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The vibration characteristics of functionally graded porous nanobeam embedded in an elastic substrate
of Winkler–Pasternak type are investigated. Classical beam theory or Euler–Bernoulli beam theory has
been incorporated to address the displacement of the FG nanobeam. bi-Helmholtz type of nonlocal
elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the nanobeam is
assumed to have porosity, distributed evenly along the thickness throughout the cross-section. Young’s
modulus and mass density of the nanobeam are considered to vary along the thickness from ceramic
to metal constituents in accordance with power-law exponent model. A numerically efficient method,
namely the Hermite–Ritz method, is incorporated to compute the natural frequencies of hinged-hinged,
clamped-hinged, and clamped-clamped boundary conditions. A closed-form solution is also obtained
for hinged-hinged (HH) boundary condition by employing Navier’s technique. The advantages of using
Hermite polynomials as shape functions are orthogonality, a large domain that makes the method more
computationally efficient and avoids ill-conditioning for higher values of polynomials. Additionally, the
present results are validated with other existing results in special cases demonstrating excellent agree-
ment. A comprehensive study has been carried out to justify the effectiveness or convergence of the
present model or method. Likewise, impacts of various scaling parameters such as Helmholtz and bi-
Helmholtz types of nonlocal elasticity, porosity volume fraction index, power-law exponent, and elastic
foundation on frequency parameters have been investigated.

1. Introduction

Functionally graded materials (FGMs) are inhomogeneous materials consisting of two or more different
materials, and the composition or volume of constituents varies continuously along one or more specific
dimensions. As a result, their properties and structure will change steadily along the same dimension.
This idea was first used by Japanese researchers [Koizumi 1994]. The gradual and continuous changes in
these materials have made them very important and useful properties for application in various industries.

The introduction of FGMs to nano-micro technology has led to the development of devices and tools
with better properties and capabilities, such as nano-micro-electro-mechanical systems (NEMS/MEMS),
thin shape memory alloys, and atomic light microscopy. Nanotechnology is the study of microscopic
objects about 1 to 100 nanometers in size and their applicability in various fields of science, such as

Keywords: FG nanobeam, Hermite–Ritz method, bi-Helmholtz function, porosity, Winkler–Pasternak elastic foundation,
vibration.
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chemistry, biology, physics, materials science, and engineering. Recently, due to the special mechanical
properties of nanostructures, the application of these structures has been developed in engineering, and
researchers have been designing high-performance tools such as nanosensors, nano actuators, nanogen-
erators, etc. to solve new problems. Nanoscale tools are designed using the properties of nanotubes,
nanobeams, nano-membranes, and nanosheets, so the discussion of modeling and analysis of nanobeams
has attracted the attention of researchers.

Many experiments and computer simulations (molecular simulation) proved that a nanostructure me-
chanically has different response while it is analyzed in nanoscale size compared with a macroscale
investigation. They showed that size is a crucial factor on nanoscale. Among all tools which aid us to
predict mechanical response of these materials, the non-classical continuum elasticity approaches are cost
and time-effective methods. Accordingly, it has been observed that classical continuum theories do not
provide the right answer in predicting the behavior of these small scale structures. In fact, classical con-
tinuum theory is unable to account for size effects. The most popular non-classical continuum mechanic
theories are: strain gradient theory [Mindlin 1965], nonlocal elasticity theory [Eringen 2002; Jena et al.
2019b; Jena et al. 2020a; Jena et al. 2020b], stress-driven nonlocal elasticity theory [Barretta et al. 2018;
Sedighi and Malikan 2020], nonlocal strain gradient theory [Lim et al. 2015; Jena et al. 2019a; Malikan
et al. 2020], modified coupled stress theory [Malikan 2017], surface elasticity theory [Ansari et al. 2013],
and bi-Helmholtz nonlocal elasticity theory [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018].
These aforesaid theories, each in turn has small scale parameters. The small scale parameter makes
difference between macro scale and nanoscale. Many research approved that these scale parameters
are not material constant and vary with variation in natural features and physical characteristics of the
nanomaterial. As an example, boundary and edge conditions affect fundamentally the values of small
scale parameter. Moreover, as the nano materials except for being size-dependent, are also temperature-
dependent, the thermal environment can significantly affect the value of small scale parameter. Thus, a
nanostructure in various boundary conditions and different external temperature requires different values
for the small scale parameter to give exact results. That is why all the researchers presented amplitude
for numerical values of small scale parameters. There are also further examples for factors that affect the
amount of a small scale parameter, such as crack specifications in cracked nanomaterials, arrangement
of atoms in atomic lattice into some special nanomaterials like graphene and nanotubes with changeable
arrangement (chirality effect), etc.

The mechanical behavior of FG nanomaterials with different geometries and various loading and
boundary conditions has been extensively investigated by researchers in the current decade. Beams are
of great importance due to their wide use in engineering. To date, numerous articles have been written
on the study of the dynamics of FGM nanobeams. [Eltaher et al. 2012] based on the finite element
method (FEM) analyzed natural frequencies of a nanoscale FGM beam by considering nonlocal contin-
uum mechanics. The beam was modeled according to the Euler–Bernoulli beam theory (EBT) approach.
The numerical outputs were calculated for a variety of boundary conditions. [Sharabiania and Yazdi
2013] depicted a nonlinear frequency analysis on FGM nanosize beams in the framework of EBT while
the size dependency was investigated on the basis of surface effects. The results were shown for some
different edge conditions. [Esmaeili and Beni 2019] investigated buckling and vibration characteristics of
flexoelectric smart nanobeam composed of functionally graded materials. [Nazemnezhad and Hosseini-
Hashemi 2014] studied nonlocal effects within the framework of nonlinear analysis of vibrations for
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FGM nanoscale beams. The immovable ends, such as fixed and pinned conditions were assumed when
EBT was employed to give the constitutive equations of frequency. [Hosseini-Hashemi et al. 2014] con-
sidered analytically effects of surface and stress nonlocality for pivot-pivot EBT-FGM nanobeam models.
[Ansari et al. 2015] examined the excited frequencies nonlinearly for an FGM nanobeam in the body of
an exact solution. The influences of the environment, such as temperature differential, were measured
as well. The nanosize into the EBT model was investigated utilizing surface elasticity theory, and the
Galerkin technique helped to solve the attained equations. [Zeighampour and Beni 2015] developed FGM
nanobeams by considering the variation of diameter in the length direction. The strain gradient theory,
EBT, and Visco-Pasternak foundation model were combined, which led to the governing equations. The
obtained equations were discretized using differential quadrature method (DQM) for pined-pined and
clamped-clamped supported and then were solved by eigenvalue solver. Their best results proved the
considerable effect of diameter variation on the dynamics behavior of FGM nanobeams. [Ebrahimi and
Salari 2015] studied the nonlocal effect on the FGM nanobeams by considering EBT beam model with
the presence and absence of the influences of the thermal environment utilizing analytical method based
on the Navier method.

