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The syzygy order of big polygon spaces

MATTHIAS FRANZ
JIANING HUANG

Big polygon spaces are compact orientable manifolds with a torus action whose
equivariant cohomology can be torsion-free or reflexive without being free as a module
over H*(BT). We determine the exact syzygy order of the equivariant cohomology
of a big polygon space as a function of the length vector defining it. The proof uses a
refined characterization of syzygies in terms of certain linearly independent elements
in H2(BT) adapted to the isotropy groups occurring in a given T—space.

55N91; 13D02, 55R80

1 Introduction

Let T = (S')" be a torus, and let X be a T—manifold whose cohomology H*(X)
(with real coefficients) is finite-dimensional. A powerful tool to compute the equivariant
cohomology H7 (X) is the Chang—Skjelbred sequence

(1-1) 0— HiX)— Hp(XT) — HF P (X1, X7,

where X7 C X is the fixed-point set and the equivariant 1-skeleton X the union of
orbits of dimension at most 1. The first map is induced by the inclusion X7 <> X and
the second one is the connecting homomorphism in the long exact sequence for the
pair (X1, XT).

If H7(X) is free as a module over the polynomial ring R = H*(BT), then the Chang-
Skjelbred sequence is exact—see Chang and Skjelbred [6, Proposition 2.4] — which
implies that H7.(X) can be calculated out of the equivariant 1-skeleton. In many cases
of interest, X7 is finite and X; a union of 2—spheres glued together at their poles. In
such a setting, this approach is called the GKM method after work of Goresky, Kottwitz
and MacPherson [12, Theorem 7.2].

It is not hard to find examples of 7—manifolds such that (1-1) is exact without H7(X)
being free over R; see below. This phenomenon was studied in detail by Allday, Franz
and Puppe [1; 2], who characterized those T—manifolds for which the Chang—Skjelbred
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sequence is exact; in [9] this is generalized to nonabelian Lie groups. Allday, Franz
and Puppe actually proved a more general theorem that involves higher equivariant
skeletons. For —1 <i <r, we write X; C X for the union of orbits of dimension at
most i, so that Xo = XT and X, = X.

Theorem 1.1 (Allday, Franz and Puppe) The Chang—Skjelbred sequence (1-1) is
exact if and only if H.(X) is a reflexive R—module. More generally, forany 1 <k <r,
the sequence

0— HA(X) — HE(Xo) — Hi (X1, Xo)
— H;—H(Xz, X1) > > H;+k_1(Xk_1’ Xje—2)

is exact if and only if H7.(X) is a k™ syzygy over R.

See [1, Theorem 1.1]. The additional maps in the sequence above are the connecting
homomorphisms for the triples (X;+1, X;, Xi—1).

Recall that an R-module is reflexive if the canonical map to its double-dual is an
isomorphism. Syzygies are a notion from commutative algebra that interpolates between
torsion-free and free modules; see Section 2 for the precise definition. The first syzygies
over R are exactly the torsion-free modules, the second syzygies the reflexive ones
and the r™ syzygies the free ones.

As a corollary (see the comment following [1, Theorem 5.7]) we get the result of Atiyah
and Bredon [5, Theorem on pages 848—849] that the sequence

(1-2) 0— H(X) — HF(Xo) = H3 (X1, Xo)
— H7 (X2, X1) > -+« = H{ 7 (Xp, Xr1) > 0

is exact if and only if H7(X) is free over R, which strengthens the Chang—Skjelbred
theorem.

It is not difficult to construct T-manifolds such that H7(X) is a k™ syzygy for k <r.
For example, the usual rotation action of S! on S? gives an action of T on (S?)”
such that H7.(X) is free over R. By suitably removing two fixed points, any syzygy
order less than 7 can be realized [1, Section 6.1].

The situation becomes much more intriguing if one looks at compact orientable 7'—
manifolds. For such an X, another result of Allday, Franz and Puppe says that if H7(X)
is a syzygy of order > %r, then it is actually free over R [1, Corollary 1.4].
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It already appears very difficult to construct compact orientable 7—manifolds such that
H7(X) is torsion-free, but not free over R. The first such examples were the “mutants
of compactified representations” given in 2008 by Franz and Puppe [11, Section 4].
Recently, the first author found a family of T-manifolds, the so-called big polygon
spaces, that generalize one of the mutants to arbitrary syzygies [8]. We recall the
definition.

