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Immersed Möbius bands in knot complements

MARK C HUGHES

SEUNGWON KIM

We study the 3–dimensional immersed crosscap number of a knot, which is a nonori-
entable analogue of the immersed Seifert genus. We study knots with immersed
crosscap number 1 , and show that a knot has immersed crosscap number 1 if and
only if it is a nontrivial .2p; q/–torus or .2p; q/–cable knot. We show that unlike
in the orientable case the immersed crosscap number can differ from the embedded
crosscap number by arbitrarily large amounts, and that it is neither bounded below
nor above by the 4–dimensional crosscap number.

57M25, 57M27; 57M35

1 Introduction

One method to define a measure of the complexity of a knot K�S3 is by describing the
minimal topological complexity of a compact surface F whose boundary is equal to K.
When F is required to be orientable and embedded in S3 this gives the classical Seifert
genus g3.K/ of K ; when the requirement that F be embedded in S3 is weakened,
and we allow embedded surfaces in B4 , we obtain the slice genus g4.K/ of K. Here
we are thinking of S3 as the boundary of B4 .

Loosening the requirement that F be embedded in S3 in another direction we can
instead consider surfaces F which are merely immersed in S3 . While it is easy to
verify that every knot K is the boundary of an immersed disk in S3 , if we consider
only immersed surfaces which are embedded along a neighborhood of their boundaries
we obtain immersed Seifert surfaces for K. The minimal genus of any immersed Seifert
surface for K is called the immersed Seifert genus of K, and is denoted by gI .K/.
While gI takes nontrivial values on knots in S3 , using foliations Gabai [6] proved that
the resulting knot invariant is always equal to the Seifert genus. Both invariants are in
turn bounded below by the slice genus.

Dropping the requirement that F be orientable, we can instead consider nonorientable
immersed spanning surfaces, defined in a similar way as above. This gives rise to a
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nonorientable analogue of the immersed Seifert genus, called the immersed crosscap
number 
I .K/ of the knot K. Our main result involves knots with immersed crosscap
number 1, ie knots which bound immersed Möbius bands that are embedded along
their boundaries.

For jpj � 2, we say that K is a .p; q/–cable knot if it can be isotoped to lie on the
boundary of a solid torus V � S3 whose core is knotted, where K represents the
class q �mCp � l in �1.@V /ŠZ˚Z. Here m and l are the homotopy classes of the
meridian and the Seifert-framed longitude of @V , respectively.

Theorem 1 A knot K � S3 has 
I .K/D 1 if and only if K is a nontrivial .2p; q/–
torus or .2p; q/–cable knot.

In a similar way, we can also define the 3–dimensional (embedded) crosscap number

3.K/ and 4–dimensional (embedded) crosscap number 
4.K/ of a knot, which are
nonorientable analogues of the Seifert and slice genus, respectively. Theorem 1 then
generalizes a result of Clark [5], who proved that 
3.K/ D 1 if and only if K is a
.2; q/–torus or .2; q/–cable knot.

Unlike their orientable counterparts, in general 
I .K/ may not equal 
3.K/, and is not
bounded below by 
4.K/. More precisely, we present an infinite family of immersed
crosscap number 1 knots with unbounded 3– and 4–dimensional crosscap numbers.
Furthermore, we also present examples of knots K with 
I .K/ > 
4.K/.

2 The immersed crosscap number of a knot

2.1 Crosscap numbers of knots

We begin by defining nonorientable analogues of the Seifert, slice, and immersed Seifert
genera of knots. Roughly speaking, these values capture the minimum k needed to
span the knot by a punctured connected sum of k copies of RP2 , assuming different
embedding and immersion requirements.

Let K be a knot in S3 . We say that a compact, embedded, nonorientable surface
F � S3 with @F DK is a nonorientable spanning surface for K, and we define the
3–dimensional (embedded) crosscap number of a nontrivial knot K to be


3.K/Dminfb1.F / j F is a nonorientable spanning surface for Kg:
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Here b1.F / is the first Betti number of F. We define 
3 of the unknot to be 0. As with
orientable spanning surfaces, any nonorientable spanning surface F induces a framing
on the knot K, though this framing need not equal the Seifert framing on K. Indeed,
by boundary summing an embedded Möbius band with unknotted boundary to F we
obtain a nonorientable spanning surfaces whose induced framing differs by ˙2 from
the framing induced by F.

