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A SIMPLIFIED STRAIN GRADIENT KIRCHHOFF ROD MODEL
AND ITS APPLICATIONS ON MICROSPRINGS AND MICROCOLUMNS

JUN HONG, GONGYE ZHANG, XIAO WANG AND CHANGWEN MI

The equilibrium equations and boundary conditions of elastic Kirchhoff rods are presented within the
theoretical framework of the simplified strain gradient theory. The newly developed Cosserat rod model
contains only one intrinsic material length squared parameter to account for the effects of microstructures.
Applications of the theory are also presented in this paper. Examples include the equilibrium analysis of
a microspring and the buckling behavior of a microcolumn. The first application focuses on estimating
the restoring force of a microspring that is deformed from an originally straight rod with uniform cross-
sectional area. Semianalytical results show that the restoring force of the microspring predicted by the new
strain gradient rod model is always larger than that of its classical counterpart. The restoring force is found
to increase with both the intrinsic material length squared parameter and the rod radius. For the stability
analysis of a microcolumn, an analytical expression is derived for the critical buckling load. It is found that
the critical force predicted by the developed nonclassical Kirchhoff rod model depends linearly on the intrin-
sic material length squared parameter, quantitatively indicating the significance of strain gradient effects.

1. Introduction

In microelectromechanical and nanoelectromechanical systems, thin elastic rods are widely used. Exam-
ples include micro and nanosprings, medical robots and DNA mechanics [Westcott et al. 1995; McIlroy
et al. 2001; Seto et al. 2001; Eslami-Mossallam and Ejtehadi 2009; Burgner-Kahrs et al. 2015; Liangruksa
et al. 2017]. Since the characteristic length of these structures is at the micro or even nanoscale, the effects
of microstructures on the mechanical behavior of thin rods become increasingly important. For these
cases, the classical Kirchhoff rod theory becomes inadequate due to its absence of any intrinsic material
parameters. To address this issue, new models need to be developed so that microstructure-dependent
material parameters can be taken into account.

In the last four decades, several higher-order elasticity theories have been applied in order to develop
nonclassical rod models. Lembo rederived the equilibrium equations of a Kirchhoff rod by employing the
nonlocal continuum theory suggested by Eringen [Lembo 2016; Eringen 1983]. The nonlocal integral
elasticity theory has been employed by Zhu and Li [2017] in order to analyze the longitudinal and
torsional vibrations of size-dependent rods. By the use of Cosserat theory [Lakes 2018], Liu and Wang
[2009] developed the equations of motion for a very thin rod. The motion of the rod is formulated
in terms of a reference (Cosserat) curve and three orthonormal vectors. Based on a potential energy
method, Steigmann [2012] proposed a new theory on fiber-reinforced composites subjected to stretching,
bending and twisting. By incorporating the effects of surface tension and surface elasticity [Gurtin and
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Murdoch 1975; Gurtin and Murdoch 1978], Wang et al. [2010] developed a nonclassical rod model and
investigated the surface effects of nanosized springs. Employing a microelasticity theory characterized
by two additional constitutive parameters, Lazopoulos and Lazopoulos [2010] analyzed the bending and
buckling of a thin strain gradient elastic beam.

The simplified strain gradient elasticity theory (SSGET) was developed by Altan and Aifantis [1997].
This theory is also known as the dipolar gradient elasticity theory [Gourgiotis and Georgiadis 2009].
The SSGET model was simplified from the original strain gradient elasticity theory that contains a total
number of sixteen intrinsic material parameters [Mindlin 1964]. It can also be reduced from the second
form of Mindlin’s strain gradient elasticity theory, in which still five additional material parameters
are required [Mindlin and Eshel 1968; Polizzotto 2003]. These strain gradient models are relatively
more difficult to be applied in engineering practice because of their large number of material parameters
[Mindlin and Eshel 1968; Lam et al. 2003; Ansari et al. 2014; Lurie and Solyaev 2018]. In contrast, only a
single material parameter is contained in the SSGET version. For this reason, the SSGET framework has
been applied to successfully solve many fundamental mechanical problems such as beams [Lazopoulos
2003; Ansari et al. 2012; Chen et al. 2019], plates [Lazopoulos 2004; Papargyri-Beskou and Beskos
2008], shells [Papargyri-Beskou and Beskos 2009; Gao et al. 2009], inclusions [Gao and Ma 2009;
2010] and many other microstructured solids [Gourgiotis and Georgiadis 2009; Georgiadis et al. 2004;
Polizzotto 2012].

Couple stress theory has also played a role in rod mechanics. Zhang [2010] proposed a nonclassical
Kirchhoff rod model using the classical couple stress theory. Recently, Zhang and Gao [2019] developed
a nonclassical Kirchhoff rod model based on a modified couple stress theory [Yang et al. 2002; Park
and Gao 2008; Ansari et al. 2015]. Both the governing equations and boundary conditions were derived.
Moreover, only one material length scale parameter was used to describe the effects of couple stress.
However, although the modified couple stress theory can be reduced from some alternative forms of
Mindlin’s strain gradient elasticity theory [Mindlin and Eshel 1968; Polizzotto 2017; Norouzzadeh et al.
2018a; 2018b], the couple stress and the simplified strain gradient theories were in nature proposed for
describing the rotational and the first-order strain gradient effects, respectively. As a result, there is still a
call upon a rod model within the context of the SSGET, such that the effects of strain gradient in Kirchhoff
rods can be better evaluated. The present work aims to fill this gap by developing a microstructure-
dependent SSGET model for Kirchhoff rods.

In this paper, a nonclassical Kirchhoff rod model is developed based on the SSGET model and the
principle of minimum total potential energy, featuring only one additional material constant to account
for the strain gradient effects. Based on the authors’ knowledge, within the context of SSGET theory, no
model that is able to simultaneously accounting for stretching, twisting, and bending deformations has
been proposed for an elastic Kirchhoff rod.

