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Immersed Mobius bands in knot complements

MARK C HUGHES
SEUNGWON KIM

We study the 3—dimensional immersed crosscap number of a knot, which is a nonori-
entable analogue of the immersed Seifert genus. We study knots with immersed
crosscap number 1, and show that a knot has immersed crosscap number 1 if and
only if it is a nontrivial (2p, g)—torus or (2 p, g)—cable knot. We show that unlike
in the orientable case the immersed crosscap number can differ from the embedded
crosscap number by arbitrarily large amounts, and that it is neither bounded below
nor above by the 4—dimensional crosscap number.

57TM25, 57M27; 5TM35

1 Introduction

One method to define a measure of the complexity of a knot K C S3 is by describing the
minimal topological complexity of a compact surface F' whose boundary is equal to K.
When F is required to be orientable and embedded in S this gives the classical Seifert
genus g3(K) of K; when the requirement that F be embedded in S is weakened,
and we allow embedded surfaces in B*, we obtain the slice genus g4(K) of K. Here
we are thinking of S3 as the boundary of B*.

Loosening the requirement that F be embedded in S3 in another direction we can
instead consider surfaces F which are merely immersed in S3. While it is easy to
verify that every knot K is the boundary of an immersed disk in S3, if we consider
only immersed surfaces which are embedded along a neighborhood of their boundaries
we obtain immersed Seifert surfaces for K. The minimal genus of any immersed Seifert
surface for K is called the immersed Seifert genus of K, and is denoted by g7(K).
While g; takes nontrivial values on knots in S 3 using foliations Gabai [6] proved that
the resulting knot invariant is always equal to the Seifert genus. Both invariants are in
turn bounded below by the slice genus.

Dropping the requirement that F' be orientable, we can instead consider nonorientable
immersed spanning surfaces, defined in a similar way as above. This gives rise to a
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nonorientable analogue of the immersed Seifert genus, called the immersed crosscap
number yr(K) of the knot K. Our main result involves knots with immersed crosscap
number 1, ie knots which bound immersed Mobius bands that are embedded along
their boundaries.

For | p| > 2, we say that K is a (p, g)—cable knot if it can be isotoped to lie on the
boundary of a solid torus ¥ C S3 whose core is knotted, where K represents the
classg-m~+ p-l in 11 (0V) = Z ®Z. Here m and / are the homotopy classes of the
meridian and the Seifert-framed longitude of dV, respectively.

Theorem 1 A knot K C S3 has y;(K) = 1 if and only if K is a nontrivial (2p,q)—
torus or (2 p, q)—cable knot.

In a similar way, we can also define the 3—dimensional (embedded) crosscap number
y3(K) and 4—dimensional (embedded) crosscap number y4(K) of a knot, which are
nonorientable analogues of the Seifert and slice genus, respectively. Theorem 1 then
generalizes a result of Clark [5], who proved that y3(K) = 1 if and only if K is a
(2, g)—torus or (2, g)—cable knot.

Unlike their orientable counterparts, in general y7 (K) may not equal y3(K), and is not
bounded below by y4(K). More precisely, we present an infinite family of immersed
crosscap number 1 knots with unbounded 3— and 4—dimensional crosscap numbers.
Furthermore, we also present examples of knots K with y7(K) > y4(K).

2 The immersed crosscap number of a knot

2.1 Crosscap numbers of knots

We begin by defining nonorientable analogues of the Seifert, slice, and immersed Seifert
genera of knots. Roughly speaking, these values capture the minimum k needed to
span the knot by a punctured connected sum of k copies of RPP2, assuming different
embedding and immersion requirements.

Let K be a knot in S3. We say that a compact, embedded, nonorientable surface
F C S? with 0F = K is a nonorientable spanning surface for K, and we define the
3—dimensional (embedded) crosscap number of a nontrivial knot K to be

¥3(K) = min{b' (F) | F is a nonorientable spanning surface for K}.
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Here b' (F) is the first Betti number of F. We define y3 of the unknot to be 0. As with
orientable spanning surfaces, any nonorientable spanning surface F induces a framing
on the knot K, though this framing need not equal the Seifert framing on K. Indeed,
by boundary summing an embedded M&bius band with unknotted boundary to F we
obtain a nonorientable spanning surfaces whose induced framing differs by +2 from
the framing induced by F.

