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HEXAGONAL BORON NITRIDE NANOSTRUCTURES:
A NANOSCALE MECHANICAL MODELING

ALESSANDRA GENOESE, ANDREA GENOESE AND GINEVRA SALERNO

The paper deals with a numerical model for hexagonal boron nitride nanostructures. The model is
developed in finite kinematics and takes into account binary, ternary and quaternary atomic interactions,
described through the UFF potential with an ad-hoc set of parameters. Once validated with respect to
ab-initio results of the tensile failure of boron nitride sheets under periodic conditions, the model is used
to study the response of a sheet of finite size under traction, compression and shear.

1. Introduction

Over the last two decades, hexagonal nanostructures of carbon (C) atoms, such as graphene and carbon
nanotubes, have received considerable attention for application in a variety of fields, including micro-
electronics, sensoring and actuation systems, energy storage, biotechnologies and composite materials
[Nguyen and Nguyen 2016; Kumar et al. 2018; Mohan et al. 2018].

In addition to these nanostructures, attention has been also given to diatomic compounds, consisting,
for instance, also of boron (B), nitrogen (IN) and silicon (Si) atoms. Some examples are boron nitride
(BN) and silicon carbide (SiC) nanosheets and the relative nanotubes. Similarly to their C analogues,
these nanostructures exhibit exceptional thermal and mechanical properties, such as high thermal con-
ductivity, low density, high tensile strength and membrane stiffness [Casady and Johnson 1996; Ouyang
et al. 2010; Golberg et al. 2010]. Moreover, the different atomic composition leads to some specific
properties, such as stronger resistance to oxidation and chemical stability at high temperatures, giving
them advantages over C nanostructures in harsh environments [Casady and Johnson 1996; Golberg et al.
2010]. For this reason, these nanostructures have drawn attention in different technological fields, includ-
ing the manufacture of semiconductors [Casady and Johnson 1996] (e.g., BN/graphene heterostructures
for electronic devices) and hydrogen storage [Mpourmpakis et al. 2006]. In addition, BN compounds
can also be cleaned and reused by means of heating and burning in air, are biocompatible, have low
friction coefficient, have excellent sorption performance and are hydrorepellent. They are thus suitable
for applications in medicine (e.g., drug delivery), as lubricants, for water filtration, for water purification
from oil, solvents and dyes, as well as for the reinforcement or protection of composites [Golberg et al.
2010].

The understanding and control of the mechanical behavior of all these atomic nanostructures are key
issues in the design of their composites and in many other contexts, such as nanosensors, nanoresonators,
filtration, flexible nanoelectronics and so on [Shima 2012; Akinwande et al. 2017]. In this regard, it
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is worth emphasizing also that the deformation influences the chemical-physical properties. Therefore,
tuning these properties in specific applications through deformation control is possible, in principle.

All this has motivated a significant amount of experimental and theoretical works on the mechanics
of these nanostructures [Krishnan et al. 1998; Kudin et al. 2001; Sahin et al. 2009; Wu et al. 2013;
Vijayaraghavan and Zhang 2018; Sgouros et al. 2018; Jiang and Guo 2011; Le and Nguyen 2015; Ge-
noese et al. 2017; 2018a; 2018b; 2019¢; 2019a; 2019b; 2020; Favata et al. 2014; Davini et al. 2017;
Korobeynikov et al. 2015, 2018, Giannopoulos et al. 2016; Tsiamaki et al. 2018; Tserpes and Vatistas
2015; Fazelzadeh and Ghavanloo 2014; Ghaffari et al. 2018; Hollerer 2014]. However, the technical
difficulties and the costs of experiments make theoretical approaches preferable, for the time being.

In this regard, ab-initio simulations [Kudin et al. 2001; Sahin et al. 2009; Wu et al. 2013] are the
most accurate tools to investigate the behaviors of atomic nanostructures. However, they demand a lot
of computer power. For these reasons, in the mechanical field, they are generally used to characterize
in very great detail the relaxed configuration of nanostructures (i.e., the self-equilibrated configuration)
and their fundamental properties (e.g., the rigidities and the tensile strength) within standard continuum
theories, solving problems with a limited number of atoms.

In view of the above, increasing attention has been given to molecular dynamics (MD) or molecular
statics (MSS) models [Vijayaraghavan and Zhang 2018; Sgouros et al. 2018; Jiang and Guo 2011; Le
and Nguyen 2015; Genoese et al. 2017; 2018a; 2018b; 2019a; 2019b; 2019c¢; 2020; Favata et al. 2014;
Davini et al. 2017; Korobeynikov et al. 2015, 2018] and their structural-mechanics approximations (e.g.,
beam or truss models of the atomic networks [Giannopoulos et al. 2016; Tsiamaki et al. 2018; Tserpes
and Vatistas 2015]), as well as to continuum models [Fazelzadeh and Ghavanloo 2014; Ghaffari et al.
2018] and mixed models [Hollerer 2014], based on a multiscale representation of the matter.

Almost all the modeling works on the mechanics of diatomic nanostructures [Kudin et al. 2001; Sahin
et al. 2009; Wu et al. 2013; Vijayaraghavan and Zhang 2018; Jiang and Guo 2011; Le and Nguyen
2015; Genoese et al. 2018a; 2019¢; Giannopoulos et al. 2016; Tsiamaki et al. 2018] concern their linear
behaviors only, in some cases [Genoese et al. 2018a; 2019¢] using continuum mechanics to build a
bridge between the ab-initio results and the MS model for a parameter refinement of simple interatomic
potentials, such as the UFF one [Rappé et al. 1992].

