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A numerical semigroup S is a cofinite submonoid of the nonnegative integers under
addition. The cardinality of the complement of S in the nonnegative integers is
called the genus. The smallest nonzero element of S is the multiplicity of S. There
is an extensive literature about the tree of numerical semigroups, which has been
used to count numerical semigroups by genus, yet the structure of the tree itself
has not been described in the literature. In this paper, we completely describe the
structure of the subtrees of the numerical semigroup tree of multiplicities 4 and 5.
We conclude with an application of these numerical semigroup trees’ structure.

1. Introduction

Let N denote the nonnegative integers. In the study of numerical semigroups, the
question of how many ways we can form a numerical semigroup by removing
g elements from N is particularly important. This question is equivalent to finding
a formula for the number of numerical semigroups with genus g, denoted by N (g).
The tree of numerical semigroups has been a powerful tool for making conjectures
and answering questions in this field, and it has been especially useful in analyzing
the behavior of the function N (g). Bras-Amorós [2008] conjectured and Zhai
[2013] proved that asymptotically N (g) exhibits Fibonacci-like behavior. That is,

lim
g→∞

N (g)
φg = β,

where φ is the golden ratio 1
2(1+

√
5) and β is a constant greater than or equal

to 3.78. In particular, this means that

lim
g→∞

N (g− 1)+ N (g− 2)
N (g)

= 1 and lim
g→∞

N (g)
N (g− 1)

= φ.
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Fromentin and Hivert [2016] have computed N (g) for g ≤ 67 and have extended
this to g≤ 70 in unpublished computations.1 This was further extended to g≤ 71 by
Bras-Amorós and Fernández-González [2019]. Nevertheless, fundamental questions
about N (g) remain open. Two related open questions are the validity of the strong
genus conjecture [Bras-Amorós 2008] and the weak genus conjecture.

Conjecture 1. For g ≥ 2, N (g)≥ N (g− 1)+ N (g− 2).

Conjecture 2. For g ≥ 1, N (g)≥ N (g− 1).

Several authors have approached the weak genus conjecture by considering the
functions N (m, g) which count the numerical semigroups of multiplicity m and
genus g. It is immediate to observe that N (g)=

∑g+1
m=1 N (m, g), which led Kaplan

[2012] to conjecture the following, which clearly implies Conjecture 2.

Conjecture 3. For m ≥ 2, N (m, g)≥ N (m, g− 1).

In this paper, we give a complete description of the structure of the numerical
semigroup tree in multiplicities 4 and 5. The paper is organized as follows. In
Section 2 we review some preliminaries about numerical semigroups and the
numerical semigroup tree. Section 3 contains the main results of the paper about
the structure of the tree. In Section 4 we use the main result in multiplicity 4 to
give an alternate proof of the quasipolynomial expression for N (4, g).

2. Preliminaries

In this section we define terms and state prior results that will be used throughout the
rest of this paper. Readers familiar with the fundamentals of numerical semigroups
can continue to Section 3 and refer to this section as needed. A good general
reference for numerical semigroups is [Rosales and García-Sánchez 2009].

A subset S of N is called a numerical semigroup if it is cofinite in N, contains 0,
and is closed under addition. We sometimes refer to numerical semigroups as
semigroups for brevity. The cardinality of N \ S is called the genus, g(S), and the
smallest nonzero element of S is called the multiplicity, m(S). The largest element
of N \ S is called the Frobenius number, F(S). It is well known that the number of
numerical semigroups of any fixed genus is finite. We can thus define a function
N : N→ N where N (g) is the number of numerical semigroups of genus g. The
minimal generating set of S is the unique smallest subset of S such that every
element of S is an N-linear combination of the numbers in the set. We write

S = 〈n1, . . . , nt 〉 = {a1n1+ · · ·+ at nt | a1, . . . , at ∈ N}. (1)

The multiplicity of S is always the smallest element of the minimal generating

1See https://github.com/hivert/NumericMonoid.

https://github.com/hivert/NumericMonoid
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〈4, 5, 6, 7〉

〈4, 6, 7, 9〉

〈4, 7, 9, 10〉

...

〈4, 6, 9, 11〉

...

〈4, 6, 7〉

〈4, 5, 7〉

〈4, 5, 11〉

〈4, 5〉

〈4, 5, 6〉

Figure 1. Portion of numerical semigroup tree under 〈4, 5, 6, 7〉.

set. The generators in the minimal generating set that are larger than the Frobenius
number are called effective generators. The Apéry set of a numerical semigroup
with respect to its multiplicity is defined as

Ap(m, S)= {0, k1m+ 1, k2m+ 2, . . . , km−1m+ (m− 1)}, (2)

where {k1, . . . , km−1} are positive integers such that ki m+ i is the smallest positive
integer in S congruent to i modulo m. This uniquely associates to each numerical
semigroup of multiplicity m an (m−1)-tuple, (k1, . . . , km−1), called the Apéry
coordinates of S.

Numerical semigroups can be organized into a tree by letting the vertices be
the set of numerical semigroups, with root N. The parent of a vertex S is given
by S ∪ {F(S)}. This gives a unique path from any vertex to the root. A portion of
the tree can be seen in Figure 1. The bold numbers in the figure indicate which
generators are effective. Notice that by this construction, any child of S has genus
one more than g(S). This form of construction has been explored extensively, and
an example of it can be seen in [Bras-Amorós and Bulygin 2009].

Every numerical semigroup with genus g(S) can be obtained from a numerical
semigroup of genus g(S)−1 by removing an effective generator from the semigroup.
The numerical semigroup tree is naturally sorted by multiplicity, with the numerical
semigroups of multiplicity m forming a subtree rooted at ({0}∪ [m,∞))∩ (Z). All
of the numerical semigroups of this form fall on the same branch of the tree, and
this special branch is called the ordinary branch [Bras-Amorós and Bulygin 2009].
Some numerical semigroups contain no effective generators and hence no children
in the tree. These numerical semigroups are called leaves.

3. Numerical semigroup tree structure

The tree structure of multiplicity m = 3 is known; see for instance [García-Sánchez
et al. 2018]. In this section we give a complete description of the structure of
the subtrees of multiplicities 4 and 5. Throughout our discussion, we use the
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numerical semigroup and its corresponding vertex in the tree interchangeably.
Throughout the section when we refer to a branch, we mean a connected subtree.
When we refer to the length of a linear graph, we mean the number of edges
in that graph. Note that whenever k appears without a subscript in this section
it is the smallest Apéry coordinate of the current numerical semigroup under
discussion.

