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ANALYTICAL SOLUTIONS FOR DISPLACEMENTS AND STRESSES
IN FUNCTIONALLY GRADED THICK-WALLED SPHERES
SUBJECTED TO A UNIDIRECTIONAL OUTER TENSION

CHENYI ZHENG AND CHANGWEN MI

In the context of infinitesimal theory of elasticity, we derived analytical solutions for displacements and
stresses in functionally graded thick-walled spheres under the application of a uniaxial outer tension.
While the shear modulus in the graded sphere is allowed to vary as a power-law function of radial coordi-
nate, the Poisson’s ratio is treated as a constant. The semiinverse method of elasticity is first employed for
proposing correct function forms of the radial and longitudinal displacements. The elastostatic Navier’s
equations of the power-law graded sphere lead to a system of second-order differential equations of
the Euler type. The order is then reduced and the system is recast into a first-order differential matrix
equation. Analytical solutions are subsequently developed by the coupling of differential equation and
eigenvalue theories. Successfully solving this particular problem provides a valid analytical solution
scheme for exploring elastic fields in graded hollow spheres subjected to nonhydrostatic boundary loads.
In order to examine the effects of the power-law gradation and the radii ratio of the thick-walled sphere
on stress distributions and stress concentration factors, extensive parametric studies are conducted. Ana-
lytical solutions of the graded thick-walled sphere are further compared with those of the homogeneous
case as well as with the numerical results due to finite element modelings. The obtained results show
that the property gradation significantly affects stress distributions through the thickness direction of
the graded thick-walled sphere. When the shear modulus is designed as an increasing function of the
radial coordinate, the high stress zone conventionally occurring near the inner boundary of homogeneous
thick-walled spheres tends to shift toward to the outer surface vicinity. For a given radii ratio, an optimal
power-law gradation leading to the lowest stress concentration factor can always be identified. The
proposed method of solution and the obtained results are useful for the design and manufacturing of
better performing spherical vessels.

1. Introduction

It is a well accepted fact that stress concentration (SC) is an inherent threatening to the structural integrity
of pressure vessels. The concentration of stresses typically occurs near the reentrant boundaries, geomet-
ric defects and points of force application. The maximum stress may be as high as several times of the
applied load. In the literature, this ratio is defined as the stress concentration factor (SCF) for a certain
combination of structure and loading conditions [Barber 1992]. Scientists and engineers have been
working hard to reduce and avoid SC both in theory and in engineering practice. One idea is to replace
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the completely homogeneous material of an engineering component with functionally graded materials
(FGMs). Within the context of mechanics, FGMs are a relatively new design strategy to regulate and
optimize the stress distributions in engineering materials and structures. The most typical example is the
combination of ceramic and metallic materials [Evci and Giilge¢ 2018]. Fukui and Yamanaka [1992]
evaluated the stresses in graded thick-walled tubes made by the combination of a matrix composed of
three low-modulus materials and high-modulus particles. The gradation profile through the tube thickness
is controlled by the volume fraction of the reinforcement particles. Suresh et al. [1999] demonstrated that
a thin coating made of graded alumina-glass composite significantly reduces the sliding contact damage
of a polycrystalline alumina surface. As a direct result of the replacement, the modulus of elasticity is
allowed to vary through one or more spatial dimensions. In any theory of mechanics, both deformations
and stresses are closely related to elastic modulus. It is hoped that, through the proper regulation of
elastic modulus, stresses may redistribute following a desired pattern.

Materials and structures with graded modulus of elasticity [Birman and Byrd 2007; Ghayesh and
Farajpour 2019] have been designed and manufactured since 1980s and gained many applications in
contact mechanics [Suresh et al. 1999; Yan et al. 2019; Yan and Mi 2019] and fracture mechanics [Jin
and Batra 1996]. Tutuncu and Ozturk [2001] derived closed-form displacements and stresses of graded
cylindrical and spherical vessels under internal pressure alone. The shear modulus was also assumed to
vary as a power-law function through the wall thickness. Tutuncu [2007] further derived power series
solutions to a thick-walled cylinder under the application of internal pressure only. This time, the elastic
modulus of the cylinder is assumed to be an exponential function of the radial coordinate. Due to this
change of gradation function, an analytical solution to the axisymmetric equilibrium equations of the
radial displacement becomes more difficult. As a result, the author presented the solution in the form of
power series by employing the Frobenius method. The closed-form solution of this problem was later
derived by Nejad et al. [2016] in the plain strain condition. Atashipour et al. [2014] solved the elastic
fields in a homogeneous hollow sphere internally coated with a graded layer under hydrostatic boundary
pressures. Analytical solutions were derived for graded coating with both linearly and exponentially-
varying shear modulus. More recently, Evci and Giilge¢ [2018] developed an analytical solution in a
graded hollow cylinder whose thermoelastic material properties are assumed to be power functions of
the radial coordinate.

As a powerful numerical approach, finite element (FE) analysis has also been employed for solving
cylindrical and spherical vessels under the application of hydrostatic loads. Nejad et al. [2016] com-
pared their analytical solutions with those resulting from the FE modelings. Ghannad and Nejad [2012]
first derived a complete analytical solution to thick-walled spheres with power-law gradation of elastic
modulus. The distribution of displacements and stresses were compared with those obtained by the
FE method. Apart from completely graded vessels [Ghannad 2013; Dryden and Batra 2013; Xin et al.
2014; Yang et al. 2015], thick-walled cylinders and spheres reinforced with a graded coating have also
been studied. Sburlati and Cianci [2015] investigated the effects of a graded interphase zone bridging a
spherical inclusion and a matrix subjected to a far-field pressure loading. The same structure under the
application of a uniform heating has also been considered [Sburlati et al. 2017].

All works reviewed above dealt with hollow cylinders and spheres under the application of hydro-
static pressures. Nonhydrostatic traction loads did not receive reasonable attentions until the last decade.
Based on the multiple isoparametric FE formulation, Kubair and Bhanu-Chandar [2008] numerically
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determined the SCF in a cylindrical panel containing a circular hole under the application of a far-
field uniaxial tension. Since the problem was numerically solved, both the power-law and exponential
variations of elastic modulus were considered. By the use of Airy stress function approach, Nie and
Batra [2010] derived analytical solutions of a graded hollow cylinder under normal and shear tractions
applied at its both boundaries. Mohammadi et al. [2011] evaluated the SCFs around a circular hole in
a radially graded plate subjected to either equal-biaxial or pure shear far-field tractions. Kubair [2013]
further derived closed-form elastic fields for the same panel geometry under the application of a far-field
antiplane shear loading. This time, only the exponential variation of elastic modulus was considered.
Sburlati [2013] derived an analytical solution to a circularly voided homogeneous plate reinforced by
a graded ring under the application of a far-field uniaxial tension. On this basis, Sburlati et al. [2014]
further considered the same geometry under the application of four different far-field loads, including
uniaxial tension, equal-biaxial tension and two forms of pure shear. Yang and Gao [2016] evaluated
the SCFs in a homogenous panel containing an elliptic hole that is reinforced by a graded coating layer.
Arbitrary loads and property gradations in the graded coating can be considered. Le [2017] developed an
asymptotically exact two-dimensional theory for functionally graded piezoelectric shells by synthesizing
the variational and asymptotic methods. As an application, the analytical solution to the forced vibration
of a graded piezoceramic cylindrical shell excited by a harmonic voltage was derived. Li et al. [2018]
considered a homogeneous thick-walled cylinder reinforced by a graded coating subjected to an arbitrary
biaxial outer loading. The effects of the graded coating on the reduction of SC and the optimization of
stress distributions were analyzed.