This paper is structured as follows. Section 2 presents the SSGET-based theoretical formulation for
Kirchhoff rods under the influence of microstructural effects. Both the nonclassical equilibrium equations
and boundary conditions are analytically derived. They reduce to the classical Kirchhoff rod model when
microstructure-dependent effects are ignored. To illustrate the applications of the proposed SSGET rod
model, in Section 3, two examples are provided. The first of which calculates the restoring force in a he-
lical microspring that is deformed from an originally straight rod with uniform cross-section. The second
example performs a buckling analysis for a microcolumn. Finally, in Section 4, conclusions are drawn.
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2. Theoretical framework

Within the context of the simplified strain gradient elasticity theory [Altan and Aifantis 1997; Gao and
Park 2007], the constitutive relations can be written as

σi j = τi j −µi jk,k = (1− c∇2)τi j , (1a)

τi j =
E

1+v

(
εi j +

v

1−2v
εkk δi j

)
= τ j i , (1b)

µi jk = cτi j,k = µ j ik, (1c)

where σi j , τi j , and µi jk are, respectively, the components of total stress, Cauchy stress, and double stress.
The symbol δi j is the Kronecker delta, c is the simplified strain gradient coefficient having the dimension
of length squared, E is Young’s modulus, v is Poisson’s ratio, and ∇2 denotes the Laplacian operator.
It is noted that Equations (1a)–(1c) serve as the constitutive relations for a Kirchhoff rod (Figure 1),
featuring one additional constitutive coefficient accounting for strain gradient effects. The components
of the infinitesimal strain tensor εi j can be shown to be [Zhang and Gao 2019; Dill 1992]

ε11 =−vε+ v(κ2− κ
0
2 )X − v(κ1− κ

0
1 )Y, (2a)

ε12 = 0, (2b)

ε22 =−vε+ v(κ2− κ
0
2 )X − v(κ1− κ

0
1 )Y, (2c)

ε13 =
1
2

[
∂x01

∂S
− κ0

3 x02+ κ
0
2 x03− θ2− (κ3− κ

0
3 )Y + (κ3− κ

0
3 )
∂ϕ

∂X

]
, (2d)

ε23 =
1
2

[
∂x02

∂S
+ κ0

3 x01− κ
0
1 x03+ θ1+ (κ3− κ

0
3 )X + (κ3− κ

0
3 )
∂ϕ

∂Y

]
, (2e)

ε33 =
∂x03

∂S
− κ0

2 x01+ κ
0
1 x02− (κ2− κ

0
2 )X + (κ1− κ

0
1 )Y, (2f)

where (X, Y, S) are the material coordinates forming a curvilinear coordinate system X i (Xα, S) origi-
nated at point P , i.e., X1= X , X2= Y and X3= S, as shown in Figure 1. It should be noted that, although
the strain components given in (2a)–(2f) are only applicable to rods subjected to infinitesimal strains.
Nonetheless, finite rotations are allowed, as discussed in more details in [Dill 1992]. The components of
the extra displacement x0 are given by

x0(S, t)= r(S, t)− R(S). (3)

In addition, θ1 and θ2 are components of the small rotation vector θ , κ0
i are components of the curvature

at the material point, and κi represent the components of curvature in the deformed rod. These two
curvatures can respectively be defined by [Dill 1992; Coleman et al. 1993]

∂di

∂S
= κ0
× di , (4a)

∂ei

∂S
= κ × ei , (4b)
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Note that here and throughout this paper, the summation convention and the standard index 

notation are assumed. Unless otherwise indicated, the Greek indices run from 1 to 2 and the 

Latin ones range from 1 to 3. 

 

Fig. 1. Geometry of a Krichhoff rod: the reference and the deformed configurations. 

From equations (2) and (4a-f), the components of Cauchy stress tensor in the Kirchhoff rod 

can be derived 
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where G is the shear modulus of elasticity, i.e., / 2(1 )G E v= + . Substituting equations (7a-d) 

into (1) then gives the components of the total stress tensor 
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Figure 1. Geometry of a Krichhoff rod: the deformed and the reference configurations.

where ε = ∂x03/∂S− κ0
2 x01+ κ

0
1 x02 represents the extension of the centroidal axis along the S direction

[Zhang and Gao 2019]. The warping function ϕ(X, Y ) describes the torsion of the rod and depends on
the cross-sectional shape.

Note that here and throughout this paper, the summation convention and the standard index notation
are assumed. Unless otherwise indicated, the Greek indices run from 1 to 2 and the Latin ones range
from 1 to 3.

From (1b) and (2a)–(2f), the components of Cauchy stress tensor in the Kirchhoff rod can be derived:

τ13 = G
[
∂x01

∂S
− κ0

3 x02+ κ
0
2 x03− θ2− (κ3− κ

0
3 )Y + (κ3− κ

0
3 )
∂ϕ

∂X

]
, (5a)

τ23 = G
[
∂x02

∂S
+ κ0

3 x01− κ
0
1 x03+ θ1+ (κ3− κ

0
3 )X + (κ3− κ

0
3 )
∂ϕ

∂Y

]
, (5b)

τ33 = E
[
∂x03

∂S
− κ0

2 x01+ κ
0
1 x02− (κ2− κ

0
2 )X + (κ1− κ

0
1 )Y

]
, (5c)

τ11 = τ22 = τ12 = 0, (5d)

where G is the shear modulus of elasticity, i.e., G = E/2(1+ v). Substituting (5a)–(5d) into (1a) then
gives the components of the total stress tensor

σ13 = (1− c∇2)G
[
∂x01

∂S
− κ0

3 x02+ κ
0
2 x03− θ2− (κ3− κ

0
3 )Y + (κ3− κ

0
3 )
∂ϕ

∂X

]
, (6a)

σ23 = (1− c∇2)G
[
∂x02

∂S
+ κ0

3 x01− κ
0
1 x03+ θ1+ (κ3− κ

0
3 )X + (κ3− κ

0
3 )
∂ϕ

∂Y

]
, (6b)

σ33 = (1− c∇2)E
[
∂x03

∂S
− κ0

2 x01+ κ
0
1 x02− (κ2− κ

0
2 )X + (κ1− κ

0
1 )Y

]
, (6c)

σ11 = σ22 = σ12 = 0. (6d)

Recall that, in a multiparameter strain gradient theory, the total strain energy stored in a continuum is
composed of both the work done by Cauchy stress against strain and the one done by the double stress
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with respect to strain gradient [Mindlin and Eshel 1968; Gao and Park 2007; Papargyri-Beskou et al.
2003]

U =
1
2

∫
�

(τi j εi j +µi jk εi j,k) dV . (7)

Within the context of SSGET theory, the first variation of this strain energy function can be evaluated
by the use of (1a), (1b), (1c), (2a)–(2f), (5a)–(5d), (6a)–(6d) and the divergence theorem

δU =
∫
�

σi j δεi j dV +
∫

A
cτi j,k nk δεi j dA

=

∫
�

(σ33 δε33+ 2σ13 δε13+ 2σ23 δε23) dV

+

∫
A
(cτ33,k nk δε33+ 2cτ13,k nk δε13+ 2cτ23,k nk δε23) dA, (8)

where A is the area of both end surfaces of the rod. It should be noted that the boundary surface ∂�
should include both the end and the lateral surfaces of the rod. However, in the surface integral, there is
no contribution from the lateral surface because it is free of any traction, i.e.,

τ11 = τ22 = τ12 = 0.