In our opinion, MS models based on simple potentials are to be considered the best compromise
between efficiency and accuracy at the atomic scale, above all in nonlinear contexts, where computational
efficiency is a major requirement. However, for diatomic nanostructures nonlinear MS models are still
lacking and there is also a few experience of the continuum and multiscale modeling. In relation to
continuum modeling, if on one hand higher-order models, commonly used for periodic and hexagonal
structures [Glaesener et al. 2019; Rizzi et al. 2019a; 2019b], are expected to be generally preferable
[Auffray et al. 2015], on the other hand, quantitative comparisons between atomistic models and even
simple continuum models are completely missing.

This paper deals with a numerical model of hexagonal BN nanostructures. An MS model that accounts
for binary, ternary and quaternary atomic interactions is discussed, with reference to BN sheets. The
model is developed in finite kinematics and the interactions are described through the UFF potential,
endowed with an ad-hoc set of parameters. An assessment of the model and of its parameters is performed
with respect to ab-initio results in terms of the tensile failure properties of a BN sheet, by considering
periodic tensile tests in both the zigzag and the armchair directions. In addition, the nonlinear behavior
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of a BN sheet of finite size is investigated in the case of traction, compression and shear in the zigzag
and in the armchair directions, and in the case of pure shear. Space is also given to the discussion of the
potential and to the choice of the parameters, as well as to some comparisons between the MS model
and a thin shell model within buckling problems.

2. The MS model

The reference configuration of a diatomic sheet is assumed to be a planar monolayer of two different
atom types, regularly alternating in the vertices of an hexagonal net so that all the atoms are bonded with
an atom of the other type. Figure 1 (left) shows the configuration of a BN sheet. B and N atoms are
represented with spheres of dimension proportional to the atomic radius, the atomic radius of N being
smaller than that of B.

In MS models, one usually assumes that the reference configuration of the sheet is stress free and
that the atoms are point-particles in Euclidean space. Their interactions are usually separated into two
categories: bonding and long range. Long-range interactions are considered to be negligible with respect
to the bonding ones. In turn, bonding interactions are usually distinguished between binary, ternary and
quaternary interactions, measured in terms of the bond length! r; i, valence angle ¥;;x and dihedral angle
@ijki (see Figure 1, right). In particular, the dihedral angle is the angle formed by two planes, the one
identified by the positions of the atoms i, j and k and the other identified by the positions of the atoms i,
j and /. In the literature [Rappé et al. 1992; Mayo et al. 1990; Blondel and Karplus 1996], the variations
of the dihedral angle are also known as torsion of the central bond i-j of the four atoms i, j, k, /. The
bonding interactions are derived from a potential U. Here, the UFF potential [Rappé et al. 1992] is
adopted which is expressed in the additive form

UZZUij—i-ZUijk-i-ZUijkz, ey
b a d

where U;;, U;ji and Uy, are the energy contributions related to the b-th bond length, to the a-th valence
angle and to the d-th dihedral angle, respectively. The energy contributions U;;, U;jx and U ji; are written

Figure 1. Atomistic model of the sheet: diatomic sheet (left) and atomistic kinematics (right).

1 atomistic models, the term bond is used to indicate a pair of two first nearest neighboring atoms.
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using Morse and cosine functions, which are defined to be

Uy =U{[1—e P D]~ 1}, (2a)
UijkIA(1+3COSl9ijk—4COS3 l?,‘jk), (2b)
Uijni = %{1 —cos [ p(ijir — @ijur) ]|} (2¢)

In (2), p=2,U, B, A and V are parameters which we give later, while 7 ~ 0.145 nm [Sahin et al. 2009]
and @;jx; € {0, } are the bond length and the dihedral angle in the reference configuration of the sheet,
where ¥, = %71.

We denote by x, and r,, the initial and the current position vectors of the n-th atom and by u, =r, —x,
its displacement vector. Then, x;; =x; —x;, r;j =r; —r; and u;; =u; —u; =r;; — x;; are the relative
position vectors and the relative displacement vector of the atom j with respect to the atom i.

The bond length is given by

rij = llrijll = /rij - rij- 3)

For what follows, 7;; = r;;/r;; is the direction vector defined by a pair of atoms i-j. In addition, 7; jx
and n j;; are, respectively, the unit vectors perpendicular to the plane determined by the current positions
of the atoms i, j and k and to the plane determined by the current positions of the atoms j, [ and i, given
by

~ Rjjk ~ -
Rijg=——, Rjjxk =T XFiy, njjx=Inll,
njjk @
~ nji - -
njjy=——, njj=rjxryj, nj;=|njl.
njil

The valence angle is defined as
cos Vijx =Fij - Fik, ©)

while the dihedral angle can be given in two different ways:
COS @jjkl = Mijk - Mjil, (6a)
Sin@;jirij = nji X Rjy. (6b)

At this point, we need to introduce the variations of r;;, cos ¥;x and ¢; ;. Starting from (3), we have

8rij =Fij-drij, (7
- 1 - -
5rij=—(I—r,-j®r,-j)8r,-j. (8)
}",'j
Similarly from (5) we obtain
Scosjx =Fig - OF;j +F;j - 6F i, 9

and by substituting (8) we have

Scosﬁijkzn?j-8rij+n?k'8rik, (10)
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where

1
9 ~ ~ 9 ~ ~
nj=—Fic = cosDijeFij). My =-—(Fij — cosDiji Fix). (11)
ij ik

As for the variation of the dihedral angle d¢; i, from (6a) we obtain

de;ji 1

8@ijki = 7————38COS Pijuy = —————
d cos @i sin @; jx/

(i - Omgji +nij - dmjip). (12)
Performing for (12) the same calculations made for (9), we obtain
s : : (n ;i) - ORiji + : (n jir) - 8 (13)
ikl = ———— | —— (1 ji; — COS @ ipNiir) - Onjjx + —— ;i — COSQjixiMji1) - oM jip |.
Pijki sin Oijki Lnijk Jjil DijkiNijk ijk ni ijk Dijkin jil jil