If we think of S3 = 9B*, then a compact, embedded, nonorientable surface F' C B*
with 0F = K C S3 is a nonorientable slice surface for K, and we define the 4—
dimensional (embedded) crosscap number of a nonslice knot K (ie g4(K) > 1) to
be

y4(K) = min{b!(F) | F is a nonorientable slice surface for K}.

If K bounds an embedded slice disk in B*, we define y4(K) = 0.

Lastly, suppose that F is the image of an immersion /: ¥ — S3, where ¥ is a compact,
nonorientable surface with boundary. Then F = h(X) is a nonorientable immersed
spanning surface for K if h(dX) = K, and if there is a collar neighborhood A
of the boundary 0% such that 4(A) is embedded and A~ !(h(A4)) = A. The first
Betti number 5! (F) of the nonorientable immersed spanning surface F is defined to
be b!(X), and if K is a nontrivial knot we define the nonorientable immersed crosscap
number of K to be

yr(K) = min{b!(F) | F is a nonorientable immersed spanning surface for K}.
In the case when K is the unknot, we again define y;(K) = 0.

Recall that in the orientable case, the Seifert, slice and immersed Seifert genus of a
knot K satisfy

g1(K) = g3(K) = g4(K).

Our goal in this section is to determine which of the results above generalize to the
nonorientable case.

Firstly, as any nonorientable spanning surface in S3 can be pushed into B* to become
a nonorientable slice surface, we clearly have that y3(K) > y4(K). Furthermore, we
also trivially have that y3(K) > y7(K).

Note, however, that not every nonorientable immersed spanning surface can be pushed to
an embedding in B* (see [4] for criteria describing when this is possible). Furthermore,
not every nonorientable slice surface can be pushed into S* to give a nonorientable
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immersed spanning surface. Hence, we do not have any a priori relations between
the invariants y7(K) and y4(K), a fact which can be illustrated with a few simple
examples.

In [9] Teragaito gives an algorithm for computing the crosscap number of the (p, g)-
torus knot 7'(p, ¢) using the partial fraction expansions of rational expressions involving
p and ¢q. In the case of T'(2k,2k — 1), where k > 2, his result implies the following:

Proposition 2 [9, Theorem 1.1] Let k > 2. Then y5(T (2k,2k —1)) =k.

Proof This is a direct specialization of results in [9], though we include the required
computation here for completeness. By Theorem 1.1 in [9], if p and g are coprime
positive integers with p even, then y3(T(p,q)) = N(p,q). Here N(p,q) is an
integer value introduced by Bredon and Wood [2], and is the minimal genus of a closed,
connected, nonorientable surface contained in the lens space L(p,q).

The value of N(p,q) can be computed by starting with a continued fraction expansion
of p/q of the form

2 — aO +
q
ap +
1

a)+——

2 ‘ I

. . + -

an
where each a; > 0 is an integer. Then, by [2], the integer N(p, q) is half the value
obtained by summing up the a; successively, except that when the partial sum is even

the next a; value is skipped. More precisely, if we define

a; if bj—y #aj— or Z;‘_:lo bj is odd,
0 if bj—; =a;—; and Z;-_lobj is even,

bo = ay, bi={

then N(p,q) = % 27=0 bj. Since 2k /(2k —1) =1+ 1/(2k —1), it follows then that
N(2k,2k —1) = 1 (14 2k — 1) = k, as required. o

On the other hand Batson [1] finds a lower bound on y4(K) involving the signature of K,
along with the Heegaard Floer d —invariant of certain integer homology spheres. For
T (2k,2k—1), again with k > 2, his results specialize to give y4(T (2k,2k—1))=k—1.

Proposition 3 Let p and g be integers, with 2p and g coprime and |q| > 2. Then
vi(T(2p.q)) = 1.
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Figure 1: An immersed Mobius band in a solid torus with boundary 7'(2p, q).

Proof With p and ¢ as above, the knot K = T'(2p, ¢) is nontrivial, and hence
yr(K) > 1. Furthermore, it is not difficult to construct an immersed Mobius band F
whose boundary is K as follows.