Such an assumption is the same as the one used for solving the torsion and bending deformation of
prismatic bars only subjected to end loads in classical theory of elasticity. As a result, we only need to
consider the surface integral on end cross-sections S = L and S = 0. Moreover, the volume integral is
formulated in terms of the total stresses (1a). From the first integrand of the volume integral, it there can
be concluded that both the longitudinal and the transverse strain gradients of the bending stress/strain
are included in the formulation. In addition, the second and the third integrands of the volume integral
demonstrate that the shear strain gradient effects are also taken into account. The latter terms are not
needed in higher-order elasticity theory of beams under pure bending.

In terms of (4a)–(4b) and noting θ = θi di , a relation bridging the rotational and the curvature vector
can be derived:

θ ′ · di = κ · ei − κ0
· di ≡ κi − κ

0
i , (9)

whose components are given by

θ ′1− κ
0
3θ2+ κ

0
2θ3 = κ1− κ

0
1 , (10a)

θ ′2+ κ
0
3θ1− κ

0
1θ3 = κ2− κ

0
2 , (10b)

θ ′3− κ
0
2θ1+ κ

0
1θ2 = κ3− κ

0
3 . (10c)

For brevity, the development of (9) and (10a)–(10c) are detailed in the Appendix. In (10a)–(10c) and
throughout the paper, the prime denotes the spatial derivative with respect to the centerline coordinate S,
e.g., θ ′1 = ∂θ1/∂S.
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Substituting (2d)–(2f) and (10a)–(10c) into the first integral in (8) results in∫
�

(σ33 δε33+ 2σ13 δε13+ 2σ23 δε23)dV

=−

∫ L

0

[(
F ′1− κ

0
3 F2+ κ

0
2 F3

)
δx01+

(
F ′2+ κ

0
3 F1− κ

0
1 F3

)
δx02+

(
F ′3+ κ

0
2 F1+ κ

0
1 F2

)
δx03

+
(
M ′1− κ

0
3 M2+ κ

0
2 M3− F2+ κ

0
2Φ1+ κ

0
2Φ2

)
δθ1

+
(
M ′2+ κ

0
3 M1− κ

0
1 M3+ F1− κ

0
1Φ1− κ

0
1Φ2

)
δθ2

+
(
M ′3− κ

0
2 M1+ κ

0
1 M2+Φ

′

1+Φ
′

2
)
δθ3
]
ds

+
[(

F1δx01+ F2δx02+ F3δx03
)]∣∣s=L

s=0 + [M1δθ1+M2δθ2+ (M3+Φ1+Φ2)δθ3]
∣∣s=L
s=0 , (11)

where L is the total length of the rod and

F1 ≡

∫
A
σ31 dA, F2 ≡

∫
A
σ32 dA, F3 ≡

∫
A
σ33 dA, (12)

M1 ≡

∫
A

Yσ33 dA, M2 ≡

∫
A
−Xσ33 dA, M3 ≡

∫
A
(Xσ32− Yσ31)dA, (13)

Φ1 ≡

∫
A
σ13

∂ϕ

∂X
dA, Φ2 ≡

∫
A
σ23

∂ϕ

∂Y
dA. (14)

They stand for the resultant forces and moments, obtained by integrating the total stresses over the cross-
sectional area. With the help of (2d)–(2f), (10a)–(10c) and the relations [Zhang and Gao 2019]

∂x01

∂S
− κ0

3 x02+ κ
0
2 x03 = θ2,

∂x02

∂S
+ κ0

3 x01− κ
0
1 x03 =−θ1,

∂x03

∂S
− κ0

2 x01+ κ
0
1 x02 = ε, (15)

the first variation of the second integral in (8) can also be determined:[∫
∂�

(cτ33,k δε33+ 2cτ13,k δε13+ 2cτ23,k δε23)dA
]L

0

=
[(
κ0

3 MG
2 − κ

0
2 MG

3 − κ
0
2Φ

G
1 − κ

0
2Φ

G
2
)
δθ1+

(
−κ0

3 MG
1 + κ

0
1 MG

3 + κ
0
1Φ

G
1 + κ

0
1Φ

G
2
)
δθ2

+
(
κ0

2 MG
1 − κ

0
1 MG

2
)
δθ3
]∣∣s=L

s=0 +
[
MG

1 δθ
′

1+MG
2 δθ

′

2+
(
MG

3 +Φ
G
1 +Φ

G
2
)
δθ ′3
]∣∣s=L

s=0 , (16)

where

MG
1 ≡

∫
A

Y cτ33,k dA, MG
2 ≡

∫
A
−Xcτ33,k dA, MG

3 ≡

∫
A
(Xcτ32,k − Y cτ31,k) dA, (17)

ΦG
1 ≡

∫
A

cτ13,k
∂ϕ

∂X
dA, ΦG

2 ≡

∫
A

cτ23,k
∂ϕ

∂Y
dA. (18)

Within the context of the SSGET theory [Papargyri-Beskou et al. 2003], the virtual work done by the
external forces acting on the rod can be written as

δW =
∫ L

0
( f · δx0+ c · δθ)dS+ (F · δx0+M · δθ +MG

· δθ ′)
∣∣L
0 , (19)
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where f and c are the body force and body couple per unit length. The variables F, M and MG are,
respectively, the external force, bending moments and double bending moments applied at the ends of
the rod.