The references reviewed above demonstrate that fewer works have devoted to graded thick-walled
spheres subjected to nonhydrostatic loads. Poultangari et al. [2008] first proposed a series solution for a
power-law graded hollow sphere under the application of nonhydrostatic thermomechanical loads. Later,
the same research group further employed this solution method for solving the piezothermoelastic fields
in standalone graded hollow spheres [Jabbari et al. 2013] and graded hollow spheres perfectly bonded
by piezoelectric layers [Barati and Jabbari 2015; Jabbari et al. 2017]. Also based on the series solution
principle, Bayat and EkhteraeiToussi [2015] investigated the thermomechanical fields in a transversely
isotropic hollow sphere rotating at a constant angular velocity. Sburlati et al. [2018] derived elastic
solutions in an inhomogeneous spherical interphase separating a solid spherical inclusion and a finite
matrix. By assuming a power-law variation in shear modulus and a constant Poisson’s ratio, closed-
form solutions to both hydrostatic and pure-shear outer tractions were developed. In another recent
paper, Zheng et al. [2019] developed a semianalytical solution to a homogeneous hollow sphere interiorly
coated with a graded layer. Although a uniaxial outer tension was considered, displacements and stresses
of the graded coating were not directly solved within the elasticity theory of an inhomogeneous medium.
Instead, the solution was approximated by its homogeneous counterpart through discretizing the graded
coating into a few perfectly bonded homogeneous sublayers [Yang et al. 2009; Yang and Gao 2016].

The goal of this work is to continue the efforts in this line of research. Here, we consider the funda-
mental problem of a graded thick-walled sphere under the application of a uniaxial outer tension. The
hollow sphere is assumed to possess power-law variation of shear modulus through its thickness. Since
the Poisson’s ratio is treated as a constant, Young’s modulus of the isotropic thick-walled sphere also
varies by the same power-law function. Following the basic equations of an inhomogeneous elastic
medium, the boundary value problem is solved by the collective use of semiinverse method of elasticity



588 CHENYI ZHENG AND CHANGWEN MI

theory, reduced-order method of differential equations and eigenvalue theory. In addition to analytical
solutions, FE modelings are also implemented to validate the correctness of stress distributions and SCFs.
The remainder of this paper is structured as follows. Section 2 describes the mechanical formulation and
analytical solutions to the graded thick-walled sphere under the application of a uniaxial outer tension.
In Section 3, extensive parametric studies are conducted for illustrating the effects of property gradation
and radii ratio on stress distributions and reduction of SCFs. FE modeling results are also presented to
validate the correctness of analytical solutions. Finally, in Section 4, concluding remarks are delivered.

2. Method of solution

Figure 1 shows a graded thick-walled sphere under the application of a unidirectional outer tension of
magnitude 7. The inner and outer radius of the sphere are represented by a and b, respectively. Given
the spherical symmetry of the geometry, spherical coordinates (R, ¢, ) are employed for the subsequent
mechanical formulation, where R, ¢ and 6 denote the radial, longitudinal and latitudinal coordinates,
respectively. In view of its limited influence on stress distributions, the Poisson’s ratio (v) of the graded
sphere is assumed to be a constant [Sburlati 2013]. The shear modulus of the graded sphere varies as a
power-law function of the radial coordinate:

G =G,R"/b", ey

where G, denotes the shear modulus value at the outer boundary of the graded sphere and m is the grading
index, indicating the varying gradient of the shear modulus. It is worth noting that shear modulus instead
of Young’s modulus has been used in Equation (1). For the method of displacement potentials used in
this work, the combination of shear modulus and Poisson’s ratio is able to formulate the solution in the
simplest form than any other combinations of elastic constants.

In spherical coordinates, the unidirectional tension applied at the outer boundary of the graded sphere
can be expressed as

b, b’
UR(T é“):;z’ URw; é“):_;m, (2)

where ¢ = cos ¢. At the inner surface of the graded sphere, both the normal and the shear tractions are
Zero:

OR (a’ é‘) = 0’ OR(D (a’ ;-) =0. (3)

In spite of the dependence of shear modulus on the radial coordinate, the governing equations for
the graded thick-walled sphere are not different from those for a homogeneous medium. The strain-
displacement relations are given by

R=%R> " R R a¢ TR TRA-¢2
“4)
1 (0u, 1—¢20ur u,
& - -k - - - T
Re =2\ 9R R 3 R
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IR

Figure 1. A thick-walled sphere with radially graded shear modulus under the applica-
tion of a unidirectional outer tension.

In terms of the inhomogeneous shear modulus (1), the linear constitutive relations still assume the
form

2G(R)v 2G(R)v
OR= - (8R+89 +&y) +2G(R)eg, 0y= - (8R+89 +&y) +2G(R)gy,
2G(R)v 3)
o= (SR + &0 + 8(/;) +2G(R)ey, O'R(pZZG(R)ER(p.

1=-2

In the absence of body forces, the axisymmetric equations of equilibrium in spherical coordinates are
given by [Barber 1992]

dog N {oRy N 80R¢+20R—09—0¢,

=0,

IR RJ1-2¢2 R oc R ©
;(O—(p_o—Q)_Vl_gzaﬁ+80R<p+3aR¢_0
RYT1—¢2 R 9 OR R

In view of the traction distributions (2), the constitutive equations (5) and the strain-displacement
relations (4), it can be inferred that the radial and longitudinal displacements in the graded sphere must
follow the form

ug = PUR)HEPPA(R), 1wy =1 —2P3(R). (7

Only when the displacements are in these forms, the traction boundary conditions (2) can possibly be
satisfied. By the substitution of the proposed displacements (7) back into the three sets of governing
equations (4), (5) and (6), the equations of equilibrium of the graded sphere become
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— (H{(R H)(R)) =0, ——¢y/1—=¢2H3(R) =0, 8
Ty (R + 62 Ha(R) Ty VI HR) (8)
where H;(R), H>(R) and H3(R) are functions of the radial coordinate:

Hy{(R)=—-2(1—v) P (R)R* —[2(1 —v) (m+2) P{(R) — P{(R)] R
+4(1—v—mv) PI(R)—2(1=2v) P,(R)— (3—2v(m+2)) P3(R), (9a)
Hy(R) = —2(1 —v) P} (R)R* — [2(1 —v) (m +2) Pj(R) +3P}{(R)| R
+20G-2v(m+4)) P,(R)+33—-2v(m+2)) P3(R), (%)
H3(R)=—(1-2v) P3”(R)R2 — [(1 —2v) (m+2) Py(R) — 2P2/(R)] R
+2@ (0 —-v)—-m{(-2v) L(R)+ (121 —-v)+m (1 —-2v)) 3(R). ()
Since ¢ = cos ¢ may take any value within the closed interval [—1, 1], equations (8) can be satisfied

if and only if
Hi(R)=0, H(R)=0, H3(R)=0. (10)

