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The vibration characteristics of functionally graded porous nanobeam embedded in an elastic substrate
of Winkler—Pasternak type are investigated. Classical beam theory or Euler—Bernoulli beam theory has
been incorporated to address the displacement of the FG nanobeam. bi-Helmholtz type of nonlocal
elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the nanobeam is
assumed to have porosity, distributed evenly along the thickness throughout the cross-section. Young’s
modulus and mass density of the nanobeam are considered to vary along the thickness from ceramic
to metal constituents in accordance with power-law exponent model. A numerically efficient method,
namely the Hermite—Ritz method, is incorporated to compute the natural frequencies of hinged-hinged,
clamped-hinged, and clamped-clamped boundary conditions. A closed-form solution is also obtained
for hinged-hinged (HH) boundary condition by employing Navier’s technique. The advantages of using
Hermite polynomials as shape functions are orthogonality, a large domain that makes the method more
computationally efficient and avoids ill-conditioning for higher values of polynomials. Additionally, the
present results are validated with other existing results in special cases demonstrating excellent agree-
ment. A comprehensive study has been carried out to justify the effectiveness or convergence of the
present model or method. Likewise, impacts of various scaling parameters such as Helmholtz and bi-
Helmboltz types of nonlocal elasticity, porosity volume fraction index, power-law exponent, and elastic
foundation on frequency parameters have been investigated.

1. Introduction

Functionally graded materials (FGMs) are inhomogeneous materials consisting of two or more different
materials, and the composition or volume of constituents varies continuously along one or more specific
dimensions. As a result, their properties and structure will change steadily along the same dimension.
This idea was first used by Japanese researchers [Koizumi 1994]. The gradual and continuous changes in
these materials have made them very important and useful properties for application in various industries.

The introduction of FGMs to nano-micro technology has led to the development of devices and tools
with better properties and capabilities, such as nano-micro-electro-mechanical systems (NEMS/MEMS),
thin shape memory alloys, and atomic light microscopy. Nanotechnology is the study of microscopic
objects about 1 to 100 nanometers in size and their applicability in various fields of science, such as

Keywords: FG nanobeam, Hermite—Ritz method, bi-Helmholtz function, porosity, Winkler—Pasternak elastic foundation,
vibration.
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chemistry, biology, physics, materials science, and engineering. Recently, due to the special mechanical
properties of nanostructures, the application of these structures has been developed in engineering, and
researchers have been designing high-performance tools such as nanosensors, nano actuators, nanogen-
erators, etc. to solve new problems. Nanoscale tools are designed using the properties of nanotubes,
nanobeams, nano-membranes, and nanosheets, so the discussion of modeling and analysis of nanobeams
has attracted the attention of researchers.

Many experiments and computer simulations (molecular simulation) proved that a nanostructure me-
chanically has different response while it is analyzed in nanoscale size compared with a macroscale
investigation. They showed that size is a crucial factor on nanoscale. Among all tools which aid us to
predict mechanical response of these materials, the non-classical continuum elasticity approaches are cost
and time-effective methods. Accordingly, it has been observed that classical continuum theories do not
provide the right answer in predicting the behavior of these small scale structures. In fact, classical con-
tinuum theory is unable to account for size effects. The most popular non-classical continuum mechanic
theories are: strain gradient theory [Mindlin 1965], nonlocal elasticity theory [Eringen 2002; Jena et al.
2019b; Jena et al. 2020a; Jena et al. 2020b], stress-driven nonlocal elasticity theory [Barretta et al. 2018;
Sedighi and Malikan 2020], nonlocal strain gradient theory [Lim et al. 2015; Jena et al. 2019a; Malikan
et al. 2020], modified coupled stress theory [Malikan 2017], surface elasticity theory [Ansari et al. 2013],
and bi-Helmholtz nonlocal elasticity theory [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018].
These aforesaid theories, each in turn has small scale parameters. The small scale parameter makes
difference between macro scale and nanoscale. Many research approved that these scale parameters
are not material constant and vary with variation in natural features and physical characteristics of the
nanomaterial. As an example, boundary and edge conditions affect fundamentally the values of small
scale parameter. Moreover, as the nano materials except for being size-dependent, are also temperature-
dependent, the thermal environment can significantly affect the value of small scale parameter. Thus, a
nanostructure in various boundary conditions and different external temperature requires different values
for the small scale parameter to give exact results. That is why all the researchers presented amplitude
for numerical values of small scale parameters. There are also further examples for factors that affect the
amount of a small scale parameter, such as crack specifications in cracked nanomaterials, arrangement
of atoms in atomic lattice into some special nanomaterials like graphene and nanotubes with changeable
arrangement (chirality effect), etc.

The mechanical behavior of FG nanomaterials with different geometries and various loading and
boundary conditions has been extensively investigated by researchers in the current decade. Beams are
of great importance due to their wide use in engineering. To date, numerous articles have been written
on the study of the dynamics of FGM nanobeams. [Eltaher et al. 2012] based on the finite element
method (FEM) analyzed natural frequencies of a nanoscale FGM beam by considering nonlocal contin-
uum mechanics. The beam was modeled according to the Euler—Bernoulli beam theory (EBT) approach.
The numerical outputs were calculated for a variety of boundary conditions. [Sharabiania and Yazdi
2013] depicted a nonlinear frequency analysis on FGM nanosize beams in the framework of EBT while
the size dependency was investigated on the basis of surface effects. The results were shown for some
different edge conditions. [Esmaeili and Beni 2019] investigated buckling and vibration characteristics of
flexoelectric smart nanobeam composed of functionally graded materials. [Nazemnezhad and Hosseini-
Hashemi 2014] studied nonlocal effects within the framework of nonlinear analysis of vibrations for
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FGM nanoscale beams. The immovable ends, such as fixed and pinned conditions were assumed when
EBT was employed to give the constitutive equations of frequency. [Hosseini-Hashemi et al. 2014] con-
sidered analytically effects of surface and stress nonlocality for pivot-pivot EBT-FGM nanobeam models.
[Ansari et al. 2015] examined the excited frequencies nonlinearly for an FGM nanobeam in the body of
an exact solution. The influences of the environment, such as temperature differential, were measured
as well. The nanosize into the EBT model was investigated utilizing surface elasticity theory, and the
Galerkin technique helped to solve the attained equations. [Zeighampour and Beni 2015] developed FGM
nanobeams by considering the variation of diameter in the length direction. The strain gradient theory,
EBT, and Visco-Pasternak foundation model were combined, which led to the governing equations. The
obtained equations were discretized using differential quadrature method (DQM) for pined-pined and
clamped-clamped supported and then were solved by eigenvalue solver. Their best results proved the
considerable effect of diameter variation on the dynamics behavior of FGM nanobeams. [Ebrahimi and
Salari 2015] studied the nonlocal effect on the FGM nanobeams by considering EBT beam model with
the presence and absence of the influences of the thermal environment utilizing analytical method based
on the Navier method.