3.1. The multiplicity-4 subtree. The root of this subtree is the semigroup 〈4, 5, 6, 7〉.
By successively removing the smallest effective generator greater than 4, we create
an infinite branch of this subtree, which we call the principal branch. It is easy to
see that a multiplicity-4 semigroup lies on the principal branch if and only if it has
three effective generators.

To organize the analysis of this subtree, we divide the branches rooted on the
principal branch into three classes based on the congruence class of the first effective
generator of the root vertex. We show in Lemma 13 that when the first effective
generator is even, the branch is infinite. The other branches of the numerical
semigroup tree are finite. In a sequence of lemmas, we describe the lengths of
all finite branches of the subtree and the structure of the infinite branches. These
results are compiled in Theorem 15.

We begin with an example to demonstrate the patterns that we state generally
in the lemmas below. In Figure 2 we see the branch of the multiplicity-4 subtree
rooted at 〈4, 15, 17, 18〉. The bold numbers in the figure are effective generators.
Observe that the child formed by removing the effective generator e either has e+4
as a new generator or has one fewer generator than its parent.

There are a few observations to make about this branch. First notice that by
successively removing the second-largest effective generator, we create the linear
branch from the root to 〈4, 15, 29〉. To describe the structure of the branch rooted
at 〈4, 15, 17, 18〉, it is sufficient to know the length of this main subbranch and the
lengths of each linear branch descending from it. Each of these linear branches
follows one of three patterns.

The pattern of lengths we observe in Figure 2 is X , 3, X−1, 3, X−2, . . . .
Starting at the first branch, rooted at 〈4, 15, 17, 18〉, every second branch’s length
decreases by 1, and starting at the second branch, rooted at 〈4, 15, 18, 21〉, every
second branch has length 3. Finally the last linear branch, when the semigroup on
the main branch has lost an effective generator, has a distinct length. In the case of
Figure 2, this subbranch begins at 〈4, 15, 29〉 and has length 4. Describing similar
patterns for general branches of the multiplicity-4 subtree allows us to describe its
full structure.

We consider three cases for the roots of the subtrees. First consider the case
where the root of the subtree has the form 〈4, 4k+ 1, 4k+ 2, 4k+ 3〉.
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〈4, 15, 17, 18〉

〈4, 15, 18, 21〉

〈4, 15, 21, 22〉

〈4, 15, 22, 25〉

〈4, 15, 25, 26〉

〈4, 15, 26, 29〉

〈4, 15, 29〉

〈4, 15, 33〉

〈4, 15, 37〉

〈4, 15, 41〉

〈4, 15〉

〈4, 15, 26, 33〉

〈4, 15, 26, 37〉

〈4, 15, 26〉

〈4, 15, 25〉

〈4, 15, 22, 29〉

〈4, 15, 22, 33〉

〈4, 15, 22〉

〈4, 15, 21, 26〉

〈4, 15, 21〉

〈4, 15, 18, 25〉

〈4, 15, 18, 29〉

〈4, 15, 18〉

〈4, 15, 17, 22〉

〈4, 15, 17, 26〉

〈4, 15, 17〉

Figure 2. Numerical semigroup tree rooted at 〈4, 15, 17, 18〉.

Definition 4. We define the main branch of any subtree rooted on the principal
branch to be the set of semigroups formed by consecutively removing the second-
largest effective generator.

Since we primarily care about the lengths of the branches, we can make a more
abstract diagram that shows this information directly. We call such pictures comb
diagrams for their shape, as seen in Figure 3. More precisely, a comb diagram is a
depiction of some subtree of the numerical semigroup tree that shows the lengths
of the subbranches. Typically, we take the root of the diagram to be a numerical
semigroup from the principal branch. We use comb diagrams to illustrate patterns
in the linear branch lengths. For instance, in Figure 3, we notice that the decreasing
pattern begins with length k− 1 and continues until the length is equal to 1. Note
that this is a different case from the example in Figure 2, whose root was of the form
〈4, 4k+ 3, 4(k+ 1)+ 1, 4(k+ 1)+ 2〉. We can also note that the constant-length
branches are length k and the final linear branch that occurs when the main branch
has lost a generator is length k+ 1. Finally, observe that by asserting that the last
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〈4, 4k+ 1, 4k+ 2, 4k+ 3〉

〈 〉

〈 〉

〈 〉

〈 〉
. .
.

〈 〉

〈4, 4k+1, 4(2k−1)+3〉

k+1

1

k

k−2

k

k−1

k

Figure 3. Comb diagram of the subtree rooted at 〈4, 4k+1, 4k+2,
4k+ 3〉.

element of the main branch is 〈4, 4k+ 1, 4(2k− 1)+ 3〉, we have tacitly asserted
that the length of the main branch is 2k− 1.

In the following lemmas we codify the information shown in Figure 3. In
particular, we describe the structure of the subtree whose root lies on the principal
branch of the multiplicity-4 subtree and has the form 〈4, 4k + 1, 4k + 2, 4k + 3〉.
Every semigroup in this branch has 4 and 4k+1 as generators. We consider several
cases for the other minimal generators. First we describe when the linear branches
have fixed length.

Lemma 5. Let S=〈4,α,β,γ 〉 be on the main branch under 〈4,4k+1,4k+2,4k+3〉,
where α = 4k+ 1 and γ = β + 1. Then the linear branch rooted at S has length k.

Proof. First note that the hypotheses imply that β ≡ 2 (mod 4) and γ ≡ 3 (mod 4).
Let the corresponding Apéry coordinates be (k, k2, k3). Since β and γ are always
effective, we know k2 = k3, and by hypothesis k ≤ k2. The branch terminates at the
semigroup 〈4, α, β〉. Each semigroup in this branch has γ + 4l as the element of
its Apéry set congruent to 3 modulo 4, where l is some nonnegative integer, and the
other elements of its Apéry set are unchanged. Since α+β=4k+4k2+3=α+γ , we
have γ+4l=α+β when l=k. It is straightforward to show that α+β is the smallest
element of 〈4, α, β〉 congruent to 3 modulo 4. Hence the length of the branch is k. �

In order to prove Lemma 5 we used relations between Apéry coordinates to show
which semigroup in the branch was a leaf. We found a linear combination of other
generators in the same congruence class of the effective generator we removed and
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observed that this example was minimal. This technique is used throughout the rest
of the paper, with deviations noted when applicable.

Lemma 6. Let S=〈4,α,β,γ 〉 be on the main branch under 〈4,4k+1,4k+2,4k+3〉,
where α = 4k+ 1 and γ = β+ 3= 4k2+ 2. Then the linear branch rooted at S has
length l = 2k− k2, where k2 is the largest Apéry coordinate.

