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We investigate conditions under which the identity matrix In can be continuously
factorized through a continuous N × N matrix function A with domain in R.
We study the relationship of the dimension N, the diagonal entries of A, and the
norm of A to the dimension n and the norms of the matrices that witness the
factorization of In through A.

1. Introduction

The problem from which this paper draws motivation concerns the relation between
the magnitude of the diagonal entries ai i of an N × N matrix A, the norm of A,
and the dimension n of a vector space that A preserves in a satisfying manner, as
precisely described below.

Problem 1. Given N ∈ N and δ > 0 find the largest n ∈ N with the following
property: for every N × N matrix A = (ai j ), with ‖A‖ ≤ 1, the diagonal entries
of which satisfy |ai i | ≥ δ for 1 ≤ i ≤ N, there exist n× N and N × n matrices L
and R so that L AR = In and ‖L‖‖R‖ ≤ 2/δ.

The upper bound imposed on the quantity ‖L‖‖R‖ must necessarily be at
least 1/δ (see Remark 2.12). We use elementary combinatorics and linear algebra
to study Problem 1. Subsequently, we allow the entries of A to vary continuously
and study the corresponding problem in the solution of which it is additionally
required that the preserved vector spaces vary continuously as well. In this article
we are mainly concerned with the following.

Problem 2. Given N ∈ N and δ > 0 find the largest n ∈ N with the following
property: for every N × N continuous matrix function A : R → MN (R) with
‖A(t)‖≤ 1 and |ai i (t)| ≥ δ for 1≤ i ≤ N and all t ∈R, there exist continuous matrix
functions L : R→ Mn×N (R) and R : R→ Mn×N (R) so that L(t)A(t)R(t) = In

and ‖L(t)‖‖R(t)‖ ≤ 2/δ for all t ∈ R.
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We provide lower bounds for n in Problems 1 and 2. In particular, we show that
in both cases the order of magnitude of n is at least δ4/3 N 1/3 (see Theorems 2.10
and 3.9). In the continuous case, this is achieved by using the proof of our
estimate for Problem 1 pointwise. In this fashion, we obtain an open cover of
R consisting of intervals on each of which there are continuous matrix func-
tions L and R factoring In through A. In the final step, we use these local
solutions as building blocks to construct a continuous solution defined on the
entire real line.

Although our approach is entirely Euclidean and finite-dimensional, this topic
has origins that fit neither description. On a (generally infinite-dimensional) Banach
space X with a coordinate system (ei )i (e.g., a Schauder basis) every bounded linear
operator A : X→ X can be identified with an infinite matrix (ai j ). If this matrix
has large diagonal, in the sense that infi |ai i |> 0, one may ask whether there exist
bounded linear operators L , R : X→ X so that L AR = IX . A. D. Andrew [1979]
first showed that the answer is yes if X = L p, 1 < p <∞, and the coordinate
system under consideration is the Haar system. Since then, a number of papers have
contributed to the study of this general problem in a variety of infinite-dimensional
Banach spaces X ; see, e.g., [Laustsen et al. 2018; Lechner 2017; 2018a; 2018b;
2019c; Lechner et al. 2018]. The source of the finite-dimensional version of this
problem can be traced to J. Bourgain and L. Tzafriri [1987]. Their paper, among
other results, provides an estimate for n in Problem 1 which is of the order δ2 N (see
Remark 2.11). Within this context, other finite-dimensional non-Euclidean spaces
have been studied by R. Lechner [2019a; 2019b]. To the best of our knowledge,
the continuous matrix function case has not been considered before.

The paper is divided into two sections. In Section 2 we provide necessary
estimates for the norm of a matrix, as well as estimates for the size of families
of columns of a given matrix A with the property of being almost orthogonal to
one another. Subsequently, we proceed to give an estimate of n for Problem 1
by defining matrices L and R. In Section 3 we explicitly use the definition of L
and R of the constant case to find for each t in the domain of the matrix function A
L(t) and R(t) as desired. We then extend these solutions continuously on a small
interval around t . From there on, we synthesize these local solutions by taking
appropriate convex combinations of them and we observe that the desired conclusion
is satisfied.

In the sequel, for an N × N matrix A = (ai, j ) = [a1 · · · aN ] we will consider
the quantity θ = mini ‖ai‖, instead of δ = mini |ai,i |. As δ ≤ θ , our results are
slightly more general than already advertised. We have included proofs of some
well-known facts and estimates in an effort to make this paper as self-contained as
possible. Although all results are stated and proved for matrices with real entries,
obvious modifications make them valid for matrices with complex entries as well.
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2. The constant case

We use elementary counting tools and tools from linear algebra to factorize the iden-
tity matrix through a square matrix with large diagonal. The section is organized into
three subsections. The first one includes simple estimates of the norm of a matrix,
the second one presents combinatorial arguments that are used to find collections of
columns of a matrix that are almost orthogonal to one another, and in the third one
we present the construction of the factors L and R and prove their desired properties.