[Simsek 2016] discussed the free vibration of an FGM nanoscale beam based on the nonlinear strains
and derived mathematical relation by presenting a new Hamiltonian in combining with EBT and nonlocal
strain gradient elasticity. [Shafiei et al. 2016] modeled a non-uniform FGM beam taking nanosize effects
based on the nonlocal theory of elasticity. The natural frequencies were captured for the beam with the
contribution of nonlinear terms. The procedure for solving of the harvested equations was generalized
differential quadrature (GDQ) method and Homotopy perturbation method for fixed-fixed, pinned-pinned,
and fixed-pinned boundary conditions. [Hosseini and Rahmani 2016] combined thermos-elastic relations
to study vibrations of an FGM nanoscale beam when the beam is geometrically curved. The nonlocal
elasticity provides the size-dependent behavior, and the numerical results were obtained by analytical
solutions. [Khorshidi and Shariati 2016] investigated the vibration characteristics of the sigmoid-type of
FGM nanobeams by using the modified couple stress theory. A variety of beam hypotheses such as EBT,
first-order shear deformation theory (FSDT) and some higher-order shear deformation theory (HSDT)
were investigated with the help of GDQ. [Vosoughi 2016] applied nonlinearity to study free vibration
of a FGM nanosize beam embedded on a nonlinear elastic medium. The use of FSDT and nonlocal
elasticity addressed the desired equations that were discretized by DQM. [Hamed et al. 2016] compared
sigmoid with a nonlinear symmetric power varied along the thickness of EB-FGM nonlocal beams in a
vibration study. [Saffari et al. 2017] inspected the stability of an FGM nonlocal FSDT beam by taking
surface effects in a dynamical situation. Thermal effects and foundation influences were implemented
as well. [Arefi and Zenkour 2017] explored the nonlocal vibration of a Timoshenko FGM nanobeam by
taking the Visco-Pasternak matrix into account.

[Vu-Bac et al. 2016] carried out sensitivity analysis for quantifying the influence of uncertain in-
put parameters by using probability density function on uncertain model outputs. The dynamics of
three-dimensional inhomogeneities of FGM nanoscale beams was investigated by [Hadi et al. 2018].
[Jouneghani et al. 2018] modeled porosity into the material gradation of FGM nanobeams and examined
the structural behavior of the system subjected to variation of environmental parameters such as temper-
ature and humidity. [Mirjavadi et al. 2018] focused on the nonlinear behavior of FGM nanosize beams
considering porosities with respect to the EBT and second stress gradient of Eringen. Different end
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conditions were taken into consideration by the assistance of GDQM and an iterative technique. [Simsek
2019] performed different closed-form approaches to study a variety of analyses on the FGM nanobeams,
namely forced and free vibrations, static bending, and buckling. The nonlocal strain gradient theory was
implemented to capture the size dependency influence. Various loading cases were demonstrated in the
dynamic analysis of the graded EBT model.

[Aria and Friswell 2019] indicated a finite element analysis in the form of nonlocality to consider free
vibration and stability of FGM nanobeams. [Uzun and Yaylı 2019] investigated the free vibration of func-
tionally graded nanobeam for hinged-hinged and clamped-clamped boundary conditions with the help
of the finite element model. The nonlocal effect of FG nanobeam was handled by the Eringen’s nonlocal
theory. [Karami and Janghorban 2019] showed a new shaped function into the higher-order shear defor-
mation theory to study analytically natural frequencies of a FGM nonlocal isotropic/anisotropic beam.
Thickness stretching influence was also evaluated by the shape function. The nonlocal strain gradient
model determined the nanoscale behavior. [Khaniki 2019] studied vibrations of FGM nanoscale beams
based on the two phases nonlocal-local models, and then functionality gradation was derived along length.
GDQ helped to obtain numerical results. [Chen et al. 2020] studied thermal buckling behavior of Euler–
Bernoulli beam made up of FG material. The transformed-section method was used to investigate the
buckling characteristics analytically. [Uzun and Yaylı 2020] in a pioneering work studied free vibration
of functionally graded nanobeam for Simply Supported boundary condition using Euler–Bernoulli beam
theory and Eringen’s nonlocal elasticity by utilizing FEM.

Previous studies, as mentioned above illustrate the fact that the studies involving non-classical theories
have rarely used the bi-Helmholtz nonlocal elasticity theory; and have never used the advanced yet simple
Hermite–Ritz method for this purpose. In this study, the Euler–Bernoulli theory is applied to find the
numerical response of free vibration of FG nanobeams. The numerical solution of the free vibration
is obtained, and the response of the rectangular nanobeam is calculated for the bi-Helmholtz nonlocal
parameter by employing the Hermite–Ritz method for HH, CH, and CC boundary conditions while
closed-form solution is obtained for HH boundary condition by utilizing the Navier’s technique. The
beam is also embedded on the Winkler–Pasternak elastic bed. Due to the importance of porosity in the
structure of functionally graded materials, this argument is included in the present analysis as well. The
results of the theory presented are compared with those reported by previous researchers, and a good
agreement is observed between the results. A parametric analysis is also carried out to investigate the
effect of various scaling parameters such as Helmholtz and bi-Helmholtz types of nonlocal elasticity,
porosity volume fraction index, power-law exponent, and elastic foundation on the frequency response
of the FG nanobeam.

2. Reviews of Helmholtz and bi-Helmholtz types of nonlocal operators

The bi- Helmholtz type nonlocal modulus, which is the Green’s function of bi Helmholtz operator may
be stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018]

AbH (∣∣x − x ′
∣∣)= 1

2
1

ξ 2
1 − ξ

2
2

{
ξ1e

−|x−x ′|
ξ1 − ξ2e

−|x−x ′|
ξ2

}
(1)
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The corresponding bi-Helmholtz operator may be expressed as [Eringen 2002; Lazar et al. 2006; Kout-
soumaris and Eptaimeros 2018]

`bH
=
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1
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dx2
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2
2 and the constants ξ1 and ξ2 are demonstrated as [Eringen 2002;

Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018]
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Here the discriminant

(
1− 4γ

4

ε4

)
≥ 0, i.e., ε ≥

√
2γ . Considering ε =

√
2γ , we will have ξ1 = ξ2,

where ξ1, ξ2 ∈ R and the parameter γ triumphs over ε. For any other case, i.e., ε >
√

2γ , the effect of
ε prevails over γ . From [Lazar et al. 2006], [Koutsoumaris and Eptaimeros 2018], it is evident that that
`bH operator matched the Born Karman’s model at the end of the Brillouin zone, when ξ1 = ξ2. Now,
the nonlocal modulus is given in (1) maybe stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros
2018]

AbH (∣∣x − x ′
∣∣, γ )= 1
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Substituting ε =
√

2γ or e0a =
√

2γ , Equation (4) can be expressed as [Lazar et al. 2006; Koutsoumaris
and Eptaimeros 2018]
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Thus, the bi-Helmholtz operator in differential form may be given as [Lazar et al. 2006; Koutsoumaris
and Eptaimeros 2018]

`bH
= 1− (e0a)2

d2

dx2 +
(e0a)4

4
d4

dx4 (6)

Assuming ξ1 = e0a and ξ2 = 0 in (1), the Helmholtz-type nonlocal modulus is given as [Eringen 2002;
Koutsoumaris and Eptaimeros 2018]

AH (∣∣x − x ′
∣∣, e0a

)
=

1
2(e0a)

e
−|x−x ′|

e0a , (7)

and the corresponding Helmholtz operator in differential form is given as [Eringen 2002]

`H
= 1− (e0a)2

d2

dx2 . (8)
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Figure 1a. Schematic diagram of rectangular FG nanobeam embedded in the Winkler–
Pasternak elastic foundation.

fully ceramic porosity

fully metal

Figure 1b. Graphical representation of the rectangular cross-section of the FG
nanobeam with evenly distributed porosity.

3. Mathematical formulation of the proposed model

In this study, a functionally graded porous nanobeam with length (L), breadth (b), thickness (h), and
porosity volume fraction ϑ , (ϑ < 1) is taken into consideration, as depicted in Figure 1a. The material
composition at the top surface (z = h/2) is assumed to be ceramic-rich while the bottom surface (z =
−h/2) is considered to be metal-rich, and the gradation along thickness from the ceramic-rich surface to
metal-rich surface is governed by power-law variation model. The porosity in the nanobeam is assumed
as evenly distributed throughout the metal and ceramic constituents, as illustrated in Figure 1b.
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Thus, according to the modified rule of the mixture [Wattanasakulpong and Ungbhakorn 2014; Shah-
savari et al. 2018]

P = PU VU + PL VL −
ϑ

2
(PU + PL) (9)

Here P denotes the material property FG nanobeam. PU , VU is the material property and volume fraction
for the ceramic constituent, whereas PL , VL symbolize the material property and volume fraction of the
metal constituent.

