the possibilities are listed, except the following:

(a) Perform a birth, and then add a dot on the newborn unknot component. In this
case, it is impossible to switch the order.

(b) Add a dot to a small unknot component, and then perform a death on that
component. This is simply the time-reversal of the previous case.

(c) Add a dot on some strand of the knot diagram, and then perform a Reidemeister
move that involves that strand; see below for an example with Reidemeister 11

\é d \é RII
A8

However, in this case, we may move the dot on the link diagram (using the

move.

second movie move) away from the strands involved in the Reidemeister move,
and then use far commutation with the Reidemeister move (using the first movie
move) to change the temporal order of the dot addition and the Reidemeister
move. m|

3 Ribbon complexities

There are certain notions of complexities that we can associate to ribbon concordances.
If K is a ribbon knot—that is, if K has a ribbon concordance to the unknot U —
then we can define the band number b(K) to be the smallest number of saddles in a
ribbon concordance K — U ; this is also the smallest number of bands if we write K
as a band sum of an unlink. This number is usually called the ribbon-fusion number
and has lower bounds coming from the Jones polynomial [11]; more classically, twice
this number is bounded below by gn(H;(Xg)) — the smallest number of generators
for the first homology of the double branched cover [21]. In turn, for any knot K,
1+ b(K #m(K)) itself gives a lower bound for the bridge index of K (here m(K)
denotes the orientation-reversal of the mirror of K) [11].
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Ribbon distance and Khovanov homology 1045

Each ribbon knot bounds a ribbon disk in R3, that is, an immersed disk with only
ribbon singularities (as shown with the thick line in the leftmost figure below). So we
may define the ribbon number r(K) to be smallest number of ribbon singularities for
ribbon disks bounded by K. We may perform saddles near each ribbon singularity (as
shown below) to convert K to an unlink, so »(K) is bounded below by 5(K). A nice
argument shows that the knot genus g(K) also provides a lower bound for r(K) [7].

saddle

We may also define a notion of distance on knots coming from ribbon concordances.
For any two knots K and K’, define the ribbon distance d(K, K') to be the smallest k
such that there is a sequence of knots K = Ko, Ky,...,K,—1, K, = K’ from K
to K’ and a ribbon concordance (in some direction) between every consecutive pair
K; and K;; with at most k saddles. The following properties are immediate:

(1) d(K,K') < oo if and only if K and K’ are concordant. (For the slightly
nonobvious direction, note that if K and K’ are concordant, then there is some
K" with ribbon concordances to both K and K’; see [8].)

(2) d(K,K')=0 if and only if K and K’ are isotopic.

(3) d(K,K')=d(K' K).

4) d(K,K") <max{d(K,K’),d(K’',K")}, and hence d satisfies the triangle
inequality.

This notion of distance complements the more standard notion of cobordism distance,
which is defined to be the smallest genus of a cobordism between the two knots.
(Cobordism distance between any two knots is finite, and is zero if and only if the
knots are concordant.)

For any slice knot K, its distance from the unknot, d(K, U), therefore provides yet

another notion of complexity. It is clear from the definitions that d (K, U) < b(K).

Example 3.1 Let K; be the connected sum of the positive and the negative trefoil,
and let K, be the connected sum of n copies of K;. We have r(K;) = g(K;) =
gn(H;(Xg,)) =2 and b(K;) = d(K;,U) = 1; K; can be obtained by adding a
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1046 Sucharit Sarkar

band (shown by the thick line below) to the 2—component unlink, which intersects the
natural disks bounded by the unlink in 2 ribbon singularities:

N | NI

We get r(K,) > g(Ky) = ng(K;) = 2n. The ribbon number is subadditive under
connected sum, so r(K,) < nr(K;) = 2n; therefore, r(K,) = 2n. We also get
b(Kyn) = gn(H,(Xk,))/2 = gn(®" H1(Xk,))/2 = n. The band number is also sub-
additive under connected sum, so b(K,) <nb(K) = n; therefore, b(K,) = n. Finally
d(Ky,U) =1 since we have a sequence of knots K, K,—1, ..., Ko=U, and a single-
saddle ribbon concordance K;i; — K; for all 7, obtained by connected summing K;
with the single-saddle ribbon concordance K1 — U'.