Before proceeding, it is worth highlighting that the derivative —1/sin ¢; 1 is undetermined in the resting
state where ;i is 0 or 7. To eliminate this singularity, equation (13) is manipulated as in [Blondel and
Karplus 1996] in order that the term sin ¢; jx; appears also in the numerator of the fraction, and thus can
be deleted”. In particular, starting from (6), at first we obtain

SIN @k Niji X Fij = Rijp X (Rji X Aijg) = A ji — COS @k Mk,

. . . . . . . (14)
Sin@;jy Mjig X Fij =Rjip X (Mji X Riji) = COS @ijx N jip — Niji,
which, once substituted into (13), lead to
1 . . | -
8¢iju = ———(Mijk X Fij) - Smiji + —— (it X Fij) - Sm . (15)
Mjjk njil
Using (4), equation (15) becomes
1 . - 1 - -
8¢ijut = —— (oS Viji Fij — Fik) - Smiji — —— (CO8 O jiy Fij +F j1) - 5m jir, (16)
ik i
where cos ﬁijk = i‘,‘j . i‘,‘k and cos ﬁjil = i'ji . ;jl = — f,‘j . fﬂ.

Finally, after variation of (4) and further algebraic manipulations using the properties of the vector
product, one obtains

@ ) @
Sijit =mj; - Orij+nj - Srig+n7 - 8r i, (17)
where we have set
1 [cosdij . cos Wik 1 . |
nf;=— i i — hj |, nh=——nygr, = ——inji. (18)
rij L mjil Njjk Tik Wijk Tl il

2The kinematics will remain undetermined even when one length rij is zero. In addition, dihedral terms also become
undetermined even when one of the norms (n j;; and n; i) is zero. However, these cases are highly unlikely to occur. Indeed,
when r;; <, arepulsive force arises between the atoms i and j, whose value exponentially increases as r;; tends to zero. This
is obviously a strong impediment to further decreasing the distance between the two atoms. Moreover, having n; j; = sin 9; j or
njij = sin ¥ j;; equal to zero would imply that 7;; is colinear to ;. or F;; is colinear to F j;, but also this situation is improbable,
because ternary interactions prevent the atoms i, j, k and j, i, / from being aligned.
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The equilibrium configurations of the system are sought through the stationarity condition of its total
potential energy

M=U->)p, . (19)

where U, defined in (1) and (2), is a function of the displacements and p,, is the force applied to the n-th
atom. Recalling (7), (10) and (17), the variation of the potential U is

SU = E (Srij~s§j+ E ((Srij-s?j—l—(Srik-s?k)—i— E (8r,~j~s;.”j+8rik‘s?k—|—8rﬂ~s?l), (20)
b a d
where
dUj; .
s}, = a’r:r”’ (21a)
du?
va ijk s ...
=—"° pv, e {ij, ik}, 21b
S dcosz‘}ukn“ o € tiJ. ik) 21b)
au?,
%) ijkl ¢ L. .
sp=—"—ny, Pelij, ik, jl}, (21¢)
P deijiu *

are the force vectors related to the binary, ternary and quaternary interactions.
The derivatives of the potential functions are given in Appendix A. Finally, the equilibrium equations
assume the following form

Zslj or; — 8r,)+2 (81— 8ri) b - Sri— )]

+ Z By —8r) 58 - Bri—or) +55 - ri—or )] =" p, bra, (22)
n

for any admissible §r,.

The MS model, described so far, has been implemented in a custom-made MATLAB computer code.
The equilibrium equations are solved through the arc-length method. More details about it are given in
[Riks 1979; Garcea et al. 1998], while the second variation of the potential, which implicitly defines the
tangent operator, is reported in Appendix B.

3. The parameters of the potential

The potential functions given in (2) are characterized by four parameters U, B, A and V. Following
[Rappé et al. 1992], we characterize the diatomic net by a unique value for U, g and V, since all the
bonds involve one N atom and one B atom and behave in the same way versus the length variations and
the torsions. Instead, two different values of A are required, i.e., Ap and Ay, depending on whether the
bonds i-j and i-k share the B atom or the N atom.

The choice of these parameters is carried out through a constitutive identification procedure which
uses ab-initio solutions, found in the literature, as reference values of some mechanical properties of
BN sheets. In particular, the full decoupling of the potential functions with respect to the deformation
parameters allow us to separate the determination of U, 8, Az and Ay from that of V in two different
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moments, in which the sheet is respectively seen as a linear Cauchy membrane and as a linear Kirchhoff
plate.

From a methodological point of view, we first determine the values of the three force constants k", k”
and k%, as

d*U;; - d*U;; d*U;;
=" =20p, K=" =94, k#=""TiM" =2V, (23
d ri = dv; ik 0i=0 dy; jkl iji=ijii

and later the values of parameters 8, A and V of the potential, once fixed U. This choice is justified by
the fact that the force constants are framed within the UFF model [Rappé et al. 1992] and well known in
the literature as the only constitutive ingredients of harmonic potentials. Obviously, given that we have
chosen to differentiate the values of A into Az and Ay, the force constant K will take on two distinct
values, k% and k. through (23).

As for the determination of k", kg and kllz,, in [Genoese et al. 2018a] we derived, through an exact
continualization procedure of the sheet as a linear membrane, the following

43K (kG +KY) K7 —3(k% +kY)
= y V= s
kP2 4+ 9(kY + kD) k"F2 +9(kY + k)

(24)

which directly link the 2D Young modulus Y and the Poisson coefficient v, to the aforementioned con-
stants and to the nanoscale geometry. In the same work [Genoese et al. 2018a], making use of the UFF
hypothesis [Rappé et al. 1992], which links the force constants kg and kl’z, to the effective charges Zp
and Zy of B and N atoms as

k% kY = 7%/ Z% ~2.10, (25)

we obtained k" = 585 nN/nm, kg =1.347 aJ and k}?, =0.641 aJ from the ab-initio results ¥ = 267 nN/nm
and v = 0.21, given in [Sahin et al. 2009]. Adding to these three values the ab-initio result U = 0.64 aJ,
given in [Nozaki and Itoh 1996], we obtained through (23): 8 = 21.38 nm~!, Az = 0.1497aJ and
An = 0.0712 al, further validated in [Genoese et al. 2019c¢] in a different context.