As per the power law variation model, the volume fractions of the ceramic and metal components are
expressed as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al. 2018]

VU =

(
z
h
+

1
2

)k

(10)

VL = 1−
(

z
h
+

1
2

)k

(11)

Where k is the non-negative parameter, namely power-law exponent, that regulates the distribution of
material along the thickness of the nanobeam and z denotes the distance from the mid-plane of the FG
nanobeam. Using (9), (10) and (11), the material properties of the FG nanobeam with porosity may be
given as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al. 2018]

P = (PU − PL)

(
z
h
+

1
2

)k

+ PL −
ϑ

2
(PU + PL) (12)

The Young’s modulus E(z), and material density ρ(z) of the FG nanobeam can be demonstrated graph-
ically in Figs. (2–3) and mathematically as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al.
2018]

E(z)= (EU − EL)

(
z
h
+

1
2

)k

+ EL −
ϑ

2
(EU + EL) (13a)

ρ(z)= (ρU − ρL)

(
z
h
+

1
2

)k

+ ρL −
ϑ

2
(ρU + ρL) (13b)

According to the classical beam theory or Euler–Bernoulli beam theory, the displacement field can be
given as [Reddy 2007]

u1(x, z, t)= u (x, t)− z
(
∂w

∂x

)
(14a)

u2(x, z, t)= 0 (14b)

u3(x, z, t)= w(x, t) (14c)

Where u(x, t), and w(x, t) represent the axial and transverse displacements on the mid-plane of the FG
nanobeam, respectively.

The strain-displacement relation of the FG nanobeam is stated as

εxx =
∂u1(x, z, t)

∂x
=
∂u (x, t)
∂x

− z
∂2w(x, t)
∂x2 (15)
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Figure 2. Power-law variation of Young’s modulus for FG nanabeam composed of
alpha-beta titanium alloy (Ti-6AL-4V) and zirconia (ZrO2).
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The stress component of the FG nanobeam as generalized Hooke’s law may be given as [Pradhan and
Chakraverty 2014]

σxx = Q11εxx =

(
E(z)

1− υ2

)
εxx (16)

3.1. Energy form of equation for Hermite–Ritz method. The strain energy (S) of the FG nanobeam is
stated as

S =
1
2

∫ L

0

∫
A
(σxxεxx)d A dx =

1
2

∫ L

0

∫
A

[
σxx

(
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∂x

− z
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∂x2

)]
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1
2

∫ L

0

[
N
(
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∂x

)
−M

(
∂2w(x, t)
∂x2

)]
dx

(17)

Where the stress resultants (N ,M)=
∫

A(σxx , zσxx)d A.
Now, the variation in strain energy (δS) can be given as

δS =
∫ L
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The kinetic energy (T ) of the FG nanobeam can be stated as

T =
1
2
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∫
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(19)

In which (I0, I1, I2)=
∫

A ρ(z)(1, z, z2)d A are the mass moment of inertias.
The variation in kinetic energy (δT ) can be obtained from (19) as

δT =
1
2

∫ L

0

[
I0δ
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∂t
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(
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(20)
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The work done (W ) by the Winkler–Pasternak elastic foundation can be expressed as [Uzun and Yaylı
2020]

W =−
1
2

∫ L

0

[
kww2

+ kg

(
∂w

∂x

)2
]

dx, (21)

where kw and kg are Winkler and Pasternak elastic constants, respectively.
The variation in external work done (δW ) can be derived from (21) as

δW =−
∫ L

0

[
kww+ kg

(
∂2w

∂x2

)]
δwdx (22)

Using (18), (20) and (22) in the extended Hamilton’s principle
∫ T

0 (T−S+W )dt = 0 and collecting the co-
efficient of δu and δw, the governing equations of motion in terms of stress resultants and displacements
can be obtained as

∂N
∂x
= I0

(
∂2u
∂t2

)
− I1

(
∂3w

∂x∂t2

)
(23a)

∂2 M
∂x2 = I0

(
∂2w

∂t2

)
+ I1

(
∂3u
∂x∂t2

)
− I2

(
∂4w

∂x2∂t2

)
+ kww− kg

(
∂2w

∂x2

)
(23b)

Multiplying (16) by d A and z d A and integrating over the area of cross-section of the FG nanobeam, the
local stress resultants can be written as

N = A11

(
∂u
∂x

)
− B11

(
∂2w

∂x2

)
, M = B11

(
∂u
∂x

)
− D11

(
∂2w

∂x2

)
, (24)

where (A11, B11, D11)=
∫

A Q11(1, z, z2)d A, are the stiffness coefficients of FG nanobeam.
Applying bi-Helmholtz operator to (24) and using (23), the nonlocal stress resultant resultants of the

FG nanobeam can be obtained as

N = A11

(
∂u
∂x

)
− B11

(
∂2w

∂x2

)
+ (e0a)2


{

I0

(
∂3u
∂x∂t2

)
− I1

(
∂4w

∂x2∂t2

)}
−
(e0a)2

4{
I0

(
∂5u
∂x3∂t2

)
− I1

(
∂6w

∂x4∂t2

)}
 (25a)

M = B11

(
∂u
∂x

)
− D11

(
∂2w

∂x2

)
+ (e0a)2




I0

(
∂2w
∂t2

)
+ I1

(
∂3u
∂x∂t2

)
− I2

(
∂4w
∂x2∂t2

)
+kww− kg

(
∂2w
∂x2

)


−
(e0a)2

4


I0

(
∂4w

∂x2∂t2

)
+ I1

(
∂5u
∂x3∂t2

)
−

I2

(
∂6w

∂x4∂t2

)
+ kw

(
∂2w

∂x2

)
− kg

(
∂4w

∂x4

)



(25b)
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Substituting (25) in (17), the strain energy, kinetic energy, and work done by elastic foundation for the
FG nanobeam can be depicted as

T =
1
2

∫ L

0

[
I0

((
∂u
∂t

)2

+

(
∂w

∂t

)2
)
− 2I1

(
∂u
∂t

)(
∂2wb

∂x∂t

)
+ I2

(
∂2w

∂x∂t

)2]
dx (26)

W =−
1
2

∫ L

0

[
kww2

+ kg

(
∂w

∂x

)2
]

dx (27)

S =
1
2

∫ L

0



A11

(
∂u
∂x

)2

− 2B11

(
∂u
∂x

)(
∂2w

∂x2

)
+ D11

(
∂2w

∂x2

)2

+

(e0a)2
(
∂u
∂x

){
I0

(
∂3u
∂x∂t2

)
− I1

(
∂4w

∂x2∂t2

)}
−
(e0a)4

4

(
∂u
∂x

){
I0

(
∂5u
∂x3∂t2

)
− I1

(
∂6w

∂x4∂t2

)}
+ (e0a)2

(
∂2w

∂x2

)
{

I0

(
∂2w

∂t2

)
+ I1

(
∂3u
∂x∂t2

)
− I2

(
∂4w

∂x2∂t2

)
+ kww− kg

(
∂2w

∂x2

)}

−
(e0a)4

4

(
∂2w

∂x2

)
I0

(
∂4w

∂x2∂t2

)
+ I1

(
∂5u
∂x3∂t2

)
− I2

(
∂6w

∂x4∂t2

)
+ kw

(
∂2w

∂x2

)
− kg

(
∂4w

∂x4

)




dx (28)

Assuming the motion of the FG nanobeam as sinusoidal i.e., plugging u(x, t) = U (x) cos(ωt) and
w(x, t) = W (x) cos(ωt), the maximum strain energy (Smax), kinetic energy (Tmax), and work done by
elastic foundation (Wmax) for the FG nanobeam can be obtained as