If we think of S3 D @B4 , then a compact, embedded, nonorientable surface F � B4

with @F D K � S3 is a nonorientable slice surface for K, and we define the 4–
dimensional (embedded) crosscap number of a nonslice knot K (ie g4.K/ � 1) to
be


4.K/Dminfb1.F / j F is a nonorientable slice surface for Kg:

If K bounds an embedded slice disk in B4 , we define 
4.K/D 0.

Lastly, suppose that F is the image of an immersion hW †!S3 , where † is a compact,
nonorientable surface with boundary. Then F D h.†/ is a nonorientable immersed
spanning surface for K if h.@†/ D K, and if there is a collar neighborhood A

of the boundary @† such that h.A/ is embedded and h�1.h.A// D A. The first
Betti number b1.F / of the nonorientable immersed spanning surface F is defined to
be b1.†/, and if K is a nontrivial knot we define the nonorientable immersed crosscap
number of K to be


I .K/Dminfb1.F / j F is a nonorientable immersed spanning surface for Kg:

In the case when K is the unknot, we again define 
I .K/D 0.

Recall that in the orientable case, the Seifert, slice and immersed Seifert genus of a
knot K satisfy

gI .K/D g3.K/� g4.K/:

Our goal in this section is to determine which of the results above generalize to the
nonorientable case.

Firstly, as any nonorientable spanning surface in S3 can be pushed into B4 to become
a nonorientable slice surface, we clearly have that 
3.K/� 
4.K/. Furthermore, we
also trivially have that 
3.K/� 
I .K/.

Note, however, that not every nonorientable immersed spanning surface can be pushed to
an embedding in B4 (see [4] for criteria describing when this is possible). Furthermore,
not every nonorientable slice surface can be pushed into S3 to give a nonorientable
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immersed spanning surface. Hence, we do not have any a priori relations between
the invariants 
I .K/ and 
4.K/, a fact which can be illustrated with a few simple
examples.

In [9] Teragaito gives an algorithm for computing the crosscap number of the .p; q/–
torus knot T .p; q/ using the partial fraction expansions of rational expressions involving
p and q . In the case of T .2k; 2k � 1/, where k � 2, his result implies the following:

Proposition 2 [9, Theorem 1.1] Let k � 2. Then 
3.T .2k; 2k � 1//D k .

Proof This is a direct specialization of results in [9], though we include the required
computation here for completeness. By Theorem 1.1 in [9], if p and q are coprime
positive integers with p even, then 
3.T .p; q// D N.p; q/. Here N.p; q/ is an
integer value introduced by Bredon and Wood [2], and is the minimal genus of a closed,
connected, nonorientable surface contained in the lens space L.p; q/.

The value of N.p; q/ can be computed by starting with a continued fraction expansion
of p=q of the form

p

q
D a0C

1

a1C
1

a2C
1

: : :C
1

an

where each aj > 0 is an integer. Then, by [2], the integer N.p; q/ is half the value
obtained by summing up the aj successively, except that when the partial sum is even
the next aj value is skipped. More precisely, if we define

b0 D a0; bi D

�
ai if bi�1 ¤ ai�1 or

Pi�1
jD0 bj is odd;

0 if bi�1 D ai�1 and
Pi�1

jD0 bj is even,

then N.p; q/D 1
2

Pn
jD0 bj . Since 2k=.2k�1/D 1C1=.2k�1/, it follows then that

N.2k; 2k � 1/D 1
2
.1C 2k � 1/D k , as required.

On the other hand Batson [1] finds a lower bound on 
4.K/ involving the signature of K,
along with the Heegaard Floer d –invariant of certain integer homology spheres. For
T .2k; 2k�1/, again with k�2, his results specialize to give 
4.T .2k; 2k�1//Dk�1.

Proposition 3 Let p and q be integers, with 2p and q coprime and jqj � 2. Then

I .T .2p; q//D 1.
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Figure 1: An immersed Möbius band in a solid torus with boundary T .2p; q/ .

Proof With p and q as above, the knot K D T .2p; q/ is nontrivial, and hence

I .K/� 1. Furthermore, it is not difficult to construct an immersed Möbius band F

whose boundary is K as follows.