Let us recall some necessary notions used in this section. We identify Rn with
the collection of n× 1 matrices. Thus when we write x = (x1, . . . , xn) in reality
we mean x = [x1 · · · xn]

>. For 1≤ i ≤ n we denote by ei the vector in Rn that has
1 in the i-th entry and 0 in all others. Recall that for a vector x = (x1, . . . , xn) in
Rn we define its Euclidean norm to be the quantity

‖x‖ =
( n∑

i=1

|xi |
2
)1/2

.

For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in Rn their inner product is the
quantity

〈x, y〉 =
n∑

i=1

xi yi .

The Cauchy–Schwarz inequality states that for such x and y we have |〈x, y〉| ≤
‖x‖‖y‖; see, e.g., [Meckes and Meckes 2018, Theorem 4.6]. For an m× n matrix
A = (ai, j ) when we write A = [a1 · · · an] we mean that for each 1 ≤ j ≤ n the
entries of the j-th column of A form a j , i.e., the vector (a1, j , . . . , am, j ) in Rm (a
similar notation can be used for writing A with respect to its rows α>1 , . . . , α

>
m ).

Then, for n ∈ N the n× n identity matrix In is the matrix [e1 · · · en]. Recall, if A
is an m × n matrix with columns a1, . . . , an and B is a k ×m matrix with rows
β>1 , . . . , β

>

k , then the i, j-th entry of the product matrix B A is 〈βi , a j 〉. For an
m× n matrix A we define its norm to be the quantity

‖A‖ = sup{‖Ax‖ : x ∈ Rn, ‖x‖ ≤ 1}.

It is easy to see that for A and x of appropriate dimensions we have ‖Ax‖≤‖A‖‖x‖.
Similarly, by the association property of matrix multiplication, see, e.g., [Meckes
and Meckes 2018, Theorem 2.10], for matrices A and B of appropriate dimensions
we have ‖AB‖ ≤ ‖A‖‖B‖. Finally, recall that a function f : R→ R is called
convex if for every 0≤ λ≤ 1 and s, t ∈ R we have

f (λs+ (1− λ)t)≤ λ f (s)+ (1− λ) f (t).

A direct computation can be used to show that the square function f (t)= t2 is a
convex function.
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2A. Upper bounds of matrix norms. The estimates in this subsection are elemen-
tary and well known, yet we include the simple proofs for completeness.

Proposition 2.1. Let m, n ∈ N and A = [a1 · · · an] be an m× n matrix. Set

3= max
1≤i≤n

‖ai‖ and λ= max
1≤i 6= j≤n

|〈ai , a j 〉|.

Then ‖A‖ ≤ (32
+ (n− 1)λ)1/2.

Proof. Let x = (x1, . . . , xm) be a vector of norm 1. By convexity of the square
function we have ( n∑

i=1

1
n
|xi |

)2

≤
1
n

n∑
i=1

|xi |
2,

or
n∑

i=1

|xi | ≤ n1/2
‖x‖.

Then,

‖Ax‖2 = 〈Ax, Ax〉 =
m∑

i=1

x2
i ‖ai‖

2
+

∑
i 6= j

xi x j 〈ai , a j 〉

≤32
‖x‖2+ λ

∑
i 6= j

|xi x j | =3
2
+ λ

( n∑
i=1

|xi |

n∑
i= j

|x j | −

n∑
i=1

|xi |
2
)

≤32
+ λ(n− 1). �

Corollary 2.2. Let n ∈ N and A = (ai, j ) be an m× n matrix. Set d =maxi, j |ai, j |.
Then ‖A‖ ≤ dm1/2n1/2.

Proof. Every column of A has norm at most dm1/2 and any two different columns
have inner product with absolute value at most md2. A direct application of
Proposition 2.1 yields the desired bound. �

Corollary 2.3. Let N, n ∈ N and A = [a1 · · · an] be an N × n matrix. Set

λ= max
1≤i 6= j≤n

|〈ai , a j 〉| and 1= max
1≤i≤n

|‖ai‖
2
− 1|.

Then ‖AT A− In‖ ≤ n max{λ,1}.

Proof. The i, j entry of the matrix AT A− I is 〈ai , a j 〉 if i 6= j and ‖ai‖
2
− 1 if

i = j . The result follows from applying Corollary 2.2. �

2B. Counting arguments. In this section we estimate the maximal number of
columns of a norm-1 matrix that can have large inner product with a fixed column.
This estimate is then used to find collections of columns which are almost orthogonal
to one another.
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Proposition 2.4. Let A = [a1 · · · aM ] be an N ×M matrix and let ε > 0. Then for
every 1≤ i ≤ M the set

Bεi = {1≤ j ≤ M : |〈ai , a j 〉| ≥ ε}

has at most ‖A‖4/ε2 elements.