Smax =
1
2

∫ L

0



A11

(
dU
dx

)2

− 2B11

(
dU
dx

)(
d2W
dx2

)
+ D11

(
d2W
dx2

)2

− (ω)2(e0a)2 I0

(
dU
dx

)2

+ 2(ω)2(e0a)2 I1

(
dU
dx

)(
d2W
dx2

)
+ (ω)2

(e0a)4

4
I0

(
dU
dx

)(
d3W
dx3

)
+ (ω)2

(e0a)4

4
I1

(
dU
dx

)(
d4W
dx4

)
+ (ω)2(e0a)2 I0(W )

(
d2W
dx2

)
− (ω)2(e0a)2 I2(

d2W
dx2

)2

− (e0a)2kw(W )

(
d2W
dx2

)
+ (e0a)2kg

(
d2W
dx2

)2

− (ω)2
(e0a)4

4
I0(

d2W
dx2

)2

− (ω)2
(e0a)4

4
I1

(
d2W
dx2

)(
d3U
dx3

)
+ (ω)2

(e0a)4

4
I2

(
d2W
dx2

)(
d4W
dx4

)
−
(e0a)4

4
kg

(
d2W
dx2

)(
d4W
dx4

)
+
(e0a)4

4
kw

(
d2W
dx2

)2



dx

(29)

Tmax =
ω2

2

∫ L

0

[
I0(U 2

+W 2)− 2I1(U )
(

dW
dx

)
+ I2

(
dW
dx

)2]
dx (30)
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Wmax =−
1
2

∫ L

0

[
kwW 2

+ kg

(
dW
dx

)2]
dx (31)

Substituting (29)–(31) into the Lagrangian energy function 5= Smax−Wmax− Tmax and setting 5= 0,
one may get

∫ L

0


A11

(
dU
dx

)2

− 2B11

(
d2W
dx2

)(
dU
dx

)
+ D11

(
d2W
dx2

)2

− (e0a)2kw(W )

(
d2W
dx2

)
+ (e0a)2

kg

(
d2W
dx2

)2

+
(e0a)4

4
kw

(
d2W
dx2

)2

−
(e0a)4

4
kg

(
d2W
dx2

)(
d4W
dx4

)
+ kwW 2

+ kg

(
dW
dx

)2

 dx

= ω2
∫ L

0



I0(U 2
+W 2)− 2I1(U )

(
dW
dx

)
+ I2

(
dW
dx

)2

+ (e0a)2 I0

(
dU
dx

)2

− (e0a)2 I1(
dU
dx

)(
d2W
dx2

)
−
(e0a)4

4
I0

(
d3U
dx3

)(
dU
dx

)
+
(e0a)4

4
I1

(
dU
dx

)(
d4W
dx4

)
− (e0a)2

I0(W )

(
d2W
dx2

)
− (e0a)2 I1

(
d2W
dx2

)(
dU
dx

)
+ (e0a)2 I2

(
d2W
dx2

)2

+
(e0a)4

4
I0

(
d2W
dx2

)2

+
(e0a)4

4
I1

(
d2W
dx2

)(
d3U
dx3

)
−
(e0a)4

4
I2

(
d2W
dx2

)(
d4W
dx4

)


dx

(32)

Where;

A11 =
bh

1− υ2

[
(EU − EL)

k+ 1
+ EL −

(
ϑ

2

)
(EU + EL)

]
B11 =

bh2k
1− υ2

[
(EU − EL)

2(k+ 1)(k+ 2)

]
D11 =

bh3

1− υ2

[
(EU − EL)(k2

+ k+ 2)
4(k+ 1)(k+ 2)(k+ 3)

+
EL

12
−

(
ϑ

24

)
(EU + EL)

]
I0 = bh

[
(ρU − ρL)

k+ 1
+ ρL −

(
ϑ

2

)
(ρU + ρL)

]
I1 = bh2k

[
(ρU − ρL)

2(k+ 1)(k+ 2)

]
I2 = bh3

[
(ρU − ρL)(k2

+ k+ 2)
4(k+ 1)(k+ 2)(k+ 3)

+
ρL

12
−

(
ϑ

24

)
(ρU + ρL)

]

Equation (32) is the Lagrangian energy function of FG porous nanobeam with bi-Helmholtz type of
nonlocal elasticity. The Lagrangian energy function for the Helmholtz type of nonlocal elasticity can be
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obtained from (32) as

∫ L

0


A11

(
dU
dx

)2

− 2B11

(
d2W
dx2

)(
dU
dx

)
+ D11

(
d2W
dx2

)2

− (e0a)2kw

(W )

(
d2W
dx2

)
+ (e0a)2kg

(
d2W
dx2

)2

+ kwW 2
+ kg

(
dW
dx

)2

 dx

= ω2
∫ L

0


I0(U 2

+W 2)− 2I1(U )
(

dW
dx

)
+ I2

(
dW
dx

)2

+ (e0a)2 I0

(
dU
dx

)2

− (e0a)2 I1

(
dU
dx

)
(

d2W
dx2

)
− (e0a)2 I0(W )

(
d2W
dx2

)
− (e0a)2 I1

(
d2W
dx2

)(
dU
dx

)
+ (e0a)2 I2

(
d2W
dx2

)2

 dx

(33)

3.2. Equation of motion for Navier’s technique. Substituting (25) into (23), the governing equations
of motion in terms of displacement can be obtained as

A11

(
∂2u
∂x2

)
− B11

(
∂3w

∂x3

)
= I0

(
∂2u
∂t2

)
− I1

(
∂3w

∂x∂t2

)
− (e0a)2{

I0

(
∂4u
∂x2∂t2

)
− I1

(
∂5w

∂x3∂t2

)}
+
(e0a)4

4

{
I0

(
∂6u
∂x4∂t2

)
− I1

(
∂7w

∂x5∂t2

)} (34a)

B11

(
∂3u
∂x3

)
− D11

(
∂4w

∂x4

)
= I0

(
∂2w

∂t2

)
+ I1

(
∂3u
∂x∂t2

)
− I2

(
∂4w

∂x2∂t2

)
+ kww− kg

(
∂2w

∂x2

)
−

(e0a)2


I0

(
∂4w

∂x2∂t2

)
+ I1

(
∂5u
∂x3∂t2

)
− I2(

∂6w

∂x4∂t2

)
+ kw

(
∂2w

∂x2

)
− kg

(
∂4w

∂x4

)
+

(e0a)4

4


I0

(
∂6w

∂x4∂t2

)
+ I1

(
∂7u
∂x5∂t2

)
− I2(

∂8w

∂x6∂t2

)
+ kw

(
∂4w

∂x4

)
− kg

(
∂6w

∂x6

)


(34b)

The governing equations of motion for the Helmholtz type of nonlocal elasticity can be obtained from
(34) as

A11

(
∂2u
∂x2

)
− B11

(
∂3w

∂x3

)
= I0

(
∂2u
∂t2

)
− I1

(
∂3w

∂x∂t2

)
− (e0a)2

{
I0

(
∂4u
∂x2∂t2

)
− I1

(
∂5w

∂x3∂t2

)}
(35a)

B11

(
∂3u
∂x3

)
− D11

(
∂4w

∂x4

)
= I0

(
∂2w

∂t2

)
+ I1

(
∂3u
∂x∂t2

)
− I2

(
∂4w

∂x2∂t2

)
+ kww− kg

(
∂2w

∂x2

)
− (e0a)2

{
I0

(
∂4w

∂x2∂t2

)
+ I1

(
∂5u
∂x3∂t2

)
− I2

(
∂6w

∂x4∂t2

)
+ kw

(
∂2w

∂x2

)
− kg

(
∂4w

∂x4

)}
(35b)

