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MONOTONIC AND CYCLIC LOADING PROCESSES

DMITRY ABASHEV AND VALENTIN BONDAR

Experimental analysis of 12X18H10T stainless steel specimens subjected to strain-controlled cyclic
loading that comprises sequential monotonic and cyclic loading under uniaxial tension-compression and
standard temperature is used to identify some features and dissimilarities of isotropic and kinematic hard-
ening processes that occur during monotonic and cyclic loading. In order to describe these features in
terms of the plasticity theory (the Bondar model), which can be classified as a combined-hardening flow
theory, plastic-strain redirection criterion and the memory surface concept are introduced in the plastic-
strain tensor space so as to separate monotonic and cyclic strain. Evolution equations for isotropic and
kinematic hardening processes are derived to describe the monotonic-to-cyclic and cyclic-to-monotonic
evolutions in transients. The basic experiment used to determine the material functions consists of three
stages: cyclic loading, monotonic loading and subsequent cyclic loading until fracture. The results of
the basic experiment are fundamental to the proposed method for identifying the material functions.
Basic-experiment results and the identification method are used to identify the room-temperature mate-
rial functions of 12X18H10T stainless steel. The paper compares the computational analysis and the
experimental analysis of stainless steel subjected to a strain-controlled fatigue test (loading) in five and
seven stages monotonic and cyclic loading until fracture. It further compares the computational and
experimental kinetics of stress-strain state throughout the deformation process. Changes in the ampli-
tude and mean cycle stress during the cyclic stress stages are subsequently analyzed. These stages are
characterized by hysteresis loop stabilization. Computational and experimental results fit reliably. The
theory adequately describes the processes of how the kinetic, the range, and the middle cycle stress alter
when subjecting a specimen to strain-controlled loading, which enables a more adequate description of
stress-controlled loading, especially when loading is nonstationary and nonsymmetric.

1. Introduction

Nonstationary asymmetric cyclic strain is a deformation process which is a sequence of monotonic and
cyclic loadings. It is a very complex problem to model such processes mathematically when subjecting a
specimen to strain-controlled cyclic loading, even more so in case of stress-controlled loading. Besides,
such loadings are associated with the hard-to-model hysteresis-loop ratcheting and stabilization. As
for the assessment and prediction of the resource under nonstationary and asymmetric cyclic loading
conditions, fatigue damage accumulation must be determined throughout the deformation process given
the significant nonlinearity of such damage.

Mathematical modeling of strain and damage accumulation when subjecting a specimen to cyclic
loading is mainly based on variants of plasticity theories belonging to the class of combined (isotropic

Keywords: monotonic and cyclic loading, plasticity theory, isotropic and anisotropic hardening, memory surface, basic
experiment, identification method.

225

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2020.15-2
http://dx.doi.org/10.2140/jomms.2020.15.225
http://msp.org


226 DMITRY ABASHEV AND VALENTIN BONDAR

and kinematic) hardening plastic-flow theories as reviewed and analyzed in [Abdel-Karim 2009; 2010a;
2010b; 2011; Bari and Hassan 2002; Besson et al. 2010; Bondar 2013; 2004; Bondar and Danshin
2008; Bondar et al. 2014; 2015; 2016; 2017; 2018; Chaboche 2008; Chaboche et al. 2012; Chang et al.
2016; Hassan et al. 2008; Huang et al. 2014; Kan and Kang 2010; Kang and Kan 2007; Kapustin et al.
2015; Kim et al. 2013; Lee et al. 2014; 2017; Mitenkov et al. 2015; Muhammad et al. 2015; Qiao et al.
2015; Rahman et al. 2008; Smith et al. 2018; Taleb and Cailletaud 2011; Taleb et al. 2014; Volkov and
Igumnov 2007; Volkov and Korotkikh 2008; Yu et al. 2015; Zecevic and Knezevic 2015; Zhu et al. 2014;
2017]. In this paper, such modeling is based on the Bondar model, a version of plasticity theory [Bondar
2013; 2004; Bondar and Danshin 2008; Bondar et al. 2014; 2015; 2016; 2017; 2018] which, as shown
in [Bondar et al. 2017], is the most adequate version for describing cyclic loading-induced strain and
fracture, as compared to the Korotkikh [Kapustin et al. 2015; Mitenkov et al. 2015; Volkov and Igumnov
2007; Volkov and Korotkikh 2008] or Chaboche [Besson et al. 2010; Chaboche 2008; Chaboche et al.
2012; Huang et al. 2014] models. This paper presents the basic equations of the Bondar model.