[Simsek 2016] discussed the free vibration of an FGM nanoscale beam based on the nonlinear strains
and derived mathematical relation by presenting a new Hamiltonian in combining with EBT and nonlocal
strain gradient elasticity. [Shafiei et al. 2016] modeled a non-uniform FGM beam taking nanosize effects
based on the nonlocal theory of elasticity. The natural frequencies were captured for the beam with the
contribution of nonlinear terms. The procedure for solving of the harvested equations was generalized
differential quadrature (GDQ) method and Homotopy perturbation method for fixed-fixed, pinned-pinned,
and fixed-pinned boundary conditions. [Hosseini and Rahmani 2016] combined thermos-elastic relations
to study vibrations of an FGM nanoscale beam when the beam is geometrically curved. The nonlocal
elasticity provides the size-dependent behavior, and the numerical results were obtained by analytical
solutions. [Khorshidi and Shariati 2016] investigated the vibration characteristics of the sigmoid-type of
FGM nanobeams by using the modified couple stress theory. A variety of beam hypotheses such as EBT,
first-order shear deformation theory (FSDT) and some higher-order shear deformation theory (HSDT)
were investigated with the help of GDQ. [Vosoughi 2016] applied nonlinearity to study free vibration
of a FGM nanosize beam embedded on a nonlinear elastic medium. The use of FSDT and nonlocal
elasticity addressed the desired equations that were discretized by DQM. [Hamed et al. 2016] compared
sigmoid with a nonlinear symmetric power varied along the thickness of EB-FGM nonlocal beams in a
vibration study. [Saffari et al. 2017] inspected the stability of an FGM nonlocal FSDT beam by taking
surface effects in a dynamical situation. Thermal effects and foundation influences were implemented
as well. [Arefi and Zenkour 2017] explored the nonlocal vibration of a Timoshenko FGM nanobeam by
taking the Visco-Pasternak matrix into account.

[Vu-Bac et al. 2016] carried out sensitivity analysis for quantifying the influence of uncertain in-
put parameters by using probability density function on uncertain model outputs. The dynamics of
three-dimensional inhomogeneities of FGM nanoscale beams was investigated by [Hadi et al. 2018].
[Jouneghani et al. 2018] modeled porosity into the material gradation of FGM nanobeams and examined
the structural behavior of the system subjected to variation of environmental parameters such as temper-
ature and humidity. [Mirjavadi et al. 2018] focused on the nonlinear behavior of FGM nanosize beams
considering porosities with respect to the EBT and second stress gradient of Eringen. Different end
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conditions were taken into consideration by the assistance of GDQM and an iterative technique. [Simsek
2019] performed different closed-form approaches to study a variety of analyses on the FGM nanobeams,
namely forced and free vibrations, static bending, and buckling. The nonlocal strain gradient theory was
implemented to capture the size dependency influence. Various loading cases were demonstrated in the
dynamic analysis of the graded EBT model.

[Aria and Friswell 2019] indicated a finite element analysis in the form of nonlocality to consider free
vibration and stability of FGM nanobeams. [Uzun and Yayli 2019] investigated the free vibration of func-
tionally graded nanobeam for hinged-hinged and clamped-clamped boundary conditions with the help
of the finite element model. The nonlocal effect of FG nanobeam was handled by the Eringen’s nonlocal
theory. [Karami and Janghorban 2019] showed a new shaped function into the higher-order shear defor-
mation theory to study analytically natural frequencies of a FGM nonlocal isotropic/anisotropic beam.
Thickness stretching influence was also evaluated by the shape function. The nonlocal strain gradient
model determined the nanoscale behavior. [Khaniki 2019] studied vibrations of FGM nanoscale beams
based on the two phases nonlocal-local models, and then functionality gradation was derived along length.
GDQ helped to obtain numerical results. [Chen et al. 2020] studied thermal buckling behavior of Euler—
Bernoulli beam made up of FG material. The transformed-section method was used to investigate the
buckling characteristics analytically. [Uzun and Yayli 2020] in a pioneering work studied free vibration
of functionally graded nanobeam for Simply Supported boundary condition using Euler—Bernoulli beam
theory and Eringen’s nonlocal elasticity by utilizing FEM.

Previous studies, as mentioned above illustrate the fact that the studies involving non-classical theories
have rarely used the bi-Helmholtz nonlocal elasticity theory; and have never used the advanced yet simple
Hermite—Ritz method for this purpose. In this study, the Euler—Bernoulli theory is applied to find the
numerical response of free vibration of FG nanobeams. The numerical solution of the free vibration
is obtained, and the response of the rectangular nanobeam is calculated for the bi-Helmholtz nonlocal
parameter by employing the Hermite—Ritz method for HH, CH, and CC boundary conditions while
closed-form solution is obtained for HH boundary condition by utilizing the Navier’s technique. The
beam is also embedded on the Winkler—Pasternak elastic bed. Due to the importance of porosity in the
structure of functionally graded materials, this argument is included in the present analysis as well. The
results of the theory presented are compared with those reported by previous researchers, and a good
agreement is observed between the results. A parametric analysis is also carried out to investigate the
effect of various scaling parameters such as Helmholtz and bi-Helmholtz types of nonlocal elasticity,
porosity volume fraction index, power-law exponent, and elastic foundation on the frequency response
of the FG nanobeam.

2. Reviews of Helmholtz and bi-Helmholtz types of nonlocal operators

The bi- Helmholtz type nonlocal modulus, which is the Green’s function of bi Helmholtz operator may
be stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018]

1 1 —lx—x| —lv—x']
AbH(|x_x/|):§@[§1€ o—fe © } (1)
i
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The corresponding bi-Helmholtz operator may be expressed as [Eringen 2002; Lazar et al. 2006; Kout-
soumaris and Eptaimeros 2018]
d? d? a* d? a*
bH _ 2 2 2 2 4
¢ ( ‘fld 2)( fzd 2) (51"‘52) +§1§2d4 1— EoaTY T (2)

where ¢ = £ 12 + 52 (epa)?, y* = S 52 and the constants & and &, are demonstrated as [Eringen 2002;
Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018]

g2 y4

gf=?<1+ 1—48—4> (3a)
82 )/4

ggzz(l— 1—484> (3b)

Here the discriminant (l — 4};—2) >0, 1e., & > «/iy. Considering ¢ = «/iy, we will have & = &,

where &|, & € R and the parameter y triumphs over ¢. For any other case, i.e., ¢ > /2y, the effect of
& prevails over y. From [Lazar et al. 2006], [Koutsoumaris and Eptaimeros 2018], it is evident that that
(bH operator matched the Born Karman’s model at the end of the Brillouin zone, when & = &,. Now,
the nonlocal modulus is given in (1) maybe stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros
2018]

—lx—x|

S+l =x)e”7

A ([~ y) = @

222

Substituting & = +/2y or epa = +/2y, Equation (4) can be expressed as [Lazar et al. 2006; Koutsoumaris

and Eptaimeros 2018]

1 epa _ V2|

AbH<x—x eOa)z —( +lx—x >e ega (5)
| : V2] 2e0a)*\ V2 v =]

Thus, the bi-Helmholtz operator in differential form may be given as [Lazar et al. 2006; Koutsoumaris
and Eptaimeros 2018]

5 d2 (eoa)4 dat

4  dx*
Assuming & = epa and & =0 in (1), the Helmholtz-type nonlocal modulus is given as [Eringen 2002;
Koutsoumaris and Eptaimeros 2018]

oH —1—(ea) (6)

1 —lx—x|
epa 7
o)’ ; (7)

(x =] eoa) =

and the corresponding Helmholtz operator in differential form is given as [Eringen 2002]

2

d
H __ 2
7 =1- (6()61) W (8)
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winkler layer

fixed rigid surface /

Figure 1a. Schematic diagram of rectangular FG nanobeam embedded in the Winkler—
Pasternak elastic foundation.

fully ceramic porosity

fully metal

Figure 1b. Graphical representation of the rectangular cross-section of the FG
nanobeam with evenly distributed porosity.