Suppose that K is embedded along the boundary of the standard embedding of the
solid torus V �S3 . Suppose that for any disk D� �V of the form f� D constantg\V ,
where � is the angular polar coordinate, K\D� is a collection of 2p evenly spaced
points fx1; : : : ;x2pg around @D� . In each D� , draw p straight lines through the center
of D� , connecting xj with xpCj for 1 � j � p . As � ranges from 0 to 2� these
lines will sweep out an immersed Möbius band in V , with boundary K (see Figure 1).
Furthermore, this Möbius band will be embedded away from the core of V .

Clearly the above proof of Proposition 3 generalizes to .2p; q/–cable knots, a fact
which we record here.

Proposition 4 If K is a .2p; q/–cable knot, then 
I .K/D 1.

In particular, for k � 2, we have 
I .T .2k; 2k � 1//D 1. We thus see that both of the
quantities 
3.K/� 
I .K/ and 
4.K/� 
I .K/ can be arbitrarily large.

On the other hand, we can also find knots K for which 
I .K/ > 
4.K/. Indeed,
an immediate corollary to Theorem 1 is that any hyperbolic knot K has 
I .K/ > 1.
Hence, any slice hyperbolic knot K has 
I .K/ > 
4.K/. The Stevedore knot 61 is
the simplest example of such a knot. An interesting question would be to ask whether
the value of 
I .K/� 
4.K/ can be arbitrarily large.

Question For any n 2N does there exist a knot K such that 
I .K/� 
4.K/ > n?
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3 Essential Möbius bands

In what follows we focus on studying nontrivial knots K which bound immersed
Möbius bands that are embedded near their boundaries, ie knots with 
I .K/D 1. To
do so it will be more useful to think of our immersed nonorientable spanning surfaces
as lying in the exterior of K, rather than S3 itself.

More precisely, let N.K/� S3 be a small open tubular neighborhood of K, and let
E.K/D S3 nN.K/ be the exterior of K. Then @E.K/ is a torus, with a canonical
choice of meridian. An immersed (nonorientable) spanning surface F in E.K/ is the
image of an immersion hW †!E.K/, where † is a (nonorientable) compact surface
with boundary, such that h.@†/D F \ @E.K/ is a longitude on @E.K/ and @† has
a collared neighborhood A in † such that h.A/ is embedded and h�1.h.A// D A.
Clearly there is a straightforward way to pass between nonorientable immersed spanning
surfaces for the knot K in S3 and nonorientable immersed spanning surfaces in the
knot exterior E.K/. Furthermore, a nontrivial knot K has 
I .K/D 1 if and only if
there is a spanning surface in E.K/ which is the immersed image of a Möbius band.

3.1 Essential maps

Consider a map hW †!E.K/ with h.@†/� @E.K/. We say that h is �1 –essential
if h�W �1.†/! �1.E.K// is injective. Similarly, we say that h is @�1 –essential if
h�W �1.†; @†/! �1.E.K/; @E.K// is injective. Finally, we say that h is essential
if it is both �1 – and @�1 –essential. We will sometimes describe the image of an
embedding hW †!E.K/ as being essential if the map h is essential.

Now let K � S3 be a nontrivial knot and M a Möbius band. To make things more
precise, let M be given by the square Œ�1; 1� � Œ�1; 1� in R2 , with vertical edges
identified via .�1; t/� .1;�t/. The core of M will be denoted by c , and is the image
of Œ�1; 1�� f0g under the quotient map. Let ˛ be the image of the arc f0g � Œ�1; 1�

under the quotient map. Note that the homotopy class of c generates �1.M /ŠZ, and
the homotopy class of ˛ is the only nontrivial class in �1.M; @M /.

We fix a meridian m and longitude l of @E.K/, which we think of as generators for
�1.@E.K//Š Z˚Z. (We will write the group operation of �1.@E.K// as addition
because it is abelian, and suppress explicit reference to a basepoint when there is no
danger in doing so.)
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Theorem 5 Let K be a nontrivial knot, and suppose that hW M !E.K/ is a proper
map where h.@M / is homotopic in @E.K/ to a curve of the form a �mCb � l for some
a; b 2 Z with either a or b odd. Then h is essential.

Proof We begin by showing that h is �1 –essential. Note that since �1.E.K// is
torsion-free, it suffices to show that h�.c/ is nontrivial. Suppose then to the contrary
that h�.c/ is null-homotopic.