Let £ € R7, called a length vector in this context. We assume that £ is generic, meaning

(1-3) DED

JjeJ 2

for any subset J C {l1,...,r}. Depending on which side dominates, J is called {-long
or {—short.

Let p,q > 1. The big polygon space X({) = Xp 4({) is the real algebraic subvariety
of C(P+9)" defined by the equations

(1-4) ;I +l|zj|*=1 forany 1<j<r and  Lyus+---+Lru, =0,

where u1,...,ur € C? and zy,...,z, € C4. Since { is generic, X(£) is a compact
orientable manifold with a smooth action of 7 = (S!)” given by scalar multiplication
of the z—variables,

(1-5) g-(u,z)y=W,g121,...,8rZr).

See [8, Lemma 2.1]. The fixed-point set X(¢)7 is the “space of polygons” E,,(f)
studied by Farber and Fromm [7].

It turns out that H7(X(£)) is never free over R. In fact, H7 (X ({)) is not a syzygy of
order

(1-6) w() =min{oy(J) | J C{l,...,r}is -long and o,(J) > 0},
where
1-7) op(J)=#{jeJ|J\]J is {-short}.

See [8, Proposition 6.3]. Our main result confirms [8, Conjecture 6.6].

Theorem 1.2 The syzygy order of H7(X({)) over R equals j1(£) —1.
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Our proof of Theorem 1.2 is purely algebraic and uses the description of H7(X({))
given in [8, Lemma 4.4]. It is inspired by the proof appearing in the second author’s
PhD thesis [15], which in turn is based on the quotient criterion for syzygies developed
by the first author in [10] and on Morse—Bott theory for manifolds with corners.

The largest possible syzygy order for r =2m 41 and r =2m + 2 is m. It is known
that this syzygy order is realized by an essentially unique length vector which for
odd r corresponds to the equilateral case £ = (1,...,1); see [8, Corollary 6.4] and
also Proposition 4.2. From Theorem 1.2 we deduce that syzygies of the next smaller
order are also unique or at least almost unique.

Corollary 1.3 Let r > 3, and let £ € R” be a generic length vector with weakly
increasing nonnegative components.

(i) Assume that r =2m + 1 is odd. Then Hy(X(£)) is a syzygy of order m — 1 if
and only it X({) is equivariantly diffeomorphic to X(0,0,1,...,1).

(ii) Assume that r =2m + 2 is even. Then Hy(X({)) is a syzygy of order m — 1
if and only if X(£) is equivariantly diffeomorphic to X(0,0,0,1,...,1) or
to X(1,1,1,2,...,2).

To relate our algebraic reasoning with equivariant cohomology, we develop a refined
criterion for syzygies in equivariant cohomology which is of independent interest.
It involves the notion of a k—localizing subset S C H?*(BT) for a given “nice” T—
space X ; see again Section 2 for the definitions. For a big polygon space X({), the
set {t1,...,tr} of indeterminates of R is k—localizing for any k.

Theorem 1.4 Let S C H?(BT;Z) be k—localizing for X for some k > 1. Then
Hp(X) isa k™ syzygy over R if and only if any linearly independent sequence in S
of length at most k is Hp.(X)-regular.

The proof of Theorem 1.4 appears in Section 2. Theorem 1.2 is proven in Section 3 and
Corollary 1.3 in Section 4. In Section 5 we state versions of our results for actions of
2—tori (Z,)" and certain “real” analogues of big polygon spaces which have recently
been studied by Puppe [16].

Acknowledgements Matthias Franz was supported by an NSERC Discovery Grant.
We thank Dirk Schiitz for sharing his Java code to enumerate all chambers of generic
length vectors in a given dimension. It enabled us to verify the syzygy order conjecture
in dimension 10.
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2 A refined characterization of syzygies

From now on, all cohomology is taken with coefficients in a field k of characteristic 0
unless stated otherwise. Let T == (S1)” be a torus; we write R = H*(BT).

Recall that any element ¢ € H>(BT;Z) = H'(T;Z) can be interpreted as a char-
acter xq: T — S1. We write t; € H*(BT;Z) for the element corresponding to
the i coordinate T — S, so that R = k|[tq,...,¢]. For any linearly independent
sequence a = (ay,...,am) in H*>(BT;Z) we write T(a) C T for the identity com-
ponent of the intersection of ker 4, ..., ker xq,,, which is of codimension m. Given
an R—-module M, we also write M/a = M/(ay,...,am)M.