As regards the determination of k%, this is carried out here, by modeling the sheet as a linear Kirchhoff
plate, equating the expression of bending rigidity, in terms of the nanoscopic geometry and of k%, to its
ab-initio counterpart, given in [Kudin et al. 2001]. The continualization of the sheet is done through a
variational procedure, already used in similar contexts of periodic discrete systems [Genoese et al. 2017;
2018a; 2018b; Salerno and de Felice 2009]. In particular, we first select a reference elementary volume
(REV), then we establish a map between continuous and atomistic kinematics, and finally we assume
the bending strain energy density of the plate and the dihedral energy density of the nanoscopic model
to coincide.

In Figure 2 the REV is shown together with its extension, and a Cartesian frame (O, x, y, z) is given.
The proper REV is the dashed lozenge, which contains atoms number 7 and 8, but to these must be added
all the atoms, numbered in figure, that define the dihedral angles related to the torsion of the five bonds,
7-8, 7-4, 7-10, 8-5 and 8-11.

On the extended REV the following displacement field is imposed:

u(x, y):_%(Xxxz'i'Xy y2+Xxny)ez’ (26)
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Figure 2. The REV and its extension.

which is induced by uniform bending x., x, and twisting x,, curvatures, e, being the unit vector per-
pendicular to the plane.

Then, following Cauchy—Born rule?, the i-th atom of the extended REV is constrained to displace
according to (26)

u; z—%(xx Xi2+Xy yiz"i‘Xxyxiyi)eZ' 27)

Now, the dihedral energy density is given by
1
d = 4 ; Uijtt Wi, (28)

where summation extends to all the aforementioned dihedral contributions, 54 is the REV area and W' 1
measure the effective fraction of the bonds within the REV.
Within the linearized context, the potential U;j;; defined in (2¢) assumes the following quadratic form

k¥

Uikt = — Mg (29)

where, through (17), Ag;ji is given by
Agijr = n?} wij+nh ug+ n‘j.’, uj, (30)
n;ﬂj, n!, and n?l being evaluated in the planar configuration of the sheet and u;;, u;; and u j; determined

through (27).
By substituting (29) and (30) into (28), the energy density @ turns out to be a quadratic function of
the curvatures and the elastic rigidities of the plate are easily obtained to be

?d 73 ?d 73
D11=—2=ikw, D22=—2=£k“’,
0Xf 3 IXy 3 a1
RRL 3 ’d 443
Dy = =—£k¢, D33=—2=ik‘p,
IxXx0Xy 3 axxy 3

3 Cauchy-Born rule generally induces equilibrium errors in the identification procedure. In this case, however, it can be
shown that the kinematic map chosen corresponds also to an equilibrated state for the atomistic system.
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while
U
8XxXxy aXyXxy

Finally, by exploiting the result D, = Dy> = D and the ab-initio reference D = 0.2067 nN nm, given in
[Kudin et al. 2001], one obtains k¥ = 0.052 aJ and then, from (23), V =0.026 al.

To complete this section, we consider it interesting to make some considerations on the three-dimensional
material identified. If we rewrite the plate rigidities in terms of the 2D Young and shear moduli, Y and G,
the Poisson ratio v and the thickness ¢, that is,

Y2 Y2 Gt?

- po=v—" py=2C 3
12(1 — 2 2=Yha-n2y PRI (32)

Dy

From (31) we obtain

v=Dp/Dn=-3

which is different from v = 0.21, obtained as ab-initio result for the membrane. This result, also found
for graphene in other works in literature [Davini et al. 2017], can be interpreted as the impossibility of
modeling monoatomic and diatomic sheets as one 3D Cauchy isotropic material. However, making use
of the first and third equations of (32) with the first and fourth equations of (31), one obtains

2
2 ¢ _ Yt
Gr* =16V3k TIEEDL (33)
making use of v = —%. Equation (33) is an isotropic relationship, albeit with a Poisson coefficient dif-

ferent from that obtained from plane problems. This can be interpreted as the confirmation that standard
continuum models, while giving two different materials for the in-plane and the out-of-plane behaviors
of the sheet, nevertheless interpret the hexagonal symmetry as isotropy.

4. Periodic tests

In this section, we propose an assessment of the model with respect to the ab-initio results in terms
of the tensile failure properties of a sheet, by performing periodic tensile tests in both the zigzag and
the armchair directions (zigzag and armchair tensile tests, respectively). We consider an hexagonal ring
with the outermost elements cut, through the addition of fictitious nodes, as shown in Figure 3 to ensure
periodic variations of the valence angles. These elements are loaded with the point forces defined (see
Figure 3), O being a tensile load for unit length.

For the outermost elements, the two body potential U;; is modified in order to obtain the same forces
as in the corresponding inner elements and to correct the rigidities according to the lengths. We consider
the following expression

Uij ZOlijU{[l—e_ﬂ(r’-f/“i-f_f)]z—1}, (34)
where «;; is equal to ap or to ay, both defined in the Figure 3. In particular, «;; is equal to ap for the

outermost elements having the B atom, while «;; is equal to ay for the outermost elements having the
N atom.
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_ _4p
ap = Ap+Ay
_ _AN
oy S Ag+Ay

Figure 3. Applied forces under periodic boundary conditions: zigzag test (left) and
armchair test (right).

In the numerical tests, the in-plane rigid body motions are filtered by imposing a symmetry condition
with respect to the x-axis and zeroing the average of the x-displacements. In more detail, letting u; and v;
be the x-displacement and the y-displacement of the i-th atom, we impose v; = v, = 0 and Z?Zl u; =0.