In order to identify the features of strain induced by nonstationary and asymmetric cyclic loading,
strain-controlled loading is analyzed by subjecting 12X18H10T stainless steel specimens to tension-
compression tests in a sequence of five stages: cyclic, monotonic, cyclic, monotonic, and cyclic loading
until fracture. Analysis of the cyclic-to-monotonic and monotonic-to-cyclic transients shows the need
to separate the monotonic and the cyclic deformation processes. To that end, a plastic-strain redirec-
tion criterion and the memory surface concept for separating the monotonic and cyclic deformation
processes are introduced in the plastic-strain space. Evolution equations of isotropic and kinematic
hardening parameters for monotonic and cyclic loading are further introduced in the Bondar plasticity
theory equations.

Separation of the monotonic and cyclic strain is also a feature of the Korotkikh model [Volkov and
Korotkikh 2008], where it is only used to describe the evolution of isotropic hardening. The memory
surface in this model is constructed in the backstress deviator space while determining the maximum
equivalent backstress value in the deformation process. In [Mitenkov et al. 2015; Volkov and Korotkikh
2008], the evolution of kinematic hardening in a plastic-strain deviator space is described by introducing
a memory surface while determining the maximum equivalent plastic-strain amplitude in the deforma-
tion process. Volkov et al. [2018] used the same memory surface to describe the kinematic hardening
evolution as in the case of isotropic hardening. All these approaches [Mitenkov et al. 2015; Volkov
and Korotkikh 2008; Volkov et al. 2018] have one significant drawback: the resulting memory surface
size can potentially decrease and increase at the end of the cycle, resulting in a chance of it either both
monotonic or cyclic loading at the end of each cycle. Besides, the evolution equation for the maximum
cyclic-loading equivalent backstress means that this value is always diminishing, although it should
remain constant in a stabilized cycle. In conclusion, it should also be noted that there is no documented
adequate rationale for the considered approaches [Mitenkov et al. 2015; Volkov and Korotkikh 2008;
Volkov et al. 2018]. In [Chaboche et al. 1979; Nouailhas et al. 1985; Ohno 1982], the evolution of only
isotropic hardening in plastic-strain deviator space is described by introducing a memory surface while
determining the center and size of the memory surface in the deformation process.

Taking into account the identified features of monotonic and cyclic loading for the refined equations
of the modified Bondar plasticity theory, this research has defined the basic experiment as well as the
method for identifying the material functions. The material functions of 12H18N10T stainless steel
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at room temperature are obtained. This paper compares the computational analysis and experimental
analysis of 12H18N10T stainless steel subjected to strain-controlled loading which is a sequence of
monotonic and cyclic loadings. The kinetics of the stress-strain state is analyzed, and changes in the
amplitude and mean stress of the cycle during the cyclic loading stages are taken into account.

2. Basic equations of the plasticity theory

A simplified version of the plasticity theory [Bondar et al. 2014; 2015; 2016; 2017; 2018], which is
a partial version of the theory of inelasticity [Bondar 2013; 2004], is considered. This version is a
single-surface combined-hardening flow theory. Its applicability is limited to small strains of initially
isotropic metals at temperatures that entail no phase transformations, at such strain rates where dynamic
and rheological effects are negligible. Kinetic equations of damage accumulation and use the work of
Type II backstresses on the field of plastic strain as the value of energy spend to damage the material.