Suppose that K is embedded along the boundary of the standard embedding of the
solid torus V' C S3. Suppose that for any disk Dy C V' of the form {f = constant} NV,
where 6 is the angular polar coordinate, K N Dy is a collection of 2p evenly spaced
points {x1,...,X2,} around dDy. Ineach Dy, draw p straight lines through the center
of Dy, connecting x; with x,1; for 1 < j < p. As 6 ranges from 0 to 27 these
lines will sweep out an immersed Mobius band in V, with boundary K (see Figure 1).
Furthermore, this Mobius band will be embedded away from the core of V. O

Clearly the above proof of Proposition 3 generalizes to (2p, g)—cable knots, a fact
which we record here.

Proposition 4 If K is a (2p, q)—cable knot, then yr(K) = 1.

In particular, for kK > 2, we have y; (T (2k, 2k — 1)) = 1. We thus see that both of the
quantities y3(K) — yr(K) and y4(K) — y7(K) can be arbitrarily large.

On the other hand, we can also find knots K for which y7(K) > y4(K). Indeed,
an immediate corollary to Theorem 1 is that any hyperbolic knot K has y;(K) > 1.
Hence, any slice hyperbolic knot K has y;(K) > y4(K). The Stevedore knot 6 is
the simplest example of such a knot. An interesting question would be to ask whether
the value of y7(K) — y4(K) can be arbitrarily large.

Question For any n € N does there exist a knot K such that y; (K) — y4(K) > n?
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3 Essential Mobius bands

In what follows we focus on studying nontrivial knots K which bound immersed
Mobius bands that are embedded near their boundaries, ie knots with y7(K) = 1. To
do so it will be more useful to think of our immersed nonorientable spanning surfaces
as lying in the exterior of K, rather than S* itself.

More precisely, let N(K) C S3 be a small open tubular neighborhood of K, and let
E(K) = S3\ N(K) be the exterior of K. Then dE(K) is a torus, with a canonical
choice of meridian. An immersed (nonorientable) spanning surface F in E(K) is the
image of an immersion /: ¥ — E(K), where X is a (nonorientable) compact surface
with boundary, such that 4(d¥) = F N dE(K) is a longitude on dE(K) and 0% has
a collared neighborhood 4 in ¥ such that /(A4) is embedded and A~ ! (h(A)) = A.
Clearly there is a straightforward way to pass between nonorientable immersed spanning
surfaces for the knot K in S and nonorientable immersed spanning surfaces in the
knot exterior E(K). Furthermore, a nontrivial knot K has y;(K) = 1 if and only if
there is a spanning surface in E(K) which is the immersed image of a M&bius band.

3.1 Essential maps

Consider amap h: ¥ — E(K) with 1(dX) C dE(K). We say that & is wy—essential
if hy: m(¥) — 71 (E(K)) is injective. Similarly, we say that / is dm|—essential if
hs: m1(2,0%) — m1(E(K), dE(K)) is injective. Finally, we say that / is essential
if it is both m{— and dm;—essential. We will sometimes describe the image of an
embedding 4: ¥ — E(K) as being essential if the map / is essential.

Now let K C S be a nontrivial knot and M a M&bius band. To make things more
precise, let M be given by the square [—1, 1] x [-1,1] in R?, with vertical edges
identified via (—1,¢) ~ (1, —t). The core of M will be denoted by ¢, and is the image
of [—1, 1] x {0} under the quotient map. Let « be the image of the arc {0} x [—1, 1]
under the quotient map. Note that the homotopy class of ¢ generates 7;(M) = Z, and
the homotopy class of « is the only nontrivial class in 71 (M, dM).

We fix a meridian m and longitude / of dE(K), which we think of as generators for
w1 (0E(K)) = 7Z & Z. (We will write the group operation of 71 (dE(K)) as addition
because it is abelian, and suppress explicit reference to a basepoint when there is no
danger in doing so.)
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Theorem 5 Let K be a nontrivial knot, and suppose that h: M — E(K) is a proper
map where h(dM') is homotopic in dE(K) to a curve of the form a-m + b -[ for some
a,b € 7 with either a or b odd. Then h is essential.

Proof We begin by showing that / is 7| —essential. Note that since 1 (E(K)) is
torsion-free, it suffices to show that /4 (c) is nontrivial. Suppose then to the contrary
that /14 (c) is null-homotopic.