Let X be a T—space. We say that X is nice if it is Hausdorff, second-countable, finite-
dimensional, locally compact and locally contractible; see [1, Sections 3.1 and 4.1]. For
instance, X can be a T—manifold or 7T—orbifold or a complex algebraic variety with an
algebraic action of (C*)”". We additionally assume that H*(X) is finite-dimensional
and that only finitely many subtori of T occur as identity components of isotropy
groups in X. In the examples just mentioned, this last condition is redundant; see
[9, Theorem 7.7].! (We have implicitly used this in the introduction already.)

Let kK > 0. A finitely generated R-module M is called a k" syzygy if any regular
sequence in R of length at most k is also M-regular. (See [1, Section 2.3] for
equivalent definitions of syzygies.) If M is a syzygy of order k, but not of order k + 1,
then we say that the syzygy order of M equals k.

In our topological context, it is enough to consider sequences of linear elements.

Lemma 2.1 Let X be a nice T—space and let k > 0. Then Hy(X) is a k™ syzygy if
and only if every linearly independent sequence in H?(BT;Z) of length at most k is
H7 (X)-regular.

Proof This is implicit in [1, Theorem 5.7]. There it is shown that H7.(X) is a kth
syzygy if and only if it is free over all subrings H*(BT") C R where T" is a quotient
of T of rank <k (equivalently, equal to k if k <r). These are exactly the subrings of R
that are generated by linearly independent sequences in H2(BT;Z) of length <k.

Let a be such a sequence and let T” be the corresponding quotient of 7. Because
the graded module M = H7 (X) is bounded below, it is free over R” = H*(BT") if

IThe algebraic case reduces to the one for manifolds: algebraic varieties have finite Betti sum and can
be decomposed into finitely many smooth varieties, stable with respect to an algebraic action.
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and only if a is M -regular; see [14, Lemma on page 5]. (The argument given there
remains valid for modules that are not finitely generated.) a

Lemma 2.2 Let X be a T—space, and let a be a sequence in H*>(BT;Z). If a is
H 7 (X)-regular, then the restriction map Hy(X)—Hr. @ (X) induces an isomorphism
H;(a)(X) ~ Hp(X)/a.

Proof This is again contained in the proof of [1, Theorem 5.7]. By induction, we may

assume that @ consists of a single element 0 # a € H?(BT; Z). We may also assume
that it is not divisible by any integer > 1.

Let C7(X) be the singular Cartan model for X ; see [1, Section 3.2]. We may assume
that ¢ is contained in the basis of H2(BT;Z) chosen in the definition of the singular
Cartan model. We then have a short exact sequence

2-1) 0— C7(X) % Cr(X) = Cri(X) —0.

Because a is H (X)-regular, this induces the exact sequence

(2-2) 0— Hj (X)) Hj(X)—> Hju(X) =0,

proving the claim. a

For any x € X, the kernel of the restriction map py: H?(BT) — H?(BT,) has
dimension equal to the codimension of T in 7. We say that a subset S C H2(BT) is
k—localizing for X if for any x € X at least min(k, codim 7% ) linearly independent
elements from S lie in ker p, . This notion behaves well with respect to subtori:

Lemma 2.3 Let X be a T—space, and let S C H?(BT) be k-localizing for X
for some k > 0. For any subtorus T’ C T of codimension [ < k, the image of S
in H?(BT') is (k—I)-localizing for X, considered as a T'—space.

Proof Let x € X and consider the commutative diagram of surjections

H2(BT) —2* H2(BTy)

(2-3) nl l

H?(BT") -2 H2(BT))

If S contains a basis for ker py, then 7(S) contains one for ker p/.. If S contains
k linearly independent elements from ker p,, then 7(S) contains k — [ linearly
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independent elements from ker p/.. In either case, we have found enough linearly
independent elements in 7(S) Nker p’., which proves the claim. a

Theorem 2.4 Let X be a nice T—space, and let S C H?(BT;Z) be k—localizing
for X for some k > 0. Then H7.(X) isa k™ syzygy over R if and only if any linearly
independent sequence in S of length at most k is H7 (X )-regular.

Proof The “only if” direction follows from the definition of syzygies given above.
We prove the converse by induction on k. Note that we may assume O ¢ S.

