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CLOSED-FORM SOLUTIONS FOR AN EDGE DISLOCATION INTERACTING
WITH A PARABOLIC OR ELLIPTICAL ELASTIC INHOMOGENEITY

HAVING THE SAME SHEAR MODULUS AS THE MATRIX

XU WANG AND PETER SCHIAVONE

We use complex variable methods to derive closed-form solutions to the problems of an edge dislocation
interacting with a parabolic or elliptical elastic inhomogeneity embedded inside an infinite elastic matrix.
The inhomogeneity and the matrix have the same shear modulus but distinct Poisson’s ratios. The edge
dislocation can be located in the matrix, in the elastic inhomogeneity or precisely on the parabolic or
elliptical interface. Explicit expressions of the image force acting on the edge dislocation as a result of
its interaction with the parabolic or elliptical elastic inhomogeneity are presented. Our analyses indicate
that the image force on an edge dislocation inside a parabolic or an elliptical elastic inhomogeneity is
invariant with the direction of the Burgers vector of the edge dislocation.

1. Introduction

Green’s functions for composites subjected to a line dislocation and/or a line force have been studied
extensively by many investigators (see, for example, [Dundurs 1969; Stagni 1982; 1993; 1999; Warren
1983; Stagni and Lizzio 1983; Suo 1989; 1990; Tsuchida et al. 1991; Gong and Meguid 1994; Qaissaunee
and Santare 1995; Yen et al. 1995; Ting 1996; Chen 1996; Wang and Sudak 2006; Wang 2015; Shi and
Li 2006]). It appears that exact and closed-form representations of Green’s functions exist only in cases
involving two bonded isotropic or anisotropic elastic half-planes and for problems involving circular
isotropic elastic inhomogeneities [Dundurs 1969; Ting 1996; Wang 2015]. Series-form representations of
Green’s functions are available for elliptical and nonelliptical elastic inhomogeneities [Stagni 1982; 1993;
1999; Warren 1983; Stagni and Lizzio 1983; Tsuchida et al. 1991; Gong and Meguid 1994; Qaissaunee
and Santare 1995; Yen et al. 1995; Ting 1996; Chen 1996; Wang and Sudak 2006].

In this paper, we study the plane problems associated with an edge dislocation interacting with a
parabolic or elliptical elastic inhomogeneity. The edge dislocation can be located in the matrix, in the
elastic inhomogeneity or even on the parabolic or elliptical interface. Using Kolosov–Muskhelishvili’s
complex variable formulation [Muskhelishvili 1953], we demonstrate that elementary closed-form so-
lutions can still be obtained when the elastic inhomogeneity and the matrix have equal shear moduli
but distinct Poisson’s ratios. Using the Peach–Koehler formula [Dundurs 1969], explicit expressions of
the image force acting on the edge dislocation are presented. Some interesting features of the image
force are observed, especially when the edge dislocation lies inside the elastic inhomogeneity. The paper
is structured as follows. Kolosov–Muskhelishvili’s complex variable formulation is briefly reviewed in
Section 2. Closed-form solutions are derived in Section 3 for an edge dislocation interacting with a
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parabolic elastic inhomogeneity. Closed-form solutions are derived in Section 4 for an edge dislocation
interacting with an elliptical elastic inhomogeneity. In Section 5, we present a closed-form expression
of the image force on an edge dislocation inside an elastic inhomogeneity of arbitrary shape having
the same shear modulus as that of the matrix. In Section 6, we obtain a closed-from expression of
the image force on an edge dislocation in an infinite matrix reinforced by an elastic inhomogeneity of
arbitrary shape having the same shear modulus as that of the matrix. We summarize our findings and
conclusions in Section 7. We remark that since an edge dislocation is a defect in a crystalline solid, its
mobility and stability resulting from its interaction with an elastic inhomogeneity of parabolic, elliptical
or nonelliptical shape is of fundamental importance in understanding the mechanical properties of the
corresponding composite structure. In our case, this can be clearly observed from the obtained closed-
form expressions for the image force acting on the edge dislocation.