Consider a tubular neighborhood N.c/�M of c . Notice that @N.c/ is a double of
the core, and hence h.@N.c// is also null-homotopic in E.K/. Hence we can take a
disk D and glue it to M nN.c/, via some identification ' of @D with @N.c/, and then
extend the map h across D to get a map h0W M nN.c/['D!E.K/. Note, however,
that M nN.c/ [' D is homeomorphic to a disk D2 , and hence we obtain a map
h0W D2!E.K/, with h0.@D2/D h.@M /. As h.@M / is nontrivial in �1.@E.K//, the
loop theorem then implies that there is a properly embedded disk in D0 �E.K/, with
@D0 nontrivial in �1.@E.K//. This contradicts the assumption that K was nontrivial,
and hence h must be �1 –essential.

To show that h is @�1 –essential, assume now that there is homotopy taking h.˛/

to @E.K/, relative to @h.˛/. Using this homotopy, we can modify h to obtain a new
map h0W M !E.K/, which sends @M [N.˛/ to @E.K/, where N.˛/ is a tubular
neighborhood of ˛ in M. Moreover, the restrictions of h and h0 to @M will be
homotopic inside @E.K/.

Consider now the disk D0DM nN.˛/. The map h0 restricts to give h0W D0!E.K/,
with h0.@D0/�E.K/. Suppose first that h0.@D0/ is a nontrivial loop in �1.@E.K//.
Then, as above, the loop theorem implies that K is the trivial knot, which is a contra-
diction.

Suppose then that h0.@D0/ is null-homotopic in @E.K/. This null-homotopy can be
viewed as a map �W D0! @E.K/, where �j@D0

� h0j@D0
. Then we can define a map

h1W M ! @E.K/ by

h1.x/D

�
�.x/ for x 2D0;

h0.x/ for x 2N.˛/:

Furthermore, we have that h1j@M � h0j@M , which is homotopic to hj@M in @E.K/.

Note, however, that @M is homotopic to 2�c in M. Hence in �1.@E.K// the homotopy
class of h.@M /D a �mC b � l will be two times the homotopy class of h1.c/, which
contradicts the assumption that at least one of a or b is odd. Thus h must be @�1 –
essential, and therefore essential.
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4 Immersed crosscap number one knots

For the remainder of the paper, let K be a knot with 
I .K/D 1, M a Möbius band,
and hW M !E.K/ an immersion such that F D h.M / is an immersed nonorientable
spanning surface in E.K/. We will make use of the following theorem of Cannon
and Feustel. Note that we can define the notions of �1 –essential, @�1 –essential and
essential as in Section 3.1 for maps into any manifold Y . Let A be an annulus.

Theorem 6 [3, Theorem 4] Let Y be a compact orientable 3–manifold, and hW A!

Y an essential map with h.@A/ � @Y . Then there exists an essential embedding
f W †!Y with f .@†/� @Y , where † is either an annulus or Möbius band. Moreover,
if hj@A is an embedding, then we may assume that f .@†/� h.@A/.

We begin the proof of Theorem 1 by first showing that K must be a torus or cable knot,
before describing its type.

Lemma 7 If 
I .K/D 1, then K is a torus or cable knot.

Proof By Theorem 5 the map hW M ! E.K/ is essential. Let � W A ! M be a
double-covering map. As �� is injective on both �1.A/ and �1.A; @A/, the map
hı� W A!E.K/ will also be essential. Note that .hı�/j@A will not be an embedding,
but by pushing the image of the two sheets of the covering map off of h.@M / we
obtain an essential map which is an embedding along the boundary @M. Then by
Theorem 6 there is an essential embedding f W †!E.K/, where † is either a Möbius
band or annulus, and f .@†/ is contained in a pair of parallel push-offs of h.@M /

along @E.K/.

Suppose first that †DM is a Möbius band. Then f W M !E.K/ is an embedding,
with f .@M / a longitude of @E.K/. Hence 
3.K/D 1, and by [5] it follows that K

is a .2; q/–torus or .2; q/–cable knot.