According to the principle of minimum total potential energy [Reddy 2002], the first variation of the
total potential energy vanishes under equilibrium state, i.e.,

δ5= δU − δW = 0. (20)

With the help of the fundamental lemma of calculus of variations, the substitution of (8), (11), (16)
and (19) into (20) yields the equilibrium equations

F ′1− κ
0
3 F2+ κ

0
2 F3+ f1 = 0, (21a)

F ′2+ κ
0
3 F1− κ

0
1 F3+ f2 = 0, (21b)

F ′3− κ
0
2 F1+ κ

0
1 F2+ f3 = 0, (21c)

M ′1− κ
0
3 M2+ κ

0
2 M3− F2+ κ

0
2Φ1+ κ

0
2Φ2+ c1 = 0, (21d)

M ′2+ κ
0
3 M1− κ

0
1 M3+ F1− κ

0
1Φ1− κ

0
1Φ2+ c2 = 0, (21e)

M ′3− κ
0
2 M1+ κ

0
1 M2+Φ

′

1+Φ
′

2+ c3 = 0, (21f)

and the boundary conditions

F1 = F1, or x01 = x̄01, (22a)

F2 = F2, or x02 = x̄02, (22b)

F3 = F3, or x03 = x̄03, (22c)

M1+ κ
0
3 MG

2 − κ
0
2 MG

3 − κ
0
28

G
1 − κ

0
28

G
2 = M1, or θ1 = θ̄1, (22d)

M2− κ
0
3 MG

1 + κ
0
1 MG

3 + κ
0
18

G
1 + κ

0
18

G
2 = M2, or θ2 = θ̄2, (22e)

M3+ κ
0
2 MG

1 − κ
0
1 MG

2 +81+82 = M3, or θ3 = θ̄3, (22f)

MG
1 = MG

1 , or θ ′1 = θ̄
′

1, (22g)

MG
2 = MG

2 , or θ ′2 = θ̄
′

2, (22h)

MG
3 +8

G
1 +8

G
2 = MG

3 , or θ ′3 = θ̄
′

3. (22i)

Note that, in (22a)–(22i), those variables with an overbar stand for prescribed values. It is noted that, by
setting the initial curvatures to zero, the equilibrium equations (21a)–(21f) and the boundary conditions
(22a)–(22i) reduce to the governing equations of straight rods. The equilibrium equations (21a)–(21f)
and boundary conditions (22a)–(22i) can also be rewritten in a coordinate-invariant form, i.e.,

F′+ f = 0, M ′+Φ ′+ d3× F+ c= 0, (23)

and

F = F1d1+ F2d2+ F3d3, f = f1d1+ f2d2+ f3d3, c f = c2d1− c1d2,

M = M1d1+M2d2+M3d3, Φ = (Φ1+Φ2)d3, c= c1d1+ c2d2+ 2c3d3.
(24)
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It should be pointed out that this newly developed model, as an extension of the classical Kirchhoff rod
theory based on the simplified strain gradient theory, has the same limitations as those of the classical
Kirchhoff rod model.

For rods with a circular cross-section, the warping function vanishes, i.e., ϕ(X, Y )= 0. As a result,
the equilibrium equations (21a)–(21f) simplify to

F ′1− κ3 F2+ κ2 F3+ f1 = 0, (25a)

F ′2+ κ3 F1− κ1 F3+ f2 = 0, (25b)

F ′3− κ2 F1+ κ1 F2+ f3 = 0, (25c)

M ′1− κ3 M2+ κ2 M3− F2+ c1 = 0, (25d)

M ′2+ κ3 M1− κ1 M3+ F1+ c2 = 0, (25e)

M ′3− κ2 M1+ κ1 M2+ c3 = 0. (25f)

When the microstructure-dependent effects are absent, i.e., c = 0, equations (1c) and (1a) reduce to
µi jk = 0 and σi j = τi j , respectively. Similarly, equations (12) and (13) represent the resultant forces
and moments of Cauchy stress alone. Equations (25a)–(25f) therefore degenerate to the equilibrium
conditions of a classical Kirchhoff rod [Dill 1992; Love 1944].

3. Applications

3.1. Equilibrium analysis of a microspring. Figure 2 shows a helical spring of radius r made of a
uniform circular rod of radius rrod. We consider that body forces and moments are absent, i.e., f1 = f2 =

f3 = 0 and c1 = c2 = c3 = 0, and that the centerline of the undeformed rod is a straight line (κ0
i = 0).

Based on the Euler angles in the deformed configuration (β ′1, β
′

2, β
′

3) [Coleman et al. 1993; Love 1944]
the components of the curvature vector κ are given by

κ1 =−β
′

1 sinβ2 cosβ3+β
′

2 sinβ3, κ2 = β
′

1 sinβ2 sinβ3+β
′

2 cosβ3, κ3 = β
′

3+β
′

1 cosβ2, (26)

where β1, β2 and β3 are three Euler angles associated with the base vectors ei (Figure 2).
For the rod bent into a spring (Figure 2), one specific solution can be obtained by assuming β2 =

π/2−α and β ′1 and β ′3 as constants [Love 1944]. For a given spring, the angle α between the centerline
of the rod and the spring cross-section is also assumed a constant. With these assumptions, (26) simplifies
to

κ1 =−β
′

1 cosα cosβ3, (27a)

κ2 = β
′

1 cosα sinβ3, (27b)

κ3 = β
′

3+β
′

1 sinα. (27c)

From equations (6a)–(6d) and (13), the resultant moments acting on the rod cross-section can be
expressed in terms of the three curvatures κ1, κ2 and κ3:

M1 = (1− c∇2)E Iκ1, M2 = (1− c∇2)E Iκ2, M3 = (1− c∇2)G Jκ3, (28)

where
I =

∫
A

X2 dA =
∫

A
Y 2 dA, J =

∫
A
(X2
+ Y 2)dA, (29)
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Fig. 2 shows a helical spring of radius r made of a uniform circular rod of radius rrod. We 

consider that body forces and moments are absent, i.e. 1 2 3 0f f f= = =  and 1 2 3 0c c c= = = ，and 

that the centerline of the undeformed rod is a straight line ( 0 0iκ = ). Based on the Euler angles in 

the deformed configuration ( 1 2 3, ,β β β′ ′ ′),46, 49 the components of the curvature vector κ  are given 

by 

            

 

κ1 = − ′β1 sinβ2 cosβ3 + ′β2 sinβ3,

κ 2 = ′β1 sinβ2 sinβ3 + ′β2 cosβ3,

κ 3 = ′β3 + ′β1 cosβ2 ,

                                   (28a-c) 

where β1, β2 and β3 are three Euler angles associated with the base vectors ei (Fig. 2). 

 

Fig. 2. A microspring of radius r made by a uniform circular rod of radius rrod. 