Proof. If ai is the zero vector then the conclusion is obvious and we may therefore
assume that it is not. Recall that for any matrix A we have ‖A‖ = ‖A>‖. Indeed, if
x is a norm-1 vector with ‖A‖ = ‖Ax‖ then

‖A‖2 = 〈Ax, Ax〉 = 〈x, A>Ax〉

≤ ‖x‖‖A>Ax‖ ≤ ‖A>‖‖A‖‖x‖2 = ‖A>‖‖A‖

and hence ‖A‖ ≤ ‖A>‖. By symmetry of the argument we also have ‖A>‖ ≤ ‖A‖.
We calculate

‖A‖2 = ‖AT
‖

2
≥

1
‖ai‖

2 ‖AT ai‖
2
=

1
‖Aei‖

2

M∑
k=1

|〈ak, ai 〉|
2
≥

1
‖A‖2

ε2#Bεi . �

Corollary 2.5. Let n ∈ N with n ≥ 2, 0< ε < 1/(n− 1)1/2, and N ≥ n/ε2. Then
for any L ∈ N and L × N matrix A = [a1 · · · aN ], with ‖A‖ ≤ 1, there exists
F ⊂ {1, . . . , N }, with #F = n, so that for i 6= j ∈ F we have |〈ai , a j 〉|< ε.

Proof. Set i1 = 1 and inductively pick i2, . . . , in so that for 2≤ k ≤ n

ik ∈ {1, . . . , N } \
(
{i1, . . . , ik−1} ∪

(⋃k−1
m=1 Bεim

))
.

This is possible because, by Proposition 2.4, in every inductive step 2≤ k ≤ n the
set {1, . . . , N } \

(
{i1, . . . , ik−1} ∪

(⋃k−1
m=1 Bεim

))
has at least

N −
(

k− 1+
(k− 1)
ε2

)
≥

n
ε2 − (n− 1)

(
1+

1
ε2

)
=

1
ε2 − (n− 1) > 0

elements. �

The following estimate will be used in Section 3. We include it here for consis-
tency.

Corollary 2.6. Let n ∈N with n≥ 2, 0<ε< 1/(n−1)1/2, and N ≥ 5n/ε2. Let A=
[a1 · · · aN ] be an N × N matrix with ‖A‖ ≤ 1. Then for every F1, F2 ⊂ {1, . . . , N }
with #F1= #F2= n there exists F3⊂ {1, . . . , N } with #F3= n so that the following
hold:

(i) F3 is disjoint from F1 ∪ F2.

(ii) For any i 6= j ∈ F3 we have |〈ai , a j 〉|< ε.

(iii) For any i ∈ F3, j ∈ F1 ∪ F2, we have |〈ai , a j 〉|< ε.
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Proof. Define G = {1, . . . , N } \
(
(F1 ∪ F2)∪

(⋃
i∈F1∪F2

Bεi
))

. Then

#G ≥
5n
ε2 − 2n−

2n
ε2 =

3n
ε2 − 2n ≥

n
ε2 .

We now follow the exact same argument as in the proof of Corollary 2.5 to find
F3 ⊂G with #F3 = n so that for all i 6= j ∈ F3 we have |〈ai , a j 〉|< ε. The fact that
F3 ⊂ G also yields (i) and (iii). �

2C. The matrices L and R. We next explicitly define the matrices L and R with
the property L AR = In . For the definition of L and R we use the results from
Section 2B. We then use the estimates provided in Section 2A to estimate the
quantity ‖L‖‖R‖.

We now introduce the matrices L(A,F), R(A,F) that are defined using A and a
subset F of the columns of A. This dependence on F will also be important in the
next section.

Definition 2.7. Let n ≤ N ∈ N, A = [a1 · · · aN ] be an N × N matrix, and F =
{i1 < · · ·< in} be a subset of {1, . . . , N } with ‖ai‖> 0 for i ∈ F. For k = 1, . . . , n
set r k

(A,F) = eik/‖aik‖; i.e., r k
(A,F) is the N -dimensional vector that has 1/‖aik‖ in

the ik-th entry and zero everywhere else. Define the N × n and n× N matrices

R(A,F) = [r1
(A,F) · · · r

n
(A,F)] and L(A,F) = (AR(A,F))T .

Remark 2.8. Observe that for 1≤ k ≤ n we have Ar k
(A,F) = aik/‖aik‖ and thus

AR(A,F) =
[

ai1

‖ai1‖
· · ·

ain

‖ain‖

]
.

Here, we give estimates for the norms of the matrices L(A,F), R(A,F), and
L(A,F)AR(A,F)− In .

Proposition 2.9. Let n ≤ N ∈ N, A be an N × N matrix, and F = {i1 < · · ·< in}

be a subset of {1, . . . , N } with ‖ai‖> 0 for i ∈ F. Set

θ =min
i∈F
‖ai‖ and ε = max

i 6= j∈F
|〈ai , a j 〉|.

Then we have

‖R(A,F)‖ ≤ θ−1, ‖L(A,F)‖ ≤ 1+
(n− 1)1/2ε1/2

θ
,

and
‖L(A,F)AR(A,F)− In‖ ≤

nε
θ2 .

Proof. The first two estimates follow from Proposition 2.1, whereas the third is a
consequence of Corollary 2.3. For the first one observe that the columns of R(A,F)
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all have norm at most 1/θ and they are all orthogonal to one another. For the second
one, if we set bk = aik/‖aik‖ for 1≤ k ≤ n then by Remark 2.8

AR(A,F) = [b1 · · · bn].