3. Mathematical formulation of the proposed model

In this study, a functionally graded porous nanobeam with length (L), breadth (), thickness (%), and
porosity volume fraction ¢, (# < 1) is taken into consideration, as depicted in Figure 1a. The material
composition at the top surface (z = h/2) is assumed to be ceramic-rich while the bottom surface (z =
—h/2) is considered to be metal-rich, and the gradation along thickness from the ceramic-rich surface to
metal-rich surface is governed by power-law variation model. The porosity in the nanobeam is assumed

as evenly distributed throughout the metal and ceramic constituents, as illustrated in Figure 1b.
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Thus, according to the modified rule of the mixture [Wattanasakulpong and Ungbhakorn 2014; Shah-
savari et al. 2018]

0
P:PUVU+PLVL_E(PU+PL) 9

Here P denotes the material property FG nanobeam. Py, Vi is the material property and volume fraction
for the ceramic constituent, whereas Py, Vi symbolize the material property and volume fraction of the
metal constituent.

As per the power law variation model, the volume fractions of the ceramic and metal components are
expressed as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al. 2018]

z 1\
VU=<Z+§> (10)
k
vo=1- (%41 (11)
)

Where £k is the non-negative parameter, namely power-law exponent, that regulates the distribution of
material along the thickness of the nanobeam and z denotes the distance from the mid-plane of the FG
nanobeam. Using (9), (10) and (11), the material properties of the FG nanobeam with porosity may be
given as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al. 2018]

k

z 1 14

P=Py—P)\-+5) +PL—5(Pu+Pp) (12)
h 2 2

The Young’s modulus E(z), and material density p(z) of the FG nanobeam can be demonstrated graph-

ically in Figs. (2-3) and mathematically as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al.

2018]

k
E(z)=(EU—EL)(5+1) +E - 2By +EL (13a)
h 2 2
_ Z lk % 13b
p&%—wu—pm<z+§>-+m;—§wu+pn (13b)

According to the classical beam theory or Euler—Bernoulli beam theory, the displacement field can be
given as [Reddy 2007]

ow
M](X,Z,t):bl(x,t)—z<—> (143)
ox
ur(x,z,t)=0 (14b)
us(x,z,t) =wx,t) (14¢)

Where u(x, t), and w(x, t) represent the axial and transverse displacements on the mid-plane of the FG
nanobeam, respectively.
The strain-displacement relation of the FG nanobeam is stated as

dui(x,z,1)  du(x,1)  *w(x,1)
dx o ox a2

SXX -

(15)
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Figure 2. Power-law variation of Young’s modulus for FG nanabeam composed of
alpha-beta titanium alloy (Ti-6AL-4V) and zirconia (ZrO,).
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Figure 3. Power-law variation of Mass density for FG nanabeam composed of alpha-
beta titanium alloy (Ti-6AL-4V) and zirconia (ZrO,).
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The stress component of the FG nanobeam as generalized Hooke’s law may be given as [Pradhan and

Chakraverty 2014]
E(2)
Oxx = Q11&xx = (1 2>8xx (16)
— U

3.1. Energy form of equation for Hermite—Ritz method. The strain energy (S) of the FG nanobeam is

stated as
2
/f(axxsxx)dAdx_ //[ (8”(x 2 aw(x’t))]dAdx
0x?

(17)
1 u(x, 1) 2w(x, 1)
= - N —M| —————) |dx
2 0 ax 8x2
Where the stress resultants (N, M) = fA (Oxx, 20xx)dA.
Now, the variation in strain energy (§5) can be given as
L
8S = / /(axx(Ssxx)dA dx
ddu(x,t 325 St
/ / [ ( wer ) 9wl ))}dAdx
0x2
(18)

L 2
:/ |:N(88u(x,t)> _M(8 8w(x,t)>]dx
0 0x 0x?2
[ G ()]
= — — Jou — | — |Sw |dx
0 0x 0x2
The kinetic energy (7') of the FG nanobeam can be stated as
1 L A\ dus \ 2 dus
= Lol () + () Jones
/ f ()[( - ( w))2+(a—w)2]dAd 19
PRI or ~ N oxar o1 g (19)
LT dw N CAYEEAWY LS ANE
_5/0 (az> +(az> N 1<E>(axat>+ 2(8x8t> *

In which (Io, I1, 1) = [, p(z)(1, z, z*)d A are the mass moment of inertias.
The variation in kinetic energy (67) can be obtained from (19) as

1 (L ou aw\ > ou 32wy 32w \2
ST =~ | | 108 el I O P (i B 2 |a
2/0 {0 ((a:) +<az>> ! (8[)(8x8t)+ 2 <axaz) *
L 2 2 3 3 4
0°u d°w 0w d0’u 0 w
= |- Su—1 Sw+ 1 Su—1 sw+ b~ )sw|a
/0 [ °<a 2) N O(a 2) W 1<8x8t2> ! l(axaﬂ) W 2<8x28t2> w] !
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The work done (W) by the Winkler—Pasternak elastic foundation can be expressed as [Uzun and Yayl

2020]
1 L 8w2
W=—— kpw? +k,( — | |dx, 21
2/0|:w+g(ax):|x @29

where k,, and k, are Winkler and Pasternak elastic constants, respectively.
The variation in external work done (§ W) can be derived from (21) as

L 2
awz—f |:k w+ kg (8 w):|8wdx (22)
0 8X

Using (18), (20) and (22) in the extended Hamilton’s principle fOT (T —S+W)dt =0 and collecting the co-
efficient of du and dw, the governing equations of motion in terms of stress resultants and displacements
can be obtained as

ON (L) =gy (2 23
ax O(aﬂ) ‘(axaﬂ) (232)
M _ (0w du 9w 9%w

ax2 0(8t2)+Il(8x8t2)_12<8x28t2)+k w—k (a 2) (23b)

Multiplying (16) by d A and z d A and integrating over the area of cross-section of the FG nanobeam, the
local stress resultants can be written as

N an (2 =m0 (22), v () < by (22 (24)
=Au| 57 {57 ) =Bu| 37 52 )

where (A1, B11, D11) = fA 011(1, z, z2)d A, are the stiffness coefficients of FG nanobeam.
Applying bi-Helmholtz operator to (24) and using (23), the nonlocal stress resultant resultants of the
FG nanobeam can be obtained as

[ 33u *w (epa)?
5 Il — ) -1, —
N A du B 9w 4 (eo)? 9x91? 9x2912 4 (253)
— ena a
) i\ 32 0 I 95, I "
1"\ ox%ar2) T axtarn2
IO(aﬂ)"'Il(axaﬂ)_12<ax23r2>

hpw — ko (22
u 92w ox
M =By — )= Dul = ) + (eoa)? 4 5
9x 9x2 0 . *tw Ll u
(eoa)? | °\ 9x2012 "\ 9x30s2

4 / 9%w i 92w ' 9*tw
i 2\ ox4or2 v\ 9x2 s\ ox% ) )

(25b)
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Substituting (25) in (17), the strain energy, kinetic energy, and work done by elastic foundation for the
FG nanobeam can be depicted as

1t du\*  [ow\? du (9w 9w \?
T=§/O [10<<5> +(¥> )_211<E><axai>+h(axar) :|dx (26)
2
|:k w +k ) i|dx 27
'Au(a—”) ( ORI '
ox 0x2 0x?2
ou
(¢0a) (a ){ (axaﬂ) (axlaﬂ)}
4 5 6 2
ot | ) (3
1)) (22)
312 dxdr2 dx2912 v #\ ax2
i <34_w)+, (95_”)_, (36_“))
(eoa)4 w o\ 9x20:2 "\ 9x3972 2\ ox%ar2
4 (8x2> 92w d*w
I +"w(ﬁ) —"g(m) 1
Assuming the motion of the FG nanobeam as sinusoidal i.e., plugging u(x,t) = U (x) cos(wt) and

w(x, t) = W(x) cos(wt), the maximum strain energy (Smax), Kinetic energy (Tiax), and work done by
elastic foundation (Wp,,x) for the FG nanobeam can be obtained as

i du du\ (d*W d*w? dU\?
All(a) —2B ”(d )(dx2>+D”(F) —(w)z(eoa)zlo(a)
d d*w (eoa)4 dU\ [(d*W
+2(w) (€0a)211(d )(d 2) (@) (d )(d 3)+(w>2