4. Solution procedures

In the upcoming subsections, the Hermite–Ritz method and Navier’s technique have been described to
solve the governing equations of motion for the proposed model.
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4.1. Application of Hermite–Ritz method. Hermite polynomials [Ş. S. Bayın 2018] (H(n, x)) are set
of orthogonal polynomials with respect to the weight function e−x2

defined over the domain (−∞,∞),
i.e., ∫

∞

−∞

e−x2
H(m, x)H(n, x)dx =

{√
π2nn!, n = m

0, n 6= m
(36)

First five terms of Hermite polynomials with recurrence relations can be expressed as [Ş. S. Bayın 2018]

H(0, x)= 1

H(1, x)= 2x

H(2, x)= 4x2
− 2

H(3, x)= 8x3
− 12x

H(4, x)= 16x4
− 48x2

+ 12

H(n, x)= 2x H(n− 1, x)− 2(n− 1)H(n− 2, x) and H ′(n, x)= 2nH(n− 1, x) (37)

In this investigation, Hermite polynomials are taken as shape functions, i.e., both the axial and transverse
displacements of the FG nanobeam are expressed in terms of Hermite polynomials. The main reasons
behind choosing the Hermite polynomials as shape functions are;

• Hermite polynomials are the orthogonal polynomials which reduce the computation time.

• Unlike other orthogonal polynomials such as Chebyshev polynomials, Legendre polynomials, etc.,
the domain is (−∞,∞) that offers flexibility in the limit of the Lagrangian energy function.

• It helps to restrict ill-conditioning of the matrix for higher values of polynomials.

The axial displacement U (X), and transverse displacement W (X) can be now expressed as [Pradhan and
Chakraverty 2014]

U (X)= Xη(R− X)κ
n∑

i=1

ci H(i − 1, X) (38a)

W (X)= Xη(R− X)κ
n∑

i=1

di H(i − 1, X) (38b)

Here ci ’s, and di ’s are unknown coefficients, H(n, X) is the nth term of Hermite polynomial which is
used shape function, Xη(R − X)κ is the admissible functions with exponents η, and κ . For different
boundary conditions η, and κ possess different values, as follows:

B.C. η κ

H-H 1 1
C-H 2 1
C-C 2 2

Substituting (38) into the Lagrangian energy function of bi-Helmholtz and Helmholtz types of nonlocal
elasticity, i.e., (32) and (33) and minimizing �2 with respect to the unknown coefficients ci ’s, and di ’s,
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i = 1, 2, 3 . . . n, give rise to the generalized eigenvalue problem as

[K]{X} =�2
[M]{X} (39)

where {X} = [c1, c2, c3, . . . cn, d1, d2, d3, . . . dn]
T , [K] represents the stiffness matrix, and [M] denotes

the mass matrix.

4.2. Application of Navier’s technique. As per the Navier’s technique the axial displacement u(x, t)
and transverse the displacement w(x, t) can be expanded in terms of sine and cosine series as [Bekhadda
et al. 2019];

u(x, t)=
∞∑

m=1

um cos
(

mπ
L

x
)

eiωt (40a)

w(x, t)=
∞∑

m=1

wm sin
(

mπ
L

x
)

eiωt (40b)

where um and wm are arbitrary parameters and ω is the natural frequency of vibration. Plugging (40) into
the (34), and (35), generalized Eigenvalue problem for free vibration of FG nanobeam for bi- Helmholtz
and Helmholtz types nonlocal elasticity, respectively, will be obtained as

[KbH
]{X} = ω2

[MbH
]{X} (41a)

[KH
]{X} = ω2

[MH
]{X} (41b)

Here [K bH
] =

[
k11 k12

k21 k22

]
, [MbH

] =

[
m11 m12

m21 m22

]
, [K H

] =

[
k̄11 k̄12

k̄21 k̄22

]
, [MH

] =

[
m̄11 m̄12

m̄21 m̄22

]
and

{X} = [um wm]
T , where

k11 =−A11

(
mπ
L

)2

, k12 = k21 = B11

(
mπ
L

)3

,

k22 =−D11

(
mπ
L

)4

− (kw)− (kg)

(
mπ
L

)2

− (e0a)2(kw)
(

mπ
L

)2

− (e0a)2(kg)

(
mπ
L

)4

−
(e0a)4

4
(kw)

(
mπ
L

)4

−
(e0a)4

4
(kg)

(
mπ
L

)6

,

m11 =−I0− (e0a)2(I0)

(
mπ
L

)2

−
(e0a)4

4
(I0)

(
mπ
L

)4

,

m12 = m21 = I1

(
mπ
L

)
+ (e0a)2(I1)

(
mπ
L

)3

+
(e0a)4

4
(I1)

(
mπ
L

)5

,

m22 =−I0− I2

(
mπ
L

)2

− I0(e0a)2
(

mπ
L

)2

− I2(e0a)2(
mπ
L

)4

− I0
(e0a)4

4

(
mπ
L

)4

− I2
(e0a)4

4

(
mπ
L

)6

,
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k̄11 =−A11

(
mπ
L

)2

, k̄12 = k̄21 = B11

(
mπ
L

)3

,

k̄22 =−D11

(
mπ
L

)4

− (kw)− (kg)

(
mπ
L

)2

− (e0a)2(kw)
(

mπ
L

)2

− (e0a)2(kg)

(
mπ
L

)4

,

m̄11 =−I0− (e0a)2(I0)

(
mπ
L

)2

, m̄12 = m̄21 = I1

(
mπ
L

)
+ (e0a)2(I1)

(
mπ
L

)3

,

m̄22 =−I0− I2

(
mπ
L

)2

− I0(e0a)2
(

mπ
L

)2

− I2(e0a)2
(

mπ
L

)4

.

By solving the eigenvalue problem mentioned in (41), the natural frequencies for the proposed model
will be obtained for hinged-hinged (HH) boundary condition.

5. Numerical results and discussions

In this investigation, the FG nanobeam is considered to be composed of metal constituents as alpha-
beta titanium alloy or titanium (Ti-6AL-4V) and ceramic constituent as zirconia or zirconium dioxide
(ZrO2). The geometrical properties or dimension of the specimen is taken from [Uzun and Yaylı 2020]
as width (b) = 400 nm, thickness (h) = 100 nm, and length (L) = 8000 nm, whereas the mechanical
properties [Uzun and Yaylı 2020] are given as; zirconia or zirconium dioxide (ZrO2): EU = 151 G Pa,
ρU = 3000 K g.m−3, and υU = 0.3 titanium (Ti-6AL-4V): EL = 105.7 G Pa, ρL = 4429 K g.m−3, and
υL = 0.298.

The Young’s modulus and mass density are assumed to vary through the thickness in accordance with
the power-law exponent model. At the same time, for the sake of convenience, the Poisson’s ratio is
taken constant throughout the thickness of the FG nanobeam, which is υ = 0.3.

5.1. Validation. In this subsection, the validation of the present model has been conducted with other
existing results in special cases. In this regard, the first three natural frequencies of the functionally graded
nanobeam of HH boundary condition has been compared with [Uzun and Yaylı 2020], by neglecting
the porosity and assuming Helmholtz nonlocal operator. The numerical results are computed for HH
boundary condition by using both the Navier’s technique (NT) and the Hermite–Ritz method (H-RM),

which is demonstrated in Table 1. Likewise, the fundamental frequency parameter
(
λ= ωL2

h

√
ρL
EL

)
for

HH boundary condition has been compared with [Pradhan and Chakraverty 2014; Aydogdu and Taskin
2007] by neglecting the porosity, nonlocal effect, and elastic foundation. Here the material is considered
as Alumina (Al2O3), and Aluminum (Al), and the gradation is taken along Young’s modulus only with
EL = 70 GPa, EU = 380 GPa and υ = 0.3. The tabular result is depicted in Table 2, with various power-
law exponent and aspect ratio. From these results, it is evident that the present model is accurate and
copes well with the existing results in special cases.