It is unclear if d(K, U) can be arbitrarily large (while staying finite). In this paper,
we will give an example of a knot with d(K, U) = 2 (Example 6.1), and indeed one
with d(K,U) > 2 (Example 6.2). It is reasonable to guess that the techniques of this
paper, but using knot Floer homology instead of Khovanov homology, might produce
examples of knots with larger values of d(K,U).3

4 Khovanov homology

Fix a ground ring R and consider the 2—dimensional Frobenius algebra
V = R[TIX]/{X*=T}
over R[T] with comultiplication V' — V ® g V' given by
ILI®X+X®], XXX+ TI®I

and counit V — R[T] given by 1 +— 0, X + 1. This produces a Khovanov-style link
homology theory [12] for any link K by applying it to the Kauffman cube of resolutions

3 And indeed, using knot Floer homology instead of Khovanov homology, within one month of the first
appearance of this paper, Juhdsz, Miller and Zemke [10] constructed knots with arbitrarily large values
of d(K,U).
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Ribbon distance and Khovanov homology 1047

of its link diagram. The resulting theory is usually called the Lee perturbation of
Khovanov homology [17], and we will denote it Kh»(K). It is a bigraded homology
theory over R[T] with R in bigrading (0,0) and T in bigrading (0, —4).

A dotted cobordism F: K¢ — K (in generic position) with §(F) dots induces a map
Khy(F): Khg(Ko) — Khy(K)

of R[T]-modules of bigrading (0, x(F) —28(F)) [14; 3; 9; 18], defined as follows.
The movie presentation for F is a sequence of planar isotopy, Reidemeister moves,
births, saddles, deaths, and dot additions. Except for dot addition, each of the other
moves induces a map on Kh ¢ using the Frobenius algebra V. The dot addition map is
defined slightly differently. We present a careful definition below that avoids a sign
issue.

An elementary dotted cobordism from K — K is a product cobordism decorated with
a single dot. Consider (the projection of) the dot on the oriented link diagram 7 g(K).
Checkerboard color the complement of the link diagram in R? so that the unbounded
region is colored white. If the arc in the link diagram containing the dot is oriented as
the boundary of a black region, define the sign of the dot to be (4-1), otherwise, define
it to be (—1). Then define the dotted cobordism map Kh ¢ (K) — Kh«(K) to be the
map merging a small unknot labeled X near the dot, times the sign of the dot.

It is well-known that two isotopic (rel boundary) undotted knot cobordisms induce the
same map Khy(Ko) — Khy(K;), up to an overall sign.* We have a similar variant
for dotted cobordisms.

Lemma 4.1 Assume F and F’ are dotted cobordisms (in generic position) with the
same underlying surface and the same number of dots on each component, but differing
only in the placement of the dots. Then they induce the same map on Kh ¢, including
the sign.

Proof We merely have to check that the map is unchanged under the movie moves listed
in Lemma 2.1. The first movie move (far commutation) is clear. For the second movie
move (moving the dot past a crossing), we may check directly that on the Khovanov
chain complex level, the map associated to merging a small unknot labeled X to some
strand is homotopic to the negative of the map associated to merging a small unknot
labeled X to the corresponding strand on the opposite side of a crossing; see [2].

4This sign issue can also be resolved [6], but we will not need to.
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Therefore we have the same map on homology for dot addition on either side of a
crossing. |

The main advantage of using dotted cobordisms is the famous neck-cutting relation.
We will need it in the following two forms:

Lemma 4.2 Assume the link diagram 7 g (K) for K contains a small unknot U . Then,
up to an overall sign, the identity map Kh ¢ (K) — Kh»(K) is the sum of the following
two maps:

(1) Addadotto U, perform a death on U, and perform a rebirth for U.
(2) Perform a death on U, perform a rebirth for U, and add a dot to U .