2. Kolosov–Muskhelishvili’s complex variable formulation

A Cartesian coordinate system {xi } (i = 1, 2, 3) is established. For the in-plane deformations of an
isotropic elastic material, the three in-plane stresses (σ11, σ22, σ12), two in-plane displacements (u1, u2)

and two stress functions (φ1, φ2) are given in terms of two analytic functions ϕ(z) and ψ(z) of the
complex variable z = x1+ ix2 as [Muskhelishvili 1953]

σ11+ σ22 = 2[ϕ′(z)+ϕ′(z)],

σ22− σ11+ 2iσ12 = 2[z̄ϕ′′(z)+ψ ′(z)],
(1)

2µ(u1+ iu2)= κϕ(z)− zϕ′(z)−ψ(z),

φ1+ iφ2 = i[ϕ(z)+ zϕ′(z)+ψ(z)],
(2)

where κ = 3− 4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress, µ and ν (0 ≤ ν ≤ 1/2) are
the shear modulus and Poisson’s ratio, respectively. In fact, energy considerations dictate that the range
of Poisson’s ratio can be relaxed to −1≤ ν ≤ 1/2: materials with a negative Poisson’s ratio are referred
to as ‘auxetic materials’ [Lakes 1987; Argatov et al. 2012]. In addition, the in-plane stresses are related
to the two stress functions through [Ting 1996]

σ11 =−φ1,2, σ12 = φ1,1, σ21 =−φ2,2, σ22 = φ2,1. (3)

In fact, the stress expressions in (1) can be obtained after differentiation of the stress functions in (2)2.
Thus, Equation (2) is fundamental to the formulation.

3. An edge dislocation interacting with a parabolic elastic inhomogeneity

3.1. Problem description. As shown in Figure 1, a parabolic elastic inhomogeneity, denoted by S1, is
perfectly bonded to the surrounding matrix, denoted by S2, through a parabolic interface L described by

L : x1 = H −
x2

2

4H
, H > 0. (4)

In addition, an edge dislocation with Burgers vector (b1, b2) is located at z = z0 = x0 + iy0 = reiθ

with x0 and y0 being the Cartesian coordinates of z0 whilst r and θ represent the polar coordinates of z0.
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Parabolic inhomogeneity S θ1

L: x  = H − x  /4H1

x1

0

x2

2
2

( µ, ν  )1

Matrix S2
( µ, ν   )2

H

r

z = z

Figure 1. An edge dislocation interacting with a parabolic elastic inhomogeneity. The
edge dislocation located at z = z0 can be in the matrix, in the inhomogeneity or just on
the parabolic interface.

Throughout the paper, subscript 1 and 2 are used to identify the respective quantities in S1 and S2 (we
remark that this notation clearly does not apply to the two components of the Burgers vector.) In order
to arrive at closed-form solutions, we assume that the parabolic inhomogeneity and the matrix have the
same shear modulus but distinct Poisson’s ratios (i.e., µ1 = µ2 = µ and ν1 6= ν2).

It follows from (2) that the conditions representing continuity of tractions and displacements across the
perfect parabolic interface L can be expressed in terms of the two pairs of analytic functions ϕi (z), ψi (z)
(i = 1, 2) as follows:

ϕ1(z)+ zϕ′1(z)+ψ1(z)= ϕ2(z)+ zϕ′2(z)+ψ2(z),

κ1ϕ1(z)− zϕ′1(z)−ψ1(z)= κ2ϕ2(z)− zϕ′2(z)−ψ2(z), z ∈ L .
(5)

Equation (5) can be conveniently rewritten in the form

ϕ1(z)=
κ2+ 1
κ1+ 1

ϕ2(z)=−
iµ(b1+ ib2)

π(κ1+ 1)
ln(z− z0), z ∈ S1 ∪ S2; (6)

ψ1(z)+
κ2− κ1

κ1+ 1
ϕ2(z)+

κ2− κ1

κ1+ 1
(z1/2
− 2H 1/2)2ϕ′2(z)= ψ2(z), z ∈ L . (7)

Equation (6) serves as an analytic continuation of the two analytic functions ϕ1(z) and ϕ2(z). In
writing (7), we have adopted the identity that z̄1/2