5.2. Convergence. Through this subsection, the convergence of the present model has been carried out
for first four natural frequencies of FG nanobeam by considering the power-law exponent (k)= 1, porosity
volume fraction (ϑ) = 0.1, non-dimensional nonlocal parameter α = e0/L) = 0.1, non-dimensional
Winkler elastic constant Kw = kwL4/(EL I )= 40, and non-dimensional Pasternak elastic constant Kg =
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(α) k ω1 ω2 ω3

[A] Present
(NT)

Present
(H-RM)

[A] Present
(NT)

Present
(H-RM)

[A] Present
(NT)

Present
(H-RM)

0 0 10.2084 10.3295 10.3294 26.4247 27.1637 27.1640 51.9523 53.8340 54.5844
2 8.6973 8.7744 8.7835 21.7885 22.2755 22.2756 42.0585 43.3202 43.9188
4 8.4672 8.5437 8.5497 21.1040 21.5893 21.5894 40.6136 41.8749 42.4450
6 8.3682 8.4449 8.4488 20.7909 21.2794 21.2795 39.9342 41.2065 41.7618
8 8.3116 8.3883 8.3910 20.6024 21.0920 21.0921 39.5165 40.7935 41.3395

0.2 0 9.8519 9.9418 9.9418 21.2306 21.5871 21.5873 33.1951 33.8385 34.2605
2 8.4376 8.4945 8.5012 17.9078 18.1366 18.1367 27.8374 28.2510 28.6052
4 8.2208 8.2772 8.2816 17.4076 17.6348 17.6350 27.0354 27.4468 27.7885
6 8.1285 8.1851 8.1880 17.1877 17.4160 17.4162 26.6971 27.0928 27.4283
8 8.0763 8.1329 8.1349 17.0597 17.2882 172884 26.4697 26.8839 27.2159

0.4 0 9.4203 9.4710 9.4709 18.6882 18.8290 18.8292 28.0525 28.2723 28.6346
2 8.1250 8.1568 8.1605 16.0475 16.1355 16.1357 24.0603 24.1955 24.5070
4 7.9245 7.9559 7.9584 15.6414 15.7285 15.7287 23.4472 23.5814 23.8843
6 7.8405 7.8721 7.8737 15.4695 15.5570 15.5572 23.1871 23.3220 23.6210
8 7.7938 7.8253 7.8264 15.3729 15.4603 15.4605 23.0405 23.1754 23.4721

Table 1. Comparison of natural frequencies (in MHz) obtained by present study with
[Uzun and Yaylı 2020], in special cases. [A] = [Uzun and Yaylı 2020].

(L
/

h) k 0 0.1 1 2 10
5 [C] 6.847 6.499 4.821 4.251 3.737

[B] 6.847 6.512 5.176 4.752 3.959
Present 6.8470 6.5120 5.1764 4.7518 3.9597

20 [C] 6.951 6.599 4.907 4.334 3.804
[B] 6.951 6.612 5.256 4.826 4.021

Present 6.9516 6.6115 5.2562 4.8258 4.0208

Table 2. Comparison of frequency parameters obtained by present study with [Pradhan
and Chakraverty 2014], [Aydogdu and Taskin 2007], in special cases. [B] = [Pradhan
and Chakraverty 2014]; [C] = [Aydogdu and Taskin 2007].

kg L2/(EL I ) = 40. Variations of the first four natural frequencies have studied with no. of terms of
the Hermite polynomial for HH, CH, and CC boundary conditions, which are depicted in Fig. 4, Fig. 5,
and Fig. 6, respectively. Natural frequencies have also been computed from the closed-form solution by
using Navier’s technique (NT) for HH boundary condition and compared with the results of the Hermite–
Ritz method (HRM) showing good agreement as illustrated in Figure 4. From these graphical results,
it is quite evident that the first four natural frequencies of all the boundary conditions are attaining the
convergence on or after no. of terms (n)= 6. Also, it may be observed that the CC boundary condition
is approaching convergence faster than HH and CH boundary conditions.

5.3. Effect of bi-Helmholtz nonlocal elasticity. In this subsection, the influence of the bi-Helmholtz op-
erator has been studied on natural frequencies of HH, CH, and CC boundary conditions as compared with
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Figure 5. Variation of first four natural frequencies (ω) with no. of terms (n) for CH
boundary condition.

the Helmholtz operator. For the computational purpose, power-law exponent (k)= 1, porosity volume
fraction (ϑ)= 0.1, non-dimensional Winkler elastic constant (Kw)= 40, and non-dimensional Winkler
elastic constant (Kg) = 40 are taken into consideration. The graphical results in Figure 7 represent
the variation of first four natural frequencies with respect to the nonlocal parameters (α) for Helmholtz
and bi-Helmholtz operators, respectively, for HH boundary condition, and these results are computed by
employing Navier’s technique. Likewise, Figure 8 and Figure 9 illustrate the graphical results for CH
and CC boundary conditions, respectively, which are computed using the Hermite–Ritz method. Here,
the nonlocal parameters are assumed to vary from 0 to 0.5 with an increment of 0.1. From these graphical
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Figure 7. Variation of first four natural frequencies (ω) with nonlocal parameter (α) for
HH boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.

results, it may clear that the natural frequencies for all modes and all boundary conditions are decreasing
with increase in nonlocal parameters except for the first and second modes of CH and CC boundary
conditions with respect to bi-Helmholtz operator. Also, this decrease is very significant in the case of
higher modes.

5.4. Effect of porosity or porosity volume fraction index. This subsection is dedicated to investigat-
ing the effect of porosity or porosity volume fraction index (ϑ) on natural frequencies of FG porous
nanobeam. Here the porosity volume fraction (ϑ) is varied from 0 to 0.5 with an increase of 0.1, and
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Figure 8. Variation of first four natural frequencies (ω) with nonlocal parameter (α) for
CH boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.
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Figure 9. Variation of first four natural frequencies (ω) with nonlocal parameter (α) for
CC boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.

other scaling parameters are taken as; power-law exponent (k)= 1, non-dimensional nonlocal parameter
(α)= 0.1 non-dimensional Winkler elastic foundation (Kw)= 40, and non-dimensional Pasternak elastic
foundation (Kg)= 40. In this regard, graphical and tabular results are given in Table 3 and Figs. 10–12.
Natural frequencies of the FG nanobeam increase with the rise in porosity index, which is applicable for
all modes, all boundary conditions, and in the case of both the bi-Helmholtz and Helmholtz operators.
This is because although with more value of porosity parameter the stiffness of beam becomes lesser and
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(a) hinged-hinged (HH) boundary condition

Porosity ϑ ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 8.9954 8.9933 21.2976 21.1592 36.5307 35.4690 52.9015 49.3444

0.1 9.3787 9.3766 21.8957 21.7614 37.2957 36.2590 53.8264 50.3436
0.2 9.8364 9.8345 22.6194 22.4899 38.2265 37.2193 54.9544 51.5600
0.3 10.3948 10.3930 23.5144 23.3904 39.3847 38.4129 56.3614 53.0744
0.4 11.0950 11.0933 24.6526 24.5353 40.8676 39.9393 58.1674 55.0143
0.5 12.0053 12.0038 26.1546 26.0456 42.8384 41.9655 60.5741 57.5937

(b) clamped-hinged (CH) boundary condition

Porosity ϑ ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 10.9378 10.8823 24.9546 24.5642 41.3135 39.8005 61.1409 54.8442