Proof. Note that β ≡ 3 (mod 4) and γ ≡ 2 (mod 4); thus k2 = k3+ 1. The linear
branch terminates at 〈4, α, β〉. As in Lemma 5, observe that when l = 2k− k2, we
have γ + 4l = 4(k2)+ 2+ 4(2k− k2)= 2α ∈ 〈4, α, β〉. This is the smallest linear
combination of 〈4, α, β〉 that is congruent to 2 modulo 4. �

Lemma 7. S = 〈4, 4k + 1, 4(2k − 1)+ 3〉 is the last element of the main branch.
Hence, the length of the main branch is 2k− 1.

Proof. For any semigroup S on the main branch, the Apéry set is

Ap(4, S)= {0, 4k+ 1, 4(c)+ 2, 4(c)+ 3}
or

Ap(4, S)= {0, 4k+ 1, 4(c+ 1)+ 2, 4(c)+ 3}

for some c ≥ k. Since the Apéry set elements congruent to 2 and 3 modulo 4 are
within 4 of each other, we need only consider the span of 4 and 4k + 1 to see
if a potential generator is redundant. Clearly the smallest element of 〈4, 4k + 1〉
congruent to 2 or 3 is 2(4k+ 1). This first occurs when

Ap(4, S)= {0, 4k+ 1, 4(c+ 1)+ 2, 4(c)+ 3}

and c = (2k − 1). When c = (2k − 1), the generator equivalent to 4(c+ 1)+ 2
is redundant, and we have S = 〈4, 4k + 1, 4(2k − 1)+ 3〉. Since c is initially k
and increases by 1 every other semigroup, the total length of the main branch is
2(c− k)+ 1, where c = 2k− 1. Simplifying, the total length of the main branch is
2(2k− 1− k)+ 1= 2k− 1. �

Lemma 8. Let S = 〈4, α, β〉, where α = 4k+ 1 and β = 4(2k− 1)+ 3. Then the
branch rooted at S has length k+ 1, where k is the smallest Apéry coordinate.

Proof. The Apéry coordinates of S are (k, 2k, 2k − 1). The leaf in this branch is
〈4, 4k+ 1〉, and the smallest element of this set congruent to 3 modulo 4 is 3α. So
β+4(k+1)= 4(2k−1)+3+4(k+1)= 3α ∈ 〈4, α〉, and the length of the branch
is k+ 1. �

Lemmas 5–8 fully describe the subtrees rooted at numerical semigroups where
the first effective generator is congruent to 1 (mod 4). The subtrees rooted at
numerical semigroups with first effective generator congruent to 3 (mod 4) are
similar. We omit the proofs, which are analogous to the proofs of Lemmas 5–8.
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〈4, 4k+2, 4k+3, 4(k+1)+1〉

〈 〉

〈 〉

. .
. k

k

k

Figure 4. Comb diagram of the subtree rooted at 〈4, 4k+2, 4k+3,
4(k+ 1)+ 1〉.

Lemma 9. Let S=〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+3, 4(k+1)+1,
4(k+ 1)+ 2〉, where α = 4k+ 3 and γ = β + 1= 4k2+ 2. Then the linear branch
rooted at S has length 1+ 2k− k2.

Lemma 10. Let S=〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+3, 4(k+1)+1,
4(k+ 1)+ 2〉, where α = 4k+ 3 and γ = β + 3= 4k1+ 1. Then the linear branch
rooted at S has length k, where k is the smallest Apéry coordinate.

Lemma 11. S = 〈4, 4k+ 3, 4(2k+ 1)+ 1〉 is the last element of the main branch.
Hence, the length of the main branch is 2k.

Lemma 12. Let S = 〈4, α, β〉, where α = 4k+ 3 and β = 4(2k+ 1)+ 1. Then the
branch rooted at S has length k+ 1, where k is the smallest Apéry coordinate.

The subtree rooted at numerical semigroups where the first effective generator is
congruent to 2 (mod 4) are infinite, but they still exhibit regular behavior that we
can describe. Figure 4 shows a comb diagram for this case.

Lemma 13. Let S = 〈4, α, β, γ 〉, where α = 4k + 2 and β and γ are effective
generators. Then the main branch of the subtree rooted at S is infinite.

Proof. Each element on the main branch has the form 〈4, 4k+2, 4c+3, 4(c+1)+1〉
or the form 〈4, 4k + 2, 4(c+ 1)+ 1, 4(c+ 1)+ 3〉, where c ≥ k. In either case,
every element of S less than the conductor is even. Hence by [Bras-Amorós and
Bulygin 2009, Theorem 12], S lies on an infinite chain. Since this is true for every
semigroup of these forms, the chain comprising them is infinite. �

Lemma 14. Let S = 〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+ 2, 4k+ 3,
4(k+ 1)+ 1〉. Then the linear branch rooted at S has length k.

Proof. This is analogous to Lemma 5. �

We compile these results in one theorem for ease of reference.

Theorem 15. The numerical semigroup tree rooted at S = 〈4, 5, 6, 7〉 has the
following properties:

(1) For S = 〈4, α, β, γ 〉, where α < β < γ are all effective minimal generators,
0< γ −α ≤ 3.
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(2) Let S be a numerical semigroup with multiplicity m = 4, and three effective
generators α < β < γ . Then, the descendant S \ {α} has three effective generators,
the descendant S \ {β} has at most two effective generators, and S \ {γ } has at most
one effective generator.

(3) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈4, 4k+ 1, 4k+ 2, 4k+ 3〉 have the following properties:

(a) Let S = 〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+ 1, 4k+ 2, 4k+ 3〉,
where α = 4k + 1 and γ = β + 1. Then the linear branch rooted at S has
length k.

(b) Let S = 〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+ 1, 4k+ 2, 4k+ 3〉,
where α = 4k+ 1 and γ = β + 3= 4k2+ 2. Then the linear branch rooted at
S has length l = 2k− k2, where k2 is the largest Apéry coordinate.

(c) S = 〈4, 4k+ 1, 4(2k− 1)+ 3〉 is the last element of the main branch. Hence,
the length of the main branch is 2k− 1.

(d) Let S = 〈4, α, β〉, where α = 4k+ 1 and β = 4(2k− 1)+ 3. Then the branch
rooted at S has length k+ 1, where k is the smallest Apéry coordinate.

(4) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈4, 4k + 2, 4k + 3, 4(k + 1)+ 1〉 have the following
properties:

(a) Let S = 〈4, α, β, γ 〉, where α = 4k+ 2 and β and γ are effective generators.
Then the main branch of the subtree rooted at S is infinite.

(b) Let S=〈4, α, β, γ 〉 be on the main branch under 〈4, 4k+2, 4k+3, 4(k+1)+1〉.
Then the linear branch rooted at S has length k.