To compare with the ab-initio results, the equilibrium paths are represented, for both tests, in terms
of the engineering stresses and strains, which substantially correspond to those of a first order problem,
although our model is fully nonlinear.

For each equilibrium point, the stress is directly Q, while the strain is € = (4o — u)/2r in the zigzag
tensile test and ¢ = (vs + vg)/ 273 — (v3 + vg) /2;7\/5 in the armchair tensile test. As already found
for graphene [Genoese et al. 2019b], the equilibrium paths, shown in Figure 4 (left), are characterized
by a limit point, followed by a softening branch. From a qualitative point of view, they follow the same
trend as the inner forces related to the binary energy terms, the expression of which is obtainable by
differentiation of (2a). This behavior can be explained considering that the deformation of the sheet
essentially consists in the elongation of the bonds and the crisis is driven by the most stretched ones,
which are those parallel to the load direction or close to the load direction, as we can deduce from the
configurations in Figure 4 (right). For this precise reason, the sheet shows a limit value of Q in the
armchair direction about 22% greater than that in the zigzag direction (see Figure 4, left), i.e., the sheet
is stronger along the armchair direction than in the zigzag one.

In addition, the values of ¢ in the armchair direction are greater than those in the zigzag direction by
about 34% at the limit configuration, depicted in Figure 4 (right top), and along the softening branch.
The difference in the limit values depends on the different inclination of the most stretched bonds with
respect to the external load direction: since in the armchair test these bonds are inclined with respect
to the load direction, they reach their crisis condition at higher loads than in the zigzag test, where the
stretched bonds are parallel to the load. In both cases the failure modes are brittle with a rapid decrease
in stress after the failure peak.

However, along the softening branch, considerable elongations of the bonds are achieved. They corre-
spond to unrealistic interatomic distances, at which it is hard to believe that the first neighbouring atoms
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Figure 4. Zigzag and armchair tensile tests under periodic boundary conditions: equi-
librium paths (left), deformed configurations at point A (right top) and deformed config-
urations at point B (right bottom).

direction present study [Wu et al. 2013]
. € 0.187 0.18
zigzag
0 27.2 29.0
. € 0.283 0.29
armchair
0 34.6 33.7

Table 1. Limit values of strain and 2D stress (nN/nm) compared with the literature.

still interact with each other. For this reason, a cutoff bond length is generally introduced, so defining
a bond-breaking criterion. In this work, we choose a reasonable cutoff bond length of 0.245 nm. The
vertical lines drawn in Figure 4 (left) correspond to the cutoff configurations depicted in the Figure 4
(right bottom).

In Table 1, our limit values of both the engineering strains and stresses are compared with the ab-
initio results in [Wu et al. 2013]. Percentage differences of about 3% are registered in the zigzag test,
while percentage differences of about 4% and 6% are registered in the armchair test for strain and stress,
respectively. Analysis of the results shows a good agreement with the reference values and this can be
considered as a further assessment of the potential parameters which we exploit.

5. Tensile, compression and shear tests on a BN sheet of finite size

In this section, tensile, compression and shear tests on a BN sheet of finite size are addressed. The tensile
tests are performed in order to emphasize bifurcation phenomena already found in the case of graphene
[Genoese et al. 2019b], while compression and shear tests are performed in order to study out-of-plane
buckling behaviors. The selected sheet presents an almost square shape, with length a = 10.508 nm and
width » = 10.084 nm, and consists of 4150 atoms.
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5.1. Tensile tests. Figure 5 shows the geometry of the sheet and the point forces applied in the tensile
tests, O being again the load for unit length. Similarly to the periodic case, the in-plane rigid body
motions are filtered by imposing v; = 0 on the central horizontal row of the atoms and ) ;“, u; = 0,
where n, is the total number of atoms of the sheet.

The equilibrium paths are given until the cutoff bond length is reached. In this case, the engineering
strains ¢ are evaluated on the basis of average values of the displacements of the sides. In particular, for
the zigzag test and for the armchair test, respectively, strains are evaluated as € = Au/a = (ug — u3)/a
and € = Av/b = (v, — v1)/b, where uj and vi are the mean values of the displacements along x and y
on the side k.

Figure 6 (top left) shows the equilibrium paths of the BN sheet of finite size and the precritical paths
under periodic conditions (see Section 3). The equilibrium paths of the BN sheet of finite size present
a bifurcation point before the corresponding limit point under periodic conditions, and a return back of
the bifurcated paths nearly superimposable to the precritical paths, as already observed in the case of
graphene sheets of finite size [Genoese et al. 2019b].

This trend of the paths can be explained as a phenomenon of localization of the deformation only
in some bonds, which are the first to reach the crisis, i.e., the maximum inner force, and which finally
break, reaching the cutoff length. Both the bifurcation (point A) and the cutoff (point B) configurations
are shown in Figure 6 (top right) and Figure 6 (bottom), respectively; the latter shows the details of the
bonds where the deformation is localized up to the point where it breaks. The return of the paths depends
on the fact that, during the evolution of process, these bonds continue to be stretched by an even smaller
force, while all the other bonds relax, i.e., all bonds experience a net decrease of their inner force. In
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Figure 5. BN sheet under tensile loads in the zigzag (left) and armchair (right) directions.
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addition, while only very few bonds reach the cutoff length, all the others become shorter; this produces
an average shortening of the sheet in the postcritical paths.

Differently to the case of graphene, localization and then the break of the bonds involves only the
portions on the right of the sheet, near the edges, as reported in detail in Figure 6 (bottom). This happens
because of the presence of two types of atoms in the hexagonal rings.