For the rod bent into a spring (Fig. 2), one specific solution can be obtained by assuming 

2 / 2β π α= −  and  ′β1  and  ′β3  as constants.49 For a given spring, the angle α between the 

Figure 2. A microspring of radius r made by a uniform circular rod of radius rrod.

are, respectively, the second moment of area and the polar moment of inertial of the circular cross-section.
Substituting equations (28) into (25a)–(25f) yields

∂

∂S
[(1− c∇2)E Iκ1] − κ3[(1− c∇2)E Iκ2] + κ2[(1− c∇2)G Jκ3] − F2 = 0, (30a)

∂

∂S
[(1− c∇2)E Iκ2] + κ3[(1− c∇2)E Iκ1] − κ1[(1− c∇2)G Jκ3] + F1 = 0, (30b)

∂

∂S
[(1− c∇2)G Jκ3] = 0. (30c)

From (27c), it is seen that the third component κ3 of the curvature vector is a constant. Equation (30c)
can therefore be automatically satisfied.

From static equilibrium, the resultant forces of stresses integrated over a rod cross-section must balance
the restoring force R acting along the symmetry axis of the helix microspring [Love 1944]. Projections
of the static equilibrium equation along the three local coordinate axes in the deformed configuration
lead to

F1 =−R cosβ3 cosα, (31a)

F2 = R sinβ3 cosα, (31b)

F3 = R sinα. (31c)

It can be readily shown that equations (27a)–(27c) and (31a)–(31c) satisfy the nonclassical equilibrium
equations (25a)–(25f). Substituting (27a)–(27c) into (30a) and (30b) results in

F1 =−[(1+ l2)E Iβ ′3− (β
′

3+β
′

1 sinα)(1+ l2)E I +G J (1+ l2)(β ′3+β
′

1 sinα)]β ′1 cosα cosβ3, (32a)

F2 = [(1+ l2)E Iβ ′3− (β
′

3+β
′

1 sinα)(1+ l2)E I + (β ′3+β
′

1 sinα)(1+ l2)G J ]β ′1 cosα sinβ3, (32b)
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where l2
= cβ ′23 , with c being the simplified strain gradient coefficient. Note that, for the present problem,

α, β ′1 and β ′3 are all constants for the entire helical rod (0 ≤ S ≤ L). With κ0
i = 0, 81 = 82 = 0 and

8G
1 = 8

G
2 = 0, these constants can ensure that all the resultants given by (12), (13) and (17) satisfy

the boundary conditions (22a)–(22i). Equations (27a)–(27c) therefore represent an exact solution of the
helical rod problem based on the developed nonclassical Kirchhoff rod model.

Comparing (32a) and (32b) with (31a) and (31b), it then follows that

R = [(β ′3+β
′

1 sinα)G J −β ′1 sinαE I ](1+ l2)β ′1. (33)

It is worth noting that the third component κ3 of the curvature vector is composed of two parts as in
(27c): the internal twist β ′3 and the tortuosity 1/6 = β ′1 sinα. In terms of the radius r of the microspring,
the measure of tortuosity is found to be [Love 1944]

1
6
= sinα cosα

r
= β ′1 sinα. (34)

The restoring force R can then be calculated as

R =
[
β ′3G J + (G J − E I )sinα cosα

r

]
(1+ l2)

cosα
r

. (35)

When the microstructure-dependent effects are absent by setting c = 0, the material length squared
constant also becomes zero (l2

= 0). As a result, equation (35) reduces to

RC = G J
(
β ′3+

sinα cosα
r

)
cosα

r
− E I

sinα cos2 α

r2 . (36)

Equation (36) is identical to the classical restoring force exerted by a Kirchhoff rod bent into a helical
spring [Love 1944]. Equations (35) and (36) clearly show that the incorporation of the microstructural
effects will always lead to the increase of the restoring force R.

Figure 3 shows the variation of the restoring force R predicted by the proposed SSGET rod model

 15 

                                  
  
RC = GJ ( ′β3 +

sinα cos α
r

)
cos α

r
− EI sinα cos2α

r 2 .                        (38) 

Equation (38) is identical to the classical restoring force exerted by a Kirchhoff rod bent into a 

helical spring49. Equations (37) and (38) clearly show that the incorporation of the 

microstructural effects will always lead to the increase of the restoring force R. 

Fig. 3 shows the variation of the restoring force R predicted by the proposed SSGET rod 

model as a function of the rod radius (rrod) and the strength of microstructural effects (c/r2). For 

comparison purpose, the classical solution (c/r2 = 0) is also plotted in the figure. The isotropic 

material properties used in the calculations are assumed to be E = 135 GPa and v = 0.3.43 The 

constant angle α is taken as −30° and the dimensionless constant  ′β3  is set to be 100. The radius 

of the microspring r is taken to be 5 mm. 

 

Fig. 3. Variation of the microspring restoring force R as a function of the rod radius (rrod) and the 
dimensionless strength of the microstructural effects (c/r2). 

From Fig. 3, it is clearly seen that the restoring force R predicted by both the proposed 

SSGET rod model and its classical counterpart increases with the rod radius. This behavior 

follows the general trend and is physically natural. It is interesting to note that the restoring force 

Figure 3. Variation of the microspring restoring force R as a function of the rod radius
(rrod) and the dimensionless strength of the microstructural effects (c/r2).
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R predicted by the proposed SSGET rod model is always larger than that of the classical solution. 

This means that the classical solution underestimates the restoring force of a microspring. The 

incorporation of the microstructure-dependent effects helps stiffen the microspring. In addition, 

the difference between the predicted nonclassical restoring force and its classical counterpart 

increases with the simplified strain gradient coefficient. 

To further illustrate the microstructure-dependent effects with the proposed SSGET rod 

model, the variation of the spring restoring force R as a function of the angle α is shown in Fig. 4. 

In this case, the rod radius is fixed as a constant, i.e. rrod = 100 µm. For comparison purpose, the 

restoring force R calculated from the classical model is also presented in the figure. Other 

material properties and parameters assume the same values as those employed for Fig. 3. The 

restoring force R is calculated for all possible values of the angle α, i.e. (−π/2, 0). It is seen that 

the restoring force varies parabolically with the angle α. For all simplified strain gradient 

coefficients, the maximum restoring force occurs approximately at α = 40°. As expected, the 

restoring force also increases with the simplified strain gradient coefficient c/r2. 

 

Fig. 4. Variation of the microspring restoring force R as a function of the angle α and the 
dimensionless strength of the microstructural effects (c/r2). 