(5) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈4, 4k+ 3, 4(k+ 1)+ 1, 4(k+ 1)+ 2〉 have the following
properties:

(a) Let S = 〈4, α, β, γ 〉 be on the main branch under 〈4, 4k + 3, 4(k + 1)+ 1,
4(k + 1)+ 2〉, where α = 4k + 3 and γ = β + 1 = 4k2 + 2. Then the linear
branch rooted at S has length 1+ 2k− k2.

(b) Let S = 〈4, α, β, γ 〉 be on the main branch under 〈4, 4k + 3, 4(k + 1)+ 1,
4(k + 1)+ 2〉, where α = 4k + 3 and γ = β + 3 = 4k1 + 1. Then the linear
branch rooted at S has length k, where k is the smallest Apéry coordinate.

(c) S = 〈4, 4k+ 3, 4(2k+ 1)+ 1〉 is the last element of the main branch. Hence,
the length of the main branch is 2k.

(d) Let S = 〈4, α, β〉, where α = 4k+ 3 and β = 4(2k+ 1)+ 1. Then the branch
rooted at S has length k+ 1, where k is the smallest Apéry coordinate.
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〈5, 6, 7, 8, 9〉

〈5, 7, 8, 9, 11〉

...

〈5, 6, 8, 9〉

〈5, 6, 9, 13〉

〈5, 6, 13, 14〉

〈5, 6, 14〉

〈5, 6, 19〉

〈5, 6〉

〈5, 6, 13〉

〈5, 6, 9〉

〈5, 6, 8〉

〈5, 6, 7, 9〉

〈5, 6, 7〉

〈5, 6, 7, 8〉

Figure 5. Portion of the numerical semigroup tree under S = 〈5, 6, 7, 8, 9〉.

Proof. Parts (1) and (2) are straightforward. The rest of the theorem follows
immediately from Lemmas 5–14. �

3.2. The subtree rooted at S = 〈5, 6, 7, 8, 9〉. The numerical semigroup tree
rooted at 〈5, 6, 7, 8, 9〉 is similar to the subtrees rooted at 〈3, 4, 5〉 and 〈4, 5, 6, 7〉;
see Figure 5. We again define an infinite principal branch by successively removing
the smallest generator greater than 5. Besides the principal branch, there are no
infinite branches. This is because 5 is prime.

The key insight that we use throughout this section is that when we ignore
removing the largest effective generator, we get a pattern very similar to what we
had in multiplicity 4. We break the branches of the tree into four classes based on the
congruence class of the first effective generator. The patterns of lengths act similarly
when the first effective generator is congruent to 1 (mod 5) and 2 (mod 5), and
again when the first effective generator is congruent to 3 (mod 5) and 4 (mod 5).
We omit redundant proofs in our analysis below. Once we describe these patterns
we address the largest effective generator in each case.

Each class in multiplicity 5 behaves like the branches rooted at 〈4, 4k+1, 4k+2,
4k+ 3〉 from the multiplicity-4 tree. There is a main branch, and from this branch
descend subbranches whose lengths follow a simple pattern. We demonstrate each
pattern separately, again using Apéry coordinates to find when a new generator
would be redundant.

Here, in Figure 6, we see the comb diagram of the subtree rooted at the numerical
semigroup S = 〈5, 12, 13, 14, 16〉. Note that in multiplicity 5 the leaves in our
comb diagrams are semigroups with exactly one effective generator. There is a
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〈5, 12, 13, 14, 16〉

〈5, 12, 14, 16, 18〉

〈5, 12, 16, 18, 19〉

〈5, 12, 18, 19, 21〉

〈5, 12, 19, 21, 23〉

〈5, 12, 21, 23〉

5

3

1

2

3

3

Figure 6. Portion of the comb diagram under S = 〈5, 12, 13, 14, 16〉.

linear branch descending from each semigroup in the diagram, which the diagram
does not address. We describe the patterns of lengths in these diagrams, just as we
did in multiplicity 4. However, with multiplicity 5, the constant-length subbranches
occur every third branch instead of every other branch as they did in multiplicity 4.
The lengths of the other subbranches decrease by 1 until there is a subbranch of
length 1. Finally, the subbranch that occurs when the main branch has just lost a
generator has length 2k+ 1, where k is the smallest Apéry coordinate of S.

Definition 16. We define the main branch of any subtree rooted on the principal
branch of the multiplicity 5 tree to be the set of semigroups formed by consecutively
removing the third-largest effective generator.

Lemma 17. Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+2, 5k+4,
5(k+1)+1, 5(k+1)+3〉, where α = 5k+2, β = 5k4+4, γ = 5(k4+1)+1, and
δ = 5(k4+ 1)+ 3. Then the linear branch rooted at S generated by consecutively
removing the second-largest generator loses an effective generator at length 2k− 1.

Proof. The second-largest effective generator is always congruent to 1 or 3 modulo 5,
alternating with each removal. The branch of the comb diagram terminates when
the new semigroup has only one effective generator, which occurs the first time
γ + 5(h+ 1) or δ+ 5(h+ 1) is in 〈5, α, β〉. It is easy to verify that if γ becomes
redundant first, the branch has length 2h+ 1, and if δ becomes redundant first, it
has length 2h + 2. We know that γ = 5k1 + 1 and δ = 5k3 + 3. Thus, in order
for γ to become redundant, it must be equal to 3 copies of α, or α+ β. In order
for δ to become redundant, it must be equal to 4 copies of α, or α + γ . Since
α < β < γ and β < 2α, we know that α+β < 3α, also note α+β < α+ γ , and
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so γ becomes redundant first when the new generator would be α+β. We now set
γ + 5(h+ 1)= α+β = 5k2+ 5k4+ 6 and solve for h. Since k4 = k1− 1, we get
h = k− 1. Thus, the total length of the branch until we lose an effective generator
is 2h+ 1= 2(k− 1)+ 1= 2k− 1. �

The other proofs in this section are similar to this one. In each, we determine
which generator becomes redundant first. We then express the length of the branch
in terms of the Apéry coordinates of the numerical semigroup, as we did in multi-
plicity 4. In the following proofs, we omit the restatement of this framework.

Lemma 18. Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+2, 5k+4,
5(k+1)+1, 5(k+1)+3〉, where α = 5k2+2 and k3 = k4. Then the branch rooted
at S generated by consecutively removing the second-largest generator will lose
an effective generator at length 4k2 − k4 − k1, where k1, k2, k3, k4 are the Apéry
coordinates.

Proof. Let S = 〈5, α, β, γ, δ〉 with at least two effective generators, γ < δ, where
α = 5k2+2 and k3 = k4. We consider two cases. The first is when k1 = k4+1, and
the second is when k1 = k4.