Localization phenomena give rise to a reduction of the tensile failure properties, as it is clear from
Table 2, where the bifurcation values of the strains and stresses are compared with their limit counterpart
under periodic boundary conditions. In particular, localization phenomena are more penalising when the
tensile load is applied in the armchair direction with a reduction of 9% for the stress and 35% for the
strain.

armchair
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Figure 6. Equilibrium paths (top left) and deformed configurations at point A (top right)
and point B (bottom).

bifurcation values limit values
direction e 0 e (0]

zigzag 0.177 269 0.187 27.2
armchair 0.184 31.5 0.283 34.6

Table 2. Bifurcation values versus limit values of the engineering strains and stresses (nN/nm).
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5.2. Compression tests. The BN sheet of finite size is now studied under compression loads in the zigzag
direction and in the armchair direction, as shown in Figure 7. Two different constraint conditions on
the out-of-plane displacements are considered, namely conditions of simple support only on the loaded
sides and conditions of simple support on all the sides. In both cases, the in-plane rigid body motions
are filtered as in the tensile tests. In addition, small imperfection forces, equal to each other, are applied
to the atoms marked in red, perpendicularly to the plane of the sheet.

Comparisons are also performed with an isotropic thin shell, with linear elastic constitutive relation-
ship, identified from the ab-initio results ¥ = Et =267 nN/nm, v = 0.21 and D = E3/12(1 —v?) =
0.2067 nN nm, where E is the Young modulus and ¢ is obtained from the bending stiffness value. The
choice of this continuum stems from the fact that this is the model to which ab-initio solutions refer
and that we have used to calibrate the interatomic potential. Therefore, the following figures show both
the equilibrium paths provided by the MS model and by the nonlinear analysis provided by ABAQUS
for the thin shell finite element S8RS5. In this case, an imperfection force at the centre of the shell is
applied. The paths of the MS model are shown in terms of the unit load Q versus the average out-of-
plane displacement of the central zone, evaluated as the arithmetic mean of the displacements of the
atoms marked in red in Figure 7. For the shell, the unit load Q versus the out-of-plane displacement of
the centre are shown.

In Figure 8, the results of the zigzag and armchair compression tests are shown, for the case of simple
support only on the loaded sides. The equilibrium paths are given very far beyond the critical points and,

) = 0FV 1V V0372
- F 372 g | i 7 I )

zZ, W

Figure 7. BN sheet under compression loads in the zigzag (left) and armchair (right) directions.
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Figure 8. Zigzag and armchair compression tests of a BN sheet, simply supported only
on the loaded sides: equilibrium paths (top left), energy trends (top right) and deformed
configurations at points A (bottom left) and B (bottom right).

for the MS model some significant configurations are also depicted in Figure 8. For both tests and both
models we observe a substantial Euler-like behavior, with a stable postcritical branch (see Figure 8, top
left); for the MS model, apart from imperceptible local effects, the deformed configurations at first evoke
an half-wave in the direction of the load (see Figure 8, bottom left) and then approach a drop-like shape
(see Figure 8, bottom right).

Table 3 shows a comparison between the critical loads Q. of the MS model, evaluated at the onset
of buckling, and their analytical counterpart obtained from the Eulerian theory of thin shells [S. P. Tim-
oshenko and J. M. Gere 1963], namely Qr = n>D/a” for the zigzag test and Qp = w2D/b? for the
armchair one.
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direction Eulerian loads, Qg (nN/nm) critical loads, Q. (nN/nm)
zigzag 0.0185 0.0175
armchair 0.0200 0.0191

Table 3. Eulerian loads versus Critical loads for a BN sheet compressed and simply
supported on the loaded sides.

The results provide an estimate of the approximation with which the shell model reconstructs the
behavior of the atomistic system, at least in relation to critical loads. This approximation is about 6% in
the zigzag test and of about 5% in the armchair test. In relation to chirality, the apparently not insignificant
effects are mostly due to the fact that the sheet is not perfectly square, being the values of a and b different.
Overall, the equilibrium paths provided by the MS and shell models are very similar. This also suggests
that the hypothesis of linear elasticity made for the shell does not have a great relevance in these results.
And vice versa, it seems to suggest a possible simplification of the interatomic potential in its simplest
form of harmonic potential, at least, as far as buckling phenomena are concerned.

In Figure 8 (top right), the trends of the potential energy of the sheet are shown in the range of the
equilibrium path corresponding to the precritical phase and to the initial postcritical one. The energy
contributions are shown as decoupled, separating the contribution due to membrane deformation, that is,
the sum of binary and ternary energies, from the quaternary contribution, which is inherently flexural.
All the energies are measured with respect to the resting state of the sheet and given per unit area of the
reference surface, while the deformation of the sheet is given in terms of the aforementioned engineer-
ing strains ¢. Diagrams in Figure 8 show that precritical behavior employs purely membranal energy,
while postcritical one uses bending energy. Moreover, it is worth noting that energy is quadratic in the
precritical phase.

Figure 9 shows the results of zigzag and armchair compression tests of a BN sheet simply supported
on all the sides. The equilibrium paths provided by the MS model and the shell model are shown in the
deep postcritical behavior (see Figure 9, left column, top) and, for the MS model, the configurations at
the points A, B and C are also pictured (see Figure 9, right column).

The four equilibrium paths are qualitatively quite similar: after a first bifurcation, the initially stable
postcritical path has a very high limit point for loads, followed by an unstable branch. The unstable
branches are, however, quite different from the quantitative point of view, both in relation to the armchair
or zigzag direction of the compression, and in relation to the approximate capacity of the shell model.
In fact, in the zigzag test the unstable branch is not well fitted by the shell model.