= 2H 1/2
− z1/2 for z ∈ L . This identity will also be

used in the following derivations. It remains to determine the two analytic functions ψ1(z) and ψ2(z)
through satisfaction of (7). In the ensuing three sections, ψ1(z) and ψ2(z) will be derived separately for
the three cases in which an edge dislocation is located in the matrix, in the parabolic inhomogeneity and
on the interface.
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3.2. An edge dislocation in the matrix. When the edge dislocation is located in the matrix, it follows
from (7) and the identity: ln(z̄− z̄0)= ln(z1/2

− z̄1/2
0 − 2H 1/2)+ ln(z1/2

+ z̄1/2
0 − 2H 1/2), z ∈ L that the

two analytic functions ψ1(z) and ψ2(z) can be determined explicitly as

ψ1(z)=
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[z− (z̄1/2

0 + 2H 1/2)2]

+
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
(2H 1/2

− z1/2
0 )2

z− z0
,

z ∈ S1; (8)

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
4H 1/2

z1/2+ z1/2
0

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z1/2

+ z̄1/2
0 − 2H 1/2)+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z1/2

+ z̄1/2
0 + 2H 1/2),

z ∈ S2, (9)

where the branch cut for z1/2 is chosen as the negative x1-axis. In obtaining (8) and (9), one must ensure
that ψ1(z) defined in the parabolic inhomogeneity is indeed an analytic function of z. The stresses in
the composite induced by the edge dislocation in the matrix can be arrived at by substituting (6), (8)
and (9) into (1). Using the Peach–Koehler formula [Dundurs 1969], the image force acting on the edge
dislocation can be explicitly determined as follows:

F1 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
(b2

2− b2
1) cos

3θ
2
− 2b1b2 sin

3θ
2
+

2r(b2
1+ b2

2)

r(1+ cos θ)− 2H
cos

θ

2

]
,

F2 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
(b2

2− b2
1) sin

3θ
2
+ 2b1b2 cos

3θ
2
+

2r(b2
1+ b2

2)

r(1+ cos θ)− 2H
sin

θ

2

]
,

(10)

where F1 and F2 are, respectively, the force components along the x1 and x2 directions. We see that the
image force in (10) varies with the direction of the vector (b1, b2).

When the edge dislocation lies on the x1-axis, Equation (10) becomes

F1 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
b2

2− b2
1+

r(b2
1+ b2

2)

r − H

]
, F2 =

H 1/2µ(κ2− κ1)b1b2

πr3/2(κ1+ 1)(κ2+ 1)
. (11)

When the edge dislocation approaches the vertex of the parabola L , Equation (11) reduces to

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(r − H)
, F2 =

µ(κ2− κ1)b1b2

πH(κ1+ 1)(κ2+ 1)
, as r→ H. (12)

The expression for F1 in (12) is simply the classical result for an edge dislocation interacting with a
planar bimaterial interface [Dundurs 1969]. On the other hand, when the edge dislocation lying on the
x1-axis is further from the parabola L , Equation (11) reduces to

F1 ∼=
H 1/2µ(κ2− κ1)b2

2

πr3/2(κ1+ 1)(κ2+ 1)
+ O(r−

5
2 ), F2 =

H 1/2µ(κ2− κ1)b1b2

πr3/2(κ1+ 1)(κ2+ 1)
, as r→∞, (13)
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which implies that the far-field asymptotic behavior of F1 is dominated by the b2 component of the
Burgers vector.

3.3. An edge dislocation in the parabolic inhomogeneity. When the edge dislocation is located in the
parabolic inhomogeneity, it follows from (7) that the two analytic functions ψ1(z) and ψ2(z) can be
explicitly determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
{ln[z− (z̄1/2

0 − 2H 1/2)2] + ln[z− (z̄1/2
0 + 2H 1/2)2]}, z ∈ S1; (14)

ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
(z1/2
− 2H 1/2)2

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
[ln(z1/2

− z̄1/2
0 + 2H 1/2)+ ln(z1/2

+ z̄1/2
0 + 2H 1/2)], z ∈ S2. (15)

The stresses in the composite induced by the edge dislocation in the inhomogeneity can be arrived at
by substituting (6), (14) and (15) into (1). Using the Peach–Koehler formula, the image force acting on
the edge dislocation can be explicitly determined as follows