4 rdu\ (d*w d>w
(€0a) 11(5)( — 4)+(w> (6061)210(W)( )-(60)2(60&)212

dx (28)

1 L
Smax = = / dx
2 2 2 4
° <d—W> — (eoa)*ky (W)(d W) + (epa)*k (ivf) —(w )z(eoa)
d ,(epa)*  (d*W\ (d*U ,(epa)* (AW (d*W
(dx2> — @ Il(dx2)(dx3>+(w) 1 Iz(dx2)<dx4)
(eoa)*  [(d*W\ [d*W\ (epa)* [d*W\?
__ 4 kg(dxz)(dx4)+ 4 kw(dxz) |
(29)

2
Tinax =—/ [1 (U2+W2)—211(U)(dW)+12<d—W> ]dx (30)
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1 (L dw\?
Winax = —— kyW?2+k,(— ) |a 31
Zfo[ ”(dx)] * GD

Substituting (29)—(31) into the Lagrangian energy function [T = Spax — Wmax — Tmax and setting IT =0,
one may get

4 (4 2 ap (W (4U D d2W\? o e (W) 2w e
— ) = — || — — | —(epa) ky — epa
/L M\ ax T "ax2 dx T "ax2 0 dx? 0
AN 4 ra?w\? 4 TPWN [ dPW dW\?
| &, MG, e kW2 ko[ S
dx? 4 dx? 4 dx? dx* dx

[P, dw dw\? . (dU\? )
LU+ W )—211(U)<— +15 —) + (e0a)* 1o — | — (eoa)*1
dx dx dx

()5 () (1) 0 (22) () -

dx ) \dx2 4 O\ g )\ dx 4 N ax )Uaxd cod
2w d*W\ [dU A?WN\?  (epa)* . (d*W\?

Io(W) <W) - (300)211 <W> (E) + (300)212 (W) + TIO (W)

(eoa)*  (d*W\ [(d’U (epa)*  (d*W\ [(d*W
+ I — 16)
4 dx? dx3 4 dx? dx*

L
—Cl)/
0

dx

(32)

Where;

bh Ey—-E v
A= 5 [( v—Fr) +EL— (5>(EU+EL):|

1—v k+1
bhzk[ (Ey —Epr) ]
By = 5
1—v2| 2(k+ 1)k +2)
bl [(Ey—EL)(K*+k+2)  EL 0
D“‘1—u2[4<k+1>(k+2><k+3) E_(ﬂ)(E”EL)]

— 12
Iy = bh[M + oL — (E)(PU + ,OL)]

k+1
I = thk[M]
2k +1)(k+2)

[ Gou = pr) (K% +k+2) /0_L_<_) ]
h=b [4(k+1)(k+2)(k+3)+12 24 ) (Pu T oL)

Equation (32) is the Lagrangian energy function of FG porous nanobeam with bi-Helmholtz type of
nonlocal elasticity. The Lagrangian energy function for the Helmholtz type of nonlocal elasticity can be
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obtained from (32) as

an(4Y 2 28, (2 (Y +D AN (e0a)’k
— ] - — | — — | —(eoa)ky
/L M\ ax M\ g2 dx M\ a2 0
0 d2W d>w\? dw
(W) + (epa)*k, + ko W2 + kg
dx? dx
s dw dw\? o (dU\? , (dU
.| LU+ W) =21 (U) +1 + (eoa) Io| — ) —(eoa) 1| —
) dx dx dx

0 d*W o d2 / d*W (dU / d*wW
(W) (e0a)* Io( )( ) (eoa)’ l(d )(d )+(eoa) 2(d 2)

3.2. Equation of motion for Navier’s technique. Substituting (25) into (23), the governing equations
of motion in terms of displacement can be obtained as

A 92u 3w I 92u I 3w ( )2
N — | = — ) — — (epa
M 5x2 M 9x3 o\ Br2 "\ 9xor2 0

(34a)
; %u ; Pw +(eoa)4 , a%u / 3w
O\ 9x2072 "\ 9x3072 4 |7\ ax%ar2 "\ 9x50r2
B 93u b 9*w I 02w l 93u ; 9w kg 92w
—_ J— R — J— PR w — J—
A 9.3 A ox a2 ) TN Gxar2 2\ 9x2or2 9x2
94w du ( 3w ) ( 3u )
I —— )+1(——)-1 Il == |+I|—= )L
0’ 0<8x28t2)+ 1<8x38t2) 2 | (eo)’ x*ar2 x50
epa
0 9%w ¢ 92w ' 9%w 4 38w Tk 9*tw ¢ 3%w
oxdar ) TRl g ) T Re\ G 3x0312 Y\ xt &\ 9x6
(34b)

The governing equations of motion for the Helmholtz type of nonlocal elasticity can be obtained from
(34) as

A 3%u 2 3w e du ; P w (358)
M\ 9x2 AT aﬂ dx 32 0 O\ 9x20r2 "\ 9x30r2
3u 9*tw *tw 92w
Bu\ 353 ) —Pul 5 ax 81‘2 ~ b\ g ) hew =k 52
*tw 95 9%w 92w *w
2
~ (€0a) {I‘)(axzazz)H (a 3az2) Iz(a 4az2)+kw<ﬁ>_kg(ﬁ)} (35b)

4. Solution procedures
In the upcoming subsections, the Hermite—Ritz method and Navier’s technique have been described to
solve the governing equations of motion for the proposed model.
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4.1. Application of Hermite—Ritz method. Hermite polynomials [S. S. Bayin 2018] (H (n, x)) are set
of orthogonal polynomials with respect to the weight function e~ defined over the domain (—00, 00),
ie.,

Jr2'n!, n=m

0, n#m (36)

/00 e_sz(m, x)H(n, x)dx = {

oo

First five terms of Hermite polynomials with recurrence relations can be expressed as [$S. S. Baymn 2018]

HO,x)=1

H(l,x)=2x

HQ2,x)=4x>-2

H(@3,x)=8x"—12x

H4, x)=16x*—48x>+ 12

Hn,x)=2xHn—1,x)—2n—1)Hmn —2,x)and H' (n,x) =2nH(n — 1, x) 37
In this investigation, Hermite polynomials are taken as shape functions, i.e., both the axial and transverse

displacements of the FG nanobeam are expressed in terms of Hermite polynomials. The main reasons
behind choosing the Hermite polynomials as shape functions are;

o Hermite polynomials are the orthogonal polynomials which reduce the computation time.

« Unlike other orthogonal polynomials such as Chebyshev polynomials, Legendre polynomials, etc.,
the domain is (—oo, 0o) that offers flexibility in the limit of the Lagrangian energy function.

« It helps to restrict ill-conditioning of the matrix for higher values of polynomials.

The axial displacement U (X), and transverse displacement W (X) can be now expressed as [Pradhan and
Chakraverty 2014]

U(X) :X”(R—X)"ZciH(i— 1, X) (38a)

i=1
W(X) :X”(R—X)"Zd,»H(i —1, X) (38b)
i=1

Here ¢;’s, and d;’s are unknown coefficients, H (n, X) is the nth term of Hermite polynomial which is
used shape function, X(R — X)* is the admissible functions with exponents 7, and «. For different
boundary conditions 7, and k possess different values, as follows:

B.C.|n|«k
HH|1]|1
CH| 2|1
CC|2|2

Substituting (38) into the Lagrangian energy function of bi-Helmholtz and Helmholtz types of nonlocal
elasticity, i.e., (32) and (33) and minimizing £ with respect to the unknown coefficients ¢;’s, and d;’s,
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i=1,2,3...n, give rise to the generalized eigenvalue problem as
[KI{X} = Q*[M]{X} (39)

where {X} = [c1,¢2, €3, ...Cn.dy, da, ds, .. .d,]7, [K] represents the stiffness matrix, and [M] denotes
the mass matrix.