In terms of movies,
bi bi d

Ky (O—0) =Kz (OO 20)+Kn (O™ *20O->0).
Proof If the dot addition maps are given by merging small unknots labeled X, then
it is easy to check that the above equation holds (without the sign) on the nose at the
Khovanov chain complex level. However, the actual dot addition map has an extra sign
given by the sign of the dot. But the unknot U before death and the unknot U after
birth are oriented in the same way, so the two dots have the same sign, and consequently,
the above equation holds up to an overall sign. O

Lemma4.3 Assume F: K — K is a cobordism obtained by performing an elementary
saddle on the link diagram g (K) for K, followed by performing the saddle in reverse.
Then, up to an overall sign, the map Kh¢(K) — Kh¢(K) is the sum of the following
two maps:

(1) Add a dot to one of the two strands in g (K) involved in the saddle.
(2) Add a dot to the other strand in 7w g(K) involved in the saddle.

In terms of movies,

saddle __ saddle dot dot

+Khy() (— X —) () =Khg() (3¢ () +Khe() Sve ().
Proof The proof is very similar to the previous proof. If the dot addition maps are
given by merging small unknots labeled X, then the equation holds (without the sign) at
the Khovanov chain complex level. However, since the saddle is an oriented saddle, the
two dots on the two strands have the same sign, and consequently, the above equation
holds up to an overall sign. |
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5 X -action on Khovanov homology

If we fix a component of K, then the map Kh¢(K) — Khy(K) associated to the
elementary dotted cobordism K — K that has a single dot on the chosen component is
denoted by X (since it comes from merging an unknot labeled X'), and is often called
the X —action on Khy(K). It is clear from the Frobenius algebra V that X2 = T .
This makes Kh & (K) a module over R[T, X]/{X?=T} = R[X] (although the module
structure depends on chosen link component).

Khovanov homology of connected sums has a nice expression using the X —actions.

Lemma 5.1 Let K and K’ be links with chosen components, and let K # K’ be the
link obtained by connected summing the chosen components. Then

Kho (K # K') = 2% ! Torgx)(Kh#(K), Khy (K'))

as bigraded R[X]-modules, with the X —action on the right-hand side induced from
the X —action on either Khy(K) or Khy(K’'). Here %P denotes an upward bi-
grading shift by (a,b), that is, tensoring with a single R in bigrading (a,b), and
Torgpx1(A4, A") is the total homology of the derived tensor product A ®IL{,[ X] A’ of two
bigraded modules A, A’ over R[X].

Proof The argument entirely follows Khovanov’s argument for his original invariant
(which is the specialization X2 = T = 0) [13], so we skip some details. Consider
the following link diagrams for K, K’, and K # K’, so that the induced diagram for
K I K’ differs from the diagram of K # K’ locally by an elementary saddle:

O OBNOS0

Let CKhg be the Khovanov chain complexes associated to these diagrams. They
become modules over R[X] by the X —action at the strands that are shown in the above
diagram. (For K # K’ either strand works.) By construction, these complexes are free
over R[T], but indeed, they are free over R[X] as well. Therefore, it is enough to
construct an isomorphism of chain complexes over R[X],

CKhg(K#K') = 2% CKhy(K) ® gx] CKhz (K').
Consider the saddle map

CKhy(K) ® gr] CKhg(K') = CKhy (K LI K') — 2% CKhy (K # K),
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and it is easy to check that it factors through CKhy(K) ® gjx] CKh(K’). So all
that remains is to check that this R[X]-module chain map

CKhy(K) ® gix] CKhg(K') - 2% CKhy (K # K')
is an isomorphism on the chain groups.

The chain groups CKh ¢ decompose as direct sums of chain groups of various resolu-
tions of the link diagrams, so it is enough to check that the above map is an isomorphism
at each resolution of K and K’ —that is, it is enough to check the case when K and
K’ are planar unlinks, which is trivial to check. O

Khovanov homology of the mirror can also be determined.

Lemma 5.2 Let K be a link with a chosen component, and let m(K) be the orientation
reversal of its mirror with the same chosen component. Then

Khy(m(K)) = %2 Extgpxj(Kh#(K), R[X])

as bigraded R[X]-modules. Here, ©%" denotes a bigrading shift as before, and
Extgpx](4. R[X]) is the total homology of the derived dual RHomg[x(A4, R[X]) of
a bigraded module A over R[X], but with the bigradings negated.