Below is a summary of the basic equations for this plasticity theory version.
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ȧ(m)ij =
2
3 g(m) ε̇ p

ij (m = 3, . . . ,M), (8)

ε̇
p
ij =

∂ f
∂σij

λ= 3
2

s∗ij
σ ∗eq

ε̇
p
eq∗, s∗ij = sij − aij , σ ∗eq =

( 3
2 s∗ij s∗ij

)1/2
, (9)

ε̇
p
eq∗ =

1
E∗

3
2

s∗ij σ̇ij

σ ∗eq
, E∗ = qε

M∑
m=1

g(m)+
2∑

m=1

g(m)a a(m)
∗

eq , a(m)
∗

eq =
3
2

s∗ij a(m)ij

σ ∗eq
, (10)

ε̇
p
eq∗ =

1
E∗+ 3G

3G
s∗ij ε̇ij

σ ∗eq
, G = E

2(1+ν)
, (11)

σ ∗eq < C ∪ ε̇ p
eq∗ ≤ 0− elasticity, σ ∗eq = C ∩ ε̇ p

eq∗ > 0− elastoplasticity, (12)

ω̇ = αω(α−1)/α
a(2)ij ε̇

p
ij

Wa
, α =

(
σ
(2)
a

a(2)eq

)nα
, a(2)eq =

( 3
2a(2)ij a(2)ij

)1/2
. (13)

Here, ε̇ij , ε̇e
ij , ε̇

p
ij are the total, elastic, and plastic strain rate tensors; σij , sij , s∗ij , aij are the stress tensor,

stress deviator, active-stress, and backstress; ε p
eq∗ is the accumulated plastic strain; ω is the damage; E , ν



228 DMITRY ABASHEV AND VALENTIN BONDAR

are Young’s modulus and Poisson’s ratio; C is the radius (size) of the yield surface; a(1)ij , a(2)ij , a(m)ij are
Type I, Type II, and Type III backstress (yield surface center displacement deviator); qε, g(m), g(m)a are
the defining functions, the relationship whereof to the material functions is described below; Wa is the
energy of destruction in case of proportional loading; nα is the nonlinearity of the damage accumulation
process (equals 1.5 for nearly any structural steel or alloy).

3. Experiments

The material used here is 12X18H10T stainless steel. The chemical composition and mechanical prop-
erties of the steel are tabulated in Table 1. The hot-rolled plate of the material was machined into a
round, solid bar specimen for uniaxial monotonic and cyclic loading test. The configuration of the test
specimen is illustrated in Figure 1. The uniaxial test was conducted using a Zwick Z100 electromechanic
testing machine equipped with a computerized data acquisition system. An extensometer with 20 mm
gage length was used to measure the strain. The specimens were tested under uniaxial strain cycling.

The experimental results are discussed in sections 4 and 6 by comparing them with the simulated
results by the proposed model.

chemical composition mechanical properties

C < 0.12 Si < 0.8 Young’s modulus (GPa) 198
Mn < 2 Ni 9–11 Poisson’s ratio 0.28
S < 0.02 P < 0.035 yield stress (MPa) 196
Cr 17–19 Cu < 0.3 ultimate strength (MPa) 510
Ti 0.4–1.0 Fe ∼ 67 elongation (%) 40

Table 1. Chemical composition and mechanical properties of 12X18H10T stainless steel.

Figure 1. Configuration of the test specimen.
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4. Monotonic and cyclic loading of 12X18H10T stainless steel

The paper presents the results of experimenting with 12X18H10T stainless steel subjected to uniaxial
strain-controlled loading which is a sequence of monotonic and cyclic loading stages. The experiment
consists of five loading stages:

• stage I involves cyclic loading at ε(1)m = 0, 1ε(1) = 0.016 and N (1)
= 20 cycles;

• stage II involves monotonic tension test up to ε(2) = 0.05;

• stage III involves cyclic loading at ε(3)m = 0.05, 1ε(3) = 0.012 and N (3)
= 200 cycles;

• stage IV involves monotonic tension up to ε(4) = 0.1;

• stage V involves cyclic loading at ε(5)m = 0.1, 1ε(5) = 0.012 and N (5)
= N f cycles until fracture.

Here, ε(i)m is the mean cycle strain; 1ε(i) is the cycle strain amplitude; ε(i) is the final monotonic strain;
N (i) is the number of cycles.

Figure 2 shows the experimental diagram of 12X18H10T steel strain that covers all five loading stages.
The cyclic diagrams of stages I, II, and III show the loops for the first cycle and the last cycle. Experi-
mental results are analyzed below.

Cyclic deformation at stage I entails a cyclical hardening of 12X18H10T steel at the initial stage which
slows down to insignificant levels; then the steel becomes virtually cyclically stable.