4.2. Application of Navier’s technique. As per the Navier’s technique the axial displacement u(x, t)
and transverse the displacement w(x, ¢) can be expanded in terms of sine and cosine series as [Bekhadda
et al. 2019];

u(x,t) = Z U cos(ijT ) iot (40a)
w(x,t) = mzzl W sin(%x)e"" (40b)

where u,, and w,, are arbitrary parameters and w is the natural frequency of vibration. Plugging (40) into
the (34), and (35), generalized Eigenvalue problem for free vibration of FG nanobeam for bi- Helmholtz
and Helmholtz types nonlocal elasticity, respectively, will be obtained as

[KP1{X} = o*[MP7]{X) (41a)
[K71{X} = 0’ M"]{X} (41b)

kin k ki k 7 T
Here [K°H] = 1 k2 [MPH] = mip mp LK) = i kiz M = l”iln n_112 ond
ka1 ko mo  mp ko1 koo my M
(X} =[un w1, where
2 3
ki1 Z—Au(%) s k1o = ko :B“<mL_n) ,
o — o (M 4 L N 2 N 2
2= 11<T) — (kyw) —( g)(T) — (epa)( w)(T)
4 4 4 4 6
—(eoa)2(kg)<%> (eoa) (kw)(mn) (eoa) * )(mn>

2 4 4
my=—1Ip— (60@%%)(%) (eoa) (o )<m7‘r>

mi ) mi (eoa)4 mm\°
miy =my = I <T>+(600) (11)< 7 ) (11)( )
2 2

= Io— L") —heon? () = bega)?
ma) o= b — o(eo 3 2(eo
(mn)4 (ega)* (mn>4 (epa)* <mn)6
— ) — D — ) -k — .,
L 4 \L 4 \L
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mm\? mm\>
kiit=—-Au|l— ) . ko=ka=Bu|l—) .
L L
4

4 2 2
’522=—Dn<%) —<kw>—<kg>("2—”> —(eoa)z(kw)<%> —(eoa>2<kg><%),

. 2 mnz____lmn 2] mr\?
my = —1Iy— (epa)”(1p) - ) me=ma=hLi—— + (epa) (1) - )

iy = —Ip — L[ 2F ’ To(eoa)? [ ™% ’ Lega)* ("X '
22 = 0 2 I 0L€0 I 2L€0 I .

By solving the eigenvalue problem mentioned in (41), the natural frequencies for the proposed model
will be obtained for hinged-hinged (HH) boundary condition.

5. Numerical results and discussions

In this investigation, the FG nanobeam is considered to be composed of metal constituents as alpha-
beta titanium alloy or titanium (Ti-6AL-4V) and ceramic constituent as zirconia or zirconium dioxide
(ZrO,). The geometrical properties or dimension of the specimen is taken from [Uzun and Yayl1 2020]
as width (b) = 400 nm, thickness (h) = 100 nm, and length (L) = 8000 nm, whereas the mechanical
properties [Uzun and Yayli 2020] are given as; zirconia or zirconium dioxide (ZrO,): Ey = 151 G Pa,
pu = 3000 Kg.m™3, and vy = 0.3 titanium (Ti-6AL-4V): E; = 105.7 G Pa, p; = 4429 Kg.m™>, and
v = 0.298.

The Young’s modulus and mass density are assumed to vary through the thickness in accordance with
the power-law exponent model. At the same time, for the sake of convenience, the Poisson’s ratio is
taken constant throughout the thickness of the FG nanobeam, which is v = 0.3.

5.1. Validation. In this subsection, the validation of the present model has been conducted with other
existing results in special cases. In this regard, the first three natural frequencies of the functionally graded
nanobeam of HH boundary condition has been compared with [Uzun and Yayli 2020], by neglecting
the porosity and assuming Helmholtz nonlocal operator. The numerical results are computed for HH
boundary condition by using both the Navier’s technique (NT) and the Hermite—Ritz method (H-RM),

which is demonstrated in Table 1. Likewise, the fundamental frequency parameter <k = “’TL2 g—LL) for

HH boundary condition has been compared with [Pradhan and Chakraverty 2014; Aydogdu and Taskin
2007] by neglecting the porosity, nonlocal effect, and elastic foundation. Here the material is considered
as Alumina (Al,O3), and Aluminum (Al), and the gradation is taken along Young’s modulus only with
E; =70GPa, Ey =380 GPa and v = 0.3. The tabular result is depicted in Table 2, with various power-
law exponent and aspect ratio. From these results, it is evident that the present model is accurate and
copes well with the existing results in special cases.

5.2. Convergence. Through this subsection, the convergence of the present model has been carried out
for first four natural frequencies of FG nanobeam by considering the power-law exponent (k) = 1, porosity
volume fraction () = 0.1, non-dimensional nonlocal parameter o« = eg/L) = 0.1, non-dimensional
Winkler elastic constant K,, = k,, L* /(Er 1) =40, and non-dimensional Pasternak elastic constant K, =
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(@) |k ) 1)) 3
[A] Present | Present [A] Present | Present [A] Present | Present
(NT) | (H-RM) (NT) | (H-RM) (NT) | (H-RM)
0 10]10.2084| 10.3295 | 10.3294 |26.4247 | 27.1637 | 27.1640 |51.9523 | 53.8340 | 54.5844
21 8.6973 | 8.7744 | 8.7835 |21.7885|22.2755 | 22.2756 |42.0585 | 43.3202 | 43.9188
41 8.4672 | 8.5437 | 8.5497 |21.1040| 21.5893 | 21.5894 |40.6136| 41.8749 | 42.4450
6] 8.3682 | 8.4449 | 8.4488 |20.7909 | 21.2794 | 21.2795 |39.9342 | 41.2065 | 41.7618
8| 8.3116 | 8.3883 | 8.3910 [20.6024| 21.0920 | 21.0921 {39.5165| 40.7935 | 41.3395
0.2]0] 9.8519 | 99418 | 9.9418 |21.2306|21.5871 | 21.5873 |33.1951 | 33.8385 | 34.2605
21 8.4376 | 8.4945 | 8.5012 |17.9078 | 18.1366 | 18.1367 |27.8374| 28.2510 | 28.6052
41 8.2208 | 8.2772 | 8.2816 |17.4076| 17.6348 | 17.6350 |27.0354 | 27.4468 | 27.7885
6] 8.1285 | 8.1851 | 8.1880 |17.1877|17.4160 | 17.4162 |26.6971 | 27.0928 | 27.4283
8| 8.0763 | 8.1329 | 8.1349 [17.0597| 17.2882 | 172884 |26.4697 | 26.8839 | 27.2159
0.410] 9.4203 | 9.4710 | 9.4709 |18.6882| 18.8290 | 18.8292 [28.0525| 28.2723 | 28.6346
21 8.1250 | 8.1568 | 8.1605 |16.0475| 16.1355 | 16.1357 |24.0603 | 24.1955 | 24.5070
4179245 | 7.9559 | 7.9584 |15.6414| 15.7285 | 15.7287 |23.4472| 23.5814 | 23.8843
6| 7.8405 | 7.8721 | 7.8737 |15.4695| 15.5570 | 15.5572 |23.1871 | 23.3220 | 23.6210
8| 7.7938 | 7.8253 | 7.8264 |15.3729| 15.4603 | 15.4605 |23.0405| 23.1754 | 23.4721

Table 1. Comparison of natural frequencies (in MHz) obtained by present study with

[Uzun and Yayli 2020], in special cases. [A] = [Uzun and Yayl 2020].