F1 =
2µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
H

r2 sin2 θ + 4Hr cos θ − 4H 2
,

F2 =
µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
r sin θ

r2 sin2 θ + 4Hr cos θ − 4H 2
,

(16)

which implies that the image force is invariant with the direction of the vector (b1, b2).
When the edge dislocation lies on the x1-axis, (16) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(H − x0)
, F2 = 0, −∞< x0 ≤ H. (17)

Interestingly, Equation (17) is always identical in form to the result for an edge dislocation near a planar
interface [Dundurs 1969]. We interpret from (17) that as far as the force on the edge dislocation is con-
cerned, an edge dislocation lying on the axis of symmetry of the parabola L can be treated as equivalent to
the same edge dislocation near a planar bimaterial interface at {x1 = H,−∞< x2 <+∞}. We illustrate
in Figure 2 the variation of F1 with an edge dislocation on the x1-axis. It is seen from Figure 2 and from
our previous analysis that as the edge dislocation is further away from the vertex of the parabola L , the
image force decays faster in the matrix than in the parabolic inhomogeneity, especially when b2 = 0.

3.4. An edge dislocation on the parabolic interface. When the edge dislocation is located precisely on
the parabolic interface with z1/2

0 + z̄1/2
0 = 2H 1/2, the two analytic functions ψ1(z) and ψ2(z) can be

obtained either from (8) and (9) or from (14) and (15) as

ψ1(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[z− (z̄1/2

0 + 2H 1/2)2],

z ∈ S1; (18)
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Figure 2. Variation of the image force F1 on an edge dislocation on the x1-axis in the
matrix and in the parabolic inhomogeneity.

ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
4H 1/2

z1/2+ z1/2
0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
[ln(z1/2

+ z1/2
0 )+ ln(z1/2

+ z̄1/2
0 + 2H 1/2)], z ∈ S2. (19)

The development of the (identical) expressions for the two analytic functions ψ1(z) and ψ2(z) in (18)
and (19) whether obtained from (8) and (9) (when the edge dislocation is located in the matrix) or from
(14) and (15) (when the edge dislocation lies inside the inhomogeneity) not only suggests the rationale
for the solutions derived in the following Secs. 4 and 5 but also confirms their correctness. The stresses
in the composite induced by the edge dislocation located precisely on the parabolic interface can be
obtained by substituting (6), (18) and (19) into (1).

4. An edge dislocation interacting with an elliptical elastic inhomogeneity

As shown in Figure 3, an elliptical elastic inhomogeneity, denoted by S1, is perfectly bonded to the
surrounding matrix, denoted by S2, through an elliptical interface L described by

L :
x2

1

a2 +
x2

2

b2 = 1, (20)

with a and b being the semi-major and semi-minor axes of the ellipse L , respectively. In addition, an
edge dislocation with Burgers vector (b1, b2) is located at z = z0 = x0+ iy0 with x0 and y0 being the
Cartesian coordinates of z0. As before, subscript 1 and 2 are used to identify the respective quantities
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Elliptical inhomogeneity S1
( µ, ν  )1

Matrix S2
( µ, ν   )2

0z = z

x1

x2

b

a

L: x  /a   + x  /b  = 11 2
2 22 2

Figure 3. An edge dislocation interacting with an elliptical elastic inhomogeneity. The
edge dislocation located at z = z0 can be in the matrix, in the inhomogeneity or just on
the elliptical interface.

in S1 and S2. The elliptical inhomogeneity and the matrix have the same shear modulus but different
Poisson’s ratios (i.e., µ1 = µ2 = µ and ν1 6= ν2).

After some algebraic operations, the continuity conditions of tractions and displacements across the
perfect elliptical interface L in (5) can be rewritten as

ϕ1(z)=
κ2+ 1
κ1+ 1

ϕ2(z)=−
iµ(b1+ ib2)

π(κ1+ 1)
ln(z− z0), z ∈ S1 ∪ S2; (21)

ψ1(z)+
κ2− κ1

κ1+ 1
ϕ2(z)+

κ2− κ1

κ1+ 1
D(z)ϕ′2(z)= ψ2(z), z ∈ L , (22)

where

z̄ = D(z)=
m+m−1

2
z+

m−m−1

2

√
z2− 4m R2, z ∈ L , (23)

with

R =
a+ b

2
,m =

a− b
a+ b

. (24)