Stages III and V feature stabilization of the hysteresis loop. These stages are stabilization-wise identi-
cal, as if there was no prehistory of strain. Thus, the modulus g(1), which is part of the Type I backstress
evolution equation and is necessary for loop stabilization, must have the same initial value g(1) = g(1)0 .
That said, during monotonic postcyclic loading, when g(1) is reduced to nearly zero, the modulus g(1)

must quickly return to its initial value g(1)0 .

 
Fig. 2. Stress-VWUDLQ�GLDJUDP�RI���O��G��L�VWHHO. 
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Figure 2. Stress-strain diagram of 12X18H10T steel.
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Hardening is constant at stages II and IV of monotonic loading. Here, hardening is determined by the
modulus g(1)0 , and to a lesser extent by the modulus of monotonic isotropic hardening.

Thus, the behavior of the modulus g(1) that describes the kinematic hardening, and therefore the
behavior of the isotropic hardening parameters, will to a significant extent depend on whether the strain
is cyclic or monotonic.

Memory surface that limits the cyclic deformation area is introduced in the plastic-strain tensor
space ε p

ij in order to separate monotonic and cyclic strain. The surface is determined by the position
of its center ξij and its radius (size) Cε. To compute the center and size of the surface, two plastic-strain
tensors ε p(1)

ij and ε p(2)
ij are introduced to define the surface boundaries. These variables are zero as strain

begins. The displacement and size of the memory surface are determined at the time plastic-strain is
redirected. The following condition is assumed as the redirection criterion:

ε̇
p
ij(t−0) ε̇

p
ij(t) < 0, (14)

where ε̇ p
ij(t) is the current plastic-strain rate tensor; ε̇ p

ij(t−0) is the plastic-strain rate tensor at the preceding
time point.

At this moment, the change in the boundaries, center, and size of the yield surface is described based
on the following relationships:
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Then the condition of cyclic strain is the strain within the memory surface:
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Outside the memory surface (F(ε p
ij ) > 0), the strain is monotonous.

Based on the above peculiarities of monotonic and cyclic loading, the following equations are derived
for backstress defining functions:
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where Ea0, σ (m)a , β(m) are the moduli of kinematic hardening; KE , nE , ME are the parameters of kinematic
hardening when the material is subjected to cyclic and monotonic strains. All of these material functions
need to be derived in order to describe backstresses.

The kinematic hardening modulus Ea0 is found by the formula

Ea0 =
σ
(3)
m

ε
p(3)
m

, (24)

where σ (3)m is the mean stress in the first stage III cycle; ε p(3)
m is the mean plastic strain at the first stage III

cycle.
The moduli of kinematic hardening σ (m)a and β(m) are found by processing the cyclic diagram of the

last stage I semicycle as per the procedure described in [Bondar 2013; Bondar et al. 2018].
The kinematic hardening parameters KE and nE are found based on the results of the hysteresis loop

stabilization at stages III and V. To that end, the dependence in the coordinates

YE = ln
[
σm(N − 1)− σm(N )

21ε p ε
p
m

]
, (25)

XE = ln
[
σm(N )
ε

p
m Ea0

]
, (26)

is constructed, where N is the cycle number; σm(N ) is the mean stress of the N th cycle; 1ε p is the
plastic-strain amplitude; ε p

m is the mean plastic strain. The dependence obtained is approximated by the
linear function

YE = aE XE + bE . (27)

Thus

KE = exp(bE), nE = aE . (28)

The parameter of kinematic hardening ME of a specimen subjected to monotonic loading is determined
from the considerations of restoring the parameter Ea from 0 to the value Ea0, whereby plastic strain
changes under monotonic loading over ε p

st . Thus, the parameter ME shall be determined by the formula

ME =
Ea0

ε
p
st
. (29)

Having found the backstresses over the entire process from stage I to stage V, one can determine the be-
havior of the yield surface size (radius), i.e., the change in isotropic hardening in cyclic-to-monotonic and
monotonic-to-cyclic strain transients. Figure 3 shows the change in the yield surface size (functional C)
throughout the deformation process from stage I to stage V.