Consider a tubular neighborhood N(c) C M of c¢. Notice that dN(c) is a double of
the core, and hence /4(dN(c)) is also null-homotopic in E£(K). Hence we can take a
disk D and glueitto M \ N(c), via some identification ¢ of dD with N (c), and then
extend the map / across D to getamap h': M \ N(c) U, D — E(K). Note, however,
that M \ N(c) Uy, D is homeomorphic to a disk D?, and hence we obtain a map
h': D?> — E(K), with h'(0D?) = h(dM). As h(dM) is nontrivial in 71 (0E(K)), the
loop theorem then implies that there is a properly embedded disk in D’ C E(K), with
dD’ nontrivial in 71 (0E(K)). This contradicts the assumption that K was nontrivial,
and hence /& must be 71 —essential.

To show that /& is dm—essential, assume now that there is homotopy taking /()
to dE(K), relative to d/(c). Using this homotopy, we can modify / to obtain a new
map hy: M — E(K), which sends oM U N(«) to dE(K), where N(«) is a tubular
neighborhood of « in M. Moreover, the restrictions of & and Ay to dM will be
homotopic inside dE(K).

Consider now the disk Dy = M \ N(«). The map A restricts to give ho: Dy — E(K),
with /1¢(0Dg) C E(K). Suppose first that /19(0Dg) is a nontrivial loop in 71 (0E(K)).

Then, as above, the loop theorem implies that K is the trivial knot, which is a contra-
diction.

Suppose then that /¢(dDg) is null-homotopic in dE(K). This null-homotopy can be
viewed as amap p: Do — 0E(K), where p|sp, = holsp,- Then we can define a map
hi: M — dE(K) by
f € Dy,
ho(x) for x € N().
Furthermore, we have that /1 |yps = holgpr, which is homotopic to 4|y, in IE(K).

Note, however, that M is homotopic to 2-¢ in M. Hence in 71 (0E(K)) the homotopy
class of 1(dM) =a-m + b -1 will be two times the homotopy class of /1 (c), which
contradicts the assumption that at least one of a or b is odd. Thus # must be dm;—
essential, and therefore essential. |
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4 Immersed crosscap number one knots

For the remainder of the paper, let K be a knot with y;(K) =1, M a Mdbius band,
and h: M — E(K) an immersion such that F = (M) is an immersed nonorientable
spanning surface in E(K). We will make use of the following theorem of Cannon
and Feustel. Note that we can define the notions of 7| —essential, 0771 —essential and
essential as in Section 3.1 for maps into any manifold Y. Let 4 be an annulus.

Theorem 6 [3, Theorem 4] Let Y be a compact orientable 3—manifold, and h: A —
Y an essential map with h(dA) C dY. Then there exists an essential embedding
[ 2 =Y with f(0X) C dY, where X is either an annulus or Mobius band. Moreover,
if h|y4 is an embedding, then we may assume that f(0X) C h(dA4).

We begin the proof of Theorem 1 by first showing that K must be a torus or cable knot,
before describing its type.

Lemma 7 If y;(K) =1, then K is a torus or cable knot.

Proof By Theorem 5 the map h: M — E(K) is essential. Let 7: A — M be a
double-covering map. As 7, is injective on both m{(A) and (A4, dA4), the map
hot: A— E(K) will also be essential. Note that (4 o1)|34 will not be an embedding,
but by pushing the image of the two sheets of the covering map off of 4#(dM) we
obtain an essential map which is an embedding along the boundary dM. Then by
Theorem 6 there is an essential embedding f: ¥ — E(K), where X is either a MGbius
band or annulus, and f(dX) is contained in a pair of parallel push-offs of 4 (dM)
along JE(K).

Suppose first that ¥ = M is a Mobius band. Then f: M — E(K) is an embedding,
with f(dM) alongitude of dE(K). Hence y3(K) = 1, and by [5] it follows that K
is a (2, q)-torus or (2, g)—cable knot.