On the other hand, if † D A is an annulus, then we obtain an essential annulus
embedded in E.K/. By [8], the only such annuli are either subsurfaces of decomposing
spheres for K or cabling annuli (see also [7]). Since the boundary @f .A/ is a pair of
longitudes of @E.K/ and not meridians, it follows that f .A/ is cannot be extended
to a decomposing sphere. Hence K is a torus or cable knot, with f .A/ its cabling
annulus.
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Notice that, in the above proof, the cabling annulus f .A/ we obtain in E.K/ has the
same boundary slope as the original immersed Möbius band h.M /. In other words,
f .@A/ consists of a pair of simple closed curves in @E.K/ which are parallel to the
longitudinal curve h.@M /.

As torus and cable knots are necessarily prime, we have the following immediate
corollary:

Corollary 8 Any knot K with 
I .K/D 1 is prime.

Now that we’ve established that any knot K with 
I .K/D1 is a nontrivial .p; q/–torus
or .p; q/–cable knot, we proceed to determine what restrictions (if any) this situation
places on p and q . We begin by answering the question in the case of torus knots.

Lemma 9 If K has 
I .K/D 1 and is a .p; q/–torus knot, then one of p or q must
be even.

Proof Suppose to the contrary that both p and q are odd. Suppose further that K sits
on the standardly embedded torus T � S3 obtained by extending the cabling annulus
from the proof of Lemma 7, and let V be one of the solid tori bounded by T . Recall
that �1.E.K// can be presented as

�1.E.K//D hx;y j x
p
D yq

i;

where x and y are the homotopy classes of the cores of the two solid tori in S3 nT .
Suppose, without loss of generality, that x is the homotopy class of the core of V .

Note that T \E.K/ is the cabling annulus obtained in the proof of Lemma 7. Further-
more, if h.M / is an immersed Möbius band bounded by K we can homotope h.@M /

so that it sits on @E.K/\ int V . Pushing h.@M / off of @E.K/ towards the core of V ,
we see that it is homotopic to xp .

Pushing @M inside M towards its core c and tracking its image under h, we see
that h.@M / is also freely homotopic to h.c/2 , and hence h.c/2 is conjugate to xp

in �1.E.K//. Note, however, that the only relation in the above group presentation
does not change the parity of the algebraic length of any of the words in �1.E.K//.
Hence any representation of h.c/2 as a word in the generators x and y will always
have even length, and any word representing a conjugate of xp will have odd length, a
contradiction. Thus either p or q must be even.
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We now state and prove Proposition 10, which will serve to complete the proof of
Theorem 1.

Proposition 10 If K has 
I .K/D 1 and is a .p; q/–cable knot, then p must be even.

We will break the proof of Proposition 10 into several lemmas. In what follows, suppose
that K is a knot with 
I .K/D 1 which is a .p; q/–cable knot. Furthermore, suppose
that K lies on the boundary T of a solid torus V , this time knotted in S3 , where
T \E.K/ is the cabling annulus A obtained from the proof of Lemma 7. Let W be
the closure of S3 nV . Again, h.@M / is parallel to the components of @A in @E.K/,
but this time we homotope h.@M / so that it is embedded and lies on the outside of V ,
in @E.K/\W .

Lemma 11 Suppose that h.M / can be homotoped so that it lies entirely in E.K/\W .
Then p must be even.

Proof Note that E.K/\W is homeomorphic to E.V /DS3nV , which can be viewed
as the exterior of the knotted core of V . Then h.@M / represents the class q �mCp � l

in �1.@E.V //, where as usual m and l are the homotopy classes in �1.@E.V // of the
meridian and Seifert-framed longitude, respectively. Note that since K is a cable (and
hence a satellite knot) we must have jpj � 2. If p is even, then we are done. Assume,
therefore, that p is odd.

By Theorem 5 the map hW M !E.V / is essential, and hence we can find an essential
embedding f W †!E.V /, where † is either an annulus or Möbius band, and where
f .@†/ is parallel to h.@M / in both cases. Furthermore, f .@†/ will represent either
q �mCp � l or 2q �mC 2p � l in �1.@E.V //, depending on whether † is a Möbius
band or annulus, respectively.

Suppose first that †DM. Then the boundary of a tubular neighborhood of N.f .M //

will be an embedded, essential annulus A0 � E.V /, whose boundary represents
2q �mC 2p � l in �1.@E.V //. Then by [8] (see also Theorem 4.13 in [7]) A0 must be
a cabling annulus for the core of V , which implies that @A0 represents a class of the
form k �m˙ 2 � l 2 �1.@E.V //. Thus p D˙1, a contradiction.