0.1 11.3221 11.2586 25.5648 25.1599 42.1072 40.6310 62.1339 55.8055
0.2 11.7839 11.7097 26.3055 25.8800 43.0744 41.6392 63.3464 56.9640
0.3 12.3509 12.2622 27.2248 26.7690 44.2801 42.8905 64.8610 58.3899
0.4 13.0667 12.9572 28.3985 27.8965 45.8267 44.4877 66.8086 60.1930
0.5 14.0039 13.8634 29.9541 29.3777 47.8868 46.6030 69.4088 62.5552

(c) clamped-clamped (CC) boundary condition

Porosity ϑ ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 13.4994 13.2904 29.1138 27.7048 46.4458 44.1091 64.3550 57.9714

0.1 13.8795 13.6388 29.7438 28.1601 47.2742 44.9480 65.3712 58.8354
0.2 14.3390 14.0564 30.5101 28.6844 48.2846 45.9578 66.6120 59.7990
0.3 14.9070 14.5671 31.4636 29.2890 49.5452 47.1975 68.1620 60.8655
0.4 15.6290 15.2076 32.6841 29.9802 51.1640 48.7578 70.1544 62.0347
0.5 16.5814 16.0379 34.3065 30.7424 53.3224 50.7858 72.8136 63.3195

Table 3. Natural frequencies (MHz) for Helmholtz operator (Ho) and bi-Helmholtz op-
erators (B-Ho) with respect to porosity volume fraction index.

also its cross-sectional moment of inertia reduces, the reduction rate of inertia is more than that of the
stiffness in the beam. It should be noted that other types of porosity may have opposite result. Also, it
may be noted that the increase in natural frequencies is more significant in higher modes. The results
obtained by both the bi-Helmholtz and Helmholtz operators are almost equal in lower modes where it
can be clearly distinguished for higher modes, Helmholtz operator possesses more natural frequencies
than bi-Helmholtz, and this trend is valid in all the boundary conditions.

5.5. Effect of Power-law exponent. In this subsection, the influence of the power-law exponent (k) has
been studied on the natural frequencies of FG nanobeam. The power-law exponent (k) is taken as 0,
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Figure 10. Variation of first four natural frequencies (ω) with porosity volume fraction
index (ϑ) for HH boundary condition.
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Figure 11. Variation of first four natural frequencies (ω) with porosity volume fraction
index (ϑ) for CH boundary condition.

0.2, 0.5, 1, 2, 3, 5, with porosity volume fraction (ϑ) = 0.1, non-dimensional parameter (α) = 0.1,
non-dimensional Winkler elastic constant (Kw)= 40, and non-dimensional Pasternak elastic constant
(Kg) = 40. Table 4(a–c) and Figs. (13–15) represent the tabular and graphical results for HH, CH,
and CC edges with respect to both the bi-Helmholtz and Helmholtz operators. All the computations
for HH edge are carried out by using Navier’s technique, while the Hermite–Ritz method is used for
other boundary conditions. These results clearly reveals that the natural frequencies of all modes and
all boundary conditions decrease with an increase in the power-law exponent (k), that means when the
beam is purely ceramic i.e., at k = 0 possesses the highest natural frequencies and when the beam is
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HH edge.

purely metal i.e., at k =∞ retains the lowest natural frequencies. This reduction is due to the fact that as
we go on increasing the power-law exponent (k), the beam becomes more flexible, retaining less natural
frequencies. This reduction is more remarkable with higher modes and at k < 2.

5.6. Effect of elastic foundation. This subsection is devoted to analyzing the effect of elastic foundation,
i.e., non-dimensional Winkler (Kw), and Pasternak (Kg) elastic parameters on natural frequencies of
the FG nanobeam. In this regard, a comprehensive study has been undertaken by varying the elastic
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(a) hinged-hinged (HH) boundary condition

k ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 10.7925 10.7898 25.8422 25.6668 44.5660 43.2276 64.7052 60.2300

0.2 10.2533 10.2509 24.3164 24.1573 41.7427 40.5234 60.4730 56.3892
0.5 9.7849 9.7827 23.0058 22.8605 39.3257 38.2072 56.8548 53.1023
1 9.3787 9.3766 21.8957 21.7614 37.2957 36.2590 53.8264 50.3436
2 9.0255 9.0236 20.9608 20.8352 35.6073 34.6351 51.3214 48.0518
3 8.8637 8.8619 20.5373 20.4155 34.8459 33.9022 50.1941 47.0188
5 8.7060 8.7042 20.1140 19.9962 34.0766 33.1631 49.0495 45.9742

(b) clamped-hinged (CH) boundary condition

k ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 13.1944 13.1310 30.3566 29.8811 50.4572 48.5432 74.8310 67.0271

0.2 12.4736 12.4098 28.4981 28.0498 47.2095 45.4679 69.8833 62.6547
0.5 11.8530 11.7892 26.9066 26.4819 44.4338 42.8388 65.6618 58.9263
1 11.3221 11.2586 25.5648 25.1599 42.1072 40.6310 62.1339 55.8055
2 10.8668 10.8035 24.4403 24.0509 40.1747 38.7905 59.2147 53.2083
3 10.6584 10.5948 23.9305 23.5472 39.3021 37.9573 57.8970 52.0277
5 10.4516 10.3871 23.4172 23.0390 38.4169 37.1130 56.5535 50.8202

(c) clamped-clamped (CC) boundary condition

k ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0 16.3750 16.1390 35.4890 33.8613 56.7848 53.8613 78.8026 70.9212

0.2 15.4095 15.1707 33.2565 31.6420 53.0834 50.3948 73.5705 66.2187
0.5 14.5811 14.3408 31.3478 29.7477 49.9212 47.4324 69.1034 62.2012
1 13.8795 13.6388 29.7438 28.1601 47.2742 44.9480 65.3712 58.8354
2 13.2872 13.0467 28.4052 26.8338 45.0807 42.8800 62.2886 56.0261
3 13.0181 12.7767 27.7990 26.2265 44.0912 41.9427 60.9000 54.7382
5 12.7484 12.5044 27.1856 25.5997 43.0856 40.9884 59.4853 53.4032

Table 4. Natural frequencies (MHz) for Helmholtz operator and bi-Helmholtz operator
with respect to power-law index.

parameters, and the results are noted in tabular form, which can be seen in Table 5. The tabular results are
incorporated for HH, CH, and CC boundary conditions with power-law exponent (k)= 1, porosity volume
fraction (ϑ)= 0.1, and nonlocal parameter (α)= 0.1. Different combinations for elastic foundations are
considered, and results are noted for the first four natural frequencies by considering both bi-Helmholtz
and Helmholtz operators. From these results, it’s quite clear that the natural frequencies increase with the
increase in elastic constants except the second mode of CC edge, where some irregularities occur with
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Figure 14. Variation of first four natural frequencies (ω) with power-law index (k) for
CH edge.
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Figure 15. Variation of first four natural frequencies (ω) with power-law index (k) for
CC edge.

few combinations for elastic foundations, and these growths are more remarkable with higher modes. The
increase in natural frequencies can be explained by the fact that the higher values of elastic parameters
make the beam stiffer resulting higher value of natural frequencies.
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(a) hinged-hinged (HH) boundary condition

(Kw, Kg) ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
(0, 0) 4.1382 4.1336 14.6881 14.4871 28.3939 27.0178 43.1712 38.7421
(50, 0) 5.0270 5.0232 14.9627 14.7655 28.5369 27.1680 43.2652 38.8469

(100, 0) 5.7807 5.7774 15.2324 15.0387 28.6791 27.3173 43.3591 38.9514
(200, 0) 7.0504 7.0477 15.7579 15.5708 28.9614 27.6136 43.5462 39.1595
(500, 0) 9.9290 9.9270 17.2385 17.0676 29.7924 28.4839 44.1027 39.7774
(700, 0) 11.4529 11.4512 18.1587 17.9965 30.3338 29.0497 44.4698 40.1841