3.2 Buckling analysis of a microcolumn 

Figure 4. Variation of the microspring restoring force R as a function of the angle α
and the dimensionless strength of the microstructural effects (c/r2).

as a function of the rod radius (rrod) and the strength of microstructural effects (c/r2). For comparison
purpose, the classical solution (c/r2

= 0) is also plotted in the figure. The isotropic material properties
used in the calculations are assumed to be E = 135 GPa and v = 0.3 [Gao and Park 2007]. The constant
angle α is taken as −30◦ and the dimensionless constant β ′3 is set to be 100. The radius of the microspring
r is taken to be 5 mm.

From Figure 3, it is clearly seen that the restoring force R predicted by both the proposed SSGET rod
model and its classical counterpart increases with the rod radius. This behavior follows the general trend
and is physically natural. It is interesting to note that the restoring force R predicted by the proposed SS-
GET rod model is always larger than that of the classical solution. This means that the classical solution
underestimates the restoring force of a microspring. The incorporation of the microstructure-dependent
effects helps stiffen the microspring. In addition, the difference between the predicted nonclassical
restoring force and its classical counterpart increases with the simplified strain gradient coefficient.

To further illustrate the microstructure-dependent effects with the proposed SSGET rod model, the
variation of the spring restoring force R as a function of the angle α is shown in Figure 4. In this
case, the rod radius is fixed as a constant, i.e., rrod = 100µm. For comparison purpose, the restoring
force R calculated from the classical model is also presented in the figure. Other material properties and
parameters assume the same values as those employed for Figure 3. The restoring force R is calculated for
all possible values of the angle α, i.e., (−π/2, 0). It is seen that the restoring force varies parabolically
with the angle α. For all simplified strain gradient coefficients, the maximum restoring force occurs
approximately at α = −40◦. As expected, the restoring force also increases with the simplified strain
gradient coefficient c/r2.

3.2. Buckling analysis of a microcolumn. Let us consider a simply supported microcolumn with uni-
form circular cross-section. The centerline of the undeformed column is a straight line with zero initial
curvatures κ0

i = 0, as shown in Figure 5. The microcolumn is pinned at the base (S= 0) and subjected to a
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In this subsection, let us consider a simply supported microcolumn with uniform circular 

cross-section. The centerline of the undeformed column is a straight line with zero initial 

curvatures 0 0iκ = , as shown in Fig. 5. The microcolumn is pinned at the base (S = 0) and 

subjected to a compressive axial force F at another pinned end (S = L). For small compressive 

forces, the microcolumn is simply under axial contraction. However, with increased F, buckling 

occurs in the form of a sudden transverse deflection. 

 

Fig. 5. A simply supported microcolumn subjected to an axial compressive force. 

Let u and v be the transverse displacements along the x- and y- directions. The rotation 

around the centerline of the microcolumn is denoted by γ. Note that u, v and γ are all measured 

with reference to the unbuckled state, i.e. u = x01, v = x02 and γ = θ3. Under this condition, the 

components of the curvature vector κ  becomes49 

2 2

1 2 32 2, , .v u
S S S

γκ κ κ∂ ∂ ∂= − = =
∂ ∂ ∂

                                   (39a-c) 

From equations (8a-d), (15a-c) and (39a-c), the resultant moments of the stresses can be 

expressed in terms of u, v and β as 

Figure 5. A simply supported microcolumn subjected to an axial compressive force.

compressive axial force F at another pinned end (S = L). For small compressive forces, the microcolumn
is simply under axial contraction. However, with increased F , buckling occurs in the form of a sudden
transverse deflection.

Let u and v be the transverse displacements along the x- and y-directions. The rotation around the
centerline of the microcolumn is denoted by γ . Note that u, v and γ are all measured with reference
to the unbuckled state, i.e., u = x01, v = x02 and γ = θ3. Under this condition, the components of the
curvature vector κ becomes [Love 1944]

κ1 =−
∂2v

∂S2 , κ2 =
∂2u
∂S2 , κ3 =

∂γ

∂S
. (37)

From (6a)–(6d), (13) and (37), the resultant moments of the stresses can be expressed in terms of u, v
and β as

M1 = E I
(
−
∂2v

∂S2 + c
∂4v

∂S4

)
, M2 = E I

(
∂2u
∂S2 − c

∂4u
∂S4

)
, M3 = G J

(
∂γ

∂S
− c

∂3γ

∂S3

)
. (38)

In the absence of body forces and body moments, i.e., f1 = f2 = f3 = 0 and c1 = c2 = c3 = 0,
substituting (37) and (38) back into (25d)–(25f) yields

F1 =−E I
(
∂3u
∂S3 − c

∂5u
∂S5

)
− E I

(
−
∂2v

∂S2

∂γ

∂S
+ c

∂4v

∂S4

∂γ

∂S

)
−G J

(
∂γ

∂S
∂2v

∂S2 − c
∂3γ

∂S3

∂2v

∂S2

)
, (39a)

F2 = E I
(
−
∂3v

∂S3 + c
∂5v

∂S5

)
− E I

(
∂2u
∂S2

∂γ

∂S
− c

∂4u
∂S4

∂γ

∂S

)
+G J

(
∂γ

∂S
∂2u
∂S2 − c

∂3γ

∂S3

∂2u
∂S2

)
, (39b)

G J
(
∂2γ

∂S2 − c
∂4γ

∂S4

)
−
∂2u
∂S2 E I

(
c
∂4v

∂S4

)
+
∂2v

∂S2 E I
(

c
∂4u
∂S4

)
= 0. (39c)
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With the help of (15), (22a)–(22i), (38) and in view of the zero initial curvatures κ0
i = 0, the boundary

conditions for the simply supported microcolumn with a circular cross section can be identified, i.e.,

u|S=0 = 0,
∂2u
∂S2

∣∣∣∣
S=0
= 0,

∂4u
∂S4

∣∣∣∣
S=0
= 0, (40a)

v|S=0 = 0,
∂2v

∂S2

∣∣∣∣
S=0
= 0,

∂4v

∂S4

∣∣∣∣
S=0
= 0, (40b)

F3|S=0 =−F, (40c)