Proof This argument is also very close to Khovanov’s argument for his original
invariant (the specialization X 2 =T =0)[12], so once again, we will skip some
details. Fix a pointed link diagram K, and the mirrored diagram m(K).

For any pointed link diagram L, the Khovanov generators are pairs (o, A), where p is
some complete resolution of L (obtained by resolving each crossing by the O—resolution
or the 1-resolution), and A is a labeling of the components of p by {1, X'}. Let G(L)
(respectively, Gx (L)) be the set of Khovanov generators that label the pointed circle
in any resolution by 1 (respectively, X'). The whole chain complex CKh (L) is then
freely generated over R[X] by G{(L), while the subcomplex XCKh (L) (which is
isomorphic to % 72CKhy (L)) is freely generated over R[X] by Gy (L).

Being free, it is enough to show that the dual complex Hom g1 (CKh«(K), R[X]), af-
ter negating the bigradings, is isomorphic to X% 2CKhy(m(K)) = XCKhy(m(K)).
The dual complex is also free, with generators given by the dual generators: namely,
for any generator (p,A) € G1(K), its dual generator (p, A)* is the linear map that
sends (p,A) to 1 € R[X], and the rest of the generators to 0.
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For any generator (p, A) € G1(K), consider the generator (p, 1) € Gy (m(K)) where
p is the exact same resolution (that is, each crossing in m(K) is resolved as a 1—
resolution if and only if the corresponding crossing in K is resolved as a 0—resolution)
and A is the labeling that labels each component of p by 1 if and only if A labels that
component by X . The map (p, 1)* — (p, A) then induces the required isomorphism

of chain complexes over R[X]. |

If K isaknotand R isafield F with 2 # 0, then the module Kh & (K) over F[X] takes
a particularly simple form. It decomposes (noncanonically) as £+ F[X]®.7 (K),
where s(K) is Rasmussen’s s—invariant, and 7 (K) is the (canonical) subgroup of
Kh ¢ (K) consisting of the X —torsion elements,

T(K) =1{a € Khy(K) | X"a =0 for some n},
which we will call the extortion group of K.

The smallest n such that X" (K) = 0 is called the extortion order, and denoted
by xo(K). This was denoted by uy (K) in [1], who used it to provide a lower bound
on the unknotting number. This number xo(K) can very well depend on the ground
field I, but since it is usually less than 3 for small knots, we do not have actual
examples where this extortion order is different over different fields; consequently, we
have chosen our notation xo(K) not to reflect this possible dependence on the field IF.
The extortion order xo(K) is related to the Lee spectral sequence (coming from the
filtered chain complex for Kh»(K) with filtration given by powers of 7") as follows.
If the Lee spectral sequence collapses at the Ej page, then xo(K) € {2k — 3, 2k —2}.

The only knot with xo(K) = 0 (that is, Z(K) = 0) is the unknot [16]. All other
Kh-thin knots have xo(K) = 1; 814 is the first knot with xo(K) = 2. Since the Lee
spectral sequence collapses at the £, page for small knots, it is hard to find examples
of knots with xo(K) > 2; the first example of a knot with xo(K) > 2 was constructed
in [19].

The extortion order can be computed from the Mathematica package KnotTheory [4]
using the function UniversalKh, the standard reference for which seems to be “Scott’s
slides” [20]. UniversalKh works over Q and returns a free resolution of Kh ¢ (K)
over Q[X]. Each term r%g?KhE contributes a tower Q[X](p) with the genera-
tor p in bigrading (a, b), and each term 1%¢®?KhC[n] contributes a two-step complex
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Q[X]{p,q) with generators p and ¢ in bigradings (¢ — 1,b —2n) and (a,b), and
differential p — X"q. Therefore, the extortion group 7 (K) over Q is isomorphic
to the homology of complexes coming from the KhC[r] terms and the extortion order
x0(K) over Q is the largest n such that KhC[n] appears.