(1000, 0) 13.4180 13.4166 19.4575 19.3063 31.1281 29.8782 45.0149 40.7865
(0, 50) 9.8753 9.8734 23.1776 23.0508 39.1027 38.1152 56.1029 52.7706

(0, 100) 13.3386 13.3372 29.3030 29.2027 47.4534 46.6430 66.5682 63.7849
(0, 200) 18.4042 18.4032 38.7503 38.6746 60.8065 60.1762 83.6594 81.4622
(0, 500) 28.6548 28.6542 58.5692 58.5191 89.6340 89.2076 121.2501 119.7446
(0, 700) 33.8037 33.8031 68.6746 68.6319 104.5250 104.1596 140.8428 139.5489

(0, 1000) 40.3122 40.3118 81.5166 81.4807 123.5406 123.2316 165.9499 164.8531
(50, 50) 10.2795 10.2776 23.3526 23.2267 39.2066 38.2218 56.1753 52.8475

(100, 100) 13.9360 13.9346 29.5795 29.4803 47.6246 46.8171 66.6902 63.9123
(200, 200) 19.2691 19.2681 39.1683 39.0934 61.0736 60.4461 83.8535 81.6615
(500, 500) 30.0426 30.0420 59.2603 59.2108 90.0868 89.6626 121.5849 120.0836
(700, 700) 35.4504 35.4499 69.4996 69.4574 105.0685 104.7050 141.2463 139.9561
(103, 103) 42.2847 42.2842 82.5095 82.4740 124.1976 123.8902 166.4391 165.3455

(b) clamped-hinged (CH) boundary condition

(Kw, Kg) ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
(0, 0) 6.4253 6.4083 18.3745 17.9859 32.9521 30.8534 50.7756 43.9596
(50, 0) 7.0307 7.0151 18.5947 18.2108 33.0753 30.9850 50.8555 44.0520

(100, 0) 7.5879 7.5734 18.8124 18.4330 33.1981 31.1160 50.9354 44.1441
(200, 0) 8.5946 8.5819 19.2403 18.8696 33.4423 31.3764 51.0946 44.3278
(500, 0) 11.0789 11.0690 20.4705 20.1224 34.1643 32.1448 51.5695 44.8743
(700, 0) 12.4629 12.4541 21.2511 20.9160 34.6373 32.6470 51.8837 45.2350

(1000, 0) 14.2898 14.2821 22.3709 22.0528 35.3349 33.3862 52.3514 45.7707
(0, 50) 11.8992 11.8106 26.9144 26.4604 44.0082 42.5950 64.5997 58.1044

(0, 100) 15.5169 15.2826 33.3305 32.5184 52.8007 51.4876 75.9482 68.0455
(0, 200) 20.9356 20.3471 43.4007 41.5228 67.0109 65.4434 94.6476 80.4808
(0, 500) 32.0856 30.2815 64.8135 58.3572 97.9710 93.0027 136.1183 96.3964
(0, 700) 37.7273 35.0532 75.7982 65.7464 114.0332 101.8837 157.8232 111.2155

(0, 1000) 44.8781 40.8570 89.7895 74.2754 134.5788 114.0412 185.6826 130.8656
(50, 50) 12.2367 12.1506 27.0652 26.6138 44.1006 42.6904 64.6625 58.1743

(100, 100) 16.0332 15.8066 33.5739 32.7678 52.9545 51.6454 76.0551 68.1649
(200, 200) 21.6999 21.1326 43.7743 41.9131 67.2533 65.6915 94.8191 80.6828
(500, 500) 33.3308 31.5980 65.4386 59.0508 98.3853 93.4393 136.4165 96.8176
(700, 700) 39.2096 36.6439 76.5464 66.6078 114.5315 102.4415 158.1832 111.7264
(103, 103) 46.6579 42.8044 90.6917 75.3639 135.1820 114.7528 186.1197 131.4858
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(c) clamped-clamped (CC) boundary condition

(Kw, Kg) ω1 ω2 ω3 ω4

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
(0, 0) 9.2819 9.2306 22.4127 21.7182 37.7523 34.6837 53.7256 45.8169

(50, 0) 9.7108 9.6618 22.5936 21.9048 37.8598 34.8008 53.8012 45.9054
(100, 0) 10.1215 10.0745 22.7731 22.0898 37.9671 34.9174 53.8766 45.9938
(200, 0) 10.8966 10.8529 23.1278 22.4553 38.1807 35.1496 54.0272 46.1700
(500, 0) 12.9463 12.9096 24.1607 23.5178 38.8145 35.8369 54.4764 46.6946
(700, 0) 14.1488 14.1152 24.8254 24.2002 39.2314 36.2880 54.7738 47.0411

(1000, 0) 15.7816 15.7515 25.7904 25.1892 39.8485 36.9542 55.2170 47.5562
(0, 50) 14.5242 14.1896 31.1770 29.0606 49.2867 46.9236 67.9123 60.6592
(0, 100) 18.2933 17.4110 37.9571 31.6656 58.5964 55.4373 79.6126 65.9577
(0, 200) 24.1051 21.9815 48.7571 27.9550 73.7730 67.9235 98.9483 74.2611
(0, 500) 36.3111 30.8467 72.0062 93.8346 107.0957 100.0219 141.9482 134.5057
(0, 700) 42.5415 35.2581 84.0015 107.3578 124.4489 114.8826 164.4844 155.6561

(0, 1000) 50.4634 40.8676 99.3133 124.8369 146.6785 134.3457 193.4267 182.9408
(50, 50) 14.8019 14.4738 31.3073 29.2003 49.3692 47.0102 67.9720 60.7262

(100, 100) 18.7332 17.8728 38.1710 31.9218 58.7350 55.5839 79.7146 66.0810
(200, 200) 24.7717 22.7106 49.0899 28.5321 73.9932 68.1627 99.1123 74.4800
(500, 500) 37.4159 32.1400 72.5693 94.2673 107.4748 100.4278 142.2341 134.8075
(700, 700) 43.8613 36.8399 84.6772 107.8871 124.9056 115.3773 164.8298 156.0211
(103, 103) 52.0525 42.8145 100.1296 125.4871 147.2320 134.9499 193.8462 183.3844

Table 5. Natural frequencies (MHz) for Helmholtz operator and bi-Helmholtz operator
with respect to elastic foundation.

6. Concluding remarks

In this investigation, a computationally efficient method, namely the Hermite–Ritz method has been
employed to compute the frequency response of the proposed model. bi-Helmholtz type of nonlocal
operator has been incorporated to seizure the effect small scale effect. HH, CH, and CC boundary
conditions are considered in this investigation, and closed-form solution is also obtained for HH boundary
condition by utilizing Navier’s technique. Validation and convergence of the proposed model/and method
have been conducted successfully. Conclusions obtained from the parametric study are summarized as
follow;

• The natural frequencies are decreasing with the increase in the nonlocal parameters except for the
first and second modes of CH and CC boundary conditions concerning bi-Helmholtz operator. Also,
this decrease is very significant in the case of higher modes.

• Natural frequencies of the FG nanobeam increase with the rise in porosity volume fraction index
and the increase in natural frequencies is more substantial in higher modes.
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• The results obtained by both the bi-Helmholtz and Helmholtz operators are almost equal in lower
modes. But, in higher modes, the Helmholtz operator possesses more natural frequencies than
bi-Helmholtz operator.

• The natural frequencies reduce with the increase in the power-law exponent (k), which means at
k = 0 the beam possesses the highest natural frequencies and at k =∞ the beam retains the lowest
natural frequencies.

• The natural frequencies increase with the increase in elastic parameters except for the second mode
of CC edge, where some irregularities occur with few combinations for elastic foundations, and
these growths are more remarkable with higher modes.
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