Case 1: Let k1 = k4 + 1. Then we know that γ = 5k4 + 4 and δ = 5k1 + 1.
Now γ becomes redundant when 2α would be the new generator, and δ becomes
redundant when the smaller of 3α and 2β would be the new generator. Thus, γ
will become redundant before δ. We set γ +5(h+1)= 2α and solve for h. We get
h= 2k2−k4−1. The total length of the branch until we lose an effective generator is
2h+1= 4k2−2k4−1= 4k2−k4−k1 since by hypothesis we know that k1= k4+1.

Case 2: Let k1 = k4. Then we know that γ = 5k3+ 3, and δ = 5k4+ 4. γ becomes
redundant when α + β would be the new generator. Now δ becomes redundant
when 2α would be the new generator. Thus, δ will become redundant before γ . We
set δ+5(h+1)= 2α and solve for h. We get h = 2k2− k4−1. The total length of
the branch until we lose an effective generator is 2h+2= 4k2−2k4= 4k2−k4−k1

since by hypothesis we know that k1 = k4. �

Lemma 19. S = 〈5, 5k + 2, 5(2k)+ 1, 5(2k)+ 3〉 is the last element of the main
branch. Hence, the length of the main branch is 3k− 1.

Proof. Using Definition 16, we define the Apéry set on the main branch as

Ap(5, S)= {0, 5(c+ 1)+ 1, 5k+ 2, 5(c+ 1)+ 3, 5c+ 4},

Ap(5, S)= {0, 5c+ 1, 5k+ 2, 5c+ 3, 5c+ 4},
or

Ap(5, S)= {0, 5(c+ 1)+ 1, 5k+ 2, 5c+ 3, 5c+ 4}

for some c ≥ k. Since α = 5k+ 2, we know the generator equivalent to 5c+ 4 will
become redundant first, because 2α ≡ 4 (mod 5) is the smallest element of 〈5, α〉
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congruent to 1, 3, or 4 (mod 5). The first value of c for which 5c+4= 2α= 10k+4
is when c = 2k. Since we increase c by 1 every third semigroup, we know the
total length of the main branch is 3(c − k) − 1 when the generator equivalent
to 5c+ 4 becomes redundant first. Thus, the total length of the main branch is
3(c− k)− 1= 3(2k− k)− 1= 3k− 1. �

Lemma 20. Let S = 〈5, 5k + 2, 5(2k)+ 1, 5(2k)+ 3〉. Then the linear branch
rooted at S generated by consecutively removing the second-largest generator will
lose an effective generator at length 2k+ 1.

Proof. Each semigroup on this branch has the form 〈5, α, β, γ 〉, where α = 5k+ 2,
k3≥2k, and k1= k3 or k3+1. The generator congruent to 3 (mod 5) becomes redun-
dant when 4α would be the new generator. The generator congruent to 1 (mod 5)
becomes redundant when 3α would be the new generator, and hence will become
redundant first. We set 5(2k)+ 1+ 5(h+ 1)= 3α and solve for h. We get h = k.
Since h increases by 1 every second time we remove the second-largest generator,
the total length of the branch until we lose an effective generator is 2k+ 1. �

Lemmas 17–20 fully describe the patterns of length for the subbranches rooted
at numerical semigroups with first effective generator congruent to 2 (mod 5). The
remaining subsets of subbranches are shown in a similar manner.

Lemma 21. Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+1, 5k+2,
5k+ 3, 5k+ 4〉, where α = 5k+ 1:

(1) In the case, k2 = k4, the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at
length 2k− 1.

(2) In the case k4 = k2 − 1, the branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at length
4k1− k2− k3− 1, where k1, k2, k3, k4 are the Apéry coordinates of S.

(3) 〈5, 5k+ 1, 5(2k− 1)+ 3, 5(2k− 1)+ 4〉 is the last element of the main branch
under 〈5, 5k+1, 5k+2, 5k+3, 5k+4〉. Hence, the length of the main branch
is 3k− 2.

(4) The linear branch under 〈5, 5k + 1, 5(2k − 1)+ 3, 5(2k − 1)+ 4〉 which is
generated by consecutively removing the second-largest generator loses an
effective generator at length 2k+ 1.

Lemma 22. Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+3, 5k+4,
5(k+ 1)+ 1, 5(k+ 1)+ 2〉, where α = 5k+ 3:

(1) In the case k1 = k4, the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at
length 2k.
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(2) In the case k4= k1−1, the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at length
4k3− k4− k2, where k1, k2, k3, k4 are the Apéry coordinates of S.

(3) 〈5, 5k+ 3, 5(2k)+ 2, 5(2k)+ 4〉 is the last element of the main branch under
〈5, 5k+ 3, 5k+ 4, 5(k+ 1)+ 1, 5(k+ 1)+ 2〉. Hence, the length of the main
branch is 3k− 1.

(4) The linear branch under 〈5, 5k+ 3, 5(2k)+ 2, 5(2k)+ 4〉 which is generated
by consecutively removing the second-largest generator loses an effective
generator at length 2k+ 2.

Lemma 23. Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k + 4,
5(k+ 1)+ 1, 5(k+ 1)+ 2, 5(k+ 1)+ 3〉, where α = 5k+ 4:

(1) In the case k3= k2−1, the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at
length 2k.

(2) In the case k2 = k3, the branch rooted at S generated by consecutively re-
moving the second-largest generator will lose an effective generator at length
4k4− k2− k1+ 2, where k1, k2, k3, k4 are the Apéry coordinates.

(3) 〈5, 5k+ 4, 5(2k+ 1)+ 1, 5(2k+ 1)+ 2〉 is the last element of the main branch
under 〈5, 5k+ 4, 5(k+ 1)+ 1, 5(k+ 1)+ 2, 5(k+ 1)+ 3〉. Hence, the length
of the main branch is 3k.

(4) The linear branch under 〈5, 5k+ 4, 5(2k+ 1)+ 1, 5(2k+ 1)+ 2〉 generated
by consecutively removing the second-largest generator loses an effective
generator at length 2k+ 2.

Until now we have disregarded the linear branches descending from each semi-
group in the comb diagram. To fully describe the structure of the multiplicity-5
numerical semigroup tree, we must describe the lengths of these branches as well.
We do this in a sequence of lemmas based on the congruence class modulo 5 of the
largest generator.

Lemma 24. For S = 〈5, 5a+ 1, 5b+ 2, 5c+ 3, 5d + 4〉, with Apéry coordinates
(a, b, c, d) and largest generator δ ≡ 1 (mod 5), the length of the branch generated
by consecutively removing the largest generator is min(b+ d− a+ 1, 2c− a+ 1).