These are three coupled differential equations of Euler type with respect to the three unknown functions
Pi(R), P,(R) and P3(R). By replacing the radial coordinate with R = ¢’ in (9), equations (10) reduce
to a system of coupled ordinary differential equations:

—2(1—=v) P/(t)—2(1—v) (m+1) P{(t)+ P; (t)
+4(1—v—mv) Pi(t) —2(1 —=2v) P,(t) —(3—2v(m+2)) P3(t) =0, (lla)
—2(1=v)P/@t) =21 —v)(m+1)Py(t) —3P; (1)
+20G-2v(m+4) PLt)+30B—-2v(m+2)) P3(t) =0, (11b)
—(1=2v) P{(t)+2P; (t) — (1 —2v) (m+ 1) P5 (1)
+@(U—=v)+2m(1-2v)) L)+ 12(1 —v)+m (1 —2v)) P3(z) =0. (1lc)
These three ordinary differential equations may further be expressed in matrix form as
dW/dt = QW, (12)
with W denoting a column vector composed of the three unknown functions and their derivatives:
T
W =[Pi(t) P(t) Ps(1) P{(t) Py(1) Pj(t) ], (13)

and Q representing a 6 x 6 square matrix:

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0 1 (14)

= 2(1—v—mv) 1—2v 3—2v(2+m) 1

T—v 5 _2 1@: | _9 62((12?)) —l—=m 0 20=v)
—2ZV m —0v m
0 8(1 )-}-Ev(l ) 1201 2()IJ:V()l 2v) 0 —12—m 2
—V m(1l—2v —V m(1l—2v

| 0 1—2v 1—2v 0 % —l-m
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Equation (12) can be solved by coupling the solutions of an inhomogeneous first-oder differential
equation and eigenvalue problems of a square matrix. To this end, the six eigenvalues of the coefficient
matrix Q must first be found:

kﬁ:«/@ _k]:l: k3—2«/k_4 _klzi: k3+2\/k_
ko N ko ’ N ko ’

where kg through k4 are five dimensionless parameters that can be expressed in terms of Poisson’s ratio
and the grading index:

Ao = 3.4 5.6 (15)

ko =2(1—v)(1—2v),

ki =—(1—v)1=2v)m+1),

ky = (1—v)(1 =20)*((1 = v)(9 +m?) +2m(1 — 5v)), (16)
ks =m?(1 —v)2(1 —2v)2 +4m(1 —v)(1 —2v)> +29 — 174v 4+ 377v> — 348v° + 116v*,

ks = (1 —v)*(1 —20)*(m*(1 — 22v +25v%) + 4m (11 — 36v + 2507) 4 100(1 — v)?).

For Poisson’s ratio v € (0, 0.5), all six eigenvalues of the coefficient matrix (15) are real for the grading
index 0 < m < 2. As a result, the general solution of the differential matrix equation (12) can be given
by the linear combination of the six eigenvalues:

6 Ay 6 By 6 C,
P =) e P =) et P =) et (17)
k=1 k=1 k=
In these equations, replacing the independent variable ¢ with In R leads to
6 6 6
Ay By Ck
PUR) =) S5 RY, P(R) =) SR, PR)=) o RM (18)
k=1 k=1 k=1

Recall that, altogether, these three functions must satisfy the two equations of equilibrium (8). The
three groups of coefficients, Ay, By and Cy, are therefore not independent. By the substitution of (18)
back into (8), we can obtain

By =8 (M) Ag,  Cr =L (A) Ay, (19)
where S(Ag) and L(Ag) are given by
(2mv — (1 = v)2 = (m+ Dag —2D) (12(1 = v) + (1 = 2v)(m — (m + DAy — AD))
2((1 —v)(m +4v —6vm —2v(m + 1+ A )Ax) —m2v(l — 2v))
(2mv — (1 = v)2 = (m+ Dag — AD) (41 = v) + m(1 —2v) + )
(1 —v)(m~+4v —6vm —2v(m + 14 A)Ar) —m?v(1 —2v)

S(hi) =

il

(20)
L) =—

With equations (19), the 18 unknown coefficients have reduced to only six: Ay, Ay, A3, A4, As, Asg.
They remain to be determined by implementing the traction boundary conditions at the outer surface (2)
and the inner surface (3) of the graded sphere.

Given the general solutions of the three unknown functions (18) in the radial and longitudinal displace-
ment (7), it is straightforward to derive the general expressions of displacements. The four nontrivial
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strain components can be further derived from the strain-displacement relations (4). Finally, with the
help of the shear modulus distribution (1), the radial and longitudinal stresses (5) can be recast

1 —Ak
OR _ UR
T ZA/( Olk+§ ’Bk)Rl FPl e 1_52_2 kyle P (21)
where oy, B and y, (k=1, ..., 6) are all dimensionless functions of the shear modulus G,, the magnitude
of the applied uniaxial tension 7', Poisson’s ratio v, the grading index m and the eigenvalues Aj:
2% (1= v @=L G (222)
ap=———((1—-v v(2-— , a
T a=anrT k g
2G,
B == (1 =v) &S (M) + v (28 (k) +3L (Ak))) (22b)
1-=2v)T
G
ye=—" 25 )+ (1 =M L (). (22¢)

Equations (21) are valid expressions of the radial and shear stresses for any graded hollow sphere with
the shear modulus distribution given by (1). The six unknown coefficients (Ay, ..., A¢) are adjustable
parameters that remain to be determined by satisfying specific traction or displacement boundary condi-
tions at both the inner and the outer surfaces of the hollow sphere. Upon implementing the uniaxial outer
tension condition (2) at R = b and the traction-free condition (3) at R = a, we arrive at four simultaneous
algebraic equations. In these equations, equating those terms independent of the variable ¢, preceding
¢% and ¢/1 — ¢2 leads to six linear equations about the six unknown coefficients (A1, ..., Ag). This set
of equations may be restructured into a single matrix equation:

Ul{x}={v}, (23)
where the components of the 6 x 6 square matrix U are given by
1—Ag 1—Ag I—Ak
aka Pra Y@

Uk=or, Unx=p, Usx=w Ux= T Usk = P Usk = Zl—xk ;o (24

X is column vector composed of the six unknowns

T

X={A A A3 A4 As A¢} ; (25)

and V is also a column vector with the simple form
v={00001 -1}, (26)

The algebraic matrix equation (23) is linear with respect to the six unknowns. As a result, its solution
procedure follows the standard linear algebra algorithm. The six unknowns can be easily found:

_ W5~ W)

1 —
Ar = U Ns — (U e U] )

27)
where U~!, U’ and |U| are the inverse, matrix of cofactors and determinant of the coefficient matrix U.
Since there are only two nonzero components in the column vector V, only the last two rows of the
matrices of inverse and cofactors are required in the solutions.
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In view of equations (24), closed-form expressions of the unknowns A, can be further developed
without difficulty. Nonetheless, the results are quite lengthy. For brevity, they are not presented in the
manuscript. Interested readers are invited to implement the solution procedure in a symbolic mathemat-
ical software.