The extortion groups and extortion orders behave nicely under connected sums.

Lemma 5.3 Consider knots K and K’ and their connected sum K # K'. Then, over
any field F with 2 #£ 0,

T(K#K') = 3%E) 7(K) @ 25 7(K") @ 2% Torpx1(7(K), 7 (K'))
and
xo(K # K') = max{xo(K), xo(K")}.
Proof The first statement is immediate from Lemma 5.1 and the isomorphism
Khy(L) = 2D HIF[ X0 7(L)
for all knots L.

For the second statement, we immediately get
xo(K # K') > max{xo(K), xo(K')}

from the first two summands in the decomposition of 7 (K # K’). So it is enough
to prove that the extortion order of the summand Torgx(.7 (K), 7 (K’)) equals the
minimum of the extortion orders of .7 (K) and .7 (K').

Consider free resolutions .7 (K) and 7 (K') of the extortion groups over F[X]. By
the classification of finitely generated modules over PIDs, they decompose into a direct
sum of 2-step complexes F[X](p, ¢), with the differential given by p — a(X)q,
where «(X) is some power of some irreducible homogeneous polynomial in X . Since
X has nonzero bigrading, the only possibilities are «(X) = X". Each such summand
contributes F[X](g)/{X"¢g = 0} in homology, so the extortion orders are the maximum
values of n that appear in such a decomposition.

If n > m, then by a simple change of basis, the tensor product of the 2—step complexes
F[X] X7, F[X] and F[X] 2.6 F[X] decomposes as

(F[X]%5 FIX)) @ (F[X] %5 F[X]).
and, hence, the extortion order of the summand Torp[x](.7 (K), 7 (K")) is equal to

min{.7 (K), 7(K")}. O
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Similarly, these invariants are well-behaved under mirroring as well.

Lemma 5.4 Consider a knot K and the orientation reversal of its mirror, m(K). Then,
over any field F with 2 # 0,

T (m(K)) = %2 Extpx1(7(K),F[X]) and xo(m(K))=xo(K).

Proof The first statement is immediate from Lemma 5.2 and the isomorphism

Khy(L) = S%DHIF[ X 7(L)
for all knots L.
For the second, as before, consider a free resolution .7 (K) of .7 (K) over F[X]. Once
again, it decomposes into a direct sum of 2—step complexes F[X](p, ¢q), with the
differential given by p — X"¢g. The dual of such a summand over F[X] is the 2—step
complex F[X](p*, ¢*), with the differential given by ¢* — X" p*. Since extortion
order is the maximum such » that appears, the claim follows. |

6 Main theorem

This section is devoted to the proof of the main theorems from Section 1.

Proof of Theorem 1.1 Since the ribbon distance is defined using a sequence of ribbon
concordances, it is enough to do the case when there is a ribbon concordance K RNy ¢
with at most d saddles. After isotopy, we assume the movie of the cobordism F has
the following form:

(1) First we perform some Reidemeister moves and planar isotopy on K. Since we
are free to choose the link diagram for K, we actually do not need this move.

(2) Then we perform d elementary (planar) saddles, one at a time.

(3) Then we perform further Reidemeister moves and planar isotopy.

(4) Then we perform d elementary (planar) deaths, again one at a time.

(5) Then we again perform some Reidemeister moves and planar isotopy to end
at K’. Once again, since we are free to choose the link diagram for K’, we do
not need this move.

So the ribbon concordance K > K’ decomposes as K g5 puud 5 i,
where the piece F; comes from item (7) above, and U 4 denotes the d —component
planar unlink.
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Let K’ -£5 K be the cobordism viewed in reverse, which decomposes as
KB guud B R Bk
Let K % K be the cobordism
KRB puud B R 2k

We will prove Theorem 1.1 by computing the image of the map Khy (W) in two
different ways, corresponding to the two sides of the equation in the statement of the
theorem.