We consider first the case k = 1. Because S is l-localizing for X, we can, for
any x ¢ X7, find an element in S lying in the kernel of the restriction map H*(BT) —
H*(BTy). By the localization theorem in equivariant cohomology [4, Theorem 3.2.6],
this implies that the bottom arrow in the commutative diagram

HY(X) —— HX(XT)

| |

STUHA(X) —— STV HA(XT)

is an isomorphism, where S C R is the multiplicative subset generated by S.

By assumption, no element in S is a zero-divisor for H 7(X), so the left localization
map in the diagram is injective. It follows that the top arrow is also injective, meaning
that the equivariant cohomology of X embeds into that of the fixed-point set. Since
Hy (XT)~ H*(XT) ® R is free over R, H7(X) must be torsion-free.

We now consider the case k > 1 and assume that M := H;(X) is not a k'™ syzygy.
By Lemma 2.1 this means that there is an R-regular sequence a of length at most k
in H?(BT;Z) that is not M—regular. We are going to show that there is another
such sequence contained in S. If a = (ay1,...,a,) isof length m <k orif m =k
and a’ = (ay,...,a,_;) is not M—-regular, then M is not a syzygy of order k — 1,
and we are done by induction.

So we can assume that m = k and that a’ is M-regular. We write 7’ = T'(a’),
R'= H*(BT') = R/a’ and n’ for the canonical projection R — R’. By Lemma 2.2
we have an isomorphism

(2-5) M :=H}(X)=M/d,

and 7'(ay) € R’ is a zero-divisor for this module. Moreover, Lemma 2.3 implies that
7'(S) C R is 1-localizing for the T'—space X. By the already established base case,
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there is a zero-divisor /(b)) # 0 in 7/(S), and hence 0 # b € S is also a zero-divisor
for M’. Therefore, the sequence (a’, b) is not M-regular.

We may assume that b is not a zero-divisor for M for otherwise we would be done
as M would not be a first syzygy. Because M is graded and bounded below and
the sequence (a’,b) is made of homogeneous elements, we can rearrange it [14,
Proposition on page 1] to obtain (b, a’), which is again R-regular, but not M —regular.
Since b is not a zero-divisor for M, this means that a’ is not regular for M” = M /b.

We write T” = T(b) and define R” and n” accordingly. Again by Lemma 2.3,
7" (8) is (k—1)-localizing for X, considered as a T"—space. Appealing once more to
Lemma 2.2, we get an isomorphism

(2-6) M" = Hrr (X)

Given that a’ is not M"—-regular, M" cannot be a (k—1)% syzygy over R”. By
induction, we can therefore find a sequence 7”’(c) of length at most k — 1 in 7"/ (S)
that is regular for R”, but not for M”. Thus, (b, ¢) is an R-regular sequence in S of
length at most k that is not M —regular, as desired. |

3 Big polygon spaces

Let r > 1. We write [r] = {1,...,r} and A for the simplex with vertex set [r],
considered as a simplicial complex. We call a length vector £ € R” strongly generic
if £(0) # £(7) for any two distinct simplices o and t in A, where

(3-1) to)=)Y ¢;.
JE€o

Two generic length vectors are called equivalent if they induce the same notion of “long”
and “short” on subsets of [r]. The equivalence classes of generic length vectors £ are
open polyhedral cones in R” which are the connected components of the complement
of a hyperplane arrangement. Because strong genericity means that certain additional
hyperplanes are avoided, any generic length vector is equivalent to a strongly generic one.
Two equivalent generic length vectors give rise to equivariantly diffeomorphic big poly-
gon spaces, hence to isomorphic equivariant cohomologies. Moreover, there is no loss
of generality if one assumes £ to be positive and weakly increasing; see [8, Section 2].
In this case, nonequivalent generic length vectors give rise to big polygon spaces which
even nonequivariantly are not diffeomorphic [8, Proposition 3.7]. For the rest of this
section, £ € R” denotes a strongly generic length vector with positive coordinates.
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For any R-algebra R, we write C(A; R) for the Koszul complex with coefficients
in R. Thatis, C(A; R) is a free R—module with basis A and differential

(3-2) dy =Y +t!(y\j)

jey
for y € A; see [8, Section 5]. (Note that we sometimes omit braces, as in y \ j.) We
introduce a grading by giving each generator #; € R the degree 2 and each y € A the
degree (2p + 2¢q — 1) - #y. The differential (3-2) then has degree 1 —2p.