3. Results and discussion

In the last section, we developed an analytical solution to a graded thick-walled sphere subjected to a
uniaxial outer tension. For brevity, the closed-form expressions of the final results were not presented.
The purpose of the present section is to further explore the effects of the power-law grading index m and
the radii ratio b/a on both the stress distributions and the SCFs in terms of numerical experiments.

As can be concluded from previous studies on graded cylinders and spheres [Sburlati 2013], the effects
of Poisson’s ratio on stress fields are inessential when compared with those of the shear modulus. Xin et al.
[2014] further provided one theoretical foundation for justifying the assumption of constant Poisson’s
ratio extensively adopted in the literature. They indicated that, although the effects of Poisson’s ratio on
the radial displacement of a thick-walled tube under internal pressure are appreciable, those on stresses
are not obvious. As a result, the Poisson’s ratio was fixed as v = 0.3 in all our case studies.

As a means of verifying and validating the correctness of the developed theoretical formulation, FE
solutions calculated through ABAQUS/Standard software were also prepared for most examples. In all
numerical experiments, the shear modulus at the outer boundary of the thick-walled sphere was taken as
G, = 80 GPa. The magnitude of the uniaxial outer tension was chosen as T = 50 MPa.

Previous studies demonstrate that high moduli of elasticity near the inner boundary of a thick-walled
sphere tend to worsen stress concentrations [Zheng et al. 2019]. In order to relieve the stress concen-
trations that typically occur at the inner surface of hollow spheres, their modulus of elasticity should
be designed as an increasing function of the radial coordinate. In other words, near the conventional
stress concentration zone, soft materials should be employed. For regions far way from the void, hard
materials can still be used. This design principle helps to drive the high-stress zone near the spherical
void toward to the outer boundary of the thick-walled sphere. On the basis of such an argument, only
positive grading indices should be considered in (1). For the special case of zero grading, the proposed
graded thick-walled sphere of course reduces to a completely homogeneous medium.

Figure 2 shows the distribution of the longitudinal stress along the inner surface of the graded thick-
walled sphere for the particular radii ratio b/a = 3. To investigate the effects of modulus inhomogeneity,
five positive grading indices were considered. For completeness, the classical solution of a homogeneous
thick-walled sphere is included in the figure. It can be seen from the figure that, the introduction of an
inhomogeneous shear modulus does not change the distribution pattern of the longitudinal stress along
the inner boundary. For any grading index, the maximum value of this stress component still occurs
along the equator of the inner surface (¢ =7 /2,0 <6 < 2x). Due to symmetry, the minimum value of
the longitudinal stress takes place at both poles of the inner surface (¢ = 0, 7). The longitudinal stress
varies monotonically with the grading index. As m increases, the magnitude of both the maximum and
the minimum longitudinal stress decreases, indicating the desired effects of modulus inhomogeneity on
stress concentrations.

Because, on the inner surface of a graded thick-walled sphere, stress concentrations always occur
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Figure 2. Variation of dimensionless longitudinal stress along the inner surface of the
graded thick-walled sphere for five grading indices (b/a = 3, R = a).
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Figure 3. Variation of dimensionless longitudinal stress with radial distance for five
grading indices (b/a = 3, ¢ = /2).

along the equator, it is informative to further examine the variation of the longitudinal stress between
the inner and the outer equators of the sphere (Figure 3). The same five grading indices as studied in
Figure 2 were considered. It is now even more obvious that, at the inner surface of the graded sphere, the
longitudinal stress decays monotonically with increased grading index. For the particular thickness ratio
(b/a =3), the highest stress concentration still occurs at the equator of the inner surface when m = 0.5
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and 1. In particular, when m = 0.5, the longitudinal stress decays rapidly with the radial distance from
the center of the sphere. However, the rate of decay becomes much slower as the grading index increases
to m = 1. Near the middle interface of the sphere, a stress plateau can be clearly observed. In addition to
the highest longitudinal stress occurring at the inner surface of the sphere, another local stress maximum
has also appeared at R/a = 2.12. The variation of the longitudinal stress is no longer monotonic. Two
points of inflection can be observed. As the grading index further increases to m = 1.5, the maximum
longitudinal stress in the thick-walled sphere has shifted from its inner surface to R/a =2.38. As a result,
the high stress zone in the thick-walled sphere has changed to the vicinity of the outer surface. For the
highest considered grading index m = 2, this observation becomes even more clear. The inner surface
of the thick-walled sphere has become a global minimum of the longitudinal stress. For the five grading
indices, the longitudinal stress values at the outer surface of the graded thick-walled sphere are all close
to the applied uniaxial tension.

For comparison purpose, in Figure 3, we have also presented FE solutions for all five grading indices.
The FE solutions were calculated in ABAQUS/Standard software by employing the sublayer method,
in which a unidirectionally graded medium is divided into multiple homogeneous layers [Zheng et al.
2019; Liu et al. 2018; Yan et al. 2019; Yan and Mi 2019]. For brevity, the implementation details are
not repeated here. It can be seen from the figure that the analytical and FE solutions agree quite well for
small grading indices, validating the correctness of both methods. It is also noted that the relative error
between two solutions increases with the grading index. This behavior may be attributed to three factors.
First, in the FE modelings, all graded spheres were approximated with ten homogeneous sublayers. As
the grading index becomes higher, the shear modulus of the graded sphere varies faster, calling for a
finer FE simulation scheme. Second, among all four non-trivial components, the longitudinal stress is
the most important one. The largest magnitude of latitudinal, radial and shear stresses does not exceed
the applied external load, as will be presented shortly in this section. Third, for a thick-walled hollow
sphere, stress concentration is most severe along its inner surface.

In Table 1, we tabulate the SCF and its appearing location for a few grading indices in the range
of 0 < m < 2. The rate of reduction of the SCFs as compared with that of the classical solution is
also given in the table. Consistent with the stress distributions shown in Figure 3, for m < 1.25, the
maximum longitudinal stress always occurs at the inner surface (R/a = 1) of the graded thick-walled
sphere and continues to decrease with the grading index. As the grading index increases to m = 1.5,
the maximum longitudinal stress does not occur at the inner surface anymore. The location at which
the maximum longitudinal stress occurs has shifted to R/a = 2.38 and a reduction rate of 46.8% is
achieved. This value is lower than the one corresponding to the grading index m = 1.25. It can therefore
be anticipated that an optimal grading index (mqp) must exist in the interval 1.25 < m < 1.5. For such

m 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Mope = 1.28
SCF 2252 2.005 1.774 1.561 1.366 1.188 1.197 1.229 1.262 1.173
Location (R/a) 1 1 1 1 1 1 2.38 2.44 2.50 1 &2.30

Reduction rate 0 11.0% 21.2% 30.7% 393% 47.2% 46.8% 45.4% 44.0% 47.9%

Table 1. The stress concentration factor and its location for a few graded thick-walled
spheres under the application of a uniaxial outer tension (b/a =3, v = 0.3).
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Figure 4. Variation of dimensionless longitudinal stress with radial distance for five
grading indices (b/a =9, ¢ = /2).

an ideal grading index, the longitudinal stresses at the inner surface and near the outer boundary of the
graded sphere become equal to each other, indicating the best longitudinal stress state along the sphere
thickness. A simple numerical search reveals that the optimal grading index is mqp = 1.28, at which
the highest reduction rate (47.9%) in the maximum longitudinal stress has been achieved. In view of
Figure 3, the longitudinal stress for mq, = 1.28 should still have a nonuniform distribution. With the
power-law gradation of shear modulus, it is thus impossible to achieve a completely uniformly distributed
longitudinal stress. As the grading index becomes higher than the optimal value, the SCF increases again.
The effects of the inhomogeneous shear modulus have therefore been weakened to a certain extent.