On the other hand, if ¥ = A4 is an annulus, then we obtain an essential annulus
embedded in £(K). By [8], the only such annuli are either subsurfaces of decomposing
spheres for K or cabling annuli (see also [7]). Since the boundary df(A) is a pair of
longitudes of dE(K) and not meridians, it follows that f(A) is cannot be extended
to a decomposing sphere. Hence K is a torus or cable knot, with f(A4) its cabling
annulus. m
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Notice that, in the above proof, the cabling annulus f(A) we obtain in E£(K) has the
same boundary slope as the original immersed M&bius band /(M). In other words,
f(0A4) consists of a pair of simple closed curves in dE(K) which are parallel to the
longitudinal curve h(dM).

As torus and cable knots are necessarily prime, we have the following immediate
corollary:

Corollary 8 Any knot K with y;(K) =1 is prime.

Now that we’ve established that any knot K with y7(K) =1 is a nontrivial (p, g)—torus
or (p, g)—cable knot, we proceed to determine what restrictions (if any) this situation
places on p and ¢. We begin by answering the question in the case of torus knots.

Lemma9 If K has y;(K) =1 and is a (p, q)—torus knot, then one of p or g must
be even.

Proof Suppose to the contrary that both p and g are odd. Suppose further that K sits
on the standardly embedded torus 7" C S3 obtained by extending the cabling annulus
from the proof of Lemma 7, and let V' be one of the solid tori bounded by 7. Recall
that 7t (E(K)) can be presented as

m(E(K)) = (x,y | xP = )9),

where x and y are the homotopy classes of the cores of the two solid tori in S3\ 7.
Suppose, without loss of generality, that x is the homotopy class of the core of V.

Note that 7 N E(K) is the cabling annulus obtained in the proof of Lemma 7. Further-
more, if #(M) is an immersed Mobius band bounded by K we can homotope 4(9M )
so that it sits on dE(K) Nint V. Pushing #(dM) off of dE(K) towards the core of V,
we see that it is homotopic to x?.

Pushing 0M inside M towards its core ¢ and tracking its image under /, we see
that #(dM) is also freely homotopic to /4(c)?, and hence /A(c)? is conjugate to x?
in w1 (E(K)). Note, however, that the only relation in the above group presentation
does not change the parity of the algebraic length of any of the words in 7;(E(K)).
Hence any representation of /1(c)? as a word in the generators x and y will always
have even length, and any word representing a conjugate of x? will have odd length, a
contradiction. Thus either p or ¢ must be even. |
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We now state and prove Proposition 10, which will serve to complete the proof of
Theorem 1.

Proposition 10 If K has y;(K) =1 and is a (p, g)—cable knot, then p must be even.

We will break the proof of Proposition 10 into several lemmas. In what follows, suppose
that K is a knot with y;(K) = 1 which is a (p, g)—cable knot. Furthermore, suppose
that K lies on the boundary 7" of a solid torus V, this time knotted in S 3 where
T N E(K) is the cabling annulus A obtained from the proof of Lemma 7. Let W be
the closure of S3\ V. Again, h(dM) is parallel to the components of dA4 in IE(K),
but this time we homotope 2(dM) so that it is embedded and lies on the outside of V,
in dE(K)NW.

Lemma 11 Suppose that h(M') can be homotoped so that it lies entirely in E(K)NW.
Then p must be even.

Proof Note that £(K)NW is homeomorphic to E(V) = S3\V, which can be viewed
as the exterior of the knotted core of V. Then h(dM ) represents the class g -m + p -1
in w1 (0E(V')), where as usual m and [/ are the homotopy classes in 71 (0E(V')) of the
meridian and Seifert-framed longitude, respectively. Note that since K is a cable (and
hence a satellite knot) we must have |p| > 2. If p is even, then we are done. Assume,
therefore, that p is odd.

By Theorem 5 the map h: M — E (V) is essential, and hence we can find an essential
embedding f: ¥ — E(V), where X is either an annulus or M&bius band, and where
f(0%) is parallel to ~#(dM) in both cases. Furthermore, f(dX) will represent either
g-m+p-lor2qg-m+2p-lin 71(0E(V)), depending on whether ¥ is a M&bius
band or annulus, respectively.

Suppose first that 3 = M. Then the boundary of a tubular neighborhood of N( f(M))
will be an embedded, essential annulus A" C E(V), whose boundary represents
2g-m+2p-1in w1 (0E(V)). Then by [8] (see also Theorem 4.13 in [7]) A’ must be
a cabling annulus for the core of V, which implies that 4’ represents a class of the
form k-m+2-1 € 71 (0E(V)). Thus p = +1, a contradiction.