Proof. Let S = 〈5, 5a + 1, 5b + 2, 5c + 3, 5d + 4〉, where (a, b, c, d) are the
Apéry coordinates of S, and let the largest generator be δ ≡ 1 (mod 5). The
Apéry coordinates of each numerical semigroup on this branch are in the form
(a+ k, b, c, d), where ` is the distance down the branch from S. A leaf occurs on
this branch when

5(a+ `)+ 1 ∈ 〈5, 5b+ 2, 5c+ 3, 5d + 4〉
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or in other words when

5(a+ `)+ 1= 5t1+ (5b+ 2)t2+ (5c+ 3)t3+ (5d + 4)t4 for ti ∈ N.

If t2 = t4 = 1 and all ti = 0, then we have 5b + 5d + 6 ≡ 1 (mod 5) with
length b + d − a + 1. We can also have t3 = 2 and all other ti = 0; then we
have 10c + 6 ≡ 1 (mod 5) with length (2c − a + 1). A similar argument to
those used in previous lemmas shows that one of these is the smallest element of
〈5, b, c, d〉 that is congruent to 1 (mod 5). Thus, the length of the subbranch is
min(b+ d − a+ 1, 2c− a+ 1). �

Lemma 25. Let S = 〈5, 5a + 1, 5b+ 2, 5c+ 3, 5d + 4〉, with Apéry coordinates
(a, b, c, d). Denote the largest generator of S by δ:

(1) When δ ≡ 2 (mod 5), the length of the branch generated by consecutively
removing the largest generator is min(2a− b, c+ d − b+ 1).

(2) When δ ≡ 3 (mod 5), the length of the branch generated by consecutively
removing the largest generator is min(a+ b− c, 2d − c+ 1).

(3) When δ ≡ 4 (mod 5), the length of the branch generated by consecutively
removing the largest generator is min(a+ c− d, 2b− d).

We compile these results in one theorem for ease of reference.

Theorem 26. The numerical semigroup tree rooted at S = 〈5, 6, 7, 8, 9〉 has the
following properties:

(1) For S = 〈5, α, β, γ, δ〉, where α < β < γ < δ are effective, 0< δ−α ≤ 4.

(2) For S = 〈5, α, β, γ, δ〉, with effective generators, α < β < γ < δ, S \ {β} has at
most three effective generators, S \ {γ } has at most two effective generators, and
S \ {δ} has at most one effective generator.

(3) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈5, 5k + 1, 5k + 2, 5k + 3, 5k + 4〉 have the following
properties:

(a) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+ 1, 5k+ 2, 5k+ 3,
5k+ 4〉, where α = 5k+ 1 and β = 5k+ 2. Then the linear branch rooted at S
generated by consecutively removing the second-largest generator will lose an
effective generator at length 2k− 1.

(b) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+ 1, 5k+ 2, 5k+ 3,
5k + 4〉, where α = 5k + 1, and k4 = k2 − 1. Then the branch rooted at S
generated by consecutively removing the second-largest generator will lose
an effective generator at length 4k1− k2− k3− 1, where k1, k2, k3, k4 are the
Apéry coordinates.
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(c) S = 〈5, 5k + 1, 5(2k − 1)+ 3, 5(2k − 1)+ 4〉 is the last element of the main
branch. Hence, the length of the main branch is 3k− 2.

(d) Let S = 〈5, α, β, γ 〉 be on the main branch under 〈5, 5k + 1, 5(2k − 1)+ 3,
5(2k−1)+4〉, where α= 5k+1. Then the linear branch rooted at S generated
by consecutively removing the second-largest generator loses an effective
generator at length 2k+ 1.

(4) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S= 〈5, 5k+2, 5k+3, 5k+4, 5(k+1)+1〉 have the following
properties:

(a) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k + 2, 5k + 4,
5(k+1)+1, 5(k+1)+3〉, where α = 5k+2, β = 5k4+4, γ = 5(k4+1)+1,
and δ = 5(k4+ 1)+ 3. Then the linear branch rooted at S generated by con-
secutively removing the second-largest generator loses an effective generator
at length 2k− 1.

(b) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k + 2, 5k + 4,
5(k+ 1)+ 1, 5(k+ 1)+ 3〉, where α = 5k2+ 2 and k3 = k4. Then the branch
rooted at S generated by consecutively removing the second-largest generator
will lose an effective generator at length 4k2− k4− k1, where k1, k2, k3, k4 are
the Apéry coordinates.

(c) S = 〈5, 5k + 2, 5(2k)+ 1, 5(2k)+ 3〉 is the last element of the main branch.
Hence, the length of the main branch is 3k− 1.

(d) Let S=〈5,α,β,γ 〉 be on the main branch under 〈5,5k+2,5(2k)+1,5(2k)+3〉,
where α=5k+2. Then the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at
length 2k+ 1.

(5) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈5, 5k+ 3, 5k+ 4, 5(k+ 1)+ 1, 5(k+ 1)+ 2〉 have the
following properties:

(a) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k + 3, 5k + 4,
5(k+1)+1, 5(k+1)+2〉, where α= 5k+3, β= 5(k+1)+1, γ = 5(k+1)+2,
and δ = 5(k + 1) + 4. Then the linear branch rooted at S generated by
consecutively removing the second-largest generator will lose an effective
generator at length 2k.

(b) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k + 3, 5k + 4,
5(k + 1) + 1, 5(k + 1) + 2〉, where α = 5k + 3. Then the branch rooted
at S generated by consecutively removing the second-largest generator will
lose an effective generator at length 4k3− k4− k2, where k1, k2, k3, k4 are the
Apéry coordinates.
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(c) S = 〈5, 5k + 3, 5(2k)+ 2, 5(2k)+ 4〉 is the last element of the main branch.
Hence, the length of the main branch is 3k− 1.

(d) Let S=〈5,α,β,γ 〉 be on the main branch under 〈5,5k+3,5(2k)+2,5(2k)+4〉,
where α=5k+3. Then the linear branch rooted at S generated by consecutively
removing the second-largest generator will lose an effective generator at
length 2k+ 2.

(6) The subbranches of the numerical semigroup tree rooted at numerical semi-
groups in the form of S = 〈5, 5k+ 4, 5(k+ 1)+ 1, 5(k+ 1)+ 2, 5(k+ 1)+ 3〉 have
the following properties:

(a) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+ 4, 5(k+ 1)+ 1,
5(k+1)+2, 5(k+1)+3〉, where α = 5k+4 and k3 = k2−1. Then the linear
branch rooted at S generated by consecutively removing the second-largest
generator will lose an effective generator at length 2k.