That is, all columns of AR(A,F) have norm 1 and for 1 ≤ k 6= m ≤ n we have
|〈bk, bm〉| ≤ ε/θ

2. Recall that for x ≥ 0 we have (1+ x)1/2 ≤ 1+ x1/2. Thus,

‖L(A,F)‖ = ‖LT
(A,F)‖ ≤

(
1+

(n− 1)ε
θ2

)1/2

≤ 1+
(n− 1)1/2ε1/2

θ
.

The last estimate follows from Corollary 2.3 directly applied to the matrix AR(A,F)=
[b1 · · · bn]. �

The following is the main result of this section.

Theorem 2.10. Let N ∈N and let A=[a1 · · · aN ] be an N×N matrix with ‖A‖≤1.
If θ =min1≤i≤N ‖ai‖> 0 then for every 1≤ n ≤ 1

5θ
4/3 N 1/3 there exist n× N and

N × n matrices L and R respectively so that L AR = In and ‖L‖‖R‖ ≤ 2/θ .

Proof. If n = 1 the result easily follows by picking any column ai and defining
R = ei/‖ai‖ and L = aT

i /‖ai‖. We will therefore assume that 2≤ n ≤ 1
5θ

4/3 N 1/3.
Define ε = θ2/(9(n− 1)). This choice of ε ensures that

(n− 1)1/2ε1/2

θ
=

1
3

and
nε
θ2 ≤

1
4
. (1)

The two estimates above will be used as assumptions to apply Proposition 2.9;
however, we will first use Corollary 2.5. For that purpose, the choice of ε ensures
that

n
ε2 =

81n(n− 1)2

θ4 ≤
81
θ4 n3

≤
81
θ4

θ4 N
125
≤ N ,

i.e., N ≥ n/ε2. It is also easily checked that ε < 1/(n− 1)1/2 (because 0< θ ≤ 1).
Thus, by Corollary 2.5, there exists F⊂{1, . . . , N }with #F=n so that for i 6= j ∈ F
we have |〈ai , a j 〉|< ε.

Consider now the matrices L(A,F) and R(A,F) given by Definition 2.7. By
Proposition 2.9 and (1) we deduce

‖R(A,F)‖ ≤ θ−1, ‖L(A,F))‖ ≤ 4
3 , and ‖L(A,F)AR(A,F)− In‖ ≤

1
4 . (2)

Set R= R(A,F). To define L , recall that if S is an n×n matrix with ‖S− In‖= c< 1
then S−1 exists and ‖S−1

‖ ≤ 1/(1− c). One way to see this is to observe that
S−1
=
∑
∞

k=0(I − S)k. Therefore, the matrix (L(A,F)AR(A,F))−1 is well-defined and
has norm at most 1/

(
1− 1

4

)
=

4
3 . Finally, set L = (L(A,F)AR(A,F))−1L(A,F) and

observe that L AR = In , ‖R‖ ≤ 1/θ , and ‖L‖ ≤ 16
9 ≤ 2. �
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Remark 2.11. The theorem above may also be stated for an N × N matrix A
without restrictions on ‖A‖ as follows: if θ = min1≤i≤N ‖ai‖ > 0 then for every
1≤n≤ 1

5(θ/‖A‖)4/3 N 1/3 there exist n×N and N×n matrices L and R respectively
so that L AR = In and ‖L‖‖R‖ ≤ 2‖A‖/θ . This estimate can be compared to
[Bourgain and Tzafriri 1987, Theorem 1.2], which yields a similar result: there
exist universal constants c,C > 0 so that if N, A, and θ are as above then for every
1≤ n ≤ c(θ/‖A‖)2 N there exist n×N and N×n matrices L and R respectively so
that L AR = In and ‖L‖‖R‖≤C‖A‖/θ . We observe that the result from [Bourgain
and Tzafriri 1987] gives a better relation between the dimension n and N, whereas
our result gives a better relation between n and the quantity θ/‖A‖.

Remark 2.12. In Theorem 2.10 whenever n ≥ 2, the quantity ‖L‖‖R‖ cannot be
demanded to be below 1/θ . To see this fix 0 < θ ≤ 1 and consider the N × N
diagonal matrix A with first diagonal entry 1 and all other diagonal entries θ . If
n ≥ 2 and we assume that L , R are matrices with L AR = In , consider the subspace
X of Rn of all vectors orthogonal to R>e1. Then X has codimension at most 1 and
in particular it is nontrivial; i.e., we may pick x ∈ X with ‖x‖ = 1. Then,

Rx =
n∑

i=1

〈ei , Rx〉ei =

n∑
i=2

〈ei , Rx〉ei

and thus we can compute that ARx =
∑n

i=2 θ〈ei , Rx〉ei = θRx . By assumption,
L AR = In and so ‖x‖ = ‖L ARx‖ = θ‖L Rx‖ ≤ θ‖L‖‖R‖‖x‖. We conclude
‖L‖‖R‖ ≥ 1/θ .

3. The continuous case

In this section we present the main result of our paper. We demonstrate how the
estimates from the previous section can be utilized to continuously factor the identity
matrix through a continuous matrix function A = A(t) with large diagonal entries.
The idea behind the argument is to first obtain continuous factors L(t), R(t) on
small intervals that cover the real line and then stitch the different solutions together
in a continuous manner.