When the edge dislocation is located in the matrix, it follows from (22) and the identity: ln(z̄− z̄0) =

ln[R(ξ−1
− ξ̄0)(1−mξ̄−1

0 ξ)], z ∈ L with

ξ = ω−1(z)=
1

2R

(
z+

√
z2− 4m R2

)
and ξ0 = ω

−1(z0)=
1

2R

(
z0+

√
z2

0− 4m R2)
that the two analytic functions ψ1(z) and ψ2(z) can be explicitly determined as
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ψ1(z)=
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z− z1)

+
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
D(z0)

z− z0
, z ∈ S1; (25)

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(m−m−1)(b1+ ib2)

2π(κ1+ 1)(κ2+ 1)
z+ z0

√
z2− 4m R2+

√

z2
0− 4m R2

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln
[

1−
ξ̄−1

0

ω−1(z)

]
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln
[

1−
m2ξ̄−1

0

ω−1(z)

]
, z ∈ S2, (26)

where
z1 = R(m−1ξ̄0+m2ξ̄−1

0 ). (27)

By using the Peach–Koehler formula, the image force acting on the edge dislocation can be finally derived
as follows:

F1− iF2 =
R2µ(κ2− κ1)(1−m2)

π(κ1+ 1)(κ2+ 1)(z2
0− 4m R2)3/2

×

[
b2

2− b2
1− 2ib1b2+

4(b2
1+ b2

2)(z
2
0− 4m R2)|z0+

√

z2
0− 4m R2

|
2

(|z0+
√

z2
0− 4m R2

|2− 4m2 R2)(|z0+
√

z2
0− 4m R2

|2− 4R2)

]
, (28)

where F1 and F2 are respectively the force components along the x1 and x2 directions.
When an edge dislocation lying on the positive x1-axis approaches the elliptical interface, (28) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(x0− a)
, F2 =

2µ(κ2− κ1)b1b2

π(κ1+ 1)(κ2+ 1)b2/a
, x0→ a. (29)

The expression for F1 in (29) is just the result for an edge dislocation near a planar bimaterial interface
[Dundurs 1969], whilst the expression of F2 in (29) is consistent with that in (12) by considering the fact
that b2/a is the curvature radius of the ellipse at z = a and 2H is the curvature radius of the parabola at
the vertex.

On the other hand, when the edge dislocation is far from the interface, (28) reduces to

F1− iF2 =
R2µ(κ2− κ1)(1−m2)

π(κ1+ 1)(κ2+ 1)z3
0

[
b2

2

(
1+

z0

z̄0

)
− b2

1

(
1−

z0

z̄0

)
− 2ib1b2

]
, |z0| →∞. (30)

When m = 0 for a circular inhomogeneity, (28) simply reduces to the classical result in Equations (7.8)
and (7.9) by [Dundurs 1969].

When the edge dislocation is located inside the elliptical inhomogeneity, it follows from (22) that the
two analytic functions ψ1(z) and ψ2(z) can be explicitly determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z−z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[(z−z1)(z−z2)],

z ∈ S1; (31)
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ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
D(z)

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

[
ln
[

1−
m2ξ̄−1

0

ω−1(z)

]
+ ln[ω−1(z)−mξ̄0]

]
, z ∈ S2, (32)

where
ξ = ω−1(z)=

1
2R

(
z+

√
z2− 4m R2

)
, z1 = R(m−1ξ̄0+m2ξ̄−1

0 ),

ξ0 = ω
−1(z0)=

1
2R

(
z0+

√
z2

0− 4m R2), z2 = R(mξ̄0+ ξ̄
−1
0 ).

(33)

By using the Peach–Koehler formula, the image force acting on the edge dislocation can be finally derived
as follows

F1− iF2 =
µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)

(
1

z0− z1
+

1
z0− z2

)
, (34)

which implies that the image force is invariant with the direction of the vector (b1, b2). It will be seen in
the next section that the invariance of the image force with the direction of the Burger vector is invalid
for an edge dislocation inside an elastic inhomogeneity of nonelliptical shape having the same shear
modulus as that of the matrix.