∂γ

∂S

∣∣∣∣
S=0
= 0,

(
∂γ

∂S
− c

∂3γ

∂S3

)∣∣∣∣
S=0
= 0, (40d)

at the lower end (S = 0), and

u|S=L = 0,
∂2u
∂S2

∣∣∣∣
S=L
= 0,

∂4u
∂S4

∣∣∣∣
S=L
= 0, (41a)

v|S=L = 0,
∂2v

∂S2

∣∣∣∣
S=L
= 0,

∂4v

∂S4

∣∣∣∣
S=L
= 0, (41b)

F3|S=L =−F, (41c)

∂γ

∂S

∣∣∣∣
S=L
= 0,

(
∂γ

∂S
− c

∂3γ

∂S3

)∣∣∣∣
S=L
= 0, (41d)

at the upper end (S = L).
It is noted that the transverse displacements u and v satisfy the same type of governing equations,

due to the axial symmetry property of the circular microcolumn. Given the boundary conditions (40d)
and (41d), the solution to (39c) is found to be

γ = 0, (42)

for the entire microcolumn. From this and the equation κ3 =
∂γ

∂S
in (37), it then follows that

κ3 = 0. (43)

Substituting (42) into (39a) and (39b) yields

F1 =−E I
(
∂3u
∂S3 − c

∂5u
∂S5

)
, F2 = E I

(
−
∂3v

∂S3 + c
∂5v

∂S5

)
. (44)

With the help of (40c) and (41c), equation (25c) leads to

F3 =−F. (45)

Plugging (45) and (44) into (25a) and (25b) results in

E I
(
∂4u
∂S4 − c

∂6u
∂S6

)
+ F

∂2u
∂S2 = 0, E I

(
∂4v

∂S4 − c
∂6v

∂S6

)
+ F

∂2v

∂S2 = 0. (46)
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From (46), it can be clearly seen that the transverse displacements u and v satisfy the same sixth-order
ordinary differential equation, as expected. Equations (46) can then be combined to a single equation

∂6u
∂S6 − a1

∂4u
∂S4 − a2

∂2u
∂S2 = 0, (47)

where the constant coefficients are defined by

a1 =
1
c
, a2 =

F
E I c

. (48)

The characteristic equation of (47) can be easily found:

λ6
− a1λ

4
− a2λ

2
= 0. (49)

Its six roots are given by

λ1,2,3,4 =±

√
a1±
√

a2
1 + 4a2

2
, λ5,6 = 0. (50)

At this point, the general solution to the transverse deflections u(S) and v(S) becomes straightforward:

u(S)= C1 cosh(η1S)+C2 sinh(η1S)+C3 cos(η2S)+C4 sin(η2S)+C5S+C6, (51)

where

η2
1 =

√

a2
1 + 4a2+ a1

2
, η2

2 =

√

a2
1 + 4a2− a1

2
. (52)

Substituting (51) back into (40a) and (41a) leads to

C1+C3+C6 = 0, (53a)

η2
1C1− η

2
2C3 = 0, (53b)

η4
1C1− η

4
2C3 = 0, (53c)

cosh(η1L)C1+ sinh(η1L)C2+ cos(η2L)C3+ sin(η2L)C4+ LC5+C6 = 0, (53d)

η2
1 cosh(η1L)C1+ η

2
1 sinh(η1L)C2− η

2
2 cos(η2L)C3− η

2
2 sin(η2L)C4 = 0, (53e)

η4
1 cosh(η1L)C1+ η

4
1 sinh(η1L)C2+ η

4
2 cos(η2L)C3+ η

4
2 sin(η2L)C4 = 0. (53f)

Nontrivial solutions of (53a)–(53f) require that∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 1
η2

1 0 –η2
2 0 0 0

η4
1 0 η4

2 0 0 0
cosh(η1L) sinh(η1L) cos(η2L) sin(η2L) L 1
η2

1 cosh(η1L) η2
1 sinh(η1L) –η2

2 cos(η2L) –η2
2 sin(η2L) 0 0

η4
1 cosh(η1L) η4

1 sinh(η1L) η4
2 cos(η2L) η4

2 sin(η2L) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= Lη4

1η
4
2(η

2
1+η

2
2)

2 sinh(η1L) sin(η2L)= 0.

(54)

The smallest root of (54) is
η2L = π. (55)
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From (48), (52) and (55), the critical value for the compressive force F can further be determined as

Fcr =
E Iπ2

L2

(
1+ c

π2

L2

)
. (56)

Equation (56) shows that the critical buckling load Fcr is clearly dependent on the simplified strain
gradient coefficient. This equation is also the same as that of a simply supported Bernoulli–Euler beam
based on the SSGET model [Papargyri-Beskou et al. 2003]. In the absence of microstructure-dependent
effects, i.e., c = 0, equations (46) can be further reduced to

E I
∂4u
∂S4 + F

∂2u
∂S2 = 0, E I

∂4v

∂S4 + F
∂2v

∂S2 = 0. (57)

For such a degenerated case, closed-form analytical solutions to both transverse deflections are obvious:

u(S)= D1 cos
(√

F
E I

S
)
+ D2 sin

(√
E

E I
S
)
+ D3S+ D4. (58)

Substituting (58) into (40a) and (41a) results in

D1 = D3 = D4 = 0, D2 sin
(√

F
E I

L
)
= 0. (59)

The smallest root of this last equation is found to be√
FC

cr

E I
L = π. (60)

The critical buckling load FC
cr can therefore be expressed as

FC
cr =

E Iπ2

L2 . (61)

It is noted that (61) can also be reduced from (56) by setting the strain gradient parameter c to zero.
Normalizing (56) with respect to (61) leads to

Fcr

FC
cr
= 1+ c

π2

L2 . (62)

From this ratio, it is apparent that the critical buckling force increases with increased strain gradient
coefficient c and decreased column length L . For positive c, this ratio is always greater than unity,
indicating the stiffening nature of the strain gradient effects. Figure 6 shows the variation of this ratio as
a function of the microcolumn length. The simplified strain gradient parameter is fixed as c = 100µm2.
It can be observed from Figure 6 that, for short microcolumns, the critical buckling force predicted by
the proposed model is significantly larger than its classical counterpart. Only for long columns, this ratio
converges to unity.
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Fig. 6. Variation of the dimensionless critical force resulting from the simplified strain 
gradient model as a function of column length. 