Let us recall the notion of a matrix function. We denote by Mm×n(R) the set
consisting of all m× n matrices with real entries. We will write MN (R) instead of
MN×N (R). A matrix function A is a function with some domain D and range in
some Mm×n(R); i.e., it maps every t ∈ D to some m × n matrix A(t) = (ai, j (t)).
Whenever the domain D is equipped with a topology (e.g., when D is a subset of R

with the usual distance) then we say that a matrix function A is continuous whenever
all its entries ai, j , viewed as scalar functions with domain D, are continuous.
It is straightforward that for continuous matrix functions A, B with appropriate
dimensions and common domain D the product AB is a continuous matrix function.
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The first proposition of this section infers that to prove the main result it is
enough to find continuous factors L(t), R(t) so that L(t)A(t)R(t) is sufficiently
close to the identity matrix for all t . We begin with two well-known lemmas, which
we prove for the sake of completeness.

Lemma 3.1. Let I be an interval of R, m, n ∈ N, and A : I → Mm×n(R) be a
matrix function. For any t0 in I the matrix function A is continuous at t0 if and only
if limt→t0 ‖A(t)− A(t0)‖ = 0.

Proof. Note that for any m × n matrix B = (bi, j ) and any 1 ≤ i0 ≤ m, 1 ≤
j0 ≤ n we have |bi0, j0(t)| = |〈ei0, Be j0〉| ≤ ‖B‖. By Corollary 2.2 we also have
‖B‖ ≤ m1/2n1/2 maxi, j |bi, j |. For t ∈ I we apply our observation to the matrix
B = A(t)− A(t0) to obtain that for any 1≤ i0 ≤ m, 1≤ j0 ≤ n we have

|ai0, j0(t)− ai0, j0(t0)| ≤ ‖A(t)− A(t0)‖ ≤ m1/2n1/2 max
i, j
|ai, j (t)− ai, j (t0)|.

The desired conclusion immediately follows. �

Lemma 3.2. Let N ∈N, I be an interval of R, and A : I→MN (R) be a continuous
matrix function such that A(t) is invertible for all t ∈ I . Then A−1

: I → MN (R) is
a continuous matrix function.

Proof. We fix t0 in I and estimate ‖A−1(t)− A−1(t0)‖ for t close to t0. Observe
that A−1(t)− A−1(t0)= A−1(t)(A(t0)− A(t))A−1(t0). We deduce

‖A−1(t)− A−1(t0)‖ ≤ ‖A−1(t)‖‖A(t0)− A(t)‖‖A−1(t0)‖ (3)

and
‖A−1(t)‖ ≤ ‖A−1(t0)‖+‖A−1(t)‖‖A(t0)− A(t)‖‖A−1(t0)‖,

which, solving for ‖A−1(t)‖, yields

‖A−1(t)‖ ≤
‖A−1(t0)‖

1−‖A(t0)− A(t)‖‖A−1(t0)‖
. (4)

The quantity on the right-hand side of the inequality above is well-defined for t
sufficiently close to t0. We plug (4) into (3) to get rid of the term ‖A−1(t)‖:

‖A−1(t)− A−1(t0)‖ ≤
‖A−1(t0)‖2‖A(t0)− A(t)‖

(1−‖A(t0)− A(t)‖‖A−1(t0)‖)
.

This estimate, in conjunction with Lemma 3.1, yields that the continuity of A : I→
MN (R) at t0 implies the continuity of A−1

: I → MN (R) at t0. �

Proposition 3.3. Let n ≤ N ∈ N, I be an interval of R, and A : I → MN (R) be a
continuous matrix function. Assume that 0<C < 1, 1≥ 0, and L : I→ Mn×N (R),
R : I → MN×n(R) are continuous matrix functions so that for all t ∈ I we have
‖L(t)A(t)R(t)− In‖ ≤ C and ‖L(t)‖‖R(t)‖ ≤ 1. Then there exist continuous



158 Y. DAI, A. HORE, S. JIAO, T. LAN AND P. MOTAKIS

matrix functions L̃ : I → Mn×N (R), R̃ : I → MN×n(R) so that for all t ∈ I we
have L̃(t)A(t)R̃(t)= In and ‖L̃‖‖R̃‖ ≤1/(1−C).

Proof. For each t ∈ I , because we have that ‖L(t)A(t)R(t)− In‖ ≤ C , the matrix
L(t)A(t)R(t) is invertible, and in particular ‖(L(t)A(t)R(t))−1

‖ ≤ 1/(1−C). By
Lemma 3.2 the matrix function (L AR)−1

: I → Mn(R) is continuous. We define
L̃ : I→Mn×N (R) as L̃(t)= (L(t)A(t)R(t))−1L(t) and just set R̃= R. Both L̃ and
R̃ are continuous and clearly for all t ∈ I we have L̃(t)A(t)R̃(t)= In . Additionally,
for t ∈ I we have ‖L̃(t)‖‖R̃‖ ≤ ‖(L(t)A(t)R(t))−1

‖‖L‖‖R‖ ≤1/(1−C). �

Recall the matrices L(A,F) and R(A,F) from Definition 2.7. In the sequel we will
start with two versions of pairs L(A,F1), R(A,F1), L(A,F2) and R(A,F2), and a scalar
0≤ λ≤ 1. We will combine them into a new pair Lλ(A,F1,F2)

and Rλ(A,F1,F2)
.