Let S C A be a subset. We define S4 and S— to be the set of {—long and {—short
simplices in S, respectively. We write C(S; R) for the R—submodule of C(A; R) with
basis S so that

(3-3) C(A;R)=C(S; ) ®C(A\S; R)

as R—modules. If S is a simplicial subcomplex of A, then C(S; R) and C(S_; R) are
subcomplexes of C(A; R), but C(S4; R) is not in general. For any S we define the
subcomplex

(3-4) D(S;R) =C(S;R)+dC(S;R) CC(A; R).
Forany ¢ =Y ca Co0 € C(A; R), we write
(3-5) suppc ={0 € A|cs #0}
for its support and, assuming ¢ ¢ C(A4),
(3-6) £(c) = min{£(0) | 0 € supp ¢ is short}.
Lemma 3.1 Consider the differential as a map

fo: C(A+; R) > C(A; R)/C(A+; R) =C(A_; R), yr—dy.
Then there is a short exact sequence of graded R—modules

0 — coker f; — H7(X(£)) — (ker fy)[-2p] — 0.

In particular, the syzygy order of H7.(X(£)) over R equals that of coker fj.

Here [—2p] denotes a degree shift by 2p downwards. The sequence actually splits by
a result of Puppe [16, Lemma 3.12].

Proof See [8, Section 4, Lemma 6.2]. Note that we have indexed the basis elements
in a form more convenient for our purposes. a
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For any y € A4 we define

(3-7) og(y) =#{j €y |y\J is {=short}
and
(3-8) n(€) = min{oy(y) |y € Ay and og(y) >0} > 1

as in [8, Equations (6.6)—(6.7)].
Theorem 3.2 The syzygy order of H7(X({)) over R is ju(€) — 1.

In [8, Proposition 6.3] it is shown that () — 1 is an upper bound for the syzygy order,
and it was conjectured that one has equality [8, Conjecture 6.6].

Proof According to Lemma 3.1, the syzygy order of Hy(X({)) equals that of
(3-9) M(¢) = C(A; R)/D(A4; R).

By what we have just said, we only have to show that M ({) is a syzygy of order at
least w(€)—1.

The isotropy subgroups appearing in X(£) = X, 4({) are the coordinate subtori
of T = (S')". Hence for any k the set S = {t1,...,t,} C H?>(BT;Z) is k-localizing
for X. By Theorem 2.4, it suffices to show that for any k < @ (£) and any pairwise
distinct elements i1, ..., i the sequence (t;,,...,t; ) is M({)-regular.

We proceed by induction on k, the case kK = 0 being void. For k > 0, we know by
induction that the sequence t;,,...,%,_, is M({)-regular. It remains to show that #;,
is not a zero-divisor in N = M({)/(t;,,. ...t _,) or, equivalently, that [ii is not a
zero-divisor in N. (Recall that M () is graded and bounded below, so that #;, N # N.)
We write I = {i1,...,ix_1} and i = if.

We start by observing that

(3-10) N =C(A;R)/(D(A+: R) + (tiy, - - . tix_, ) C(As R))
=C(A; R)/D(A+: R),

where

(3-11) R=R/(ti,....ti_)=Kk[tj | j ¢ 1]

In this case the differential (3-2) takes the form

(3-12) dy= Y +1!(y\J).

jey\l
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Assume that our claim is false. Then there is a ¢ € C(A;R) such that tiqc is contained
in D(A+; R) while ¢ itself is not. We can write tiqc =a+db forsome a,beC(A+; R).
Since

(3-13) (a+tla)+db+i1b)=tl(c+a +db),

we may assume a and b to be tl.q —free. By this we mean that in the canonical monomial
basis for R, no monomial divisible by tiq appears in the nonzero coefficients a, and b,
of a and b with respect to the basis A of C(A; R). It implies that ¢ is tl.q —free.

Let I' C A be the simplicial complex of the facet not containing i, so that A is the
cone over [ with vertex i . Recall that we have a bijection between the simplices y € I"
and those in A\ T, givenby y >y :=y Ui.

Using (3-3), we can decompose a, b and ¢ as

(3-14) c=c1+ceC(T;R)®C(A\T;R),
(3-15) a=aj+az b=by1+byeC(TL;R)DC(AL\Ty:R).