Suppose then that † is an annulus. As above we can conclude that f .†/ is a cabling
annulus for the core of V , and hence we arrive at the same contradictory conclusion,
namely that p D˙1.
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We now turn our attention to the case when h.M / cannot be arranged to lie entirely in
E.K/\W . Then h.M / must intersect the cabling annulus A�E.K/ nontrivially. We
assume that h is transverse to A, and hence h�1.A/ will be a collection of embedded
simple closed curve contained in the interior of M. We thus divert our attention
momentarily to discuss such curves on the Möbius band M.

Recall that M is given by the square Œ�1; 1� � Œ�1; 1� in R2 , with vertical edges
identified via .�1; t/� .1;�t/. The core of M will be denoted by c , and is the image
of Œ�1; 1�� f0g under the quotient map. Furthermore, let � be the image under the
quotient map of the segments Œ�1; 1��

˚
�

1
2
; 1

2

	
. While the following result is certainly

well known, we know of no reference to it in the literature, and hence we reproduce its
proof here.

Lemma 12 Any simple closed curve in M which does not bound a disk is isotopic to
either c or �.

Proof Let ˛ �M be a simple closed curve, which we fix an orientation on. Let
ı �M be the image of the arc f�1g � Œ�1; 1� under the quotient map. Assume that ˛
and ı intersect transversely, and orient ı so that the algebraic intersection ˛ �ı between
˛ and ı is nonnegative. Suppose that j˛\ ıj> ˛ � ı . Then we can chose an arc � � ˛
such that the endpoints of � consist of both a positive and a negative intersection point
of ˛ and ı . Furthermore, we can assume that there are no other intersection points
with ı on the interior of � . Then there is a subarc � 0 in ı such that � [ � 0 bounds a
disk. After choosing the innermost such disk, we can push � through ı to the other
side, removing one pair of canceling intersection points. We can repeat this until all
remaining intersection points between ˛ and ı are positive. If ˛\ ı D∅, then ˛ lies
in a disk and hence is nullhomotopic. Assume then that ˛\ ı ¤∅.

Lift the simple closed curve ˛ to Œ�1; 1� � Œ�1; 1�, where we get a collection of
n properly embedded disjoint arcs ˛1; : : : ; ˛n , each of which has one endpoint on
f�1g � Œ�1; 1� and the other on f1g � Œ�1; 1�. Assume that the arcs are labeled in
order from top to bottom. The identification of the vertical boundary components then
induces an identification of the strands, sending the left endpoint of the j th strand to the
right endpoint of the .n�jC1/st strand. Represent this identification as an element �
of the symmetric group Sn on n letters. Notice that as a permutation � ı � D id,
however the subgroup of Sn generated by � must act transitively on the set f1; : : : ; ng
as ˛ is connected. Thus nD 1 or 2, and hence ˛ is isotopic to either c or �.
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Returning to our map hW M !E.K/, we show that all loops in h�1.A/�M can be
avoided except possibly for curves that are isotopic to �.

Lemma 13 The map hW M ! E.K/ can be modified away from @M so that all
curves in h�1.A/ are isotopic to the curve � in M.

Proof We first note that none of the simple closed curves in h�1.A/ can be isotopic
to the core c of M, since A is orientable and c is an orientation-reversing curve in M.

Next we show that we can modify h away from @M so that h�1.A/ contains no
inessential curves. Let ˛ � h�1.A/ be a simple closed curve which bounds a disk D

in M, and assume that D contains no other such curves. Then h.D/ will be an
immersed disk which lies in the closure of one of the two components of E.K/ nA,
which we denote by U, and whose boundary h.˛/ is an immersed loop on A. Since
A is essential, the immersed loop h.˛/ will be null-homotopic on A.

Pick a homotopy which takes h.˛/ to a small disk D0 in A, and extend it to a homotopy
of h supported in small neighborhoods of ˛ and A, so that the double-point curve
along h.˛/ now lies in D0 �A.

Let N.D0/ be the restriction to D0 of a small tubular neighborhood of A, which we
can parametrize in the usual way as N.D0/DD0 � .�1; 1/. Then h.D/ sits entirely
on one side of D0 D D0 � f0g, so we can assume without loss of generality that
h.D/\ .D0 � .�1; 0//D∅.