Definition 3.4. Let n ≤ N ∈ N, let A = [a1 · · · aN ] be an N × N matrix, let
F1 = {i1 < · · ·< in}, F2 = { j1 < · · ·< jn} be disjoint subsets of {1, . . . , N }, and let
0≤ λ≤ 1. We assume that ‖ai‖> 0 for i ∈ F1 ∪ F2. Define the N × n and n× N
matrices

Rλ(A,F1,F2)
= λ1/2 R(A,F1)+ (1− λ)

1/2 R(A,F2),

Lλ(A,F1,F2)
= λ1/2L(A,F1)+ (1− λ)

1/2L(A,F2).

Remark 3.5. The matrices Rλ(A,F1,F2)
, Lλ(A,F1,F2)

lie “between” R(A,F1), R(A,F2) and
L(A,F1), L(A,F2) respectively. Clearly, if λ= 1 then

R1
(A,F1,F2)

= R(A,F1), L1
(A,F1,F2)

= L(A,F1)

and if λ= 0 then

R0
(A,F1,F2)

= R(A,F2), L0
(A,F1,F2)

= L(A,F2).

Remark 3.6. Recall that for k = 1, . . . , n, we have R(A,F1)ek = eik/‖aik‖ and
R(A,F2)ek = e jk/‖a jk‖, which means that

Rλ(A,F1,F2)
ek = λ

1/2eik/‖aik‖+ (1− λ)
1/2e jk/‖a jk‖.

Therefore

ARλ(A,F1,F2)
=

[(
λ1/2 ai1

‖ai1‖
+(1−λ)1/2

a j1

‖a j1‖

)
· · ·

(
λ1/2 ain

‖ain‖
+(1−λ)1/2

a jn

‖a jn‖

)]
.

Remark 3.7. It will be important to note for the sequel the following: if n≤ N ∈N,
I is an interval of R, λ : I→[0, 1] is a continuous scalar function, A= [a1 · · · aN ] :

I → MN (R) is a continuous matrix function, and F1, F2 are disjoint subsets of
{1, . . . , N } with #F1= #F2= n so that ‖ai (t)‖> 0 for all i ∈ F1∪F2 and t ∈ I , then
the matrix functions Rλ(t)(F1,F2,A(t)) : I → MN×n(R), Lλ(t)(F1,F2,A(t)) : I → Mn×N (R) are
both continuous.
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The following proposition basically states that if we have appropriately picked
L(A,F1), R(A,F1), L(A,F2) and R(A,F2) then for any scalar 0 ≤ λ ≤ 1 the new pair
Lλ(A,F1,F2)

, Rλ(A,F1,F2)
satisfies a conclusion similar to that of Proposition 2.9.

Proposition 3.8. Let n ≤ N ∈ N, let A = [a1 · · · aN ] be an N × N matrix, let
F1 = {i1 < · · · < in}, F2 = { j1 < · · · < jn} be disjoint subsets of {1, . . . , N } and
let 0≤ λ≤ 1. Set

θ = min
i∈F1∪F2

‖ai‖ and ε = max
i 6= j∈F1∪F2

|〈ai , a j 〉|.

If θ > 0 then we have

‖Rλ(A,F1,F2)
‖ ≤ θ−1, ‖Lλ(A,F1,F2)

‖ ≤ 1+
(2n)1/2ε1/2

θ
,

and

‖Lλ(A,F1,F2)
ARλ(A,F1,F2)

− In‖ ≤
2nε
θ2 .

Proof. This proof is very similar in spirit to that of Proposition 2.9. We examine
for 1≤ k ≤ n column k of Rλ(A,F1,F2)

, i.e., the vector Rλ(A,F1,F2)
ek :

‖Rλ(A,F1,F2)
ek‖

2
=

λ

‖aik‖
2 +

(1− λ)
‖a jk‖

2 ≤
1
θ2 .

It is also easy to see that for k1 6= k2 the columns of Rλ(A,F1,F2)
are orthogonal.

Therefore, by Proposition 2.1 we have ‖Rλ(A,F1,F2)
‖ ≤ 1/θ .

For the second estimate, we define, for 1≤ k ≤ n,

bk =
λ1/2aik

‖aik‖
+
(1− λ)1/2a jk

‖a jk‖
.

By Remark 3.6 we have

(Lλ(A,F1,F2)
)T = ARλ(A,F1,F2)

= [b1 · · · bk].