Suppose then that ¥ is an annulus. As above we can conclude that f(X) is a cabling
annulus for the core of V, and hence we arrive at the same contradictory conclusion,
namely that p = +1. |
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We now turn our attention to the case when s(M') cannot be arranged to lie entirely in
E(K)NW. Then h(M) must intersect the cabling annulus A C £(K) nontrivially. We
assume that / is transverse to A4, and hence 7! (A4) will be a collection of embedded
simple closed curve contained in the interior of M. We thus divert our attention
momentarily to discuss such curves on the Mobius band M.

Recall that M is given by the square [—1,1] x [-1, 1] in R?, with vertical edges
identified via (—1,7) ~ (1, —t). The core of M will be denoted by ¢, and is the image
of [—1, 1] x {0} under the quotient map. Furthermore, let i be the image under the
quotient map of the segments [—1, 1] x {—%, %} While the following result is certainly
well known, we know of no reference to it in the literature, and hence we reproduce its

proof here.

Lemma 12 Any simple closed curve in M which does not bound a disk is isotopic to
either ¢ or [.

Proof Let o C M be a simple closed curve, which we fix an orientation on. Let
8 C M be the image of the arc {—1} x [—1, 1] under the quotient map. Assume that «
and § intersect transversely, and orient § so that the algebraic intersection « -§ between
« and § is nonnegative. Suppose that |« N §| > «-§. Then we can chose an arc 7 C «
such that the endpoints of 7 consist of both a positive and a negative intersection point
of a and 6. Furthermore, we can assume that there are no other intersection points
with § on the interior of 7. Then there is a subarc 7’ in § such that U ¢’ bounds a
disk. After choosing the innermost such disk, we can push 7 through § to the other
side, removing one pair of canceling intersection points. We can repeat this until all
remaining intersection points between « and § are positive. If « N § = &, then « lies
in a disk and hence is nullhomotopic. Assume then that « N § # &.

Lift the simple closed curve « to [—1, 1] x [—1, 1], where we get a collection of
n properly embedded disjoint arcs oy, ...,a,, each of which has one endpoint on
{—1} x[—1, 1] and the other on {1} x [—1, 1]. Assume that the arcs are labeled in
order from top to bottom. The identification of the vertical boundary components then
induces an identification of the strands, sending the left endpoint of the j™ strand to the
right endpoint of the (n—j+1)% strand. Represent this identification as an element o
of the symmetric group S, on n letters. Notice that as a permutation ¢ o 0 = id,
however the subgroup of S, generated by o must act transitively on the set {1,...,n}
as « is connected. Thus n = 1 or 2, and hence « is isotopic to either ¢ or . |
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Returning to our map 4: M — E(K), we show that all loops in A~ 1(4) C M can be
avoided except possibly for curves that are isotopic to .

Lemma 13 The map h: M — E(K) can be modified away from dM so that all
curves in h~'(A) are isotopic to the curve . in M.

Proof We first note that none of the simple closed curves in 27! (A4) can be isotopic
to the core ¢ of M, since A is orientable and ¢ is an orientation-reversing curve in M.

Next we show that we can modify /# away from M so that #~1(A4) contains no
inessential curves. Let « C h~1(A4) be a simple closed curve which bounds a disk D
in M, and assume that D contains no other such curves. Then /(D) will be an
immersed disk which lies in the closure of one of the two components of E(K)\ A4,
which we denote by U, and whose boundary /(«) is an immersed loop on A. Since
A is essential, the immersed loop /(«) will be null-homotopic on A4.

Pick a homotopy which takes /(«) to a small disk D’ in A, and extend it to a homotopy
of h supported in small neighborhoods of o and A, so that the double-point curve
along h(a) now liesin D' C A.

Let N(D’) be the restriction to D’ of a small tubular neighborhood of A, which we
can parametrize in the usual way as N(D’) = D’ x (—1,1). Then h(D) sits entirely
on one side of D’ = D’ x {0}, so we can assume without loss of generality that
h(D)N (D' x (-1,0)) = @.