Then h.D/ can be thought of as a properly immersed disk in the ball

B D S3
n .int D0 � .�1; 0//:

Meanwhile, the surface h.M n int D/ will have one boundary component immersed
along h.˛/, which can be pushed slightly off of A into the interior of E.K/ nU. The
disk h.D/�B can be reglued to the newly repositioned boundary of h.M nint D/, and
by shrinking the ball B down sufficiently we can assume that it is contained entirely in
the interior of E.K/ nU. The resulting immersion will have one less inessential loop
intersection with the annulus A. By removing all such inessential loop intersections,
we are left with only with loops in h�1.A/ that are isotopic to ��M.

We thus can assume that h�1.A/ consists only of a finite collection of parallel curves
�0; : : : ; �k , all of which are isotopic to ��M. Suppose that �0 is the innermost of
the curves in h�1.A/.
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Lemma 14 The curve h.�0/ is homotopic to the core � of the cabling annulus A.

Proof We first note that since �0 is nontrivial in �1.M / and h is essential, h.�0/

will be nontrivial in �1.A/. Thus h.�0/ is homotopic to some nonzero power of � ,
say �b , with b ¤ 0.

Notice now that h.@M / is homotopic in @E.K/ to either of the components of
@A � @E.K/, both of which are in turn homotopic in A to � . Hence h.@M / is
homotopic to � in �1.E.K//.

On the other hand, @M and �0 bound an annulus A0 in M, and hence h.@M /

and h.�0/ are freely homotopic in E.K/ via h.A0/. This implies that Œh.@M /� D

Œh.�0/� in H1.E.K//ŠZ, and hence that Œ��D bŒ�� in homology. Because the slopes
of @A and h.@M / in @E.K/ agree, we can compute the boundary slope of h.@M /

with respect to the Seifert-framed longitude of K, to see that its framing coefficient
is pq ¤ 0. Hence we see that Œh.@M /�D Œ�� is nonzero in H1.E.K//. Thus b D 1,
which completes the proof.

Proof of Proposition 10 Let M0 denote the subsurface of M bounded by �0 , which
will also be a Möbius band. Let h0W M0!E.K/ denote the restriction of h to M0 .
Note that h0.@M0/ will be an immersed curve in the cabling annulus A which is
homotopic to the core � . Furthermore, as �0 was the innermost curve in h�1.A/,
h0.M0/ will be contained entirely inside either E.K/\V or E.K/\W .

Choose a homotopy of h0 which is supported in a small neighborhood of @M0 ,
and which first straightens out h0.@M0/ to the embedded core � , and then pushes
it along A towards one of its boundary components, and finally onto @E.K/. If
h0.M0/�E.K/\V , then we push h0.@M0/ onto @E.K/\ int V , while if h0.M0/�

E.K/\W then we push h0.@M0/ onto @E.K/\ int W .

In the latter case, we obtain a proper map h0W M0!E.K/ whose image is contained
entirely outside of E.K/\V . Moreover, h0 is essential by Theorem 5, and hence by
Lemma 11 it follows that p must be even.

Suppose then that h0.M0/ � E.K/\ V . Take the solid torus E.K/\ V Š V , and
perform an inverse satellite operation, embedding it in S3 as the standardly embedded
solid torus V 0. In doing so we choose this embedding so that the longitude coming from
the Seifert framing on V is identified with the longitude from the Seifert framing on V 0,
though this will not be necessary. Using this choice of identification we obtain a map
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h0W M0! V 0, with h0.@M0/ embedded on @V 0 as a .p; q/–torus knot K0. Thinking
instead of h0 as a map to E.K0/, it follows immediately that h0 is essential.

Now, suppose that p is odd. If we cut the torus V 0 and apply k twists before regluing,
we obtain the solid torus V 0 again, while the knot K0 is transformed into a .p; qCkp/–
torus knot K00 lying on @V 0. As p is odd, we can choose k so that qC kp is also
odd. However, since the image of h0 is contained entirely in V 0, we can twist the
map h0 as well to obtain a new essential map h00W M0 ! E.K00/, with h00.@M0/ a
longitude on @E.K00/. By Lemma 9 then either p or qCkp must be even, which is a
contradiction. Hence p must be even.
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