We calculate, for 1≤ k ≤ n, the norm of column k:

‖bk‖
2
=

〈
λ1/2

‖aik‖
aik +

(1− λ)1/2

‖a jk‖
a jk ,

λ1/2

‖aik‖
aik +

(1− λ)1/2

‖a jk‖
a jk

〉
= λ+ (1− λ)+ 2λ1/2(1− λ)1/2

〈
aik

‖aik‖
,

a jk

‖a jk‖

〉
;

that is,
|‖bk‖

2
− 1| ≤ 2λ1/2(1− λ)1/2

ε

θ2 ≤
ε

θ2 for 1≤ k ≤ n, (5)

where we used 0≤ 2λ1/2(1− λ)1/2 ≤ 1 for 0≤ λ≤ 1. In particular, we have

‖bk‖ ≤

(
1+

ε

θ2

)1/2

for 1≤ k ≤ n. (6)
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Next, we will show that

for 1≤ k1 6= k2 ≤ n, |〈bk1, bk2〉| ≤ 2
ε

θ2 . (7)

We have

|〈bk1, bk2〉| ≤ λ

∣∣∣∣〈 aik1

‖aik1
‖
,

aik2

‖aik2
‖

〉∣∣∣∣+ (1− λ)∣∣∣∣〈 a jk1

‖a jk1
‖
,

a jk2

‖a jk2
‖

〉∣∣∣∣
+ λ1/2(1− λ)1/2

(∣∣∣∣〈 aik1

‖aik1
‖
,

a jk2

‖a jk2
‖

〉∣∣∣∣+ ∣∣∣∣〈 a jk1

‖a jk1
‖
,

aik2

‖aik2
‖

〉∣∣∣∣)
≤
ε

θ2 + 2λ1/2(1− λ)1/2
ε

θ2 ≤ 2
ε

θ2 .

We now apply Proposition 2.1, which by (6) and (7), gives that

‖Lλ(A,F1,F2)
‖ = ‖ARλ(A,F1,F2)

‖ ≤

(
1+

ε

θ2 + (n− 1)2
ε

θ2

)1/2

≤ 1+ (2n− 1)1/2
ε1/2

θ
≤ 1+ (2n)1/2

ε1/2

θ
.

The final estimate follows from Corollary 2.3 directly applied to the matrix
ARλ(A,F1,F2)

= [b1 · · · bk] and (5), (7). �

We are finally ready to state and prove the main result of this paper.

Theorem 3.9. Let N ∈ N, let I be an interval of R and let A = [a1 · · · aN ] : I →
MN (R) be a continuous function so that the following hold:

(i) For t ∈ I we have ‖A(t)‖ ≤ 1.

(ii) θ = inft∈I min1≤i≤N ‖ai (t)‖> 0.

Then for every 1 ≤ n ≤ 1
12θ

4/3 N 1/3 there exist continuous functions L : I →
Mn×N (R) and R : I → MN×n(R) so that for all t ∈ I we have L(t)A(t)R(t)= In

and ‖L(t)‖‖R(t)‖ ≤ 2/θ .

Proof. By Proposition 3.3 it is sufficient to find continuous L(t), R(t) so that for
all t ∈ I we have ‖L(t)A(t)R(t)− In‖ ≤

1
4 and ‖L(t)‖‖R(t)‖ ≤ 4/(3θ).

The case n = 1 is treated easily by taking an arbitrary 1 ≤ i ≤ N and defin-
ing R(t) = ei/‖ai (t)‖ and L(t) = ai (t)/‖ai (t)‖; thus we assume that 2 ≤ n ≤
1

12θ
4/3 N 1/3. Define ε = θ2/(18n). This choice of ε is related to the estimates from

Proposition 3.8 and also Corollaries 2.5 and 2.6. Let us note that we have

(2n)1/2ε1/2

θ
=

1
3

and
2nε
θ2 ≤

1
4

(8)

and also

5
n
ε2 = 5

182n3

θ4 ≤ 5
182

θ4

θ4 N
123 ≤ N . (9)
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Let us assume henceforth that I = [0,∞). The case I =R is treated by performing
the same argument on both sides of 0. Other cases are treated similarly. Otherwise
they can be deduced from the previous two cases by using, e.g., that any open
interval is homeomorphic to R and every half-open interval is homeomorphic to
[0,+∞), and any continuous function on a closed bounded interval [t1, t2] can be
continuously extended to R by assigning the value A(t1) to each t ≤ t1 and the
value A(t2) to each t ≥ t2.

We start by finding a strictly increasing sequence 0 = t0 < t1 < t2 < · · · with
limm tm =∞ so that for all m ∈ N there exists Fm ⊂ {1, . . . , N } with

(a) #Fm = n and

(b) for all i 6= j ∈ Fm and tm−1 ≤ t ≤ tm we have |〈ai (t), a j (t)〉|< ε.