By inspection of (3-12) we see that db; € C(T'; R) is tl.q—free and
(3-16) dby = ey +e, € C(T; R)®C(A\T;R),

where e; is divisible by tl-q and e; is tl.q—free. Hence

(3-17) tl-qcl =a1+db1+ e and tl.qcz =a,+es.
~—— N — ——
tl-q—free div. by tl-q tiq—free

This implies

(3-18) tlecy =e1, a1+dby=0, c;=ax+e;=0.
Hence ¢ € C(T'; R), and we can write it in the form

(3-19) tlc=a+db, a,beC(Ax\T1:R).

We assume also that ¢ is a counterexample maximizing £(c). The simplex ¢ € supp ¢
realizing £(c) is necessarily short since ¢ ¢ C(Ay; R) C D(A4; R). We finally require
that among all these counterexamples we pick one with the fewest monomials appearing
incy €R.

Figure 1 may help the reader to visualize the simplices constructed in the following
arguments.
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Figure 1: The simplex B . The face p is of codimension 3.

Being short, o cannot be contained in suppa. Hence & € suppb and by = +c4
by (3-19) and (3-12). In particular, ¢ is long. Since o is short and pu(f) >k + 1, we
conclude that 6 has k + 1 short facets. Hence there is a short facet of the form

(3-20) p=0o\j. Jj¢lIUi

given that #/ = k — 1. Let us write

(3-21) o=14jo,....Jjmy with £, <---<{;,
(where we have used our assumption that £ is strongly generic) and
(3-22) Ju =max(a \ I).

By (3-21), we may assume j = j, in (3-20) because replacing j by j, can only
decrease the length of p.

Looking at (3-12), we have p € suppdo since j,, ¢ I. Given that p is short and not
contained in [, it cannot appear in db = ll.qc —a. Hence there must be a (necessarily
long) simplex T # & appearing in b and having p as a facet.

We have
(3-23) T=pUj’ forsome j' ¢0.

The contribution of d(b56) = £d(cs0) to the coefficient (db); of p in db is j:tjqu Cos
and that of d(b;7) likewise is it;], bz. Since all monomials appearing in (dcy;0)5
must somehow be compensated for by other simplices appearing in b, we may choose T
such that t]’.l, divides a monomial appearing in ¢y . Because t appears in db and o
is the shortest simplex appearing there, we additionally have £(t) > £(o) or, in other
words, £; > {;, , again by strong genericity.
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Now 7 is a long facet of

(3-24) B=56U;" where f=0U’

The other facets of ,g different from B are obtained from T by substituting j, for
some j, € t. If v < u, we get another long facet by (3-21). Therefore, B has at
most #I 4+ 1 = k short facets by (3-22), including possibly 8. But u(€) >k + 1, so
all facets of B are long.

Since we have
(3-25) 0=dd,§=d(itl.q,8i Zt}’(ﬁ\j)),

. jeB\i
we can write tl.q ¢ = db with

(3-26) C=dp= ) +1](B\j)eCT:R).
JeB\I
(3-27) b==% ) t/(B\))eC(AL\ Ty R).
JjeB\I

Consider now all monomials appearing in ¢, that are divisible by tjq, and write their
sum as tJfI,x with x € R. Then x # 0 by our choice of 7, and no monomial appearing
in it is divisible by tl.q since ¢ is ll.q—free. The preceding discussion implies

(3-28) t1(c +x8) = a+d(b + xb),
where both @ and b + xb € C(AL \Ty:R) are tl.q—free and ¢ +xZ € C(T;R). In

particular, ¢ + x¢ is another counterexample of the form (3-19) to our claim that tl.q is
not a zero-divisor in M (¢).

Since £;s > £, and j, € I for u <v <m, the simplex 0 = 8\ j’ is the shortest one
appearing in the sum (3-26). Hence

(3-29) L(c +xc)=L(c).
The coefficient of ¢ in ¢ + x¢ is of the form

(3-30) (¢ +xC)g = co —1}x.

If it vanishes, then we have a strict inequality in (3-29) since £ is strongly generic.
This would contradict our choice of ¢ with maximal £(c). If it does not vanish, then it
is still obtained from ¢, by removing certain monomials. As such, it contains fewer
monomials than ¢4, again contradicting our choice of c.

We conclude that no counterexample exists. a
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4 Classification of high syzygies

Using the result of the previous section, we can extend the classification of big polygon
spaces with high syzygies in their equivariant cohomology. Throughout this section,
£ € R” denotes a generic length vector with positive and weakly increasing coefficients.

Maximal syzygies, that is, those of order m for r =2m 41 odd or r = 2m 4 2 even
were determined in [8]. We are going to rephrase the proof in our setting and extend
the result to syzygies of order m — 1.