(b) Let S = 〈5, α, β, γ, δ〉 be on the main branch under 〈5, 5k+ 4, 5(k+ 1)+ 1,
5(k+ 1)+ 2, 5(k+ 1)+ 3〉, where α = 5k+ 4, and k2 = k3. Then the branch
rooted at S generated by consecutively removing the second-largest generator
will lose an effective generator at length 4k4− k2− k1+2, where k1, k2, k3, k4

are the Apéry coordinates.

(c) S = 〈5, 5k + 4, 5(2k + 1)+ 1, 5(2k + 1)+ 2〉 is the last element of the main
branch. Hence, the length of the main branch is 3k.

(d) Let S = 〈5, α, β, γ 〉 be on the main branch under 〈5, 5k + 4, 5(2k + 1)+ 1,
5(2k+1)+2〉, where α= 5k+4. Then the linear branch rooted at S generated
by consecutively removing the second-largest generator will lose an effective
generator at length 2k+ 2.

(7) The linear branches formed by successively removing the largest generator
from a numerical semigroup anywhere in the multiplicity 5 tree have the following
properties:

(a) For S = 〈5, 5a+1, 5b+2, 5c+3, 5d+4〉, with Apéry coordinates (a, b, c, d)
and largest generator δ ≡ 1 (mod 5), the length of the branch generated by
consecutively removing the largest generator is min(b+d−a+1, 2c−a+1).

(b) For S = 〈5, 5a+1, 5b+2, 5c+3, 5d+4〉, with Apéry coordinates (a, b, c, d)
and largest generator δ ≡ 2 (mod 5), the length of the branch generated by
consecutively removing the largest generator is min(2a− b, c+ d − b+ 1).

(c) For S = 〈5, 5a+1, 5b+2, 5c+3, 5d+4〉, with Apéry coordinates (a, b, c, d)
and largest generator δ ≡ 3 (mod 5), the length of the branch generated by
consecutively removing the largest generator is min(a+ b− c, 2d − c+ 1).
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(d) For S = 〈5, 5a+1, 5b+2, 5c+3, 5d+4〉, with Apéry coordinates (a, b, c, d)
and largest generator δ ≡ 4 (mod 5), the length of the branch generated by
consecutively removing the largest generator is min(a+ c− d, 2b− d).

Proof. Parts (1) and (2) are straightforward. The rest of the theorem is a direct
consequence of Lemma 17–Lemma 25. �

4. Counting N(4, g)

Understanding the structure of the numerical semigroup tree allows us to count the
number of semigroups by genus. In this section we provide an alternate proof for a
known quasipolynomial expression for N (4, g) when g ≥ 9. Formulas for N (4, g)
and N (5, g) are already known, but they were arrived at by computational methods.
In Theorem 16 of [García-Sánchez et al. 2018], there is an equation for counting
numerical semigroups of multiplicity m = 4 for genus greater than g= 9. A similar,
much longer, formula for N (5, g) is also shown in that work. Another noncomputa-
tional proof of the fact that N (4, g) is nondecreasing was recently found by Eliahou
and Fromentin [2019] using the related tool of gapset filtrations. Their approach
is in some sense dual to considering the tree of numerical semigroups, but they
establish their result without finding the quasipolynomial expression for N (4, g).

Theorem 27 [García-Sánchez et al. 2018, Theorem 16]. Let g be an integer greater
than 9. Then
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In [Alhajjar et al. 2019], the authors found the following quasipolynomial ex-
pression for N (4, g), when g ≥ 9, using observations about Kunz polytopes:

N (4, g)=


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g
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1
3 , g ≡ 2, 4 (mod 6),

g2
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g
2 −

1
4 , g ≡ 3 (mod 6).

(3)

We demonstrate an alternate proof of this formula using the structure of the
semigroup tree directly.
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Theorem 28. N (4, 3)= 1, and for any g ≥ 4,

N (4, g)=


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4 , g ≡ 3 (mod 6).

Proof. The only semigroup of multiplicity 4 and genus 3 is 〈4, 5, 6, 7〉. In order to
count the semigroups of multiplicity 4 by genus, we consider the structure of the
tree of semigroups of multiplicity 4. The structure of our argument is to first count
the number of semigroups on each subtree rooted on the principal branch then add
these counting functions together. As we observed in Theorem 15, the behavior of
the branch is determined by the congruence class modulo 4 of the second generator
of the root. Throughout the proof we use many facts about the structure of the tree.
All of these are immediate consequences of Theorem 15.

First consider the branch rooted at 〈4, 4k+ 2, 4k+ 3, 4(k+ 1)+ 1〉. This branch
is composed of length k linear subbranches descending from a main branch, with
one new linear subbranch in each genus. Observe that the genus of the root is 3k+1.
The first linear subbranch terminates at genus 4k+ 1. Until that point there is one
new subbranch in each genus. From genus 4k + 1 onward, one new subbranch
begins, and one subbranch ends. Thus the total number of semigroups is constant.
The number of semigroups on this branch is

#2,k(g)=
{

max{0, g− 3k}, g ≤ 4k,
k+ 1, g > 4k.

(4)

The total number of semigroups on any branch of this form is #2(g)=
∑
∞

k=1 #2,k(g).
To count this, we need only consider how many branches have stabilized at each
genus and how many are still growing.

At genus g,
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The branches that have not yet stabilized begin at each genus 3k + 1, k ≥ 1. So
at some genus g, all of the growing branches have the same number of vertices
modulo 3. Hence the vertices on the growing branches are either

1+4+7+· · ·+ (3n+1), 2+5+8+· · ·+ (3n+2), or 3+6+9+· · ·+3n

in number. Branches stabilize in genus 4k+ 1, with k+ 1 vertices. So the first time
there are k vertices in a growing branch is at genus 4k. Thus each sum becomes
one term longer when the genus is increased by 12. Consider the case where the
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genus is congruent to 0 modulo 3. In this case, the sum is

3+ 6+ · · ·+ 3
⌊ g

12

⌋
=

1
2

(
3
⌊ g

12

⌋
+ 3

)(⌊ g
12

⌋)
.

The other cases work similarly. Since every branch is either stabilized or growing,
this accounts for every vertex at each genus. So we have the sum

#2(g)=


1
2

(⌊ g−1
4

⌋
+1
)(⌊ g−1

4

⌋
+2
)
−1+

(
3
⌊ g+8

12

⌋
−1
) 1

2

⌊ g+8
12

⌋
, g ≡ 1 (mod 3),

1
2

(⌊ g−1
4

⌋
+1
)(⌊ g−1

4

⌋
+2
)
−1+

(
3
⌊ g+4

12

⌋
+1
) 1

2

⌊ g+4
12

⌋
, g ≡ 2 (mod 3),

1
2

(⌊ g−1
4

⌋
+1
)(⌊ g−1

4

⌋
+2
)
−1+

(
3
⌊ g

12

⌋
+3
) 1

2

⌊ g
12

⌋
, g ≡ 0 (mod 3).