To investigate the influence of the radii ratio between the outer and the inner surface of the graded
thick-walled sphere, we further reexamined the longitudinal stress distribution for the case of b/a =9
(Figure 4). Although the overall distribution patterns are similar to those for the case of b/a = 3, the
effects of the radii ratio is very clear. For example, when m = 1, the maximum longitudinal stress takes
at the inner surface of the thick-walled sphere for the radii ratio b/a = 3. However, when b/a =9, the
maximum stress concentration has shifted to near the outer boundary of the sphere (R/a = 7.48). The
reduction rate becomes 46.1%, which is higher than the one corresponding to b/a = 3. Consequently, for
the same grading index, a larger radii ratio tends to drive the high stress zone from the inner boundary
toward to the outer surface of the thick-walled sphere and results in a better SCF reduction rate. To
validate this hypothesis, we further calculated the maximum longitudinal stress for a few different radii
ratios.

Figure 5 shows the variation of the SCF as a function of the radii ratio within the interval 3 < b/a < 18.
For all five grading indices, the SCF monotonically decreases as the radii ratio of the graded sphere
enlarges. For the homogeneous thick-walled sphere, the maximum longitudinal stress always occurs at
its inner boundary for any radii ratio. With increased radii ratio, the SCF rapidly converges to a constant
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Figure 5. Variation of the maximum longitudinal stress found in the graded sphere as
a function of the radii ratio b/a for five grading indices (¢ = 7 /2).

(2.045) that corresponds to the SCF of an infinite hollow sphere (v = 0.3). As the shear modulus of the
thick-walled sphere becomes nonuniform, the maximum longitudinal stress does not necessarily occur at
its inner boundary. For the grading index m = 0.5 and 1, a corner in the SCF curve can clearly be found
at b/a = 15.5 and 4.0, respectively. This behavior indicates the fact that the location of the maximum
longitudinal stress has shifted from the inner boundary to near the outer surface of the graded sphere. As
the grading index further increases to m = 1.5, the maximum longitudinal stress appears near the outer
surface of the thick-walled sphere for all studied radii ratios 3 < b/a < 18. As a result, the SCF curve
for the grading index m = 1.5 becomes again very smooth. With increased radii ratio, the SCF rapidly
converges to a constant. The corner no longer exists. For the largest considered grading index (m = 2),
the SCF becomes nearly a constant and thus independent of the radii ratio.

For completeness, we also examined the distribution of the latitudinal stress in the graded thick-walled
sphere. Figure 6 shows the variation of dimensionless latitudinal stress along its inner surface for the
same five grading indices that have been previously considered. No severe stress concentrations were
found, because the direction of the latitudinal stress is always normal to the applied uniaxial tension.
Independent of the grading index, the maximum magnitude of the latitudinal stress always occurs on two
poles of the inner boundary. It is clear that the maximum latitudinal stress at the inner surface continues
to decrease as the grading index increases.

In analogy to Figure 3, Figure 7 shows the distribution of the latitudinal stress along the radial direction.
As before, both the analytical and the FE solutions were presented. The disagreement between FE and
analytical solutions also increases with the grading index. However, in contrast to the case of longitudinal
stress (Figure 3), much better agreements can be found. It is noted that, for all five grading indices, the
latitudinal stress climbs monotonically from the inner boundary toward to the outer surface of the thick-
walled sphere. The impact of the grading index is very clear. At the inner boundary of the thick-walled
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Figure 6. Variation of dimensionless latitudinal stress along the inner surface of the
graded thick-walled sphere for five grading indices (b/a = 3, R = a).
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Figure 7. Variation of dimensionless latitudinal stress with radial distance for five grad-
ing indices (b/a =3, ¢ =0 or m).

sphere, the latitudinal stress decreases with increased grading index. At the outer surface, the opposite
is true. As a balance, the intermediate grading index m = 1 seems to be the best choice of the five
if the latitudinal stress is of the primary concern. For this particular case, oy/T = —0.528 and 0.535,
respectively, at the inner and the outer surface of the thick-walled sphere.
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m 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Mmop = 0.99

logl/ T 0.793 0.723 0.656 0.590 0.535 0.644 0.761 0.885 1.017 0.531
Reduction rate 0 89% 173% 25.6% 32.5% 18.8% 4.0% —11.6% —28.2% 33.0%

Table 2. The maximum SCF in latitudinal stress occurring at either boundary of a graded
thick-walled sphere under the application of a uniaxial outer tension (b/a =3, ¢ =0, ).

Table 2 tabulates the maximum values of the latitudinal stress (in magnitude) in the graded thick-walled
sphere for a few representative grading indices. For small grading indices (m < 0.99), the magnitude of
the latitudinal stress at the inner surface is larger than that at the outer boundary. However, for m = 0.99,
log|/ T at the outer boundary becomes equal to the one at the inner surface. Consistent with previous
discussions, such a grading index can be defined as its optimal value (mp). For this case, the highest
reduction rate (33.0%) in the maximum latitudinal stress is achieved. With the further increase of the
grading index, the latitudinal stress at the outer boundary remains positive and continues to climb. As a
result, the reduction rate of |og|/ T starts to decrease. The effects of the inhomogeneous shear modulus on
the reduction of latitudinal stress become nearly negligible when the grading index increases to m = 1.5.
For m = 2, the latitudinal stress at the outer boundary of the sphere becomes even far larger than the
classical SCF in the latitudinal stress.

Figure 8 shows the variation of the radial stress component along the symmetry axis of the mechanical
model for five grading indices. In view of the uniaxial outer tension applied on the thick-walled sphere,
it is along this direction (¢ = 0, ) that the radial stress takes its maximum value. Both analytical and
FE solutions are presented for all five grading indices. As can be observed from the figure, reasonable
agreements between the two independent solutions are obtained for the radial stress component. This is
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Figure 8. Variation of dimensionless radial stress with radial distance for five grading
indices (b/a =3, ¢ =0 or ).
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Figure 9. Variation of dimensionless shear stress with radial distance for five grading
indices. (b/a =3, ¢ =31 /4)

true even for the largest grading index (m = 2), in contrast to the case of longitudinal stress. Limited
by the boundary conditions (3); and (2);, the dimensionless radial stress og/T is exactly 0 and 1 at
the inner and outer surfaces of the thick-walled sphere. Within the studied range of the grading index
0 <m <2, no stress concentrations in the radial stress were found. Nonetheless, the introduction of an
inhomogeneous shear modulus is able to affect the distribution pattern of the radial stress. With increased
grading index, the radial stress between the two boundaries of the thick-walled sphere becomes closer
to a linear function of the radial coordinate.