Lemma 4.1 If there is a long subset J C [r] of size #J = ({), then
£~ (0,...,0,1,...,1).
——
2u()—1

Proof We may assume £ to be strongly generic and set u(f) = k. Note that all
subsets / C [r] with fewer than k elements are short for otherwise we would get the
contradiction

4-1) k=ul)<o¢(l)=#I <k
for a (necessarily nonempty) long set / of minimal size.

Among all long subsets J C [r] of size k, we pick the one with minimal £(J). We set
Jmin = min(J) and jn.x = max(J). By what we have just said, J \ jnax i8 short.

Let I C [r] be the set of those values j ¢ J \ jmax such that (J \ jmax) U J is long. This
set contains jmax and therefore is nonempty. Hence #/ >k and #(/ \ jmax) >k — 1.

For any i € I \ jmax, the set J; = (J \ jmax) Ui is long and of size k, and J; \ i is
short. Hence

4-2) k<op(J;) <#J; =k.

This implies £(J;) > £(J) for otherwise £(J) would not be minimal. In summary, /
consists of jm.x and k — 1 values larger than jax.

Consider the remaining r —#(J U I) =r —2k + 1 elements of [r]\ (J U ). If one
of them were greater than jni,, then we would have £([r]\ J) > £(J), contradicting
the assumption that J is long. These elements therefore are smaller than ji,, and we
conclude that

(4-3) J ={Jmins s Jmax) ={r—2k+2,...,r—k+1}.
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This implies that any subset of [r] containing k values > jni, = r —2k + 2 is long.
These sets are exactly the long sets for the length vector
(4-4) ¢ =(0,...,0,1,...,1).

——— N—

r—2k+1  2k—1

We conclude that they comprise half of all subsets and therefore that £ and £’ induce
the same notion of “long” and “short”. |

Proposition 4.2 [8, Corollary 6.4] Letr > 1.

(i) Assume that r =2m + 1 is odd. Then H (X ({)) is a syzygy of order m if and
onlyif £ ~(1,...,1).

(i) Assume that r =2m +2 is even. Then Hy(X(£)) is a syzygy of order m if and
onlyif £ ~(0,1,...,1).

Proof By Theorem 3.2, the condition on the syzygy order translates into u(€) =m+1.
In both cases it is immediate to check that this is satisfied by the given length vectors.
It remains to show the “only if” direction.

As in the previous proof, any subset with fewer than p(f) = m + 1 elements is short.
Hence there must be a long subset of size m + 1 for otherwise more than half of all
subsets would be short. The claim now follows from Lemma 4.1. O

Proposition 4.3 Letr > 3.

(i) Assume that r = 2m + 1 is odd. Then H}(X(£)) is a syzygy of order m — 1 if
and only if £ ~ (0,0,1,...,1).

(ii) Assume that r =2m + 2 is even. Then Hy(X({)) is a syzygy of order m — 1 if
and only if £ ~(0,0,0,1,...,1) or £ ~(1,1,1,2,...,2).

We can restrict ourselves to r > 3 here since H7.(X(£)) is always torsion for r < 2.

Proof This time the condition on the syzygy order translates into @ (£) = m. In all
cases it is elementary to verify that it is satisfied by the given length vectors. It remains
to show the “only if” direction.

Let J C [r] be a long subset of minimal size. Since half of all subsets are long, we
have 1 <#J <m+1 and also m = u({) <oy(J) =#J,and hence m <#J <m+ 1.
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Assume that r =2m 41 is odd. If #J = m + 1, then all subsets of size at most m are
short. Since these are already half of all subsets, those having at least m 41 elements are
long. This implies (£) =m + 1, contrary to our assumption. Hence #J =m = u({),
and we can appeal to Lemma 4.1.

Now let r = 2m + 2 be even. The case #J = m 1is dealt with as before. So we
can assume that long sets have at least m + 1 elements, and we have to show that
L~ =(1,1,1,2,...,2).

For the purpose of this proof, call a subset J C [r] distinguished if it is of size m + 1
and contains 2 and 3. Assume that there is a distinguished long set J. We claim that
in this case all distinguished sets are long.

In order to prove this, choose a j ¢ J such that j > 3. (This is possible because there
are m + 1 > 2 elements not in J.) Then both J'=J U j and J = J'\ j are long,
and hence so are J'\ 2 and J'\ 3. Thus,

(4-5) or(J)Y<(m+2)—3=m—1.