(L/h) k 0 0.1 1 2 10
5 [C] 6.847 | 6.499 | 4.821 | 4251 | 3.737
[B] 6.847 | 6.512 | 5.176 | 4.752 | 3.959
Present | 6.8470 | 6.5120 | 5.1764 | 4.7518 | 3.9597
20 [C] 6.951 | 6.599 | 4907 | 4334 | 3.804
[B] 6.951 | 6.612 | 5256 | 4.826 | 4.021
Present | 6.9516 | 6.6115 | 5.2562 | 4.8258 | 4.0208

Table 2. Comparison of frequency parameters obtained by present study with [Pradhan
and Chakraverty 2014], [Aydogdu and Taskin 2007], in special cases. [B] = [Pradhan

and Chakraverty 2014]; [C] = [Aydogdu and Taskin 2007].

kgL2 J(ErI) = 40. Variations of the first four natural frequencies have studied with no. of terms of

421

the Hermite polynomial for HH, CH, and CC boundary conditions, which are depicted in Fig. 4, Fig. 5,
and Fig. 6, respectively. Natural frequencies have also been computed from the closed-form solution by
using Navier’s technique (NT) for HH boundary condition and compared with the results of the Hermite—
Ritz method (HRM) showing good agreement as illustrated in Figure 4. From these graphical results,
it is quite evident that the first four natural frequencies of all the boundary conditions are attaining the
convergence on or after no. of terms (n) = 6. Also, it may be observed that the CC boundary condition
is approaching convergence faster than HH and CH boundary conditions.

5.3. Effect of bi-Helmholtz nonlocal elasticity. In this subsection, the influence of the bi-Helmholtz op-
erator has been studied on natural frequencies of HH, CH, and CC boundary conditions as compared with
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Figure 4. Variation of first four natural frequencies (w) with no. of terms (n) and
comparison with analytical results for HH boundary condition.
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Figure 5. Variation of first four natural frequencies (w) with no. of terms (n) for CH
boundary condition.

the Helmholtz operator. For the computational purpose, power-law exponent (k) = 1, porosity volume
fraction (1) = 0.1, non-dimensional Winkler elastic constant (K,,) = 40, and non-dimensional Winkler
elastic constant (Kg) = 40 are taken into consideration. The graphical results in Figure 7 represent
the variation of first four natural frequencies with respect to the nonlocal parameters (o) for Helmholtz
and bi-Helmholtz operators, respectively, for HH boundary condition, and these results are computed by
employing Navier’s technique. Likewise, Figure 8 and Figure 9 illustrate the graphical results for CH
and CC boundary conditions, respectively, which are computed using the Hermite—Ritz method. Here,
the nonlocal parameters are assumed to vary from 0 to 0.5 with an increment of 0.1. From these graphical
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Figure 6. Variation of first four natural frequencies (w) with no. of terms (n) for CC

boundary condition.
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Figure 7. Variation of first four natural frequencies (w) with nonlocal parameter («) for
HH boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.

results, it may clear that the natural frequencies for all modes and all boundary conditions are decreasing
with increase in nonlocal parameters except for the first and second modes of CH and CC boundary
conditions with respect to bi-Helmholtz operator. Also, this decrease is very significant in the case of

higher modes.

5.4. Effect of porosity or porosity volume fraction index. This subsection is dedicated to investigat-
ing the effect of porosity or porosity volume fraction index () on natural frequencies of FG porous
nanobeam. Here the porosity volume fraction () is varied from O to 0.5 with an increase of 0.1, and
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CH boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.

100

100

90 90
= T
2 80 E 80
g g
=70 =70
S 3
N N
> 60 > 60
Q Q
<] <]
E 50 E 50
lon lon
o o
E 40 < 40
= =
- -
2 30 2 30
< <
= =
20 20
L e e e > 4
10 ’1‘ 1 1 1 10 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
nonlocal parameter (&) nonlocal parameter (&)

Figure 9. Variation of first four natural frequencies (w) with nonlocal parameter («) for
CC boundary condition. Left: Helmholtz operator. Right: bi-Helmholtz operator.

other scaling parameters are taken as; power-law exponent (k) = 1, non-dimensional nonlocal parameter
(a) = 0.1 non-dimensional Winkler elastic foundation (K,,) = 40, and non-dimensional Pasternak elastic
foundation (K,) = 40. In this regard, graphical and tabular results are given in Table 3 and Figs. 10-12.
Natural frequencies of the FG nanobeam increase with the rise in porosity index, which is applicable for
all modes, all boundary conditions, and in the case of both the bi-Helmholtz and Helmholtz operators.
This is because although with more value of porosity parameter the stiffness of beam becomes lesser and
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(a) hinged-hinged (HH) boundary condition

o w1 w) w3 [O7}
Porosity T BHo | Ho | B-Ho | Ho | B-Ho | Ho | B-Fio
0 8.9954 | 8.9933 (21.2976(21.1592(36.5307 | 35.4690|52.9015 |49.3444
0.1 9.3787 | 9.3766 [21.8957|21.7614|37.2957|36.2590|53.8264|50.3436
0.2 9.8364 | 9.8345 [22.6194(22.4899|38.2265[37.2193 |54.9544 | 51.5600
0.3 10.3948 (10.3930|23.5144 {23.3904 | 39.3847 | 38.4129 | 56.3614 | 53.0744
0.4 11.0950(11.0933|24.6526|24.5353|40.8676[39.9393|58.1674 (55.0143
0.5 12.0053|12.0038 | 26.1546|26.0456 |42.8384 |41.9655 |60.5741|57.5937
(b) clamped-hinged (CH) boundary condition
. w1 wy w3 w4
Porosity VT BHo | Ho | B-Ho | Ho | B-Ho | Ho | B-Fo
0 10.9378|10.8823|24.9546|24.5642|41.3135(39.8005 |61.1409|54.8442
0.1 11.3221]11.2586|25.5648(25.1599 142.1072|40.6310|62.1339|55.8055
0.2 11.7839[11.7097 | 26.3055(25.8800|43.0744|41.6392 | 63.3464 | 56.9640
0.3 12.3509(12.2622|27.2248 [26.7690 | 44.2801 | 42.8905 | 64.8610 | 58.3899
0.4 13.0667 [12.9572|28.3985[27.8965|45.8267 | 44.4877 | 66.8086 | 60.1930
0.5 14.0039|13.863429.9541|29.3777 | 47.8868 | 46.6030|69.4088 | 62.5552
(c) clamped-clamped (CC) boundary condition
. w1 w? w3 w4
Porosity O T BHo | Ho | B-Ho | Ho | B-Ho | Ho | B-Ho
0 13.4994|13.2904 [29.1138 |27.7048 | 46.4458 | 44.1091 | 64.3550|57.9714
0.1 13.8795(13.6388|29.7438 [28.1601 |47.274244.9480 |65.3712 | 58.8354
0.2 14.3390(14.0564|30.5101 | 28.6844 | 48.2846 [45.9578 | 66.6120 | 59.7990
0.3 14.9070|14.5671|31.4636(29.2890|49.5452|47.1975 |68.1620 | 60.8655
0.4 15.6290|15.2076 |32.6841(29.9802 |51.1640|48.7578 | 70.1544 | 62.0347
0.5 16.5814(16.0379|34.3065|30.7424 | 53.3224|50.7858 | 72.8136 | 63.3195

Table 3. Natural frequencies (MHz) for Helmholtz operator (Ho) and bi-Helmholtz op-
erators (B-Ho) with respect to porosity volume fraction index.

also its cross-sectional moment of inertia reduces, the reduction rate of inertia is more than that of the
stiffness in the beam. It should be noted that other types of porosity may have opposite result. Also, it
may be noted that the increase in natural frequencies is more significant in higher modes. The results
obtained by both the bi-Helmholtz and Helmholtz operators are almost equal in lower modes where it
can be clearly distinguished for higher modes, Helmholtz operator possesses more natural frequencies
than bi-Helmholtz, and this trend is valid in all the boundary conditions.