Method 1 The cobordism K 23> K’ L1 U4 235 K is isotopic (rel boundary) to the
identity cobordism K — K since the cobordism F' 3 corresponds to a link isotopy in R3,
and F; is the same isotopy performed in reverse. Therefore, the image of Khy (W) is
same as the image of the map associated to the cobordism

K5 k5 k.
This cobordism performs d planar saddles, and then performs them in reverse. So
repeated application of Lemma 4.3 tells us that the map Kh.y (F,)oKh(F,) associated
to this cobordism, up to an overall sign, is 24 times the map associated to the dotted
cobordism K -£> K, where P is the product cobordism decorated with ¢ dots. (Note
that, since P is connected, by Lemma 4.1, the map Kh ¢ (P) is independent of the

placement of the d dots on P.) By definition, the image of Khg(P) is X AKhy(K);
therefore, the image of the original cobordism map is (2.X )9 Khy (K ).
Schematically (with d = 1),

2N )
K K K K K K K K K
K/

Method 2 Insert the identity cobordism K’ 11 U4 — K’ 1 U4 into W to get an
isotopic cobordism

kP R B prpud 9, grppd By gy g
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The cobordism K’ 1 U4 1945 K’ 1 U has d necks coming from U 4 50 repeated
application of Lemma 4.2 tells us that the map Id: Khy (K’ T1U9) — Kho(K' T1U?),
up to an overall sign, is the sum of 24 maps associated to the following 24 dotted
cobordisms with d dots: each has the same underlying surface

K'uuv s g I gy,

which has d death—birth pairs; and the 24 dotted cobordisms are obtained by distribut-
ing d dots in 24 different ways so that each death—birth pair has exactly one dot.

The underlying composed cobordism
K2 g0 puud B g B prpud B, P2 gy =k Fs g Fu g

is connected, so by Lemma 4.1, the 24 dotted cobordism maps all induce the same map,
which is the map Kh ¢ ( F)oKhy( Q)oKhy(F) corresponding to the dotted cobordism

KE k2 k' E g,
where K’ 25 K’ is the product cobordism decorated with d dots.
Levine and Zemke have shown [18] that the map

Khy (F)oKhy(F): Khy(K') — Khy(K')

is +1d,% and, therefore, the map Khy(F) is surjective and the map Khy(F) is
injective. Consequently, the image of the map Khy(F) o Khy(Q) o Khy(F) is
isomorphic to the image of Kh«(Q), which is X dKh «(K'"). Therefore, the image of
the original cobordism map is isomorphic to (2X)?Khg(K').

Schematically,

3 Actually, they proved it for Khovanov’s specialization X2 = T = 0, but the proof works in this more
general case.
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Proof of Corollary 1.2 Let d be the ribbon distance of the knot K to the unknot U .
We know Kho(U) 2 £%1F[X] and, since we are working over a field with 2 # 0,

Khy(K) = 5 EO+F X @ 7(K).

(If d < oo, then K is slice, and hence s(K) = 0 [23], but we will not need this fact;
indeed, this fact will follow from the proof.)

By Theorem 1.1, and since 2 # 0,
X9Khy(K) = 205+ 24F x| X9 7(K) ~ X“Khy(U) = =% 729F [ X],
and therefore, X4 7 (K) = 0, and, hence, d > xo(K). |

Example 6.1 Let K = 8;9 #m(8;9). Using the function UniversalKh from the
Mathematica package KnotTheory, we get x0(819) = 2. By Lemmas 5.3 and 5.4,
x0(K) = 2, and hence, by Corollary 1.2, the distance of K from the unknot is at
least 2. Indeed, adding untwisted (blackboard-framed) bands along the thick lines in
the following knot diagram for K converts it to a 3—component unlink, so d(K,U) =2:

—\"

gy

Example 6.2 Let K be the knot from [19], and let K = Kps #m(Kps). Since the
Lee spectral sequence for Kps collapses at the E3 page, we know xo(Kpz) € {3,4}.
Indeed, using the function UniversalKh, we can conclude xo(Kps) = 3. (Alternatively,

x0(Kpz) is a lower bound for the unknotting number [1], and Kps can clearly be
unknotted with three crossing changes.) Once again, by Lemmas 5.3 and 5.4, xo(K) =3,
and hence, by Corollary 1.2, the distance of K from the unknot is at least 3.
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