Finally, in Figure 9, we present the variation of the shear stress component along the particular direc-
tion ¢ = 37 /4 for the same five grading indices. It is along this direction that the shear stress takes its
maximum positive value. At the inner and the outer surfaces of the thick-walled sphere, the dimensionless
shear stress og, /T is exactly 0 and 0.5, respectively, as given by the boundary conditions (3), and (2)5.
Similar to the case of radial stress, increasing the grading index helps to straighten the shear stress
variation through the thickness dimension of the hollow sphere. As a result, the overall shear stress level
becomes lower and lower than its classical counterpart. As before, although the disagreement between
FE and analytical shear stresses also increases with the grading index, the discrepancy is acceptable and
much less than that of the longitudinal stress.

4. Concluding remarks

In this paper, we successfully developed an analytical solution to a graded thick-walled sphere sub-
jected to a uniaxial outer tension. While the Poisson’s ratio of the sphere was fixed as a constant, its
shear modulus was allowed to vary as a power-law function of the radial coordinate. The analytical
solution was derived through directly tackling the equilibrium equations of displacements of the graded
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thick-walled sphere. Informed by the distribution pattern of the applied uniaxial outer tension, function
forms of both the radial and the longitudinal displacements were proposed in terms of three unknown
functions of the radial coordinate. In this way, the two equations of equilibrium were recast into three
differential equations of the Euler type involving the three fundamental unknown functions. The system
of second-order differential equations were further reduced into six first-order ones by taking both the
three fundamental unknown functions and their derivatives as new unknown variables. The new system
is then converted into a first-order differential matrix equation and analytically solved by the joint use of
the first-order differential equation theory and the eigenvalue theory. In order to validate the correctness
of the derived analytical solution, finite element solution of the graded thick-walled sphere was also
calculated and a reasonable agreement between the two independent methods were identified for both
the stress distributions and stress concentration factors. On the basis of extensive parametric studies, a
few observations and conclusions can be drawn as follows:

« In order to drive the high stress zone conventionally taking place near the inner boundary of a homo-
geneous thick-walled sphere, the modulus of elasticity of thick-walled spheres should be designed
as an increasing function of the radial coordinate.

 In analogy to the case of a homogeneous thick-walled sphere, the longitudinal stress component
remains to be the primary concern in the graded ones. No significant stress concentrations were
found in latitudinal, radial and shear stresses.

» With increased shear modulus gradation, the high stress zone tends to shift from the inner surface
toward to the outer boundary of thick-walled spheres. In contrast to homogeneous thick-walled
spheres, for graded ones, two local stress maxima exist. As they become equal, an optimal grading
index in the power-lower function of shear modulus can be defined.

 For a given grading index in the power-lower function of shear modulus, the stress concentration
factor monotonically decays with increased radii ratio between the outer and the inner surface of
the graded sphere and gradually converges to the factor of an infinite hollow sphere. This global
maximum stress may occur either at the inner boundary or near the outer surface of the graded
sphere, depending on both the radii ratio and the grading index. With increased grading index, a
smaller radii ratio is required in order to shift the most sever stress concentration from the inner
surface toward to the outer boundary vicinity.

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 11872149
and 11472079] and the Fundamental Research Funds for the Central Universities.

References
[Atashipour et al. 2014] S. A. Atashipour, R. Sburlati, and S. R. Atashipour, “Elastic analysis of thick-walled pressurized
spherical vessels coated with functionally graded materials”, Meccanica (Milano) 49:12 (2014), 2965-2978.

[Barati and Jabbari 2015] A. R. Barati and M. Jabbari, “Two-dimensional piezothermoelastic analysis of a smart FGM hollow
sphere”, Acta Mech. 226:7 (2015), 2195-2224.

[Barber 1992] J. R. Barber, Elasticity, Solid Mech. Appl. 12, Kluwer, Dordrecht, Germany, 1992.


http://dx.doi.org/10.1007/s11012-014-0047-2
http://dx.doi.org/10.1007/s11012-014-0047-2
http://dx.doi.org/10.1007/s00707-015-1304-8
http://dx.doi.org/10.1007/s00707-015-1304-8
http://dx.doi.org/10.1007/978-94-011-2454-6

602 CHENYI ZHENG AND CHANGWEN MI

[Bayat and EkhteraeiToussi 2015] Y. Bayat and H. EkhteraeiToussi, “General thermo-elastic solution of radially heterogeneous,
spherically isotropic rotating sphere”, J. Mech. Sci. Technol. 29 (2015), 2427-2438.

[Birman and Byrd 2007] V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures”,
Appl. Mech. Rev. (ASME) 60:5 (2007), 195-216.

[Dryden and Batra 2013] J. Dryden and R. C. Batra, “Optimum Young’s modulus of a homogeneous cylinder energetically
equivalent to a functionally graded cylinder”, J. Elasticity 110:1 (2013), 95-110.

[Evci and Giilgeg 2018] C. Evci and M. Giilgec, “Functionally graded hollow cylinder under pressure and thermal loading:
effect of material parameters on stress and temperature distributions”, Int. J. Eng. Sci. 123 (2018), 92-108.

[Fukui and Yamanaka 1992] Y. Fukui and N. Yamanaka, “Elastic analysis for thick-walled tubes of functionally graded material
subjected to internal pressure”, JSSME Int. J. Solid Mech. Strength Mater. 35:4 (1992), 379-385.

[Ghannad 2013] M. Ghannad, “Elastic analysis of pressurized thick cylindrical shells with variable thickness made of function-
ally graded materials”, Compos. B Eng. 45:1 (2013), 388-396.

[Ghannad and Nejad 2012] M. Ghannad and M. Z. Nejad, “Complete closed-form solution for pressurized heterogeneous thick
spherical shells”, Mechanika 18:5 (2012), 508-516.

[Ghayesh and Farajpour 2019] M. H. Ghayesh and A. Farajpour, “A review on the mechanics of functionally graded nanoscale
and microscale structures”, Int. J. Eng. Sci. 137 (2019), 8-36.

[Jabbari et al. 2013] M. Jabbari, S. Karampour, and M. R. Eslami, “Steady state thermal and mechanical stresses of a poro-
piezo-FGM hollow sphere”, Meccanica (Milano) 48:3 (2013), 699-719.

[Jabbari et al. 2017] M. Jabbari, S. M. Mousavi, and M. A. Kiani, “Functionally graded hollow sphere with piezoelectric
internal and external layers under asymmetric transient thermomechanical loads”, J. Press. Vessel Technol. (ASME) 139:5
(2017), art. id. 051207.