5.5. Effect of Power-law exponent. In this subsection, the influence of the power-law exponent (k) has
been studied on the natural frequencies of FG nanobeam. The power-law exponent (k) is taken as 0,
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Figure 10. Variation of first four natural frequencies (w) with porosity volume fraction
index (%) for HH boundary condition.
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Figure 11. Variation of first four natural frequencies (w) with porosity volume fraction
index (%) for CH boundary condition.

0.2, 0.5, 1, 2, 3, 5, with porosity volume fraction () = 0.1, non-dimensional parameter («) = 0.1,
non-dimensional Winkler elastic constant (K,,) = 40, and non-dimensional Pasternak elastic constant
(K,) = 40. Table 4(a—) and Figs. (13-15) represent the tabular and graphical results for HH, CH,
and CC edges with respect to both the bi-Helmholtz and Helmholtz operators. All the computations
for HH edge are carried out by using Navier’s technique, while the Hermite—Ritz method is used for
other boundary conditions. These results clearly reveals that the natural frequencies of all modes and
all boundary conditions decrease with an increase in the power-law exponent (k), that means when the
beam is purely ceramic i.e., at k = 0 possesses the highest natural frequencies and when the beam is
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Figure 12. Variation of first four natural frequencies (w) with porosity volume fraction
index (¥) for CC boundary condition.

70

3
60 F..

50

40

30
q

20 -

natural frequency (w) in MHz

10 F

0 1 1 1 1 1 1 1 1 1

0 0.5 1.0 15 20 25 30 35 40 45 5.0
power-law exponent (k)

Figure 13. Variation of first four natural frequencies (w) with power-law index (k) for
HH edge.

purely metal i.e., at k = oo retains the lowest natural frequencies. This reduction is due to the fact that as
we go on increasing the power-law exponent (k), the beam becomes more flexible, retaining less natural
frequencies. This reduction is more remarkable with higher modes and at k < 2.

5.6. Effect of elastic foundation. This subsection is devoted to analyzing the effect of elastic foundation,
i.e., non-dimensional Winkler (K,,), and Pasternak (K,) elastic parameters on natural frequencies of
the FG nanobeam. In this regard, a comprehensive study has been undertaken by varying the elastic
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(a) hinged-hinged (HH) boundary condition

k

(93}

w2

w3

W4

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

10.7925

10.7898

25.8422

25.6668

44.5660

43.2276

64.7052

60.2300

0.2

10.2533

10.2509

243164

24.1573

41.7427

40.5234

60.4730

56.3892

0.5

9.7849

9.7827

23.0058

22.8605

39.3257

38.2072

56.8548

53.1023

9.3787

9.3766

21.8957

21.7614

37.2957

36.2590

53.8264

50.3436

9.0255

9.0236

20.9608

20.8352

35.6073

34.6351

51.3214

48.0518

8.8637

8.8619

20.5373

20.4155

34.8459

33.9022

50.1941

47.0188

DN W N =

8.7060

8.7042

20.1140

19.9962

34.0766

33.1631

49.0495

45.9742

(b) clamped-hinged (CH) boundary condition

k

(]

w2

w3

on

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

13.1944

13.1310

30.3566

29.8811

50.4572

48.5432

74.8310

67.0271

0.2

12.4736

12.4098

28.4981

28.0498

47.2095

45.4679

69.8833

62.6547

0.5

11.8530

11.7892

26.9066

26.4819

44.4338

42.8388

65.6618

58.9263

11.3221

11.2586

25.5648

25.1599

42.1072

40.6310

62.1339

55.8055

10.8668

10.8035

24.4403

24.0509

40.1747

38.7905

59.2147

53.2083

10.6584

10.5948

23.9305

23.5472

39.3021

37.9573

57.8970

52.0277

N W =

10.4516

10.3871

23.4172

23.0390

38.4169

37.1130

56.5535

50.8202

(c) clamped-clamped (CC) boundary condition

k

w1

w2

w3

w4

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

16.3750

16.1390

35.4890

33.8613

56.7848

53.8613

78.8026

70.9212

0.2

15.4095

15.1707

33.2565

31.6420

53.0834

50.3948

73.5705

66.2187

0.5

14.5811

14.3408

31.3478

29.7477

49.9212

47.4324

69.1034

62.2012

13.8795

13.6388

29.7438

28.1601

47.2742

44.9480

65.3712

58.8354

13.2872

13.0467

28.4052

26.8338

45.0807

42.8800

62.2886

56.0261

W N =

13.0181

12.7767

27.7990

26.2265

44.0912

41.9427

60.9000

54.7382

5

12.7484

12.5044

27.1856

25.5997

43.0856

40.9884

59.4853

53.4032

Table 4. Natural frequencies (MHz) for Helmholtz operator and bi-Helmholtz operator
with respect to power-law index.

parameters, and the results are noted in tabular form, which can be seen in Table 5. The tabular results are
incorporated for HH, CH, and CC boundary conditions with power-law exponent (k) = 1, porosity volume
fraction (¢#) = 0.1, and nonlocal parameter (o) = 0.1. Different combinations for elastic foundations are
considered, and results are noted for the first four natural frequencies by considering both bi-Helmholtz
and Helmholtz operators. From these results, it’s quite clear that the natural frequencies increase with the
increase in elastic constants except the second mode of CC edge, where some irregularities occur with
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Figure 14. Variation of first four natural frequencies (w) with power-law index (k) for
CH edge.
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Figure 15. Variation of first four natural frequencies (w) with power-law index (k) for
CC edge.

few combinations for elastic foundations, and these growths are more remarkable with higher modes. The
increase in natural frequencies can be explained by the fact that the higher values of elastic parameters
make the beam stiffer resulting higher value of natural frequencies.
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(a) hinged-hinged (HH) boundary condition

(Kwa Kg)

w1

W)

w3

w4

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

0,0

4.1382

4.1336

14.6881

14.4871

28.3939

27.0178

43.1712

38.7421

(50, 0)

5.0270

5.0232

14.9627

14.7655

28.5369

27.1680

43.2652

38.8469

(100, 0)

5.7807

5.7774

15.2324

15.0387

28.6791

27.3173

43.3591

38.9514

(200, 0)

7.0504

7.0477

15.7579

15.5708

28.9614

27.6136

43.5462

39.1595

(500, 0)

9.9290

9.9270

17.2385

17.0676

29.7924

28.4839

44.1027

39.7774

(700, 0)

11.4529

11.4512

18.1587

17.9965

30.3338

29.0497

44.4698

40.1841

(1000, 0)

13.4180

13.4166

19.4575

19.3063

31.1281

29.8782

45.0149

40.7865

(0, 50)

9.8753

9.8734

23.1776

23.0508

39.1027

38.1152

56.1029

52.7706

(0, 100)

13.3386

13.3372

29.3030

29.2027

47.4534

46.6430

66.5682

63.7849

(0, 200)

18.4042

18.4032

38.7503

38.6746

60.8065

60.1762

83.6594

81.4622

(0, 500)