When the edge dislocation lies on the x1-axis, (34) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
x0

a2− x2
0
, F2 = 0, (35)

which is identical to that for an edge dislocation inside a circular elastic inhomogeneity of radius a
[Dundurs 1969]. Equation (35) implies that the semi-minor axis b exerts no influence on the image force
on an edge dislocation lying on the x1-axis inside the elliptical inhomogeneity.
When the edge dislocation lies on the x2-axis, (34) becomes

F2 =
µ(κ2− κ1)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
y0

b2− y2
0
, F1 = 0, (36)

which is identical to that for an edge dislocation inside a circular elastic inhomogeneity of radius b
[Dundurs 1969]. Equation (36) implies that the semi-major axis a exerts no influence on the image force
on an edge dislocation lying on the x2-axis inside the elliptical inhomogeneity.
Through a limiting process, the two analytic functions ψ1(z) and ψ2(z) can be obtained for the case when
the edge dislocation just lies on the elliptical interface. The specific expressions are suppressed here.

5. An edge dislocation inside an elastic inhomogeneity of arbitrary shape

In this section, we consider an edge dislocation with Burgers vector (b1, b2) located at z = z0 inside
an elastic inhomogeneity of arbitrary shape (denoted as S1) perfectly bonded to the surrounding infinite
matrix (denoted as S2) through a sharp interface L . Here, we use the term “sharp interface” to mean an
interface with vanishing thickness between two dissimilar adjacent phases. As before, subscript 1 and 2
are used to identify the respective quantities in S1 and S2. The elastic inhomogeneity and the matrix have
the same shear modulus but different Poisson’s ratios.
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We consider the following conformal mapping function [England 1971]:

z = ω(ξ)= R
(
ξ +

N∑
n=1

anξ
−n
)
, ξ = ω−1(z), |ξ | ≥ 1, (37)

where R is a real scaling constant, and an, n = 1, 2, . . . , N are N complex constants.
By using the mapping function in (37), the exterior of the inhomogeneity is mapped onto the exterior

of the unit circle in the ξ -plane.
On the interface L , we have

z̄− z̄0 = Rξ−1

(
N∑

n=1

ānξ
n+1
− z̄0 R−1ξ + 1

)
= RāN ξ

−1
N+1∏
n=1

(ξ − ξn), z ∈ L , (38)

where ξn, n = 1, 2, . . . , N + 1, all of which are located outside the unit circle, are the N + 1 roots of the
following (N + 1)-order algebraic equation in ξ

N∑
n=1

ānξ
n+1
− z̄0 R−1ξ + 1= 0. (39)

Furthermore, the following relationship is also valid on the interface L

z̄
z− z0

= G(z), z ∈ L , (40)

where G(z) is analytic in the exterior of the inhomogeneity except infinity where it has a pole of finite
degree determined by its asymptotic behavior

G(z)∼= Q(z)+ O(1), |z| →∞, (41)

where Q(z) is a polynomial in z of (N − 1)-degree. Apparently, the polynomial Q(z) is non-constant for
a nonelliptical inhomogeneity with N ≥ 2 and is constant for an elliptical inhomogeneity with N = 1.

The analytic function φ1(z) defined in the inhomogeneity is still given by (21). Consequently, the
analytic function ψ1(z) defined in the inhomogeneity can be finally determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

N+1∑
n=1

ln(z− zn)+
iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
Q(z), z ∈ S1,

(42)

where
zn = ω(ξn), n = 1, 2, . . . , N + 1. (43)

By using the Peach–Koehler formula, the image force acting on the edge dislocation is

F1− iF2 =
µ(κ1− κ2)

π(κ1+ 1)(κ2+ 1)

[
(b2

1+ b2
2)

N+1∑
n=1

1
z0− zn

− (b2
1− b2

2+ 2ib1b2)Q′(z0)

]
, (44)

so that the image force varies with the direction of the vector (b1, b2) for an inhomogeneity of nonellip-
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Figure 4. A rounded triangular interface L described by Equation (45).

tical shape. The image force is known once zn, n = 1, 2, . . . , N + 1 and Q′(z0) have been determined.
For example, we consider a rounded triangular interface in Figure 4 described by

z = ω(ξ)= R
(
ξ +

1
3ξ 2 +

1
45ξ 5

)
, |ξ | = 1. (45)