The dotted line in Figure 3 shows the function of isotropic hardening C = C p(p) induced by cyclic
loading. Analysis of the results presented in Figure 2 shows that the transition from cyclic to monotonic
strain (stages II and IV) is associated with an increase in the intensity of isotropic hardening, and the
transition from monotonic to cyclic strain (stages III and V) is associated with a slowdown in such
isotropic hardening, as it tends to be isotropic C = C p(p) when subjecting the specimen to cyclic strain.
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Based on the above peculiarities of how isotropic hardening is altered by cyclic or monotonic loading,
the following dependence is assumed for the defining function of isotropic hardening:
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]
, cyclic loading (F(ε p
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(30)

Thus, to describe such isotropic hardening, the following material functions must be defined: C p(ε
p
eq∗),

the function of isotropic hardening induced by cyclic loading; KC , nC , MC — the moduli of isotropic
hardening induced by cyclic and monotonic loading. These material functions are defined using the
experimental results (see Figure 3).

The function of isotropic hardening induced by cyclic loading C p(ε
p
eq∗) is determined based on the

surface-size changes at stages I, III, and V (see the dotted curve in Figure 3).
Cyclic-loading isotropic hardening parameters KC and nC are found from the results of decreasing

the yield surface size at stages III and V. To that end, a dependence is constructed in the coordinates
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dε p
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, (31)

XC = ln
[

C −C p
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. (32)

The dependence obtained is approximated by the linear function

Y = aC XC + bC . (33)

Thus
KC = exp(bC), nC = aC . (34)
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E (MPa) 2 · 105 ν 0.3 Ea0 (MPa) 1000 σ
(2)
a (MPa) 140

β(2) 400 KE (MPa) 7000 nE 3 ME (MPa) 5 · 105

KC (MPa) 260 nC 1.4 MC (MPa) 600 σ
(3)
a (MPa) 600

β(3) 2 · 103 σ
(4)
a (MPa) 30 β(4) 1000 σ

(5)
a (MPa) 22

β(5) 444 σ
(6)
a (MPa) 8 β(6) 250 σ

(7)
a (MPa) 6

β(7) 143 Wa (MJ/M3) 2400 na 1.5

Table 2. Material functions of 12X18H10T steel.

ε
p
eq∗ 0 0.0003 0.0006 0.0014 0.0045 0.006 0.01 0.025

C p (MPa) 165 150 140 110 70 55 50 65

ε
p
eq∗ 0.01 0.15 0.3 0.45 0.6 1 8 25 45 65

C p (MPa) 90 100 112 115 120 124 130 135 140 150

Table 3. Isotropic hardening function of 12X18H10T steel.

The parameter of isotropic hardening MC induced by monotonic strain is found from the slope of the
strain curve at stages II and IV using

MC =
dσ
dε p − Ea0−

dC p

dε p . (35)

Definition of damage variables is given in [Bondar and Danshin 2008]. To define this variables by
the results of only one experiment, nα should be taken equal to 1.5 and Wa should be found correctly in
order to calculate the number of cycles till failure in the experiment.

5. Material functions of 12X18H10T stainless steel

Material functions have been derived based on the results of the experiments in room-temperature with
12X18H10T stainless steel (see tables 2 and 3).

The isotropic hardening function C p(ε
p
eq∗) is set forth either in analytical form or as a table with linear

cuterpolation between points.

6. Verification of the modified plasticity theory

To verify the modified plasticity theory, the researchers have computed the kinetics of the stress-strain
state of 12X18H10T stainless steel subjected to strain-controlled cyclic and monotonic loading according
to the five-stage program described in Section 4. Computation uses the material functions per Section 5.
Figure 4 (top) shows the computed results and Figure 4 (bottom) the experimental results of the cyclic
diagrams at stages I, III, V and the monotonous loading at stages II, IV. Variations in the stress range
and middle cycle stress at stages I, III and V are shown in figures 5 and 6; in these figures, a comparison
between computed (solid curves) and experimental (open circles) results is present. Experimental and
computed cycles until fracture equal to 2700 and 2400 cycles, respectively.
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Table 3 
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To verify the modified plasticity theory, the researchers have computed the kinetics of 

the stress-VWUDLQ�VWDWH�RI���O��G��L� VWDLQOHVV�VWHHO�VXEMHFWHG� WR�VWUDLQ-controlled cyclic and 

monotonic loading according to the five-stage program described in Section 4. Computation 

uses the material functions per Section 5. Fig. 4a and Fig. 4b shows at the cyclic diagram (Fig. 