Since w(£) = m, this implies o¢(J’) = 0. In other words, replacing any element of J
by an element J # j > 3 leads to another long set. Applying this procedure repeatedly,
we can transform J into any other distinguished set while keeping it long, which proves
the claim.

Given a distinguished set, we can also replace 2 and 3 by larger elements without
making the set short. So we see that any subset J C [r] of size m + 1 not containing 1
is long, as are all subsets of larger size (because their complements, being of size at
most m, are short). These sets are exactly the long subsets for £” = (0,1,...,1) and
therefore all {-long subsets. But this is impossible as u(£”) =m + 1 # m.

We conclude that any distinguished set is short. Hence so is any subset J of size m + 1
such that #(J N{1, 2, 3}) > 2. Together with the subsets of smaller size, these are exactly
the ¢/—short subsets. So they are also exactly the {—short subsets, which shows £ ~¢". O

There seems to be no easy description of syzygies of lower order. For instance, computer
experiments show that for r =9 = 2.4 4 1 there are, up to equivalence, 5 length
vectors £ (out of 175,428) such that H7(X(£)) has syzygy order 2 = 4 — 2, and
for r =10 =2-4+42 there are 18 (out of 52,980,624). (The numbers of nonequivalent
length vectors can be found in [13, Section 10.3.1].)
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S The real case

Let £ € R” be a generic length vector, and let p,q > 1. The real big polygon
space Y (£) =Y, 4({) is defined by restricting all variables to the reals, that is, by

5-1) ||uj||2+ |z |?=1 forany 1<j<r and bouy + -+ Lru, =0,

where u1,...,u, € R? and z1,...,z, € R4. Tt is the fixed-point set of X({) under
complex conjugation of all variables, hence again smooth. The 2—-torus G = (Z,)"
of rank r acts on Y(£) by reversing the signs of the z—variables. We assume now
that k is a field of characteristic 2. The G—equivariant cohomology of real big polygon
spaces (and more general spaces) with coefficients in k has been studied by Puppe [16],
following the work of Hausmann [13, Section 10.3].

The fixed-point set Y (£)? is empty for p = 1, by the very definition of a generic length
vector. By the localization theorem, this implies that H (Y ({)) is a torsion module
over R = H*(BG) in this case. For p > 1, however, the theory parallels the one for
the complex case. In particular, the equivariant cohomology H (Y ({)) is given by
a formula analogous to Lemma 3.1, which allows us to proceed in the same way as
before. We content ourselves with sketching the arguments.

Lemma 5.1 Grade C(A; R) by setting |t;| = 1 for each generator t; € R and setting
lyl=(p+q—1)-#y foreach y € A. With f; defined as in Lemma 3.1, there is a
short exact sequence of graded R—modules,

0 — coker f; — Hp(X(£)) — (ker fy)[—p] — 0.
In particular, the syzygy order of Hy(X(£)) over R equals that of coker f;.

Proof See [16, Section 3], in particular Proposition 3.11 and Equations (3.19)—(3.22).
Alternatively, one could adapt the proof given in [8]. a

Let X be a G-space, and for x € X, let py: H'(BG) — H'(BG) be the restriction
map. For 0 <k <r, we call asubset S C H'(BG) k-localizing if for any x € X at
least min(k, corank Gy) linearly independent elements from S lie in ker p, .

We need the following analogue of Lemma 2.1; see [3, Theorem 10.2]. A nice G—space
is defined in analogy with the torus case.
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Lemma 5.2 Let X be a nice G—space and let k > 0. Then H}(X) is a Kk syzygy if
and only if every linearly independent sequence in H'(BG:F5) of length at most k is
HZ (X )-regular.

Arguing as in Sections 2 and 3, we obtain the following.

Theorem 5.3 Let X be a nice G—space, and let S C H'(BG;F5) be k—localizing
for X for some k > 0. Then H(X) isa k™ syzygy over R if and only if any linearly
independent sequence in S of length at most k is H g (X)-regular.

Theorem 5.4 Assume p > 1. Then the syzygy order of Hg (Y (£)) over R is u(£)—1.
In particular, it is the same as the syzygy order of Hp(X(£);: Q) over H*(BT;Q).

As a consequence, the characterizations of high syzygies derived in Section 4 carry
over to real big polygon spaces. The analogue of Proposition 4.2 has already been
established by Puppe [16, Proposition 3.14].
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