In this example, N = 5. The polynomial Q(z) is explicitly determined by

Q(z)=
z4
+ z0z3

+ z2
0z2

45R4 + z
(

z3
0

45R4 +
8

27R

)
. (46)

Thus, the term Q′(z0) can be easily determined by

Q′(z0)=
2z3

0

9R4 +
8

27R
. (47)

The image force on an edge dislocation on the x1-axis inside the rounded triangular inhomogeneity is
illustrated in Figure 5. It is seen from Figure 5 that: z0 =−0.1647R is an equilibrium position for an
edge dislocation with b2 = 0; whilst z0 = 0.2240R is an equilibrium position for an edge dislocation with
b1 = 0. The variance of the image force with the direction of the Burgers vector is also clearly reflected
in Figure 5.

6. An edge dislocation outside an elastic inhomogeneity of arbitrary shape

We now consider an edge dislocation with Burgers vector (b1, b2) located at z = z0 in an infinite matrix
(denoted as S2) perfectly bonded to an elastic inhomogeneity of arbitrary shape (denoted as S1) through
a sharp interface L . As before, subscript 1 and 2 are used to identify the respective quantities in S1 and
S2. The elastic inhomogeneity and the matrix have the same shear modulus but different Poisson’s ratios.
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Figure 5. The image force on an edge dislocation on the x1-axis inside the rounded
triangular inhomogeneity. F2 ≡ 0.

We consider the conformal mapping function [Muskhelishvili 1953; Jarczyk and Mityushev 2012]

z = ω(ξ)= R
M∑

n=1

cnξ
n, ξ = ω−1(z), |ξ | ≤ 1, (48)

where R is a real scaling constant, and cn, n = 1, 2, . . . ,M are M complex constants. Without losing
generality, one can set c1 = 1.

By using the mapping function in (48), the interior of the inhomogeneity is mapped onto the interior
of the unit circle in the ξ -plane.

On the interface L , the following relationship is valid

z̄− z̄0 =−ξ
−M
(

z̄0ξ
M
− R

M∑
n=1

c̄nξ
M−n

)
=−z̄0ξ

−M
M∏

n=1

(ξ − ξn), z ∈ L , (49)

where ξn, n = 1, 2, . . . ,M , all of which are located inside the unit circle, are the M roots of the following
M-order algebraic equation in ξ

z̄0ξ
M
− R

M∑
n=1

c̄nξ
M−n
= 0. (50)

The following relationship is also valid on the interface L:

z̄
z− z0

= H(z), z ∈ L , (51)
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where H(z) is analytic in the interior of the inhomogeneity except the point at z = 0 where it has a pole
of finite degree determined by its asymptotic behavior

H(z)∼= P(z)+ O(1), z→ 0, (52)

where P(z) is a polynomial in z−1 of degree M .
The analytic function φ2(z) defined in the matrix is still given by (21). Consequently, the analytic

function ψ2(z) defined in the matrix can be finally determined as

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

M∑
n=1

ln
z− zn

z
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
P(z), z ∈ S2, (53)

where

zn = ω(ξn), n = 1, 2, . . . ,M. (54)

By using the Peach–Koehler formula, the image force acting on the edge dislocation is

F1− iF2 =
µ(κ2− κ1)

π(κ1+ 1)(κ2+ 1)

[
(b2

1+ b2
2)

M∑
n=1

zn

z0(z0− zn)
− (b2

1− b2
2+ 2ib1b2)P ′(z0)

]
, (55)

which also implies that the image force varies with the direction of the vector (b1, b2) when P ′(z0) 6= 0.
When M = 1 for a circular inhomogeneity, we have z1 = R2/z̄0 and P ′(z0)= R2/z3

0. In this special case,
(55) simply recovers the classical result in Equations (7.8) and (7.9) by [Dundurs 1969].

For example, as illustrated in Figure 6, we consider an interface described by

z = ω(ξ)= R(ξ + cξ 2), −1
2 ≤ c ≤ 1

2 , |ξ | = 1. (56)

In this example, M = 2. The two roots of Equation (50) can be explicitly given by

ξ1,2 =
R±

√
R2+ 4Rcz̄0

2z̄0
, |ξ1,2|< 1, (57)

and thus,

z1 =
cR3
+ R2 z̄0(2c2

+ 1)+ R(z̄0+ Rc)
√

R2+ 4Rcz̄0

2z̄2
0

,

z2 =
cR3
+ R2 z̄0(2c2

+ 1)− R(z̄0+ Rc)
√

R2+ 4Rcz̄0

2z̄2
0

.