28.6548

28.6542

58.5692

58.5191

89.6340

89.2076

121.2501

119.7446

(0, 700)

33.8037

33.8031

68.6746

68.6319

104.5250

104.1596

140.8428

139.5489

(0, 1000)

40.3122

40.3118

81.5166

81.4807

123.5406

123.2316

165.9499

164.8531

(50, 50)

10.2795

10.2776

23.3526

23.2267

39.2066

38.2218

56.1753

52.8475

(100, 100)

13.9360

13.9346

29.5795

29.4803

47.6246

46.8171

66.6902

63.9123

(200, 200)

19.2691

19.2681

39.1683

39.0934

61.0736

60.4461

83.8535

81.6615

(500, 500)

30.0426

30.0420

59.2603

59.2108

90.0868

89.6626

121.5849

120.0836

(700, 700)

35.4504

35.4499

69.4996

69.4574

105.0685

104.7050

141.2463

139.9561

(10%, 10°)

42.2847

42.2842

82.5095

82.4740

124.1976

123.8902

166.4391

165.3455

(b) clamped-hinged (CH) boundary condition

(Kwa Kg)

w1

W)

w3

W4

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

Ho

B-Ho

0,0

6.4253

6.4083

18.3745

17.9859

32.9521

30.8534

50.7756

43.9596

(50, 0)

7.0307

7.0151

18.5947

18.2108

33.0753

30.9850

50.8555

44.0520

(100, 0)

7.5879

7.5734

18.8124

18.4330

33.1981

31.1160

50.9354

441441

(200, 0)

8.5946

8.5819

19.2403

18.8696

33.4423

31.3764

51.0946

44.3278

(500, 0)

11.0789

11.0690

20.4705

20.1224

34.1643

32.1448

51.5695

44.8743

(700, 0)

12.4629

12.4541

21.2511

20.9160

34.6373

32.6470

51.8837

45.2350

(1000, 0)

14.2898

14.2821

22.3709

22.0528

35.3349

33.3862

52.3514

45.7707

(0, 50)

11.8992

11.8106

26.9144

26.4604

44.0082

42.5950

64.5997

58.1044

(0, 100)

15.5169

15.2826

33.3305

32.5184

52.8007

51.4876

75.9482

68.0455

(0, 200)

20.9356

20.3471

43.4007

41.5228

67.0109

65.4434

94.6476

80.4808

(0, 500)

32.0856

30.2815

64.8135

58.3572

97.9710

93.0027

136.1183

96.3964

(0, 700)

37.7273

35.0532

75.7982

65.7464

114.0332

101.8837

157.8232

111.2155

(0, 1000)

44.8781

40.8570

89.7895

74.2754

134.5788

114.0412

185.6826

130.8656

(50, 50)

12.2367

12.1506

27.0652

26.6138

44.1006

42.6904

64.6625

58.1743

(100, 100)

16.0332

15.8066

33.5739

32.7678

52.9545

51.6454

76.0551

68.1649

(200, 200)

21.6999

21.1326

43.7743

419131

67.2533

65.6915

94.8191

80.6828

(500, 500)

33.3308

31.5980

65.4386

59.0508

98.3853

93.4393

136.4165

96.8176

(700, 700)

39.2096

36.6439

76.5464

66.6078

114.5315

102.4415

158.1832

111.7264

(10%, 10%)

46.6579

42.8044

90.6917

75.3639

135.1820

114.7528

186.1197

131.4858
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(c) clamped-clamped (CC) boundary condition

(Ky, Kg) w1 w> w3 w4
Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho
0, 0) 9.2819 | 9.2306 | 22.4127 | 21.7182 | 37.7523 | 34.6837 | 53.7256 | 45.8169
(50,0) |9.7108 | 9.6618 | 22.5936 | 21.9048 | 37.8598 | 34.8008 | 53.8012 | 45.9054
(100, 0) |10.1215{10.0745| 22.7731 | 22.0898 | 37.9671 | 34.9174 | 53.8766 | 45.9938
(200, 0) |10.8966(10.8529| 23.1278 | 22.4553 | 38.1807 | 35.1496 | 54.0272 | 46.1700
(500, 0) [12.9463(12.9096| 24.1607 | 23.5178 | 38.8145 | 35.8369 | 54.4764 | 46.6946
(700, 0) |14.1488|14.1152| 24.8254 | 24.2002 | 39.2314 | 36.2880 | 54.7738 | 47.0411
(1000, 0) [15.7816|15.7515| 25.7904 | 25.1892 | 39.8485 | 36.9542 | 55.2170 | 47.5562
(0,50) [14.5242(14.1896| 31.1770 | 29.0606 | 49.2867 | 46.9236 | 67.9123 | 60.6592
(0, 100) |18.2933(17.4110| 37.9571 | 31.6656 | 58.5964 | 55.4373 | 79.6126 | 65.9577
(0,200) [24.1051(21.9815]| 48.7571 | 27.9550 | 73.7730 | 67.9235 | 98.9483 | 74.2611
(0,500) [36.3111(30.8467| 72.0062 | 93.8346 |107.0957|100.0219|141.9482 {134.5057
(0,700) |42.5415|35.2581| 84.0015 |107.3578|124.4489|114.8826|164.4844|155.6561
(0, 1000) [50.4634140.8676| 99.3133 |124.8369 | 146.6785|134.3457|193.4267 | 182.9408
(50, 50) |14.8019(14.4738| 31.3073 | 29.2003 | 49.3692 | 47.0102 | 67.9720 | 60.7262
(100, 100) | 18.7332|17.8728| 38.1710 | 31.9218 | 58.7350 | 55.5839 | 79.7146 | 66.0810
(200, 200) [24.7717|22.7106| 49.0899 | 28.5321 | 73.9932 | 68.1627 | 99.1123 | 74.4800
(500, 500) [37.4159|32.1400| 72.5693 | 94.2673 |107.4748|100.4278 |142.2341|134.8075
(700, 700) |43.8613|36.8399| 84.6772 [107.8871(124.9056|115.3773|164.8298|156.0211
(10%, 10%)[52.0525(42.8145]100.1296 | 125.4871|147.2320|134.9499 | 193.8462 | 183.3844

Table 5. Natural frequencies (MHz) for Helmholtz operator and bi-Helmholtz operator
with respect to elastic foundation.

6. Concluding remarks

In this investigation, a computationally efficient method, namely the Hermite—Ritz method has been
employed to compute the frequency response of the proposed model. bi-Helmholtz type of nonlocal
operator has been incorporated to seizure the effect small scale effect. HH, CH, and CC boundary
conditions are considered in this investigation, and closed-form solution is also obtained for HH boundary
condition by utilizing Navier’s technique. Validation and convergence of the proposed model/and method
have been conducted successfully. Conclusions obtained from the parametric study are summarized as
follow;

» The natural frequencies are decreasing with the increase in the nonlocal parameters except for the
first and second modes of CH and CC boundary conditions concerning bi-Helmholtz operator. Also,
this decrease is very significant in the case of higher modes.

» Natural frequencies of the FG nanobeam increase with the rise in porosity volume fraction index
and the increase in natural frequencies is more substantial in higher modes.
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o The results obtained by both the bi-Helmholtz and Helmholtz operators are almost equal in lower
modes. But, in higher modes, the Helmholtz operator possesses more natural frequencies than
bi-Helmholtz operator.

o The natural frequencies reduce with the increase in the power-law exponent (k), which means at
k = 0 the beam possesses the highest natural frequencies and at k = oo the beam retains the lowest
natural frequencies.

» The natural frequencies increase with the increase in elastic parameters except for the second mode
of CC edge, where some irregularities occur with few combinations for elastic foundations, and
these growths are more remarkable with higher modes.
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