Then A(D) can be thought of as a properly immersed disk in the ball
B =83\ (int D' x (—1,0)).

Meanwhile, the surface 2(M \ int D) will have one boundary component immersed
along /i (o), which can be pushed slightly off of A4 into the interior of E(K)\ U. The
disk 4(D) C B can be reglued to the newly repositioned boundary of /4 (M \int D), and
by shrinking the ball B down sufficiently we can assume that it is contained entirely in
the interior of E(K) \ U. The resulting immersion will have one less inessential loop
intersection with the annulus 4. By removing all such inessential loop intersections,
we are left with only with loops in #~!(A) that are isotopic to u C M. |

We thus can assume that #~!(A4) consists only of a finite collection of parallel curves
Ko, - - -, i, all of which are isotopic to w C M. Suppose that (1o is the innermost of
the curves in A~1(A4).
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Lemma 14 The curve h(jg) is homotopic to the core k of the cabling annulus A.

Proof We first note that since jt¢ is nontrivial in 71(M) and /4 is essential, i(ug)
will be nontrivial in 7r1(A4). Thus /(o) is homotopic to some nonzero power of «,
say k?, with b #£ 0.

Notice now that 4(dM) is homotopic in JE(K) to either of the components of
dA C dE(K), both of which are in turn homotopic in A to k. Hence h(dM) is
homotopic to k in 71 (E(K)).

On the other hand, dM and o bound an annulus Ag in M, and hence h(dM)
and h(ug) are freely homotopic in E(K) via h(Ag). This implies that [2(dM )] =
[h(o)] in H1(E(K)) = 7Z, and hence that [k] = b[«] in homology. Because the slopes
of d4 and h(dM) in dE(K) agree, we can compute the boundary slope of 4(dM)
with respect to the Seifert-framed longitude of K, to see that its framing coefficient
is pg # 0. Hence we see that [h(dM )] = [«] is nonzero in Hy(E(K)). Thus b =1,
which completes the proof. |

Proof of Proposition 10 Let M, denote the subsurface of M bounded by ¢, which
will also be a Mobius band. Let /g: My — E(K) denote the restriction of /& to M.
Note that hg(0My) will be an immersed curve in the cabling annulus 4 which is
homotopic to the core «. Furthermore, as 1o was the innermost curve in 4~ 1(A4),
ho(My) will be contained entirely inside either E(K)NV or E(K)NW.

Choose a homotopy of 4y which is supported in a small neighborhood of dM,,
and which first straightens out /g(dMj) to the embedded core «, and then pushes
it along A towards one of its boundary components, and finally onto 0E(K). If
ho(My) C E(K)NV, then we push s (dMj) onto dE(K)Nint V, while if ho(My) C
E(K)N W then we push /hg(dMy) onto dE(K) Nint W.

In the latter case, we obtain a proper map hy: My — E(K) whose image is contained
entirely outside of E(K) N V. Moreover, A is essential by Theorem 5, and hence by
Lemma 11 it follows that p must be even.

Suppose then that ho(My) C E(K) N V. Take the solid torus E(K)NV = V, and
perform an inverse satellite operation, embedding it in S3 as the standardly embedded
solid torus V. In doing so we choose this embedding so that the longitude coming from
the Seifert framing on V is identified with the longitude from the Seifert framing on V”,
though this will not be necessary. Using this choice of identification we obtain a map

Algebraic € Geometric Topology, Volume 20 (2020)



1072 Mark C Hughes and Seungwon Kim

h': My — V', with h/(0M{) embedded on dV’ as a (p, g)—torus knot K’. Thinking
instead of /4’ as a map to E(K’), it follows immediately that 4’ is essential.

Now, suppose that p is odd. If we cut the torus V"’ and apply k twists before regluing,
we obtain the solid torus ¥/ again, while the knot K’ is transformed into a (p, g+kp)—
torus knot K” lying on dV’. As p is odd, we can choose k so that ¢ + kp is also
odd. However, since the image of 4’ is contained entirely in V', we can twist the
map /' as well to obtain a new essential map 4”: My — E(K"), with h"(dMy) a
longitude on dE(K”). By Lemma 9 then either p or ¢ + kp must be even, which is a
contradiction. Hence p must be even. O
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