This is achieved as follows. For each r ∈ [0, 1] we use Corollary 2.5 to find
Fr ⊂ {1, . . . , N } so that for all i 6= j ∈ Fr we have |〈ai (t), a j (t)〉| < ε. Because
A is continuous, we may find a small open interval Ir containing r (half-open
if r = 0) so that for all i 6= j ∈ Fr and t ∈ Ir we still have |〈ai (t), a j (t)〉| < ε.
Because [0, 1] ⊂

⋃
r∈[0,1] Ir and the interval [0, 1] is compact there must exist

r1 < · · ·< rm1 so that [0, 1] ⊂
⋃m1

i=1 Iri . By perhaps getting rid of a few intervals
we may assume that none of them is contained in the union of the others. Then,
by perhaps making some of the intervals a little shorter we may assume that
sup(Iri )≤ ri+1 for 1≤ i <m1−1 and ri−1≤ inf(Iri ) for 1< i ≤m1. In other words,
for i = 1, . . . ,m1− 1 we have ∅ 6= Iri ∩ Iri+1 ⊂ (ri , ri+1). Define t0 = 0, tm1 = 1
and for 1 ≤ i < m1 pick ti ∈ (ri , ri+1). If we then set Fi = Fri for 1 ≤ i ≤ m1 we
obtain that (a) and (b) are satisfied up to m = m1. For k = 2, 3, . . . repeat the same
argument on [k− 1, k] to find (ti )

mk
i=mk−1+1 and (Fi )

mk
i=mk−1+1 that satisfy (a) and (b).

The next step is to apply for each m = 1, 2, . . . Corollary 2.6 to the matrix A(tm)
and the sets Fm , Fm+1. By doing so we find a set Gm ⊂ {1, . . . , N } \ (Fm ∪ Fm+1)

with #Gm = n so that for all i 6= j with i ∈ Gm and j ∈ Gm ∪ Fm ∪ Fm+1 we
have |〈ai (tm), a j (tm)〉| < ε. We now use the continuity of A once more to find
sm < tm < um so that for all t ∈ (sm, um) the above hold as well. By perhaps moving
sm, um a bit closer to tm we have the following situation:

(c) 0= t0 < s1 < t1 < u1 < s2 < t2 < u2 < s3 < t3 < u3 < · · · .

(d) For m = 1, 2, . . . we have Gm ⊂ {1, . . . , N } \ (Fm ∪ Fm+1) with #Gm = n so
that for all t ∈ (sm, um), i 6= j , with i ∈Gm and j ∈Gm ∪ Fm ∪ Fm−1, we have
|〈ai (t), a j (t)〉|< ε.

We are finally ready to define L(t) and R(t). Set 0= u0. For each m = 1, 2, . . .
take a continuous λm : [sm, um]→[0, 1] with λm(sm)=λm(um)= 1 and λm(tm)= 0:

(A) For m = 0, 1, . . . and t ∈ [um, sm+1] set R(t)= R(A(t),Fm+1).



162 Y. DAI, A. HORE, S. JIAO, T. LAN AND P. MOTAKIS

(B) For m = 1, 2, . . . and t ∈ [sm, tm] define

R(t)= Rλm(t)
A(t),Fm ,Gm

.

We point out that, by Remark 3.5,

R(sm)= R1
A(sm),Fm ,Gm

= R(A(sm),Fm) and R(tm)= R0
A(tm),Fm ,Gm

= RA(tm),Gm .

(C) For m = 1, 2, . . . and t ∈ [tm, um] define

R(t)= Rλm(t)
A(t),Fm+1,Gm

.

Once more, by Remark 3.5,

R(tm)=R0
A(tm),Fm+1,Gm

=R(A(tm),Gm) and R(um)=R1
A(um),Fm+1,Gm

=RA(um),Fm+1 .

By Remark 3.7, in each case (A), (B), and (C) the function R is continuous and
the values at the endpoints of the corresponding intervals match. Thus R defines a
continuous function on I and thus so does L = (AR)T.

We next wish to show that for t ≥ 0 we have ‖L(t)A(t)R(t)− In‖ ≤
1
4 and

‖L(t)‖‖R(t)‖ ≤ 4/(3θ) and the proof will be complete. If t ∈ [um, sm+1], for some
m ∈N, then this follows from definition (A) above and (8) applied to Proposition 2.9.
If t ∈ [sm, um] for some m ∈N then this follows from definition (B) or (C), property
(d), and (8) applied to Proposition 3.8. �

We conclude with some open questions regarding the topic of the paper.

Question 1. As was pointed out in Remark 2.11, [Bourgain and Tzafriri 1987]
implies a version of Theorem 2.10 (in which 2/θ is replaced by C/θ and C is
a nonexplicit finite constant) with an estimate n & θ2 N. This is better than our
estimate n& θ3/4 N 1/3, provided that N & 1/θ . Can the probabilistic technique from
[Bourgain and Tzafriri 1987] be used to obtain a similar version of the continuous
Theorem 3.9 with an estimate n & θ2 N?

Question 2. For the theorem in the continuous case, we considered A : I→MN (R),
where I is an interval of R. We conjecture that a version of Theorem 3.9 is also true
for a continuous matrix function A :Rd

→ MN (R). What is the relation between d ,
N, θ , and the dimension n in the conclusion of such a theorem?

For 1≤ p≤∞ and an N×N matrix A let ‖A‖p denote the quantity max{‖Ax‖p :

‖x‖p ≤ 1}. In particular, ‖A‖ = ‖A‖2.

Question 3. The methods used in this paper rely heavily on properties of the
Euclidean norm. In the statement of Theorem 3.9 we may replace condition (i) with
‖A(t)‖p ≤ 1. It would be interesting to prove a version of this theorem, as different
methods might be necessary.
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