The configurations at points A, B and C, shown in Figure 9 (right column), reveal a postcritical
behavior characterized by the accentuation of the initial half-wave critical mode up to an increasing
crumple. It is worth noting that, along the unstable branch of the zigzag test, the deformed configurations
are not symmetric; they differ from what happens for the armchair test. Again, these nonsymmetric
configurations, not encountered for graphene [Genoese et al. 2019a], can be explained by the presence
of B and N atoms in the rings. The nonsymmetric configurations, obviously, are not reproducible by
the isotropic shell model and this, in our opinion, is the reason of its loss of accuracy along the unstable
branch of the zigzag test. Instead, the linear elasticity of the shell does not significantly affect the results
as we can deduce from the almost total overlap of the paths for the armchair test.
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Figure 9. Zigzag and armchair compression tests of a BN sheet, simply supported on all
the sides; left column: equilibrium paths (top) and energy trends (bottom); right column:
deformed configurations at points A (top), B (middle) and C (bottom).

Once again, a comparison is performed between the critical loads O, and the Eulerian ones [S. P.
Timoshenko and J. M. Gere 1963], namely Q = kx>D/b? for the zigzag case and Q = kx>D/a? for
the armchair case, with k = 4. The comparison is given in Table 4 from which a percentage distance of
about 3% and of about 7% comes to light for the zigzag case and for the armchair case, respectively.

Furthermore, a very low influence of chirality in the critical behavior of the sheet emerges, differently
from what is obtained in the advanced postcritical phase. In Figure 9 (left column, bottom), the energy
diagrams reveal that the precritical behavior of the sheet is linear and purely membranal, as in the previous
examples. However, unlike in the previous examples, membranal and flexural energies coexist in the
postcritical behavior.

direction Eulerian loads, Qg (nN/nm) critical loads, Q. (nN/nm)
zigzag 0.0802 0.0776
armchair 0.0739 0.0694

Table 4. Eulerian loads versus critical loads for a BN sheet compressed and simply
supported on all sides.
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5.3. Shear tests. As completion of our numerical investigation, the BN sheet of finite size is studied also
under pure shear loads and under shear loads in the zigzag direction and in the armchair direction, as
shown in Figure 10. In all the shear tests, conditions of simple support on the out-of-plane displacements
are given for all sides. As for the in-plane displacements, case by case, different constraints are assumed.
In particular, the pure shear test is performed assuming » < u; =0, > ', v; =0 and > * (v;X; —
u;y;) =0, where x; and y; are the atomic coordinates with respect to the centre of the sheet. The zigzag
and armchair shear tests are performed assuming u#; = v; = 0 on side 1 and v; = 0 on side 2, and u; = v;
=0 on side 3 and u; = 0 on side 4, respectively. Small imperfection forces are given perpendicularly
to the plane of the sheet. In particular, only one scenario is considered in the pure shear test, in which
forces that are equal to each other are applied to the atoms marked in red.
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Figure 10. The load settings of the shear tests for the BN sheet: pure shear test (top),
zigzag shear test (bottom left) and armchair shear test (bottom right).
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In the zigzag and armchair shear tests, two scenarios are instead taken into account: the imperfection
scenario 1 consists of a positive force and a negative force on the atoms marked in green and blue,
respectively; the imperfection scenario 2 consists of forces equal to each other on the atoms marked in
red. These scenarios have been suggested by a preliminary study of the buckling modes of the equivalent
shell, which revealed two nearly coincident modes, the first with two bubbles of opposite sign and the
second with a single bubble, all elongated in the direction of the principal traction. The equilibrium
paths are given in terms of the load Q versus the average out-of-plane displacement of the central zone,
evaluated as the arithmetic mean of the displacements of the atoms marked in red in the pure shear test
and in the zigzag and armchair shear tests under the imperfection scenario 2, or versus the out-of-plane
displacement of the atom marked in green in the zigzag and armchair shear tests under the imperfection
scenario 1. Also in this case comparisons with the results of the equivalent shell are performed, with
imperfection forces and plotted displacements practically identical to those selected for the atomistic
systems.

The results of the pure shear test are shown in Figure 11. The equilibrium paths and some significant
deformed configurations obtained through the MS model are given in Figure 11 (left column, top and
right column). In the postcritical phase, the equilibrium path (see Figure 11, left column, top) presents
two subsequent stable branches and a final unstable branch. The initial postcritical configurations are
essentially characterized by a central bubble elongated towards the direction of the principal traction (see
Figure 11, right column, top). During the progression of the postcritical phase this bubble is replaced
by two bubbles (see Figure 11, right column, middle) to which local distortions add, near the vertices
and in the direction of the principal traction, along the unstable branch (see Figure 11, right column,
bottom). The shell model instead shows a stable postcritical branch only, which fits well with the first
stable branch of the path of the MS model.

The critical load Q. and the Eulerian one [S. P. Timoshenko and J. M. Gere 1963], that is, Qg =
km?D/b*> where k =5.35+4(b/a)? =9.0337, are compared in Table 5. As seen in this table, a percentage
distance of about 11% is registered between Q. and Q.

At this point, it is worth highlighting that the postcritical behavior of the shell is again qualitatively
similar to those encountered for graphene [Genoese et al. 2019a], which exhibits only a postcritical stable
branch, related to configurations with a simple bubble up to a limit point. In the case of BN sheet, the
presence of two stable branches seems to be mainly related to the presence of two different atoms; this
suggests that the loss of accuracy of the shell model in the deep postcritical phase is due to the lack of
small scale effects. Finally in Figure 11 (left column, bottom), the potential energy is given as a function
of y =Au/b+ Av/a = (up —u1)/b+ (v4 — v3)/a. Similarly to the case of a compressed sheet simply
supported on all the sides, we notice a purely membranal and linear precritical behavior, while in the
postcritical phase membranal and flexural energies coexist.

Eulerian loads, @ (nN/nm) critical loads, Q. (nN/nm)
0.181 0.163

Table 5. Eulerian loads versus critical loads for the pure shear test of a BN sheet.
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Figure 11. Pure shear test of a BN sheet; left column: equilibrium path (top) and energy
trends (bottom); right column: deformed configurations at points A (top), B (middle)
and C (bottom).