Within the context of modified couple stress theory,38 the critical buckling load for a simply 

supported microcolumn as shown in Fig. 5 can be expressed by 

  
Fcr

M = EIπ 2

L2 1+
(1+ 2v)2 lm

2

2(1+ v)rrod
2

⎡

⎣
⎢

⎤

⎦
⎥ ,                                              (65) 

where ml  represents a material length scale parameter measuring the couple stress effect.50  

For comparison purpose, let us now consider the ratio between Eq. (65) and its classical 

counterpart 

2 2
cr

2
cr rod

(1 2 )1 .
2(1 )

M
m

C

F v l
F v r

+= +
+

                                                (66) 

From the above equation, it is clear that the critical buckling load due to the modified couple 

stress theory is always greater than its classical value for any nonzero ml . This observation again 

demonstrates stiffening effects of the modified couple stress model, as illustrated in Fig. 7. The 

two parameters involved in (66) are fixed as v = 0 and l = 10 µm. 

Figure 6. Variation of the dimensionless critical force resulting from the simplified
strain gradient model as a function of column length.

Within the context of modified couple stress theory [Zhang and Gao 2019], the critical buckling load
for a simply supported microcolumn as shown in Figure 5 can be expressed by

F M
cr =

E Iπ2

L2

[
1+

(1+ 2v)2l2
m

2(1+ v)r2
rod

]
, (63)

where lm represents a material length scale parameter measuring the couple stress effect [Mindlin 1963].
For comparison purpose, let us now consider the ratio between (63) and its classical counterpart

F M
cr

FC
cr
= 1+

(1+ 2v)2l2
m

2(1+ v)r2
rod
, (64)

From the above equation, it is clear that the critical buckling load due to the modified couple stress
theory is always greater than its classical value for any nonzero lm . This observation again demonstrates
stiffening effects of the modified couple stress model, as illustrated in Figure 7. The two parameters
involved in (64) are fixed as v = 0 and l = 10µm.

Based on above discussions, it is clear that both the simplified strain gradient model and the modified
couple stress theory are helpful to elevate the critical buckling force of a simply supported microcolumn.
The effects of both theories can be very significant for small sized columns. However, some differences
do exist. While the SSGET critical force is directly dependent on the column length L , the prediction
resulting from the modified couple stress theory is up to the column radius rrod. Depending on the
specific higher-order theory that is incorporated in the buckling analysis of a microcolumn, one geometric
parameter may become more important than another.

The analysis conducted in the present subsection is valid for a simply supported microcolumn. For
other boundary conditions, the corresponding critical buckling forces can be derived by following the
same procedure.
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Fig. 7. Variation of the dimensionless critical force resulting from the modified couple stress 
theory as a function of column radius. 

Based on above discussions, it is clear that both the simplified strain gradient model and the 

modified couple stress theory are helpful to elevate the critical buckling force of a simply 

supported microcolumn. The effects of both theories can be very significant for small sized 

columns. However, some differences do exist. While the SSGET critical force is directly 
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Within the context of the simplified strain gradient elasticity theory, a nonclassical Kirchhoff 

rod model has been presented. A single intrinsic material length squared parameter was 

Figure 7. Variation of the dimensionless critical force resulting from the modified cou-
ple stress theory as a function of column radius.

4. Conclusions

Within the context of the simplified strain gradient elasticity theory, a nonclassical Kirchhoff rod model
has been presented. A single intrinsic material length squared parameter was introduced in the model
in order to account for the effects of microstructures. The longitudinal, transverse and shear strain
gradient effects were all taken into account through a standard variational approach. To illustrate the
proposed nonclassical rod model, two boundary value problems dealing with the static equilibrium of
a microspring and the buckling behavior of a microcolumn were analytically solved. Some important
features are concluded as follows.

(1) Both the equilibrium equations and the complete set of boundary conditions are analytically deter-
mined for this new nonclassical rod model which incorporates the microstructure effect.

(2) For the microspring that was deformed from an originally straight uniform rod, the restoring force
has been underestimated by the classical Kirchhoff rod theory. In the presence of microstructural
effects, the restoring force is found to monotonically increase with both the rod radius and the
strength of the simplified strain gradient coefficient.

(3) For a simply supported microcolumn, its critical buckling force was analytically solved by directly
applying the governing equations and boundary conditions of the presented model. Both the analyti-
cal solution and numerical results show that the critical buckling load resulting from the nonclassical
rod model is appreciably larger than its classical counterpart. The stiffening size effects are also
found to be consistent with those due to the modified couple stress theory.

Despite its advantages, it is worth noting that this newly developed model possesses the same limita-
tions as those of the classical Kirchhoff rod model.
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Appendix

Here, the relation between the small rotation vector and curvatures given in (9) is derived. The orthonor-
mal base vectors di (S) and ei (S) are related by [Zhang and Gao 2019]

ei (S)= Q(S) di (S), (A.1)

where Q = ei ⊗ di is a rotation tensor possessing the properties Q−1
= QT and det Q = 1. From

Figure 1, the rotation tensor Q(S) can be approximated by [Bǐrsan and Altenbach 2011]

Q(S)= I +Θ(S), (A.2)

where I is the second-order identity tensor, and Θ(S) is a skew tensor that is related to its axial vec-
tor θ(S) (a small rotation) through

Θdi = θ × di . (A.3)

From (4a) and (A.3), it follows that

θ ′ · di =
1
2(di ×Θdi )

′
· di =

1
2{−[(κ

0
× di ) · θ ]di + di × (Θdi )

′
} · di , (A.4)

The combination of (4b), (A.1), (A.2) and (A.3) yields

κ ·ei =
1
2(ei×e′i )·ei =

1
2 [Qdi×(Qdi )

′
]· Qdi

=
1
2 [di×d ′i+di×(Θdi )

′
+(Θdi )×d ′i+(θ ·di )d ′i−(θ ·d

′

i )·di ]·di+O(o2). (A.5)

From (4a) one has
κ0
· di =

1
2(di × d ′i ) · di . (A.6)

It follows from (A.5) and (A.6) that

κ · ei − κ0
· di =

1
2 [di × (Θdi )

′
+ (Θdi )× d ′i + (θ · di )d ′i − (θ · d

′

i ) · di ] · di

=
1
2 [di × (Θdi )

′
+ (θ · di )(κ

0
× di )] · di . (A.7)

The further use of (A.4) and (A.7) leads to (9)

θ ′ · di − (κ · ei − κ0
· di )=

1
2{−[(κ

0
× di ) · θ ]di − (θ · di )(κ

0
× di )} · di = 0. (A.8)
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