[Jin and Batra 1996] Z.-H. Jin and R. Batra, “Some basic fracture mechanics concepts in functionally graded materials”, J.
Mech. Phys. Solids 44:8 (1996), 1221-1235.

[Kubair 2013] D. V. Kubair, “Stress concentration factors and stress-gradients due to circular holes in radially functionally
graded panels subjected to anti-plane shear loading”, Acta Mech. 224:11 (2013), 2845-2862.

[Kubair and Bhanu-Chandar 2008] D. V. Kubair and B. Bhanu-Chandar, ““Stress concentration factor due to a circular hole in
functionally graded panels under uniaxial tension”, Int. J. Mech. Sci. 50:4 (2008), 732-742.

[Le 2017] K. C. Le, “An asymptotically exact theory of functionally graded piezoelectric shells”, Int. J. Eng. Sci. 112 (2017),
42-62.

[Li et al. 2018] X. Li, Y. Hua, C. Zheng, and C. Mi, “Tuning stress concentrations through embedded functionally graded
shells”, J. Mech. Mater. Struct. 13:3 (2018), 311-335.

[Liu et al. 2018] Z. Liu, J. Yan, and C. Mi, “On the receding contact between a two-layer inhomogeneous laminate and a
half-plane”, Struct. Eng. Mech. 66:3 (2018), 329-341.

[Mohammadi et al. 2011] M. Mohammadi, J. R. Dryden, and L. Jiang, “Stress concentration around a hole in a radially
inhomogeneous plate”, Int. J. Solids Struct. 48:3-4 (2011), 483—-491.

[Nejad et al. 2016] M. Z. Nejad, M. Abedi, M. H. Lotfian, and M. Ghannad, “Exact and numerical elastic analysis for the FGM
thick-walled cylindrical pressure vessels with exponentially-varying properties”, Arch. Metall. Mater. 61:3 (2016), 1649-1654.

[Nie and Batra 2010] G. J. Nie and R. C. Batra, “Exact solutions and material tailoring for functionally graded hollow circular
cylinders”, J. Elasticity 99:2 (2010), 179-201.

[Poultangari et al. 2008] R. Poultangari, M. Jabbari, and M. R. Eslami, “Functionally graded hollow spheres under non-
axisymmetric thermo-mechanical loads”, Int. J. Press. Vessels Pip. 85:5 (2008), 295-305.

[Sburlati 2013] R. Sburlati, “Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate”,
Int. J. Solids Struct. 50:22-23 (2013), 3649-3658.

[Sburlati and Cianci 2015] R. Sburlati and R. Cianci, “Interphase zone effect on the spherically symmetric elastic response of
a composite material reinforced by spherical inclusions”, Int. J. Solids Struct. 71 (2015), 91-98.

[Sburlati et al. 2014] R. Sburlati, S. R. Atashipour, and S. A. Atashipour, “Reduction of the stress concentration factor in a
homogeneous panel with hole by using a functionally graded layer”, Compos. B Eng. 61 (2014), 99-109.


http://dx.doi.org/10.1007/s12206-015-0537-8
http://dx.doi.org/10.1007/s12206-015-0537-8
http://dx.doi.org/10.1115/1.2777164
http://dx.doi.org/10.1007/s10659-012-9383-4
http://dx.doi.org/10.1007/s10659-012-9383-4
http://dx.doi.org/10.1016/j.ijengsci.2017.11.019
http://dx.doi.org/10.1016/j.ijengsci.2017.11.019
http://dx.doi.org/10.1299/jsmea1988.35.4_379
http://dx.doi.org/10.1299/jsmea1988.35.4_379
http://dx.doi.org/10.1016/j.compositesb.2012.09.043
http://dx.doi.org/10.1016/j.compositesb.2012.09.043
http://dx.doi.org/10.5755/j01.mech.18.5.2702
http://dx.doi.org/10.5755/j01.mech.18.5.2702
http://dx.doi.org/10.1016/j.ijengsci.2018.12.001
http://dx.doi.org/10.1016/j.ijengsci.2018.12.001
http://dx.doi.org/10.1007/s11012-012-9625-3
http://dx.doi.org/10.1007/s11012-012-9625-3
http://dx.doi.org/10.1115/1.4037444
http://dx.doi.org/10.1115/1.4037444
http://dx.doi.org/10.1016/0022-5096(96)00041-5
http://dx.doi.org/10.1007/s00707-013-0901-7
http://dx.doi.org/10.1007/s00707-013-0901-7
http://dx.doi.org/10.1016/j.ijmecsci.2007.11.009
http://dx.doi.org/10.1016/j.ijmecsci.2007.11.009
http://dx.doi.org/10.1016/j.ijengsci.2016.12.001
http://dx.doi.org/10.2140/jomms.2018.13.311
http://dx.doi.org/10.2140/jomms.2018.13.311
http://dx.doi.org/10.12989/sem.2018.66.3.329
http://dx.doi.org/10.12989/sem.2018.66.3.329
http://dx.doi.org/10.1016/j.ijsolstr.2010.10.013
http://dx.doi.org/10.1016/j.ijsolstr.2010.10.013
http://dx.doi.org/10.1515/amm-2016-0267
http://dx.doi.org/10.1515/amm-2016-0267
http://dx.doi.org/10.1007/s10659-009-9239-8
http://dx.doi.org/10.1007/s10659-009-9239-8
http://dx.doi.org/10.1016/j.ijpvp.2008.01.002
http://dx.doi.org/10.1016/j.ijpvp.2008.01.002
http://dx.doi.org/10.1016/j.ijsolstr.2013.07.007
http://dx.doi.org/10.1016/j.ijsolstr.2015.06.010
http://dx.doi.org/10.1016/j.ijsolstr.2015.06.010
http://dx.doi.org/10.1016/j.compositesb.2014.01.036
http://dx.doi.org/10.1016/j.compositesb.2014.01.036

ANALYTICAL SOLUTIONS FOR GRADED THICK-WALLED SPHERES SUBJECTED TO TENSION 603

[Sburlati et al. 2017] R. Sburlati, M. Kashtalyan, and R. Cianci, “Effect of graded interphase on the coefficient of thermal
expansion for composites with spherical inclusions”, Int. J. Solids Struct. 110-111 (2017), 80-88.

[Sburlati et al. 2018] R. Sburlati, R. Cianci, and M. Kashtalyan, “Hashin’s bounds for elastic properties of particle-reinforced
composites with graded interphase”, Int. J. Solids Struct. 138 (2018), 224-235.

[Suresh et al. 1999] S. Suresh, M. Olsson, A. E. Giannakopoulos, N. P. Padture, and J. Jitcharoen, “Engineering the resistance
to sliding-contact damage through controlled gradients in elastic properties at contact surfaces”, Acta Mater. 47:14 (1999),
3915-3926.

[Tutuncu 2007] N. Tutuncu, “Stresses in thick-walled FGM cylinders with exponentially-varying properties”, Eng. Struct. 29:9
(2007), 2032-2035.