In figures 12 and 13, the equilibrium paths and some significant deformed configurations of the MS
model are given for the zigzag and armchair shear tests under the two imperfection scenarios, corre-
sponding to a two bubbles and a one bubble configurations, respectively. The related critical loads are
also listed in Table 6.

direction imperfection scenario 1 imperfection scenario 2

zigzag 0.149 0.158
armchair 0.146 0.153

Table 6. Critical loads (nN/nm) of the zigzag and armchair shear tests of a BN sheet in
two imperfection scenarios.
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nario 1: equilibrium paths (top) and deformed configurations at points A (bottom left)
and B (bottom right).

Results indicate slightly lower loads for the scenario with two bubbles and stable postcritical paths
in all the cases, qualitatively well fitted by the shell (see Figure 12, top and Figure 13, top left). With
reference to the critical loads we register very small differences, mostly depending on the different values
of a and b in the zigzag and in the armchair tests. Also the equilibrium paths are almost indistinguishable
nearby the critical point and in the initial postcritical phase, on varying the direction of the shear. In a
deep postcritical phase they instead differ enough for the presence of different folds, shifted to each other;
this can be explained as an amplified effect of the difference between a and b, since this is seen also
by the shell model. As for the configurations, results of the MS model indicate an initial progression of
the shape with two bubbles (see Figure 12, bottom left) or with one bubble (see Figure 13, top right),
according to the imperfection. For both cases, the progression of the postcritical phase is characterized
by the addition of two minor bubbles near the sides, giving configurations with two crests and two
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Figure 13. Zigzag and armchair shear tests of a BN sheet under the imperfection sce-
nario 2: equilibrium paths (top left) and deformed configurations at points A (top right),
B (bottom left) and C (bottom right).

throats along the direction of the principal compression for the imperfection scenario 1 (see Figure 12,
bottom right) or with one crest and two throats along the direction of the principal compression for the
imperfection scenario 2 (see Figure 13, bottom left). In the latter case, the configurations with one crest
and two thoats are replaced by configurations with more bubbles consisting of three crests and two throats
(see Figure 13, bottom right).

6. Conclusion

In this paper, a numerical model for hexagonal BN nanostructures, based on binary, ternary and quater-
nary interactions, has been presented and a discussion about the choice of the parameters at stake has
been carried out. An assessment of the model with respect to the ab-initio results in terms of the tensile
failure properties of a sheet has been performed, by considering periodic tensile tests in both zigzag and
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armchair directions. Once validated, the model has been used to study the response of a BN sheet of
finite size under tension, compression and shear in the zigzag and in the armchair directions, and under
pure shear. Analysis of results has demonstrated the accuracy of the adopted parameters and has brought
to light some features already found in the case of graphene [Genoese et al. 2019a; 2019b]. In more
detail, we have observed bifurcation phenomena in all the tests on the sheet of finite size; with regard to
buckling in the compression and shear tests, critical and initial postcritical behaviors are well reproduced
by a linear elastic thin shell model. Different to the case of graphene, in the tensile tests the behavior of
the sheet turned out to be nonsymmetric with respect to the vertical axis, as well as in the compression
test in the zigzag direction. This can be explained trough the diatomicity of the sheet.

The model, here presented, can certainly be used to study the mechanical behaviors of other hexagonal
BN nanostructures, not deeply investigated in the literature, such as BN nanoribbons or nanotubes.

Appendix A: the derivatives of the potential functions

The derivatives of (2) are
dU, ij

T = 2(713[1 — e_ﬂ(rij_f)]e_ﬁ(rij_f)’ (352)
rij
dU;ix
ij
dUiju . _
d(pf{,d =V sin [2(@ijur — @ijur) ] (35¢)
ij
21,
TUij _og B [2e~PU=D 1] ¢ Flri=D)
drl.zj ’
(36)
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Appendix B: the second variation of the potential
The second variation of the potential U is
8U = Z(Srij Slr] —{-Z ((Srij SZ +8rix S;’}() +Z ((Srij S?] +orix -jfk—l—érﬂ ngpl), 37
b a d

where s,’ i» &Z, and 52, a € {ij,ik} and B € {ij, ik, jl} are the incremental forces related to the various

interactions, obtained by variation of (21). In detail, by variation of (21a), one obtains
- _dzUij.. . dU;j .

Sij—dTizjrijr,'j-i-dTijr,'j. (383)

Furthermore, evaluating 7;; and i‘,- ; according to (7) and (8), one obtains

d*U;; 1 dU;; 1 dU;;
i = [( 0y _L lf)fij®fij+f%l]fij. (38b)
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Similarly, by variation of (21b), one obtains

) dUijk .
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2
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= m a e {ij,ik}.
By recalling (10), we also obtain
n)cosdji = (n) @nl;) iij+ (n) @nl)) Fi.
The second term in (39a) requires the calculation of izz, o € {ij,ik}. From (11), it follows that
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and likewise
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So, similarly, by variation of (21c), we obtain
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In light of Eq. (17), we also have
nggijn = (g @n) iij + (ng @ nf) i+ (nf @n%) 1.

To complete (40a), we calculate izﬁ, B €lij, ik, jl}. From (18), one obtains
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where N, = n%(Zﬁy ®n, —1I), with y € {ijk, jil} and where a* is the skew-symmetric tensor isomorphic
Y

to the vector a.
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The expressions (39¢) and (39d) of n?] and h?k and the expressions (40c)—(40e) of 1'1;/;., isz and ﬁ‘;l

are compact, but they do not make visible, as they stand, the symmetry of the tangent operator, given
that it derives from the second variation of the potential U. To view this symmetry, equations (39c)
and (39d) need to be manipulated using (11). As for the manipulation of (40c)—(40e), the interested
reader is referred to [Blondel and Karplus 1996].
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