Next consider the branch rooted at 〈4, 4k+1, 4k+2, 4k+3〉, which has genus 3k.
We can observe from the structure of this branch that the first leaves occur in
genus 4k, and the function counting the number of leaves in each genus is

`1,k(g)=


2, 4k ≤ g ≤ 5k− 2, g even,
1, 4k ≤ g ≤ 5k− 2, g odd,
1, 5k− 1≤ g ≤ 6k, g even,
0, otherwise.

From genus 3k to genus 4k, there is one additional semigroup in each genus. From
genus 4k to genus 5k− 2, there are two leaves in each even genus and one in each
odd genus. So the number of semigroups in the branch of genus g decreases by 1
whenever g is even. From genus 5k− 1 to genus 6k, there are no new subbranches,
and there is a leaf in each even genus, so the number of semigroups decreases by 1
in each even genus. The largest genus of any semigroup on this branch is 6k, the
genus of 〈4, 4k+ 1〉. Hence we can write the counting function for this branch:

#1,k(g)=


max{g+ 1− 3k, 0}, g ≤ 4k,⌊ 6k+2−g

2

⌋
, 4k < g ≤ 6k,

0, otherwise.

We compute the sum of these functions to find the total number of semigroups on
any branch of this form, #1(g)=

∑
∞

k=1 #1,k(g). At any genus each branch is either
growing, declining, or empty. In particular 〈4, 4k+ 1, 4k+ 2, 4k+ 3〉 is growing
for 3k ≤ g ≤ 4k and declining for 4k+ 1 ≤ g ≤ 6k. Consider g ≡ 0 (mod 6). At
genus g,

⌊ g
12

⌋
+ 1 branches are growing, yielding

1+ 4+ 7+ · · ·+
(
3
⌊ g

12

⌋
+ 1

)
,

which sums to
1
2

(
3b g

12

⌋
+ 2

)(⌊ g
12

⌋
+ 1

)
.

There are also
⌊ g−5

12

⌋
+ 1 declining branches at genus g, yielding

1+ 4+ 7+ · · ·+
(
3
⌊ g−5

12

⌋
+ 1

)
,
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which sums to
1
2

(
3
⌊ g−5

12

⌋
+ 2

)(⌊ g−5
12

⌋
+ 1

)
.

Since every branch is either empty, growing, or declining, the sum of these two
values accounts for every vertex at this genus. The other cases are similar, yielding
the counting function:

#1(g)=



1
2

((
3
⌊ g

12

⌋
+2
)(⌊ g

12

⌋
+1
)
+
(
3
⌊ g−5

12

⌋
+2
)(⌊ g−5

12

⌋
+1
))
, g≡ 0 (mod 6),

1
2

((
3
⌊ g−4

12

⌋
+4
)(⌊ g−4

12

⌋
+1
)
+
(
3
⌊ g

12

⌋
+3
)(⌊ g

12

⌋))
, g≡ 1 (mod 6),

1
2

((
3
⌊ g+4

12

⌋
+3
)(⌊ g+4

12

⌋)
+
(
3
⌊ g

12

⌋
+3
)(⌊ g

12

⌋))
, g≡ 2 (mod 6),

1
2

((
3
⌊ g

12

⌋
+2
)(⌊ g

12

⌋
+1
)
+
(
3
⌊ g−9

12

⌋
+4
)(⌊ g−9

12

⌋
+1
))
, g≡ 3 (mod 6),

1
2

((
3
⌊ g−4

12

⌋
+4
)(⌊ g−4

12

⌋
+1
)
+
(
3
⌊ g−9

12

⌋
+4
)(⌊ g−9

12

⌋
+1
))
, g≡ 4 (mod 6),

1
2

((
3
⌊ g+4

12

⌋
+3
)(⌊ g+4

12

⌋)
+
(
3
⌊ g−5

12

⌋
+2
)(⌊ g−5

12

⌋
+1
))
, g≡ 5 (mod 6).

The branches with root 〈4, 4k+ 3, 4(k+ 1)+ 1, 4(k+ 1)+ 2〉 behave similarly
to the previous case. Repeating the argument, we obtain the following counting
function, valid for g ≥ 4:

#3(g)=



1
2

((
3
⌊ g−4

12

⌋
+4
)(⌊ g−4

12

⌋
+1
)
+
(
3
⌊ g−7

12

⌋
+4
)(⌊ g−7

12

⌋
+1
))
, g≡ 0 (mod 6),

1
2

((
3
⌊ g+4

12

⌋
+3
)(⌊ g+4

12

⌋)
+
(
3
⌊ g−7

12

⌋
+4
)(⌊ g−7

12

⌋
+1
))
, g≡ 1 (mod 6),

1
2

((
3
⌊ g

12

⌋
+2
)(⌊ g

12

⌋
+1
)
+
(
3
⌊ g−3

12

⌋
+2
)(⌊ g−3

12

⌋
+1
))
, g≡ 2 (mod 6),

1
2

((
3
⌊ g−4

12

⌋
+4
)(⌊ g−4

12

⌋
+1
)
+
(
3
⌊ g−3

12

⌋
+2
)(⌊ g−3

12

⌋
+1
))
, g≡ 3 (mod 6),

1
2

((
3
⌊ g+4

12

⌋
+3
)(⌊ g+4

12

⌋)
+
(
3
⌊ g+1

12

⌋
+3
)(⌊ g+1

12

⌋))
, g≡ 4 (mod 6),

1
2

((
3
⌊ g

12

⌋
+2
)(⌊ g

12

⌋
+1
)
+
(
3
⌊ g+1

12

⌋
+3
)(⌊ g+1

12

⌋))
, g≡ 5 (mod 6)

Finally we sum these functions. N (4, g)= #1(g)+ #2(g)+ #3(g). By working
modulo 12, the least common multiple of the denominators, we can eliminate the
floor functions. Then a simple computation reduces the function to

N (4, g)=



g2

12 +
g
2 , g ≡ 0 (mod 6),

g2

12 +
g
2 −

7
12 , g ≡ 1, 5 (mod 6),

g2

12 +
g
2 −

1
3 , g ≡ 2, 4 (mod 6),

g2

12 +
g
2 −

1
4 , g ≡ 3 (mod 6). �

Theorem 28 uses the structure of the numerical semigroup tree in multiplicity 4
to find a concise quasipolynomial expression for N (4, g). We suspect that a similar
approach could yield a relatively concise quasipolynomial expression for N (5, g),
but the computations are much more complicated.
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