[Tutuncu and Ozturk 2001] N. Tutuncu and M. Ozturk, “Exact solutions for stresses in functionally graded pressure vessels”,
Compos. B Eng. 32:8 (2001), 683—686.

[Xin et al. 2014] L. Xin, G. Dui, S. Yang, and J. Zhang, “An elasticity solution for functionally graded thick-walled tube
subjected to internal pressure”, Int. J. Mech. Sci. 89 (2014), 344-349.

[Yan and Mi 2019] J. Yan and C. Mi, “A receding contact analysis for an elastic layer reinforced with a functionally graded
coating and pressed against a half-plane”, J. Mech. Sci. Technol. 33:9 (2019), 4331-4344.

[Yan et al. 2019] J. Yan, C. Mi, and Z. Liu, “A semianalytical and finite-element solution to the unbonded contact between a
frictionless layer and an FGM-coated half-plane”, Math. Mech. Solids 24:2 (2019), 448—464.

[Yang and Gao 2016] Q. Yang and C.-F. Gao, “Reduction of the stress concentration around an elliptic hole by using a func-
tionally graded layer”, Acta Mech. 227:9 (2016), 2427-2437.

[Yang et al. 2009] Q. Yang, C.-F. Gao, and W. Chen, “Stress analysis of a functional graded material plate with a circular hole”,
Arch. Appl. Mech. 80:8 (2009), 895-907.

[Yang et al. 2015] B. Yang, W. Q. Chen, and H. J. Ding, “3D elasticity solutions for equilibrium problems of transversely
isotropic FGM plates with holes”, Acta Mech. 226:5 (2015), 1571-1590.

[Zheng et al. 2019] C. Zheng, X. Li, and C. Mi, “Reducing stress concentrations in unidirectionally tensioned thick-walled
spheres through embedding a functionally graded reinforcement”, Int. J. Mech. Sci. 152 (2019), 257-267.

Received 17 Jan 2020. Revised 18 Jul 2020. Accepted 12 Aug 2020.

CHENYI ZHENG: 594040623Qqq . com
Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, 2 Sipailou Street,
Nanjing, 210096, China

CHANGWEN MI: mi@seu.edu.cn
Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, 2 Sipailou Street,
Nanjing, 210096, China

mathematical sciences publishers :'msp


http://dx.doi.org/10.1016/j.ijsolstr.2017.02.001
http://dx.doi.org/10.1016/j.ijsolstr.2017.02.001
http://dx.doi.org/10.1016/j.ijsolstr.2018.01.015
http://dx.doi.org/10.1016/j.ijsolstr.2018.01.015
http://dx.doi.org/10.1016/S1359-6454(99)00205-0
http://dx.doi.org/10.1016/S1359-6454(99)00205-0
http://dx.doi.org/10.1016/j.engstruct.2006.12.003
http://dx.doi.org/10.1016/S1359-8368(01)00041-5
http://dx.doi.org/10.1016/j.ijmecsci.2014.08.028
http://dx.doi.org/10.1016/j.ijmecsci.2014.08.028
http://dx.doi.org/10.1007/s12206-019-0829-5
http://dx.doi.org/10.1007/s12206-019-0829-5
http://dx.doi.org/10.1177/1081286517744600
http://dx.doi.org/10.1177/1081286517744600
http://dx.doi.org/10.1007/s00707-016-1620-7
http://dx.doi.org/10.1007/s00707-016-1620-7
http://dx.doi.org/10.1007/s00419-009-0349-3
http://dx.doi.org/10.1007/s00707-014-1270-6
http://dx.doi.org/10.1007/s00707-014-1270-6
http://dx.doi.org/10.1016/j.ijmecsci.2018.12.055
http://dx.doi.org/10.1016/j.ijmecsci.2018.12.055
mailto:594040623@qq.com
mailto:mi@seu.edu.cn
http://msp.org

JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

Founded by Charles R.

EDITORIAL BOARD

ADAIR R. AGUIAR
KATIA BERTOLDI
DAVIDE BIGONI
MAENGHYO CHO
HUILING DUAN
YIBIN FU

IWONA JASIUK
DENNIS KOCHMANN
MITSUTOSHI KURODA
CHEE W. LM

ZISHUN LIU

THOMAS J. PENCE
GIANNI ROYER-CARFAGNI
DAVID STEIGMANN
PAUL STEINMANN
KENJIRO TERADA

ADVISORY BOARD

J. P. CARTER
D. H. HODGES
J. HUTCHINSON
D. PAMPLONA
M. B. RUBIN

PRODUCTION

SILVIO LEVY

msp.org/jomms

Steele and Marie-Louise Steele

University of Sdo Paulo at Sdo Carlos, Brazil
Harvard University, USA

University of Trento, Italy

Seoul National University, Korea

Beijing University

Keele University, UK

University of Illinois at Urbana-Champaign, USA
ETH Zurich

Yamagata University, Japan

City University of Hong Kong

Xi’an Jiaotong University, China

Michigan State University, USA

Universita degli studi di Parma, Italy

University of California at Berkeley, USA
Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany
Tohoku University, Japan

University of Sydney, Australia

Georgia Institute of Technology, USA

Harvard University, USA

Universidade Catdlica do Rio de Janeiro, Brazil
Technion, Haifa, Israel

production@msp.org

Scientific Editor

Cover photo: Wikimedia Commons

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2020 is US $660/year for the electronic version, and
$830/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2020 Mathematical Sciences Publishers


http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/

Journal of Mechanics of Materials and Structures

Volume 15, No. 5 December 2020

Approximate conformal mappings and elasticity problems for noncircular tubes
DAMIR F. ABZALILOV, PYOTR N. IVANSHIN and ELENA A. SHIROKOVA

Magnetorheological elastomer isolator in compression mode for IMU vibration
isolation YANG FUFENG and TAO YU

Analytical solutions for displacements and stresses in functionally graded
thick-walled spheres subjected to a unidirectional outer tension
CHENYI ZHENG and CHANGWEN MI

Field intensity factors of three cracks originating from a circular hole in a
thermoelectric material QING-NAN L1U and SHENG-HU DING

Experimental study of deformation processes in large-scale concrete structures
under quasistatic loading IGOR SHARDAKOV, IRINA GLOT, ALEKSEY
SHESTAKOV, ROMAN TSVETKOV, VALERIY YEPIN and GEORGIY GUSEV

555

565

585

605

619


http://dx.doi.org/10.2140/jomms.2020.15.555
http://dx.doi.org/10.2140/jomms.2020.15.565
http://dx.doi.org/10.2140/jomms.2020.15.565
http://dx.doi.org/10.2140/jomms.2020.15.585
http://dx.doi.org/10.2140/jomms.2020.15.585
http://dx.doi.org/10.2140/jomms.2020.15.605
http://dx.doi.org/10.2140/jomms.2020.15.605
http://dx.doi.org/10.2140/jomms.2020.15.619
http://dx.doi.org/10.2140/jomms.2020.15.619

	1. Introduction
	2. Method of solution
	3. Results and discussion
	4. Concluding remarks
	Acknowledgements
	References
	
	