(58)

In addition, the polynomial P(z) is determined by

P(z)=−
R2(1+ 2c2

+ Rz−1
0 c)

z0z
−

R3c
z0z2 . (59)
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Figure 6. Shapes of the interface described by (56) for different values of c.

Thus, the term P ′(z0) can be easily determined by

P ′(z0)=
R2z0(1+ 2c2)+ 3R3c

z4
0

. (60)

Consequently, the image force can be given explicitly by

F1− iF2

=
µ(κ2− κ1)

π(κ1+ 1)(κ2+ 1)

×

(
2R2z−1

0 (b2
1+ b2

2)[[cR+ z̄0(2c2
+ 1)][2z0 z̄2

0− cR3
− R2 z̄0(2c2

+ 1)] + R(z̄0+ Rc)2(R+ 4cz̄0)]

[2z0 z̄2
0− cR3− R2 z̄0(2c2+ 1)]2− R3(z̄0+ Rc)2(R+ 4cz̄0)

−R2z−4
0 (b2

1− b2
2+ 2ib1b2)[z0(1+ 2c2)+ 3Rc]

)
(61)

In particular, if we set c = 1/2 and z0 = R(2 + i), the image force on the edge dislocation can be
determined from (61) as follows:

F1 =
µ(κ2− κ1)(0.2704b2

1+ 0.2848b2
2− 0.3792b1b2)

πR(κ1+ 1)(κ2+ 1)
,

F2 =
µ(κ2− κ1)(−0.0345b2

1+ 0.3447b2
2+ 0.0144b1b2)

πR(κ1+ 1)(κ2+ 1)
.

(62)
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It can be seen from (60) and (61) that when the dislocation is located at the following particular point

z0 =−
3Rc

1+ 2c2 , 0.2779≤ |c| ≤ 0.5, (63)

the image force remains invariant with the direction of the Burgers vector and is given by

F1 =
µ(κ2− κ1)(b2

1+ b2
2)(2c2

+ 1)5

6πR(κ1+ 1)(κ2+ 1)c(c2− 1)(4c6+ 12c4+ 12c2− 1)
, F2 = 0. (64)

The component F1 in (64) becomes infinite as c→ ±0.2779 since now the edge dislocation just ap-
proaches the interface L in view of (56) and (63).

7. Conclusions

We have obtained simple and closed-form Green’s function solutions for an edge dislocation interacting
with a parabolic or elliptical elastic inhomogeneity under the assumption that the inhomogeneity and
the matrix have equal shear moduli. For the interaction between an edge dislocation and a parabolic
elastic inhomogeneity, the two analytic functions ψ1(z) and ψ2(z) are obtained in (8) and (9) for an
edge dislocation in the matrix, in (14) and (15) for an edge dislocation in the parabolic inhomogeneity
and in (18) and (19) for an edge dislocation located on the parabolic interface; the image force is given
by (10) when the dislocation lies in the matrix and by (16) when the dislocation lies in the parabolic
inhomogeneity. For the interaction between an edge dislocation and an elliptical elastic inhomogeneity,
the two analytic functions ψ1(z) and ψ2(z) are obtained in (25) and (26) for an edge dislocation in the
matrix, in (31) and (32) for an edge dislocation in the elliptical inhomogeneity; the image force is given
by (28) when the dislocation lies in the matrix and by (34) when the dislocation lies in the elliptical
inhomogeneity.

We have also obtained closed-form expressions in (44) and (55) for the image force on an edge
dislocation in the interior and exterior of an elastic inhomogeneity of arbitrary shape. It is stressed
that the mapping function in (37) that maps the exterior of an inhomogeneity onto the exterior of the unit
circle in the image plane is distinct from the one in (48) that maps the interior of an inhomogeneity onto
the interior of a unit circle in the image plane.
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