4a computed and Fig. 4b experimental results) at stages I, III, V and the monotonous loading at 

stages II, IV. Variations in the stress range and middle cycle stress at stages I, III and V are 

shown in Fig. 5 and Fig. 6, where present a comparison of the computed (solid curves) and 

experimental (open circles) results. Experimental and computed cycles until fracture 

respectively equal to 2700 and 2400 cycles. 

 

 

Fig. 4a. Calculated cyclic diagram of 5 stages experiment. 

 

Figure 4. Cyclic diagram of five-stages experiment: calculated (top) and experimental (bottom).

To verify the modified plasticity theory, the researchers have computed the kinetics of the stress-strain
state of 12X18H10T stainless steel subjected to strain-controlled cyclic and monotonic loading according
to seven-stage program.

The experiment consists of seven loading stages:

• stage I involves cyclic loading at ε(1)m = 0, 1ε(1) = 0.002 and N (1)
= 500 cycles;

• stage II involves cyclic loading at ε(2)m = 0, 1ε(2) = 0.012 and N (2)
= 500 cycles;

• stage III involves cyclic loading at ε(3)m = 0.008, 1ε(3) = 0.008 and N (3)
= 500 cycles;

• stage IV involves monotonic tension test up to ε(4) = 0.03;

• stage V involves cyclic loading at ε(5)m = 0.025, 1ε(5) = 0.01 and N (5)
= 500 cycles;

• stage VI involves monotonic tension test up to ε(6) = 0.05;

• stage VII involves cyclic loading at ε(7)m = 0.046, 1ε(7) = 0.008 and N (7)
= N f cycles until fracture.
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Figure 5. Calculated and experiment stress range in five-stages experiment.

Figure 6. Calculated and experiment middle stress in five-stages experiment.

Computation uses the material functions per Section 5. Figure 7 (top) shows the computed results
and Figure 7 (bottom) the experimental results of the cyclic diagram at stages I, II, III, V, VII and the
monotonous loading at stages IV, VI. Variations in the stress range and middle cycle stress at stages I, II,
III, V and VII are shown in figures 8 and 9; in these figures, a comparison of the computed (solid curves)
and experimental (open circles) results is present.

Experimental and computed cycles until fracture equal to 6900 and 7600 cycles, respectively.

7. Conclusions

Analysis of the stainless-steel experiments leads to a conclusion that the processes of isotropic and kine-
matic hardening vary significantly depending on whether the strain is monotonic or cyclic. Monotonic-
to-cyclic and cyclic-to-monotonic strain transitions are associated with hardening transients.
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Fig. 7a. Calculated cyclic diagram of 7 stages experiment. 

 

 

Fig. 7b. Experimental cyclic diagram of 7 stages experiment.  

 

 

Fig. 7a. Calculated cyclic diagram of 7 stages experiment. 

 

 

Fig. 7b. Experimental cyclic diagram of 7 stages experiment.  

 Figure 7. Cyclic diagram of seven-stages experiment: calculated (top) and experimental (bottom).

In the light of the identified features of monotonic and cyclic loading, the equations of the plastic-
ity theory have been refined. The researchers have defined the basic experiment, derived the material-
function identification method, and obtained such material functions for 12X18H10T stainless steel at
room temperature.

The paper compares the results of computational and experimental studies of 12X18H10T stainless
steel subjected to strain-controlled loading, a process consisting in a sequence of monotonic and cyclic
loadings. The stress-strain state kinetics has been analyzed. Changes in the stress range and middle stress
of the cycle during cyclic loading have been dwelled upon. Computational and experimental results fit
reliably.

The theory adequately describes the processes of how the kinetics, the stress ranges, and the middle
cycle stress alter when subjecting a specimen to strain-controlled loading; this enables a more adequate
description of stress-controlled loading, especially when loading is nonstationary and nonsymmetric.
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Figure 8. Calculated and experiment stress range in seven-stages experiment.

Figure 9. Calculated and experiment middle stress in seven-stages experiment.
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